1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/Attr.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/CharUnits.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/GlobalDecl.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/VTableBuilder.h" 27 #include "clang/Basic/ABI.h" 28 #include "clang/Basic/DiagnosticOptions.h" 29 #include "clang/Basic/FileManager.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/Support/CRC.h" 35 #include "llvm/Support/MD5.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/StringSaver.h" 38 #include "llvm/Support/xxhash.h" 39 #include <functional> 40 #include <optional> 41 42 using namespace clang; 43 44 namespace { 45 46 // Get GlobalDecl of DeclContext of local entities. 47 static GlobalDecl getGlobalDeclAsDeclContext(const DeclContext *DC) { 48 GlobalDecl GD; 49 if (auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 50 GD = GlobalDecl(CD, Ctor_Complete); 51 else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 52 GD = GlobalDecl(DD, Dtor_Complete); 53 else 54 GD = GlobalDecl(cast<FunctionDecl>(DC)); 55 return GD; 56 } 57 58 struct msvc_hashing_ostream : public llvm::raw_svector_ostream { 59 raw_ostream &OS; 60 llvm::SmallString<64> Buffer; 61 62 msvc_hashing_ostream(raw_ostream &OS) 63 : llvm::raw_svector_ostream(Buffer), OS(OS) {} 64 ~msvc_hashing_ostream() override { 65 StringRef MangledName = str(); 66 bool StartsWithEscape = MangledName.starts_with("\01"); 67 if (StartsWithEscape) 68 MangledName = MangledName.drop_front(1); 69 if (MangledName.size() < 4096) { 70 OS << str(); 71 return; 72 } 73 74 llvm::MD5 Hasher; 75 llvm::MD5::MD5Result Hash; 76 Hasher.update(MangledName); 77 Hasher.final(Hash); 78 79 SmallString<32> HexString; 80 llvm::MD5::stringifyResult(Hash, HexString); 81 82 if (StartsWithEscape) 83 OS << '\01'; 84 OS << "??@" << HexString << '@'; 85 } 86 }; 87 88 static const DeclContext * 89 getLambdaDefaultArgumentDeclContext(const Decl *D) { 90 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) 91 if (RD->isLambda()) 92 if (const auto *Parm = 93 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 94 return Parm->getDeclContext(); 95 return nullptr; 96 } 97 98 /// Retrieve the declaration context that should be used when mangling 99 /// the given declaration. 100 static const DeclContext *getEffectiveDeclContext(const Decl *D) { 101 // The ABI assumes that lambda closure types that occur within 102 // default arguments live in the context of the function. However, due to 103 // the way in which Clang parses and creates function declarations, this is 104 // not the case: the lambda closure type ends up living in the context 105 // where the function itself resides, because the function declaration itself 106 // had not yet been created. Fix the context here. 107 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D)) 108 return LDADC; 109 110 // Perform the same check for block literals. 111 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 112 if (ParmVarDecl *ContextParam = 113 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 114 return ContextParam->getDeclContext(); 115 } 116 117 const DeclContext *DC = D->getDeclContext(); 118 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 119 isa<OMPDeclareMapperDecl>(DC)) { 120 return getEffectiveDeclContext(cast<Decl>(DC)); 121 } 122 123 return DC->getRedeclContext(); 124 } 125 126 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 127 return getEffectiveDeclContext(cast<Decl>(DC)); 128 } 129 130 static const FunctionDecl *getStructor(const NamedDecl *ND) { 131 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 132 return FTD->getTemplatedDecl()->getCanonicalDecl(); 133 134 const auto *FD = cast<FunctionDecl>(ND); 135 if (const auto *FTD = FD->getPrimaryTemplate()) 136 return FTD->getTemplatedDecl()->getCanonicalDecl(); 137 138 return FD->getCanonicalDecl(); 139 } 140 141 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the 142 /// Microsoft Visual C++ ABI. 143 class MicrosoftMangleContextImpl : public MicrosoftMangleContext { 144 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy; 145 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 146 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier; 147 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds; 148 llvm::DenseMap<GlobalDecl, unsigned> SEHFilterIds; 149 llvm::DenseMap<GlobalDecl, unsigned> SEHFinallyIds; 150 SmallString<16> AnonymousNamespaceHash; 151 152 public: 153 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags, 154 bool IsAux = false); 155 bool shouldMangleCXXName(const NamedDecl *D) override; 156 bool shouldMangleStringLiteral(const StringLiteral *SL) override; 157 void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override; 158 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 159 const MethodVFTableLocation &ML, 160 raw_ostream &Out) override; 161 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 162 raw_ostream &) override; 163 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 164 const ThisAdjustment &ThisAdjustment, 165 raw_ostream &) override; 166 void mangleCXXVFTable(const CXXRecordDecl *Derived, 167 ArrayRef<const CXXRecordDecl *> BasePath, 168 raw_ostream &Out) override; 169 void mangleCXXVBTable(const CXXRecordDecl *Derived, 170 ArrayRef<const CXXRecordDecl *> BasePath, 171 raw_ostream &Out) override; 172 void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 173 const CXXRecordDecl *DstRD, 174 raw_ostream &Out) override; 175 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile, 176 bool IsUnaligned, uint32_t NumEntries, 177 raw_ostream &Out) override; 178 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries, 179 raw_ostream &Out) override; 180 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD, 181 CXXCtorType CT, uint32_t Size, uint32_t NVOffset, 182 int32_t VBPtrOffset, uint32_t VBIndex, 183 raw_ostream &Out) override; 184 void mangleCXXRTTI(QualType T, raw_ostream &Out) override; 185 void mangleCXXRTTIName(QualType T, raw_ostream &Out, 186 bool NormalizeIntegers) override; 187 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived, 188 uint32_t NVOffset, int32_t VBPtrOffset, 189 uint32_t VBTableOffset, uint32_t Flags, 190 raw_ostream &Out) override; 191 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived, 192 raw_ostream &Out) override; 193 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived, 194 raw_ostream &Out) override; 195 void 196 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived, 197 ArrayRef<const CXXRecordDecl *> BasePath, 198 raw_ostream &Out) override; 199 void mangleCanonicalTypeName(QualType T, raw_ostream &, 200 bool NormalizeIntegers) override; 201 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber, 202 raw_ostream &) override; 203 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override; 204 void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum, 205 raw_ostream &Out) override; 206 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 207 void mangleDynamicAtExitDestructor(const VarDecl *D, 208 raw_ostream &Out) override; 209 void mangleSEHFilterExpression(GlobalDecl EnclosingDecl, 210 raw_ostream &Out) override; 211 void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl, 212 raw_ostream &Out) override; 213 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override; 214 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 215 const DeclContext *DC = getEffectiveDeclContext(ND); 216 if (!DC->isFunctionOrMethod()) 217 return false; 218 219 // Lambda closure types are already numbered, give out a phony number so 220 // that they demangle nicely. 221 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 222 if (RD->isLambda()) { 223 disc = 1; 224 return true; 225 } 226 } 227 228 // Use the canonical number for externally visible decls. 229 if (ND->isExternallyVisible()) { 230 disc = getASTContext().getManglingNumber(ND, isAux()); 231 return true; 232 } 233 234 // Anonymous tags are already numbered. 235 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 236 if (!Tag->hasNameForLinkage() && 237 !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) && 238 !getASTContext().getTypedefNameForUnnamedTagDecl(Tag)) 239 return false; 240 } 241 242 // Make up a reasonable number for internal decls. 243 unsigned &discriminator = Uniquifier[ND]; 244 if (!discriminator) 245 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 246 disc = discriminator + 1; 247 return true; 248 } 249 250 std::string getLambdaString(const CXXRecordDecl *Lambda) override { 251 assert(Lambda->isLambda() && "RD must be a lambda!"); 252 std::string Name("<lambda_"); 253 254 Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); 255 unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); 256 unsigned LambdaId; 257 const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 258 const FunctionDecl *Func = 259 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 260 261 if (Func) { 262 unsigned DefaultArgNo = 263 Func->getNumParams() - Parm->getFunctionScopeIndex(); 264 Name += llvm::utostr(DefaultArgNo); 265 Name += "_"; 266 } 267 268 if (LambdaManglingNumber) 269 LambdaId = LambdaManglingNumber; 270 else 271 LambdaId = getLambdaIdForDebugInfo(Lambda); 272 273 Name += llvm::utostr(LambdaId); 274 Name += ">"; 275 return Name; 276 } 277 278 unsigned getLambdaId(const CXXRecordDecl *RD) { 279 assert(RD->isLambda() && "RD must be a lambda!"); 280 assert(!RD->isExternallyVisible() && "RD must not be visible!"); 281 assert(RD->getLambdaManglingNumber() == 0 && 282 "RD must not have a mangling number!"); 283 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool> 284 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size())); 285 return Result.first->second; 286 } 287 288 unsigned getLambdaIdForDebugInfo(const CXXRecordDecl *RD) { 289 assert(RD->isLambda() && "RD must be a lambda!"); 290 assert(!RD->isExternallyVisible() && "RD must not be visible!"); 291 assert(RD->getLambdaManglingNumber() == 0 && 292 "RD must not have a mangling number!"); 293 // The lambda should exist, but return 0 in case it doesn't. 294 return LambdaIds.lookup(RD); 295 } 296 297 /// Return a character sequence that is (somewhat) unique to the TU suitable 298 /// for mangling anonymous namespaces. 299 StringRef getAnonymousNamespaceHash() const { 300 return AnonymousNamespaceHash; 301 } 302 303 private: 304 void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out); 305 }; 306 307 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the 308 /// Microsoft Visual C++ ABI. 309 class MicrosoftCXXNameMangler { 310 MicrosoftMangleContextImpl &Context; 311 raw_ostream &Out; 312 313 /// The "structor" is the top-level declaration being mangled, if 314 /// that's not a template specialization; otherwise it's the pattern 315 /// for that specialization. 316 const NamedDecl *Structor; 317 unsigned StructorType; 318 319 typedef llvm::SmallVector<std::string, 10> BackRefVec; 320 BackRefVec NameBackReferences; 321 322 typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap; 323 ArgBackRefMap FunArgBackReferences; 324 ArgBackRefMap TemplateArgBackReferences; 325 326 typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap; 327 TemplateArgStringMap TemplateArgStrings; 328 llvm::BumpPtrAllocator TemplateArgStringStorageAlloc; 329 llvm::StringSaver TemplateArgStringStorage; 330 331 typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet; 332 PassObjectSizeArgsSet PassObjectSizeArgs; 333 334 ASTContext &getASTContext() const { return Context.getASTContext(); } 335 336 const bool PointersAre64Bit; 337 338 public: 339 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; 340 341 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_) 342 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1), 343 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 344 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( 345 LangAS::Default) == 64) {} 346 347 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 348 const CXXConstructorDecl *D, CXXCtorType Type) 349 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 350 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 351 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( 352 LangAS::Default) == 64) {} 353 354 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 355 const CXXDestructorDecl *D, CXXDtorType Type) 356 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 357 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 358 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( 359 LangAS::Default) == 64) {} 360 361 raw_ostream &getStream() const { return Out; } 362 363 void mangle(GlobalDecl GD, StringRef Prefix = "?"); 364 void mangleName(GlobalDecl GD); 365 void mangleFunctionEncoding(GlobalDecl GD, bool ShouldMangle); 366 void mangleVariableEncoding(const VarDecl *VD); 367 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD, 368 StringRef Prefix = "$"); 369 void mangleMemberDataPointerInClassNTTP(const CXXRecordDecl *, 370 const ValueDecl *); 371 void mangleMemberFunctionPointer(const CXXRecordDecl *RD, 372 const CXXMethodDecl *MD, 373 StringRef Prefix = "$"); 374 void mangleMemberFunctionPointerInClassNTTP(const CXXRecordDecl *RD, 375 const CXXMethodDecl *MD); 376 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 377 const MethodVFTableLocation &ML); 378 void mangleNumber(int64_t Number); 379 void mangleNumber(llvm::APSInt Number); 380 void mangleFloat(llvm::APFloat Number); 381 void mangleBits(llvm::APInt Number); 382 void mangleTagTypeKind(TagTypeKind TK); 383 void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName, 384 ArrayRef<StringRef> NestedNames = std::nullopt); 385 void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range); 386 void mangleType(QualType T, SourceRange Range, 387 QualifierMangleMode QMM = QMM_Mangle); 388 void mangleFunctionType(const FunctionType *T, 389 const FunctionDecl *D = nullptr, 390 bool ForceThisQuals = false, 391 bool MangleExceptionSpec = true); 392 void mangleNestedName(GlobalDecl GD); 393 394 private: 395 bool isStructorDecl(const NamedDecl *ND) const { 396 return ND == Structor || getStructor(ND) == Structor; 397 } 398 399 bool is64BitPointer(Qualifiers Quals) const { 400 LangAS AddrSpace = Quals.getAddressSpace(); 401 return AddrSpace == LangAS::ptr64 || 402 (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr || 403 AddrSpace == LangAS::ptr32_uptr)); 404 } 405 406 void mangleUnqualifiedName(GlobalDecl GD) { 407 mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName()); 408 } 409 void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name); 410 void mangleSourceName(StringRef Name); 411 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); 412 void mangleCXXDtorType(CXXDtorType T); 413 void mangleQualifiers(Qualifiers Quals, bool IsMember); 414 void mangleRefQualifier(RefQualifierKind RefQualifier); 415 void manglePointerCVQualifiers(Qualifiers Quals); 416 void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType); 417 418 void mangleUnscopedTemplateName(GlobalDecl GD); 419 void 420 mangleTemplateInstantiationName(GlobalDecl GD, 421 const TemplateArgumentList &TemplateArgs); 422 void mangleObjCMethodName(const ObjCMethodDecl *MD); 423 424 void mangleFunctionArgumentType(QualType T, SourceRange Range); 425 void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA); 426 427 bool isArtificialTagType(QualType T) const; 428 429 // Declare manglers for every type class. 430 #define ABSTRACT_TYPE(CLASS, PARENT) 431 #define NON_CANONICAL_TYPE(CLASS, PARENT) 432 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ 433 Qualifiers Quals, \ 434 SourceRange Range); 435 #include "clang/AST/TypeNodes.inc" 436 #undef ABSTRACT_TYPE 437 #undef NON_CANONICAL_TYPE 438 #undef TYPE 439 440 void mangleType(const TagDecl *TD); 441 void mangleDecayedArrayType(const ArrayType *T); 442 void mangleArrayType(const ArrayType *T); 443 void mangleFunctionClass(const FunctionDecl *FD); 444 void mangleCallingConvention(CallingConv CC); 445 void mangleCallingConvention(const FunctionType *T); 446 void mangleIntegerLiteral(const llvm::APSInt &Number, 447 const NonTypeTemplateParmDecl *PD = nullptr, 448 QualType TemplateArgType = QualType()); 449 void mangleExpression(const Expr *E, const NonTypeTemplateParmDecl *PD); 450 void mangleThrowSpecification(const FunctionProtoType *T); 451 452 void mangleTemplateArgs(const TemplateDecl *TD, 453 const TemplateArgumentList &TemplateArgs); 454 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA, 455 const NamedDecl *Parm); 456 void mangleTemplateArgValue(QualType T, const APValue &V, 457 bool WithScalarType = false); 458 459 void mangleObjCProtocol(const ObjCProtocolDecl *PD); 460 void mangleObjCLifetime(const QualType T, Qualifiers Quals, 461 SourceRange Range); 462 void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals, 463 SourceRange Range); 464 }; 465 } 466 467 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context, 468 DiagnosticsEngine &Diags, 469 bool IsAux) 470 : MicrosoftMangleContext(Context, Diags, IsAux) { 471 // To mangle anonymous namespaces, hash the path to the main source file. The 472 // path should be whatever (probably relative) path was passed on the command 473 // line. The goal is for the compiler to produce the same output regardless of 474 // working directory, so use the uncanonicalized relative path. 475 // 476 // It's important to make the mangled names unique because, when CodeView 477 // debug info is in use, the debugger uses mangled type names to distinguish 478 // between otherwise identically named types in anonymous namespaces. 479 // 480 // These symbols are always internal, so there is no need for the hash to 481 // match what MSVC produces. For the same reason, clang is free to change the 482 // hash at any time without breaking compatibility with old versions of clang. 483 // The generated names are intended to look similar to what MSVC generates, 484 // which are something like "?A0x01234567@". 485 SourceManager &SM = Context.getSourceManager(); 486 if (OptionalFileEntryRef FE = SM.getFileEntryRefForID(SM.getMainFileID())) { 487 // Truncate the hash so we get 8 characters of hexadecimal. 488 uint32_t TruncatedHash = uint32_t(xxh3_64bits(FE->getName())); 489 AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash); 490 } else { 491 // If we don't have a path to the main file, we'll just use 0. 492 AnonymousNamespaceHash = "0"; 493 } 494 } 495 496 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 497 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 498 LanguageLinkage L = FD->getLanguageLinkage(); 499 // Overloadable functions need mangling. 500 if (FD->hasAttr<OverloadableAttr>()) 501 return true; 502 503 // The ABI expects that we would never mangle "typical" user-defined entry 504 // points regardless of visibility or freestanding-ness. 505 // 506 // N.B. This is distinct from asking about "main". "main" has a lot of 507 // special rules associated with it in the standard while these 508 // user-defined entry points are outside of the purview of the standard. 509 // For example, there can be only one definition for "main" in a standards 510 // compliant program; however nothing forbids the existence of wmain and 511 // WinMain in the same translation unit. 512 if (FD->isMSVCRTEntryPoint()) 513 return false; 514 515 // C++ functions and those whose names are not a simple identifier need 516 // mangling. 517 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 518 return true; 519 520 // C functions are not mangled. 521 if (L == CLanguageLinkage) 522 return false; 523 } 524 525 // Otherwise, no mangling is done outside C++ mode. 526 if (!getASTContext().getLangOpts().CPlusPlus) 527 return false; 528 529 const VarDecl *VD = dyn_cast<VarDecl>(D); 530 if (VD && !isa<DecompositionDecl>(D)) { 531 // C variables are not mangled. 532 if (VD->isExternC()) 533 return false; 534 535 // Variables at global scope with internal linkage are not mangled. 536 const DeclContext *DC = getEffectiveDeclContext(D); 537 // Check for extern variable declared locally. 538 if (DC->isFunctionOrMethod() && D->hasLinkage()) 539 while (!DC->isNamespace() && !DC->isTranslationUnit()) 540 DC = getEffectiveParentContext(DC); 541 542 if (DC->isTranslationUnit() && D->getFormalLinkage() == Linkage::Internal && 543 !isa<VarTemplateSpecializationDecl>(D) && D->getIdentifier() != nullptr) 544 return false; 545 } 546 547 return true; 548 } 549 550 bool 551 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) { 552 return true; 553 } 554 555 void MicrosoftCXXNameMangler::mangle(GlobalDecl GD, StringRef Prefix) { 556 const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); 557 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. 558 // Therefore it's really important that we don't decorate the 559 // name with leading underscores or leading/trailing at signs. So, by 560 // default, we emit an asm marker at the start so we get the name right. 561 // Callers can override this with a custom prefix. 562 563 // <mangled-name> ::= ? <name> <type-encoding> 564 Out << Prefix; 565 mangleName(GD); 566 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 567 mangleFunctionEncoding(GD, Context.shouldMangleDeclName(FD)); 568 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 569 mangleVariableEncoding(VD); 570 else if (isa<MSGuidDecl>(D)) 571 // MSVC appears to mangle GUIDs as if they were variables of type 572 // 'const struct __s_GUID'. 573 Out << "3U__s_GUID@@B"; 574 else if (isa<TemplateParamObjectDecl>(D)) { 575 // Template parameter objects don't get a <type-encoding>; their type is 576 // specified as part of their value. 577 } else 578 llvm_unreachable("Tried to mangle unexpected NamedDecl!"); 579 } 580 581 void MicrosoftCXXNameMangler::mangleFunctionEncoding(GlobalDecl GD, 582 bool ShouldMangle) { 583 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 584 // <type-encoding> ::= <function-class> <function-type> 585 586 // Since MSVC operates on the type as written and not the canonical type, it 587 // actually matters which decl we have here. MSVC appears to choose the 588 // first, since it is most likely to be the declaration in a header file. 589 FD = FD->getFirstDecl(); 590 591 // We should never ever see a FunctionNoProtoType at this point. 592 // We don't even know how to mangle their types anyway :). 593 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); 594 595 // extern "C" functions can hold entities that must be mangled. 596 // As it stands, these functions still need to get expressed in the full 597 // external name. They have their class and type omitted, replaced with '9'. 598 if (ShouldMangle) { 599 // We would like to mangle all extern "C" functions using this additional 600 // component but this would break compatibility with MSVC's behavior. 601 // Instead, do this when we know that compatibility isn't important (in 602 // other words, when it is an overloaded extern "C" function). 603 if (FD->isExternC() && FD->hasAttr<OverloadableAttr>()) 604 Out << "$$J0"; 605 606 mangleFunctionClass(FD); 607 608 mangleFunctionType(FT, FD, false, false); 609 } else { 610 Out << '9'; 611 } 612 } 613 614 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { 615 // <type-encoding> ::= <storage-class> <variable-type> 616 // <storage-class> ::= 0 # private static member 617 // ::= 1 # protected static member 618 // ::= 2 # public static member 619 // ::= 3 # global 620 // ::= 4 # static local 621 622 // The first character in the encoding (after the name) is the storage class. 623 if (VD->isStaticDataMember()) { 624 // If it's a static member, it also encodes the access level. 625 switch (VD->getAccess()) { 626 default: 627 case AS_private: Out << '0'; break; 628 case AS_protected: Out << '1'; break; 629 case AS_public: Out << '2'; break; 630 } 631 } 632 else if (!VD->isStaticLocal()) 633 Out << '3'; 634 else 635 Out << '4'; 636 // Now mangle the type. 637 // <variable-type> ::= <type> <cvr-qualifiers> 638 // ::= <type> <pointee-cvr-qualifiers> # pointers, references 639 // Pointers and references are odd. The type of 'int * const foo;' gets 640 // mangled as 'QAHA' instead of 'PAHB', for example. 641 SourceRange SR = VD->getSourceRange(); 642 QualType Ty = VD->getType(); 643 if (Ty->isPointerType() || Ty->isReferenceType() || 644 Ty->isMemberPointerType()) { 645 mangleType(Ty, SR, QMM_Drop); 646 manglePointerExtQualifiers( 647 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType()); 648 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { 649 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true); 650 // Member pointers are suffixed with a back reference to the member 651 // pointer's class name. 652 mangleName(MPT->getClass()->getAsCXXRecordDecl()); 653 } else 654 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false); 655 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) { 656 // Global arrays are funny, too. 657 mangleDecayedArrayType(AT); 658 if (AT->getElementType()->isArrayType()) 659 Out << 'A'; 660 else 661 mangleQualifiers(Ty.getQualifiers(), false); 662 } else { 663 mangleType(Ty, SR, QMM_Drop); 664 mangleQualifiers(Ty.getQualifiers(), false); 665 } 666 } 667 668 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD, 669 const ValueDecl *VD, 670 StringRef Prefix) { 671 // <member-data-pointer> ::= <integer-literal> 672 // ::= $F <number> <number> 673 // ::= $G <number> <number> <number> 674 675 int64_t FieldOffset; 676 int64_t VBTableOffset; 677 MSInheritanceModel IM = RD->getMSInheritanceModel(); 678 if (VD) { 679 FieldOffset = getASTContext().getFieldOffset(VD); 680 assert(FieldOffset % getASTContext().getCharWidth() == 0 && 681 "cannot take address of bitfield"); 682 FieldOffset /= getASTContext().getCharWidth(); 683 684 VBTableOffset = 0; 685 686 if (IM == MSInheritanceModel::Virtual) 687 FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 688 } else { 689 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1; 690 691 VBTableOffset = -1; 692 } 693 694 char Code = '\0'; 695 switch (IM) { 696 case MSInheritanceModel::Single: Code = '0'; break; 697 case MSInheritanceModel::Multiple: Code = '0'; break; 698 case MSInheritanceModel::Virtual: Code = 'F'; break; 699 case MSInheritanceModel::Unspecified: Code = 'G'; break; 700 } 701 702 Out << Prefix << Code; 703 704 mangleNumber(FieldOffset); 705 706 // The C++ standard doesn't allow base-to-derived member pointer conversions 707 // in template parameter contexts, so the vbptr offset of data member pointers 708 // is always zero. 709 if (inheritanceModelHasVBPtrOffsetField(IM)) 710 mangleNumber(0); 711 if (inheritanceModelHasVBTableOffsetField(IM)) 712 mangleNumber(VBTableOffset); 713 } 714 715 void MicrosoftCXXNameMangler::mangleMemberDataPointerInClassNTTP( 716 const CXXRecordDecl *RD, const ValueDecl *VD) { 717 MSInheritanceModel IM = RD->getMSInheritanceModel(); 718 // <nttp-class-member-data-pointer> ::= <member-data-pointer> 719 // ::= N 720 // ::= 8 <postfix> @ <unqualified-name> @ 721 722 if (IM != MSInheritanceModel::Single && IM != MSInheritanceModel::Multiple) 723 return mangleMemberDataPointer(RD, VD, ""); 724 725 if (!VD) { 726 Out << 'N'; 727 return; 728 } 729 730 Out << '8'; 731 mangleNestedName(VD); 732 Out << '@'; 733 mangleUnqualifiedName(VD); 734 Out << '@'; 735 } 736 737 void 738 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD, 739 const CXXMethodDecl *MD, 740 StringRef Prefix) { 741 // <member-function-pointer> ::= $1? <name> 742 // ::= $H? <name> <number> 743 // ::= $I? <name> <number> <number> 744 // ::= $J? <name> <number> <number> <number> 745 746 MSInheritanceModel IM = RD->getMSInheritanceModel(); 747 748 char Code = '\0'; 749 switch (IM) { 750 case MSInheritanceModel::Single: Code = '1'; break; 751 case MSInheritanceModel::Multiple: Code = 'H'; break; 752 case MSInheritanceModel::Virtual: Code = 'I'; break; 753 case MSInheritanceModel::Unspecified: Code = 'J'; break; 754 } 755 756 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr 757 // thunk. 758 uint64_t NVOffset = 0; 759 uint64_t VBTableOffset = 0; 760 uint64_t VBPtrOffset = 0; 761 if (MD) { 762 Out << Prefix << Code << '?'; 763 if (MD->isVirtual()) { 764 MicrosoftVTableContext *VTContext = 765 cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); 766 MethodVFTableLocation ML = 767 VTContext->getMethodVFTableLocation(GlobalDecl(MD)); 768 mangleVirtualMemPtrThunk(MD, ML); 769 NVOffset = ML.VFPtrOffset.getQuantity(); 770 VBTableOffset = ML.VBTableIndex * 4; 771 if (ML.VBase) { 772 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD); 773 VBPtrOffset = Layout.getVBPtrOffset().getQuantity(); 774 } 775 } else { 776 mangleName(MD); 777 mangleFunctionEncoding(MD, /*ShouldMangle=*/true); 778 } 779 780 if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual) 781 NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 782 } else { 783 // Null single inheritance member functions are encoded as a simple nullptr. 784 if (IM == MSInheritanceModel::Single) { 785 Out << Prefix << "0A@"; 786 return; 787 } 788 if (IM == MSInheritanceModel::Unspecified) 789 VBTableOffset = -1; 790 Out << Prefix << Code; 791 } 792 793 if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, IM)) 794 mangleNumber(static_cast<uint32_t>(NVOffset)); 795 if (inheritanceModelHasVBPtrOffsetField(IM)) 796 mangleNumber(VBPtrOffset); 797 if (inheritanceModelHasVBTableOffsetField(IM)) 798 mangleNumber(VBTableOffset); 799 } 800 801 void MicrosoftCXXNameMangler::mangleMemberFunctionPointerInClassNTTP( 802 const CXXRecordDecl *RD, const CXXMethodDecl *MD) { 803 // <nttp-class-member-function-pointer> ::= <member-function-pointer> 804 // ::= N 805 // ::= E? <virtual-mem-ptr-thunk> 806 // ::= E? <mangled-name> <type-encoding> 807 808 if (!MD) { 809 if (RD->getMSInheritanceModel() != MSInheritanceModel::Single) 810 return mangleMemberFunctionPointer(RD, MD, ""); 811 812 Out << 'N'; 813 return; 814 } 815 816 Out << "E?"; 817 if (MD->isVirtual()) { 818 MicrosoftVTableContext *VTContext = 819 cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); 820 MethodVFTableLocation ML = 821 VTContext->getMethodVFTableLocation(GlobalDecl(MD)); 822 mangleVirtualMemPtrThunk(MD, ML); 823 } else { 824 mangleName(MD); 825 mangleFunctionEncoding(MD, /*ShouldMangle=*/true); 826 } 827 } 828 829 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk( 830 const CXXMethodDecl *MD, const MethodVFTableLocation &ML) { 831 // Get the vftable offset. 832 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits( 833 getASTContext().getTargetInfo().getPointerWidth(LangAS::Default)); 834 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity(); 835 836 Out << "?_9"; 837 mangleName(MD->getParent()); 838 Out << "$B"; 839 mangleNumber(OffsetInVFTable); 840 Out << 'A'; 841 mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>()); 842 } 843 844 void MicrosoftCXXNameMangler::mangleName(GlobalDecl GD) { 845 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 846 847 // Always start with the unqualified name. 848 mangleUnqualifiedName(GD); 849 850 mangleNestedName(GD); 851 852 // Terminate the whole name with an '@'. 853 Out << '@'; 854 } 855 856 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { 857 mangleNumber(llvm::APSInt(llvm::APInt(64, Number), /*IsUnsigned*/false)); 858 } 859 860 void MicrosoftCXXNameMangler::mangleNumber(llvm::APSInt Number) { 861 // MSVC never mangles any integer wider than 64 bits. In general it appears 862 // to convert every integer to signed 64 bit before mangling (including 863 // unsigned 64 bit values). Do the same, but preserve bits beyond the bottom 864 // 64. 865 unsigned Width = std::max(Number.getBitWidth(), 64U); 866 llvm::APInt Value = Number.extend(Width); 867 868 // <non-negative integer> ::= A@ # when Number == 0 869 // ::= <decimal digit> # when 1 <= Number <= 10 870 // ::= <hex digit>+ @ # when Number >= 10 871 // 872 // <number> ::= [?] <non-negative integer> 873 874 if (Value.isNegative()) { 875 Value = -Value; 876 Out << '?'; 877 } 878 mangleBits(Value); 879 } 880 881 void MicrosoftCXXNameMangler::mangleFloat(llvm::APFloat Number) { 882 using llvm::APFloat; 883 884 switch (APFloat::SemanticsToEnum(Number.getSemantics())) { 885 case APFloat::S_IEEEsingle: Out << 'A'; break; 886 case APFloat::S_IEEEdouble: Out << 'B'; break; 887 888 // The following are all Clang extensions. We try to pick manglings that are 889 // unlikely to conflict with MSVC's scheme. 890 case APFloat::S_IEEEhalf: Out << 'V'; break; 891 case APFloat::S_BFloat: Out << 'W'; break; 892 case APFloat::S_x87DoubleExtended: Out << 'X'; break; 893 case APFloat::S_IEEEquad: Out << 'Y'; break; 894 case APFloat::S_PPCDoubleDouble: Out << 'Z'; break; 895 case APFloat::S_Float8E5M2: 896 case APFloat::S_Float8E4M3FN: 897 case APFloat::S_Float8E5M2FNUZ: 898 case APFloat::S_Float8E4M3FNUZ: 899 case APFloat::S_Float8E4M3B11FNUZ: 900 case APFloat::S_FloatTF32: 901 llvm_unreachable("Tried to mangle unexpected APFloat semantics"); 902 } 903 904 mangleBits(Number.bitcastToAPInt()); 905 } 906 907 void MicrosoftCXXNameMangler::mangleBits(llvm::APInt Value) { 908 if (Value == 0) 909 Out << "A@"; 910 else if (Value.uge(1) && Value.ule(10)) 911 Out << (Value - 1); 912 else { 913 // Numbers that are not encoded as decimal digits are represented as nibbles 914 // in the range of ASCII characters 'A' to 'P'. 915 // The number 0x123450 would be encoded as 'BCDEFA' 916 llvm::SmallString<32> EncodedNumberBuffer; 917 for (; Value != 0; Value.lshrInPlace(4)) 918 EncodedNumberBuffer.push_back('A' + (Value & 0xf).getZExtValue()); 919 std::reverse(EncodedNumberBuffer.begin(), EncodedNumberBuffer.end()); 920 Out.write(EncodedNumberBuffer.data(), EncodedNumberBuffer.size()); 921 Out << '@'; 922 } 923 } 924 925 static GlobalDecl isTemplate(GlobalDecl GD, 926 const TemplateArgumentList *&TemplateArgs) { 927 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 928 // Check if we have a function template. 929 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 930 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 931 TemplateArgs = FD->getTemplateSpecializationArgs(); 932 return GD.getWithDecl(TD); 933 } 934 } 935 936 // Check if we have a class template. 937 if (const ClassTemplateSpecializationDecl *Spec = 938 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 939 TemplateArgs = &Spec->getTemplateArgs(); 940 return GD.getWithDecl(Spec->getSpecializedTemplate()); 941 } 942 943 // Check if we have a variable template. 944 if (const VarTemplateSpecializationDecl *Spec = 945 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 946 TemplateArgs = &Spec->getTemplateArgs(); 947 return GD.getWithDecl(Spec->getSpecializedTemplate()); 948 } 949 950 return GlobalDecl(); 951 } 952 953 void MicrosoftCXXNameMangler::mangleUnqualifiedName(GlobalDecl GD, 954 DeclarationName Name) { 955 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 956 // <unqualified-name> ::= <operator-name> 957 // ::= <ctor-dtor-name> 958 // ::= <source-name> 959 // ::= <template-name> 960 961 // Check if we have a template. 962 const TemplateArgumentList *TemplateArgs = nullptr; 963 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { 964 // Function templates aren't considered for name back referencing. This 965 // makes sense since function templates aren't likely to occur multiple 966 // times in a symbol. 967 if (isa<FunctionTemplateDecl>(TD.getDecl())) { 968 mangleTemplateInstantiationName(TD, *TemplateArgs); 969 Out << '@'; 970 return; 971 } 972 973 // Here comes the tricky thing: if we need to mangle something like 974 // void foo(A::X<Y>, B::X<Y>), 975 // the X<Y> part is aliased. However, if you need to mangle 976 // void foo(A::X<A::Y>, A::X<B::Y>), 977 // the A::X<> part is not aliased. 978 // That is, from the mangler's perspective we have a structure like this: 979 // namespace[s] -> type[ -> template-parameters] 980 // but from the Clang perspective we have 981 // type [ -> template-parameters] 982 // \-> namespace[s] 983 // What we do is we create a new mangler, mangle the same type (without 984 // a namespace suffix) to a string using the extra mangler and then use 985 // the mangled type name as a key to check the mangling of different types 986 // for aliasing. 987 988 // It's important to key cache reads off ND, not TD -- the same TD can 989 // be used with different TemplateArgs, but ND uniquely identifies 990 // TD / TemplateArg pairs. 991 ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND); 992 if (Found == TemplateArgBackReferences.end()) { 993 994 TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND); 995 if (Found == TemplateArgStrings.end()) { 996 // Mangle full template name into temporary buffer. 997 llvm::SmallString<64> TemplateMangling; 998 llvm::raw_svector_ostream Stream(TemplateMangling); 999 MicrosoftCXXNameMangler Extra(Context, Stream); 1000 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs); 1001 1002 // Use the string backref vector to possibly get a back reference. 1003 mangleSourceName(TemplateMangling); 1004 1005 // Memoize back reference for this type if one exist, else memoize 1006 // the mangling itself. 1007 BackRefVec::iterator StringFound = 1008 llvm::find(NameBackReferences, TemplateMangling); 1009 if (StringFound != NameBackReferences.end()) { 1010 TemplateArgBackReferences[ND] = 1011 StringFound - NameBackReferences.begin(); 1012 } else { 1013 TemplateArgStrings[ND] = 1014 TemplateArgStringStorage.save(TemplateMangling.str()); 1015 } 1016 } else { 1017 Out << Found->second << '@'; // Outputs a StringRef. 1018 } 1019 } else { 1020 Out << Found->second; // Outputs a back reference (an int). 1021 } 1022 return; 1023 } 1024 1025 switch (Name.getNameKind()) { 1026 case DeclarationName::Identifier: { 1027 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { 1028 bool IsDeviceStub = 1029 ND && 1030 ((isa<FunctionDecl>(ND) && ND->hasAttr<CUDAGlobalAttr>()) || 1031 (isa<FunctionTemplateDecl>(ND) && 1032 cast<FunctionTemplateDecl>(ND) 1033 ->getTemplatedDecl() 1034 ->hasAttr<CUDAGlobalAttr>())) && 1035 GD.getKernelReferenceKind() == KernelReferenceKind::Stub; 1036 if (IsDeviceStub) 1037 mangleSourceName( 1038 (llvm::Twine("__device_stub__") + II->getName()).str()); 1039 else 1040 mangleSourceName(II->getName()); 1041 break; 1042 } 1043 1044 // Otherwise, an anonymous entity. We must have a declaration. 1045 assert(ND && "mangling empty name without declaration"); 1046 1047 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 1048 if (NS->isAnonymousNamespace()) { 1049 Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@'; 1050 break; 1051 } 1052 } 1053 1054 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) { 1055 // Decomposition declarations are considered anonymous, and get 1056 // numbered with a $S prefix. 1057 llvm::SmallString<64> Name("$S"); 1058 // Get a unique id for the anonymous struct. 1059 Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1); 1060 mangleSourceName(Name); 1061 break; 1062 } 1063 1064 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1065 // We must have an anonymous union or struct declaration. 1066 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl(); 1067 assert(RD && "expected variable decl to have a record type"); 1068 // Anonymous types with no tag or typedef get the name of their 1069 // declarator mangled in. If they have no declarator, number them with 1070 // a $S prefix. 1071 llvm::SmallString<64> Name("$S"); 1072 // Get a unique id for the anonymous struct. 1073 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1); 1074 mangleSourceName(Name.str()); 1075 break; 1076 } 1077 1078 if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(ND)) { 1079 // Mangle a GUID object as if it were a variable with the corresponding 1080 // mangled name. 1081 SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID; 1082 llvm::raw_svector_ostream GUIDOS(GUID); 1083 Context.mangleMSGuidDecl(GD, GUIDOS); 1084 mangleSourceName(GUID); 1085 break; 1086 } 1087 1088 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 1089 Out << "?__N"; 1090 mangleTemplateArgValue(TPO->getType().getUnqualifiedType(), 1091 TPO->getValue()); 1092 break; 1093 } 1094 1095 // We must have an anonymous struct. 1096 const TagDecl *TD = cast<TagDecl>(ND); 1097 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 1098 assert(TD->getDeclContext() == D->getDeclContext() && 1099 "Typedef should not be in another decl context!"); 1100 assert(D->getDeclName().getAsIdentifierInfo() && 1101 "Typedef was not named!"); 1102 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName()); 1103 break; 1104 } 1105 1106 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 1107 if (Record->isLambda()) { 1108 llvm::SmallString<10> Name("<lambda_"); 1109 1110 Decl *LambdaContextDecl = Record->getLambdaContextDecl(); 1111 unsigned LambdaManglingNumber = Record->getLambdaManglingNumber(); 1112 unsigned LambdaId; 1113 const ParmVarDecl *Parm = 1114 dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 1115 const FunctionDecl *Func = 1116 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 1117 1118 if (Func) { 1119 unsigned DefaultArgNo = 1120 Func->getNumParams() - Parm->getFunctionScopeIndex(); 1121 Name += llvm::utostr(DefaultArgNo); 1122 Name += "_"; 1123 } 1124 1125 if (LambdaManglingNumber) 1126 LambdaId = LambdaManglingNumber; 1127 else 1128 LambdaId = Context.getLambdaId(Record); 1129 1130 Name += llvm::utostr(LambdaId); 1131 Name += ">"; 1132 1133 mangleSourceName(Name); 1134 1135 // If the context is a variable or a class member and not a parameter, 1136 // it is encoded in a qualified name. 1137 if (LambdaManglingNumber && LambdaContextDecl) { 1138 if ((isa<VarDecl>(LambdaContextDecl) || 1139 isa<FieldDecl>(LambdaContextDecl)) && 1140 !isa<ParmVarDecl>(LambdaContextDecl)) { 1141 mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl)); 1142 } 1143 } 1144 break; 1145 } 1146 } 1147 1148 llvm::SmallString<64> Name; 1149 if (DeclaratorDecl *DD = 1150 Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) { 1151 // Anonymous types without a name for linkage purposes have their 1152 // declarator mangled in if they have one. 1153 Name += "<unnamed-type-"; 1154 Name += DD->getName(); 1155 } else if (TypedefNameDecl *TND = 1156 Context.getASTContext().getTypedefNameForUnnamedTagDecl( 1157 TD)) { 1158 // Anonymous types without a name for linkage purposes have their 1159 // associate typedef mangled in if they have one. 1160 Name += "<unnamed-type-"; 1161 Name += TND->getName(); 1162 } else if (isa<EnumDecl>(TD) && 1163 cast<EnumDecl>(TD)->enumerator_begin() != 1164 cast<EnumDecl>(TD)->enumerator_end()) { 1165 // Anonymous non-empty enums mangle in the first enumerator. 1166 auto *ED = cast<EnumDecl>(TD); 1167 Name += "<unnamed-enum-"; 1168 Name += ED->enumerator_begin()->getName(); 1169 } else { 1170 // Otherwise, number the types using a $S prefix. 1171 Name += "<unnamed-type-$S"; 1172 Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1); 1173 } 1174 Name += ">"; 1175 mangleSourceName(Name.str()); 1176 break; 1177 } 1178 1179 case DeclarationName::ObjCZeroArgSelector: 1180 case DeclarationName::ObjCOneArgSelector: 1181 case DeclarationName::ObjCMultiArgSelector: { 1182 // This is reachable only when constructing an outlined SEH finally 1183 // block. Nothing depends on this mangling and it's used only with 1184 // functinos with internal linkage. 1185 llvm::SmallString<64> Name; 1186 mangleSourceName(Name.str()); 1187 break; 1188 } 1189 1190 case DeclarationName::CXXConstructorName: 1191 if (isStructorDecl(ND)) { 1192 if (StructorType == Ctor_CopyingClosure) { 1193 Out << "?_O"; 1194 return; 1195 } 1196 if (StructorType == Ctor_DefaultClosure) { 1197 Out << "?_F"; 1198 return; 1199 } 1200 } 1201 Out << "?0"; 1202 return; 1203 1204 case DeclarationName::CXXDestructorName: 1205 if (isStructorDecl(ND)) 1206 // If the named decl is the C++ destructor we're mangling, 1207 // use the type we were given. 1208 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1209 else 1210 // Otherwise, use the base destructor name. This is relevant if a 1211 // class with a destructor is declared within a destructor. 1212 mangleCXXDtorType(Dtor_Base); 1213 break; 1214 1215 case DeclarationName::CXXConversionFunctionName: 1216 // <operator-name> ::= ?B # (cast) 1217 // The target type is encoded as the return type. 1218 Out << "?B"; 1219 break; 1220 1221 case DeclarationName::CXXOperatorName: 1222 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation()); 1223 break; 1224 1225 case DeclarationName::CXXLiteralOperatorName: { 1226 Out << "?__K"; 1227 mangleSourceName(Name.getCXXLiteralIdentifier()->getName()); 1228 break; 1229 } 1230 1231 case DeclarationName::CXXDeductionGuideName: 1232 llvm_unreachable("Can't mangle a deduction guide name!"); 1233 1234 case DeclarationName::CXXUsingDirective: 1235 llvm_unreachable("Can't mangle a using directive name!"); 1236 } 1237 } 1238 1239 // <postfix> ::= <unqualified-name> [<postfix>] 1240 // ::= <substitution> [<postfix>] 1241 void MicrosoftCXXNameMangler::mangleNestedName(GlobalDecl GD) { 1242 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1243 1244 if (const auto *ID = dyn_cast<IndirectFieldDecl>(ND)) 1245 for (unsigned I = 1, IE = ID->getChainingSize(); I < IE; ++I) 1246 mangleSourceName("<unnamed-tag>"); 1247 1248 const DeclContext *DC = getEffectiveDeclContext(ND); 1249 while (!DC->isTranslationUnit()) { 1250 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) { 1251 unsigned Disc; 1252 if (Context.getNextDiscriminator(ND, Disc)) { 1253 Out << '?'; 1254 mangleNumber(Disc); 1255 Out << '?'; 1256 } 1257 } 1258 1259 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 1260 auto Discriminate = 1261 [](StringRef Name, const unsigned Discriminator, 1262 const unsigned ParameterDiscriminator) -> std::string { 1263 std::string Buffer; 1264 llvm::raw_string_ostream Stream(Buffer); 1265 Stream << Name; 1266 if (Discriminator) 1267 Stream << '_' << Discriminator; 1268 if (ParameterDiscriminator) 1269 Stream << '_' << ParameterDiscriminator; 1270 return Stream.str(); 1271 }; 1272 1273 unsigned Discriminator = BD->getBlockManglingNumber(); 1274 if (!Discriminator) 1275 Discriminator = Context.getBlockId(BD, /*Local=*/false); 1276 1277 // Mangle the parameter position as a discriminator to deal with unnamed 1278 // parameters. Rather than mangling the unqualified parameter name, 1279 // always use the position to give a uniform mangling. 1280 unsigned ParameterDiscriminator = 0; 1281 if (const auto *MC = BD->getBlockManglingContextDecl()) 1282 if (const auto *P = dyn_cast<ParmVarDecl>(MC)) 1283 if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext())) 1284 ParameterDiscriminator = 1285 F->getNumParams() - P->getFunctionScopeIndex(); 1286 1287 DC = getEffectiveDeclContext(BD); 1288 1289 Out << '?'; 1290 mangleSourceName(Discriminate("_block_invoke", Discriminator, 1291 ParameterDiscriminator)); 1292 // If we have a block mangling context, encode that now. This allows us 1293 // to discriminate between named static data initializers in the same 1294 // scope. This is handled differently from parameters, which use 1295 // positions to discriminate between multiple instances. 1296 if (const auto *MC = BD->getBlockManglingContextDecl()) 1297 if (!isa<ParmVarDecl>(MC)) 1298 if (const auto *ND = dyn_cast<NamedDecl>(MC)) 1299 mangleUnqualifiedName(ND); 1300 // MS ABI and Itanium manglings are in inverted scopes. In the case of a 1301 // RecordDecl, mangle the entire scope hierarchy at this point rather than 1302 // just the unqualified name to get the ordering correct. 1303 if (const auto *RD = dyn_cast<RecordDecl>(DC)) 1304 mangleName(RD); 1305 else 1306 Out << '@'; 1307 // void __cdecl 1308 Out << "YAX"; 1309 // struct __block_literal * 1310 Out << 'P'; 1311 // __ptr64 1312 if (PointersAre64Bit) 1313 Out << 'E'; 1314 Out << 'A'; 1315 mangleArtificialTagType(TagTypeKind::Struct, 1316 Discriminate("__block_literal", Discriminator, 1317 ParameterDiscriminator)); 1318 Out << "@Z"; 1319 1320 // If the effective context was a Record, we have fully mangled the 1321 // qualified name and do not need to continue. 1322 if (isa<RecordDecl>(DC)) 1323 break; 1324 continue; 1325 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) { 1326 mangleObjCMethodName(Method); 1327 } else if (isa<NamedDecl>(DC)) { 1328 ND = cast<NamedDecl>(DC); 1329 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1330 mangle(getGlobalDeclAsDeclContext(FD), "?"); 1331 break; 1332 } else { 1333 mangleUnqualifiedName(ND); 1334 // Lambdas in default arguments conceptually belong to the function the 1335 // parameter corresponds to. 1336 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) { 1337 DC = LDADC; 1338 continue; 1339 } 1340 } 1341 } 1342 DC = DC->getParent(); 1343 } 1344 } 1345 1346 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 1347 // Microsoft uses the names on the case labels for these dtor variants. Clang 1348 // uses the Itanium terminology internally. Everything in this ABI delegates 1349 // towards the base dtor. 1350 switch (T) { 1351 // <operator-name> ::= ?1 # destructor 1352 case Dtor_Base: Out << "?1"; return; 1353 // <operator-name> ::= ?_D # vbase destructor 1354 case Dtor_Complete: Out << "?_D"; return; 1355 // <operator-name> ::= ?_G # scalar deleting destructor 1356 case Dtor_Deleting: Out << "?_G"; return; 1357 // <operator-name> ::= ?_E # vector deleting destructor 1358 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need 1359 // it. 1360 case Dtor_Comdat: 1361 llvm_unreachable("not expecting a COMDAT"); 1362 } 1363 llvm_unreachable("Unsupported dtor type?"); 1364 } 1365 1366 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, 1367 SourceLocation Loc) { 1368 switch (OO) { 1369 // ?0 # constructor 1370 // ?1 # destructor 1371 // <operator-name> ::= ?2 # new 1372 case OO_New: Out << "?2"; break; 1373 // <operator-name> ::= ?3 # delete 1374 case OO_Delete: Out << "?3"; break; 1375 // <operator-name> ::= ?4 # = 1376 case OO_Equal: Out << "?4"; break; 1377 // <operator-name> ::= ?5 # >> 1378 case OO_GreaterGreater: Out << "?5"; break; 1379 // <operator-name> ::= ?6 # << 1380 case OO_LessLess: Out << "?6"; break; 1381 // <operator-name> ::= ?7 # ! 1382 case OO_Exclaim: Out << "?7"; break; 1383 // <operator-name> ::= ?8 # == 1384 case OO_EqualEqual: Out << "?8"; break; 1385 // <operator-name> ::= ?9 # != 1386 case OO_ExclaimEqual: Out << "?9"; break; 1387 // <operator-name> ::= ?A # [] 1388 case OO_Subscript: Out << "?A"; break; 1389 // ?B # conversion 1390 // <operator-name> ::= ?C # -> 1391 case OO_Arrow: Out << "?C"; break; 1392 // <operator-name> ::= ?D # * 1393 case OO_Star: Out << "?D"; break; 1394 // <operator-name> ::= ?E # ++ 1395 case OO_PlusPlus: Out << "?E"; break; 1396 // <operator-name> ::= ?F # -- 1397 case OO_MinusMinus: Out << "?F"; break; 1398 // <operator-name> ::= ?G # - 1399 case OO_Minus: Out << "?G"; break; 1400 // <operator-name> ::= ?H # + 1401 case OO_Plus: Out << "?H"; break; 1402 // <operator-name> ::= ?I # & 1403 case OO_Amp: Out << "?I"; break; 1404 // <operator-name> ::= ?J # ->* 1405 case OO_ArrowStar: Out << "?J"; break; 1406 // <operator-name> ::= ?K # / 1407 case OO_Slash: Out << "?K"; break; 1408 // <operator-name> ::= ?L # % 1409 case OO_Percent: Out << "?L"; break; 1410 // <operator-name> ::= ?M # < 1411 case OO_Less: Out << "?M"; break; 1412 // <operator-name> ::= ?N # <= 1413 case OO_LessEqual: Out << "?N"; break; 1414 // <operator-name> ::= ?O # > 1415 case OO_Greater: Out << "?O"; break; 1416 // <operator-name> ::= ?P # >= 1417 case OO_GreaterEqual: Out << "?P"; break; 1418 // <operator-name> ::= ?Q # , 1419 case OO_Comma: Out << "?Q"; break; 1420 // <operator-name> ::= ?R # () 1421 case OO_Call: Out << "?R"; break; 1422 // <operator-name> ::= ?S # ~ 1423 case OO_Tilde: Out << "?S"; break; 1424 // <operator-name> ::= ?T # ^ 1425 case OO_Caret: Out << "?T"; break; 1426 // <operator-name> ::= ?U # | 1427 case OO_Pipe: Out << "?U"; break; 1428 // <operator-name> ::= ?V # && 1429 case OO_AmpAmp: Out << "?V"; break; 1430 // <operator-name> ::= ?W # || 1431 case OO_PipePipe: Out << "?W"; break; 1432 // <operator-name> ::= ?X # *= 1433 case OO_StarEqual: Out << "?X"; break; 1434 // <operator-name> ::= ?Y # += 1435 case OO_PlusEqual: Out << "?Y"; break; 1436 // <operator-name> ::= ?Z # -= 1437 case OO_MinusEqual: Out << "?Z"; break; 1438 // <operator-name> ::= ?_0 # /= 1439 case OO_SlashEqual: Out << "?_0"; break; 1440 // <operator-name> ::= ?_1 # %= 1441 case OO_PercentEqual: Out << "?_1"; break; 1442 // <operator-name> ::= ?_2 # >>= 1443 case OO_GreaterGreaterEqual: Out << "?_2"; break; 1444 // <operator-name> ::= ?_3 # <<= 1445 case OO_LessLessEqual: Out << "?_3"; break; 1446 // <operator-name> ::= ?_4 # &= 1447 case OO_AmpEqual: Out << "?_4"; break; 1448 // <operator-name> ::= ?_5 # |= 1449 case OO_PipeEqual: Out << "?_5"; break; 1450 // <operator-name> ::= ?_6 # ^= 1451 case OO_CaretEqual: Out << "?_6"; break; 1452 // ?_7 # vftable 1453 // ?_8 # vbtable 1454 // ?_9 # vcall 1455 // ?_A # typeof 1456 // ?_B # local static guard 1457 // ?_C # string 1458 // ?_D # vbase destructor 1459 // ?_E # vector deleting destructor 1460 // ?_F # default constructor closure 1461 // ?_G # scalar deleting destructor 1462 // ?_H # vector constructor iterator 1463 // ?_I # vector destructor iterator 1464 // ?_J # vector vbase constructor iterator 1465 // ?_K # virtual displacement map 1466 // ?_L # eh vector constructor iterator 1467 // ?_M # eh vector destructor iterator 1468 // ?_N # eh vector vbase constructor iterator 1469 // ?_O # copy constructor closure 1470 // ?_P<name> # udt returning <name> 1471 // ?_Q # <unknown> 1472 // ?_R0 # RTTI Type Descriptor 1473 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) 1474 // ?_R2 # RTTI Base Class Array 1475 // ?_R3 # RTTI Class Hierarchy Descriptor 1476 // ?_R4 # RTTI Complete Object Locator 1477 // ?_S # local vftable 1478 // ?_T # local vftable constructor closure 1479 // <operator-name> ::= ?_U # new[] 1480 case OO_Array_New: Out << "?_U"; break; 1481 // <operator-name> ::= ?_V # delete[] 1482 case OO_Array_Delete: Out << "?_V"; break; 1483 // <operator-name> ::= ?__L # co_await 1484 case OO_Coawait: Out << "?__L"; break; 1485 // <operator-name> ::= ?__M # <=> 1486 case OO_Spaceship: Out << "?__M"; break; 1487 1488 case OO_Conditional: { 1489 DiagnosticsEngine &Diags = Context.getDiags(); 1490 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1491 "cannot mangle this conditional operator yet"); 1492 Diags.Report(Loc, DiagID); 1493 break; 1494 } 1495 1496 case OO_None: 1497 case NUM_OVERLOADED_OPERATORS: 1498 llvm_unreachable("Not an overloaded operator"); 1499 } 1500 } 1501 1502 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { 1503 // <source name> ::= <identifier> @ 1504 BackRefVec::iterator Found = llvm::find(NameBackReferences, Name); 1505 if (Found == NameBackReferences.end()) { 1506 if (NameBackReferences.size() < 10) 1507 NameBackReferences.push_back(std::string(Name)); 1508 Out << Name << '@'; 1509 } else { 1510 Out << (Found - NameBackReferences.begin()); 1511 } 1512 } 1513 1514 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 1515 Context.mangleObjCMethodNameAsSourceName(MD, Out); 1516 } 1517 1518 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( 1519 GlobalDecl GD, const TemplateArgumentList &TemplateArgs) { 1520 // <template-name> ::= <unscoped-template-name> <template-args> 1521 // ::= <substitution> 1522 // Always start with the unqualified name. 1523 1524 // Templates have their own context for back references. 1525 ArgBackRefMap OuterFunArgsContext; 1526 ArgBackRefMap OuterTemplateArgsContext; 1527 BackRefVec OuterTemplateContext; 1528 PassObjectSizeArgsSet OuterPassObjectSizeArgs; 1529 NameBackReferences.swap(OuterTemplateContext); 1530 FunArgBackReferences.swap(OuterFunArgsContext); 1531 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1532 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1533 1534 mangleUnscopedTemplateName(GD); 1535 mangleTemplateArgs(cast<TemplateDecl>(GD.getDecl()), TemplateArgs); 1536 1537 // Restore the previous back reference contexts. 1538 NameBackReferences.swap(OuterTemplateContext); 1539 FunArgBackReferences.swap(OuterFunArgsContext); 1540 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1541 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1542 } 1543 1544 void MicrosoftCXXNameMangler::mangleUnscopedTemplateName(GlobalDecl GD) { 1545 // <unscoped-template-name> ::= ?$ <unqualified-name> 1546 Out << "?$"; 1547 mangleUnqualifiedName(GD); 1548 } 1549 1550 void MicrosoftCXXNameMangler::mangleIntegerLiteral( 1551 const llvm::APSInt &Value, const NonTypeTemplateParmDecl *PD, 1552 QualType TemplateArgType) { 1553 // <integer-literal> ::= $0 <number> 1554 Out << "$"; 1555 1556 // Since MSVC 2019, add 'M[<type>]' after '$' for auto template parameter when 1557 // argument is integer. 1558 if (getASTContext().getLangOpts().isCompatibleWithMSVC( 1559 LangOptions::MSVC2019) && 1560 PD && PD->getType()->getTypeClass() == Type::Auto && 1561 !TemplateArgType.isNull()) { 1562 Out << "M"; 1563 mangleType(TemplateArgType, SourceRange(), QMM_Drop); 1564 } 1565 1566 Out << "0"; 1567 1568 mangleNumber(Value); 1569 } 1570 1571 void MicrosoftCXXNameMangler::mangleExpression( 1572 const Expr *E, const NonTypeTemplateParmDecl *PD) { 1573 // See if this is a constant expression. 1574 if (std::optional<llvm::APSInt> Value = 1575 E->getIntegerConstantExpr(Context.getASTContext())) { 1576 mangleIntegerLiteral(*Value, PD, E->getType()); 1577 return; 1578 } 1579 1580 // As bad as this diagnostic is, it's better than crashing. 1581 DiagnosticsEngine &Diags = Context.getDiags(); 1582 unsigned DiagID = Diags.getCustomDiagID( 1583 DiagnosticsEngine::Error, "cannot yet mangle expression type %0"); 1584 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName() 1585 << E->getSourceRange(); 1586 } 1587 1588 void MicrosoftCXXNameMangler::mangleTemplateArgs( 1589 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1590 // <template-args> ::= <template-arg>+ 1591 const TemplateParameterList *TPL = TD->getTemplateParameters(); 1592 assert(TPL->size() == TemplateArgs.size() && 1593 "size mismatch between args and parms!"); 1594 1595 for (size_t i = 0; i < TemplateArgs.size(); ++i) { 1596 const TemplateArgument &TA = TemplateArgs[i]; 1597 1598 // Separate consecutive packs by $$Z. 1599 if (i > 0 && TA.getKind() == TemplateArgument::Pack && 1600 TemplateArgs[i - 1].getKind() == TemplateArgument::Pack) 1601 Out << "$$Z"; 1602 1603 mangleTemplateArg(TD, TA, TPL->getParam(i)); 1604 } 1605 } 1606 1607 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, 1608 const TemplateArgument &TA, 1609 const NamedDecl *Parm) { 1610 // <template-arg> ::= <type> 1611 // ::= <integer-literal> 1612 // ::= <member-data-pointer> 1613 // ::= <member-function-pointer> 1614 // ::= $ <constant-value> 1615 // ::= <template-args> 1616 // 1617 // <constant-value> ::= 0 <number> # integer 1618 // ::= 1 <mangled-name> # address of D 1619 // ::= 2 <type> <typed-constant-value>* @ # struct 1620 // ::= 3 <type> <constant-value>* @ # array 1621 // ::= 4 ??? # string 1622 // ::= 5 <constant-value> @ # address of subobject 1623 // ::= 6 <constant-value> <unqualified-name> @ # a.b 1624 // ::= 7 <type> [<unqualified-name> <constant-value>] @ 1625 // # union, with or without an active member 1626 // # pointer to member, symbolically 1627 // ::= 8 <class> <unqualified-name> @ 1628 // ::= A <type> <non-negative integer> # float 1629 // ::= B <type> <non-negative integer> # double 1630 // # pointer to member, by component value 1631 // ::= F <number> <number> 1632 // ::= G <number> <number> <number> 1633 // ::= H <mangled-name> <number> 1634 // ::= I <mangled-name> <number> <number> 1635 // ::= J <mangled-name> <number> <number> <number> 1636 // 1637 // <typed-constant-value> ::= [<type>] <constant-value> 1638 // 1639 // The <type> appears to be included in a <typed-constant-value> only in the 1640 // '0', '1', '8', 'A', 'B', and 'E' cases. 1641 1642 switch (TA.getKind()) { 1643 case TemplateArgument::Null: 1644 llvm_unreachable("Can't mangle null template arguments!"); 1645 case TemplateArgument::TemplateExpansion: 1646 llvm_unreachable("Can't mangle template expansion arguments!"); 1647 case TemplateArgument::Type: { 1648 QualType T = TA.getAsType(); 1649 mangleType(T, SourceRange(), QMM_Escape); 1650 break; 1651 } 1652 case TemplateArgument::Declaration: { 1653 const NamedDecl *ND = TA.getAsDecl(); 1654 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) { 1655 mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext()) 1656 ->getMostRecentNonInjectedDecl(), 1657 cast<ValueDecl>(ND)); 1658 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1659 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1660 if (MD && MD->isInstance()) { 1661 mangleMemberFunctionPointer( 1662 MD->getParent()->getMostRecentNonInjectedDecl(), MD); 1663 } else { 1664 Out << "$1?"; 1665 mangleName(FD); 1666 mangleFunctionEncoding(FD, /*ShouldMangle=*/true); 1667 } 1668 } else if (TA.getParamTypeForDecl()->isRecordType()) { 1669 Out << "$"; 1670 auto *TPO = cast<TemplateParamObjectDecl>(ND); 1671 mangleTemplateArgValue(TPO->getType().getUnqualifiedType(), 1672 TPO->getValue()); 1673 } else { 1674 mangle(ND, "$1?"); 1675 } 1676 break; 1677 } 1678 case TemplateArgument::Integral: { 1679 QualType T = TA.getIntegralType(); 1680 mangleIntegerLiteral(TA.getAsIntegral(), 1681 cast<NonTypeTemplateParmDecl>(Parm), T); 1682 break; 1683 } 1684 case TemplateArgument::NullPtr: { 1685 QualType T = TA.getNullPtrType(); 1686 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) { 1687 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 1688 if (MPT->isMemberFunctionPointerType() && 1689 !isa<FunctionTemplateDecl>(TD)) { 1690 mangleMemberFunctionPointer(RD, nullptr); 1691 return; 1692 } 1693 if (MPT->isMemberDataPointer()) { 1694 if (!isa<FunctionTemplateDecl>(TD)) { 1695 mangleMemberDataPointer(RD, nullptr); 1696 return; 1697 } 1698 // nullptr data pointers are always represented with a single field 1699 // which is initialized with either 0 or -1. Why -1? Well, we need to 1700 // distinguish the case where the data member is at offset zero in the 1701 // record. 1702 // However, we are free to use 0 *if* we would use multiple fields for 1703 // non-nullptr member pointers. 1704 if (!RD->nullFieldOffsetIsZero()) { 1705 mangleIntegerLiteral(llvm::APSInt::get(-1), 1706 cast<NonTypeTemplateParmDecl>(Parm), T); 1707 return; 1708 } 1709 } 1710 } 1711 mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), 1712 cast<NonTypeTemplateParmDecl>(Parm), T); 1713 break; 1714 } 1715 case TemplateArgument::Expression: 1716 mangleExpression(TA.getAsExpr(), cast<NonTypeTemplateParmDecl>(Parm)); 1717 break; 1718 case TemplateArgument::Pack: { 1719 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray(); 1720 if (TemplateArgs.empty()) { 1721 if (isa<TemplateTypeParmDecl>(Parm) || 1722 isa<TemplateTemplateParmDecl>(Parm)) 1723 // MSVC 2015 changed the mangling for empty expanded template packs, 1724 // use the old mangling for link compatibility for old versions. 1725 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC( 1726 LangOptions::MSVC2015) 1727 ? "$$V" 1728 : "$$$V"); 1729 else if (isa<NonTypeTemplateParmDecl>(Parm)) 1730 Out << "$S"; 1731 else 1732 llvm_unreachable("unexpected template parameter decl!"); 1733 } else { 1734 for (const TemplateArgument &PA : TemplateArgs) 1735 mangleTemplateArg(TD, PA, Parm); 1736 } 1737 break; 1738 } 1739 case TemplateArgument::Template: { 1740 const NamedDecl *ND = 1741 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl(); 1742 if (const auto *TD = dyn_cast<TagDecl>(ND)) { 1743 mangleType(TD); 1744 } else if (isa<TypeAliasDecl>(ND)) { 1745 Out << "$$Y"; 1746 mangleName(ND); 1747 } else { 1748 llvm_unreachable("unexpected template template NamedDecl!"); 1749 } 1750 break; 1751 } 1752 } 1753 } 1754 1755 void MicrosoftCXXNameMangler::mangleTemplateArgValue(QualType T, 1756 const APValue &V, 1757 bool WithScalarType) { 1758 switch (V.getKind()) { 1759 case APValue::None: 1760 case APValue::Indeterminate: 1761 // FIXME: MSVC doesn't allow this, so we can't be sure how it should be 1762 // mangled. 1763 if (WithScalarType) 1764 mangleType(T, SourceRange(), QMM_Escape); 1765 Out << '@'; 1766 return; 1767 1768 case APValue::Int: 1769 if (WithScalarType) 1770 mangleType(T, SourceRange(), QMM_Escape); 1771 Out << '0'; 1772 mangleNumber(V.getInt()); 1773 return; 1774 1775 case APValue::Float: 1776 if (WithScalarType) 1777 mangleType(T, SourceRange(), QMM_Escape); 1778 mangleFloat(V.getFloat()); 1779 return; 1780 1781 case APValue::LValue: { 1782 if (WithScalarType) 1783 mangleType(T, SourceRange(), QMM_Escape); 1784 1785 // We don't know how to mangle past-the-end pointers yet. 1786 if (V.isLValueOnePastTheEnd()) 1787 break; 1788 1789 APValue::LValueBase Base = V.getLValueBase(); 1790 if (!V.hasLValuePath() || V.getLValuePath().empty()) { 1791 // Taking the address of a complete object has a special-case mangling. 1792 if (Base.isNull()) { 1793 // MSVC emits 0A@ for null pointers. Generalize this for arbitrary 1794 // integers cast to pointers. 1795 // FIXME: This mangles 0 cast to a pointer the same as a null pointer, 1796 // even in cases where the two are different values. 1797 Out << "0"; 1798 mangleNumber(V.getLValueOffset().getQuantity()); 1799 } else if (!V.hasLValuePath()) { 1800 // FIXME: This can only happen as an extension. Invent a mangling. 1801 break; 1802 } else if (auto *VD = Base.dyn_cast<const ValueDecl*>()) { 1803 Out << "E"; 1804 mangle(VD); 1805 } else { 1806 break; 1807 } 1808 } else { 1809 if (T->isPointerType()) 1810 Out << "5"; 1811 1812 SmallVector<char, 2> EntryTypes; 1813 SmallVector<std::function<void()>, 2> EntryManglers; 1814 QualType ET = Base.getType(); 1815 for (APValue::LValuePathEntry E : V.getLValuePath()) { 1816 if (auto *AT = ET->getAsArrayTypeUnsafe()) { 1817 EntryTypes.push_back('C'); 1818 EntryManglers.push_back([this, I = E.getAsArrayIndex()] { 1819 Out << '0'; 1820 mangleNumber(I); 1821 Out << '@'; 1822 }); 1823 ET = AT->getElementType(); 1824 continue; 1825 } 1826 1827 const Decl *D = E.getAsBaseOrMember().getPointer(); 1828 if (auto *FD = dyn_cast<FieldDecl>(D)) { 1829 ET = FD->getType(); 1830 if (const auto *RD = ET->getAsRecordDecl()) 1831 if (RD->isAnonymousStructOrUnion()) 1832 continue; 1833 } else { 1834 ET = getASTContext().getRecordType(cast<CXXRecordDecl>(D)); 1835 // Bug in MSVC: fully qualified name of base class should be used for 1836 // mangling to prevent collisions e.g. on base classes with same names 1837 // in different namespaces. 1838 } 1839 1840 EntryTypes.push_back('6'); 1841 EntryManglers.push_back([this, D] { 1842 mangleUnqualifiedName(cast<NamedDecl>(D)); 1843 Out << '@'; 1844 }); 1845 } 1846 1847 for (auto I = EntryTypes.rbegin(), E = EntryTypes.rend(); I != E; ++I) 1848 Out << *I; 1849 1850 auto *VD = Base.dyn_cast<const ValueDecl*>(); 1851 if (!VD) 1852 break; 1853 Out << "E"; 1854 mangle(VD); 1855 1856 for (const std::function<void()> &Mangler : EntryManglers) 1857 Mangler(); 1858 if (T->isPointerType()) 1859 Out << '@'; 1860 } 1861 1862 return; 1863 } 1864 1865 case APValue::MemberPointer: { 1866 if (WithScalarType) 1867 mangleType(T, SourceRange(), QMM_Escape); 1868 1869 const CXXRecordDecl *RD = 1870 T->castAs<MemberPointerType>()->getMostRecentCXXRecordDecl(); 1871 const ValueDecl *D = V.getMemberPointerDecl(); 1872 if (T->isMemberDataPointerType()) 1873 mangleMemberDataPointerInClassNTTP(RD, D); 1874 else 1875 mangleMemberFunctionPointerInClassNTTP(RD, 1876 cast_or_null<CXXMethodDecl>(D)); 1877 return; 1878 } 1879 1880 case APValue::Struct: { 1881 Out << '2'; 1882 mangleType(T, SourceRange(), QMM_Escape); 1883 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 1884 assert(RD && "unexpected type for record value"); 1885 1886 unsigned BaseIndex = 0; 1887 for (const CXXBaseSpecifier &B : RD->bases()) 1888 mangleTemplateArgValue(B.getType(), V.getStructBase(BaseIndex++)); 1889 for (const FieldDecl *FD : RD->fields()) 1890 if (!FD->isUnnamedBitfield()) 1891 mangleTemplateArgValue(FD->getType(), 1892 V.getStructField(FD->getFieldIndex()), 1893 /*WithScalarType*/ true); 1894 Out << '@'; 1895 return; 1896 } 1897 1898 case APValue::Union: 1899 Out << '7'; 1900 mangleType(T, SourceRange(), QMM_Escape); 1901 if (const FieldDecl *FD = V.getUnionField()) { 1902 mangleUnqualifiedName(FD); 1903 mangleTemplateArgValue(FD->getType(), V.getUnionValue()); 1904 } 1905 Out << '@'; 1906 return; 1907 1908 case APValue::ComplexInt: 1909 // We mangle complex types as structs, so mangle the value as a struct too. 1910 Out << '2'; 1911 mangleType(T, SourceRange(), QMM_Escape); 1912 Out << '0'; 1913 mangleNumber(V.getComplexIntReal()); 1914 Out << '0'; 1915 mangleNumber(V.getComplexIntImag()); 1916 Out << '@'; 1917 return; 1918 1919 case APValue::ComplexFloat: 1920 Out << '2'; 1921 mangleType(T, SourceRange(), QMM_Escape); 1922 mangleFloat(V.getComplexFloatReal()); 1923 mangleFloat(V.getComplexFloatImag()); 1924 Out << '@'; 1925 return; 1926 1927 case APValue::Array: { 1928 Out << '3'; 1929 QualType ElemT = getASTContext().getAsArrayType(T)->getElementType(); 1930 mangleType(ElemT, SourceRange(), QMM_Escape); 1931 for (unsigned I = 0, N = V.getArraySize(); I != N; ++I) { 1932 const APValue &ElemV = I < V.getArrayInitializedElts() 1933 ? V.getArrayInitializedElt(I) 1934 : V.getArrayFiller(); 1935 mangleTemplateArgValue(ElemT, ElemV); 1936 Out << '@'; 1937 } 1938 Out << '@'; 1939 return; 1940 } 1941 1942 case APValue::Vector: { 1943 // __m128 is mangled as a struct containing an array. We follow this 1944 // approach for all vector types. 1945 Out << '2'; 1946 mangleType(T, SourceRange(), QMM_Escape); 1947 Out << '3'; 1948 QualType ElemT = T->castAs<VectorType>()->getElementType(); 1949 mangleType(ElemT, SourceRange(), QMM_Escape); 1950 for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) { 1951 const APValue &ElemV = V.getVectorElt(I); 1952 mangleTemplateArgValue(ElemT, ElemV); 1953 Out << '@'; 1954 } 1955 Out << "@@"; 1956 return; 1957 } 1958 1959 case APValue::AddrLabelDiff: 1960 case APValue::FixedPoint: 1961 break; 1962 } 1963 1964 DiagnosticsEngine &Diags = Context.getDiags(); 1965 unsigned DiagID = Diags.getCustomDiagID( 1966 DiagnosticsEngine::Error, "cannot mangle this template argument yet"); 1967 Diags.Report(DiagID); 1968 } 1969 1970 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) { 1971 llvm::SmallString<64> TemplateMangling; 1972 llvm::raw_svector_ostream Stream(TemplateMangling); 1973 MicrosoftCXXNameMangler Extra(Context, Stream); 1974 1975 Stream << "?$"; 1976 Extra.mangleSourceName("Protocol"); 1977 Extra.mangleArtificialTagType(TagTypeKind::Struct, PD->getName()); 1978 1979 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__ObjC"}); 1980 } 1981 1982 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type, 1983 Qualifiers Quals, 1984 SourceRange Range) { 1985 llvm::SmallString<64> TemplateMangling; 1986 llvm::raw_svector_ostream Stream(TemplateMangling); 1987 MicrosoftCXXNameMangler Extra(Context, Stream); 1988 1989 Stream << "?$"; 1990 switch (Quals.getObjCLifetime()) { 1991 case Qualifiers::OCL_None: 1992 case Qualifiers::OCL_ExplicitNone: 1993 break; 1994 case Qualifiers::OCL_Autoreleasing: 1995 Extra.mangleSourceName("Autoreleasing"); 1996 break; 1997 case Qualifiers::OCL_Strong: 1998 Extra.mangleSourceName("Strong"); 1999 break; 2000 case Qualifiers::OCL_Weak: 2001 Extra.mangleSourceName("Weak"); 2002 break; 2003 } 2004 Extra.manglePointerCVQualifiers(Quals); 2005 Extra.manglePointerExtQualifiers(Quals, Type); 2006 Extra.mangleType(Type, Range); 2007 2008 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__ObjC"}); 2009 } 2010 2011 void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T, 2012 Qualifiers Quals, 2013 SourceRange Range) { 2014 llvm::SmallString<64> TemplateMangling; 2015 llvm::raw_svector_ostream Stream(TemplateMangling); 2016 MicrosoftCXXNameMangler Extra(Context, Stream); 2017 2018 Stream << "?$"; 2019 Extra.mangleSourceName("KindOf"); 2020 Extra.mangleType(QualType(T, 0) 2021 .stripObjCKindOfType(getASTContext()) 2022 ->castAs<ObjCObjectType>(), 2023 Quals, Range); 2024 2025 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__ObjC"}); 2026 } 2027 2028 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, 2029 bool IsMember) { 2030 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> 2031 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); 2032 // 'I' means __restrict (32/64-bit). 2033 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict 2034 // keyword! 2035 // <base-cvr-qualifiers> ::= A # near 2036 // ::= B # near const 2037 // ::= C # near volatile 2038 // ::= D # near const volatile 2039 // ::= E # far (16-bit) 2040 // ::= F # far const (16-bit) 2041 // ::= G # far volatile (16-bit) 2042 // ::= H # far const volatile (16-bit) 2043 // ::= I # huge (16-bit) 2044 // ::= J # huge const (16-bit) 2045 // ::= K # huge volatile (16-bit) 2046 // ::= L # huge const volatile (16-bit) 2047 // ::= M <basis> # based 2048 // ::= N <basis> # based const 2049 // ::= O <basis> # based volatile 2050 // ::= P <basis> # based const volatile 2051 // ::= Q # near member 2052 // ::= R # near const member 2053 // ::= S # near volatile member 2054 // ::= T # near const volatile member 2055 // ::= U # far member (16-bit) 2056 // ::= V # far const member (16-bit) 2057 // ::= W # far volatile member (16-bit) 2058 // ::= X # far const volatile member (16-bit) 2059 // ::= Y # huge member (16-bit) 2060 // ::= Z # huge const member (16-bit) 2061 // ::= 0 # huge volatile member (16-bit) 2062 // ::= 1 # huge const volatile member (16-bit) 2063 // ::= 2 <basis> # based member 2064 // ::= 3 <basis> # based const member 2065 // ::= 4 <basis> # based volatile member 2066 // ::= 5 <basis> # based const volatile member 2067 // ::= 6 # near function (pointers only) 2068 // ::= 7 # far function (pointers only) 2069 // ::= 8 # near method (pointers only) 2070 // ::= 9 # far method (pointers only) 2071 // ::= _A <basis> # based function (pointers only) 2072 // ::= _B <basis> # based function (far?) (pointers only) 2073 // ::= _C <basis> # based method (pointers only) 2074 // ::= _D <basis> # based method (far?) (pointers only) 2075 // ::= _E # block (Clang) 2076 // <basis> ::= 0 # __based(void) 2077 // ::= 1 # __based(segment)? 2078 // ::= 2 <name> # __based(name) 2079 // ::= 3 # ? 2080 // ::= 4 # ? 2081 // ::= 5 # not really based 2082 bool HasConst = Quals.hasConst(), 2083 HasVolatile = Quals.hasVolatile(); 2084 2085 if (!IsMember) { 2086 if (HasConst && HasVolatile) { 2087 Out << 'D'; 2088 } else if (HasVolatile) { 2089 Out << 'C'; 2090 } else if (HasConst) { 2091 Out << 'B'; 2092 } else { 2093 Out << 'A'; 2094 } 2095 } else { 2096 if (HasConst && HasVolatile) { 2097 Out << 'T'; 2098 } else if (HasVolatile) { 2099 Out << 'S'; 2100 } else if (HasConst) { 2101 Out << 'R'; 2102 } else { 2103 Out << 'Q'; 2104 } 2105 } 2106 2107 // FIXME: For now, just drop all extension qualifiers on the floor. 2108 } 2109 2110 void 2111 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 2112 // <ref-qualifier> ::= G # lvalue reference 2113 // ::= H # rvalue-reference 2114 switch (RefQualifier) { 2115 case RQ_None: 2116 break; 2117 2118 case RQ_LValue: 2119 Out << 'G'; 2120 break; 2121 2122 case RQ_RValue: 2123 Out << 'H'; 2124 break; 2125 } 2126 } 2127 2128 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals, 2129 QualType PointeeType) { 2130 // Check if this is a default 64-bit pointer or has __ptr64 qualifier. 2131 bool is64Bit = PointeeType.isNull() ? PointersAre64Bit : 2132 is64BitPointer(PointeeType.getQualifiers()); 2133 if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType())) 2134 Out << 'E'; 2135 2136 if (Quals.hasRestrict()) 2137 Out << 'I'; 2138 2139 if (Quals.hasUnaligned() || 2140 (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned())) 2141 Out << 'F'; 2142 } 2143 2144 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) { 2145 // <pointer-cv-qualifiers> ::= P # no qualifiers 2146 // ::= Q # const 2147 // ::= R # volatile 2148 // ::= S # const volatile 2149 bool HasConst = Quals.hasConst(), 2150 HasVolatile = Quals.hasVolatile(); 2151 2152 if (HasConst && HasVolatile) { 2153 Out << 'S'; 2154 } else if (HasVolatile) { 2155 Out << 'R'; 2156 } else if (HasConst) { 2157 Out << 'Q'; 2158 } else { 2159 Out << 'P'; 2160 } 2161 } 2162 2163 void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T, 2164 SourceRange Range) { 2165 // MSVC will backreference two canonically equivalent types that have slightly 2166 // different manglings when mangled alone. 2167 2168 // Decayed types do not match up with non-decayed versions of the same type. 2169 // 2170 // e.g. 2171 // void (*x)(void) will not form a backreference with void x(void) 2172 void *TypePtr; 2173 if (const auto *DT = T->getAs<DecayedType>()) { 2174 QualType OriginalType = DT->getOriginalType(); 2175 // All decayed ArrayTypes should be treated identically; as-if they were 2176 // a decayed IncompleteArrayType. 2177 if (const auto *AT = getASTContext().getAsArrayType(OriginalType)) 2178 OriginalType = getASTContext().getIncompleteArrayType( 2179 AT->getElementType(), AT->getSizeModifier(), 2180 AT->getIndexTypeCVRQualifiers()); 2181 2182 TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr(); 2183 // If the original parameter was textually written as an array, 2184 // instead treat the decayed parameter like it's const. 2185 // 2186 // e.g. 2187 // int [] -> int * const 2188 if (OriginalType->isArrayType()) 2189 T = T.withConst(); 2190 } else { 2191 TypePtr = T.getCanonicalType().getAsOpaquePtr(); 2192 } 2193 2194 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 2195 2196 if (Found == FunArgBackReferences.end()) { 2197 size_t OutSizeBefore = Out.tell(); 2198 2199 mangleType(T, Range, QMM_Drop); 2200 2201 // See if it's worth creating a back reference. 2202 // Only types longer than 1 character are considered 2203 // and only 10 back references slots are available: 2204 bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1); 2205 if (LongerThanOneChar && FunArgBackReferences.size() < 10) { 2206 size_t Size = FunArgBackReferences.size(); 2207 FunArgBackReferences[TypePtr] = Size; 2208 } 2209 } else { 2210 Out << Found->second; 2211 } 2212 } 2213 2214 void MicrosoftCXXNameMangler::manglePassObjectSizeArg( 2215 const PassObjectSizeAttr *POSA) { 2216 int Type = POSA->getType(); 2217 bool Dynamic = POSA->isDynamic(); 2218 2219 auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first; 2220 auto *TypePtr = (const void *)&*Iter; 2221 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 2222 2223 if (Found == FunArgBackReferences.end()) { 2224 std::string Name = 2225 Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size"; 2226 mangleArtificialTagType(TagTypeKind::Enum, Name + llvm::utostr(Type), 2227 {"__clang"}); 2228 2229 if (FunArgBackReferences.size() < 10) { 2230 size_t Size = FunArgBackReferences.size(); 2231 FunArgBackReferences[TypePtr] = Size; 2232 } 2233 } else { 2234 Out << Found->second; 2235 } 2236 } 2237 2238 void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T, 2239 Qualifiers Quals, 2240 SourceRange Range) { 2241 // Address space is mangled as an unqualified templated type in the __clang 2242 // namespace. The demangled version of this is: 2243 // In the case of a language specific address space: 2244 // __clang::struct _AS[language_addr_space]<Type> 2245 // where: 2246 // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace> 2247 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 2248 // "private"| "generic" | "device" | "host" ] 2249 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 2250 // Note that the above were chosen to match the Itanium mangling for this. 2251 // 2252 // In the case of a non-language specific address space: 2253 // __clang::struct _AS<TargetAS, Type> 2254 assert(Quals.hasAddressSpace() && "Not valid without address space"); 2255 llvm::SmallString<32> ASMangling; 2256 llvm::raw_svector_ostream Stream(ASMangling); 2257 MicrosoftCXXNameMangler Extra(Context, Stream); 2258 Stream << "?$"; 2259 2260 LangAS AS = Quals.getAddressSpace(); 2261 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 2262 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 2263 Extra.mangleSourceName("_AS"); 2264 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS)); 2265 } else { 2266 switch (AS) { 2267 default: 2268 llvm_unreachable("Not a language specific address space"); 2269 case LangAS::opencl_global: 2270 Extra.mangleSourceName("_ASCLglobal"); 2271 break; 2272 case LangAS::opencl_global_device: 2273 Extra.mangleSourceName("_ASCLdevice"); 2274 break; 2275 case LangAS::opencl_global_host: 2276 Extra.mangleSourceName("_ASCLhost"); 2277 break; 2278 case LangAS::opencl_local: 2279 Extra.mangleSourceName("_ASCLlocal"); 2280 break; 2281 case LangAS::opencl_constant: 2282 Extra.mangleSourceName("_ASCLconstant"); 2283 break; 2284 case LangAS::opencl_private: 2285 Extra.mangleSourceName("_ASCLprivate"); 2286 break; 2287 case LangAS::opencl_generic: 2288 Extra.mangleSourceName("_ASCLgeneric"); 2289 break; 2290 case LangAS::cuda_device: 2291 Extra.mangleSourceName("_ASCUdevice"); 2292 break; 2293 case LangAS::cuda_constant: 2294 Extra.mangleSourceName("_ASCUconstant"); 2295 break; 2296 case LangAS::cuda_shared: 2297 Extra.mangleSourceName("_ASCUshared"); 2298 break; 2299 case LangAS::ptr32_sptr: 2300 case LangAS::ptr32_uptr: 2301 case LangAS::ptr64: 2302 llvm_unreachable("don't mangle ptr address spaces with _AS"); 2303 } 2304 } 2305 2306 Extra.mangleType(T, Range, QMM_Escape); 2307 mangleQualifiers(Qualifiers(), false); 2308 mangleArtificialTagType(TagTypeKind::Struct, ASMangling, {"__clang"}); 2309 } 2310 2311 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, 2312 QualifierMangleMode QMM) { 2313 // Don't use the canonical types. MSVC includes things like 'const' on 2314 // pointer arguments to function pointers that canonicalization strips away. 2315 T = T.getDesugaredType(getASTContext()); 2316 Qualifiers Quals = T.getLocalQualifiers(); 2317 2318 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { 2319 // If there were any Quals, getAsArrayType() pushed them onto the array 2320 // element type. 2321 if (QMM == QMM_Mangle) 2322 Out << 'A'; 2323 else if (QMM == QMM_Escape || QMM == QMM_Result) 2324 Out << "$$B"; 2325 mangleArrayType(AT); 2326 return; 2327 } 2328 2329 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || 2330 T->isReferenceType() || T->isBlockPointerType(); 2331 2332 switch (QMM) { 2333 case QMM_Drop: 2334 if (Quals.hasObjCLifetime()) 2335 Quals = Quals.withoutObjCLifetime(); 2336 break; 2337 case QMM_Mangle: 2338 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) { 2339 Out << '6'; 2340 mangleFunctionType(FT); 2341 return; 2342 } 2343 mangleQualifiers(Quals, false); 2344 break; 2345 case QMM_Escape: 2346 if (!IsPointer && Quals) { 2347 Out << "$$C"; 2348 mangleQualifiers(Quals, false); 2349 } 2350 break; 2351 case QMM_Result: 2352 // Presence of __unaligned qualifier shouldn't affect mangling here. 2353 Quals.removeUnaligned(); 2354 if (Quals.hasObjCLifetime()) 2355 Quals = Quals.withoutObjCLifetime(); 2356 if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) { 2357 Out << '?'; 2358 mangleQualifiers(Quals, false); 2359 } 2360 break; 2361 } 2362 2363 const Type *ty = T.getTypePtr(); 2364 2365 switch (ty->getTypeClass()) { 2366 #define ABSTRACT_TYPE(CLASS, PARENT) 2367 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 2368 case Type::CLASS: \ 2369 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 2370 return; 2371 #define TYPE(CLASS, PARENT) \ 2372 case Type::CLASS: \ 2373 mangleType(cast<CLASS##Type>(ty), Quals, Range); \ 2374 break; 2375 #include "clang/AST/TypeNodes.inc" 2376 #undef ABSTRACT_TYPE 2377 #undef NON_CANONICAL_TYPE 2378 #undef TYPE 2379 } 2380 } 2381 2382 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers, 2383 SourceRange Range) { 2384 // <type> ::= <builtin-type> 2385 // <builtin-type> ::= X # void 2386 // ::= C # signed char 2387 // ::= D # char 2388 // ::= E # unsigned char 2389 // ::= F # short 2390 // ::= G # unsigned short (or wchar_t if it's not a builtin) 2391 // ::= H # int 2392 // ::= I # unsigned int 2393 // ::= J # long 2394 // ::= K # unsigned long 2395 // L # <none> 2396 // ::= M # float 2397 // ::= N # double 2398 // ::= O # long double (__float80 is mangled differently) 2399 // ::= _J # long long, __int64 2400 // ::= _K # unsigned long long, __int64 2401 // ::= _L # __int128 2402 // ::= _M # unsigned __int128 2403 // ::= _N # bool 2404 // _O # <array in parameter> 2405 // ::= _Q # char8_t 2406 // ::= _S # char16_t 2407 // ::= _T # __float80 (Intel) 2408 // ::= _U # char32_t 2409 // ::= _W # wchar_t 2410 // ::= _Z # __float80 (Digital Mars) 2411 switch (T->getKind()) { 2412 case BuiltinType::Void: 2413 Out << 'X'; 2414 break; 2415 case BuiltinType::SChar: 2416 Out << 'C'; 2417 break; 2418 case BuiltinType::Char_U: 2419 case BuiltinType::Char_S: 2420 Out << 'D'; 2421 break; 2422 case BuiltinType::UChar: 2423 Out << 'E'; 2424 break; 2425 case BuiltinType::Short: 2426 Out << 'F'; 2427 break; 2428 case BuiltinType::UShort: 2429 Out << 'G'; 2430 break; 2431 case BuiltinType::Int: 2432 Out << 'H'; 2433 break; 2434 case BuiltinType::UInt: 2435 Out << 'I'; 2436 break; 2437 case BuiltinType::Long: 2438 Out << 'J'; 2439 break; 2440 case BuiltinType::ULong: 2441 Out << 'K'; 2442 break; 2443 case BuiltinType::Float: 2444 Out << 'M'; 2445 break; 2446 case BuiltinType::Double: 2447 Out << 'N'; 2448 break; 2449 // TODO: Determine size and mangle accordingly 2450 case BuiltinType::LongDouble: 2451 Out << 'O'; 2452 break; 2453 case BuiltinType::LongLong: 2454 Out << "_J"; 2455 break; 2456 case BuiltinType::ULongLong: 2457 Out << "_K"; 2458 break; 2459 case BuiltinType::Int128: 2460 Out << "_L"; 2461 break; 2462 case BuiltinType::UInt128: 2463 Out << "_M"; 2464 break; 2465 case BuiltinType::Bool: 2466 Out << "_N"; 2467 break; 2468 case BuiltinType::Char8: 2469 Out << "_Q"; 2470 break; 2471 case BuiltinType::Char16: 2472 Out << "_S"; 2473 break; 2474 case BuiltinType::Char32: 2475 Out << "_U"; 2476 break; 2477 case BuiltinType::WChar_S: 2478 case BuiltinType::WChar_U: 2479 Out << "_W"; 2480 break; 2481 2482 #define BUILTIN_TYPE(Id, SingletonId) 2483 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 2484 case BuiltinType::Id: 2485 #include "clang/AST/BuiltinTypes.def" 2486 case BuiltinType::Dependent: 2487 llvm_unreachable("placeholder types shouldn't get to name mangling"); 2488 2489 case BuiltinType::ObjCId: 2490 mangleArtificialTagType(TagTypeKind::Struct, "objc_object"); 2491 break; 2492 case BuiltinType::ObjCClass: 2493 mangleArtificialTagType(TagTypeKind::Struct, "objc_class"); 2494 break; 2495 case BuiltinType::ObjCSel: 2496 mangleArtificialTagType(TagTypeKind::Struct, "objc_selector"); 2497 break; 2498 2499 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 2500 case BuiltinType::Id: \ 2501 Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \ 2502 break; 2503 #include "clang/Basic/OpenCLImageTypes.def" 2504 case BuiltinType::OCLSampler: 2505 Out << "PA"; 2506 mangleArtificialTagType(TagTypeKind::Struct, "ocl_sampler"); 2507 break; 2508 case BuiltinType::OCLEvent: 2509 Out << "PA"; 2510 mangleArtificialTagType(TagTypeKind::Struct, "ocl_event"); 2511 break; 2512 case BuiltinType::OCLClkEvent: 2513 Out << "PA"; 2514 mangleArtificialTagType(TagTypeKind::Struct, "ocl_clkevent"); 2515 break; 2516 case BuiltinType::OCLQueue: 2517 Out << "PA"; 2518 mangleArtificialTagType(TagTypeKind::Struct, "ocl_queue"); 2519 break; 2520 case BuiltinType::OCLReserveID: 2521 Out << "PA"; 2522 mangleArtificialTagType(TagTypeKind::Struct, "ocl_reserveid"); 2523 break; 2524 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 2525 case BuiltinType::Id: \ 2526 mangleArtificialTagType(TagTypeKind::Struct, "ocl_" #ExtType); \ 2527 break; 2528 #include "clang/Basic/OpenCLExtensionTypes.def" 2529 2530 case BuiltinType::NullPtr: 2531 Out << "$$T"; 2532 break; 2533 2534 case BuiltinType::Float16: 2535 mangleArtificialTagType(TagTypeKind::Struct, "_Float16", {"__clang"}); 2536 break; 2537 2538 case BuiltinType::Half: 2539 if (!getASTContext().getLangOpts().HLSL) 2540 mangleArtificialTagType(TagTypeKind::Struct, "_Half", {"__clang"}); 2541 else if (getASTContext().getLangOpts().NativeHalfType) 2542 Out << "$f16@"; 2543 else 2544 Out << "$halff@"; 2545 break; 2546 2547 case BuiltinType::BFloat16: 2548 mangleArtificialTagType(TagTypeKind::Struct, "__bf16", {"__clang"}); 2549 break; 2550 2551 #define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS) \ 2552 case BuiltinType::Id: \ 2553 mangleArtificialTagType(TagTypeKind::Struct, MangledName); \ 2554 mangleArtificialTagType(TagTypeKind::Struct, MangledName, {"__clang"}); \ 2555 break; 2556 2557 #include "clang/Basic/WebAssemblyReferenceTypes.def" 2558 #define SVE_TYPE(Name, Id, SingletonId) \ 2559 case BuiltinType::Id: 2560 #include "clang/Basic/AArch64SVEACLETypes.def" 2561 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 2562 case BuiltinType::Id: 2563 #include "clang/Basic/PPCTypes.def" 2564 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 2565 #include "clang/Basic/RISCVVTypes.def" 2566 case BuiltinType::ShortAccum: 2567 case BuiltinType::Accum: 2568 case BuiltinType::LongAccum: 2569 case BuiltinType::UShortAccum: 2570 case BuiltinType::UAccum: 2571 case BuiltinType::ULongAccum: 2572 case BuiltinType::ShortFract: 2573 case BuiltinType::Fract: 2574 case BuiltinType::LongFract: 2575 case BuiltinType::UShortFract: 2576 case BuiltinType::UFract: 2577 case BuiltinType::ULongFract: 2578 case BuiltinType::SatShortAccum: 2579 case BuiltinType::SatAccum: 2580 case BuiltinType::SatLongAccum: 2581 case BuiltinType::SatUShortAccum: 2582 case BuiltinType::SatUAccum: 2583 case BuiltinType::SatULongAccum: 2584 case BuiltinType::SatShortFract: 2585 case BuiltinType::SatFract: 2586 case BuiltinType::SatLongFract: 2587 case BuiltinType::SatUShortFract: 2588 case BuiltinType::SatUFract: 2589 case BuiltinType::SatULongFract: 2590 case BuiltinType::Ibm128: 2591 case BuiltinType::Float128: { 2592 DiagnosticsEngine &Diags = Context.getDiags(); 2593 unsigned DiagID = Diags.getCustomDiagID( 2594 DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet"); 2595 Diags.Report(Range.getBegin(), DiagID) 2596 << T->getName(Context.getASTContext().getPrintingPolicy()) << Range; 2597 break; 2598 } 2599 } 2600 } 2601 2602 // <type> ::= <function-type> 2603 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers, 2604 SourceRange) { 2605 // Structors only appear in decls, so at this point we know it's not a 2606 // structor type. 2607 // FIXME: This may not be lambda-friendly. 2608 if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) { 2609 Out << "$$A8@@"; 2610 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true); 2611 } else { 2612 Out << "$$A6"; 2613 mangleFunctionType(T); 2614 } 2615 } 2616 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, 2617 Qualifiers, SourceRange) { 2618 Out << "$$A6"; 2619 mangleFunctionType(T); 2620 } 2621 2622 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, 2623 const FunctionDecl *D, 2624 bool ForceThisQuals, 2625 bool MangleExceptionSpec) { 2626 // <function-type> ::= <this-cvr-qualifiers> <calling-convention> 2627 // <return-type> <argument-list> <throw-spec> 2628 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T); 2629 2630 SourceRange Range; 2631 if (D) Range = D->getSourceRange(); 2632 2633 bool IsInLambda = false; 2634 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false; 2635 CallingConv CC = T->getCallConv(); 2636 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) { 2637 if (MD->getParent()->isLambda()) 2638 IsInLambda = true; 2639 if (MD->isImplicitObjectMemberFunction()) 2640 HasThisQuals = true; 2641 if (isa<CXXDestructorDecl>(MD)) { 2642 IsStructor = true; 2643 } else if (isa<CXXConstructorDecl>(MD)) { 2644 IsStructor = true; 2645 IsCtorClosure = (StructorType == Ctor_CopyingClosure || 2646 StructorType == Ctor_DefaultClosure) && 2647 isStructorDecl(MD); 2648 if (IsCtorClosure) 2649 CC = getASTContext().getDefaultCallingConvention( 2650 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 2651 } 2652 } 2653 2654 // If this is a C++ instance method, mangle the CVR qualifiers for the 2655 // this pointer. 2656 if (HasThisQuals) { 2657 Qualifiers Quals = Proto->getMethodQuals(); 2658 manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType()); 2659 mangleRefQualifier(Proto->getRefQualifier()); 2660 mangleQualifiers(Quals, /*IsMember=*/false); 2661 } 2662 2663 mangleCallingConvention(CC); 2664 2665 // <return-type> ::= <type> 2666 // ::= @ # structors (they have no declared return type) 2667 if (IsStructor) { 2668 if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) { 2669 // The scalar deleting destructor takes an extra int argument which is not 2670 // reflected in the AST. 2671 if (StructorType == Dtor_Deleting) { 2672 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z"); 2673 return; 2674 } 2675 // The vbase destructor returns void which is not reflected in the AST. 2676 if (StructorType == Dtor_Complete) { 2677 Out << "XXZ"; 2678 return; 2679 } 2680 } 2681 if (IsCtorClosure) { 2682 // Default constructor closure and copy constructor closure both return 2683 // void. 2684 Out << 'X'; 2685 2686 if (StructorType == Ctor_DefaultClosure) { 2687 // Default constructor closure always has no arguments. 2688 Out << 'X'; 2689 } else if (StructorType == Ctor_CopyingClosure) { 2690 // Copy constructor closure always takes an unqualified reference. 2691 mangleFunctionArgumentType(getASTContext().getLValueReferenceType( 2692 Proto->getParamType(0) 2693 ->castAs<LValueReferenceType>() 2694 ->getPointeeType(), 2695 /*SpelledAsLValue=*/true), 2696 Range); 2697 Out << '@'; 2698 } else { 2699 llvm_unreachable("unexpected constructor closure!"); 2700 } 2701 Out << 'Z'; 2702 return; 2703 } 2704 Out << '@'; 2705 } else if (IsInLambda && D && isa<CXXConversionDecl>(D)) { 2706 // The only lambda conversion operators are to function pointers, which 2707 // can differ by their calling convention and are typically deduced. So 2708 // we make sure that this type gets mangled properly. 2709 mangleType(T->getReturnType(), Range, QMM_Result); 2710 } else { 2711 QualType ResultType = T->getReturnType(); 2712 if (IsInLambda && isa<CXXConversionDecl>(D)) { 2713 // The only lambda conversion operators are to function pointers, which 2714 // can differ by their calling convention and are typically deduced. So 2715 // we make sure that this type gets mangled properly. 2716 mangleType(ResultType, Range, QMM_Result); 2717 } else if (const auto *AT = dyn_cast_or_null<AutoType>( 2718 ResultType->getContainedAutoType())) { 2719 Out << '?'; 2720 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false); 2721 Out << '?'; 2722 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType && 2723 "shouldn't need to mangle __auto_type!"); 2724 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>"); 2725 Out << '@'; 2726 } else if (IsInLambda) { 2727 Out << '@'; 2728 } else { 2729 if (ResultType->isVoidType()) 2730 ResultType = ResultType.getUnqualifiedType(); 2731 mangleType(ResultType, Range, QMM_Result); 2732 } 2733 } 2734 2735 // <argument-list> ::= X # void 2736 // ::= <type>+ @ 2737 // ::= <type>* Z # varargs 2738 if (!Proto) { 2739 // Function types without prototypes can arise when mangling a function type 2740 // within an overloadable function in C. We mangle these as the absence of 2741 // any parameter types (not even an empty parameter list). 2742 Out << '@'; 2743 } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 2744 Out << 'X'; 2745 } else { 2746 // Happens for function pointer type arguments for example. 2747 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 2748 // Explicit object parameters are prefixed by "_V". 2749 if (I == 0 && D && D->getParamDecl(I)->isExplicitObjectParameter()) 2750 Out << "_V"; 2751 2752 mangleFunctionArgumentType(Proto->getParamType(I), Range); 2753 // Mangle each pass_object_size parameter as if it's a parameter of enum 2754 // type passed directly after the parameter with the pass_object_size 2755 // attribute. The aforementioned enum's name is __pass_object_size, and we 2756 // pretend it resides in a top-level namespace called __clang. 2757 // 2758 // FIXME: Is there a defined extension notation for the MS ABI, or is it 2759 // necessary to just cross our fingers and hope this type+namespace 2760 // combination doesn't conflict with anything? 2761 if (D) 2762 if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) 2763 manglePassObjectSizeArg(P); 2764 } 2765 // <builtin-type> ::= Z # ellipsis 2766 if (Proto->isVariadic()) 2767 Out << 'Z'; 2768 else 2769 Out << '@'; 2770 } 2771 2772 if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 && 2773 getASTContext().getLangOpts().isCompatibleWithMSVC( 2774 LangOptions::MSVC2017_5)) 2775 mangleThrowSpecification(Proto); 2776 else 2777 Out << 'Z'; 2778 } 2779 2780 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { 2781 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this' 2782 // # pointer. in 64-bit mode *all* 2783 // # 'this' pointers are 64-bit. 2784 // ::= <global-function> 2785 // <member-function> ::= A # private: near 2786 // ::= B # private: far 2787 // ::= C # private: static near 2788 // ::= D # private: static far 2789 // ::= E # private: virtual near 2790 // ::= F # private: virtual far 2791 // ::= I # protected: near 2792 // ::= J # protected: far 2793 // ::= K # protected: static near 2794 // ::= L # protected: static far 2795 // ::= M # protected: virtual near 2796 // ::= N # protected: virtual far 2797 // ::= Q # public: near 2798 // ::= R # public: far 2799 // ::= S # public: static near 2800 // ::= T # public: static far 2801 // ::= U # public: virtual near 2802 // ::= V # public: virtual far 2803 // <global-function> ::= Y # global near 2804 // ::= Z # global far 2805 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 2806 bool IsVirtual = MD->isVirtual(); 2807 // When mangling vbase destructor variants, ignore whether or not the 2808 // underlying destructor was defined to be virtual. 2809 if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) && 2810 StructorType == Dtor_Complete) { 2811 IsVirtual = false; 2812 } 2813 switch (MD->getAccess()) { 2814 case AS_none: 2815 llvm_unreachable("Unsupported access specifier"); 2816 case AS_private: 2817 if (!MD->isImplicitObjectMemberFunction()) 2818 Out << 'C'; 2819 else if (IsVirtual) 2820 Out << 'E'; 2821 else 2822 Out << 'A'; 2823 break; 2824 case AS_protected: 2825 if (!MD->isImplicitObjectMemberFunction()) 2826 Out << 'K'; 2827 else if (IsVirtual) 2828 Out << 'M'; 2829 else 2830 Out << 'I'; 2831 break; 2832 case AS_public: 2833 if (!MD->isImplicitObjectMemberFunction()) 2834 Out << 'S'; 2835 else if (IsVirtual) 2836 Out << 'U'; 2837 else 2838 Out << 'Q'; 2839 } 2840 } else { 2841 Out << 'Y'; 2842 } 2843 } 2844 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) { 2845 // <calling-convention> ::= A # __cdecl 2846 // ::= B # __export __cdecl 2847 // ::= C # __pascal 2848 // ::= D # __export __pascal 2849 // ::= E # __thiscall 2850 // ::= F # __export __thiscall 2851 // ::= G # __stdcall 2852 // ::= H # __export __stdcall 2853 // ::= I # __fastcall 2854 // ::= J # __export __fastcall 2855 // ::= Q # __vectorcall 2856 // ::= S # __attribute__((__swiftcall__)) // Clang-only 2857 // ::= T # __attribute__((__swiftasynccall__)) 2858 // // Clang-only 2859 // ::= w # __regcall 2860 // ::= x # __regcall4 2861 // The 'export' calling conventions are from a bygone era 2862 // (*cough*Win16*cough*) when functions were declared for export with 2863 // that keyword. (It didn't actually export them, it just made them so 2864 // that they could be in a DLL and somebody from another module could call 2865 // them.) 2866 2867 switch (CC) { 2868 default: 2869 llvm_unreachable("Unsupported CC for mangling"); 2870 case CC_Win64: 2871 case CC_X86_64SysV: 2872 case CC_C: Out << 'A'; break; 2873 case CC_X86Pascal: Out << 'C'; break; 2874 case CC_X86ThisCall: Out << 'E'; break; 2875 case CC_X86StdCall: Out << 'G'; break; 2876 case CC_X86FastCall: Out << 'I'; break; 2877 case CC_X86VectorCall: Out << 'Q'; break; 2878 case CC_Swift: Out << 'S'; break; 2879 case CC_SwiftAsync: Out << 'W'; break; 2880 case CC_PreserveMost: Out << 'U'; break; 2881 case CC_X86RegCall: 2882 if (getASTContext().getLangOpts().RegCall4) 2883 Out << "x"; 2884 else 2885 Out << "w"; 2886 break; 2887 } 2888 } 2889 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) { 2890 mangleCallingConvention(T->getCallConv()); 2891 } 2892 2893 void MicrosoftCXXNameMangler::mangleThrowSpecification( 2894 const FunctionProtoType *FT) { 2895 // <throw-spec> ::= Z # (default) 2896 // ::= _E # noexcept 2897 if (FT->canThrow()) 2898 Out << 'Z'; 2899 else 2900 Out << "_E"; 2901 } 2902 2903 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, 2904 Qualifiers, SourceRange Range) { 2905 // Probably should be mangled as a template instantiation; need to see what 2906 // VC does first. 2907 DiagnosticsEngine &Diags = Context.getDiags(); 2908 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2909 "cannot mangle this unresolved dependent type yet"); 2910 Diags.Report(Range.getBegin(), DiagID) 2911 << Range; 2912 } 2913 2914 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> 2915 // <union-type> ::= T <name> 2916 // <struct-type> ::= U <name> 2917 // <class-type> ::= V <name> 2918 // <enum-type> ::= W4 <name> 2919 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) { 2920 switch (TTK) { 2921 case TagTypeKind::Union: 2922 Out << 'T'; 2923 break; 2924 case TagTypeKind::Struct: 2925 case TagTypeKind::Interface: 2926 Out << 'U'; 2927 break; 2928 case TagTypeKind::Class: 2929 Out << 'V'; 2930 break; 2931 case TagTypeKind::Enum: 2932 Out << "W4"; 2933 break; 2934 } 2935 } 2936 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers, 2937 SourceRange) { 2938 mangleType(cast<TagType>(T)->getDecl()); 2939 } 2940 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers, 2941 SourceRange) { 2942 mangleType(cast<TagType>(T)->getDecl()); 2943 } 2944 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { 2945 mangleTagTypeKind(TD->getTagKind()); 2946 mangleName(TD); 2947 } 2948 2949 // If you add a call to this, consider updating isArtificialTagType() too. 2950 void MicrosoftCXXNameMangler::mangleArtificialTagType( 2951 TagTypeKind TK, StringRef UnqualifiedName, 2952 ArrayRef<StringRef> NestedNames) { 2953 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 2954 mangleTagTypeKind(TK); 2955 2956 // Always start with the unqualified name. 2957 mangleSourceName(UnqualifiedName); 2958 2959 for (StringRef N : llvm::reverse(NestedNames)) 2960 mangleSourceName(N); 2961 2962 // Terminate the whole name with an '@'. 2963 Out << '@'; 2964 } 2965 2966 // <type> ::= <array-type> 2967 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 2968 // [Y <dimension-count> <dimension>+] 2969 // <element-type> # as global, E is never required 2970 // It's supposed to be the other way around, but for some strange reason, it 2971 // isn't. Today this behavior is retained for the sole purpose of backwards 2972 // compatibility. 2973 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { 2974 // This isn't a recursive mangling, so now we have to do it all in this 2975 // one call. 2976 manglePointerCVQualifiers(T->getElementType().getQualifiers()); 2977 mangleType(T->getElementType(), SourceRange()); 2978 } 2979 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers, 2980 SourceRange) { 2981 llvm_unreachable("Should have been special cased"); 2982 } 2983 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers, 2984 SourceRange) { 2985 llvm_unreachable("Should have been special cased"); 2986 } 2987 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, 2988 Qualifiers, SourceRange) { 2989 llvm_unreachable("Should have been special cased"); 2990 } 2991 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, 2992 Qualifiers, SourceRange) { 2993 llvm_unreachable("Should have been special cased"); 2994 } 2995 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { 2996 QualType ElementTy(T, 0); 2997 SmallVector<llvm::APInt, 3> Dimensions; 2998 for (;;) { 2999 if (ElementTy->isConstantArrayType()) { 3000 const ConstantArrayType *CAT = 3001 getASTContext().getAsConstantArrayType(ElementTy); 3002 Dimensions.push_back(CAT->getSize()); 3003 ElementTy = CAT->getElementType(); 3004 } else if (ElementTy->isIncompleteArrayType()) { 3005 const IncompleteArrayType *IAT = 3006 getASTContext().getAsIncompleteArrayType(ElementTy); 3007 Dimensions.push_back(llvm::APInt(32, 0)); 3008 ElementTy = IAT->getElementType(); 3009 } else if (ElementTy->isVariableArrayType()) { 3010 const VariableArrayType *VAT = 3011 getASTContext().getAsVariableArrayType(ElementTy); 3012 Dimensions.push_back(llvm::APInt(32, 0)); 3013 ElementTy = VAT->getElementType(); 3014 } else if (ElementTy->isDependentSizedArrayType()) { 3015 // The dependent expression has to be folded into a constant (TODO). 3016 const DependentSizedArrayType *DSAT = 3017 getASTContext().getAsDependentSizedArrayType(ElementTy); 3018 DiagnosticsEngine &Diags = Context.getDiags(); 3019 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3020 "cannot mangle this dependent-length array yet"); 3021 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID) 3022 << DSAT->getBracketsRange(); 3023 return; 3024 } else { 3025 break; 3026 } 3027 } 3028 Out << 'Y'; 3029 // <dimension-count> ::= <number> # number of extra dimensions 3030 mangleNumber(Dimensions.size()); 3031 for (const llvm::APInt &Dimension : Dimensions) 3032 mangleNumber(Dimension.getLimitedValue()); 3033 mangleType(ElementTy, SourceRange(), QMM_Escape); 3034 } 3035 3036 // <type> ::= <pointer-to-member-type> 3037 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 3038 // <class name> <type> 3039 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, 3040 Qualifiers Quals, SourceRange Range) { 3041 QualType PointeeType = T->getPointeeType(); 3042 manglePointerCVQualifiers(Quals); 3043 manglePointerExtQualifiers(Quals, PointeeType); 3044 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { 3045 Out << '8'; 3046 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 3047 mangleFunctionType(FPT, nullptr, true); 3048 } else { 3049 mangleQualifiers(PointeeType.getQualifiers(), true); 3050 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 3051 mangleType(PointeeType, Range, QMM_Drop); 3052 } 3053 } 3054 3055 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, 3056 Qualifiers, SourceRange Range) { 3057 DiagnosticsEngine &Diags = Context.getDiags(); 3058 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3059 "cannot mangle this template type parameter type yet"); 3060 Diags.Report(Range.getBegin(), DiagID) 3061 << Range; 3062 } 3063 3064 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T, 3065 Qualifiers, SourceRange Range) { 3066 DiagnosticsEngine &Diags = Context.getDiags(); 3067 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3068 "cannot mangle this substituted parameter pack yet"); 3069 Diags.Report(Range.getBegin(), DiagID) 3070 << Range; 3071 } 3072 3073 // <type> ::= <pointer-type> 3074 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> 3075 // # the E is required for 64-bit non-static pointers 3076 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals, 3077 SourceRange Range) { 3078 QualType PointeeType = T->getPointeeType(); 3079 manglePointerCVQualifiers(Quals); 3080 manglePointerExtQualifiers(Quals, PointeeType); 3081 3082 // For pointer size address spaces, go down the same type mangling path as 3083 // non address space types. 3084 LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace(); 3085 if (isPtrSizeAddressSpace(AddrSpace) || AddrSpace == LangAS::Default) 3086 mangleType(PointeeType, Range); 3087 else 3088 mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range); 3089 } 3090 3091 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, 3092 Qualifiers Quals, SourceRange Range) { 3093 QualType PointeeType = T->getPointeeType(); 3094 switch (Quals.getObjCLifetime()) { 3095 case Qualifiers::OCL_None: 3096 case Qualifiers::OCL_ExplicitNone: 3097 break; 3098 case Qualifiers::OCL_Autoreleasing: 3099 case Qualifiers::OCL_Strong: 3100 case Qualifiers::OCL_Weak: 3101 return mangleObjCLifetime(PointeeType, Quals, Range); 3102 } 3103 manglePointerCVQualifiers(Quals); 3104 manglePointerExtQualifiers(Quals, PointeeType); 3105 mangleType(PointeeType, Range); 3106 } 3107 3108 // <type> ::= <reference-type> 3109 // <reference-type> ::= A E? <cvr-qualifiers> <type> 3110 // # the E is required for 64-bit non-static lvalue references 3111 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, 3112 Qualifiers Quals, SourceRange Range) { 3113 QualType PointeeType = T->getPointeeType(); 3114 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 3115 Out << 'A'; 3116 manglePointerExtQualifiers(Quals, PointeeType); 3117 mangleType(PointeeType, Range); 3118 } 3119 3120 // <type> ::= <r-value-reference-type> 3121 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> 3122 // # the E is required for 64-bit non-static rvalue references 3123 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, 3124 Qualifiers Quals, SourceRange Range) { 3125 QualType PointeeType = T->getPointeeType(); 3126 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 3127 Out << "$$Q"; 3128 manglePointerExtQualifiers(Quals, PointeeType); 3129 mangleType(PointeeType, Range); 3130 } 3131 3132 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers, 3133 SourceRange Range) { 3134 QualType ElementType = T->getElementType(); 3135 3136 llvm::SmallString<64> TemplateMangling; 3137 llvm::raw_svector_ostream Stream(TemplateMangling); 3138 MicrosoftCXXNameMangler Extra(Context, Stream); 3139 Stream << "?$"; 3140 Extra.mangleSourceName("_Complex"); 3141 Extra.mangleType(ElementType, Range, QMM_Escape); 3142 3143 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__clang"}); 3144 } 3145 3146 // Returns true for types that mangleArtificialTagType() gets called for with 3147 // TagTypeKind Union, Struct, Class and where compatibility with MSVC's 3148 // mangling matters. 3149 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't 3150 // support.) 3151 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const { 3152 const Type *ty = T.getTypePtr(); 3153 switch (ty->getTypeClass()) { 3154 default: 3155 return false; 3156 3157 case Type::Vector: { 3158 // For ABI compatibility only __m64, __m128(id), and __m256(id) matter, 3159 // but since mangleType(VectorType*) always calls mangleArtificialTagType() 3160 // just always return true (the other vector types are clang-only). 3161 return true; 3162 } 3163 } 3164 } 3165 3166 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals, 3167 SourceRange Range) { 3168 QualType EltTy = T->getElementType(); 3169 const BuiltinType *ET = EltTy->getAs<BuiltinType>(); 3170 const BitIntType *BitIntTy = EltTy->getAs<BitIntType>(); 3171 assert((ET || BitIntTy) && 3172 "vectors with non-builtin/_BitInt elements are unsupported"); 3173 uint64_t Width = getASTContext().getTypeSize(T); 3174 // Pattern match exactly the typedefs in our intrinsic headers. Anything that 3175 // doesn't match the Intel types uses a custom mangling below. 3176 size_t OutSizeBefore = Out.tell(); 3177 if (!isa<ExtVectorType>(T)) { 3178 if (getASTContext().getTargetInfo().getTriple().isX86() && ET) { 3179 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { 3180 mangleArtificialTagType(TagTypeKind::Union, "__m64"); 3181 } else if (Width >= 128) { 3182 if (ET->getKind() == BuiltinType::Float) 3183 mangleArtificialTagType(TagTypeKind::Union, 3184 "__m" + llvm::utostr(Width)); 3185 else if (ET->getKind() == BuiltinType::LongLong) 3186 mangleArtificialTagType(TagTypeKind::Union, 3187 "__m" + llvm::utostr(Width) + 'i'); 3188 else if (ET->getKind() == BuiltinType::Double) 3189 mangleArtificialTagType(TagTypeKind::Struct, 3190 "__m" + llvm::utostr(Width) + 'd'); 3191 } 3192 } 3193 } 3194 3195 bool IsBuiltin = Out.tell() != OutSizeBefore; 3196 if (!IsBuiltin) { 3197 // The MS ABI doesn't have a special mangling for vector types, so we define 3198 // our own mangling to handle uses of __vector_size__ on user-specified 3199 // types, and for extensions like __v4sf. 3200 3201 llvm::SmallString<64> TemplateMangling; 3202 llvm::raw_svector_ostream Stream(TemplateMangling); 3203 MicrosoftCXXNameMangler Extra(Context, Stream); 3204 Stream << "?$"; 3205 Extra.mangleSourceName("__vector"); 3206 Extra.mangleType(QualType(ET ? static_cast<const Type *>(ET) : BitIntTy, 0), 3207 Range, QMM_Escape); 3208 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements())); 3209 3210 mangleArtificialTagType(TagTypeKind::Union, TemplateMangling, {"__clang"}); 3211 } 3212 } 3213 3214 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, 3215 Qualifiers Quals, SourceRange Range) { 3216 mangleType(static_cast<const VectorType *>(T), Quals, Range); 3217 } 3218 3219 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T, 3220 Qualifiers, SourceRange Range) { 3221 DiagnosticsEngine &Diags = Context.getDiags(); 3222 unsigned DiagID = Diags.getCustomDiagID( 3223 DiagnosticsEngine::Error, 3224 "cannot mangle this dependent-sized vector type yet"); 3225 Diags.Report(Range.getBegin(), DiagID) << Range; 3226 } 3227 3228 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, 3229 Qualifiers, SourceRange Range) { 3230 DiagnosticsEngine &Diags = Context.getDiags(); 3231 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3232 "cannot mangle this dependent-sized extended vector type yet"); 3233 Diags.Report(Range.getBegin(), DiagID) 3234 << Range; 3235 } 3236 3237 void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T, 3238 Qualifiers quals, SourceRange Range) { 3239 DiagnosticsEngine &Diags = Context.getDiags(); 3240 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3241 "Cannot mangle this matrix type yet"); 3242 Diags.Report(Range.getBegin(), DiagID) << Range; 3243 } 3244 3245 void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T, 3246 Qualifiers quals, SourceRange Range) { 3247 DiagnosticsEngine &Diags = Context.getDiags(); 3248 unsigned DiagID = Diags.getCustomDiagID( 3249 DiagnosticsEngine::Error, 3250 "Cannot mangle this dependent-sized matrix type yet"); 3251 Diags.Report(Range.getBegin(), DiagID) << Range; 3252 } 3253 3254 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T, 3255 Qualifiers, SourceRange Range) { 3256 DiagnosticsEngine &Diags = Context.getDiags(); 3257 unsigned DiagID = Diags.getCustomDiagID( 3258 DiagnosticsEngine::Error, 3259 "cannot mangle this dependent address space type yet"); 3260 Diags.Report(Range.getBegin(), DiagID) << Range; 3261 } 3262 3263 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers, 3264 SourceRange) { 3265 // ObjC interfaces have structs underlying them. 3266 mangleTagTypeKind(TagTypeKind::Struct); 3267 mangleName(T->getDecl()); 3268 } 3269 3270 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, 3271 Qualifiers Quals, SourceRange Range) { 3272 if (T->isKindOfType()) 3273 return mangleObjCKindOfType(T, Quals, Range); 3274 3275 if (T->qual_empty() && !T->isSpecialized()) 3276 return mangleType(T->getBaseType(), Range, QMM_Drop); 3277 3278 ArgBackRefMap OuterFunArgsContext; 3279 ArgBackRefMap OuterTemplateArgsContext; 3280 BackRefVec OuterTemplateContext; 3281 3282 FunArgBackReferences.swap(OuterFunArgsContext); 3283 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 3284 NameBackReferences.swap(OuterTemplateContext); 3285 3286 mangleTagTypeKind(TagTypeKind::Struct); 3287 3288 Out << "?$"; 3289 if (T->isObjCId()) 3290 mangleSourceName("objc_object"); 3291 else if (T->isObjCClass()) 3292 mangleSourceName("objc_class"); 3293 else 3294 mangleSourceName(T->getInterface()->getName()); 3295 3296 for (const auto &Q : T->quals()) 3297 mangleObjCProtocol(Q); 3298 3299 if (T->isSpecialized()) 3300 for (const auto &TA : T->getTypeArgs()) 3301 mangleType(TA, Range, QMM_Drop); 3302 3303 Out << '@'; 3304 3305 Out << '@'; 3306 3307 FunArgBackReferences.swap(OuterFunArgsContext); 3308 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 3309 NameBackReferences.swap(OuterTemplateContext); 3310 } 3311 3312 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, 3313 Qualifiers Quals, SourceRange Range) { 3314 QualType PointeeType = T->getPointeeType(); 3315 manglePointerCVQualifiers(Quals); 3316 manglePointerExtQualifiers(Quals, PointeeType); 3317 3318 Out << "_E"; 3319 3320 mangleFunctionType(PointeeType->castAs<FunctionProtoType>()); 3321 } 3322 3323 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, 3324 Qualifiers, SourceRange) { 3325 llvm_unreachable("Cannot mangle injected class name type."); 3326 } 3327 3328 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, 3329 Qualifiers, SourceRange Range) { 3330 DiagnosticsEngine &Diags = Context.getDiags(); 3331 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3332 "cannot mangle this template specialization type yet"); 3333 Diags.Report(Range.getBegin(), DiagID) 3334 << Range; 3335 } 3336 3337 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers, 3338 SourceRange Range) { 3339 DiagnosticsEngine &Diags = Context.getDiags(); 3340 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3341 "cannot mangle this dependent name type yet"); 3342 Diags.Report(Range.getBegin(), DiagID) 3343 << Range; 3344 } 3345 3346 void MicrosoftCXXNameMangler::mangleType( 3347 const DependentTemplateSpecializationType *T, Qualifiers, 3348 SourceRange Range) { 3349 DiagnosticsEngine &Diags = Context.getDiags(); 3350 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3351 "cannot mangle this dependent template specialization type yet"); 3352 Diags.Report(Range.getBegin(), DiagID) 3353 << Range; 3354 } 3355 3356 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers, 3357 SourceRange Range) { 3358 DiagnosticsEngine &Diags = Context.getDiags(); 3359 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3360 "cannot mangle this pack expansion yet"); 3361 Diags.Report(Range.getBegin(), DiagID) 3362 << Range; 3363 } 3364 3365 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers, 3366 SourceRange Range) { 3367 DiagnosticsEngine &Diags = Context.getDiags(); 3368 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3369 "cannot mangle this typeof(type) yet"); 3370 Diags.Report(Range.getBegin(), DiagID) 3371 << Range; 3372 } 3373 3374 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers, 3375 SourceRange Range) { 3376 DiagnosticsEngine &Diags = Context.getDiags(); 3377 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3378 "cannot mangle this typeof(expression) yet"); 3379 Diags.Report(Range.getBegin(), DiagID) 3380 << Range; 3381 } 3382 3383 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers, 3384 SourceRange Range) { 3385 DiagnosticsEngine &Diags = Context.getDiags(); 3386 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3387 "cannot mangle this decltype() yet"); 3388 Diags.Report(Range.getBegin(), DiagID) 3389 << Range; 3390 } 3391 3392 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, 3393 Qualifiers, SourceRange Range) { 3394 DiagnosticsEngine &Diags = Context.getDiags(); 3395 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3396 "cannot mangle this unary transform type yet"); 3397 Diags.Report(Range.getBegin(), DiagID) 3398 << Range; 3399 } 3400 3401 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers, 3402 SourceRange Range) { 3403 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 3404 3405 DiagnosticsEngine &Diags = Context.getDiags(); 3406 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3407 "cannot mangle this 'auto' type yet"); 3408 Diags.Report(Range.getBegin(), DiagID) 3409 << Range; 3410 } 3411 3412 void MicrosoftCXXNameMangler::mangleType( 3413 const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) { 3414 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 3415 3416 DiagnosticsEngine &Diags = Context.getDiags(); 3417 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3418 "cannot mangle this deduced class template specialization type yet"); 3419 Diags.Report(Range.getBegin(), DiagID) 3420 << Range; 3421 } 3422 3423 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers, 3424 SourceRange Range) { 3425 QualType ValueType = T->getValueType(); 3426 3427 llvm::SmallString<64> TemplateMangling; 3428 llvm::raw_svector_ostream Stream(TemplateMangling); 3429 MicrosoftCXXNameMangler Extra(Context, Stream); 3430 Stream << "?$"; 3431 Extra.mangleSourceName("_Atomic"); 3432 Extra.mangleType(ValueType, Range, QMM_Escape); 3433 3434 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__clang"}); 3435 } 3436 3437 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers, 3438 SourceRange Range) { 3439 QualType ElementType = T->getElementType(); 3440 3441 llvm::SmallString<64> TemplateMangling; 3442 llvm::raw_svector_ostream Stream(TemplateMangling); 3443 MicrosoftCXXNameMangler Extra(Context, Stream); 3444 Stream << "?$"; 3445 Extra.mangleSourceName("ocl_pipe"); 3446 Extra.mangleType(ElementType, Range, QMM_Escape); 3447 Extra.mangleIntegerLiteral(llvm::APSInt::get(T->isReadOnly())); 3448 3449 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__clang"}); 3450 } 3451 3452 void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD, 3453 raw_ostream &Out) { 3454 const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); 3455 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 3456 getASTContext().getSourceManager(), 3457 "Mangling declaration"); 3458 3459 msvc_hashing_ostream MHO(Out); 3460 3461 if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) { 3462 auto Type = GD.getCtorType(); 3463 MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type); 3464 return mangler.mangle(GD); 3465 } 3466 3467 if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 3468 auto Type = GD.getDtorType(); 3469 MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type); 3470 return mangler.mangle(GD); 3471 } 3472 3473 MicrosoftCXXNameMangler Mangler(*this, MHO); 3474 return Mangler.mangle(GD); 3475 } 3476 3477 void MicrosoftCXXNameMangler::mangleType(const BitIntType *T, Qualifiers, 3478 SourceRange Range) { 3479 llvm::SmallString<64> TemplateMangling; 3480 llvm::raw_svector_ostream Stream(TemplateMangling); 3481 MicrosoftCXXNameMangler Extra(Context, Stream); 3482 Stream << "?$"; 3483 if (T->isUnsigned()) 3484 Extra.mangleSourceName("_UBitInt"); 3485 else 3486 Extra.mangleSourceName("_BitInt"); 3487 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumBits())); 3488 3489 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__clang"}); 3490 } 3491 3492 void MicrosoftCXXNameMangler::mangleType(const DependentBitIntType *T, 3493 Qualifiers, SourceRange Range) { 3494 DiagnosticsEngine &Diags = Context.getDiags(); 3495 unsigned DiagID = Diags.getCustomDiagID( 3496 DiagnosticsEngine::Error, "cannot mangle this DependentBitInt type yet"); 3497 Diags.Report(Range.getBegin(), DiagID) << Range; 3498 } 3499 3500 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> | 3501 // <virtual-adjustment> 3502 // <no-adjustment> ::= A # private near 3503 // ::= B # private far 3504 // ::= I # protected near 3505 // ::= J # protected far 3506 // ::= Q # public near 3507 // ::= R # public far 3508 // <static-adjustment> ::= G <static-offset> # private near 3509 // ::= H <static-offset> # private far 3510 // ::= O <static-offset> # protected near 3511 // ::= P <static-offset> # protected far 3512 // ::= W <static-offset> # public near 3513 // ::= X <static-offset> # public far 3514 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near 3515 // ::= $1 <virtual-shift> <static-offset> # private far 3516 // ::= $2 <virtual-shift> <static-offset> # protected near 3517 // ::= $3 <virtual-shift> <static-offset> # protected far 3518 // ::= $4 <virtual-shift> <static-offset> # public near 3519 // ::= $5 <virtual-shift> <static-offset> # public far 3520 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift> 3521 // <vtordisp-shift> ::= <offset-to-vtordisp> 3522 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset> 3523 // <offset-to-vtordisp> 3524 static void mangleThunkThisAdjustment(AccessSpecifier AS, 3525 const ThisAdjustment &Adjustment, 3526 MicrosoftCXXNameMangler &Mangler, 3527 raw_ostream &Out) { 3528 if (!Adjustment.Virtual.isEmpty()) { 3529 Out << '$'; 3530 char AccessSpec; 3531 switch (AS) { 3532 case AS_none: 3533 llvm_unreachable("Unsupported access specifier"); 3534 case AS_private: 3535 AccessSpec = '0'; 3536 break; 3537 case AS_protected: 3538 AccessSpec = '2'; 3539 break; 3540 case AS_public: 3541 AccessSpec = '4'; 3542 } 3543 if (Adjustment.Virtual.Microsoft.VBPtrOffset) { 3544 Out << 'R' << AccessSpec; 3545 Mangler.mangleNumber( 3546 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); 3547 Mangler.mangleNumber( 3548 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); 3549 Mangler.mangleNumber( 3550 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3551 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual)); 3552 } else { 3553 Out << AccessSpec; 3554 Mangler.mangleNumber( 3555 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3556 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3557 } 3558 } else if (Adjustment.NonVirtual != 0) { 3559 switch (AS) { 3560 case AS_none: 3561 llvm_unreachable("Unsupported access specifier"); 3562 case AS_private: 3563 Out << 'G'; 3564 break; 3565 case AS_protected: 3566 Out << 'O'; 3567 break; 3568 case AS_public: 3569 Out << 'W'; 3570 } 3571 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3572 } else { 3573 switch (AS) { 3574 case AS_none: 3575 llvm_unreachable("Unsupported access specifier"); 3576 case AS_private: 3577 Out << 'A'; 3578 break; 3579 case AS_protected: 3580 Out << 'I'; 3581 break; 3582 case AS_public: 3583 Out << 'Q'; 3584 } 3585 } 3586 } 3587 3588 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk( 3589 const CXXMethodDecl *MD, const MethodVFTableLocation &ML, 3590 raw_ostream &Out) { 3591 msvc_hashing_ostream MHO(Out); 3592 MicrosoftCXXNameMangler Mangler(*this, MHO); 3593 Mangler.getStream() << '?'; 3594 Mangler.mangleVirtualMemPtrThunk(MD, ML); 3595 } 3596 3597 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 3598 const ThunkInfo &Thunk, 3599 raw_ostream &Out) { 3600 msvc_hashing_ostream MHO(Out); 3601 MicrosoftCXXNameMangler Mangler(*this, MHO); 3602 Mangler.getStream() << '?'; 3603 Mangler.mangleName(MD); 3604 3605 // Usually the thunk uses the access specifier of the new method, but if this 3606 // is a covariant return thunk, then MSVC always uses the public access 3607 // specifier, and we do the same. 3608 AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public; 3609 mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO); 3610 3611 if (!Thunk.Return.isEmpty()) 3612 assert(Thunk.Method != nullptr && 3613 "Thunk info should hold the overridee decl"); 3614 3615 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; 3616 Mangler.mangleFunctionType( 3617 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD); 3618 } 3619 3620 void MicrosoftMangleContextImpl::mangleCXXDtorThunk( 3621 const CXXDestructorDecl *DD, CXXDtorType Type, 3622 const ThisAdjustment &Adjustment, raw_ostream &Out) { 3623 // FIXME: Actually, the dtor thunk should be emitted for vector deleting 3624 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor 3625 // mangling manually until we support both deleting dtor types. 3626 assert(Type == Dtor_Deleting); 3627 msvc_hashing_ostream MHO(Out); 3628 MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type); 3629 Mangler.getStream() << "??_E"; 3630 Mangler.mangleName(DD->getParent()); 3631 mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO); 3632 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD); 3633 } 3634 3635 void MicrosoftMangleContextImpl::mangleCXXVFTable( 3636 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3637 raw_ostream &Out) { 3638 // <mangled-name> ::= ?_7 <class-name> <storage-class> 3639 // <cvr-qualifiers> [<name>] @ 3640 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3641 // is always '6' for vftables. 3642 msvc_hashing_ostream MHO(Out); 3643 MicrosoftCXXNameMangler Mangler(*this, MHO); 3644 if (Derived->hasAttr<DLLImportAttr>()) 3645 Mangler.getStream() << "??_S"; 3646 else 3647 Mangler.getStream() << "??_7"; 3648 Mangler.mangleName(Derived); 3649 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const. 3650 for (const CXXRecordDecl *RD : BasePath) 3651 Mangler.mangleName(RD); 3652 Mangler.getStream() << '@'; 3653 } 3654 3655 void MicrosoftMangleContextImpl::mangleCXXVBTable( 3656 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3657 raw_ostream &Out) { 3658 // <mangled-name> ::= ?_8 <class-name> <storage-class> 3659 // <cvr-qualifiers> [<name>] @ 3660 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3661 // is always '7' for vbtables. 3662 msvc_hashing_ostream MHO(Out); 3663 MicrosoftCXXNameMangler Mangler(*this, MHO); 3664 Mangler.getStream() << "??_8"; 3665 Mangler.mangleName(Derived); 3666 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const. 3667 for (const CXXRecordDecl *RD : BasePath) 3668 Mangler.mangleName(RD); 3669 Mangler.getStream() << '@'; 3670 } 3671 3672 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) { 3673 msvc_hashing_ostream MHO(Out); 3674 MicrosoftCXXNameMangler Mangler(*this, MHO); 3675 Mangler.getStream() << "??_R0"; 3676 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3677 Mangler.getStream() << "@8"; 3678 } 3679 3680 void MicrosoftMangleContextImpl::mangleCXXRTTIName( 3681 QualType T, raw_ostream &Out, bool NormalizeIntegers = false) { 3682 MicrosoftCXXNameMangler Mangler(*this, Out); 3683 Mangler.getStream() << '.'; 3684 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3685 } 3686 3687 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap( 3688 const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) { 3689 msvc_hashing_ostream MHO(Out); 3690 MicrosoftCXXNameMangler Mangler(*this, MHO); 3691 Mangler.getStream() << "??_K"; 3692 Mangler.mangleName(SrcRD); 3693 Mangler.getStream() << "$C"; 3694 Mangler.mangleName(DstRD); 3695 } 3696 3697 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst, 3698 bool IsVolatile, 3699 bool IsUnaligned, 3700 uint32_t NumEntries, 3701 raw_ostream &Out) { 3702 msvc_hashing_ostream MHO(Out); 3703 MicrosoftCXXNameMangler Mangler(*this, MHO); 3704 Mangler.getStream() << "_TI"; 3705 if (IsConst) 3706 Mangler.getStream() << 'C'; 3707 if (IsVolatile) 3708 Mangler.getStream() << 'V'; 3709 if (IsUnaligned) 3710 Mangler.getStream() << 'U'; 3711 Mangler.getStream() << NumEntries; 3712 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3713 } 3714 3715 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray( 3716 QualType T, uint32_t NumEntries, raw_ostream &Out) { 3717 msvc_hashing_ostream MHO(Out); 3718 MicrosoftCXXNameMangler Mangler(*this, MHO); 3719 Mangler.getStream() << "_CTA"; 3720 Mangler.getStream() << NumEntries; 3721 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3722 } 3723 3724 void MicrosoftMangleContextImpl::mangleCXXCatchableType( 3725 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size, 3726 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex, 3727 raw_ostream &Out) { 3728 MicrosoftCXXNameMangler Mangler(*this, Out); 3729 Mangler.getStream() << "_CT"; 3730 3731 llvm::SmallString<64> RTTIMangling; 3732 { 3733 llvm::raw_svector_ostream Stream(RTTIMangling); 3734 msvc_hashing_ostream MHO(Stream); 3735 mangleCXXRTTI(T, MHO); 3736 } 3737 Mangler.getStream() << RTTIMangling; 3738 3739 // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but 3740 // both older and newer versions include it. 3741 // FIXME: It is known that the Ctor is present in 2013, and in 2017.7 3742 // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4 3743 // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914? 3744 // Or 1912, 1913 already?). 3745 bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC( 3746 LangOptions::MSVC2015) && 3747 !getASTContext().getLangOpts().isCompatibleWithMSVC( 3748 LangOptions::MSVC2017_7); 3749 llvm::SmallString<64> CopyCtorMangling; 3750 if (!OmitCopyCtor && CD) { 3751 llvm::raw_svector_ostream Stream(CopyCtorMangling); 3752 msvc_hashing_ostream MHO(Stream); 3753 mangleCXXName(GlobalDecl(CD, CT), MHO); 3754 } 3755 Mangler.getStream() << CopyCtorMangling; 3756 3757 Mangler.getStream() << Size; 3758 if (VBPtrOffset == -1) { 3759 if (NVOffset) { 3760 Mangler.getStream() << NVOffset; 3761 } 3762 } else { 3763 Mangler.getStream() << NVOffset; 3764 Mangler.getStream() << VBPtrOffset; 3765 Mangler.getStream() << VBIndex; 3766 } 3767 } 3768 3769 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor( 3770 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset, 3771 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) { 3772 msvc_hashing_ostream MHO(Out); 3773 MicrosoftCXXNameMangler Mangler(*this, MHO); 3774 Mangler.getStream() << "??_R1"; 3775 Mangler.mangleNumber(NVOffset); 3776 Mangler.mangleNumber(VBPtrOffset); 3777 Mangler.mangleNumber(VBTableOffset); 3778 Mangler.mangleNumber(Flags); 3779 Mangler.mangleName(Derived); 3780 Mangler.getStream() << "8"; 3781 } 3782 3783 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray( 3784 const CXXRecordDecl *Derived, raw_ostream &Out) { 3785 msvc_hashing_ostream MHO(Out); 3786 MicrosoftCXXNameMangler Mangler(*this, MHO); 3787 Mangler.getStream() << "??_R2"; 3788 Mangler.mangleName(Derived); 3789 Mangler.getStream() << "8"; 3790 } 3791 3792 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor( 3793 const CXXRecordDecl *Derived, raw_ostream &Out) { 3794 msvc_hashing_ostream MHO(Out); 3795 MicrosoftCXXNameMangler Mangler(*this, MHO); 3796 Mangler.getStream() << "??_R3"; 3797 Mangler.mangleName(Derived); 3798 Mangler.getStream() << "8"; 3799 } 3800 3801 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator( 3802 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3803 raw_ostream &Out) { 3804 // <mangled-name> ::= ?_R4 <class-name> <storage-class> 3805 // <cvr-qualifiers> [<name>] @ 3806 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3807 // is always '6' for vftables. 3808 llvm::SmallString<64> VFTableMangling; 3809 llvm::raw_svector_ostream Stream(VFTableMangling); 3810 mangleCXXVFTable(Derived, BasePath, Stream); 3811 3812 if (VFTableMangling.starts_with("??@")) { 3813 assert(VFTableMangling.ends_with("@")); 3814 Out << VFTableMangling << "??_R4@"; 3815 return; 3816 } 3817 3818 assert(VFTableMangling.starts_with("??_7") || 3819 VFTableMangling.starts_with("??_S")); 3820 3821 Out << "??_R4" << VFTableMangling.str().drop_front(4); 3822 } 3823 3824 void MicrosoftMangleContextImpl::mangleSEHFilterExpression( 3825 GlobalDecl EnclosingDecl, raw_ostream &Out) { 3826 msvc_hashing_ostream MHO(Out); 3827 MicrosoftCXXNameMangler Mangler(*this, MHO); 3828 // The function body is in the same comdat as the function with the handler, 3829 // so the numbering here doesn't have to be the same across TUs. 3830 // 3831 // <mangled-name> ::= ?filt$ <filter-number> @0 3832 Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@"; 3833 Mangler.mangleName(EnclosingDecl); 3834 } 3835 3836 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock( 3837 GlobalDecl EnclosingDecl, raw_ostream &Out) { 3838 msvc_hashing_ostream MHO(Out); 3839 MicrosoftCXXNameMangler Mangler(*this, MHO); 3840 // The function body is in the same comdat as the function with the handler, 3841 // so the numbering here doesn't have to be the same across TUs. 3842 // 3843 // <mangled-name> ::= ?fin$ <filter-number> @0 3844 Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@"; 3845 Mangler.mangleName(EnclosingDecl); 3846 } 3847 3848 void MicrosoftMangleContextImpl::mangleCanonicalTypeName( 3849 QualType T, raw_ostream &Out, bool NormalizeIntegers = false) { 3850 // This is just a made up unique string for the purposes of tbaa. undname 3851 // does *not* know how to demangle it. 3852 MicrosoftCXXNameMangler Mangler(*this, Out); 3853 Mangler.getStream() << '?'; 3854 Mangler.mangleType(T.getCanonicalType(), SourceRange()); 3855 } 3856 3857 void MicrosoftMangleContextImpl::mangleReferenceTemporary( 3858 const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) { 3859 msvc_hashing_ostream MHO(Out); 3860 MicrosoftCXXNameMangler Mangler(*this, MHO); 3861 3862 Mangler.getStream() << "?$RT" << ManglingNumber << '@'; 3863 Mangler.mangle(VD, ""); 3864 } 3865 3866 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable( 3867 const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) { 3868 msvc_hashing_ostream MHO(Out); 3869 MicrosoftCXXNameMangler Mangler(*this, MHO); 3870 3871 Mangler.getStream() << "?$TSS" << GuardNum << '@'; 3872 Mangler.mangleNestedName(VD); 3873 Mangler.getStream() << "@4HA"; 3874 } 3875 3876 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, 3877 raw_ostream &Out) { 3878 // <guard-name> ::= ?_B <postfix> @5 <scope-depth> 3879 // ::= ?__J <postfix> @5 <scope-depth> 3880 // ::= ?$S <guard-num> @ <postfix> @4IA 3881 3882 // The first mangling is what MSVC uses to guard static locals in inline 3883 // functions. It uses a different mangling in external functions to support 3884 // guarding more than 32 variables. MSVC rejects inline functions with more 3885 // than 32 static locals. We don't fully implement the second mangling 3886 // because those guards are not externally visible, and instead use LLVM's 3887 // default renaming when creating a new guard variable. 3888 msvc_hashing_ostream MHO(Out); 3889 MicrosoftCXXNameMangler Mangler(*this, MHO); 3890 3891 bool Visible = VD->isExternallyVisible(); 3892 if (Visible) { 3893 Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B"); 3894 } else { 3895 Mangler.getStream() << "?$S1@"; 3896 } 3897 unsigned ScopeDepth = 0; 3898 if (Visible && !getNextDiscriminator(VD, ScopeDepth)) 3899 // If we do not have a discriminator and are emitting a guard variable for 3900 // use at global scope, then mangling the nested name will not be enough to 3901 // remove ambiguities. 3902 Mangler.mangle(VD, ""); 3903 else 3904 Mangler.mangleNestedName(VD); 3905 Mangler.getStream() << (Visible ? "@5" : "@4IA"); 3906 if (ScopeDepth) 3907 Mangler.mangleNumber(ScopeDepth); 3908 } 3909 3910 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, 3911 char CharCode, 3912 raw_ostream &Out) { 3913 msvc_hashing_ostream MHO(Out); 3914 MicrosoftCXXNameMangler Mangler(*this, MHO); 3915 Mangler.getStream() << "??__" << CharCode; 3916 if (D->isStaticDataMember()) { 3917 Mangler.getStream() << '?'; 3918 Mangler.mangleName(D); 3919 Mangler.mangleVariableEncoding(D); 3920 Mangler.getStream() << "@@"; 3921 } else { 3922 Mangler.mangleName(D); 3923 } 3924 // This is the function class mangling. These stubs are global, non-variadic, 3925 // cdecl functions that return void and take no args. 3926 Mangler.getStream() << "YAXXZ"; 3927 } 3928 3929 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, 3930 raw_ostream &Out) { 3931 // <initializer-name> ::= ?__E <name> YAXXZ 3932 mangleInitFiniStub(D, 'E', Out); 3933 } 3934 3935 void 3936 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 3937 raw_ostream &Out) { 3938 // <destructor-name> ::= ?__F <name> YAXXZ 3939 mangleInitFiniStub(D, 'F', Out); 3940 } 3941 3942 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL, 3943 raw_ostream &Out) { 3944 // <char-type> ::= 0 # char, char16_t, char32_t 3945 // # (little endian char data in mangling) 3946 // ::= 1 # wchar_t (big endian char data in mangling) 3947 // 3948 // <literal-length> ::= <non-negative integer> # the length of the literal 3949 // 3950 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including 3951 // # trailing null bytes 3952 // 3953 // <encoded-string> ::= <simple character> # uninteresting character 3954 // ::= '?$' <hex digit> <hex digit> # these two nibbles 3955 // # encode the byte for the 3956 // # character 3957 // ::= '?' [a-z] # \xe1 - \xfa 3958 // ::= '?' [A-Z] # \xc1 - \xda 3959 // ::= '?' [0-9] # [,/\:. \n\t'-] 3960 // 3961 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> 3962 // <encoded-string> '@' 3963 MicrosoftCXXNameMangler Mangler(*this, Out); 3964 Mangler.getStream() << "??_C@_"; 3965 3966 // The actual string length might be different from that of the string literal 3967 // in cases like: 3968 // char foo[3] = "foobar"; 3969 // char bar[42] = "foobar"; 3970 // Where it is truncated or zero-padded to fit the array. This is the length 3971 // used for mangling, and any trailing null-bytes also need to be mangled. 3972 unsigned StringLength = getASTContext() 3973 .getAsConstantArrayType(SL->getType()) 3974 ->getSize() 3975 .getZExtValue(); 3976 unsigned StringByteLength = StringLength * SL->getCharByteWidth(); 3977 3978 // <char-type>: The "kind" of string literal is encoded into the mangled name. 3979 if (SL->isWide()) 3980 Mangler.getStream() << '1'; 3981 else 3982 Mangler.getStream() << '0'; 3983 3984 // <literal-length>: The next part of the mangled name consists of the length 3985 // of the string in bytes. 3986 Mangler.mangleNumber(StringByteLength); 3987 3988 auto GetLittleEndianByte = [&SL](unsigned Index) { 3989 unsigned CharByteWidth = SL->getCharByteWidth(); 3990 if (Index / CharByteWidth >= SL->getLength()) 3991 return static_cast<char>(0); 3992 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 3993 unsigned OffsetInCodeUnit = Index % CharByteWidth; 3994 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 3995 }; 3996 3997 auto GetBigEndianByte = [&SL](unsigned Index) { 3998 unsigned CharByteWidth = SL->getCharByteWidth(); 3999 if (Index / CharByteWidth >= SL->getLength()) 4000 return static_cast<char>(0); 4001 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 4002 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth); 4003 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 4004 }; 4005 4006 // CRC all the bytes of the StringLiteral. 4007 llvm::JamCRC JC; 4008 for (unsigned I = 0, E = StringByteLength; I != E; ++I) 4009 JC.update(GetLittleEndianByte(I)); 4010 4011 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling 4012 // scheme. 4013 Mangler.mangleNumber(JC.getCRC()); 4014 4015 // <encoded-string>: The mangled name also contains the first 32 bytes 4016 // (including null-terminator bytes) of the encoded StringLiteral. 4017 // Each character is encoded by splitting them into bytes and then encoding 4018 // the constituent bytes. 4019 auto MangleByte = [&Mangler](char Byte) { 4020 // There are five different manglings for characters: 4021 // - [a-zA-Z0-9_$]: A one-to-one mapping. 4022 // - ?[a-z]: The range from \xe1 to \xfa. 4023 // - ?[A-Z]: The range from \xc1 to \xda. 4024 // - ?[0-9]: The set of [,/\:. \n\t'-]. 4025 // - ?$XX: A fallback which maps nibbles. 4026 if (isAsciiIdentifierContinue(Byte, /*AllowDollar=*/true)) { 4027 Mangler.getStream() << Byte; 4028 } else if (isLetter(Byte & 0x7f)) { 4029 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f); 4030 } else { 4031 const char SpecialChars[] = {',', '/', '\\', ':', '.', 4032 ' ', '\n', '\t', '\'', '-'}; 4033 const char *Pos = llvm::find(SpecialChars, Byte); 4034 if (Pos != std::end(SpecialChars)) { 4035 Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars)); 4036 } else { 4037 Mangler.getStream() << "?$"; 4038 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf)); 4039 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf)); 4040 } 4041 } 4042 }; 4043 4044 // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead. 4045 unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U; 4046 unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength); 4047 for (unsigned I = 0; I != NumBytesToMangle; ++I) { 4048 if (SL->isWide()) 4049 MangleByte(GetBigEndianByte(I)); 4050 else 4051 MangleByte(GetLittleEndianByte(I)); 4052 } 4053 4054 Mangler.getStream() << '@'; 4055 } 4056 4057 MicrosoftMangleContext *MicrosoftMangleContext::create(ASTContext &Context, 4058 DiagnosticsEngine &Diags, 4059 bool IsAux) { 4060 return new MicrosoftMangleContextImpl(Context, Diags, IsAux); 4061 } 4062