xref: /freebsd-src/contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp (revision e8d8bef961a50d4dc22501cde4fb9fb0be1b2532)
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 //   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprConcepts.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExprObjC.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/Module.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 
38 using namespace clang;
39 
40 namespace {
41 
42 /// Retrieve the declaration context that should be used when mangling the given
43 /// declaration.
44 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
45   // The ABI assumes that lambda closure types that occur within
46   // default arguments live in the context of the function. However, due to
47   // the way in which Clang parses and creates function declarations, this is
48   // not the case: the lambda closure type ends up living in the context
49   // where the function itself resides, because the function declaration itself
50   // had not yet been created. Fix the context here.
51   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
52     if (RD->isLambda())
53       if (ParmVarDecl *ContextParam
54             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
55         return ContextParam->getDeclContext();
56   }
57 
58   // Perform the same check for block literals.
59   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
60     if (ParmVarDecl *ContextParam
61           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
62       return ContextParam->getDeclContext();
63   }
64 
65   const DeclContext *DC = D->getDeclContext();
66   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
67       isa<OMPDeclareMapperDecl>(DC)) {
68     return getEffectiveDeclContext(cast<Decl>(DC));
69   }
70 
71   if (const auto *VD = dyn_cast<VarDecl>(D))
72     if (VD->isExternC())
73       return VD->getASTContext().getTranslationUnitDecl();
74 
75   if (const auto *FD = dyn_cast<FunctionDecl>(D))
76     if (FD->isExternC())
77       return FD->getASTContext().getTranslationUnitDecl();
78 
79   return DC->getRedeclContext();
80 }
81 
82 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
83   return getEffectiveDeclContext(cast<Decl>(DC));
84 }
85 
86 static bool isLocalContainerContext(const DeclContext *DC) {
87   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
88 }
89 
90 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
91   const DeclContext *DC = getEffectiveDeclContext(D);
92   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
93     if (isLocalContainerContext(DC))
94       return dyn_cast<RecordDecl>(D);
95     D = cast<Decl>(DC);
96     DC = getEffectiveDeclContext(D);
97   }
98   return nullptr;
99 }
100 
101 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
102   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
103     return ftd->getTemplatedDecl();
104 
105   return fn;
106 }
107 
108 static const NamedDecl *getStructor(const NamedDecl *decl) {
109   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
110   return (fn ? getStructor(fn) : decl);
111 }
112 
113 static bool isLambda(const NamedDecl *ND) {
114   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
115   if (!Record)
116     return false;
117 
118   return Record->isLambda();
119 }
120 
121 static const unsigned UnknownArity = ~0U;
122 
123 class ItaniumMangleContextImpl : public ItaniumMangleContext {
124   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
125   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
126   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
127 
128 public:
129   explicit ItaniumMangleContextImpl(ASTContext &Context,
130                                     DiagnosticsEngine &Diags)
131       : ItaniumMangleContext(Context, Diags) {}
132 
133   /// @name Mangler Entry Points
134   /// @{
135 
136   bool shouldMangleCXXName(const NamedDecl *D) override;
137   bool shouldMangleStringLiteral(const StringLiteral *) override {
138     return false;
139   }
140   void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
141   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
142                    raw_ostream &) override;
143   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
144                           const ThisAdjustment &ThisAdjustment,
145                           raw_ostream &) override;
146   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
147                                 raw_ostream &) override;
148   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
149   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
150   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
151                            const CXXRecordDecl *Type, raw_ostream &) override;
152   void mangleCXXRTTI(QualType T, raw_ostream &) override;
153   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
154   void mangleTypeName(QualType T, raw_ostream &) override;
155 
156   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
157   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
158   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
159   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
160   void mangleDynamicAtExitDestructor(const VarDecl *D,
161                                      raw_ostream &Out) override;
162   void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
163   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
164                                  raw_ostream &Out) override;
165   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
166                              raw_ostream &Out) override;
167   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
168   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
169                                        raw_ostream &) override;
170 
171   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
172 
173   void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
174 
175   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
176     // Lambda closure types are already numbered.
177     if (isLambda(ND))
178       return false;
179 
180     // Anonymous tags are already numbered.
181     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
182       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
183         return false;
184     }
185 
186     // Use the canonical number for externally visible decls.
187     if (ND->isExternallyVisible()) {
188       unsigned discriminator = getASTContext().getManglingNumber(ND);
189       if (discriminator == 1)
190         return false;
191       disc = discriminator - 2;
192       return true;
193     }
194 
195     // Make up a reasonable number for internal decls.
196     unsigned &discriminator = Uniquifier[ND];
197     if (!discriminator) {
198       const DeclContext *DC = getEffectiveDeclContext(ND);
199       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
200     }
201     if (discriminator == 1)
202       return false;
203     disc = discriminator-2;
204     return true;
205   }
206   /// @}
207 };
208 
209 /// Manage the mangling of a single name.
210 class CXXNameMangler {
211   ItaniumMangleContextImpl &Context;
212   raw_ostream &Out;
213   bool NullOut = false;
214   /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
215   /// This mode is used when mangler creates another mangler recursively to
216   /// calculate ABI tags for the function return value or the variable type.
217   /// Also it is required to avoid infinite recursion in some cases.
218   bool DisableDerivedAbiTags = false;
219 
220   /// The "structor" is the top-level declaration being mangled, if
221   /// that's not a template specialization; otherwise it's the pattern
222   /// for that specialization.
223   const NamedDecl *Structor;
224   unsigned StructorType;
225 
226   /// The next substitution sequence number.
227   unsigned SeqID;
228 
229   class FunctionTypeDepthState {
230     unsigned Bits;
231 
232     enum { InResultTypeMask = 1 };
233 
234   public:
235     FunctionTypeDepthState() : Bits(0) {}
236 
237     /// The number of function types we're inside.
238     unsigned getDepth() const {
239       return Bits >> 1;
240     }
241 
242     /// True if we're in the return type of the innermost function type.
243     bool isInResultType() const {
244       return Bits & InResultTypeMask;
245     }
246 
247     FunctionTypeDepthState push() {
248       FunctionTypeDepthState tmp = *this;
249       Bits = (Bits & ~InResultTypeMask) + 2;
250       return tmp;
251     }
252 
253     void enterResultType() {
254       Bits |= InResultTypeMask;
255     }
256 
257     void leaveResultType() {
258       Bits &= ~InResultTypeMask;
259     }
260 
261     void pop(FunctionTypeDepthState saved) {
262       assert(getDepth() == saved.getDepth() + 1);
263       Bits = saved.Bits;
264     }
265 
266   } FunctionTypeDepth;
267 
268   // abi_tag is a gcc attribute, taking one or more strings called "tags".
269   // The goal is to annotate against which version of a library an object was
270   // built and to be able to provide backwards compatibility ("dual abi").
271   // For more information see docs/ItaniumMangleAbiTags.rst.
272   typedef SmallVector<StringRef, 4> AbiTagList;
273 
274   // State to gather all implicit and explicit tags used in a mangled name.
275   // Must always have an instance of this while emitting any name to keep
276   // track.
277   class AbiTagState final {
278   public:
279     explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
280       Parent = LinkHead;
281       LinkHead = this;
282     }
283 
284     // No copy, no move.
285     AbiTagState(const AbiTagState &) = delete;
286     AbiTagState &operator=(const AbiTagState &) = delete;
287 
288     ~AbiTagState() { pop(); }
289 
290     void write(raw_ostream &Out, const NamedDecl *ND,
291                const AbiTagList *AdditionalAbiTags) {
292       ND = cast<NamedDecl>(ND->getCanonicalDecl());
293       if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
294         assert(
295             !AdditionalAbiTags &&
296             "only function and variables need a list of additional abi tags");
297         if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
298           if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
299             UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
300                                AbiTag->tags().end());
301           }
302           // Don't emit abi tags for namespaces.
303           return;
304         }
305       }
306 
307       AbiTagList TagList;
308       if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
309         UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
310                            AbiTag->tags().end());
311         TagList.insert(TagList.end(), AbiTag->tags().begin(),
312                        AbiTag->tags().end());
313       }
314 
315       if (AdditionalAbiTags) {
316         UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
317                            AdditionalAbiTags->end());
318         TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
319                        AdditionalAbiTags->end());
320       }
321 
322       llvm::sort(TagList);
323       TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
324 
325       writeSortedUniqueAbiTags(Out, TagList);
326     }
327 
328     const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
329     void setUsedAbiTags(const AbiTagList &AbiTags) {
330       UsedAbiTags = AbiTags;
331     }
332 
333     const AbiTagList &getEmittedAbiTags() const {
334       return EmittedAbiTags;
335     }
336 
337     const AbiTagList &getSortedUniqueUsedAbiTags() {
338       llvm::sort(UsedAbiTags);
339       UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
340                         UsedAbiTags.end());
341       return UsedAbiTags;
342     }
343 
344   private:
345     //! All abi tags used implicitly or explicitly.
346     AbiTagList UsedAbiTags;
347     //! All explicit abi tags (i.e. not from namespace).
348     AbiTagList EmittedAbiTags;
349 
350     AbiTagState *&LinkHead;
351     AbiTagState *Parent = nullptr;
352 
353     void pop() {
354       assert(LinkHead == this &&
355              "abi tag link head must point to us on destruction");
356       if (Parent) {
357         Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
358                                    UsedAbiTags.begin(), UsedAbiTags.end());
359         Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
360                                       EmittedAbiTags.begin(),
361                                       EmittedAbiTags.end());
362       }
363       LinkHead = Parent;
364     }
365 
366     void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
367       for (const auto &Tag : AbiTags) {
368         EmittedAbiTags.push_back(Tag);
369         Out << "B";
370         Out << Tag.size();
371         Out << Tag;
372       }
373     }
374   };
375 
376   AbiTagState *AbiTags = nullptr;
377   AbiTagState AbiTagsRoot;
378 
379   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
380   llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
381 
382   ASTContext &getASTContext() const { return Context.getASTContext(); }
383 
384 public:
385   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
386                  const NamedDecl *D = nullptr, bool NullOut_ = false)
387     : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
388       StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
389     // These can't be mangled without a ctor type or dtor type.
390     assert(!D || (!isa<CXXDestructorDecl>(D) &&
391                   !isa<CXXConstructorDecl>(D)));
392   }
393   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
394                  const CXXConstructorDecl *D, CXXCtorType Type)
395     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
396       SeqID(0), AbiTagsRoot(AbiTags) { }
397   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
398                  const CXXDestructorDecl *D, CXXDtorType Type)
399     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
400       SeqID(0), AbiTagsRoot(AbiTags) { }
401 
402   CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
403       : Context(Outer.Context), Out(Out_), NullOut(false),
404         Structor(Outer.Structor), StructorType(Outer.StructorType),
405         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
406         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
407 
408   CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
409       : Context(Outer.Context), Out(Out_), NullOut(true),
410         Structor(Outer.Structor), StructorType(Outer.StructorType),
411         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
412         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
413 
414   raw_ostream &getStream() { return Out; }
415 
416   void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
417   static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
418 
419   void mangle(GlobalDecl GD);
420   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
421   void mangleNumber(const llvm::APSInt &I);
422   void mangleNumber(int64_t Number);
423   void mangleFloat(const llvm::APFloat &F);
424   void mangleFunctionEncoding(GlobalDecl GD);
425   void mangleSeqID(unsigned SeqID);
426   void mangleName(GlobalDecl GD);
427   void mangleType(QualType T);
428   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
429   void mangleLambdaSig(const CXXRecordDecl *Lambda);
430 
431 private:
432 
433   bool mangleSubstitution(const NamedDecl *ND);
434   bool mangleSubstitution(QualType T);
435   bool mangleSubstitution(TemplateName Template);
436   bool mangleSubstitution(uintptr_t Ptr);
437 
438   void mangleExistingSubstitution(TemplateName name);
439 
440   bool mangleStandardSubstitution(const NamedDecl *ND);
441 
442   void addSubstitution(const NamedDecl *ND) {
443     ND = cast<NamedDecl>(ND->getCanonicalDecl());
444 
445     addSubstitution(reinterpret_cast<uintptr_t>(ND));
446   }
447   void addSubstitution(QualType T);
448   void addSubstitution(TemplateName Template);
449   void addSubstitution(uintptr_t Ptr);
450   // Destructive copy substitutions from other mangler.
451   void extendSubstitutions(CXXNameMangler* Other);
452 
453   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
454                               bool recursive = false);
455   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
456                             DeclarationName name,
457                             const TemplateArgumentLoc *TemplateArgs,
458                             unsigned NumTemplateArgs,
459                             unsigned KnownArity = UnknownArity);
460 
461   void mangleFunctionEncodingBareType(const FunctionDecl *FD);
462 
463   void mangleNameWithAbiTags(GlobalDecl GD,
464                              const AbiTagList *AdditionalAbiTags);
465   void mangleModuleName(const Module *M);
466   void mangleModuleNamePrefix(StringRef Name);
467   void mangleTemplateName(const TemplateDecl *TD,
468                           const TemplateArgument *TemplateArgs,
469                           unsigned NumTemplateArgs);
470   void mangleUnqualifiedName(GlobalDecl GD,
471                              const AbiTagList *AdditionalAbiTags) {
472     mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity,
473                           AdditionalAbiTags);
474   }
475   void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
476                              unsigned KnownArity,
477                              const AbiTagList *AdditionalAbiTags);
478   void mangleUnscopedName(GlobalDecl GD,
479                           const AbiTagList *AdditionalAbiTags);
480   void mangleUnscopedTemplateName(GlobalDecl GD,
481                                   const AbiTagList *AdditionalAbiTags);
482   void mangleSourceName(const IdentifierInfo *II);
483   void mangleRegCallName(const IdentifierInfo *II);
484   void mangleDeviceStubName(const IdentifierInfo *II);
485   void mangleSourceNameWithAbiTags(
486       const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
487   void mangleLocalName(GlobalDecl GD,
488                        const AbiTagList *AdditionalAbiTags);
489   void mangleBlockForPrefix(const BlockDecl *Block);
490   void mangleUnqualifiedBlock(const BlockDecl *Block);
491   void mangleTemplateParamDecl(const NamedDecl *Decl);
492   void mangleLambda(const CXXRecordDecl *Lambda);
493   void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
494                         const AbiTagList *AdditionalAbiTags,
495                         bool NoFunction=false);
496   void mangleNestedName(const TemplateDecl *TD,
497                         const TemplateArgument *TemplateArgs,
498                         unsigned NumTemplateArgs);
499   void manglePrefix(NestedNameSpecifier *qualifier);
500   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
501   void manglePrefix(QualType type);
502   void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
503   void mangleTemplatePrefix(TemplateName Template);
504   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
505                                       StringRef Prefix = "");
506   void mangleOperatorName(DeclarationName Name, unsigned Arity);
507   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
508   void mangleVendorQualifier(StringRef qualifier);
509   void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
510   void mangleRefQualifier(RefQualifierKind RefQualifier);
511 
512   void mangleObjCMethodName(const ObjCMethodDecl *MD);
513 
514   // Declare manglers for every type class.
515 #define ABSTRACT_TYPE(CLASS, PARENT)
516 #define NON_CANONICAL_TYPE(CLASS, PARENT)
517 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
518 #include "clang/AST/TypeNodes.inc"
519 
520   void mangleType(const TagType*);
521   void mangleType(TemplateName);
522   static StringRef getCallingConvQualifierName(CallingConv CC);
523   void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
524   void mangleExtFunctionInfo(const FunctionType *T);
525   void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
526                               const FunctionDecl *FD = nullptr);
527   void mangleNeonVectorType(const VectorType *T);
528   void mangleNeonVectorType(const DependentVectorType *T);
529   void mangleAArch64NeonVectorType(const VectorType *T);
530   void mangleAArch64NeonVectorType(const DependentVectorType *T);
531   void mangleAArch64FixedSveVectorType(const VectorType *T);
532   void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
533 
534   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
535   void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
536   void mangleFixedPointLiteral();
537   void mangleNullPointer(QualType T);
538 
539   void mangleMemberExprBase(const Expr *base, bool isArrow);
540   void mangleMemberExpr(const Expr *base, bool isArrow,
541                         NestedNameSpecifier *qualifier,
542                         NamedDecl *firstQualifierLookup,
543                         DeclarationName name,
544                         const TemplateArgumentLoc *TemplateArgs,
545                         unsigned NumTemplateArgs,
546                         unsigned knownArity);
547   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
548   void mangleInitListElements(const InitListExpr *InitList);
549   void mangleDeclRefExpr(const NamedDecl *D);
550   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
551   void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
552   void mangleCXXDtorType(CXXDtorType T);
553 
554   void mangleTemplateArgs(TemplateName TN,
555                           const TemplateArgumentLoc *TemplateArgs,
556                           unsigned NumTemplateArgs);
557   void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs,
558                           unsigned NumTemplateArgs);
559   void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
560   void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
561   void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
562                                 bool NeedExactType = false);
563 
564   void mangleTemplateParameter(unsigned Depth, unsigned Index);
565 
566   void mangleFunctionParam(const ParmVarDecl *parm);
567 
568   void writeAbiTags(const NamedDecl *ND,
569                     const AbiTagList *AdditionalAbiTags);
570 
571   // Returns sorted unique list of ABI tags.
572   AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
573   // Returns sorted unique list of ABI tags.
574   AbiTagList makeVariableTypeTags(const VarDecl *VD);
575 };
576 
577 }
578 
579 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
580   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
581   if (FD) {
582     LanguageLinkage L = FD->getLanguageLinkage();
583     // Overloadable functions need mangling.
584     if (FD->hasAttr<OverloadableAttr>())
585       return true;
586 
587     // "main" is not mangled.
588     if (FD->isMain())
589       return false;
590 
591     // The Windows ABI expects that we would never mangle "typical"
592     // user-defined entry points regardless of visibility or freestanding-ness.
593     //
594     // N.B. This is distinct from asking about "main".  "main" has a lot of
595     // special rules associated with it in the standard while these
596     // user-defined entry points are outside of the purview of the standard.
597     // For example, there can be only one definition for "main" in a standards
598     // compliant program; however nothing forbids the existence of wmain and
599     // WinMain in the same translation unit.
600     if (FD->isMSVCRTEntryPoint())
601       return false;
602 
603     // C++ functions and those whose names are not a simple identifier need
604     // mangling.
605     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
606       return true;
607 
608     // C functions are not mangled.
609     if (L == CLanguageLinkage)
610       return false;
611   }
612 
613   // Otherwise, no mangling is done outside C++ mode.
614   if (!getASTContext().getLangOpts().CPlusPlus)
615     return false;
616 
617   const VarDecl *VD = dyn_cast<VarDecl>(D);
618   if (VD && !isa<DecompositionDecl>(D)) {
619     // C variables are not mangled.
620     if (VD->isExternC())
621       return false;
622 
623     // Variables at global scope with non-internal linkage are not mangled
624     const DeclContext *DC = getEffectiveDeclContext(D);
625     // Check for extern variable declared locally.
626     if (DC->isFunctionOrMethod() && D->hasLinkage())
627       while (!DC->isNamespace() && !DC->isTranslationUnit())
628         DC = getEffectiveParentContext(DC);
629     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
630         !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
631         !isa<VarTemplateSpecializationDecl>(D))
632       return false;
633   }
634 
635   return true;
636 }
637 
638 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
639                                   const AbiTagList *AdditionalAbiTags) {
640   assert(AbiTags && "require AbiTagState");
641   AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
642 }
643 
644 void CXXNameMangler::mangleSourceNameWithAbiTags(
645     const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
646   mangleSourceName(ND->getIdentifier());
647   writeAbiTags(ND, AdditionalAbiTags);
648 }
649 
650 void CXXNameMangler::mangle(GlobalDecl GD) {
651   // <mangled-name> ::= _Z <encoding>
652   //            ::= <data name>
653   //            ::= <special-name>
654   Out << "_Z";
655   if (isa<FunctionDecl>(GD.getDecl()))
656     mangleFunctionEncoding(GD);
657   else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl,
658                BindingDecl>(GD.getDecl()))
659     mangleName(GD);
660   else if (const IndirectFieldDecl *IFD =
661                dyn_cast<IndirectFieldDecl>(GD.getDecl()))
662     mangleName(IFD->getAnonField());
663   else
664     llvm_unreachable("unexpected kind of global decl");
665 }
666 
667 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
668   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
669   // <encoding> ::= <function name> <bare-function-type>
670 
671   // Don't mangle in the type if this isn't a decl we should typically mangle.
672   if (!Context.shouldMangleDeclName(FD)) {
673     mangleName(GD);
674     return;
675   }
676 
677   AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
678   if (ReturnTypeAbiTags.empty()) {
679     // There are no tags for return type, the simplest case.
680     mangleName(GD);
681     mangleFunctionEncodingBareType(FD);
682     return;
683   }
684 
685   // Mangle function name and encoding to temporary buffer.
686   // We have to output name and encoding to the same mangler to get the same
687   // substitution as it will be in final mangling.
688   SmallString<256> FunctionEncodingBuf;
689   llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
690   CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
691   // Output name of the function.
692   FunctionEncodingMangler.disableDerivedAbiTags();
693   FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
694 
695   // Remember length of the function name in the buffer.
696   size_t EncodingPositionStart = FunctionEncodingStream.str().size();
697   FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
698 
699   // Get tags from return type that are not present in function name or
700   // encoding.
701   const AbiTagList &UsedAbiTags =
702       FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
703   AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
704   AdditionalAbiTags.erase(
705       std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
706                           UsedAbiTags.begin(), UsedAbiTags.end(),
707                           AdditionalAbiTags.begin()),
708       AdditionalAbiTags.end());
709 
710   // Output name with implicit tags and function encoding from temporary buffer.
711   mangleNameWithAbiTags(FD, &AdditionalAbiTags);
712   Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
713 
714   // Function encoding could create new substitutions so we have to add
715   // temp mangled substitutions to main mangler.
716   extendSubstitutions(&FunctionEncodingMangler);
717 }
718 
719 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
720   if (FD->hasAttr<EnableIfAttr>()) {
721     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
722     Out << "Ua9enable_ifI";
723     for (AttrVec::const_iterator I = FD->getAttrs().begin(),
724                                  E = FD->getAttrs().end();
725          I != E; ++I) {
726       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
727       if (!EIA)
728         continue;
729       Out << 'X';
730       mangleExpression(EIA->getCond());
731       Out << 'E';
732     }
733     Out << 'E';
734     FunctionTypeDepth.pop(Saved);
735   }
736 
737   // When mangling an inheriting constructor, the bare function type used is
738   // that of the inherited constructor.
739   if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
740     if (auto Inherited = CD->getInheritedConstructor())
741       FD = Inherited.getConstructor();
742 
743   // Whether the mangling of a function type includes the return type depends on
744   // the context and the nature of the function. The rules for deciding whether
745   // the return type is included are:
746   //
747   //   1. Template functions (names or types) have return types encoded, with
748   //   the exceptions listed below.
749   //   2. Function types not appearing as part of a function name mangling,
750   //   e.g. parameters, pointer types, etc., have return type encoded, with the
751   //   exceptions listed below.
752   //   3. Non-template function names do not have return types encoded.
753   //
754   // The exceptions mentioned in (1) and (2) above, for which the return type is
755   // never included, are
756   //   1. Constructors.
757   //   2. Destructors.
758   //   3. Conversion operator functions, e.g. operator int.
759   bool MangleReturnType = false;
760   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
761     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
762           isa<CXXConversionDecl>(FD)))
763       MangleReturnType = true;
764 
765     // Mangle the type of the primary template.
766     FD = PrimaryTemplate->getTemplatedDecl();
767   }
768 
769   mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
770                          MangleReturnType, FD);
771 }
772 
773 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
774   while (isa<LinkageSpecDecl>(DC)) {
775     DC = getEffectiveParentContext(DC);
776   }
777 
778   return DC;
779 }
780 
781 /// Return whether a given namespace is the 'std' namespace.
782 static bool isStd(const NamespaceDecl *NS) {
783   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
784                                 ->isTranslationUnit())
785     return false;
786 
787   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
788   return II && II->isStr("std");
789 }
790 
791 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
792 // namespace.
793 static bool isStdNamespace(const DeclContext *DC) {
794   if (!DC->isNamespace())
795     return false;
796 
797   return isStd(cast<NamespaceDecl>(DC));
798 }
799 
800 static const GlobalDecl
801 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
802   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
803   // Check if we have a function template.
804   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
805     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
806       TemplateArgs = FD->getTemplateSpecializationArgs();
807       return GD.getWithDecl(TD);
808     }
809   }
810 
811   // Check if we have a class template.
812   if (const ClassTemplateSpecializationDecl *Spec =
813         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
814     TemplateArgs = &Spec->getTemplateArgs();
815     return GD.getWithDecl(Spec->getSpecializedTemplate());
816   }
817 
818   // Check if we have a variable template.
819   if (const VarTemplateSpecializationDecl *Spec =
820           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
821     TemplateArgs = &Spec->getTemplateArgs();
822     return GD.getWithDecl(Spec->getSpecializedTemplate());
823   }
824 
825   return GlobalDecl();
826 }
827 
828 static TemplateName asTemplateName(GlobalDecl GD) {
829   const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
830   return TemplateName(const_cast<TemplateDecl*>(TD));
831 }
832 
833 void CXXNameMangler::mangleName(GlobalDecl GD) {
834   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
835   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
836     // Variables should have implicit tags from its type.
837     AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
838     if (VariableTypeAbiTags.empty()) {
839       // Simple case no variable type tags.
840       mangleNameWithAbiTags(VD, nullptr);
841       return;
842     }
843 
844     // Mangle variable name to null stream to collect tags.
845     llvm::raw_null_ostream NullOutStream;
846     CXXNameMangler VariableNameMangler(*this, NullOutStream);
847     VariableNameMangler.disableDerivedAbiTags();
848     VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
849 
850     // Get tags from variable type that are not present in its name.
851     const AbiTagList &UsedAbiTags =
852         VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
853     AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
854     AdditionalAbiTags.erase(
855         std::set_difference(VariableTypeAbiTags.begin(),
856                             VariableTypeAbiTags.end(), UsedAbiTags.begin(),
857                             UsedAbiTags.end(), AdditionalAbiTags.begin()),
858         AdditionalAbiTags.end());
859 
860     // Output name with implicit tags.
861     mangleNameWithAbiTags(VD, &AdditionalAbiTags);
862   } else {
863     mangleNameWithAbiTags(GD, nullptr);
864   }
865 }
866 
867 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
868                                            const AbiTagList *AdditionalAbiTags) {
869   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
870   //  <name> ::= [<module-name>] <nested-name>
871   //         ::= [<module-name>] <unscoped-name>
872   //         ::= [<module-name>] <unscoped-template-name> <template-args>
873   //         ::= <local-name>
874   //
875   const DeclContext *DC = getEffectiveDeclContext(ND);
876 
877   // If this is an extern variable declared locally, the relevant DeclContext
878   // is that of the containing namespace, or the translation unit.
879   // FIXME: This is a hack; extern variables declared locally should have
880   // a proper semantic declaration context!
881   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
882     while (!DC->isNamespace() && !DC->isTranslationUnit())
883       DC = getEffectiveParentContext(DC);
884   else if (GetLocalClassDecl(ND)) {
885     mangleLocalName(GD, AdditionalAbiTags);
886     return;
887   }
888 
889   DC = IgnoreLinkageSpecDecls(DC);
890 
891   if (isLocalContainerContext(DC)) {
892     mangleLocalName(GD, AdditionalAbiTags);
893     return;
894   }
895 
896   // Do not mangle the owning module for an external linkage declaration.
897   // This enables backwards-compatibility with non-modular code, and is
898   // a valid choice since conflicts are not permitted by C++ Modules TS
899   // [basic.def.odr]/6.2.
900   if (!ND->hasExternalFormalLinkage())
901     if (Module *M = ND->getOwningModuleForLinkage())
902       mangleModuleName(M);
903 
904   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
905     // Check if we have a template.
906     const TemplateArgumentList *TemplateArgs = nullptr;
907     if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
908       mangleUnscopedTemplateName(TD, AdditionalAbiTags);
909       mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
910       return;
911     }
912 
913     mangleUnscopedName(GD, AdditionalAbiTags);
914     return;
915   }
916 
917   mangleNestedName(GD, DC, AdditionalAbiTags);
918 }
919 
920 void CXXNameMangler::mangleModuleName(const Module *M) {
921   // Implement the C++ Modules TS name mangling proposal; see
922   //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
923   //
924   //   <module-name> ::= W <unscoped-name>+ E
925   //                 ::= W <module-subst> <unscoped-name>* E
926   Out << 'W';
927   mangleModuleNamePrefix(M->Name);
928   Out << 'E';
929 }
930 
931 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
932   //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
933   //                 ::= W <seq-id - 10> _   # otherwise
934   auto It = ModuleSubstitutions.find(Name);
935   if (It != ModuleSubstitutions.end()) {
936     if (It->second < 10)
937       Out << '_' << static_cast<char>('0' + It->second);
938     else
939       Out << 'W' << (It->second - 10) << '_';
940     return;
941   }
942 
943   // FIXME: Preserve hierarchy in module names rather than flattening
944   // them to strings; use Module*s as substitution keys.
945   auto Parts = Name.rsplit('.');
946   if (Parts.second.empty())
947     Parts.second = Parts.first;
948   else
949     mangleModuleNamePrefix(Parts.first);
950 
951   Out << Parts.second.size() << Parts.second;
952   ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
953 }
954 
955 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
956                                         const TemplateArgument *TemplateArgs,
957                                         unsigned NumTemplateArgs) {
958   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
959 
960   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
961     mangleUnscopedTemplateName(TD, nullptr);
962     mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
963   } else {
964     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
965   }
966 }
967 
968 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD,
969                                         const AbiTagList *AdditionalAbiTags) {
970   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
971   //  <unscoped-name> ::= <unqualified-name>
972   //                  ::= St <unqualified-name>   # ::std::
973 
974   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
975     Out << "St";
976 
977   mangleUnqualifiedName(GD, AdditionalAbiTags);
978 }
979 
980 void CXXNameMangler::mangleUnscopedTemplateName(
981     GlobalDecl GD, const AbiTagList *AdditionalAbiTags) {
982   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
983   //     <unscoped-template-name> ::= <unscoped-name>
984   //                              ::= <substitution>
985   if (mangleSubstitution(ND))
986     return;
987 
988   // <template-template-param> ::= <template-param>
989   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
990     assert(!AdditionalAbiTags &&
991            "template template param cannot have abi tags");
992     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
993   } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
994     mangleUnscopedName(GD, AdditionalAbiTags);
995   } else {
996     mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags);
997   }
998 
999   addSubstitution(ND);
1000 }
1001 
1002 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1003   // ABI:
1004   //   Floating-point literals are encoded using a fixed-length
1005   //   lowercase hexadecimal string corresponding to the internal
1006   //   representation (IEEE on Itanium), high-order bytes first,
1007   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1008   //   on Itanium.
1009   // The 'without leading zeroes' thing seems to be an editorial
1010   // mistake; see the discussion on cxx-abi-dev beginning on
1011   // 2012-01-16.
1012 
1013   // Our requirements here are just barely weird enough to justify
1014   // using a custom algorithm instead of post-processing APInt::toString().
1015 
1016   llvm::APInt valueBits = f.bitcastToAPInt();
1017   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1018   assert(numCharacters != 0);
1019 
1020   // Allocate a buffer of the right number of characters.
1021   SmallVector<char, 20> buffer(numCharacters);
1022 
1023   // Fill the buffer left-to-right.
1024   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1025     // The bit-index of the next hex digit.
1026     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1027 
1028     // Project out 4 bits starting at 'digitIndex'.
1029     uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1030     hexDigit >>= (digitBitIndex % 64);
1031     hexDigit &= 0xF;
1032 
1033     // Map that over to a lowercase hex digit.
1034     static const char charForHex[16] = {
1035       '0', '1', '2', '3', '4', '5', '6', '7',
1036       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1037     };
1038     buffer[stringIndex] = charForHex[hexDigit];
1039   }
1040 
1041   Out.write(buffer.data(), numCharacters);
1042 }
1043 
1044 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
1045   Out << 'L';
1046   mangleType(T);
1047   mangleFloat(V);
1048   Out << 'E';
1049 }
1050 
1051 void CXXNameMangler::mangleFixedPointLiteral() {
1052   DiagnosticsEngine &Diags = Context.getDiags();
1053   unsigned DiagID = Diags.getCustomDiagID(
1054       DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
1055   Diags.Report(DiagID);
1056 }
1057 
1058 void CXXNameMangler::mangleNullPointer(QualType T) {
1059   //  <expr-primary> ::= L <type> 0 E
1060   Out << 'L';
1061   mangleType(T);
1062   Out << "0E";
1063 }
1064 
1065 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1066   if (Value.isSigned() && Value.isNegative()) {
1067     Out << 'n';
1068     Value.abs().print(Out, /*signed*/ false);
1069   } else {
1070     Value.print(Out, /*signed*/ false);
1071   }
1072 }
1073 
1074 void CXXNameMangler::mangleNumber(int64_t Number) {
1075   //  <number> ::= [n] <non-negative decimal integer>
1076   if (Number < 0) {
1077     Out << 'n';
1078     Number = -Number;
1079   }
1080 
1081   Out << Number;
1082 }
1083 
1084 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1085   //  <call-offset>  ::= h <nv-offset> _
1086   //                 ::= v <v-offset> _
1087   //  <nv-offset>    ::= <offset number>        # non-virtual base override
1088   //  <v-offset>     ::= <offset number> _ <virtual offset number>
1089   //                      # virtual base override, with vcall offset
1090   if (!Virtual) {
1091     Out << 'h';
1092     mangleNumber(NonVirtual);
1093     Out << '_';
1094     return;
1095   }
1096 
1097   Out << 'v';
1098   mangleNumber(NonVirtual);
1099   Out << '_';
1100   mangleNumber(Virtual);
1101   Out << '_';
1102 }
1103 
1104 void CXXNameMangler::manglePrefix(QualType type) {
1105   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1106     if (!mangleSubstitution(QualType(TST, 0))) {
1107       mangleTemplatePrefix(TST->getTemplateName());
1108 
1109       // FIXME: GCC does not appear to mangle the template arguments when
1110       // the template in question is a dependent template name. Should we
1111       // emulate that badness?
1112       mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
1113                          TST->getNumArgs());
1114       addSubstitution(QualType(TST, 0));
1115     }
1116   } else if (const auto *DTST =
1117                  type->getAs<DependentTemplateSpecializationType>()) {
1118     if (!mangleSubstitution(QualType(DTST, 0))) {
1119       TemplateName Template = getASTContext().getDependentTemplateName(
1120           DTST->getQualifier(), DTST->getIdentifier());
1121       mangleTemplatePrefix(Template);
1122 
1123       // FIXME: GCC does not appear to mangle the template arguments when
1124       // the template in question is a dependent template name. Should we
1125       // emulate that badness?
1126       mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
1127       addSubstitution(QualType(DTST, 0));
1128     }
1129   } else {
1130     // We use the QualType mangle type variant here because it handles
1131     // substitutions.
1132     mangleType(type);
1133   }
1134 }
1135 
1136 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1137 ///
1138 /// \param recursive - true if this is being called recursively,
1139 ///   i.e. if there is more prefix "to the right".
1140 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1141                                             bool recursive) {
1142 
1143   // x, ::x
1144   // <unresolved-name> ::= [gs] <base-unresolved-name>
1145 
1146   // T::x / decltype(p)::x
1147   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1148 
1149   // T::N::x /decltype(p)::N::x
1150   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1151   //                       <base-unresolved-name>
1152 
1153   // A::x, N::y, A<T>::z; "gs" means leading "::"
1154   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1155   //                       <base-unresolved-name>
1156 
1157   switch (qualifier->getKind()) {
1158   case NestedNameSpecifier::Global:
1159     Out << "gs";
1160 
1161     // We want an 'sr' unless this is the entire NNS.
1162     if (recursive)
1163       Out << "sr";
1164 
1165     // We never want an 'E' here.
1166     return;
1167 
1168   case NestedNameSpecifier::Super:
1169     llvm_unreachable("Can't mangle __super specifier");
1170 
1171   case NestedNameSpecifier::Namespace:
1172     if (qualifier->getPrefix())
1173       mangleUnresolvedPrefix(qualifier->getPrefix(),
1174                              /*recursive*/ true);
1175     else
1176       Out << "sr";
1177     mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1178     break;
1179   case NestedNameSpecifier::NamespaceAlias:
1180     if (qualifier->getPrefix())
1181       mangleUnresolvedPrefix(qualifier->getPrefix(),
1182                              /*recursive*/ true);
1183     else
1184       Out << "sr";
1185     mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1186     break;
1187 
1188   case NestedNameSpecifier::TypeSpec:
1189   case NestedNameSpecifier::TypeSpecWithTemplate: {
1190     const Type *type = qualifier->getAsType();
1191 
1192     // We only want to use an unresolved-type encoding if this is one of:
1193     //   - a decltype
1194     //   - a template type parameter
1195     //   - a template template parameter with arguments
1196     // In all of these cases, we should have no prefix.
1197     if (qualifier->getPrefix()) {
1198       mangleUnresolvedPrefix(qualifier->getPrefix(),
1199                              /*recursive*/ true);
1200     } else {
1201       // Otherwise, all the cases want this.
1202       Out << "sr";
1203     }
1204 
1205     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1206       return;
1207 
1208     break;
1209   }
1210 
1211   case NestedNameSpecifier::Identifier:
1212     // Member expressions can have these without prefixes.
1213     if (qualifier->getPrefix())
1214       mangleUnresolvedPrefix(qualifier->getPrefix(),
1215                              /*recursive*/ true);
1216     else
1217       Out << "sr";
1218 
1219     mangleSourceName(qualifier->getAsIdentifier());
1220     // An Identifier has no type information, so we can't emit abi tags for it.
1221     break;
1222   }
1223 
1224   // If this was the innermost part of the NNS, and we fell out to
1225   // here, append an 'E'.
1226   if (!recursive)
1227     Out << 'E';
1228 }
1229 
1230 /// Mangle an unresolved-name, which is generally used for names which
1231 /// weren't resolved to specific entities.
1232 void CXXNameMangler::mangleUnresolvedName(
1233     NestedNameSpecifier *qualifier, DeclarationName name,
1234     const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1235     unsigned knownArity) {
1236   if (qualifier) mangleUnresolvedPrefix(qualifier);
1237   switch (name.getNameKind()) {
1238     // <base-unresolved-name> ::= <simple-id>
1239     case DeclarationName::Identifier:
1240       mangleSourceName(name.getAsIdentifierInfo());
1241       break;
1242     // <base-unresolved-name> ::= dn <destructor-name>
1243     case DeclarationName::CXXDestructorName:
1244       Out << "dn";
1245       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1246       break;
1247     // <base-unresolved-name> ::= on <operator-name>
1248     case DeclarationName::CXXConversionFunctionName:
1249     case DeclarationName::CXXLiteralOperatorName:
1250     case DeclarationName::CXXOperatorName:
1251       Out << "on";
1252       mangleOperatorName(name, knownArity);
1253       break;
1254     case DeclarationName::CXXConstructorName:
1255       llvm_unreachable("Can't mangle a constructor name!");
1256     case DeclarationName::CXXUsingDirective:
1257       llvm_unreachable("Can't mangle a using directive name!");
1258     case DeclarationName::CXXDeductionGuideName:
1259       llvm_unreachable("Can't mangle a deduction guide name!");
1260     case DeclarationName::ObjCMultiArgSelector:
1261     case DeclarationName::ObjCOneArgSelector:
1262     case DeclarationName::ObjCZeroArgSelector:
1263       llvm_unreachable("Can't mangle Objective-C selector names here!");
1264   }
1265 
1266   // The <simple-id> and on <operator-name> productions end in an optional
1267   // <template-args>.
1268   if (TemplateArgs)
1269     mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
1270 }
1271 
1272 void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
1273                                            DeclarationName Name,
1274                                            unsigned KnownArity,
1275                                            const AbiTagList *AdditionalAbiTags) {
1276   const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1277   unsigned Arity = KnownArity;
1278   //  <unqualified-name> ::= <operator-name>
1279   //                     ::= <ctor-dtor-name>
1280   //                     ::= <source-name>
1281   switch (Name.getNameKind()) {
1282   case DeclarationName::Identifier: {
1283     const IdentifierInfo *II = Name.getAsIdentifierInfo();
1284 
1285     // We mangle decomposition declarations as the names of their bindings.
1286     if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1287       // FIXME: Non-standard mangling for decomposition declarations:
1288       //
1289       //  <unqualified-name> ::= DC <source-name>* E
1290       //
1291       // These can never be referenced across translation units, so we do
1292       // not need a cross-vendor mangling for anything other than demanglers.
1293       // Proposed on cxx-abi-dev on 2016-08-12
1294       Out << "DC";
1295       for (auto *BD : DD->bindings())
1296         mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1297       Out << 'E';
1298       writeAbiTags(ND, AdditionalAbiTags);
1299       break;
1300     }
1301 
1302     if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1303       // We follow MSVC in mangling GUID declarations as if they were variables
1304       // with a particular reserved name. Continue the pretense here.
1305       SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1306       llvm::raw_svector_ostream GUIDOS(GUID);
1307       Context.mangleMSGuidDecl(GD, GUIDOS);
1308       Out << GUID.size() << GUID;
1309       break;
1310     }
1311 
1312     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1313       // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
1314       Out << "TA";
1315       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
1316                                TPO->getValue(), /*TopLevel=*/true);
1317       break;
1318     }
1319 
1320     if (II) {
1321       // Match GCC's naming convention for internal linkage symbols, for
1322       // symbols that are not actually visible outside of this TU. GCC
1323       // distinguishes between internal and external linkage symbols in
1324       // its mangling, to support cases like this that were valid C++ prior
1325       // to DR426:
1326       //
1327       //   void test() { extern void foo(); }
1328       //   static void foo();
1329       //
1330       // Don't bother with the L marker for names in anonymous namespaces; the
1331       // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1332       // matches GCC anyway, because GCC does not treat anonymous namespaces as
1333       // implying internal linkage.
1334       if (ND && ND->getFormalLinkage() == InternalLinkage &&
1335           !ND->isExternallyVisible() &&
1336           getEffectiveDeclContext(ND)->isFileContext() &&
1337           !ND->isInAnonymousNamespace())
1338         Out << 'L';
1339 
1340       auto *FD = dyn_cast<FunctionDecl>(ND);
1341       bool IsRegCall = FD &&
1342                        FD->getType()->castAs<FunctionType>()->getCallConv() ==
1343                            clang::CC_X86RegCall;
1344       bool IsDeviceStub =
1345           FD && FD->hasAttr<CUDAGlobalAttr>() &&
1346           GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1347       if (IsDeviceStub)
1348         mangleDeviceStubName(II);
1349       else if (IsRegCall)
1350         mangleRegCallName(II);
1351       else
1352         mangleSourceName(II);
1353 
1354       writeAbiTags(ND, AdditionalAbiTags);
1355       break;
1356     }
1357 
1358     // Otherwise, an anonymous entity.  We must have a declaration.
1359     assert(ND && "mangling empty name without declaration");
1360 
1361     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1362       if (NS->isAnonymousNamespace()) {
1363         // This is how gcc mangles these names.
1364         Out << "12_GLOBAL__N_1";
1365         break;
1366       }
1367     }
1368 
1369     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1370       // We must have an anonymous union or struct declaration.
1371       const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1372 
1373       // Itanium C++ ABI 5.1.2:
1374       //
1375       //   For the purposes of mangling, the name of an anonymous union is
1376       //   considered to be the name of the first named data member found by a
1377       //   pre-order, depth-first, declaration-order walk of the data members of
1378       //   the anonymous union. If there is no such data member (i.e., if all of
1379       //   the data members in the union are unnamed), then there is no way for
1380       //   a program to refer to the anonymous union, and there is therefore no
1381       //   need to mangle its name.
1382       assert(RD->isAnonymousStructOrUnion()
1383              && "Expected anonymous struct or union!");
1384       const FieldDecl *FD = RD->findFirstNamedDataMember();
1385 
1386       // It's actually possible for various reasons for us to get here
1387       // with an empty anonymous struct / union.  Fortunately, it
1388       // doesn't really matter what name we generate.
1389       if (!FD) break;
1390       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1391 
1392       mangleSourceName(FD->getIdentifier());
1393       // Not emitting abi tags: internal name anyway.
1394       break;
1395     }
1396 
1397     // Class extensions have no name as a category, and it's possible
1398     // for them to be the semantic parent of certain declarations
1399     // (primarily, tag decls defined within declarations).  Such
1400     // declarations will always have internal linkage, so the name
1401     // doesn't really matter, but we shouldn't crash on them.  For
1402     // safety, just handle all ObjC containers here.
1403     if (isa<ObjCContainerDecl>(ND))
1404       break;
1405 
1406     // We must have an anonymous struct.
1407     const TagDecl *TD = cast<TagDecl>(ND);
1408     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1409       assert(TD->getDeclContext() == D->getDeclContext() &&
1410              "Typedef should not be in another decl context!");
1411       assert(D->getDeclName().getAsIdentifierInfo() &&
1412              "Typedef was not named!");
1413       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1414       assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1415       // Explicit abi tags are still possible; take from underlying type, not
1416       // from typedef.
1417       writeAbiTags(TD, nullptr);
1418       break;
1419     }
1420 
1421     // <unnamed-type-name> ::= <closure-type-name>
1422     //
1423     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1424     // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1425     //     # Parameter types or 'v' for 'void'.
1426     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1427       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1428         assert(!AdditionalAbiTags &&
1429                "Lambda type cannot have additional abi tags");
1430         mangleLambda(Record);
1431         break;
1432       }
1433     }
1434 
1435     if (TD->isExternallyVisible()) {
1436       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1437       Out << "Ut";
1438       if (UnnamedMangle > 1)
1439         Out << UnnamedMangle - 2;
1440       Out << '_';
1441       writeAbiTags(TD, AdditionalAbiTags);
1442       break;
1443     }
1444 
1445     // Get a unique id for the anonymous struct. If it is not a real output
1446     // ID doesn't matter so use fake one.
1447     unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1448 
1449     // Mangle it as a source name in the form
1450     // [n] $_<id>
1451     // where n is the length of the string.
1452     SmallString<8> Str;
1453     Str += "$_";
1454     Str += llvm::utostr(AnonStructId);
1455 
1456     Out << Str.size();
1457     Out << Str;
1458     break;
1459   }
1460 
1461   case DeclarationName::ObjCZeroArgSelector:
1462   case DeclarationName::ObjCOneArgSelector:
1463   case DeclarationName::ObjCMultiArgSelector:
1464     llvm_unreachable("Can't mangle Objective-C selector names here!");
1465 
1466   case DeclarationName::CXXConstructorName: {
1467     const CXXRecordDecl *InheritedFrom = nullptr;
1468     TemplateName InheritedTemplateName;
1469     const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1470     if (auto Inherited =
1471             cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1472       InheritedFrom = Inherited.getConstructor()->getParent();
1473       InheritedTemplateName =
1474           TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
1475       InheritedTemplateArgs =
1476           Inherited.getConstructor()->getTemplateSpecializationArgs();
1477     }
1478 
1479     if (ND == Structor)
1480       // If the named decl is the C++ constructor we're mangling, use the type
1481       // we were given.
1482       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1483     else
1484       // Otherwise, use the complete constructor name. This is relevant if a
1485       // class with a constructor is declared within a constructor.
1486       mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1487 
1488     // FIXME: The template arguments are part of the enclosing prefix or
1489     // nested-name, but it's more convenient to mangle them here.
1490     if (InheritedTemplateArgs)
1491       mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
1492 
1493     writeAbiTags(ND, AdditionalAbiTags);
1494     break;
1495   }
1496 
1497   case DeclarationName::CXXDestructorName:
1498     if (ND == Structor)
1499       // If the named decl is the C++ destructor we're mangling, use the type we
1500       // were given.
1501       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1502     else
1503       // Otherwise, use the complete destructor name. This is relevant if a
1504       // class with a destructor is declared within a destructor.
1505       mangleCXXDtorType(Dtor_Complete);
1506     writeAbiTags(ND, AdditionalAbiTags);
1507     break;
1508 
1509   case DeclarationName::CXXOperatorName:
1510     if (ND && Arity == UnknownArity) {
1511       Arity = cast<FunctionDecl>(ND)->getNumParams();
1512 
1513       // If we have a member function, we need to include the 'this' pointer.
1514       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1515         if (!MD->isStatic())
1516           Arity++;
1517     }
1518     LLVM_FALLTHROUGH;
1519   case DeclarationName::CXXConversionFunctionName:
1520   case DeclarationName::CXXLiteralOperatorName:
1521     mangleOperatorName(Name, Arity);
1522     writeAbiTags(ND, AdditionalAbiTags);
1523     break;
1524 
1525   case DeclarationName::CXXDeductionGuideName:
1526     llvm_unreachable("Can't mangle a deduction guide name!");
1527 
1528   case DeclarationName::CXXUsingDirective:
1529     llvm_unreachable("Can't mangle a using directive name!");
1530   }
1531 }
1532 
1533 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1534   // <source-name> ::= <positive length number> __regcall3__ <identifier>
1535   // <number> ::= [n] <non-negative decimal integer>
1536   // <identifier> ::= <unqualified source code identifier>
1537   Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1538       << II->getName();
1539 }
1540 
1541 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1542   // <source-name> ::= <positive length number> __device_stub__ <identifier>
1543   // <number> ::= [n] <non-negative decimal integer>
1544   // <identifier> ::= <unqualified source code identifier>
1545   Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1546       << II->getName();
1547 }
1548 
1549 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1550   // <source-name> ::= <positive length number> <identifier>
1551   // <number> ::= [n] <non-negative decimal integer>
1552   // <identifier> ::= <unqualified source code identifier>
1553   Out << II->getLength() << II->getName();
1554 }
1555 
1556 void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1557                                       const DeclContext *DC,
1558                                       const AbiTagList *AdditionalAbiTags,
1559                                       bool NoFunction) {
1560   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1561   // <nested-name>
1562   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1563   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1564   //       <template-args> E
1565 
1566   Out << 'N';
1567   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1568     Qualifiers MethodQuals = Method->getMethodQualifiers();
1569     // We do not consider restrict a distinguishing attribute for overloading
1570     // purposes so we must not mangle it.
1571     MethodQuals.removeRestrict();
1572     mangleQualifiers(MethodQuals);
1573     mangleRefQualifier(Method->getRefQualifier());
1574   }
1575 
1576   // Check if we have a template.
1577   const TemplateArgumentList *TemplateArgs = nullptr;
1578   if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1579     mangleTemplatePrefix(TD, NoFunction);
1580     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1581   }
1582   else {
1583     manglePrefix(DC, NoFunction);
1584     mangleUnqualifiedName(GD, AdditionalAbiTags);
1585   }
1586 
1587   Out << 'E';
1588 }
1589 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1590                                       const TemplateArgument *TemplateArgs,
1591                                       unsigned NumTemplateArgs) {
1592   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1593 
1594   Out << 'N';
1595 
1596   mangleTemplatePrefix(TD);
1597   mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1598 
1599   Out << 'E';
1600 }
1601 
1602 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
1603   GlobalDecl GD;
1604   // The Itanium spec says:
1605   // For entities in constructors and destructors, the mangling of the
1606   // complete object constructor or destructor is used as the base function
1607   // name, i.e. the C1 or D1 version.
1608   if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1609     GD = GlobalDecl(CD, Ctor_Complete);
1610   else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1611     GD = GlobalDecl(DD, Dtor_Complete);
1612   else
1613     GD = GlobalDecl(cast<FunctionDecl>(DC));
1614   return GD;
1615 }
1616 
1617 void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1618                                      const AbiTagList *AdditionalAbiTags) {
1619   const Decl *D = GD.getDecl();
1620   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1621   //              := Z <function encoding> E s [<discriminator>]
1622   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1623   //                 _ <entity name>
1624   // <discriminator> := _ <non-negative number>
1625   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1626   const RecordDecl *RD = GetLocalClassDecl(D);
1627   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1628 
1629   Out << 'Z';
1630 
1631   {
1632     AbiTagState LocalAbiTags(AbiTags);
1633 
1634     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1635       mangleObjCMethodName(MD);
1636     else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1637       mangleBlockForPrefix(BD);
1638     else
1639       mangleFunctionEncoding(getParentOfLocalEntity(DC));
1640 
1641     // Implicit ABI tags (from namespace) are not available in the following
1642     // entity; reset to actually emitted tags, which are available.
1643     LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1644   }
1645 
1646   Out << 'E';
1647 
1648   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1649   // be a bug that is fixed in trunk.
1650 
1651   if (RD) {
1652     // The parameter number is omitted for the last parameter, 0 for the
1653     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1654     // <entity name> will of course contain a <closure-type-name>: Its
1655     // numbering will be local to the particular argument in which it appears
1656     // -- other default arguments do not affect its encoding.
1657     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1658     if (CXXRD && CXXRD->isLambda()) {
1659       if (const ParmVarDecl *Parm
1660               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1661         if (const FunctionDecl *Func
1662               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1663           Out << 'd';
1664           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1665           if (Num > 1)
1666             mangleNumber(Num - 2);
1667           Out << '_';
1668         }
1669       }
1670     }
1671 
1672     // Mangle the name relative to the closest enclosing function.
1673     // equality ok because RD derived from ND above
1674     if (D == RD)  {
1675       mangleUnqualifiedName(RD, AdditionalAbiTags);
1676     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1677       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1678       assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1679       mangleUnqualifiedBlock(BD);
1680     } else {
1681       const NamedDecl *ND = cast<NamedDecl>(D);
1682       mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags,
1683                        true /*NoFunction*/);
1684     }
1685   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1686     // Mangle a block in a default parameter; see above explanation for
1687     // lambdas.
1688     if (const ParmVarDecl *Parm
1689             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1690       if (const FunctionDecl *Func
1691             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1692         Out << 'd';
1693         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1694         if (Num > 1)
1695           mangleNumber(Num - 2);
1696         Out << '_';
1697       }
1698     }
1699 
1700     assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1701     mangleUnqualifiedBlock(BD);
1702   } else {
1703     mangleUnqualifiedName(GD, AdditionalAbiTags);
1704   }
1705 
1706   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1707     unsigned disc;
1708     if (Context.getNextDiscriminator(ND, disc)) {
1709       if (disc < 10)
1710         Out << '_' << disc;
1711       else
1712         Out << "__" << disc << '_';
1713     }
1714   }
1715 }
1716 
1717 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1718   if (GetLocalClassDecl(Block)) {
1719     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1720     return;
1721   }
1722   const DeclContext *DC = getEffectiveDeclContext(Block);
1723   if (isLocalContainerContext(DC)) {
1724     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1725     return;
1726   }
1727   manglePrefix(getEffectiveDeclContext(Block));
1728   mangleUnqualifiedBlock(Block);
1729 }
1730 
1731 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1732   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1733     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1734         Context->getDeclContext()->isRecord()) {
1735       const auto *ND = cast<NamedDecl>(Context);
1736       if (ND->getIdentifier()) {
1737         mangleSourceNameWithAbiTags(ND);
1738         Out << 'M';
1739       }
1740     }
1741   }
1742 
1743   // If we have a block mangling number, use it.
1744   unsigned Number = Block->getBlockManglingNumber();
1745   // Otherwise, just make up a number. It doesn't matter what it is because
1746   // the symbol in question isn't externally visible.
1747   if (!Number)
1748     Number = Context.getBlockId(Block, false);
1749   else {
1750     // Stored mangling numbers are 1-based.
1751     --Number;
1752   }
1753   Out << "Ub";
1754   if (Number > 0)
1755     Out << Number - 1;
1756   Out << '_';
1757 }
1758 
1759 // <template-param-decl>
1760 //   ::= Ty                              # template type parameter
1761 //   ::= Tn <type>                       # template non-type parameter
1762 //   ::= Tt <template-param-decl>* E     # template template parameter
1763 //   ::= Tp <template-param-decl>        # template parameter pack
1764 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1765   if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1766     if (Ty->isParameterPack())
1767       Out << "Tp";
1768     Out << "Ty";
1769   } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1770     if (Tn->isExpandedParameterPack()) {
1771       for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1772         Out << "Tn";
1773         mangleType(Tn->getExpansionType(I));
1774       }
1775     } else {
1776       QualType T = Tn->getType();
1777       if (Tn->isParameterPack()) {
1778         Out << "Tp";
1779         if (auto *PackExpansion = T->getAs<PackExpansionType>())
1780           T = PackExpansion->getPattern();
1781       }
1782       Out << "Tn";
1783       mangleType(T);
1784     }
1785   } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1786     if (Tt->isExpandedParameterPack()) {
1787       for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1788            ++I) {
1789         Out << "Tt";
1790         for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1791           mangleTemplateParamDecl(Param);
1792         Out << "E";
1793       }
1794     } else {
1795       if (Tt->isParameterPack())
1796         Out << "Tp";
1797       Out << "Tt";
1798       for (auto *Param : *Tt->getTemplateParameters())
1799         mangleTemplateParamDecl(Param);
1800       Out << "E";
1801     }
1802   }
1803 }
1804 
1805 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1806   // If the context of a closure type is an initializer for a class member
1807   // (static or nonstatic), it is encoded in a qualified name with a final
1808   // <prefix> of the form:
1809   //
1810   //   <data-member-prefix> := <member source-name> M
1811   //
1812   // Technically, the data-member-prefix is part of the <prefix>. However,
1813   // since a closure type will always be mangled with a prefix, it's easier
1814   // to emit that last part of the prefix here.
1815   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1816     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1817         !isa<ParmVarDecl>(Context)) {
1818       // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1819       // reasonable mangling here.
1820       if (const IdentifierInfo *Name
1821             = cast<NamedDecl>(Context)->getIdentifier()) {
1822         mangleSourceName(Name);
1823         const TemplateArgumentList *TemplateArgs = nullptr;
1824         if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1825           mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1826         Out << 'M';
1827       }
1828     }
1829   }
1830 
1831   Out << "Ul";
1832   mangleLambdaSig(Lambda);
1833   Out << "E";
1834 
1835   // The number is omitted for the first closure type with a given
1836   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1837   // (in lexical order) with that same <lambda-sig> and context.
1838   //
1839   // The AST keeps track of the number for us.
1840   unsigned Number = Lambda->getLambdaManglingNumber();
1841   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1842   if (Number > 1)
1843     mangleNumber(Number - 2);
1844   Out << '_';
1845 }
1846 
1847 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
1848   for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1849     mangleTemplateParamDecl(D);
1850   auto *Proto =
1851       Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
1852   mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1853                          Lambda->getLambdaStaticInvoker());
1854 }
1855 
1856 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1857   switch (qualifier->getKind()) {
1858   case NestedNameSpecifier::Global:
1859     // nothing
1860     return;
1861 
1862   case NestedNameSpecifier::Super:
1863     llvm_unreachable("Can't mangle __super specifier");
1864 
1865   case NestedNameSpecifier::Namespace:
1866     mangleName(qualifier->getAsNamespace());
1867     return;
1868 
1869   case NestedNameSpecifier::NamespaceAlias:
1870     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1871     return;
1872 
1873   case NestedNameSpecifier::TypeSpec:
1874   case NestedNameSpecifier::TypeSpecWithTemplate:
1875     manglePrefix(QualType(qualifier->getAsType(), 0));
1876     return;
1877 
1878   case NestedNameSpecifier::Identifier:
1879     // Member expressions can have these without prefixes, but that
1880     // should end up in mangleUnresolvedPrefix instead.
1881     assert(qualifier->getPrefix());
1882     manglePrefix(qualifier->getPrefix());
1883 
1884     mangleSourceName(qualifier->getAsIdentifier());
1885     return;
1886   }
1887 
1888   llvm_unreachable("unexpected nested name specifier");
1889 }
1890 
1891 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1892   //  <prefix> ::= <prefix> <unqualified-name>
1893   //           ::= <template-prefix> <template-args>
1894   //           ::= <template-param>
1895   //           ::= # empty
1896   //           ::= <substitution>
1897 
1898   DC = IgnoreLinkageSpecDecls(DC);
1899 
1900   if (DC->isTranslationUnit())
1901     return;
1902 
1903   if (NoFunction && isLocalContainerContext(DC))
1904     return;
1905 
1906   assert(!isLocalContainerContext(DC));
1907 
1908   const NamedDecl *ND = cast<NamedDecl>(DC);
1909   if (mangleSubstitution(ND))
1910     return;
1911 
1912   // Check if we have a template.
1913   const TemplateArgumentList *TemplateArgs = nullptr;
1914   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
1915     mangleTemplatePrefix(TD);
1916     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1917   } else {
1918     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1919     mangleUnqualifiedName(ND, nullptr);
1920   }
1921 
1922   addSubstitution(ND);
1923 }
1924 
1925 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1926   // <template-prefix> ::= <prefix> <template unqualified-name>
1927   //                   ::= <template-param>
1928   //                   ::= <substitution>
1929   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1930     return mangleTemplatePrefix(TD);
1931 
1932   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1933   assert(Dependent && "unexpected template name kind");
1934 
1935   // Clang 11 and before mangled the substitution for a dependent template name
1936   // after already having emitted (a substitution for) the prefix.
1937   bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <=
1938                        LangOptions::ClangABI::Ver11;
1939   if (!Clang11Compat && mangleSubstitution(Template))
1940     return;
1941 
1942   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1943     manglePrefix(Qualifier);
1944 
1945   if (Clang11Compat && mangleSubstitution(Template))
1946     return;
1947 
1948   if (const IdentifierInfo *Id = Dependent->getIdentifier())
1949     mangleSourceName(Id);
1950   else
1951     mangleOperatorName(Dependent->getOperator(), UnknownArity);
1952 
1953   addSubstitution(Template);
1954 }
1955 
1956 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
1957                                           bool NoFunction) {
1958   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1959   // <template-prefix> ::= <prefix> <template unqualified-name>
1960   //                   ::= <template-param>
1961   //                   ::= <substitution>
1962   // <template-template-param> ::= <template-param>
1963   //                               <substitution>
1964 
1965   if (mangleSubstitution(ND))
1966     return;
1967 
1968   // <template-template-param> ::= <template-param>
1969   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1970     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1971   } else {
1972     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1973     if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
1974       mangleUnqualifiedName(GD, nullptr);
1975     else
1976       mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr);
1977   }
1978 
1979   addSubstitution(ND);
1980 }
1981 
1982 /// Mangles a template name under the production <type>.  Required for
1983 /// template template arguments.
1984 ///   <type> ::= <class-enum-type>
1985 ///          ::= <template-param>
1986 ///          ::= <substitution>
1987 void CXXNameMangler::mangleType(TemplateName TN) {
1988   if (mangleSubstitution(TN))
1989     return;
1990 
1991   TemplateDecl *TD = nullptr;
1992 
1993   switch (TN.getKind()) {
1994   case TemplateName::QualifiedTemplate:
1995     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1996     goto HaveDecl;
1997 
1998   case TemplateName::Template:
1999     TD = TN.getAsTemplateDecl();
2000     goto HaveDecl;
2001 
2002   HaveDecl:
2003     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2004       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2005     else
2006       mangleName(TD);
2007     break;
2008 
2009   case TemplateName::OverloadedTemplate:
2010   case TemplateName::AssumedTemplate:
2011     llvm_unreachable("can't mangle an overloaded template name as a <type>");
2012 
2013   case TemplateName::DependentTemplate: {
2014     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2015     assert(Dependent->isIdentifier());
2016 
2017     // <class-enum-type> ::= <name>
2018     // <name> ::= <nested-name>
2019     mangleUnresolvedPrefix(Dependent->getQualifier());
2020     mangleSourceName(Dependent->getIdentifier());
2021     break;
2022   }
2023 
2024   case TemplateName::SubstTemplateTemplateParm: {
2025     // Substituted template parameters are mangled as the substituted
2026     // template.  This will check for the substitution twice, which is
2027     // fine, but we have to return early so that we don't try to *add*
2028     // the substitution twice.
2029     SubstTemplateTemplateParmStorage *subst
2030       = TN.getAsSubstTemplateTemplateParm();
2031     mangleType(subst->getReplacement());
2032     return;
2033   }
2034 
2035   case TemplateName::SubstTemplateTemplateParmPack: {
2036     // FIXME: not clear how to mangle this!
2037     // template <template <class> class T...> class A {
2038     //   template <template <class> class U...> void foo(B<T,U> x...);
2039     // };
2040     Out << "_SUBSTPACK_";
2041     break;
2042   }
2043   }
2044 
2045   addSubstitution(TN);
2046 }
2047 
2048 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2049                                                     StringRef Prefix) {
2050   // Only certain other types are valid as prefixes;  enumerate them.
2051   switch (Ty->getTypeClass()) {
2052   case Type::Builtin:
2053   case Type::Complex:
2054   case Type::Adjusted:
2055   case Type::Decayed:
2056   case Type::Pointer:
2057   case Type::BlockPointer:
2058   case Type::LValueReference:
2059   case Type::RValueReference:
2060   case Type::MemberPointer:
2061   case Type::ConstantArray:
2062   case Type::IncompleteArray:
2063   case Type::VariableArray:
2064   case Type::DependentSizedArray:
2065   case Type::DependentAddressSpace:
2066   case Type::DependentVector:
2067   case Type::DependentSizedExtVector:
2068   case Type::Vector:
2069   case Type::ExtVector:
2070   case Type::ConstantMatrix:
2071   case Type::DependentSizedMatrix:
2072   case Type::FunctionProto:
2073   case Type::FunctionNoProto:
2074   case Type::Paren:
2075   case Type::Attributed:
2076   case Type::Auto:
2077   case Type::DeducedTemplateSpecialization:
2078   case Type::PackExpansion:
2079   case Type::ObjCObject:
2080   case Type::ObjCInterface:
2081   case Type::ObjCObjectPointer:
2082   case Type::ObjCTypeParam:
2083   case Type::Atomic:
2084   case Type::Pipe:
2085   case Type::MacroQualified:
2086   case Type::ExtInt:
2087   case Type::DependentExtInt:
2088     llvm_unreachable("type is illegal as a nested name specifier");
2089 
2090   case Type::SubstTemplateTypeParmPack:
2091     // FIXME: not clear how to mangle this!
2092     // template <class T...> class A {
2093     //   template <class U...> void foo(decltype(T::foo(U())) x...);
2094     // };
2095     Out << "_SUBSTPACK_";
2096     break;
2097 
2098   // <unresolved-type> ::= <template-param>
2099   //                   ::= <decltype>
2100   //                   ::= <template-template-param> <template-args>
2101   // (this last is not official yet)
2102   case Type::TypeOfExpr:
2103   case Type::TypeOf:
2104   case Type::Decltype:
2105   case Type::TemplateTypeParm:
2106   case Type::UnaryTransform:
2107   case Type::SubstTemplateTypeParm:
2108   unresolvedType:
2109     // Some callers want a prefix before the mangled type.
2110     Out << Prefix;
2111 
2112     // This seems to do everything we want.  It's not really
2113     // sanctioned for a substituted template parameter, though.
2114     mangleType(Ty);
2115 
2116     // We never want to print 'E' directly after an unresolved-type,
2117     // so we return directly.
2118     return true;
2119 
2120   case Type::Typedef:
2121     mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2122     break;
2123 
2124   case Type::UnresolvedUsing:
2125     mangleSourceNameWithAbiTags(
2126         cast<UnresolvedUsingType>(Ty)->getDecl());
2127     break;
2128 
2129   case Type::Enum:
2130   case Type::Record:
2131     mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2132     break;
2133 
2134   case Type::TemplateSpecialization: {
2135     const TemplateSpecializationType *TST =
2136         cast<TemplateSpecializationType>(Ty);
2137     TemplateName TN = TST->getTemplateName();
2138     switch (TN.getKind()) {
2139     case TemplateName::Template:
2140     case TemplateName::QualifiedTemplate: {
2141       TemplateDecl *TD = TN.getAsTemplateDecl();
2142 
2143       // If the base is a template template parameter, this is an
2144       // unresolved type.
2145       assert(TD && "no template for template specialization type");
2146       if (isa<TemplateTemplateParmDecl>(TD))
2147         goto unresolvedType;
2148 
2149       mangleSourceNameWithAbiTags(TD);
2150       break;
2151     }
2152 
2153     case TemplateName::OverloadedTemplate:
2154     case TemplateName::AssumedTemplate:
2155     case TemplateName::DependentTemplate:
2156       llvm_unreachable("invalid base for a template specialization type");
2157 
2158     case TemplateName::SubstTemplateTemplateParm: {
2159       SubstTemplateTemplateParmStorage *subst =
2160           TN.getAsSubstTemplateTemplateParm();
2161       mangleExistingSubstitution(subst->getReplacement());
2162       break;
2163     }
2164 
2165     case TemplateName::SubstTemplateTemplateParmPack: {
2166       // FIXME: not clear how to mangle this!
2167       // template <template <class U> class T...> class A {
2168       //   template <class U...> void foo(decltype(T<U>::foo) x...);
2169       // };
2170       Out << "_SUBSTPACK_";
2171       break;
2172     }
2173     }
2174 
2175     // Note: we don't pass in the template name here. We are mangling the
2176     // original source-level template arguments, so we shouldn't consider
2177     // conversions to the corresponding template parameter.
2178     // FIXME: Other compilers mangle partially-resolved template arguments in
2179     // unresolved-qualifier-levels.
2180     mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs());
2181     break;
2182   }
2183 
2184   case Type::InjectedClassName:
2185     mangleSourceNameWithAbiTags(
2186         cast<InjectedClassNameType>(Ty)->getDecl());
2187     break;
2188 
2189   case Type::DependentName:
2190     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2191     break;
2192 
2193   case Type::DependentTemplateSpecialization: {
2194     const DependentTemplateSpecializationType *DTST =
2195         cast<DependentTemplateSpecializationType>(Ty);
2196     TemplateName Template = getASTContext().getDependentTemplateName(
2197         DTST->getQualifier(), DTST->getIdentifier());
2198     mangleSourceName(DTST->getIdentifier());
2199     mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
2200     break;
2201   }
2202 
2203   case Type::Elaborated:
2204     return mangleUnresolvedTypeOrSimpleId(
2205         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2206   }
2207 
2208   return false;
2209 }
2210 
2211 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2212   switch (Name.getNameKind()) {
2213   case DeclarationName::CXXConstructorName:
2214   case DeclarationName::CXXDestructorName:
2215   case DeclarationName::CXXDeductionGuideName:
2216   case DeclarationName::CXXUsingDirective:
2217   case DeclarationName::Identifier:
2218   case DeclarationName::ObjCMultiArgSelector:
2219   case DeclarationName::ObjCOneArgSelector:
2220   case DeclarationName::ObjCZeroArgSelector:
2221     llvm_unreachable("Not an operator name");
2222 
2223   case DeclarationName::CXXConversionFunctionName:
2224     // <operator-name> ::= cv <type>    # (cast)
2225     Out << "cv";
2226     mangleType(Name.getCXXNameType());
2227     break;
2228 
2229   case DeclarationName::CXXLiteralOperatorName:
2230     Out << "li";
2231     mangleSourceName(Name.getCXXLiteralIdentifier());
2232     return;
2233 
2234   case DeclarationName::CXXOperatorName:
2235     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2236     break;
2237   }
2238 }
2239 
2240 void
2241 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2242   switch (OO) {
2243   // <operator-name> ::= nw     # new
2244   case OO_New: Out << "nw"; break;
2245   //              ::= na        # new[]
2246   case OO_Array_New: Out << "na"; break;
2247   //              ::= dl        # delete
2248   case OO_Delete: Out << "dl"; break;
2249   //              ::= da        # delete[]
2250   case OO_Array_Delete: Out << "da"; break;
2251   //              ::= ps        # + (unary)
2252   //              ::= pl        # + (binary or unknown)
2253   case OO_Plus:
2254     Out << (Arity == 1? "ps" : "pl"); break;
2255   //              ::= ng        # - (unary)
2256   //              ::= mi        # - (binary or unknown)
2257   case OO_Minus:
2258     Out << (Arity == 1? "ng" : "mi"); break;
2259   //              ::= ad        # & (unary)
2260   //              ::= an        # & (binary or unknown)
2261   case OO_Amp:
2262     Out << (Arity == 1? "ad" : "an"); break;
2263   //              ::= de        # * (unary)
2264   //              ::= ml        # * (binary or unknown)
2265   case OO_Star:
2266     // Use binary when unknown.
2267     Out << (Arity == 1? "de" : "ml"); break;
2268   //              ::= co        # ~
2269   case OO_Tilde: Out << "co"; break;
2270   //              ::= dv        # /
2271   case OO_Slash: Out << "dv"; break;
2272   //              ::= rm        # %
2273   case OO_Percent: Out << "rm"; break;
2274   //              ::= or        # |
2275   case OO_Pipe: Out << "or"; break;
2276   //              ::= eo        # ^
2277   case OO_Caret: Out << "eo"; break;
2278   //              ::= aS        # =
2279   case OO_Equal: Out << "aS"; break;
2280   //              ::= pL        # +=
2281   case OO_PlusEqual: Out << "pL"; break;
2282   //              ::= mI        # -=
2283   case OO_MinusEqual: Out << "mI"; break;
2284   //              ::= mL        # *=
2285   case OO_StarEqual: Out << "mL"; break;
2286   //              ::= dV        # /=
2287   case OO_SlashEqual: Out << "dV"; break;
2288   //              ::= rM        # %=
2289   case OO_PercentEqual: Out << "rM"; break;
2290   //              ::= aN        # &=
2291   case OO_AmpEqual: Out << "aN"; break;
2292   //              ::= oR        # |=
2293   case OO_PipeEqual: Out << "oR"; break;
2294   //              ::= eO        # ^=
2295   case OO_CaretEqual: Out << "eO"; break;
2296   //              ::= ls        # <<
2297   case OO_LessLess: Out << "ls"; break;
2298   //              ::= rs        # >>
2299   case OO_GreaterGreater: Out << "rs"; break;
2300   //              ::= lS        # <<=
2301   case OO_LessLessEqual: Out << "lS"; break;
2302   //              ::= rS        # >>=
2303   case OO_GreaterGreaterEqual: Out << "rS"; break;
2304   //              ::= eq        # ==
2305   case OO_EqualEqual: Out << "eq"; break;
2306   //              ::= ne        # !=
2307   case OO_ExclaimEqual: Out << "ne"; break;
2308   //              ::= lt        # <
2309   case OO_Less: Out << "lt"; break;
2310   //              ::= gt        # >
2311   case OO_Greater: Out << "gt"; break;
2312   //              ::= le        # <=
2313   case OO_LessEqual: Out << "le"; break;
2314   //              ::= ge        # >=
2315   case OO_GreaterEqual: Out << "ge"; break;
2316   //              ::= nt        # !
2317   case OO_Exclaim: Out << "nt"; break;
2318   //              ::= aa        # &&
2319   case OO_AmpAmp: Out << "aa"; break;
2320   //              ::= oo        # ||
2321   case OO_PipePipe: Out << "oo"; break;
2322   //              ::= pp        # ++
2323   case OO_PlusPlus: Out << "pp"; break;
2324   //              ::= mm        # --
2325   case OO_MinusMinus: Out << "mm"; break;
2326   //              ::= cm        # ,
2327   case OO_Comma: Out << "cm"; break;
2328   //              ::= pm        # ->*
2329   case OO_ArrowStar: Out << "pm"; break;
2330   //              ::= pt        # ->
2331   case OO_Arrow: Out << "pt"; break;
2332   //              ::= cl        # ()
2333   case OO_Call: Out << "cl"; break;
2334   //              ::= ix        # []
2335   case OO_Subscript: Out << "ix"; break;
2336 
2337   //              ::= qu        # ?
2338   // The conditional operator can't be overloaded, but we still handle it when
2339   // mangling expressions.
2340   case OO_Conditional: Out << "qu"; break;
2341   // Proposal on cxx-abi-dev, 2015-10-21.
2342   //              ::= aw        # co_await
2343   case OO_Coawait: Out << "aw"; break;
2344   // Proposed in cxx-abi github issue 43.
2345   //              ::= ss        # <=>
2346   case OO_Spaceship: Out << "ss"; break;
2347 
2348   case OO_None:
2349   case NUM_OVERLOADED_OPERATORS:
2350     llvm_unreachable("Not an overloaded operator");
2351   }
2352 }
2353 
2354 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2355   // Vendor qualifiers come first and if they are order-insensitive they must
2356   // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2357 
2358   // <type> ::= U <addrspace-expr>
2359   if (DAST) {
2360     Out << "U2ASI";
2361     mangleExpression(DAST->getAddrSpaceExpr());
2362     Out << "E";
2363   }
2364 
2365   // Address space qualifiers start with an ordinary letter.
2366   if (Quals.hasAddressSpace()) {
2367     // Address space extension:
2368     //
2369     //   <type> ::= U <target-addrspace>
2370     //   <type> ::= U <OpenCL-addrspace>
2371     //   <type> ::= U <CUDA-addrspace>
2372 
2373     SmallString<64> ASString;
2374     LangAS AS = Quals.getAddressSpace();
2375 
2376     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2377       //  <target-addrspace> ::= "AS" <address-space-number>
2378       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2379       if (TargetAS != 0)
2380         ASString = "AS" + llvm::utostr(TargetAS);
2381     } else {
2382       switch (AS) {
2383       default: llvm_unreachable("Not a language specific address space");
2384       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2385       //                                "private"| "generic" | "device" |
2386       //                                "host" ]
2387       case LangAS::opencl_global:
2388         ASString = "CLglobal";
2389         break;
2390       case LangAS::opencl_global_device:
2391         ASString = "CLdevice";
2392         break;
2393       case LangAS::opencl_global_host:
2394         ASString = "CLhost";
2395         break;
2396       case LangAS::opencl_local:
2397         ASString = "CLlocal";
2398         break;
2399       case LangAS::opencl_constant:
2400         ASString = "CLconstant";
2401         break;
2402       case LangAS::opencl_private:
2403         ASString = "CLprivate";
2404         break;
2405       case LangAS::opencl_generic:
2406         ASString = "CLgeneric";
2407         break;
2408       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2409       case LangAS::cuda_device:
2410         ASString = "CUdevice";
2411         break;
2412       case LangAS::cuda_constant:
2413         ASString = "CUconstant";
2414         break;
2415       case LangAS::cuda_shared:
2416         ASString = "CUshared";
2417         break;
2418       //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2419       case LangAS::ptr32_sptr:
2420         ASString = "ptr32_sptr";
2421         break;
2422       case LangAS::ptr32_uptr:
2423         ASString = "ptr32_uptr";
2424         break;
2425       case LangAS::ptr64:
2426         ASString = "ptr64";
2427         break;
2428       }
2429     }
2430     if (!ASString.empty())
2431       mangleVendorQualifier(ASString);
2432   }
2433 
2434   // The ARC ownership qualifiers start with underscores.
2435   // Objective-C ARC Extension:
2436   //
2437   //   <type> ::= U "__strong"
2438   //   <type> ::= U "__weak"
2439   //   <type> ::= U "__autoreleasing"
2440   //
2441   // Note: we emit __weak first to preserve the order as
2442   // required by the Itanium ABI.
2443   if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2444     mangleVendorQualifier("__weak");
2445 
2446   // __unaligned (from -fms-extensions)
2447   if (Quals.hasUnaligned())
2448     mangleVendorQualifier("__unaligned");
2449 
2450   // Remaining ARC ownership qualifiers.
2451   switch (Quals.getObjCLifetime()) {
2452   case Qualifiers::OCL_None:
2453     break;
2454 
2455   case Qualifiers::OCL_Weak:
2456     // Do nothing as we already handled this case above.
2457     break;
2458 
2459   case Qualifiers::OCL_Strong:
2460     mangleVendorQualifier("__strong");
2461     break;
2462 
2463   case Qualifiers::OCL_Autoreleasing:
2464     mangleVendorQualifier("__autoreleasing");
2465     break;
2466 
2467   case Qualifiers::OCL_ExplicitNone:
2468     // The __unsafe_unretained qualifier is *not* mangled, so that
2469     // __unsafe_unretained types in ARC produce the same manglings as the
2470     // equivalent (but, naturally, unqualified) types in non-ARC, providing
2471     // better ABI compatibility.
2472     //
2473     // It's safe to do this because unqualified 'id' won't show up
2474     // in any type signatures that need to be mangled.
2475     break;
2476   }
2477 
2478   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2479   if (Quals.hasRestrict())
2480     Out << 'r';
2481   if (Quals.hasVolatile())
2482     Out << 'V';
2483   if (Quals.hasConst())
2484     Out << 'K';
2485 }
2486 
2487 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2488   Out << 'U' << name.size() << name;
2489 }
2490 
2491 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2492   // <ref-qualifier> ::= R                # lvalue reference
2493   //                 ::= O                # rvalue-reference
2494   switch (RefQualifier) {
2495   case RQ_None:
2496     break;
2497 
2498   case RQ_LValue:
2499     Out << 'R';
2500     break;
2501 
2502   case RQ_RValue:
2503     Out << 'O';
2504     break;
2505   }
2506 }
2507 
2508 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2509   Context.mangleObjCMethodNameAsSourceName(MD, Out);
2510 }
2511 
2512 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2513                                 ASTContext &Ctx) {
2514   if (Quals)
2515     return true;
2516   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2517     return true;
2518   if (Ty->isOpenCLSpecificType())
2519     return true;
2520   if (Ty->isBuiltinType())
2521     return false;
2522   // Through to Clang 6.0, we accidentally treated undeduced auto types as
2523   // substitution candidates.
2524   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2525       isa<AutoType>(Ty))
2526     return false;
2527   // A placeholder type for class template deduction is substitutable with
2528   // its corresponding template name; this is handled specially when mangling
2529   // the type.
2530   if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
2531     if (DeducedTST->getDeducedType().isNull())
2532       return false;
2533   return true;
2534 }
2535 
2536 void CXXNameMangler::mangleType(QualType T) {
2537   // If our type is instantiation-dependent but not dependent, we mangle
2538   // it as it was written in the source, removing any top-level sugar.
2539   // Otherwise, use the canonical type.
2540   //
2541   // FIXME: This is an approximation of the instantiation-dependent name
2542   // mangling rules, since we should really be using the type as written and
2543   // augmented via semantic analysis (i.e., with implicit conversions and
2544   // default template arguments) for any instantiation-dependent type.
2545   // Unfortunately, that requires several changes to our AST:
2546   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2547   //     uniqued, so that we can handle substitutions properly
2548   //   - Default template arguments will need to be represented in the
2549   //     TemplateSpecializationType, since they need to be mangled even though
2550   //     they aren't written.
2551   //   - Conversions on non-type template arguments need to be expressed, since
2552   //     they can affect the mangling of sizeof/alignof.
2553   //
2554   // FIXME: This is wrong when mapping to the canonical type for a dependent
2555   // type discards instantiation-dependent portions of the type, such as for:
2556   //
2557   //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2558   //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2559   //
2560   // It's also wrong in the opposite direction when instantiation-dependent,
2561   // canonically-equivalent types differ in some irrelevant portion of inner
2562   // type sugar. In such cases, we fail to form correct substitutions, eg:
2563   //
2564   //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2565   //
2566   // We should instead canonicalize the non-instantiation-dependent parts,
2567   // regardless of whether the type as a whole is dependent or instantiation
2568   // dependent.
2569   if (!T->isInstantiationDependentType() || T->isDependentType())
2570     T = T.getCanonicalType();
2571   else {
2572     // Desugar any types that are purely sugar.
2573     do {
2574       // Don't desugar through template specialization types that aren't
2575       // type aliases. We need to mangle the template arguments as written.
2576       if (const TemplateSpecializationType *TST
2577                                       = dyn_cast<TemplateSpecializationType>(T))
2578         if (!TST->isTypeAlias())
2579           break;
2580 
2581       // FIXME: We presumably shouldn't strip off ElaboratedTypes with
2582       // instantation-dependent qualifiers. See
2583       // https://github.com/itanium-cxx-abi/cxx-abi/issues/114.
2584 
2585       QualType Desugared
2586         = T.getSingleStepDesugaredType(Context.getASTContext());
2587       if (Desugared == T)
2588         break;
2589 
2590       T = Desugared;
2591     } while (true);
2592   }
2593   SplitQualType split = T.split();
2594   Qualifiers quals = split.Quals;
2595   const Type *ty = split.Ty;
2596 
2597   bool isSubstitutable =
2598     isTypeSubstitutable(quals, ty, Context.getASTContext());
2599   if (isSubstitutable && mangleSubstitution(T))
2600     return;
2601 
2602   // If we're mangling a qualified array type, push the qualifiers to
2603   // the element type.
2604   if (quals && isa<ArrayType>(T)) {
2605     ty = Context.getASTContext().getAsArrayType(T);
2606     quals = Qualifiers();
2607 
2608     // Note that we don't update T: we want to add the
2609     // substitution at the original type.
2610   }
2611 
2612   if (quals || ty->isDependentAddressSpaceType()) {
2613     if (const DependentAddressSpaceType *DAST =
2614         dyn_cast<DependentAddressSpaceType>(ty)) {
2615       SplitQualType splitDAST = DAST->getPointeeType().split();
2616       mangleQualifiers(splitDAST.Quals, DAST);
2617       mangleType(QualType(splitDAST.Ty, 0));
2618     } else {
2619       mangleQualifiers(quals);
2620 
2621       // Recurse:  even if the qualified type isn't yet substitutable,
2622       // the unqualified type might be.
2623       mangleType(QualType(ty, 0));
2624     }
2625   } else {
2626     switch (ty->getTypeClass()) {
2627 #define ABSTRACT_TYPE(CLASS, PARENT)
2628 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2629     case Type::CLASS: \
2630       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2631       return;
2632 #define TYPE(CLASS, PARENT) \
2633     case Type::CLASS: \
2634       mangleType(static_cast<const CLASS##Type*>(ty)); \
2635       break;
2636 #include "clang/AST/TypeNodes.inc"
2637     }
2638   }
2639 
2640   // Add the substitution.
2641   if (isSubstitutable)
2642     addSubstitution(T);
2643 }
2644 
2645 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2646   if (!mangleStandardSubstitution(ND))
2647     mangleName(ND);
2648 }
2649 
2650 void CXXNameMangler::mangleType(const BuiltinType *T) {
2651   //  <type>         ::= <builtin-type>
2652   //  <builtin-type> ::= v  # void
2653   //                 ::= w  # wchar_t
2654   //                 ::= b  # bool
2655   //                 ::= c  # char
2656   //                 ::= a  # signed char
2657   //                 ::= h  # unsigned char
2658   //                 ::= s  # short
2659   //                 ::= t  # unsigned short
2660   //                 ::= i  # int
2661   //                 ::= j  # unsigned int
2662   //                 ::= l  # long
2663   //                 ::= m  # unsigned long
2664   //                 ::= x  # long long, __int64
2665   //                 ::= y  # unsigned long long, __int64
2666   //                 ::= n  # __int128
2667   //                 ::= o  # unsigned __int128
2668   //                 ::= f  # float
2669   //                 ::= d  # double
2670   //                 ::= e  # long double, __float80
2671   //                 ::= g  # __float128
2672   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2673   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2674   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2675   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2676   //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2677   //                 ::= Di # char32_t
2678   //                 ::= Ds # char16_t
2679   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2680   //                 ::= u <source-name>    # vendor extended type
2681   std::string type_name;
2682   switch (T->getKind()) {
2683   case BuiltinType::Void:
2684     Out << 'v';
2685     break;
2686   case BuiltinType::Bool:
2687     Out << 'b';
2688     break;
2689   case BuiltinType::Char_U:
2690   case BuiltinType::Char_S:
2691     Out << 'c';
2692     break;
2693   case BuiltinType::UChar:
2694     Out << 'h';
2695     break;
2696   case BuiltinType::UShort:
2697     Out << 't';
2698     break;
2699   case BuiltinType::UInt:
2700     Out << 'j';
2701     break;
2702   case BuiltinType::ULong:
2703     Out << 'm';
2704     break;
2705   case BuiltinType::ULongLong:
2706     Out << 'y';
2707     break;
2708   case BuiltinType::UInt128:
2709     Out << 'o';
2710     break;
2711   case BuiltinType::SChar:
2712     Out << 'a';
2713     break;
2714   case BuiltinType::WChar_S:
2715   case BuiltinType::WChar_U:
2716     Out << 'w';
2717     break;
2718   case BuiltinType::Char8:
2719     Out << "Du";
2720     break;
2721   case BuiltinType::Char16:
2722     Out << "Ds";
2723     break;
2724   case BuiltinType::Char32:
2725     Out << "Di";
2726     break;
2727   case BuiltinType::Short:
2728     Out << 's';
2729     break;
2730   case BuiltinType::Int:
2731     Out << 'i';
2732     break;
2733   case BuiltinType::Long:
2734     Out << 'l';
2735     break;
2736   case BuiltinType::LongLong:
2737     Out << 'x';
2738     break;
2739   case BuiltinType::Int128:
2740     Out << 'n';
2741     break;
2742   case BuiltinType::Float16:
2743     Out << "DF16_";
2744     break;
2745   case BuiltinType::ShortAccum:
2746   case BuiltinType::Accum:
2747   case BuiltinType::LongAccum:
2748   case BuiltinType::UShortAccum:
2749   case BuiltinType::UAccum:
2750   case BuiltinType::ULongAccum:
2751   case BuiltinType::ShortFract:
2752   case BuiltinType::Fract:
2753   case BuiltinType::LongFract:
2754   case BuiltinType::UShortFract:
2755   case BuiltinType::UFract:
2756   case BuiltinType::ULongFract:
2757   case BuiltinType::SatShortAccum:
2758   case BuiltinType::SatAccum:
2759   case BuiltinType::SatLongAccum:
2760   case BuiltinType::SatUShortAccum:
2761   case BuiltinType::SatUAccum:
2762   case BuiltinType::SatULongAccum:
2763   case BuiltinType::SatShortFract:
2764   case BuiltinType::SatFract:
2765   case BuiltinType::SatLongFract:
2766   case BuiltinType::SatUShortFract:
2767   case BuiltinType::SatUFract:
2768   case BuiltinType::SatULongFract:
2769     llvm_unreachable("Fixed point types are disabled for c++");
2770   case BuiltinType::Half:
2771     Out << "Dh";
2772     break;
2773   case BuiltinType::Float:
2774     Out << 'f';
2775     break;
2776   case BuiltinType::Double:
2777     Out << 'd';
2778     break;
2779   case BuiltinType::LongDouble: {
2780     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2781                                    getASTContext().getLangOpts().OpenMPIsDevice
2782                                ? getASTContext().getAuxTargetInfo()
2783                                : &getASTContext().getTargetInfo();
2784     Out << TI->getLongDoubleMangling();
2785     break;
2786   }
2787   case BuiltinType::Float128: {
2788     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2789                                    getASTContext().getLangOpts().OpenMPIsDevice
2790                                ? getASTContext().getAuxTargetInfo()
2791                                : &getASTContext().getTargetInfo();
2792     Out << TI->getFloat128Mangling();
2793     break;
2794   }
2795   case BuiltinType::BFloat16: {
2796     const TargetInfo *TI = &getASTContext().getTargetInfo();
2797     Out << TI->getBFloat16Mangling();
2798     break;
2799   }
2800   case BuiltinType::NullPtr:
2801     Out << "Dn";
2802     break;
2803 
2804 #define BUILTIN_TYPE(Id, SingletonId)
2805 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2806   case BuiltinType::Id:
2807 #include "clang/AST/BuiltinTypes.def"
2808   case BuiltinType::Dependent:
2809     if (!NullOut)
2810       llvm_unreachable("mangling a placeholder type");
2811     break;
2812   case BuiltinType::ObjCId:
2813     Out << "11objc_object";
2814     break;
2815   case BuiltinType::ObjCClass:
2816     Out << "10objc_class";
2817     break;
2818   case BuiltinType::ObjCSel:
2819     Out << "13objc_selector";
2820     break;
2821 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2822   case BuiltinType::Id: \
2823     type_name = "ocl_" #ImgType "_" #Suffix; \
2824     Out << type_name.size() << type_name; \
2825     break;
2826 #include "clang/Basic/OpenCLImageTypes.def"
2827   case BuiltinType::OCLSampler:
2828     Out << "11ocl_sampler";
2829     break;
2830   case BuiltinType::OCLEvent:
2831     Out << "9ocl_event";
2832     break;
2833   case BuiltinType::OCLClkEvent:
2834     Out << "12ocl_clkevent";
2835     break;
2836   case BuiltinType::OCLQueue:
2837     Out << "9ocl_queue";
2838     break;
2839   case BuiltinType::OCLReserveID:
2840     Out << "13ocl_reserveid";
2841     break;
2842 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2843   case BuiltinType::Id: \
2844     type_name = "ocl_" #ExtType; \
2845     Out << type_name.size() << type_name; \
2846     break;
2847 #include "clang/Basic/OpenCLExtensionTypes.def"
2848   // The SVE types are effectively target-specific.  The mangling scheme
2849   // is defined in the appendices to the Procedure Call Standard for the
2850   // Arm Architecture.
2851 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls,    \
2852                         ElBits, IsSigned, IsFP, IsBF)                          \
2853   case BuiltinType::Id:                                                        \
2854     type_name = MangledName;                                                   \
2855     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
2856         << type_name;                                                          \
2857     break;
2858 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
2859   case BuiltinType::Id:                                                        \
2860     type_name = MangledName;                                                   \
2861     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
2862         << type_name;                                                          \
2863     break;
2864 #include "clang/Basic/AArch64SVEACLETypes.def"
2865 #define PPC_VECTOR_TYPE(Name, Id, Size) \
2866   case BuiltinType::Id: \
2867     type_name = #Name; \
2868     Out << 'u' << type_name.size() << type_name; \
2869     break;
2870 #include "clang/Basic/PPCTypes.def"
2871   }
2872 }
2873 
2874 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2875   switch (CC) {
2876   case CC_C:
2877     return "";
2878 
2879   case CC_X86VectorCall:
2880   case CC_X86Pascal:
2881   case CC_X86RegCall:
2882   case CC_AAPCS:
2883   case CC_AAPCS_VFP:
2884   case CC_AArch64VectorCall:
2885   case CC_IntelOclBicc:
2886   case CC_SpirFunction:
2887   case CC_OpenCLKernel:
2888   case CC_PreserveMost:
2889   case CC_PreserveAll:
2890     // FIXME: we should be mangling all of the above.
2891     return "";
2892 
2893   case CC_X86ThisCall:
2894     // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
2895     // used explicitly. At this point, we don't have that much information in
2896     // the AST, since clang tends to bake the convention into the canonical
2897     // function type. thiscall only rarely used explicitly, so don't mangle it
2898     // for now.
2899     return "";
2900 
2901   case CC_X86StdCall:
2902     return "stdcall";
2903   case CC_X86FastCall:
2904     return "fastcall";
2905   case CC_X86_64SysV:
2906     return "sysv_abi";
2907   case CC_Win64:
2908     return "ms_abi";
2909   case CC_Swift:
2910     return "swiftcall";
2911   }
2912   llvm_unreachable("bad calling convention");
2913 }
2914 
2915 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2916   // Fast path.
2917   if (T->getExtInfo() == FunctionType::ExtInfo())
2918     return;
2919 
2920   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2921   // This will get more complicated in the future if we mangle other
2922   // things here; but for now, since we mangle ns_returns_retained as
2923   // a qualifier on the result type, we can get away with this:
2924   StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2925   if (!CCQualifier.empty())
2926     mangleVendorQualifier(CCQualifier);
2927 
2928   // FIXME: regparm
2929   // FIXME: noreturn
2930 }
2931 
2932 void
2933 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2934   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2935 
2936   // Note that these are *not* substitution candidates.  Demanglers might
2937   // have trouble with this if the parameter type is fully substituted.
2938 
2939   switch (PI.getABI()) {
2940   case ParameterABI::Ordinary:
2941     break;
2942 
2943   // All of these start with "swift", so they come before "ns_consumed".
2944   case ParameterABI::SwiftContext:
2945   case ParameterABI::SwiftErrorResult:
2946   case ParameterABI::SwiftIndirectResult:
2947     mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2948     break;
2949   }
2950 
2951   if (PI.isConsumed())
2952     mangleVendorQualifier("ns_consumed");
2953 
2954   if (PI.isNoEscape())
2955     mangleVendorQualifier("noescape");
2956 }
2957 
2958 // <type>          ::= <function-type>
2959 // <function-type> ::= [<CV-qualifiers>] F [Y]
2960 //                      <bare-function-type> [<ref-qualifier>] E
2961 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2962   mangleExtFunctionInfo(T);
2963 
2964   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2965   // e.g. "const" in "int (A::*)() const".
2966   mangleQualifiers(T->getMethodQuals());
2967 
2968   // Mangle instantiation-dependent exception-specification, if present,
2969   // per cxx-abi-dev proposal on 2016-10-11.
2970   if (T->hasInstantiationDependentExceptionSpec()) {
2971     if (isComputedNoexcept(T->getExceptionSpecType())) {
2972       Out << "DO";
2973       mangleExpression(T->getNoexceptExpr());
2974       Out << "E";
2975     } else {
2976       assert(T->getExceptionSpecType() == EST_Dynamic);
2977       Out << "Dw";
2978       for (auto ExceptTy : T->exceptions())
2979         mangleType(ExceptTy);
2980       Out << "E";
2981     }
2982   } else if (T->isNothrow()) {
2983     Out << "Do";
2984   }
2985 
2986   Out << 'F';
2987 
2988   // FIXME: We don't have enough information in the AST to produce the 'Y'
2989   // encoding for extern "C" function types.
2990   mangleBareFunctionType(T, /*MangleReturnType=*/true);
2991 
2992   // Mangle the ref-qualifier, if present.
2993   mangleRefQualifier(T->getRefQualifier());
2994 
2995   Out << 'E';
2996 }
2997 
2998 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2999   // Function types without prototypes can arise when mangling a function type
3000   // within an overloadable function in C. We mangle these as the absence of any
3001   // parameter types (not even an empty parameter list).
3002   Out << 'F';
3003 
3004   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3005 
3006   FunctionTypeDepth.enterResultType();
3007   mangleType(T->getReturnType());
3008   FunctionTypeDepth.leaveResultType();
3009 
3010   FunctionTypeDepth.pop(saved);
3011   Out << 'E';
3012 }
3013 
3014 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
3015                                             bool MangleReturnType,
3016                                             const FunctionDecl *FD) {
3017   // Record that we're in a function type.  See mangleFunctionParam
3018   // for details on what we're trying to achieve here.
3019   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3020 
3021   // <bare-function-type> ::= <signature type>+
3022   if (MangleReturnType) {
3023     FunctionTypeDepth.enterResultType();
3024 
3025     // Mangle ns_returns_retained as an order-sensitive qualifier here.
3026     if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
3027       mangleVendorQualifier("ns_returns_retained");
3028 
3029     // Mangle the return type without any direct ARC ownership qualifiers.
3030     QualType ReturnTy = Proto->getReturnType();
3031     if (ReturnTy.getObjCLifetime()) {
3032       auto SplitReturnTy = ReturnTy.split();
3033       SplitReturnTy.Quals.removeObjCLifetime();
3034       ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3035     }
3036     mangleType(ReturnTy);
3037 
3038     FunctionTypeDepth.leaveResultType();
3039   }
3040 
3041   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3042     //   <builtin-type> ::= v   # void
3043     Out << 'v';
3044 
3045     FunctionTypeDepth.pop(saved);
3046     return;
3047   }
3048 
3049   assert(!FD || FD->getNumParams() == Proto->getNumParams());
3050   for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3051     // Mangle extended parameter info as order-sensitive qualifiers here.
3052     if (Proto->hasExtParameterInfos() && FD == nullptr) {
3053       mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3054     }
3055 
3056     // Mangle the type.
3057     QualType ParamTy = Proto->getParamType(I);
3058     mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3059 
3060     if (FD) {
3061       if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3062         // Attr can only take 1 character, so we can hardcode the length below.
3063         assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3064         if (Attr->isDynamic())
3065           Out << "U25pass_dynamic_object_size" << Attr->getType();
3066         else
3067           Out << "U17pass_object_size" << Attr->getType();
3068       }
3069     }
3070   }
3071 
3072   FunctionTypeDepth.pop(saved);
3073 
3074   // <builtin-type>      ::= z  # ellipsis
3075   if (Proto->isVariadic())
3076     Out << 'z';
3077 }
3078 
3079 // <type>            ::= <class-enum-type>
3080 // <class-enum-type> ::= <name>
3081 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3082   mangleName(T->getDecl());
3083 }
3084 
3085 // <type>            ::= <class-enum-type>
3086 // <class-enum-type> ::= <name>
3087 void CXXNameMangler::mangleType(const EnumType *T) {
3088   mangleType(static_cast<const TagType*>(T));
3089 }
3090 void CXXNameMangler::mangleType(const RecordType *T) {
3091   mangleType(static_cast<const TagType*>(T));
3092 }
3093 void CXXNameMangler::mangleType(const TagType *T) {
3094   mangleName(T->getDecl());
3095 }
3096 
3097 // <type>       ::= <array-type>
3098 // <array-type> ::= A <positive dimension number> _ <element type>
3099 //              ::= A [<dimension expression>] _ <element type>
3100 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3101   Out << 'A' << T->getSize() << '_';
3102   mangleType(T->getElementType());
3103 }
3104 void CXXNameMangler::mangleType(const VariableArrayType *T) {
3105   Out << 'A';
3106   // decayed vla types (size 0) will just be skipped.
3107   if (T->getSizeExpr())
3108     mangleExpression(T->getSizeExpr());
3109   Out << '_';
3110   mangleType(T->getElementType());
3111 }
3112 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3113   Out << 'A';
3114   mangleExpression(T->getSizeExpr());
3115   Out << '_';
3116   mangleType(T->getElementType());
3117 }
3118 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3119   Out << "A_";
3120   mangleType(T->getElementType());
3121 }
3122 
3123 // <type>                   ::= <pointer-to-member-type>
3124 // <pointer-to-member-type> ::= M <class type> <member type>
3125 void CXXNameMangler::mangleType(const MemberPointerType *T) {
3126   Out << 'M';
3127   mangleType(QualType(T->getClass(), 0));
3128   QualType PointeeType = T->getPointeeType();
3129   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3130     mangleType(FPT);
3131 
3132     // Itanium C++ ABI 5.1.8:
3133     //
3134     //   The type of a non-static member function is considered to be different,
3135     //   for the purposes of substitution, from the type of a namespace-scope or
3136     //   static member function whose type appears similar. The types of two
3137     //   non-static member functions are considered to be different, for the
3138     //   purposes of substitution, if the functions are members of different
3139     //   classes. In other words, for the purposes of substitution, the class of
3140     //   which the function is a member is considered part of the type of
3141     //   function.
3142 
3143     // Given that we already substitute member function pointers as a
3144     // whole, the net effect of this rule is just to unconditionally
3145     // suppress substitution on the function type in a member pointer.
3146     // We increment the SeqID here to emulate adding an entry to the
3147     // substitution table.
3148     ++SeqID;
3149   } else
3150     mangleType(PointeeType);
3151 }
3152 
3153 // <type>           ::= <template-param>
3154 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3155   mangleTemplateParameter(T->getDepth(), T->getIndex());
3156 }
3157 
3158 // <type>           ::= <template-param>
3159 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3160   // FIXME: not clear how to mangle this!
3161   // template <class T...> class A {
3162   //   template <class U...> void foo(T(*)(U) x...);
3163   // };
3164   Out << "_SUBSTPACK_";
3165 }
3166 
3167 // <type> ::= P <type>   # pointer-to
3168 void CXXNameMangler::mangleType(const PointerType *T) {
3169   Out << 'P';
3170   mangleType(T->getPointeeType());
3171 }
3172 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3173   Out << 'P';
3174   mangleType(T->getPointeeType());
3175 }
3176 
3177 // <type> ::= R <type>   # reference-to
3178 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3179   Out << 'R';
3180   mangleType(T->getPointeeType());
3181 }
3182 
3183 // <type> ::= O <type>   # rvalue reference-to (C++0x)
3184 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3185   Out << 'O';
3186   mangleType(T->getPointeeType());
3187 }
3188 
3189 // <type> ::= C <type>   # complex pair (C 2000)
3190 void CXXNameMangler::mangleType(const ComplexType *T) {
3191   Out << 'C';
3192   mangleType(T->getElementType());
3193 }
3194 
3195 // ARM's ABI for Neon vector types specifies that they should be mangled as
3196 // if they are structs (to match ARM's initial implementation).  The
3197 // vector type must be one of the special types predefined by ARM.
3198 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3199   QualType EltType = T->getElementType();
3200   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3201   const char *EltName = nullptr;
3202   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3203     switch (cast<BuiltinType>(EltType)->getKind()) {
3204     case BuiltinType::SChar:
3205     case BuiltinType::UChar:
3206       EltName = "poly8_t";
3207       break;
3208     case BuiltinType::Short:
3209     case BuiltinType::UShort:
3210       EltName = "poly16_t";
3211       break;
3212     case BuiltinType::LongLong:
3213     case BuiltinType::ULongLong:
3214       EltName = "poly64_t";
3215       break;
3216     default: llvm_unreachable("unexpected Neon polynomial vector element type");
3217     }
3218   } else {
3219     switch (cast<BuiltinType>(EltType)->getKind()) {
3220     case BuiltinType::SChar:     EltName = "int8_t"; break;
3221     case BuiltinType::UChar:     EltName = "uint8_t"; break;
3222     case BuiltinType::Short:     EltName = "int16_t"; break;
3223     case BuiltinType::UShort:    EltName = "uint16_t"; break;
3224     case BuiltinType::Int:       EltName = "int32_t"; break;
3225     case BuiltinType::UInt:      EltName = "uint32_t"; break;
3226     case BuiltinType::LongLong:  EltName = "int64_t"; break;
3227     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3228     case BuiltinType::Double:    EltName = "float64_t"; break;
3229     case BuiltinType::Float:     EltName = "float32_t"; break;
3230     case BuiltinType::Half:      EltName = "float16_t"; break;
3231     case BuiltinType::BFloat16:  EltName = "bfloat16_t"; break;
3232     default:
3233       llvm_unreachable("unexpected Neon vector element type");
3234     }
3235   }
3236   const char *BaseName = nullptr;
3237   unsigned BitSize = (T->getNumElements() *
3238                       getASTContext().getTypeSize(EltType));
3239   if (BitSize == 64)
3240     BaseName = "__simd64_";
3241   else {
3242     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3243     BaseName = "__simd128_";
3244   }
3245   Out << strlen(BaseName) + strlen(EltName);
3246   Out << BaseName << EltName;
3247 }
3248 
3249 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3250   DiagnosticsEngine &Diags = Context.getDiags();
3251   unsigned DiagID = Diags.getCustomDiagID(
3252       DiagnosticsEngine::Error,
3253       "cannot mangle this dependent neon vector type yet");
3254   Diags.Report(T->getAttributeLoc(), DiagID);
3255 }
3256 
3257 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3258   switch (EltType->getKind()) {
3259   case BuiltinType::SChar:
3260     return "Int8";
3261   case BuiltinType::Short:
3262     return "Int16";
3263   case BuiltinType::Int:
3264     return "Int32";
3265   case BuiltinType::Long:
3266   case BuiltinType::LongLong:
3267     return "Int64";
3268   case BuiltinType::UChar:
3269     return "Uint8";
3270   case BuiltinType::UShort:
3271     return "Uint16";
3272   case BuiltinType::UInt:
3273     return "Uint32";
3274   case BuiltinType::ULong:
3275   case BuiltinType::ULongLong:
3276     return "Uint64";
3277   case BuiltinType::Half:
3278     return "Float16";
3279   case BuiltinType::Float:
3280     return "Float32";
3281   case BuiltinType::Double:
3282     return "Float64";
3283   case BuiltinType::BFloat16:
3284     return "Bfloat16";
3285   default:
3286     llvm_unreachable("Unexpected vector element base type");
3287   }
3288 }
3289 
3290 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3291 // the equivalent internal name. The vector type must be one of the special
3292 // types predefined by ARM.
3293 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3294   QualType EltType = T->getElementType();
3295   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3296   unsigned BitSize =
3297       (T->getNumElements() * getASTContext().getTypeSize(EltType));
3298   (void)BitSize; // Silence warning.
3299 
3300   assert((BitSize == 64 || BitSize == 128) &&
3301          "Neon vector type not 64 or 128 bits");
3302 
3303   StringRef EltName;
3304   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3305     switch (cast<BuiltinType>(EltType)->getKind()) {
3306     case BuiltinType::UChar:
3307       EltName = "Poly8";
3308       break;
3309     case BuiltinType::UShort:
3310       EltName = "Poly16";
3311       break;
3312     case BuiltinType::ULong:
3313     case BuiltinType::ULongLong:
3314       EltName = "Poly64";
3315       break;
3316     default:
3317       llvm_unreachable("unexpected Neon polynomial vector element type");
3318     }
3319   } else
3320     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3321 
3322   std::string TypeName =
3323       ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3324   Out << TypeName.length() << TypeName;
3325 }
3326 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3327   DiagnosticsEngine &Diags = Context.getDiags();
3328   unsigned DiagID = Diags.getCustomDiagID(
3329       DiagnosticsEngine::Error,
3330       "cannot mangle this dependent neon vector type yet");
3331   Diags.Report(T->getAttributeLoc(), DiagID);
3332 }
3333 
3334 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
3335 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
3336 // type as the sizeless variants.
3337 //
3338 // The mangling scheme for VLS types is implemented as a "pseudo" template:
3339 //
3340 //   '__SVE_VLS<<type>, <vector length>>'
3341 //
3342 // Combining the existing SVE type and a specific vector length (in bits).
3343 // For example:
3344 //
3345 //   typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
3346 //
3347 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
3348 //
3349 //   "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
3350 //
3351 //   i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
3352 //
3353 // The latest ACLE specification (00bet5) does not contain details of this
3354 // mangling scheme, it will be specified in the next revision. The mangling
3355 // scheme is otherwise defined in the appendices to the Procedure Call Standard
3356 // for the Arm Architecture, see
3357 // https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
3358 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
3359   assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3360           T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) &&
3361          "expected fixed-length SVE vector!");
3362 
3363   QualType EltType = T->getElementType();
3364   assert(EltType->isBuiltinType() &&
3365          "expected builtin type for fixed-length SVE vector!");
3366 
3367   StringRef TypeName;
3368   switch (cast<BuiltinType>(EltType)->getKind()) {
3369   case BuiltinType::SChar:
3370     TypeName = "__SVInt8_t";
3371     break;
3372   case BuiltinType::UChar: {
3373     if (T->getVectorKind() == VectorType::SveFixedLengthDataVector)
3374       TypeName = "__SVUint8_t";
3375     else
3376       TypeName = "__SVBool_t";
3377     break;
3378   }
3379   case BuiltinType::Short:
3380     TypeName = "__SVInt16_t";
3381     break;
3382   case BuiltinType::UShort:
3383     TypeName = "__SVUint16_t";
3384     break;
3385   case BuiltinType::Int:
3386     TypeName = "__SVInt32_t";
3387     break;
3388   case BuiltinType::UInt:
3389     TypeName = "__SVUint32_t";
3390     break;
3391   case BuiltinType::Long:
3392     TypeName = "__SVInt64_t";
3393     break;
3394   case BuiltinType::ULong:
3395     TypeName = "__SVUint64_t";
3396     break;
3397   case BuiltinType::Half:
3398     TypeName = "__SVFloat16_t";
3399     break;
3400   case BuiltinType::Float:
3401     TypeName = "__SVFloat32_t";
3402     break;
3403   case BuiltinType::Double:
3404     TypeName = "__SVFloat64_t";
3405     break;
3406   case BuiltinType::BFloat16:
3407     TypeName = "__SVBfloat16_t";
3408     break;
3409   default:
3410     llvm_unreachable("unexpected element type for fixed-length SVE vector!");
3411   }
3412 
3413   unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
3414 
3415   if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
3416     VecSizeInBits *= 8;
3417 
3418   Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
3419       << VecSizeInBits << "EE";
3420 }
3421 
3422 void CXXNameMangler::mangleAArch64FixedSveVectorType(
3423     const DependentVectorType *T) {
3424   DiagnosticsEngine &Diags = Context.getDiags();
3425   unsigned DiagID = Diags.getCustomDiagID(
3426       DiagnosticsEngine::Error,
3427       "cannot mangle this dependent fixed-length SVE vector type yet");
3428   Diags.Report(T->getAttributeLoc(), DiagID);
3429 }
3430 
3431 // GNU extension: vector types
3432 // <type>                  ::= <vector-type>
3433 // <vector-type>           ::= Dv <positive dimension number> _
3434 //                                    <extended element type>
3435 //                         ::= Dv [<dimension expression>] _ <element type>
3436 // <extended element type> ::= <element type>
3437 //                         ::= p # AltiVec vector pixel
3438 //                         ::= b # Altivec vector bool
3439 void CXXNameMangler::mangleType(const VectorType *T) {
3440   if ((T->getVectorKind() == VectorType::NeonVector ||
3441        T->getVectorKind() == VectorType::NeonPolyVector)) {
3442     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3443     llvm::Triple::ArchType Arch =
3444         getASTContext().getTargetInfo().getTriple().getArch();
3445     if ((Arch == llvm::Triple::aarch64 ||
3446          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3447       mangleAArch64NeonVectorType(T);
3448     else
3449       mangleNeonVectorType(T);
3450     return;
3451   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3452              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3453     mangleAArch64FixedSveVectorType(T);
3454     return;
3455   }
3456   Out << "Dv" << T->getNumElements() << '_';
3457   if (T->getVectorKind() == VectorType::AltiVecPixel)
3458     Out << 'p';
3459   else if (T->getVectorKind() == VectorType::AltiVecBool)
3460     Out << 'b';
3461   else
3462     mangleType(T->getElementType());
3463 }
3464 
3465 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3466   if ((T->getVectorKind() == VectorType::NeonVector ||
3467        T->getVectorKind() == VectorType::NeonPolyVector)) {
3468     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3469     llvm::Triple::ArchType Arch =
3470         getASTContext().getTargetInfo().getTriple().getArch();
3471     if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3472         !Target.isOSDarwin())
3473       mangleAArch64NeonVectorType(T);
3474     else
3475       mangleNeonVectorType(T);
3476     return;
3477   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3478              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3479     mangleAArch64FixedSveVectorType(T);
3480     return;
3481   }
3482 
3483   Out << "Dv";
3484   mangleExpression(T->getSizeExpr());
3485   Out << '_';
3486   if (T->getVectorKind() == VectorType::AltiVecPixel)
3487     Out << 'p';
3488   else if (T->getVectorKind() == VectorType::AltiVecBool)
3489     Out << 'b';
3490   else
3491     mangleType(T->getElementType());
3492 }
3493 
3494 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3495   mangleType(static_cast<const VectorType*>(T));
3496 }
3497 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3498   Out << "Dv";
3499   mangleExpression(T->getSizeExpr());
3500   Out << '_';
3501   mangleType(T->getElementType());
3502 }
3503 
3504 void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
3505   // Mangle matrix types as a vendor extended type:
3506   // u<Len>matrix_typeI<Rows><Columns><element type>E
3507 
3508   StringRef VendorQualifier = "matrix_type";
3509   Out << "u" << VendorQualifier.size() << VendorQualifier;
3510 
3511   Out << "I";
3512   auto &ASTCtx = getASTContext();
3513   unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
3514   llvm::APSInt Rows(BitWidth);
3515   Rows = T->getNumRows();
3516   mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
3517   llvm::APSInt Columns(BitWidth);
3518   Columns = T->getNumColumns();
3519   mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
3520   mangleType(T->getElementType());
3521   Out << "E";
3522 }
3523 
3524 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
3525   // Mangle matrix types as a vendor extended type:
3526   // u<Len>matrix_typeI<row expr><column expr><element type>E
3527   StringRef VendorQualifier = "matrix_type";
3528   Out << "u" << VendorQualifier.size() << VendorQualifier;
3529 
3530   Out << "I";
3531   mangleTemplateArg(T->getRowExpr(), false);
3532   mangleTemplateArg(T->getColumnExpr(), false);
3533   mangleType(T->getElementType());
3534   Out << "E";
3535 }
3536 
3537 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3538   SplitQualType split = T->getPointeeType().split();
3539   mangleQualifiers(split.Quals, T);
3540   mangleType(QualType(split.Ty, 0));
3541 }
3542 
3543 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3544   // <type>  ::= Dp <type>          # pack expansion (C++0x)
3545   Out << "Dp";
3546   mangleType(T->getPattern());
3547 }
3548 
3549 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3550   mangleSourceName(T->getDecl()->getIdentifier());
3551 }
3552 
3553 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3554   // Treat __kindof as a vendor extended type qualifier.
3555   if (T->isKindOfType())
3556     Out << "U8__kindof";
3557 
3558   if (!T->qual_empty()) {
3559     // Mangle protocol qualifiers.
3560     SmallString<64> QualStr;
3561     llvm::raw_svector_ostream QualOS(QualStr);
3562     QualOS << "objcproto";
3563     for (const auto *I : T->quals()) {
3564       StringRef name = I->getName();
3565       QualOS << name.size() << name;
3566     }
3567     Out << 'U' << QualStr.size() << QualStr;
3568   }
3569 
3570   mangleType(T->getBaseType());
3571 
3572   if (T->isSpecialized()) {
3573     // Mangle type arguments as I <type>+ E
3574     Out << 'I';
3575     for (auto typeArg : T->getTypeArgs())
3576       mangleType(typeArg);
3577     Out << 'E';
3578   }
3579 }
3580 
3581 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3582   Out << "U13block_pointer";
3583   mangleType(T->getPointeeType());
3584 }
3585 
3586 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3587   // Mangle injected class name types as if the user had written the
3588   // specialization out fully.  It may not actually be possible to see
3589   // this mangling, though.
3590   mangleType(T->getInjectedSpecializationType());
3591 }
3592 
3593 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3594   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3595     mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3596   } else {
3597     if (mangleSubstitution(QualType(T, 0)))
3598       return;
3599 
3600     mangleTemplatePrefix(T->getTemplateName());
3601 
3602     // FIXME: GCC does not appear to mangle the template arguments when
3603     // the template in question is a dependent template name. Should we
3604     // emulate that badness?
3605     mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
3606     addSubstitution(QualType(T, 0));
3607   }
3608 }
3609 
3610 void CXXNameMangler::mangleType(const DependentNameType *T) {
3611   // Proposal by cxx-abi-dev, 2014-03-26
3612   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3613   //                                 # dependent elaborated type specifier using
3614   //                                 # 'typename'
3615   //                   ::= Ts <name> # dependent elaborated type specifier using
3616   //                                 # 'struct' or 'class'
3617   //                   ::= Tu <name> # dependent elaborated type specifier using
3618   //                                 # 'union'
3619   //                   ::= Te <name> # dependent elaborated type specifier using
3620   //                                 # 'enum'
3621   switch (T->getKeyword()) {
3622     case ETK_None:
3623     case ETK_Typename:
3624       break;
3625     case ETK_Struct:
3626     case ETK_Class:
3627     case ETK_Interface:
3628       Out << "Ts";
3629       break;
3630     case ETK_Union:
3631       Out << "Tu";
3632       break;
3633     case ETK_Enum:
3634       Out << "Te";
3635       break;
3636   }
3637   // Typename types are always nested
3638   Out << 'N';
3639   manglePrefix(T->getQualifier());
3640   mangleSourceName(T->getIdentifier());
3641   Out << 'E';
3642 }
3643 
3644 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3645   // Dependently-scoped template types are nested if they have a prefix.
3646   Out << 'N';
3647 
3648   // TODO: avoid making this TemplateName.
3649   TemplateName Prefix =
3650     getASTContext().getDependentTemplateName(T->getQualifier(),
3651                                              T->getIdentifier());
3652   mangleTemplatePrefix(Prefix);
3653 
3654   // FIXME: GCC does not appear to mangle the template arguments when
3655   // the template in question is a dependent template name. Should we
3656   // emulate that badness?
3657   mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
3658   Out << 'E';
3659 }
3660 
3661 void CXXNameMangler::mangleType(const TypeOfType *T) {
3662   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3663   // "extension with parameters" mangling.
3664   Out << "u6typeof";
3665 }
3666 
3667 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3668   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3669   // "extension with parameters" mangling.
3670   Out << "u6typeof";
3671 }
3672 
3673 void CXXNameMangler::mangleType(const DecltypeType *T) {
3674   Expr *E = T->getUnderlyingExpr();
3675 
3676   // type ::= Dt <expression> E  # decltype of an id-expression
3677   //                             #   or class member access
3678   //      ::= DT <expression> E  # decltype of an expression
3679 
3680   // This purports to be an exhaustive list of id-expressions and
3681   // class member accesses.  Note that we do not ignore parentheses;
3682   // parentheses change the semantics of decltype for these
3683   // expressions (and cause the mangler to use the other form).
3684   if (isa<DeclRefExpr>(E) ||
3685       isa<MemberExpr>(E) ||
3686       isa<UnresolvedLookupExpr>(E) ||
3687       isa<DependentScopeDeclRefExpr>(E) ||
3688       isa<CXXDependentScopeMemberExpr>(E) ||
3689       isa<UnresolvedMemberExpr>(E))
3690     Out << "Dt";
3691   else
3692     Out << "DT";
3693   mangleExpression(E);
3694   Out << 'E';
3695 }
3696 
3697 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3698   // If this is dependent, we need to record that. If not, we simply
3699   // mangle it as the underlying type since they are equivalent.
3700   if (T->isDependentType()) {
3701     Out << 'U';
3702 
3703     switch (T->getUTTKind()) {
3704       case UnaryTransformType::EnumUnderlyingType:
3705         Out << "3eut";
3706         break;
3707     }
3708   }
3709 
3710   mangleType(T->getBaseType());
3711 }
3712 
3713 void CXXNameMangler::mangleType(const AutoType *T) {
3714   assert(T->getDeducedType().isNull() &&
3715          "Deduced AutoType shouldn't be handled here!");
3716   assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3717          "shouldn't need to mangle __auto_type!");
3718   // <builtin-type> ::= Da # auto
3719   //                ::= Dc # decltype(auto)
3720   Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3721 }
3722 
3723 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3724   QualType Deduced = T->getDeducedType();
3725   if (!Deduced.isNull())
3726     return mangleType(Deduced);
3727 
3728   TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
3729   assert(TD && "shouldn't form deduced TST unless we know we have a template");
3730 
3731   if (mangleSubstitution(TD))
3732     return;
3733 
3734   mangleName(GlobalDecl(TD));
3735   addSubstitution(TD);
3736 }
3737 
3738 void CXXNameMangler::mangleType(const AtomicType *T) {
3739   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3740   // (Until there's a standardized mangling...)
3741   Out << "U7_Atomic";
3742   mangleType(T->getValueType());
3743 }
3744 
3745 void CXXNameMangler::mangleType(const PipeType *T) {
3746   // Pipe type mangling rules are described in SPIR 2.0 specification
3747   // A.1 Data types and A.3 Summary of changes
3748   // <type> ::= 8ocl_pipe
3749   Out << "8ocl_pipe";
3750 }
3751 
3752 void CXXNameMangler::mangleType(const ExtIntType *T) {
3753   Out << "U7_ExtInt";
3754   llvm::APSInt BW(32, true);
3755   BW = T->getNumBits();
3756   TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy);
3757   mangleTemplateArgs(TemplateName(), &TA, 1);
3758   if (T->isUnsigned())
3759     Out << "j";
3760   else
3761     Out << "i";
3762 }
3763 
3764 void CXXNameMangler::mangleType(const DependentExtIntType *T) {
3765   Out << "U7_ExtInt";
3766   TemplateArgument TA(T->getNumBitsExpr());
3767   mangleTemplateArgs(TemplateName(), &TA, 1);
3768   if (T->isUnsigned())
3769     Out << "j";
3770   else
3771     Out << "i";
3772 }
3773 
3774 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3775                                           const llvm::APSInt &Value) {
3776   //  <expr-primary> ::= L <type> <value number> E # integer literal
3777   Out << 'L';
3778 
3779   mangleType(T);
3780   if (T->isBooleanType()) {
3781     // Boolean values are encoded as 0/1.
3782     Out << (Value.getBoolValue() ? '1' : '0');
3783   } else {
3784     mangleNumber(Value);
3785   }
3786   Out << 'E';
3787 
3788 }
3789 
3790 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3791   // Ignore member expressions involving anonymous unions.
3792   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3793     if (!RT->getDecl()->isAnonymousStructOrUnion())
3794       break;
3795     const auto *ME = dyn_cast<MemberExpr>(Base);
3796     if (!ME)
3797       break;
3798     Base = ME->getBase();
3799     IsArrow = ME->isArrow();
3800   }
3801 
3802   if (Base->isImplicitCXXThis()) {
3803     // Note: GCC mangles member expressions to the implicit 'this' as
3804     // *this., whereas we represent them as this->. The Itanium C++ ABI
3805     // does not specify anything here, so we follow GCC.
3806     Out << "dtdefpT";
3807   } else {
3808     Out << (IsArrow ? "pt" : "dt");
3809     mangleExpression(Base);
3810   }
3811 }
3812 
3813 /// Mangles a member expression.
3814 void CXXNameMangler::mangleMemberExpr(const Expr *base,
3815                                       bool isArrow,
3816                                       NestedNameSpecifier *qualifier,
3817                                       NamedDecl *firstQualifierLookup,
3818                                       DeclarationName member,
3819                                       const TemplateArgumentLoc *TemplateArgs,
3820                                       unsigned NumTemplateArgs,
3821                                       unsigned arity) {
3822   // <expression> ::= dt <expression> <unresolved-name>
3823   //              ::= pt <expression> <unresolved-name>
3824   if (base)
3825     mangleMemberExprBase(base, isArrow);
3826   mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3827 }
3828 
3829 /// Look at the callee of the given call expression and determine if
3830 /// it's a parenthesized id-expression which would have triggered ADL
3831 /// otherwise.
3832 static bool isParenthesizedADLCallee(const CallExpr *call) {
3833   const Expr *callee = call->getCallee();
3834   const Expr *fn = callee->IgnoreParens();
3835 
3836   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
3837   // too, but for those to appear in the callee, it would have to be
3838   // parenthesized.
3839   if (callee == fn) return false;
3840 
3841   // Must be an unresolved lookup.
3842   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3843   if (!lookup) return false;
3844 
3845   assert(!lookup->requiresADL());
3846 
3847   // Must be an unqualified lookup.
3848   if (lookup->getQualifier()) return false;
3849 
3850   // Must not have found a class member.  Note that if one is a class
3851   // member, they're all class members.
3852   if (lookup->getNumDecls() > 0 &&
3853       (*lookup->decls_begin())->isCXXClassMember())
3854     return false;
3855 
3856   // Otherwise, ADL would have been triggered.
3857   return true;
3858 }
3859 
3860 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3861   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3862   Out << CastEncoding;
3863   mangleType(ECE->getType());
3864   mangleExpression(ECE->getSubExpr());
3865 }
3866 
3867 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3868   if (auto *Syntactic = InitList->getSyntacticForm())
3869     InitList = Syntactic;
3870   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3871     mangleExpression(InitList->getInit(i));
3872 }
3873 
3874 void CXXNameMangler::mangleDeclRefExpr(const NamedDecl *D) {
3875   switch (D->getKind()) {
3876   default:
3877     //  <expr-primary> ::= L <mangled-name> E # external name
3878     Out << 'L';
3879     mangle(D);
3880     Out << 'E';
3881     break;
3882 
3883   case Decl::ParmVar:
3884     mangleFunctionParam(cast<ParmVarDecl>(D));
3885     break;
3886 
3887   case Decl::EnumConstant: {
3888     const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3889     mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3890     break;
3891   }
3892 
3893   case Decl::NonTypeTemplateParm:
3894     const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3895     mangleTemplateParameter(PD->getDepth(), PD->getIndex());
3896     break;
3897   }
3898 }
3899 
3900 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3901   // <expression> ::= <unary operator-name> <expression>
3902   //              ::= <binary operator-name> <expression> <expression>
3903   //              ::= <trinary operator-name> <expression> <expression> <expression>
3904   //              ::= cv <type> expression           # conversion with one argument
3905   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3906   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
3907   //              ::= sc <type> <expression>         # static_cast<type> (expression)
3908   //              ::= cc <type> <expression>         # const_cast<type> (expression)
3909   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
3910   //              ::= st <type>                      # sizeof (a type)
3911   //              ::= at <type>                      # alignof (a type)
3912   //              ::= <template-param>
3913   //              ::= <function-param>
3914   //              ::= sr <type> <unqualified-name>                   # dependent name
3915   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
3916   //              ::= ds <expression> <expression>                   # expr.*expr
3917   //              ::= sZ <template-param>                            # size of a parameter pack
3918   //              ::= sZ <function-param>    # size of a function parameter pack
3919   //              ::= <expr-primary>
3920   // <expr-primary> ::= L <type> <value number> E    # integer literal
3921   //                ::= L <type <value float> E      # floating literal
3922   //                ::= L <mangled-name> E           # external name
3923   //                ::= fpT                          # 'this' expression
3924   QualType ImplicitlyConvertedToType;
3925 
3926 recurse:
3927   switch (E->getStmtClass()) {
3928   case Expr::NoStmtClass:
3929 #define ABSTRACT_STMT(Type)
3930 #define EXPR(Type, Base)
3931 #define STMT(Type, Base) \
3932   case Expr::Type##Class:
3933 #include "clang/AST/StmtNodes.inc"
3934     // fallthrough
3935 
3936   // These all can only appear in local or variable-initialization
3937   // contexts and so should never appear in a mangling.
3938   case Expr::AddrLabelExprClass:
3939   case Expr::DesignatedInitUpdateExprClass:
3940   case Expr::ImplicitValueInitExprClass:
3941   case Expr::ArrayInitLoopExprClass:
3942   case Expr::ArrayInitIndexExprClass:
3943   case Expr::NoInitExprClass:
3944   case Expr::ParenListExprClass:
3945   case Expr::LambdaExprClass:
3946   case Expr::MSPropertyRefExprClass:
3947   case Expr::MSPropertySubscriptExprClass:
3948   case Expr::TypoExprClass: // This should no longer exist in the AST by now.
3949   case Expr::RecoveryExprClass:
3950   case Expr::OMPArraySectionExprClass:
3951   case Expr::OMPArrayShapingExprClass:
3952   case Expr::OMPIteratorExprClass:
3953   case Expr::CXXInheritedCtorInitExprClass:
3954     llvm_unreachable("unexpected statement kind");
3955 
3956   case Expr::ConstantExprClass:
3957     E = cast<ConstantExpr>(E)->getSubExpr();
3958     goto recurse;
3959 
3960   // FIXME: invent manglings for all these.
3961   case Expr::BlockExprClass:
3962   case Expr::ChooseExprClass:
3963   case Expr::CompoundLiteralExprClass:
3964   case Expr::ExtVectorElementExprClass:
3965   case Expr::GenericSelectionExprClass:
3966   case Expr::ObjCEncodeExprClass:
3967   case Expr::ObjCIsaExprClass:
3968   case Expr::ObjCIvarRefExprClass:
3969   case Expr::ObjCMessageExprClass:
3970   case Expr::ObjCPropertyRefExprClass:
3971   case Expr::ObjCProtocolExprClass:
3972   case Expr::ObjCSelectorExprClass:
3973   case Expr::ObjCStringLiteralClass:
3974   case Expr::ObjCBoxedExprClass:
3975   case Expr::ObjCArrayLiteralClass:
3976   case Expr::ObjCDictionaryLiteralClass:
3977   case Expr::ObjCSubscriptRefExprClass:
3978   case Expr::ObjCIndirectCopyRestoreExprClass:
3979   case Expr::ObjCAvailabilityCheckExprClass:
3980   case Expr::OffsetOfExprClass:
3981   case Expr::PredefinedExprClass:
3982   case Expr::ShuffleVectorExprClass:
3983   case Expr::ConvertVectorExprClass:
3984   case Expr::StmtExprClass:
3985   case Expr::TypeTraitExprClass:
3986   case Expr::RequiresExprClass:
3987   case Expr::ArrayTypeTraitExprClass:
3988   case Expr::ExpressionTraitExprClass:
3989   case Expr::VAArgExprClass:
3990   case Expr::CUDAKernelCallExprClass:
3991   case Expr::AsTypeExprClass:
3992   case Expr::PseudoObjectExprClass:
3993   case Expr::AtomicExprClass:
3994   case Expr::SourceLocExprClass:
3995   case Expr::BuiltinBitCastExprClass:
3996   {
3997     if (!NullOut) {
3998       // As bad as this diagnostic is, it's better than crashing.
3999       DiagnosticsEngine &Diags = Context.getDiags();
4000       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4001                                        "cannot yet mangle expression type %0");
4002       Diags.Report(E->getExprLoc(), DiagID)
4003         << E->getStmtClassName() << E->getSourceRange();
4004     }
4005     break;
4006   }
4007 
4008   case Expr::CXXUuidofExprClass: {
4009     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
4010     if (UE->isTypeOperand()) {
4011       QualType UuidT = UE->getTypeOperand(Context.getASTContext());
4012       Out << "u8__uuidoft";
4013       mangleType(UuidT);
4014     } else {
4015       Expr *UuidExp = UE->getExprOperand();
4016       Out << "u8__uuidofz";
4017       mangleExpression(UuidExp, Arity);
4018     }
4019     break;
4020   }
4021 
4022   // Even gcc-4.5 doesn't mangle this.
4023   case Expr::BinaryConditionalOperatorClass: {
4024     DiagnosticsEngine &Diags = Context.getDiags();
4025     unsigned DiagID =
4026       Diags.getCustomDiagID(DiagnosticsEngine::Error,
4027                 "?: operator with omitted middle operand cannot be mangled");
4028     Diags.Report(E->getExprLoc(), DiagID)
4029       << E->getStmtClassName() << E->getSourceRange();
4030     break;
4031   }
4032 
4033   // These are used for internal purposes and cannot be meaningfully mangled.
4034   case Expr::OpaqueValueExprClass:
4035     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
4036 
4037   case Expr::InitListExprClass: {
4038     Out << "il";
4039     mangleInitListElements(cast<InitListExpr>(E));
4040     Out << "E";
4041     break;
4042   }
4043 
4044   case Expr::DesignatedInitExprClass: {
4045     auto *DIE = cast<DesignatedInitExpr>(E);
4046     for (const auto &Designator : DIE->designators()) {
4047       if (Designator.isFieldDesignator()) {
4048         Out << "di";
4049         mangleSourceName(Designator.getFieldName());
4050       } else if (Designator.isArrayDesignator()) {
4051         Out << "dx";
4052         mangleExpression(DIE->getArrayIndex(Designator));
4053       } else {
4054         assert(Designator.isArrayRangeDesignator() &&
4055                "unknown designator kind");
4056         Out << "dX";
4057         mangleExpression(DIE->getArrayRangeStart(Designator));
4058         mangleExpression(DIE->getArrayRangeEnd(Designator));
4059       }
4060     }
4061     mangleExpression(DIE->getInit());
4062     break;
4063   }
4064 
4065   case Expr::CXXDefaultArgExprClass:
4066     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
4067     break;
4068 
4069   case Expr::CXXDefaultInitExprClass:
4070     mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
4071     break;
4072 
4073   case Expr::CXXStdInitializerListExprClass:
4074     mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
4075     break;
4076 
4077   case Expr::SubstNonTypeTemplateParmExprClass:
4078     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
4079                      Arity);
4080     break;
4081 
4082   case Expr::UserDefinedLiteralClass:
4083     // We follow g++'s approach of mangling a UDL as a call to the literal
4084     // operator.
4085   case Expr::CXXMemberCallExprClass: // fallthrough
4086   case Expr::CallExprClass: {
4087     const CallExpr *CE = cast<CallExpr>(E);
4088 
4089     // <expression> ::= cp <simple-id> <expression>* E
4090     // We use this mangling only when the call would use ADL except
4091     // for being parenthesized.  Per discussion with David
4092     // Vandervoorde, 2011.04.25.
4093     if (isParenthesizedADLCallee(CE)) {
4094       Out << "cp";
4095       // The callee here is a parenthesized UnresolvedLookupExpr with
4096       // no qualifier and should always get mangled as a <simple-id>
4097       // anyway.
4098 
4099     // <expression> ::= cl <expression>* E
4100     } else {
4101       Out << "cl";
4102     }
4103 
4104     unsigned CallArity = CE->getNumArgs();
4105     for (const Expr *Arg : CE->arguments())
4106       if (isa<PackExpansionExpr>(Arg))
4107         CallArity = UnknownArity;
4108 
4109     mangleExpression(CE->getCallee(), CallArity);
4110     for (const Expr *Arg : CE->arguments())
4111       mangleExpression(Arg);
4112     Out << 'E';
4113     break;
4114   }
4115 
4116   case Expr::CXXNewExprClass: {
4117     const CXXNewExpr *New = cast<CXXNewExpr>(E);
4118     if (New->isGlobalNew()) Out << "gs";
4119     Out << (New->isArray() ? "na" : "nw");
4120     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
4121            E = New->placement_arg_end(); I != E; ++I)
4122       mangleExpression(*I);
4123     Out << '_';
4124     mangleType(New->getAllocatedType());
4125     if (New->hasInitializer()) {
4126       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
4127         Out << "il";
4128       else
4129         Out << "pi";
4130       const Expr *Init = New->getInitializer();
4131       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
4132         // Directly inline the initializers.
4133         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
4134                                                   E = CCE->arg_end();
4135              I != E; ++I)
4136           mangleExpression(*I);
4137       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
4138         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
4139           mangleExpression(PLE->getExpr(i));
4140       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
4141                  isa<InitListExpr>(Init)) {
4142         // Only take InitListExprs apart for list-initialization.
4143         mangleInitListElements(cast<InitListExpr>(Init));
4144       } else
4145         mangleExpression(Init);
4146     }
4147     Out << 'E';
4148     break;
4149   }
4150 
4151   case Expr::CXXPseudoDestructorExprClass: {
4152     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4153     if (const Expr *Base = PDE->getBase())
4154       mangleMemberExprBase(Base, PDE->isArrow());
4155     NestedNameSpecifier *Qualifier = PDE->getQualifier();
4156     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4157       if (Qualifier) {
4158         mangleUnresolvedPrefix(Qualifier,
4159                                /*recursive=*/true);
4160         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4161         Out << 'E';
4162       } else {
4163         Out << "sr";
4164         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4165           Out << 'E';
4166       }
4167     } else if (Qualifier) {
4168       mangleUnresolvedPrefix(Qualifier);
4169     }
4170     // <base-unresolved-name> ::= dn <destructor-name>
4171     Out << "dn";
4172     QualType DestroyedType = PDE->getDestroyedType();
4173     mangleUnresolvedTypeOrSimpleId(DestroyedType);
4174     break;
4175   }
4176 
4177   case Expr::MemberExprClass: {
4178     const MemberExpr *ME = cast<MemberExpr>(E);
4179     mangleMemberExpr(ME->getBase(), ME->isArrow(),
4180                      ME->getQualifier(), nullptr,
4181                      ME->getMemberDecl()->getDeclName(),
4182                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4183                      Arity);
4184     break;
4185   }
4186 
4187   case Expr::UnresolvedMemberExprClass: {
4188     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4189     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4190                      ME->isArrow(), ME->getQualifier(), nullptr,
4191                      ME->getMemberName(),
4192                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4193                      Arity);
4194     break;
4195   }
4196 
4197   case Expr::CXXDependentScopeMemberExprClass: {
4198     const CXXDependentScopeMemberExpr *ME
4199       = cast<CXXDependentScopeMemberExpr>(E);
4200     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4201                      ME->isArrow(), ME->getQualifier(),
4202                      ME->getFirstQualifierFoundInScope(),
4203                      ME->getMember(),
4204                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4205                      Arity);
4206     break;
4207   }
4208 
4209   case Expr::UnresolvedLookupExprClass: {
4210     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
4211     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
4212                          ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
4213                          Arity);
4214     break;
4215   }
4216 
4217   case Expr::CXXUnresolvedConstructExprClass: {
4218     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
4219     unsigned N = CE->getNumArgs();
4220 
4221     if (CE->isListInitialization()) {
4222       assert(N == 1 && "unexpected form for list initialization");
4223       auto *IL = cast<InitListExpr>(CE->getArg(0));
4224       Out << "tl";
4225       mangleType(CE->getType());
4226       mangleInitListElements(IL);
4227       Out << "E";
4228       return;
4229     }
4230 
4231     Out << "cv";
4232     mangleType(CE->getType());
4233     if (N != 1) Out << '_';
4234     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
4235     if (N != 1) Out << 'E';
4236     break;
4237   }
4238 
4239   case Expr::CXXConstructExprClass: {
4240     const auto *CE = cast<CXXConstructExpr>(E);
4241     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
4242       assert(
4243           CE->getNumArgs() >= 1 &&
4244           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
4245           "implicit CXXConstructExpr must have one argument");
4246       return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
4247     }
4248     Out << "il";
4249     for (auto *E : CE->arguments())
4250       mangleExpression(E);
4251     Out << "E";
4252     break;
4253   }
4254 
4255   case Expr::CXXTemporaryObjectExprClass: {
4256     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
4257     unsigned N = CE->getNumArgs();
4258     bool List = CE->isListInitialization();
4259 
4260     if (List)
4261       Out << "tl";
4262     else
4263       Out << "cv";
4264     mangleType(CE->getType());
4265     if (!List && N != 1)
4266       Out << '_';
4267     if (CE->isStdInitListInitialization()) {
4268       // We implicitly created a std::initializer_list<T> for the first argument
4269       // of a constructor of type U in an expression of the form U{a, b, c}.
4270       // Strip all the semantic gunk off the initializer list.
4271       auto *SILE =
4272           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
4273       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
4274       mangleInitListElements(ILE);
4275     } else {
4276       for (auto *E : CE->arguments())
4277         mangleExpression(E);
4278     }
4279     if (List || N != 1)
4280       Out << 'E';
4281     break;
4282   }
4283 
4284   case Expr::CXXScalarValueInitExprClass:
4285     Out << "cv";
4286     mangleType(E->getType());
4287     Out << "_E";
4288     break;
4289 
4290   case Expr::CXXNoexceptExprClass:
4291     Out << "nx";
4292     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
4293     break;
4294 
4295   case Expr::UnaryExprOrTypeTraitExprClass: {
4296     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
4297 
4298     if (!SAE->isInstantiationDependent()) {
4299       // Itanium C++ ABI:
4300       //   If the operand of a sizeof or alignof operator is not
4301       //   instantiation-dependent it is encoded as an integer literal
4302       //   reflecting the result of the operator.
4303       //
4304       //   If the result of the operator is implicitly converted to a known
4305       //   integer type, that type is used for the literal; otherwise, the type
4306       //   of std::size_t or std::ptrdiff_t is used.
4307       QualType T = (ImplicitlyConvertedToType.isNull() ||
4308                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
4309                                                     : ImplicitlyConvertedToType;
4310       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
4311       mangleIntegerLiteral(T, V);
4312       break;
4313     }
4314 
4315     switch(SAE->getKind()) {
4316     case UETT_SizeOf:
4317       Out << 's';
4318       break;
4319     case UETT_PreferredAlignOf:
4320     case UETT_AlignOf:
4321       Out << 'a';
4322       break;
4323     case UETT_VecStep: {
4324       DiagnosticsEngine &Diags = Context.getDiags();
4325       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4326                                      "cannot yet mangle vec_step expression");
4327       Diags.Report(DiagID);
4328       return;
4329     }
4330     case UETT_OpenMPRequiredSimdAlign: {
4331       DiagnosticsEngine &Diags = Context.getDiags();
4332       unsigned DiagID = Diags.getCustomDiagID(
4333           DiagnosticsEngine::Error,
4334           "cannot yet mangle __builtin_omp_required_simd_align expression");
4335       Diags.Report(DiagID);
4336       return;
4337     }
4338     }
4339     if (SAE->isArgumentType()) {
4340       Out << 't';
4341       mangleType(SAE->getArgumentType());
4342     } else {
4343       Out << 'z';
4344       mangleExpression(SAE->getArgumentExpr());
4345     }
4346     break;
4347   }
4348 
4349   case Expr::CXXThrowExprClass: {
4350     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4351     //  <expression> ::= tw <expression>  # throw expression
4352     //               ::= tr               # rethrow
4353     if (TE->getSubExpr()) {
4354       Out << "tw";
4355       mangleExpression(TE->getSubExpr());
4356     } else {
4357       Out << "tr";
4358     }
4359     break;
4360   }
4361 
4362   case Expr::CXXTypeidExprClass: {
4363     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4364     //  <expression> ::= ti <type>        # typeid (type)
4365     //               ::= te <expression>  # typeid (expression)
4366     if (TIE->isTypeOperand()) {
4367       Out << "ti";
4368       mangleType(TIE->getTypeOperand(Context.getASTContext()));
4369     } else {
4370       Out << "te";
4371       mangleExpression(TIE->getExprOperand());
4372     }
4373     break;
4374   }
4375 
4376   case Expr::CXXDeleteExprClass: {
4377     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4378     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
4379     //               ::= [gs] da <expression>  # [::] delete [] expr
4380     if (DE->isGlobalDelete()) Out << "gs";
4381     Out << (DE->isArrayForm() ? "da" : "dl");
4382     mangleExpression(DE->getArgument());
4383     break;
4384   }
4385 
4386   case Expr::UnaryOperatorClass: {
4387     const UnaryOperator *UO = cast<UnaryOperator>(E);
4388     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4389                        /*Arity=*/1);
4390     mangleExpression(UO->getSubExpr());
4391     break;
4392   }
4393 
4394   case Expr::ArraySubscriptExprClass: {
4395     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4396 
4397     // Array subscript is treated as a syntactically weird form of
4398     // binary operator.
4399     Out << "ix";
4400     mangleExpression(AE->getLHS());
4401     mangleExpression(AE->getRHS());
4402     break;
4403   }
4404 
4405   case Expr::MatrixSubscriptExprClass: {
4406     const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
4407     Out << "ixix";
4408     mangleExpression(ME->getBase());
4409     mangleExpression(ME->getRowIdx());
4410     mangleExpression(ME->getColumnIdx());
4411     break;
4412   }
4413 
4414   case Expr::CompoundAssignOperatorClass: // fallthrough
4415   case Expr::BinaryOperatorClass: {
4416     const BinaryOperator *BO = cast<BinaryOperator>(E);
4417     if (BO->getOpcode() == BO_PtrMemD)
4418       Out << "ds";
4419     else
4420       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4421                          /*Arity=*/2);
4422     mangleExpression(BO->getLHS());
4423     mangleExpression(BO->getRHS());
4424     break;
4425   }
4426 
4427   case Expr::CXXRewrittenBinaryOperatorClass: {
4428     // The mangled form represents the original syntax.
4429     CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
4430         cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4431     mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4432                        /*Arity=*/2);
4433     mangleExpression(Decomposed.LHS);
4434     mangleExpression(Decomposed.RHS);
4435     break;
4436   }
4437 
4438   case Expr::ConditionalOperatorClass: {
4439     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4440     mangleOperatorName(OO_Conditional, /*Arity=*/3);
4441     mangleExpression(CO->getCond());
4442     mangleExpression(CO->getLHS(), Arity);
4443     mangleExpression(CO->getRHS(), Arity);
4444     break;
4445   }
4446 
4447   case Expr::ImplicitCastExprClass: {
4448     ImplicitlyConvertedToType = E->getType();
4449     E = cast<ImplicitCastExpr>(E)->getSubExpr();
4450     goto recurse;
4451   }
4452 
4453   case Expr::ObjCBridgedCastExprClass: {
4454     // Mangle ownership casts as a vendor extended operator __bridge,
4455     // __bridge_transfer, or __bridge_retain.
4456     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4457     Out << "v1U" << Kind.size() << Kind;
4458   }
4459   // Fall through to mangle the cast itself.
4460   LLVM_FALLTHROUGH;
4461 
4462   case Expr::CStyleCastExprClass:
4463     mangleCastExpression(E, "cv");
4464     break;
4465 
4466   case Expr::CXXFunctionalCastExprClass: {
4467     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4468     // FIXME: Add isImplicit to CXXConstructExpr.
4469     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4470       if (CCE->getParenOrBraceRange().isInvalid())
4471         Sub = CCE->getArg(0)->IgnoreImplicit();
4472     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4473       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4474     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4475       Out << "tl";
4476       mangleType(E->getType());
4477       mangleInitListElements(IL);
4478       Out << "E";
4479     } else {
4480       mangleCastExpression(E, "cv");
4481     }
4482     break;
4483   }
4484 
4485   case Expr::CXXStaticCastExprClass:
4486     mangleCastExpression(E, "sc");
4487     break;
4488   case Expr::CXXDynamicCastExprClass:
4489     mangleCastExpression(E, "dc");
4490     break;
4491   case Expr::CXXReinterpretCastExprClass:
4492     mangleCastExpression(E, "rc");
4493     break;
4494   case Expr::CXXConstCastExprClass:
4495     mangleCastExpression(E, "cc");
4496     break;
4497   case Expr::CXXAddrspaceCastExprClass:
4498     mangleCastExpression(E, "ac");
4499     break;
4500 
4501   case Expr::CXXOperatorCallExprClass: {
4502     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4503     unsigned NumArgs = CE->getNumArgs();
4504     // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4505     // (the enclosing MemberExpr covers the syntactic portion).
4506     if (CE->getOperator() != OO_Arrow)
4507       mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4508     // Mangle the arguments.
4509     for (unsigned i = 0; i != NumArgs; ++i)
4510       mangleExpression(CE->getArg(i));
4511     break;
4512   }
4513 
4514   case Expr::ParenExprClass:
4515     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
4516     break;
4517 
4518 
4519   case Expr::ConceptSpecializationExprClass: {
4520     //  <expr-primary> ::= L <mangled-name> E # external name
4521     Out << "L_Z";
4522     auto *CSE = cast<ConceptSpecializationExpr>(E);
4523     mangleTemplateName(CSE->getNamedConcept(),
4524                        CSE->getTemplateArguments().data(),
4525                        CSE->getTemplateArguments().size());
4526     Out << 'E';
4527     break;
4528   }
4529 
4530   case Expr::DeclRefExprClass:
4531     mangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4532     break;
4533 
4534   case Expr::SubstNonTypeTemplateParmPackExprClass:
4535     // FIXME: not clear how to mangle this!
4536     // template <unsigned N...> class A {
4537     //   template <class U...> void foo(U (&x)[N]...);
4538     // };
4539     Out << "_SUBSTPACK_";
4540     break;
4541 
4542   case Expr::FunctionParmPackExprClass: {
4543     // FIXME: not clear how to mangle this!
4544     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4545     Out << "v110_SUBSTPACK";
4546     mangleDeclRefExpr(FPPE->getParameterPack());
4547     break;
4548   }
4549 
4550   case Expr::DependentScopeDeclRefExprClass: {
4551     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4552     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4553                          DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4554                          Arity);
4555     break;
4556   }
4557 
4558   case Expr::CXXBindTemporaryExprClass:
4559     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
4560     break;
4561 
4562   case Expr::ExprWithCleanupsClass:
4563     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
4564     break;
4565 
4566   case Expr::FloatingLiteralClass: {
4567     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4568     mangleFloatLiteral(FL->getType(), FL->getValue());
4569     break;
4570   }
4571 
4572   case Expr::FixedPointLiteralClass:
4573     mangleFixedPointLiteral();
4574     break;
4575 
4576   case Expr::CharacterLiteralClass:
4577     Out << 'L';
4578     mangleType(E->getType());
4579     Out << cast<CharacterLiteral>(E)->getValue();
4580     Out << 'E';
4581     break;
4582 
4583   // FIXME. __objc_yes/__objc_no are mangled same as true/false
4584   case Expr::ObjCBoolLiteralExprClass:
4585     Out << "Lb";
4586     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4587     Out << 'E';
4588     break;
4589 
4590   case Expr::CXXBoolLiteralExprClass:
4591     Out << "Lb";
4592     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4593     Out << 'E';
4594     break;
4595 
4596   case Expr::IntegerLiteralClass: {
4597     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4598     if (E->getType()->isSignedIntegerType())
4599       Value.setIsSigned(true);
4600     mangleIntegerLiteral(E->getType(), Value);
4601     break;
4602   }
4603 
4604   case Expr::ImaginaryLiteralClass: {
4605     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4606     // Mangle as if a complex literal.
4607     // Proposal from David Vandevoorde, 2010.06.30.
4608     Out << 'L';
4609     mangleType(E->getType());
4610     if (const FloatingLiteral *Imag =
4611           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4612       // Mangle a floating-point zero of the appropriate type.
4613       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4614       Out << '_';
4615       mangleFloat(Imag->getValue());
4616     } else {
4617       Out << "0_";
4618       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4619       if (IE->getSubExpr()->getType()->isSignedIntegerType())
4620         Value.setIsSigned(true);
4621       mangleNumber(Value);
4622     }
4623     Out << 'E';
4624     break;
4625   }
4626 
4627   case Expr::StringLiteralClass: {
4628     // Revised proposal from David Vandervoorde, 2010.07.15.
4629     Out << 'L';
4630     assert(isa<ConstantArrayType>(E->getType()));
4631     mangleType(E->getType());
4632     Out << 'E';
4633     break;
4634   }
4635 
4636   case Expr::GNUNullExprClass:
4637     // Mangle as if an integer literal 0.
4638     mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
4639     break;
4640 
4641   case Expr::CXXNullPtrLiteralExprClass: {
4642     Out << "LDnE";
4643     break;
4644   }
4645 
4646   case Expr::PackExpansionExprClass:
4647     Out << "sp";
4648     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4649     break;
4650 
4651   case Expr::SizeOfPackExprClass: {
4652     auto *SPE = cast<SizeOfPackExpr>(E);
4653     if (SPE->isPartiallySubstituted()) {
4654       Out << "sP";
4655       for (const auto &A : SPE->getPartialArguments())
4656         mangleTemplateArg(A, false);
4657       Out << "E";
4658       break;
4659     }
4660 
4661     Out << "sZ";
4662     const NamedDecl *Pack = SPE->getPack();
4663     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4664       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
4665     else if (const NonTypeTemplateParmDecl *NTTP
4666                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4667       mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
4668     else if (const TemplateTemplateParmDecl *TempTP
4669                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
4670       mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
4671     else
4672       mangleFunctionParam(cast<ParmVarDecl>(Pack));
4673     break;
4674   }
4675 
4676   case Expr::MaterializeTemporaryExprClass: {
4677     mangleExpression(cast<MaterializeTemporaryExpr>(E)->getSubExpr());
4678     break;
4679   }
4680 
4681   case Expr::CXXFoldExprClass: {
4682     auto *FE = cast<CXXFoldExpr>(E);
4683     if (FE->isLeftFold())
4684       Out << (FE->getInit() ? "fL" : "fl");
4685     else
4686       Out << (FE->getInit() ? "fR" : "fr");
4687 
4688     if (FE->getOperator() == BO_PtrMemD)
4689       Out << "ds";
4690     else
4691       mangleOperatorName(
4692           BinaryOperator::getOverloadedOperator(FE->getOperator()),
4693           /*Arity=*/2);
4694 
4695     if (FE->getLHS())
4696       mangleExpression(FE->getLHS());
4697     if (FE->getRHS())
4698       mangleExpression(FE->getRHS());
4699     break;
4700   }
4701 
4702   case Expr::CXXThisExprClass:
4703     Out << "fpT";
4704     break;
4705 
4706   case Expr::CoawaitExprClass:
4707     // FIXME: Propose a non-vendor mangling.
4708     Out << "v18co_await";
4709     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4710     break;
4711 
4712   case Expr::DependentCoawaitExprClass:
4713     // FIXME: Propose a non-vendor mangling.
4714     Out << "v18co_await";
4715     mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4716     break;
4717 
4718   case Expr::CoyieldExprClass:
4719     // FIXME: Propose a non-vendor mangling.
4720     Out << "v18co_yield";
4721     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4722     break;
4723   }
4724 }
4725 
4726 /// Mangle an expression which refers to a parameter variable.
4727 ///
4728 /// <expression>     ::= <function-param>
4729 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
4730 /// <function-param> ::= fp <top-level CV-qualifiers>
4731 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
4732 /// <function-param> ::= fL <L-1 non-negative number>
4733 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
4734 /// <function-param> ::= fL <L-1 non-negative number>
4735 ///                      p <top-level CV-qualifiers>
4736 ///                      <I-1 non-negative number> _         # L > 0, I > 0
4737 ///
4738 /// L is the nesting depth of the parameter, defined as 1 if the
4739 /// parameter comes from the innermost function prototype scope
4740 /// enclosing the current context, 2 if from the next enclosing
4741 /// function prototype scope, and so on, with one special case: if
4742 /// we've processed the full parameter clause for the innermost
4743 /// function type, then L is one less.  This definition conveniently
4744 /// makes it irrelevant whether a function's result type was written
4745 /// trailing or leading, but is otherwise overly complicated; the
4746 /// numbering was first designed without considering references to
4747 /// parameter in locations other than return types, and then the
4748 /// mangling had to be generalized without changing the existing
4749 /// manglings.
4750 ///
4751 /// I is the zero-based index of the parameter within its parameter
4752 /// declaration clause.  Note that the original ABI document describes
4753 /// this using 1-based ordinals.
4754 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4755   unsigned parmDepth = parm->getFunctionScopeDepth();
4756   unsigned parmIndex = parm->getFunctionScopeIndex();
4757 
4758   // Compute 'L'.
4759   // parmDepth does not include the declaring function prototype.
4760   // FunctionTypeDepth does account for that.
4761   assert(parmDepth < FunctionTypeDepth.getDepth());
4762   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4763   if (FunctionTypeDepth.isInResultType())
4764     nestingDepth--;
4765 
4766   if (nestingDepth == 0) {
4767     Out << "fp";
4768   } else {
4769     Out << "fL" << (nestingDepth - 1) << 'p';
4770   }
4771 
4772   // Top-level qualifiers.  We don't have to worry about arrays here,
4773   // because parameters declared as arrays should already have been
4774   // transformed to have pointer type. FIXME: apparently these don't
4775   // get mangled if used as an rvalue of a known non-class type?
4776   assert(!parm->getType()->isArrayType()
4777          && "parameter's type is still an array type?");
4778 
4779   if (const DependentAddressSpaceType *DAST =
4780       dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4781     mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4782   } else {
4783     mangleQualifiers(parm->getType().getQualifiers());
4784   }
4785 
4786   // Parameter index.
4787   if (parmIndex != 0) {
4788     Out << (parmIndex - 1);
4789   }
4790   Out << '_';
4791 }
4792 
4793 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4794                                        const CXXRecordDecl *InheritedFrom) {
4795   // <ctor-dtor-name> ::= C1  # complete object constructor
4796   //                  ::= C2  # base object constructor
4797   //                  ::= CI1 <type> # complete inheriting constructor
4798   //                  ::= CI2 <type> # base inheriting constructor
4799   //
4800   // In addition, C5 is a comdat name with C1 and C2 in it.
4801   Out << 'C';
4802   if (InheritedFrom)
4803     Out << 'I';
4804   switch (T) {
4805   case Ctor_Complete:
4806     Out << '1';
4807     break;
4808   case Ctor_Base:
4809     Out << '2';
4810     break;
4811   case Ctor_Comdat:
4812     Out << '5';
4813     break;
4814   case Ctor_DefaultClosure:
4815   case Ctor_CopyingClosure:
4816     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4817   }
4818   if (InheritedFrom)
4819     mangleName(InheritedFrom);
4820 }
4821 
4822 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4823   // <ctor-dtor-name> ::= D0  # deleting destructor
4824   //                  ::= D1  # complete object destructor
4825   //                  ::= D2  # base object destructor
4826   //
4827   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4828   switch (T) {
4829   case Dtor_Deleting:
4830     Out << "D0";
4831     break;
4832   case Dtor_Complete:
4833     Out << "D1";
4834     break;
4835   case Dtor_Base:
4836     Out << "D2";
4837     break;
4838   case Dtor_Comdat:
4839     Out << "D5";
4840     break;
4841   }
4842 }
4843 
4844 namespace {
4845 // Helper to provide ancillary information on a template used to mangle its
4846 // arguments.
4847 struct TemplateArgManglingInfo {
4848   TemplateDecl *ResolvedTemplate = nullptr;
4849   bool SeenPackExpansionIntoNonPack = false;
4850   const NamedDecl *UnresolvedExpandedPack = nullptr;
4851 
4852   TemplateArgManglingInfo(TemplateName TN) {
4853     if (TemplateDecl *TD = TN.getAsTemplateDecl())
4854       ResolvedTemplate = TD;
4855   }
4856 
4857   /// Do we need to mangle template arguments with exactly correct types?
4858   ///
4859   /// This should be called exactly once for each parameter / argument pair, in
4860   /// order.
4861   bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) {
4862     // We need correct types when the template-name is unresolved or when it
4863     // names a template that is able to be overloaded.
4864     if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
4865       return true;
4866 
4867     // Move to the next parameter.
4868     const NamedDecl *Param = UnresolvedExpandedPack;
4869     if (!Param) {
4870       assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
4871              "no parameter for argument");
4872       Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
4873 
4874       // If we reach an expanded parameter pack whose argument isn't in pack
4875       // form, that means Sema couldn't figure out which arguments belonged to
4876       // it, because it contains a pack expansion. Track the expanded pack for
4877       // all further template arguments until we hit that pack expansion.
4878       if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
4879         assert(getExpandedPackSize(Param) &&
4880                "failed to form pack argument for parameter pack");
4881         UnresolvedExpandedPack = Param;
4882       }
4883     }
4884 
4885     // If we encounter a pack argument that is expanded into a non-pack
4886     // parameter, we can no longer track parameter / argument correspondence,
4887     // and need to use exact types from this point onwards.
4888     if (Arg.isPackExpansion() &&
4889         (!Param->isParameterPack() || UnresolvedExpandedPack)) {
4890       SeenPackExpansionIntoNonPack = true;
4891       return true;
4892     }
4893 
4894     // We need exact types for function template arguments because they might be
4895     // overloaded on template parameter type. As a special case, a member
4896     // function template of a generic lambda is not overloadable.
4897     if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) {
4898       auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
4899       if (!RD || !RD->isGenericLambda())
4900         return true;
4901     }
4902 
4903     // Otherwise, we only need a correct type if the parameter has a deduced
4904     // type.
4905     //
4906     // Note: for an expanded parameter pack, getType() returns the type prior
4907     // to expansion. We could ask for the expanded type with getExpansionType(),
4908     // but it doesn't matter because substitution and expansion don't affect
4909     // whether a deduced type appears in the type.
4910     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
4911     return NTTP && NTTP->getType()->getContainedDeducedType();
4912   }
4913 };
4914 }
4915 
4916 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
4917                                         const TemplateArgumentLoc *TemplateArgs,
4918                                         unsigned NumTemplateArgs) {
4919   // <template-args> ::= I <template-arg>+ E
4920   Out << 'I';
4921   TemplateArgManglingInfo Info(TN);
4922   for (unsigned i = 0; i != NumTemplateArgs; ++i)
4923     mangleTemplateArg(TemplateArgs[i].getArgument(),
4924                       Info.needExactType(i, TemplateArgs[i].getArgument()));
4925   Out << 'E';
4926 }
4927 
4928 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
4929                                         const TemplateArgumentList &AL) {
4930   // <template-args> ::= I <template-arg>+ E
4931   Out << 'I';
4932   TemplateArgManglingInfo Info(TN);
4933   for (unsigned i = 0, e = AL.size(); i != e; ++i)
4934     mangleTemplateArg(AL[i], Info.needExactType(i, AL[i]));
4935   Out << 'E';
4936 }
4937 
4938 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
4939                                         const TemplateArgument *TemplateArgs,
4940                                         unsigned NumTemplateArgs) {
4941   // <template-args> ::= I <template-arg>+ E
4942   Out << 'I';
4943   TemplateArgManglingInfo Info(TN);
4944   for (unsigned i = 0; i != NumTemplateArgs; ++i)
4945     mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i]));
4946   Out << 'E';
4947 }
4948 
4949 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
4950   // <template-arg> ::= <type>              # type or template
4951   //                ::= X <expression> E    # expression
4952   //                ::= <expr-primary>      # simple expressions
4953   //                ::= J <template-arg>* E # argument pack
4954   if (!A.isInstantiationDependent() || A.isDependent())
4955     A = Context.getASTContext().getCanonicalTemplateArgument(A);
4956 
4957   switch (A.getKind()) {
4958   case TemplateArgument::Null:
4959     llvm_unreachable("Cannot mangle NULL template argument");
4960 
4961   case TemplateArgument::Type:
4962     mangleType(A.getAsType());
4963     break;
4964   case TemplateArgument::Template:
4965     // This is mangled as <type>.
4966     mangleType(A.getAsTemplate());
4967     break;
4968   case TemplateArgument::TemplateExpansion:
4969     // <type>  ::= Dp <type>          # pack expansion (C++0x)
4970     Out << "Dp";
4971     mangleType(A.getAsTemplateOrTemplatePattern());
4972     break;
4973   case TemplateArgument::Expression: {
4974     // It's possible to end up with a DeclRefExpr here in certain
4975     // dependent cases, in which case we should mangle as a
4976     // declaration.
4977     const Expr *E = A.getAsExpr()->IgnoreParenImpCasts();
4978     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4979       const ValueDecl *D = DRE->getDecl();
4980       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4981         Out << 'L';
4982         mangle(D);
4983         Out << 'E';
4984         break;
4985       }
4986     }
4987 
4988     Out << 'X';
4989     mangleExpression(E);
4990     Out << 'E';
4991     break;
4992   }
4993   case TemplateArgument::Integral:
4994     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4995     break;
4996   case TemplateArgument::Declaration: {
4997     //  <expr-primary> ::= L <mangled-name> E # external name
4998     ValueDecl *D = A.getAsDecl();
4999 
5000     // Template parameter objects are modeled by reproducing a source form
5001     // produced as if by aggregate initialization.
5002     if (A.getParamTypeForDecl()->isRecordType()) {
5003       auto *TPO = cast<TemplateParamObjectDecl>(D);
5004       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
5005                                TPO->getValue(), /*TopLevel=*/true,
5006                                NeedExactType);
5007       break;
5008     }
5009 
5010     ASTContext &Ctx = Context.getASTContext();
5011     APValue Value;
5012     if (D->isCXXInstanceMember())
5013       // Simple pointer-to-member with no conversion.
5014       Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
5015     else if (D->getType()->isArrayType() &&
5016              Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
5017                                 A.getParamTypeForDecl()) &&
5018              Ctx.getLangOpts().getClangABICompat() >
5019                  LangOptions::ClangABI::Ver11)
5020       // Build a value corresponding to this implicit array-to-pointer decay.
5021       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5022                       {APValue::LValuePathEntry::ArrayIndex(0)},
5023                       /*OnePastTheEnd=*/false);
5024     else
5025       // Regular pointer or reference to a declaration.
5026       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5027                       ArrayRef<APValue::LValuePathEntry>(),
5028                       /*OnePastTheEnd=*/false);
5029     mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
5030                              NeedExactType);
5031     break;
5032   }
5033   case TemplateArgument::NullPtr: {
5034     mangleNullPointer(A.getNullPtrType());
5035     break;
5036   }
5037   case TemplateArgument::Pack: {
5038     //  <template-arg> ::= J <template-arg>* E
5039     Out << 'J';
5040     for (const auto &P : A.pack_elements())
5041       mangleTemplateArg(P, NeedExactType);
5042     Out << 'E';
5043   }
5044   }
5045 }
5046 
5047 /// Determine whether a given value is equivalent to zero-initialization for
5048 /// the purpose of discarding a trailing portion of a 'tl' mangling.
5049 ///
5050 /// Note that this is not in general equivalent to determining whether the
5051 /// value has an all-zeroes bit pattern.
5052 static bool isZeroInitialized(QualType T, const APValue &V) {
5053   // FIXME: mangleValueInTemplateArg has quadratic time complexity in
5054   // pathological cases due to using this, but it's a little awkward
5055   // to do this in linear time in general.
5056   switch (V.getKind()) {
5057   case APValue::None:
5058   case APValue::Indeterminate:
5059   case APValue::AddrLabelDiff:
5060     return false;
5061 
5062   case APValue::Struct: {
5063     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5064     assert(RD && "unexpected type for record value");
5065     unsigned I = 0;
5066     for (const CXXBaseSpecifier &BS : RD->bases()) {
5067       if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
5068         return false;
5069       ++I;
5070     }
5071     I = 0;
5072     for (const FieldDecl *FD : RD->fields()) {
5073       if (!FD->isUnnamedBitfield() &&
5074           !isZeroInitialized(FD->getType(), V.getStructField(I)))
5075         return false;
5076       ++I;
5077     }
5078     return true;
5079   }
5080 
5081   case APValue::Union: {
5082     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5083     assert(RD && "unexpected type for union value");
5084     // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
5085     for (const FieldDecl *FD : RD->fields()) {
5086       if (!FD->isUnnamedBitfield())
5087         return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
5088                isZeroInitialized(FD->getType(), V.getUnionValue());
5089     }
5090     // If there are no fields (other than unnamed bitfields), the value is
5091     // necessarily zero-initialized.
5092     return true;
5093   }
5094 
5095   case APValue::Array: {
5096     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5097     for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
5098       if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
5099         return false;
5100     return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
5101   }
5102 
5103   case APValue::Vector: {
5104     const VectorType *VT = T->castAs<VectorType>();
5105     for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
5106       if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
5107         return false;
5108     return true;
5109   }
5110 
5111   case APValue::Int:
5112     return !V.getInt();
5113 
5114   case APValue::Float:
5115     return V.getFloat().isPosZero();
5116 
5117   case APValue::FixedPoint:
5118     return !V.getFixedPoint().getValue();
5119 
5120   case APValue::ComplexFloat:
5121     return V.getComplexFloatReal().isPosZero() &&
5122            V.getComplexFloatImag().isPosZero();
5123 
5124   case APValue::ComplexInt:
5125     return !V.getComplexIntReal() && !V.getComplexIntImag();
5126 
5127   case APValue::LValue:
5128     return V.isNullPointer();
5129 
5130   case APValue::MemberPointer:
5131     return !V.getMemberPointerDecl();
5132   }
5133 
5134   llvm_unreachable("Unhandled APValue::ValueKind enum");
5135 }
5136 
5137 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
5138   QualType T = LV.getLValueBase().getType();
5139   for (APValue::LValuePathEntry E : LV.getLValuePath()) {
5140     if (const ArrayType *AT = Ctx.getAsArrayType(T))
5141       T = AT->getElementType();
5142     else if (const FieldDecl *FD =
5143                  dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
5144       T = FD->getType();
5145     else
5146       T = Ctx.getRecordType(
5147           cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
5148   }
5149   return T;
5150 }
5151 
5152 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
5153                                               bool TopLevel,
5154                                               bool NeedExactType) {
5155   // Ignore all top-level cv-qualifiers, to match GCC.
5156   Qualifiers Quals;
5157   T = getASTContext().getUnqualifiedArrayType(T, Quals);
5158 
5159   // A top-level expression that's not a primary expression is wrapped in X...E.
5160   bool IsPrimaryExpr = true;
5161   auto NotPrimaryExpr = [&] {
5162     if (TopLevel && IsPrimaryExpr)
5163       Out << 'X';
5164     IsPrimaryExpr = false;
5165   };
5166 
5167   // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
5168   switch (V.getKind()) {
5169   case APValue::None:
5170   case APValue::Indeterminate:
5171     Out << 'L';
5172     mangleType(T);
5173     Out << 'E';
5174     break;
5175 
5176   case APValue::AddrLabelDiff:
5177     llvm_unreachable("unexpected value kind in template argument");
5178 
5179   case APValue::Struct: {
5180     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5181     assert(RD && "unexpected type for record value");
5182 
5183     // Drop trailing zero-initialized elements.
5184     llvm::SmallVector<const FieldDecl *, 16> Fields(RD->field_begin(),
5185                                                     RD->field_end());
5186     while (
5187         !Fields.empty() &&
5188         (Fields.back()->isUnnamedBitfield() ||
5189          isZeroInitialized(Fields.back()->getType(),
5190                            V.getStructField(Fields.back()->getFieldIndex())))) {
5191       Fields.pop_back();
5192     }
5193     llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end());
5194     if (Fields.empty()) {
5195       while (!Bases.empty() &&
5196              isZeroInitialized(Bases.back().getType(),
5197                                V.getStructBase(Bases.size() - 1)))
5198         Bases = Bases.drop_back();
5199     }
5200 
5201     // <expression> ::= tl <type> <braced-expression>* E
5202     NotPrimaryExpr();
5203     Out << "tl";
5204     mangleType(T);
5205     for (unsigned I = 0, N = Bases.size(); I != N; ++I)
5206       mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
5207     for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
5208       if (Fields[I]->isUnnamedBitfield())
5209         continue;
5210       mangleValueInTemplateArg(Fields[I]->getType(),
5211                                V.getStructField(Fields[I]->getFieldIndex()),
5212                                false);
5213     }
5214     Out << 'E';
5215     break;
5216   }
5217 
5218   case APValue::Union: {
5219     assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
5220     const FieldDecl *FD = V.getUnionField();
5221 
5222     if (!FD) {
5223       Out << 'L';
5224       mangleType(T);
5225       Out << 'E';
5226       break;
5227     }
5228 
5229     // <braced-expression> ::= di <field source-name> <braced-expression>
5230     NotPrimaryExpr();
5231     Out << "tl";
5232     mangleType(T);
5233     if (!isZeroInitialized(T, V)) {
5234       Out << "di";
5235       mangleSourceName(FD->getIdentifier());
5236       mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
5237     }
5238     Out << 'E';
5239     break;
5240   }
5241 
5242   case APValue::Array: {
5243     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5244 
5245     NotPrimaryExpr();
5246     Out << "tl";
5247     mangleType(T);
5248 
5249     // Drop trailing zero-initialized elements.
5250     unsigned N = V.getArraySize();
5251     if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
5252       N = V.getArrayInitializedElts();
5253       while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
5254         --N;
5255     }
5256 
5257     for (unsigned I = 0; I != N; ++I) {
5258       const APValue &Elem = I < V.getArrayInitializedElts()
5259                                 ? V.getArrayInitializedElt(I)
5260                                 : V.getArrayFiller();
5261       mangleValueInTemplateArg(ElemT, Elem, false);
5262     }
5263     Out << 'E';
5264     break;
5265   }
5266 
5267   case APValue::Vector: {
5268     const VectorType *VT = T->castAs<VectorType>();
5269 
5270     NotPrimaryExpr();
5271     Out << "tl";
5272     mangleType(T);
5273     unsigned N = V.getVectorLength();
5274     while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
5275       --N;
5276     for (unsigned I = 0; I != N; ++I)
5277       mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
5278     Out << 'E';
5279     break;
5280   }
5281 
5282   case APValue::Int:
5283     mangleIntegerLiteral(T, V.getInt());
5284     break;
5285 
5286   case APValue::Float:
5287     mangleFloatLiteral(T, V.getFloat());
5288     break;
5289 
5290   case APValue::FixedPoint:
5291     mangleFixedPointLiteral();
5292     break;
5293 
5294   case APValue::ComplexFloat: {
5295     const ComplexType *CT = T->castAs<ComplexType>();
5296     NotPrimaryExpr();
5297     Out << "tl";
5298     mangleType(T);
5299     if (!V.getComplexFloatReal().isPosZero() ||
5300         !V.getComplexFloatImag().isPosZero())
5301       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
5302     if (!V.getComplexFloatImag().isPosZero())
5303       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
5304     Out << 'E';
5305     break;
5306   }
5307 
5308   case APValue::ComplexInt: {
5309     const ComplexType *CT = T->castAs<ComplexType>();
5310     NotPrimaryExpr();
5311     Out << "tl";
5312     mangleType(T);
5313     if (V.getComplexIntReal().getBoolValue() ||
5314         V.getComplexIntImag().getBoolValue())
5315       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
5316     if (V.getComplexIntImag().getBoolValue())
5317       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
5318     Out << 'E';
5319     break;
5320   }
5321 
5322   case APValue::LValue: {
5323     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5324     assert((T->isPointerType() || T->isReferenceType()) &&
5325            "unexpected type for LValue template arg");
5326 
5327     if (V.isNullPointer()) {
5328       mangleNullPointer(T);
5329       break;
5330     }
5331 
5332     APValue::LValueBase B = V.getLValueBase();
5333     if (!B) {
5334       // Non-standard mangling for integer cast to a pointer; this can only
5335       // occur as an extension.
5336       CharUnits Offset = V.getLValueOffset();
5337       if (Offset.isZero()) {
5338         // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
5339         // a cast, because L <type> 0 E means something else.
5340         NotPrimaryExpr();
5341         Out << "rc";
5342         mangleType(T);
5343         Out << "Li0E";
5344         if (TopLevel)
5345           Out << 'E';
5346       } else {
5347         Out << "L";
5348         mangleType(T);
5349         Out << Offset.getQuantity() << 'E';
5350       }
5351       break;
5352     }
5353 
5354     ASTContext &Ctx = Context.getASTContext();
5355 
5356     enum { Base, Offset, Path } Kind;
5357     if (!V.hasLValuePath()) {
5358       // Mangle as (T*)((char*)&base + N).
5359       if (T->isReferenceType()) {
5360         NotPrimaryExpr();
5361         Out << "decvP";
5362         mangleType(T->getPointeeType());
5363       } else {
5364         NotPrimaryExpr();
5365         Out << "cv";
5366         mangleType(T);
5367       }
5368       Out << "plcvPcad";
5369       Kind = Offset;
5370     } else {
5371       if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) {
5372         NotPrimaryExpr();
5373         // A final conversion to the template parameter's type is usually
5374         // folded into the 'so' mangling, but we can't do that for 'void*'
5375         // parameters without introducing collisions.
5376         if (NeedExactType && T->isVoidPointerType()) {
5377           Out << "cv";
5378           mangleType(T);
5379         }
5380         if (T->isPointerType())
5381           Out << "ad";
5382         Out << "so";
5383         mangleType(T->isVoidPointerType()
5384                        ? getLValueType(Ctx, V).getUnqualifiedType()
5385                        : T->getPointeeType());
5386         Kind = Path;
5387       } else {
5388         if (NeedExactType &&
5389             !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
5390             Ctx.getLangOpts().getClangABICompat() >
5391                 LangOptions::ClangABI::Ver11) {
5392           NotPrimaryExpr();
5393           Out << "cv";
5394           mangleType(T);
5395         }
5396         if (T->isPointerType()) {
5397           NotPrimaryExpr();
5398           Out << "ad";
5399         }
5400         Kind = Base;
5401       }
5402     }
5403 
5404     QualType TypeSoFar = B.getType();
5405     if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
5406       Out << 'L';
5407       mangle(VD);
5408       Out << 'E';
5409     } else if (auto *E = B.dyn_cast<const Expr*>()) {
5410       NotPrimaryExpr();
5411       mangleExpression(E);
5412     } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
5413       NotPrimaryExpr();
5414       Out << "ti";
5415       mangleType(QualType(TI.getType(), 0));
5416     } else {
5417       // We should never see dynamic allocations here.
5418       llvm_unreachable("unexpected lvalue base kind in template argument");
5419     }
5420 
5421     switch (Kind) {
5422     case Base:
5423       break;
5424 
5425     case Offset:
5426       Out << 'L';
5427       mangleType(Ctx.getPointerDiffType());
5428       mangleNumber(V.getLValueOffset().getQuantity());
5429       Out << 'E';
5430       break;
5431 
5432     case Path:
5433       // <expression> ::= so <referent type> <expr> [<offset number>]
5434       //                  <union-selector>* [p] E
5435       if (!V.getLValueOffset().isZero())
5436         mangleNumber(V.getLValueOffset().getQuantity());
5437 
5438       // We model a past-the-end array pointer as array indexing with index N,
5439       // not with the "past the end" flag. Compensate for that.
5440       bool OnePastTheEnd = V.isLValueOnePastTheEnd();
5441 
5442       for (APValue::LValuePathEntry E : V.getLValuePath()) {
5443         if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
5444           if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
5445             OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
5446           TypeSoFar = AT->getElementType();
5447         } else {
5448           const Decl *D = E.getAsBaseOrMember().getPointer();
5449           if (auto *FD = dyn_cast<FieldDecl>(D)) {
5450             // <union-selector> ::= _ <number>
5451             if (FD->getParent()->isUnion()) {
5452               Out << '_';
5453               if (FD->getFieldIndex())
5454                 Out << (FD->getFieldIndex() - 1);
5455             }
5456             TypeSoFar = FD->getType();
5457           } else {
5458             TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
5459           }
5460         }
5461       }
5462 
5463       if (OnePastTheEnd)
5464         Out << 'p';
5465       Out << 'E';
5466       break;
5467     }
5468 
5469     break;
5470   }
5471 
5472   case APValue::MemberPointer:
5473     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5474     if (!V.getMemberPointerDecl()) {
5475       mangleNullPointer(T);
5476       break;
5477     }
5478 
5479     ASTContext &Ctx = Context.getASTContext();
5480 
5481     NotPrimaryExpr();
5482     if (!V.getMemberPointerPath().empty()) {
5483       Out << "mc";
5484       mangleType(T);
5485     } else if (NeedExactType &&
5486                !Ctx.hasSameType(
5487                    T->castAs<MemberPointerType>()->getPointeeType(),
5488                    V.getMemberPointerDecl()->getType()) &&
5489                Ctx.getLangOpts().getClangABICompat() >
5490                    LangOptions::ClangABI::Ver11) {
5491       Out << "cv";
5492       mangleType(T);
5493     }
5494     Out << "adL";
5495     mangle(V.getMemberPointerDecl());
5496     Out << 'E';
5497     if (!V.getMemberPointerPath().empty()) {
5498       CharUnits Offset =
5499           Context.getASTContext().getMemberPointerPathAdjustment(V);
5500       if (!Offset.isZero())
5501         mangleNumber(Offset.getQuantity());
5502       Out << 'E';
5503     }
5504     break;
5505   }
5506 
5507   if (TopLevel && !IsPrimaryExpr)
5508     Out << 'E';
5509 }
5510 
5511 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
5512   // <template-param> ::= T_    # first template parameter
5513   //                  ::= T <parameter-2 non-negative number> _
5514   //                  ::= TL <L-1 non-negative number> __
5515   //                  ::= TL <L-1 non-negative number> _
5516   //                         <parameter-2 non-negative number> _
5517   //
5518   // The latter two manglings are from a proposal here:
5519   // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
5520   Out << 'T';
5521   if (Depth != 0)
5522     Out << 'L' << (Depth - 1) << '_';
5523   if (Index != 0)
5524     Out << (Index - 1);
5525   Out << '_';
5526 }
5527 
5528 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
5529   if (SeqID == 1)
5530     Out << '0';
5531   else if (SeqID > 1) {
5532     SeqID--;
5533 
5534     // <seq-id> is encoded in base-36, using digits and upper case letters.
5535     char Buffer[7]; // log(2**32) / log(36) ~= 7
5536     MutableArrayRef<char> BufferRef(Buffer);
5537     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
5538 
5539     for (; SeqID != 0; SeqID /= 36) {
5540       unsigned C = SeqID % 36;
5541       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
5542     }
5543 
5544     Out.write(I.base(), I - BufferRef.rbegin());
5545   }
5546   Out << '_';
5547 }
5548 
5549 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
5550   bool result = mangleSubstitution(tname);
5551   assert(result && "no existing substitution for template name");
5552   (void) result;
5553 }
5554 
5555 // <substitution> ::= S <seq-id> _
5556 //                ::= S_
5557 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
5558   // Try one of the standard substitutions first.
5559   if (mangleStandardSubstitution(ND))
5560     return true;
5561 
5562   ND = cast<NamedDecl>(ND->getCanonicalDecl());
5563   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
5564 }
5565 
5566 /// Determine whether the given type has any qualifiers that are relevant for
5567 /// substitutions.
5568 static bool hasMangledSubstitutionQualifiers(QualType T) {
5569   Qualifiers Qs = T.getQualifiers();
5570   return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
5571 }
5572 
5573 bool CXXNameMangler::mangleSubstitution(QualType T) {
5574   if (!hasMangledSubstitutionQualifiers(T)) {
5575     if (const RecordType *RT = T->getAs<RecordType>())
5576       return mangleSubstitution(RT->getDecl());
5577   }
5578 
5579   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
5580 
5581   return mangleSubstitution(TypePtr);
5582 }
5583 
5584 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
5585   if (TemplateDecl *TD = Template.getAsTemplateDecl())
5586     return mangleSubstitution(TD);
5587 
5588   Template = Context.getASTContext().getCanonicalTemplateName(Template);
5589   return mangleSubstitution(
5590                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
5591 }
5592 
5593 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
5594   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
5595   if (I == Substitutions.end())
5596     return false;
5597 
5598   unsigned SeqID = I->second;
5599   Out << 'S';
5600   mangleSeqID(SeqID);
5601 
5602   return true;
5603 }
5604 
5605 static bool isCharType(QualType T) {
5606   if (T.isNull())
5607     return false;
5608 
5609   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
5610     T->isSpecificBuiltinType(BuiltinType::Char_U);
5611 }
5612 
5613 /// Returns whether a given type is a template specialization of a given name
5614 /// with a single argument of type char.
5615 static bool isCharSpecialization(QualType T, const char *Name) {
5616   if (T.isNull())
5617     return false;
5618 
5619   const RecordType *RT = T->getAs<RecordType>();
5620   if (!RT)
5621     return false;
5622 
5623   const ClassTemplateSpecializationDecl *SD =
5624     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5625   if (!SD)
5626     return false;
5627 
5628   if (!isStdNamespace(getEffectiveDeclContext(SD)))
5629     return false;
5630 
5631   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5632   if (TemplateArgs.size() != 1)
5633     return false;
5634 
5635   if (!isCharType(TemplateArgs[0].getAsType()))
5636     return false;
5637 
5638   return SD->getIdentifier()->getName() == Name;
5639 }
5640 
5641 template <std::size_t StrLen>
5642 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
5643                                        const char (&Str)[StrLen]) {
5644   if (!SD->getIdentifier()->isStr(Str))
5645     return false;
5646 
5647   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5648   if (TemplateArgs.size() != 2)
5649     return false;
5650 
5651   if (!isCharType(TemplateArgs[0].getAsType()))
5652     return false;
5653 
5654   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
5655     return false;
5656 
5657   return true;
5658 }
5659 
5660 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
5661   // <substitution> ::= St # ::std::
5662   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
5663     if (isStd(NS)) {
5664       Out << "St";
5665       return true;
5666     }
5667   }
5668 
5669   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
5670     if (!isStdNamespace(getEffectiveDeclContext(TD)))
5671       return false;
5672 
5673     // <substitution> ::= Sa # ::std::allocator
5674     if (TD->getIdentifier()->isStr("allocator")) {
5675       Out << "Sa";
5676       return true;
5677     }
5678 
5679     // <<substitution> ::= Sb # ::std::basic_string
5680     if (TD->getIdentifier()->isStr("basic_string")) {
5681       Out << "Sb";
5682       return true;
5683     }
5684   }
5685 
5686   if (const ClassTemplateSpecializationDecl *SD =
5687         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
5688     if (!isStdNamespace(getEffectiveDeclContext(SD)))
5689       return false;
5690 
5691     //    <substitution> ::= Ss # ::std::basic_string<char,
5692     //                            ::std::char_traits<char>,
5693     //                            ::std::allocator<char> >
5694     if (SD->getIdentifier()->isStr("basic_string")) {
5695       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5696 
5697       if (TemplateArgs.size() != 3)
5698         return false;
5699 
5700       if (!isCharType(TemplateArgs[0].getAsType()))
5701         return false;
5702 
5703       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
5704         return false;
5705 
5706       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
5707         return false;
5708 
5709       Out << "Ss";
5710       return true;
5711     }
5712 
5713     //    <substitution> ::= Si # ::std::basic_istream<char,
5714     //                            ::std::char_traits<char> >
5715     if (isStreamCharSpecialization(SD, "basic_istream")) {
5716       Out << "Si";
5717       return true;
5718     }
5719 
5720     //    <substitution> ::= So # ::std::basic_ostream<char,
5721     //                            ::std::char_traits<char> >
5722     if (isStreamCharSpecialization(SD, "basic_ostream")) {
5723       Out << "So";
5724       return true;
5725     }
5726 
5727     //    <substitution> ::= Sd # ::std::basic_iostream<char,
5728     //                            ::std::char_traits<char> >
5729     if (isStreamCharSpecialization(SD, "basic_iostream")) {
5730       Out << "Sd";
5731       return true;
5732     }
5733   }
5734   return false;
5735 }
5736 
5737 void CXXNameMangler::addSubstitution(QualType T) {
5738   if (!hasMangledSubstitutionQualifiers(T)) {
5739     if (const RecordType *RT = T->getAs<RecordType>()) {
5740       addSubstitution(RT->getDecl());
5741       return;
5742     }
5743   }
5744 
5745   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
5746   addSubstitution(TypePtr);
5747 }
5748 
5749 void CXXNameMangler::addSubstitution(TemplateName Template) {
5750   if (TemplateDecl *TD = Template.getAsTemplateDecl())
5751     return addSubstitution(TD);
5752 
5753   Template = Context.getASTContext().getCanonicalTemplateName(Template);
5754   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
5755 }
5756 
5757 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
5758   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
5759   Substitutions[Ptr] = SeqID++;
5760 }
5761 
5762 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
5763   assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
5764   if (Other->SeqID > SeqID) {
5765     Substitutions.swap(Other->Substitutions);
5766     SeqID = Other->SeqID;
5767   }
5768 }
5769 
5770 CXXNameMangler::AbiTagList
5771 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
5772   // When derived abi tags are disabled there is no need to make any list.
5773   if (DisableDerivedAbiTags)
5774     return AbiTagList();
5775 
5776   llvm::raw_null_ostream NullOutStream;
5777   CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
5778   TrackReturnTypeTags.disableDerivedAbiTags();
5779 
5780   const FunctionProtoType *Proto =
5781       cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
5782   FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
5783   TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
5784   TrackReturnTypeTags.mangleType(Proto->getReturnType());
5785   TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
5786   TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
5787 
5788   return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
5789 }
5790 
5791 CXXNameMangler::AbiTagList
5792 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
5793   // When derived abi tags are disabled there is no need to make any list.
5794   if (DisableDerivedAbiTags)
5795     return AbiTagList();
5796 
5797   llvm::raw_null_ostream NullOutStream;
5798   CXXNameMangler TrackVariableType(*this, NullOutStream);
5799   TrackVariableType.disableDerivedAbiTags();
5800 
5801   TrackVariableType.mangleType(VD->getType());
5802 
5803   return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
5804 }
5805 
5806 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
5807                                        const VarDecl *VD) {
5808   llvm::raw_null_ostream NullOutStream;
5809   CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
5810   TrackAbiTags.mangle(VD);
5811   return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
5812 }
5813 
5814 //
5815 
5816 /// Mangles the name of the declaration D and emits that name to the given
5817 /// output stream.
5818 ///
5819 /// If the declaration D requires a mangled name, this routine will emit that
5820 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
5821 /// and this routine will return false. In this case, the caller should just
5822 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
5823 /// name.
5824 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
5825                                              raw_ostream &Out) {
5826   const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
5827   assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) &&
5828          "Invalid mangleName() call, argument is not a variable or function!");
5829 
5830   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
5831                                  getASTContext().getSourceManager(),
5832                                  "Mangling declaration");
5833 
5834   if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
5835     auto Type = GD.getCtorType();
5836     CXXNameMangler Mangler(*this, Out, CD, Type);
5837     return Mangler.mangle(GlobalDecl(CD, Type));
5838   }
5839 
5840   if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
5841     auto Type = GD.getDtorType();
5842     CXXNameMangler Mangler(*this, Out, DD, Type);
5843     return Mangler.mangle(GlobalDecl(DD, Type));
5844   }
5845 
5846   CXXNameMangler Mangler(*this, Out, D);
5847   Mangler.mangle(GD);
5848 }
5849 
5850 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
5851                                                    raw_ostream &Out) {
5852   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
5853   Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
5854 }
5855 
5856 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
5857                                                    raw_ostream &Out) {
5858   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
5859   Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
5860 }
5861 
5862 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
5863                                            const ThunkInfo &Thunk,
5864                                            raw_ostream &Out) {
5865   //  <special-name> ::= T <call-offset> <base encoding>
5866   //                      # base is the nominal target function of thunk
5867   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
5868   //                      # base is the nominal target function of thunk
5869   //                      # first call-offset is 'this' adjustment
5870   //                      # second call-offset is result adjustment
5871 
5872   assert(!isa<CXXDestructorDecl>(MD) &&
5873          "Use mangleCXXDtor for destructor decls!");
5874   CXXNameMangler Mangler(*this, Out);
5875   Mangler.getStream() << "_ZT";
5876   if (!Thunk.Return.isEmpty())
5877     Mangler.getStream() << 'c';
5878 
5879   // Mangle the 'this' pointer adjustment.
5880   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
5881                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
5882 
5883   // Mangle the return pointer adjustment if there is one.
5884   if (!Thunk.Return.isEmpty())
5885     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
5886                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
5887 
5888   Mangler.mangleFunctionEncoding(MD);
5889 }
5890 
5891 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
5892     const CXXDestructorDecl *DD, CXXDtorType Type,
5893     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
5894   //  <special-name> ::= T <call-offset> <base encoding>
5895   //                      # base is the nominal target function of thunk
5896   CXXNameMangler Mangler(*this, Out, DD, Type);
5897   Mangler.getStream() << "_ZT";
5898 
5899   // Mangle the 'this' pointer adjustment.
5900   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
5901                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
5902 
5903   Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
5904 }
5905 
5906 /// Returns the mangled name for a guard variable for the passed in VarDecl.
5907 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
5908                                                          raw_ostream &Out) {
5909   //  <special-name> ::= GV <object name>       # Guard variable for one-time
5910   //                                            # initialization
5911   CXXNameMangler Mangler(*this, Out);
5912   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
5913   // be a bug that is fixed in trunk.
5914   Mangler.getStream() << "_ZGV";
5915   Mangler.mangleName(D);
5916 }
5917 
5918 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
5919                                                         raw_ostream &Out) {
5920   // These symbols are internal in the Itanium ABI, so the names don't matter.
5921   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
5922   // avoid duplicate symbols.
5923   Out << "__cxx_global_var_init";
5924 }
5925 
5926 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
5927                                                              raw_ostream &Out) {
5928   // Prefix the mangling of D with __dtor_.
5929   CXXNameMangler Mangler(*this, Out);
5930   Mangler.getStream() << "__dtor_";
5931   if (shouldMangleDeclName(D))
5932     Mangler.mangle(D);
5933   else
5934     Mangler.getStream() << D->getName();
5935 }
5936 
5937 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
5938                                                            raw_ostream &Out) {
5939   // Clang generates these internal-linkage functions as part of its
5940   // implementation of the XL ABI.
5941   CXXNameMangler Mangler(*this, Out);
5942   Mangler.getStream() << "__finalize_";
5943   if (shouldMangleDeclName(D))
5944     Mangler.mangle(D);
5945   else
5946     Mangler.getStream() << D->getName();
5947 }
5948 
5949 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
5950     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5951   CXXNameMangler Mangler(*this, Out);
5952   Mangler.getStream() << "__filt_";
5953   if (shouldMangleDeclName(EnclosingDecl))
5954     Mangler.mangle(EnclosingDecl);
5955   else
5956     Mangler.getStream() << EnclosingDecl->getName();
5957 }
5958 
5959 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
5960     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5961   CXXNameMangler Mangler(*this, Out);
5962   Mangler.getStream() << "__fin_";
5963   if (shouldMangleDeclName(EnclosingDecl))
5964     Mangler.mangle(EnclosingDecl);
5965   else
5966     Mangler.getStream() << EnclosingDecl->getName();
5967 }
5968 
5969 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
5970                                                             raw_ostream &Out) {
5971   //  <special-name> ::= TH <object name>
5972   CXXNameMangler Mangler(*this, Out);
5973   Mangler.getStream() << "_ZTH";
5974   Mangler.mangleName(D);
5975 }
5976 
5977 void
5978 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
5979                                                           raw_ostream &Out) {
5980   //  <special-name> ::= TW <object name>
5981   CXXNameMangler Mangler(*this, Out);
5982   Mangler.getStream() << "_ZTW";
5983   Mangler.mangleName(D);
5984 }
5985 
5986 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
5987                                                         unsigned ManglingNumber,
5988                                                         raw_ostream &Out) {
5989   // We match the GCC mangling here.
5990   //  <special-name> ::= GR <object name>
5991   CXXNameMangler Mangler(*this, Out);
5992   Mangler.getStream() << "_ZGR";
5993   Mangler.mangleName(D);
5994   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
5995   Mangler.mangleSeqID(ManglingNumber - 1);
5996 }
5997 
5998 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
5999                                                raw_ostream &Out) {
6000   // <special-name> ::= TV <type>  # virtual table
6001   CXXNameMangler Mangler(*this, Out);
6002   Mangler.getStream() << "_ZTV";
6003   Mangler.mangleNameOrStandardSubstitution(RD);
6004 }
6005 
6006 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
6007                                             raw_ostream &Out) {
6008   // <special-name> ::= TT <type>  # VTT structure
6009   CXXNameMangler Mangler(*this, Out);
6010   Mangler.getStream() << "_ZTT";
6011   Mangler.mangleNameOrStandardSubstitution(RD);
6012 }
6013 
6014 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
6015                                                    int64_t Offset,
6016                                                    const CXXRecordDecl *Type,
6017                                                    raw_ostream &Out) {
6018   // <special-name> ::= TC <type> <offset number> _ <base type>
6019   CXXNameMangler Mangler(*this, Out);
6020   Mangler.getStream() << "_ZTC";
6021   Mangler.mangleNameOrStandardSubstitution(RD);
6022   Mangler.getStream() << Offset;
6023   Mangler.getStream() << '_';
6024   Mangler.mangleNameOrStandardSubstitution(Type);
6025 }
6026 
6027 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
6028   // <special-name> ::= TI <type>  # typeinfo structure
6029   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
6030   CXXNameMangler Mangler(*this, Out);
6031   Mangler.getStream() << "_ZTI";
6032   Mangler.mangleType(Ty);
6033 }
6034 
6035 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
6036                                                  raw_ostream &Out) {
6037   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
6038   CXXNameMangler Mangler(*this, Out);
6039   Mangler.getStream() << "_ZTS";
6040   Mangler.mangleType(Ty);
6041 }
6042 
6043 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
6044   mangleCXXRTTIName(Ty, Out);
6045 }
6046 
6047 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
6048   llvm_unreachable("Can't mangle string literals");
6049 }
6050 
6051 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
6052                                                raw_ostream &Out) {
6053   CXXNameMangler Mangler(*this, Out);
6054   Mangler.mangleLambdaSig(Lambda);
6055 }
6056 
6057 ItaniumMangleContext *
6058 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
6059   return new ItaniumMangleContextImpl(Context, Diags);
6060 }
6061