xref: /freebsd-src/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp (revision 1838bd0f4839006b42d41a02a787b7f578655223)
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 //  * A success/failure flag indicating whether constant folding was successful.
14 //    This is the 'bool' return value used by most of the code in this file. A
15 //    'false' return value indicates that constant folding has failed, and any
16 //    appropriate diagnostic has already been produced.
17 //
18 //  * An evaluated result, valid only if constant folding has not failed.
19 //
20 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 //    where it is possible to determine the evaluated result regardless.
23 //
24 //  * A set of notes indicating why the evaluation was not a constant expression
25 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 //    too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "llvm/ADT/APFixedPoint.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/SaveAndRestore.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cstring>
61 #include <functional>
62 
63 #define DEBUG_TYPE "exprconstant"
64 
65 using namespace clang;
66 using llvm::APFixedPoint;
67 using llvm::APInt;
68 using llvm::APSInt;
69 using llvm::APFloat;
70 using llvm::FixedPointSemantics;
71 using llvm::Optional;
72 
73 namespace {
74   struct LValue;
75   class CallStackFrame;
76   class EvalInfo;
77 
78   using SourceLocExprScopeGuard =
79       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
80 
81   static QualType getType(APValue::LValueBase B) {
82     return B.getType();
83   }
84 
85   /// Get an LValue path entry, which is known to not be an array index, as a
86   /// field declaration.
87   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
88     return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
89   }
90   /// Get an LValue path entry, which is known to not be an array index, as a
91   /// base class declaration.
92   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
93     return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
94   }
95   /// Determine whether this LValue path entry for a base class names a virtual
96   /// base class.
97   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
98     return E.getAsBaseOrMember().getInt();
99   }
100 
101   /// Given an expression, determine the type used to store the result of
102   /// evaluating that expression.
103   static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
104     if (E->isPRValue())
105       return E->getType();
106     return Ctx.getLValueReferenceType(E->getType());
107   }
108 
109   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
110   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
111     if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
112       return DirectCallee->getAttr<AllocSizeAttr>();
113     if (const Decl *IndirectCallee = CE->getCalleeDecl())
114       return IndirectCallee->getAttr<AllocSizeAttr>();
115     return nullptr;
116   }
117 
118   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
119   /// This will look through a single cast.
120   ///
121   /// Returns null if we couldn't unwrap a function with alloc_size.
122   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
123     if (!E->getType()->isPointerType())
124       return nullptr;
125 
126     E = E->IgnoreParens();
127     // If we're doing a variable assignment from e.g. malloc(N), there will
128     // probably be a cast of some kind. In exotic cases, we might also see a
129     // top-level ExprWithCleanups. Ignore them either way.
130     if (const auto *FE = dyn_cast<FullExpr>(E))
131       E = FE->getSubExpr()->IgnoreParens();
132 
133     if (const auto *Cast = dyn_cast<CastExpr>(E))
134       E = Cast->getSubExpr()->IgnoreParens();
135 
136     if (const auto *CE = dyn_cast<CallExpr>(E))
137       return getAllocSizeAttr(CE) ? CE : nullptr;
138     return nullptr;
139   }
140 
141   /// Determines whether or not the given Base contains a call to a function
142   /// with the alloc_size attribute.
143   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
144     const auto *E = Base.dyn_cast<const Expr *>();
145     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
146   }
147 
148   /// Determines whether the given kind of constant expression is only ever
149   /// used for name mangling. If so, it's permitted to reference things that we
150   /// can't generate code for (in particular, dllimported functions).
151   static bool isForManglingOnly(ConstantExprKind Kind) {
152     switch (Kind) {
153     case ConstantExprKind::Normal:
154     case ConstantExprKind::ClassTemplateArgument:
155     case ConstantExprKind::ImmediateInvocation:
156       // Note that non-type template arguments of class type are emitted as
157       // template parameter objects.
158       return false;
159 
160     case ConstantExprKind::NonClassTemplateArgument:
161       return true;
162     }
163     llvm_unreachable("unknown ConstantExprKind");
164   }
165 
166   static bool isTemplateArgument(ConstantExprKind Kind) {
167     switch (Kind) {
168     case ConstantExprKind::Normal:
169     case ConstantExprKind::ImmediateInvocation:
170       return false;
171 
172     case ConstantExprKind::ClassTemplateArgument:
173     case ConstantExprKind::NonClassTemplateArgument:
174       return true;
175     }
176     llvm_unreachable("unknown ConstantExprKind");
177   }
178 
179   /// The bound to claim that an array of unknown bound has.
180   /// The value in MostDerivedArraySize is undefined in this case. So, set it
181   /// to an arbitrary value that's likely to loudly break things if it's used.
182   static const uint64_t AssumedSizeForUnsizedArray =
183       std::numeric_limits<uint64_t>::max() / 2;
184 
185   /// Determines if an LValue with the given LValueBase will have an unsized
186   /// array in its designator.
187   /// Find the path length and type of the most-derived subobject in the given
188   /// path, and find the size of the containing array, if any.
189   static unsigned
190   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
191                            ArrayRef<APValue::LValuePathEntry> Path,
192                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
193                            bool &FirstEntryIsUnsizedArray) {
194     // This only accepts LValueBases from APValues, and APValues don't support
195     // arrays that lack size info.
196     assert(!isBaseAnAllocSizeCall(Base) &&
197            "Unsized arrays shouldn't appear here");
198     unsigned MostDerivedLength = 0;
199     Type = getType(Base);
200 
201     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
202       if (Type->isArrayType()) {
203         const ArrayType *AT = Ctx.getAsArrayType(Type);
204         Type = AT->getElementType();
205         MostDerivedLength = I + 1;
206         IsArray = true;
207 
208         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
209           ArraySize = CAT->getSize().getZExtValue();
210         } else {
211           assert(I == 0 && "unexpected unsized array designator");
212           FirstEntryIsUnsizedArray = true;
213           ArraySize = AssumedSizeForUnsizedArray;
214         }
215       } else if (Type->isAnyComplexType()) {
216         const ComplexType *CT = Type->castAs<ComplexType>();
217         Type = CT->getElementType();
218         ArraySize = 2;
219         MostDerivedLength = I + 1;
220         IsArray = true;
221       } else if (const FieldDecl *FD = getAsField(Path[I])) {
222         Type = FD->getType();
223         ArraySize = 0;
224         MostDerivedLength = I + 1;
225         IsArray = false;
226       } else {
227         // Path[I] describes a base class.
228         ArraySize = 0;
229         IsArray = false;
230       }
231     }
232     return MostDerivedLength;
233   }
234 
235   /// A path from a glvalue to a subobject of that glvalue.
236   struct SubobjectDesignator {
237     /// True if the subobject was named in a manner not supported by C++11. Such
238     /// lvalues can still be folded, but they are not core constant expressions
239     /// and we cannot perform lvalue-to-rvalue conversions on them.
240     unsigned Invalid : 1;
241 
242     /// Is this a pointer one past the end of an object?
243     unsigned IsOnePastTheEnd : 1;
244 
245     /// Indicator of whether the first entry is an unsized array.
246     unsigned FirstEntryIsAnUnsizedArray : 1;
247 
248     /// Indicator of whether the most-derived object is an array element.
249     unsigned MostDerivedIsArrayElement : 1;
250 
251     /// The length of the path to the most-derived object of which this is a
252     /// subobject.
253     unsigned MostDerivedPathLength : 28;
254 
255     /// The size of the array of which the most-derived object is an element.
256     /// This will always be 0 if the most-derived object is not an array
257     /// element. 0 is not an indicator of whether or not the most-derived object
258     /// is an array, however, because 0-length arrays are allowed.
259     ///
260     /// If the current array is an unsized array, the value of this is
261     /// undefined.
262     uint64_t MostDerivedArraySize;
263 
264     /// The type of the most derived object referred to by this address.
265     QualType MostDerivedType;
266 
267     typedef APValue::LValuePathEntry PathEntry;
268 
269     /// The entries on the path from the glvalue to the designated subobject.
270     SmallVector<PathEntry, 8> Entries;
271 
272     SubobjectDesignator() : Invalid(true) {}
273 
274     explicit SubobjectDesignator(QualType T)
275         : Invalid(false), IsOnePastTheEnd(false),
276           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
277           MostDerivedPathLength(0), MostDerivedArraySize(0),
278           MostDerivedType(T) {}
279 
280     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
281         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
282           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
283           MostDerivedPathLength(0), MostDerivedArraySize(0) {
284       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
285       if (!Invalid) {
286         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
287         ArrayRef<PathEntry> VEntries = V.getLValuePath();
288         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
289         if (V.getLValueBase()) {
290           bool IsArray = false;
291           bool FirstIsUnsizedArray = false;
292           MostDerivedPathLength = findMostDerivedSubobject(
293               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
294               MostDerivedType, IsArray, FirstIsUnsizedArray);
295           MostDerivedIsArrayElement = IsArray;
296           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
297         }
298       }
299     }
300 
301     void truncate(ASTContext &Ctx, APValue::LValueBase Base,
302                   unsigned NewLength) {
303       if (Invalid)
304         return;
305 
306       assert(Base && "cannot truncate path for null pointer");
307       assert(NewLength <= Entries.size() && "not a truncation");
308 
309       if (NewLength == Entries.size())
310         return;
311       Entries.resize(NewLength);
312 
313       bool IsArray = false;
314       bool FirstIsUnsizedArray = false;
315       MostDerivedPathLength = findMostDerivedSubobject(
316           Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
317           FirstIsUnsizedArray);
318       MostDerivedIsArrayElement = IsArray;
319       FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
320     }
321 
322     void setInvalid() {
323       Invalid = true;
324       Entries.clear();
325     }
326 
327     /// Determine whether the most derived subobject is an array without a
328     /// known bound.
329     bool isMostDerivedAnUnsizedArray() const {
330       assert(!Invalid && "Calling this makes no sense on invalid designators");
331       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
332     }
333 
334     /// Determine what the most derived array's size is. Results in an assertion
335     /// failure if the most derived array lacks a size.
336     uint64_t getMostDerivedArraySize() const {
337       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
338       return MostDerivedArraySize;
339     }
340 
341     /// Determine whether this is a one-past-the-end pointer.
342     bool isOnePastTheEnd() const {
343       assert(!Invalid);
344       if (IsOnePastTheEnd)
345         return true;
346       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
347           Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
348               MostDerivedArraySize)
349         return true;
350       return false;
351     }
352 
353     /// Get the range of valid index adjustments in the form
354     ///   {maximum value that can be subtracted from this pointer,
355     ///    maximum value that can be added to this pointer}
356     std::pair<uint64_t, uint64_t> validIndexAdjustments() {
357       if (Invalid || isMostDerivedAnUnsizedArray())
358         return {0, 0};
359 
360       // [expr.add]p4: For the purposes of these operators, a pointer to a
361       // nonarray object behaves the same as a pointer to the first element of
362       // an array of length one with the type of the object as its element type.
363       bool IsArray = MostDerivedPathLength == Entries.size() &&
364                      MostDerivedIsArrayElement;
365       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
366                                     : (uint64_t)IsOnePastTheEnd;
367       uint64_t ArraySize =
368           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
369       return {ArrayIndex, ArraySize - ArrayIndex};
370     }
371 
372     /// Check that this refers to a valid subobject.
373     bool isValidSubobject() const {
374       if (Invalid)
375         return false;
376       return !isOnePastTheEnd();
377     }
378     /// Check that this refers to a valid subobject, and if not, produce a
379     /// relevant diagnostic and set the designator as invalid.
380     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
381 
382     /// Get the type of the designated object.
383     QualType getType(ASTContext &Ctx) const {
384       assert(!Invalid && "invalid designator has no subobject type");
385       return MostDerivedPathLength == Entries.size()
386                  ? MostDerivedType
387                  : Ctx.getRecordType(getAsBaseClass(Entries.back()));
388     }
389 
390     /// Update this designator to refer to the first element within this array.
391     void addArrayUnchecked(const ConstantArrayType *CAT) {
392       Entries.push_back(PathEntry::ArrayIndex(0));
393 
394       // This is a most-derived object.
395       MostDerivedType = CAT->getElementType();
396       MostDerivedIsArrayElement = true;
397       MostDerivedArraySize = CAT->getSize().getZExtValue();
398       MostDerivedPathLength = Entries.size();
399     }
400     /// Update this designator to refer to the first element within the array of
401     /// elements of type T. This is an array of unknown size.
402     void addUnsizedArrayUnchecked(QualType ElemTy) {
403       Entries.push_back(PathEntry::ArrayIndex(0));
404 
405       MostDerivedType = ElemTy;
406       MostDerivedIsArrayElement = true;
407       // The value in MostDerivedArraySize is undefined in this case. So, set it
408       // to an arbitrary value that's likely to loudly break things if it's
409       // used.
410       MostDerivedArraySize = AssumedSizeForUnsizedArray;
411       MostDerivedPathLength = Entries.size();
412     }
413     /// Update this designator to refer to the given base or member of this
414     /// object.
415     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
416       Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
417 
418       // If this isn't a base class, it's a new most-derived object.
419       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
420         MostDerivedType = FD->getType();
421         MostDerivedIsArrayElement = false;
422         MostDerivedArraySize = 0;
423         MostDerivedPathLength = Entries.size();
424       }
425     }
426     /// Update this designator to refer to the given complex component.
427     void addComplexUnchecked(QualType EltTy, bool Imag) {
428       Entries.push_back(PathEntry::ArrayIndex(Imag));
429 
430       // This is technically a most-derived object, though in practice this
431       // is unlikely to matter.
432       MostDerivedType = EltTy;
433       MostDerivedIsArrayElement = true;
434       MostDerivedArraySize = 2;
435       MostDerivedPathLength = Entries.size();
436     }
437     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
438     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
439                                    const APSInt &N);
440     /// Add N to the address of this subobject.
441     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
442       if (Invalid || !N) return;
443       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
444       if (isMostDerivedAnUnsizedArray()) {
445         diagnoseUnsizedArrayPointerArithmetic(Info, E);
446         // Can't verify -- trust that the user is doing the right thing (or if
447         // not, trust that the caller will catch the bad behavior).
448         // FIXME: Should we reject if this overflows, at least?
449         Entries.back() = PathEntry::ArrayIndex(
450             Entries.back().getAsArrayIndex() + TruncatedN);
451         return;
452       }
453 
454       // [expr.add]p4: For the purposes of these operators, a pointer to a
455       // nonarray object behaves the same as a pointer to the first element of
456       // an array of length one with the type of the object as its element type.
457       bool IsArray = MostDerivedPathLength == Entries.size() &&
458                      MostDerivedIsArrayElement;
459       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
460                                     : (uint64_t)IsOnePastTheEnd;
461       uint64_t ArraySize =
462           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
463 
464       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
465         // Calculate the actual index in a wide enough type, so we can include
466         // it in the note.
467         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
468         (llvm::APInt&)N += ArrayIndex;
469         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
470         diagnosePointerArithmetic(Info, E, N);
471         setInvalid();
472         return;
473       }
474 
475       ArrayIndex += TruncatedN;
476       assert(ArrayIndex <= ArraySize &&
477              "bounds check succeeded for out-of-bounds index");
478 
479       if (IsArray)
480         Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
481       else
482         IsOnePastTheEnd = (ArrayIndex != 0);
483     }
484   };
485 
486   /// A scope at the end of which an object can need to be destroyed.
487   enum class ScopeKind {
488     Block,
489     FullExpression,
490     Call
491   };
492 
493   /// A reference to a particular call and its arguments.
494   struct CallRef {
495     CallRef() : OrigCallee(), CallIndex(0), Version() {}
496     CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
497         : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
498 
499     explicit operator bool() const { return OrigCallee; }
500 
501     /// Get the parameter that the caller initialized, corresponding to the
502     /// given parameter in the callee.
503     const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
504       return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
505                         : PVD;
506     }
507 
508     /// The callee at the point where the arguments were evaluated. This might
509     /// be different from the actual callee (a different redeclaration, or a
510     /// virtual override), but this function's parameters are the ones that
511     /// appear in the parameter map.
512     const FunctionDecl *OrigCallee;
513     /// The call index of the frame that holds the argument values.
514     unsigned CallIndex;
515     /// The version of the parameters corresponding to this call.
516     unsigned Version;
517   };
518 
519   /// A stack frame in the constexpr call stack.
520   class CallStackFrame : public interp::Frame {
521   public:
522     EvalInfo &Info;
523 
524     /// Parent - The caller of this stack frame.
525     CallStackFrame *Caller;
526 
527     /// Callee - The function which was called.
528     const FunctionDecl *Callee;
529 
530     /// This - The binding for the this pointer in this call, if any.
531     const LValue *This;
532 
533     /// Information on how to find the arguments to this call. Our arguments
534     /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
535     /// key and this value as the version.
536     CallRef Arguments;
537 
538     /// Source location information about the default argument or default
539     /// initializer expression we're evaluating, if any.
540     CurrentSourceLocExprScope CurSourceLocExprScope;
541 
542     // Note that we intentionally use std::map here so that references to
543     // values are stable.
544     typedef std::pair<const void *, unsigned> MapKeyTy;
545     typedef std::map<MapKeyTy, APValue> MapTy;
546     /// Temporaries - Temporary lvalues materialized within this stack frame.
547     MapTy Temporaries;
548 
549     /// CallLoc - The location of the call expression for this call.
550     SourceLocation CallLoc;
551 
552     /// Index - The call index of this call.
553     unsigned Index;
554 
555     /// The stack of integers for tracking version numbers for temporaries.
556     SmallVector<unsigned, 2> TempVersionStack = {1};
557     unsigned CurTempVersion = TempVersionStack.back();
558 
559     unsigned getTempVersion() const { return TempVersionStack.back(); }
560 
561     void pushTempVersion() {
562       TempVersionStack.push_back(++CurTempVersion);
563     }
564 
565     void popTempVersion() {
566       TempVersionStack.pop_back();
567     }
568 
569     CallRef createCall(const FunctionDecl *Callee) {
570       return {Callee, Index, ++CurTempVersion};
571     }
572 
573     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
574     // on the overall stack usage of deeply-recursing constexpr evaluations.
575     // (We should cache this map rather than recomputing it repeatedly.)
576     // But let's try this and see how it goes; we can look into caching the map
577     // as a later change.
578 
579     /// LambdaCaptureFields - Mapping from captured variables/this to
580     /// corresponding data members in the closure class.
581     llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
582     FieldDecl *LambdaThisCaptureField;
583 
584     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
585                    const FunctionDecl *Callee, const LValue *This,
586                    CallRef Arguments);
587     ~CallStackFrame();
588 
589     // Return the temporary for Key whose version number is Version.
590     APValue *getTemporary(const void *Key, unsigned Version) {
591       MapKeyTy KV(Key, Version);
592       auto LB = Temporaries.lower_bound(KV);
593       if (LB != Temporaries.end() && LB->first == KV)
594         return &LB->second;
595       // Pair (Key,Version) wasn't found in the map. Check that no elements
596       // in the map have 'Key' as their key.
597       assert((LB == Temporaries.end() || LB->first.first != Key) &&
598              (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
599              "Element with key 'Key' found in map");
600       return nullptr;
601     }
602 
603     // Return the current temporary for Key in the map.
604     APValue *getCurrentTemporary(const void *Key) {
605       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
606       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
607         return &std::prev(UB)->second;
608       return nullptr;
609     }
610 
611     // Return the version number of the current temporary for Key.
612     unsigned getCurrentTemporaryVersion(const void *Key) const {
613       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
614       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
615         return std::prev(UB)->first.second;
616       return 0;
617     }
618 
619     /// Allocate storage for an object of type T in this stack frame.
620     /// Populates LV with a handle to the created object. Key identifies
621     /// the temporary within the stack frame, and must not be reused without
622     /// bumping the temporary version number.
623     template<typename KeyT>
624     APValue &createTemporary(const KeyT *Key, QualType T,
625                              ScopeKind Scope, LValue &LV);
626 
627     /// Allocate storage for a parameter of a function call made in this frame.
628     APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
629 
630     void describe(llvm::raw_ostream &OS) override;
631 
632     Frame *getCaller() const override { return Caller; }
633     SourceLocation getCallLocation() const override { return CallLoc; }
634     const FunctionDecl *getCallee() const override { return Callee; }
635 
636     bool isStdFunction() const {
637       for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
638         if (DC->isStdNamespace())
639           return true;
640       return false;
641     }
642 
643   private:
644     APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
645                          ScopeKind Scope);
646   };
647 
648   /// Temporarily override 'this'.
649   class ThisOverrideRAII {
650   public:
651     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
652         : Frame(Frame), OldThis(Frame.This) {
653       if (Enable)
654         Frame.This = NewThis;
655     }
656     ~ThisOverrideRAII() {
657       Frame.This = OldThis;
658     }
659   private:
660     CallStackFrame &Frame;
661     const LValue *OldThis;
662   };
663 }
664 
665 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
666                               const LValue &This, QualType ThisType);
667 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
668                               APValue::LValueBase LVBase, APValue &Value,
669                               QualType T);
670 
671 namespace {
672   /// A cleanup, and a flag indicating whether it is lifetime-extended.
673   class Cleanup {
674     llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
675     APValue::LValueBase Base;
676     QualType T;
677 
678   public:
679     Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
680             ScopeKind Scope)
681         : Value(Val, Scope), Base(Base), T(T) {}
682 
683     /// Determine whether this cleanup should be performed at the end of the
684     /// given kind of scope.
685     bool isDestroyedAtEndOf(ScopeKind K) const {
686       return (int)Value.getInt() >= (int)K;
687     }
688     bool endLifetime(EvalInfo &Info, bool RunDestructors) {
689       if (RunDestructors) {
690         SourceLocation Loc;
691         if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
692           Loc = VD->getLocation();
693         else if (const Expr *E = Base.dyn_cast<const Expr*>())
694           Loc = E->getExprLoc();
695         return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
696       }
697       *Value.getPointer() = APValue();
698       return true;
699     }
700 
701     bool hasSideEffect() {
702       return T.isDestructedType();
703     }
704   };
705 
706   /// A reference to an object whose construction we are currently evaluating.
707   struct ObjectUnderConstruction {
708     APValue::LValueBase Base;
709     ArrayRef<APValue::LValuePathEntry> Path;
710     friend bool operator==(const ObjectUnderConstruction &LHS,
711                            const ObjectUnderConstruction &RHS) {
712       return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
713     }
714     friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
715       return llvm::hash_combine(Obj.Base, Obj.Path);
716     }
717   };
718   enum class ConstructionPhase {
719     None,
720     Bases,
721     AfterBases,
722     AfterFields,
723     Destroying,
724     DestroyingBases
725   };
726 }
727 
728 namespace llvm {
729 template<> struct DenseMapInfo<ObjectUnderConstruction> {
730   using Base = DenseMapInfo<APValue::LValueBase>;
731   static ObjectUnderConstruction getEmptyKey() {
732     return {Base::getEmptyKey(), {}}; }
733   static ObjectUnderConstruction getTombstoneKey() {
734     return {Base::getTombstoneKey(), {}};
735   }
736   static unsigned getHashValue(const ObjectUnderConstruction &Object) {
737     return hash_value(Object);
738   }
739   static bool isEqual(const ObjectUnderConstruction &LHS,
740                       const ObjectUnderConstruction &RHS) {
741     return LHS == RHS;
742   }
743 };
744 }
745 
746 namespace {
747   /// A dynamically-allocated heap object.
748   struct DynAlloc {
749     /// The value of this heap-allocated object.
750     APValue Value;
751     /// The allocating expression; used for diagnostics. Either a CXXNewExpr
752     /// or a CallExpr (the latter is for direct calls to operator new inside
753     /// std::allocator<T>::allocate).
754     const Expr *AllocExpr = nullptr;
755 
756     enum Kind {
757       New,
758       ArrayNew,
759       StdAllocator
760     };
761 
762     /// Get the kind of the allocation. This must match between allocation
763     /// and deallocation.
764     Kind getKind() const {
765       if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
766         return NE->isArray() ? ArrayNew : New;
767       assert(isa<CallExpr>(AllocExpr));
768       return StdAllocator;
769     }
770   };
771 
772   struct DynAllocOrder {
773     bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
774       return L.getIndex() < R.getIndex();
775     }
776   };
777 
778   /// EvalInfo - This is a private struct used by the evaluator to capture
779   /// information about a subexpression as it is folded.  It retains information
780   /// about the AST context, but also maintains information about the folded
781   /// expression.
782   ///
783   /// If an expression could be evaluated, it is still possible it is not a C
784   /// "integer constant expression" or constant expression.  If not, this struct
785   /// captures information about how and why not.
786   ///
787   /// One bit of information passed *into* the request for constant folding
788   /// indicates whether the subexpression is "evaluated" or not according to C
789   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
790   /// evaluate the expression regardless of what the RHS is, but C only allows
791   /// certain things in certain situations.
792   class EvalInfo : public interp::State {
793   public:
794     ASTContext &Ctx;
795 
796     /// EvalStatus - Contains information about the evaluation.
797     Expr::EvalStatus &EvalStatus;
798 
799     /// CurrentCall - The top of the constexpr call stack.
800     CallStackFrame *CurrentCall;
801 
802     /// CallStackDepth - The number of calls in the call stack right now.
803     unsigned CallStackDepth;
804 
805     /// NextCallIndex - The next call index to assign.
806     unsigned NextCallIndex;
807 
808     /// StepsLeft - The remaining number of evaluation steps we're permitted
809     /// to perform. This is essentially a limit for the number of statements
810     /// we will evaluate.
811     unsigned StepsLeft;
812 
813     /// Enable the experimental new constant interpreter. If an expression is
814     /// not supported by the interpreter, an error is triggered.
815     bool EnableNewConstInterp;
816 
817     /// BottomFrame - The frame in which evaluation started. This must be
818     /// initialized after CurrentCall and CallStackDepth.
819     CallStackFrame BottomFrame;
820 
821     /// A stack of values whose lifetimes end at the end of some surrounding
822     /// evaluation frame.
823     llvm::SmallVector<Cleanup, 16> CleanupStack;
824 
825     /// EvaluatingDecl - This is the declaration whose initializer is being
826     /// evaluated, if any.
827     APValue::LValueBase EvaluatingDecl;
828 
829     enum class EvaluatingDeclKind {
830       None,
831       /// We're evaluating the construction of EvaluatingDecl.
832       Ctor,
833       /// We're evaluating the destruction of EvaluatingDecl.
834       Dtor,
835     };
836     EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
837 
838     /// EvaluatingDeclValue - This is the value being constructed for the
839     /// declaration whose initializer is being evaluated, if any.
840     APValue *EvaluatingDeclValue;
841 
842     /// Set of objects that are currently being constructed.
843     llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
844         ObjectsUnderConstruction;
845 
846     /// Current heap allocations, along with the location where each was
847     /// allocated. We use std::map here because we need stable addresses
848     /// for the stored APValues.
849     std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
850 
851     /// The number of heap allocations performed so far in this evaluation.
852     unsigned NumHeapAllocs = 0;
853 
854     struct EvaluatingConstructorRAII {
855       EvalInfo &EI;
856       ObjectUnderConstruction Object;
857       bool DidInsert;
858       EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
859                                 bool HasBases)
860           : EI(EI), Object(Object) {
861         DidInsert =
862             EI.ObjectsUnderConstruction
863                 .insert({Object, HasBases ? ConstructionPhase::Bases
864                                           : ConstructionPhase::AfterBases})
865                 .second;
866       }
867       void finishedConstructingBases() {
868         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
869       }
870       void finishedConstructingFields() {
871         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
872       }
873       ~EvaluatingConstructorRAII() {
874         if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
875       }
876     };
877 
878     struct EvaluatingDestructorRAII {
879       EvalInfo &EI;
880       ObjectUnderConstruction Object;
881       bool DidInsert;
882       EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
883           : EI(EI), Object(Object) {
884         DidInsert = EI.ObjectsUnderConstruction
885                         .insert({Object, ConstructionPhase::Destroying})
886                         .second;
887       }
888       void startedDestroyingBases() {
889         EI.ObjectsUnderConstruction[Object] =
890             ConstructionPhase::DestroyingBases;
891       }
892       ~EvaluatingDestructorRAII() {
893         if (DidInsert)
894           EI.ObjectsUnderConstruction.erase(Object);
895       }
896     };
897 
898     ConstructionPhase
899     isEvaluatingCtorDtor(APValue::LValueBase Base,
900                          ArrayRef<APValue::LValuePathEntry> Path) {
901       return ObjectsUnderConstruction.lookup({Base, Path});
902     }
903 
904     /// If we're currently speculatively evaluating, the outermost call stack
905     /// depth at which we can mutate state, otherwise 0.
906     unsigned SpeculativeEvaluationDepth = 0;
907 
908     /// The current array initialization index, if we're performing array
909     /// initialization.
910     uint64_t ArrayInitIndex = -1;
911 
912     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
913     /// notes attached to it will also be stored, otherwise they will not be.
914     bool HasActiveDiagnostic;
915 
916     /// Have we emitted a diagnostic explaining why we couldn't constant
917     /// fold (not just why it's not strictly a constant expression)?
918     bool HasFoldFailureDiagnostic;
919 
920     /// Whether or not we're in a context where the front end requires a
921     /// constant value.
922     bool InConstantContext;
923 
924     /// Whether we're checking that an expression is a potential constant
925     /// expression. If so, do not fail on constructs that could become constant
926     /// later on (such as a use of an undefined global).
927     bool CheckingPotentialConstantExpression = false;
928 
929     /// Whether we're checking for an expression that has undefined behavior.
930     /// If so, we will produce warnings if we encounter an operation that is
931     /// always undefined.
932     ///
933     /// Note that we still need to evaluate the expression normally when this
934     /// is set; this is used when evaluating ICEs in C.
935     bool CheckingForUndefinedBehavior = false;
936 
937     enum EvaluationMode {
938       /// Evaluate as a constant expression. Stop if we find that the expression
939       /// is not a constant expression.
940       EM_ConstantExpression,
941 
942       /// Evaluate as a constant expression. Stop if we find that the expression
943       /// is not a constant expression. Some expressions can be retried in the
944       /// optimizer if we don't constant fold them here, but in an unevaluated
945       /// context we try to fold them immediately since the optimizer never
946       /// gets a chance to look at it.
947       EM_ConstantExpressionUnevaluated,
948 
949       /// Fold the expression to a constant. Stop if we hit a side-effect that
950       /// we can't model.
951       EM_ConstantFold,
952 
953       /// Evaluate in any way we know how. Don't worry about side-effects that
954       /// can't be modeled.
955       EM_IgnoreSideEffects,
956     } EvalMode;
957 
958     /// Are we checking whether the expression is a potential constant
959     /// expression?
960     bool checkingPotentialConstantExpression() const override  {
961       return CheckingPotentialConstantExpression;
962     }
963 
964     /// Are we checking an expression for overflow?
965     // FIXME: We should check for any kind of undefined or suspicious behavior
966     // in such constructs, not just overflow.
967     bool checkingForUndefinedBehavior() const override {
968       return CheckingForUndefinedBehavior;
969     }
970 
971     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
972         : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
973           CallStackDepth(0), NextCallIndex(1),
974           StepsLeft(C.getLangOpts().ConstexprStepLimit),
975           EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
976           BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()),
977           EvaluatingDecl((const ValueDecl *)nullptr),
978           EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
979           HasFoldFailureDiagnostic(false), InConstantContext(false),
980           EvalMode(Mode) {}
981 
982     ~EvalInfo() {
983       discardCleanups();
984     }
985 
986     ASTContext &getCtx() const override { return Ctx; }
987 
988     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
989                            EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
990       EvaluatingDecl = Base;
991       IsEvaluatingDecl = EDK;
992       EvaluatingDeclValue = &Value;
993     }
994 
995     bool CheckCallLimit(SourceLocation Loc) {
996       // Don't perform any constexpr calls (other than the call we're checking)
997       // when checking a potential constant expression.
998       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
999         return false;
1000       if (NextCallIndex == 0) {
1001         // NextCallIndex has wrapped around.
1002         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1003         return false;
1004       }
1005       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1006         return true;
1007       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1008         << getLangOpts().ConstexprCallDepth;
1009       return false;
1010     }
1011 
1012     std::pair<CallStackFrame *, unsigned>
1013     getCallFrameAndDepth(unsigned CallIndex) {
1014       assert(CallIndex && "no call index in getCallFrameAndDepth");
1015       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1016       // be null in this loop.
1017       unsigned Depth = CallStackDepth;
1018       CallStackFrame *Frame = CurrentCall;
1019       while (Frame->Index > CallIndex) {
1020         Frame = Frame->Caller;
1021         --Depth;
1022       }
1023       if (Frame->Index == CallIndex)
1024         return {Frame, Depth};
1025       return {nullptr, 0};
1026     }
1027 
1028     bool nextStep(const Stmt *S) {
1029       if (!StepsLeft) {
1030         FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1031         return false;
1032       }
1033       --StepsLeft;
1034       return true;
1035     }
1036 
1037     APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1038 
1039     Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
1040       Optional<DynAlloc*> Result;
1041       auto It = HeapAllocs.find(DA);
1042       if (It != HeapAllocs.end())
1043         Result = &It->second;
1044       return Result;
1045     }
1046 
1047     /// Get the allocated storage for the given parameter of the given call.
1048     APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1049       CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1050       return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1051                    : nullptr;
1052     }
1053 
1054     /// Information about a stack frame for std::allocator<T>::[de]allocate.
1055     struct StdAllocatorCaller {
1056       unsigned FrameIndex;
1057       QualType ElemType;
1058       explicit operator bool() const { return FrameIndex != 0; };
1059     };
1060 
1061     StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1062       for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1063            Call = Call->Caller) {
1064         const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1065         if (!MD)
1066           continue;
1067         const IdentifierInfo *FnII = MD->getIdentifier();
1068         if (!FnII || !FnII->isStr(FnName))
1069           continue;
1070 
1071         const auto *CTSD =
1072             dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1073         if (!CTSD)
1074           continue;
1075 
1076         const IdentifierInfo *ClassII = CTSD->getIdentifier();
1077         const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1078         if (CTSD->isInStdNamespace() && ClassII &&
1079             ClassII->isStr("allocator") && TAL.size() >= 1 &&
1080             TAL[0].getKind() == TemplateArgument::Type)
1081           return {Call->Index, TAL[0].getAsType()};
1082       }
1083 
1084       return {};
1085     }
1086 
1087     void performLifetimeExtension() {
1088       // Disable the cleanups for lifetime-extended temporaries.
1089       llvm::erase_if(CleanupStack, [](Cleanup &C) {
1090         return !C.isDestroyedAtEndOf(ScopeKind::FullExpression);
1091       });
1092     }
1093 
1094     /// Throw away any remaining cleanups at the end of evaluation. If any
1095     /// cleanups would have had a side-effect, note that as an unmodeled
1096     /// side-effect and return false. Otherwise, return true.
1097     bool discardCleanups() {
1098       for (Cleanup &C : CleanupStack) {
1099         if (C.hasSideEffect() && !noteSideEffect()) {
1100           CleanupStack.clear();
1101           return false;
1102         }
1103       }
1104       CleanupStack.clear();
1105       return true;
1106     }
1107 
1108   private:
1109     interp::Frame *getCurrentFrame() override { return CurrentCall; }
1110     const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1111 
1112     bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1113     void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1114 
1115     void setFoldFailureDiagnostic(bool Flag) override {
1116       HasFoldFailureDiagnostic = Flag;
1117     }
1118 
1119     Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1120 
1121     // If we have a prior diagnostic, it will be noting that the expression
1122     // isn't a constant expression. This diagnostic is more important,
1123     // unless we require this evaluation to produce a constant expression.
1124     //
1125     // FIXME: We might want to show both diagnostics to the user in
1126     // EM_ConstantFold mode.
1127     bool hasPriorDiagnostic() override {
1128       if (!EvalStatus.Diag->empty()) {
1129         switch (EvalMode) {
1130         case EM_ConstantFold:
1131         case EM_IgnoreSideEffects:
1132           if (!HasFoldFailureDiagnostic)
1133             break;
1134           // We've already failed to fold something. Keep that diagnostic.
1135           LLVM_FALLTHROUGH;
1136         case EM_ConstantExpression:
1137         case EM_ConstantExpressionUnevaluated:
1138           setActiveDiagnostic(false);
1139           return true;
1140         }
1141       }
1142       return false;
1143     }
1144 
1145     unsigned getCallStackDepth() override { return CallStackDepth; }
1146 
1147   public:
1148     /// Should we continue evaluation after encountering a side-effect that we
1149     /// couldn't model?
1150     bool keepEvaluatingAfterSideEffect() {
1151       switch (EvalMode) {
1152       case EM_IgnoreSideEffects:
1153         return true;
1154 
1155       case EM_ConstantExpression:
1156       case EM_ConstantExpressionUnevaluated:
1157       case EM_ConstantFold:
1158         // By default, assume any side effect might be valid in some other
1159         // evaluation of this expression from a different context.
1160         return checkingPotentialConstantExpression() ||
1161                checkingForUndefinedBehavior();
1162       }
1163       llvm_unreachable("Missed EvalMode case");
1164     }
1165 
1166     /// Note that we have had a side-effect, and determine whether we should
1167     /// keep evaluating.
1168     bool noteSideEffect() {
1169       EvalStatus.HasSideEffects = true;
1170       return keepEvaluatingAfterSideEffect();
1171     }
1172 
1173     /// Should we continue evaluation after encountering undefined behavior?
1174     bool keepEvaluatingAfterUndefinedBehavior() {
1175       switch (EvalMode) {
1176       case EM_IgnoreSideEffects:
1177       case EM_ConstantFold:
1178         return true;
1179 
1180       case EM_ConstantExpression:
1181       case EM_ConstantExpressionUnevaluated:
1182         return checkingForUndefinedBehavior();
1183       }
1184       llvm_unreachable("Missed EvalMode case");
1185     }
1186 
1187     /// Note that we hit something that was technically undefined behavior, but
1188     /// that we can evaluate past it (such as signed overflow or floating-point
1189     /// division by zero.)
1190     bool noteUndefinedBehavior() override {
1191       EvalStatus.HasUndefinedBehavior = true;
1192       return keepEvaluatingAfterUndefinedBehavior();
1193     }
1194 
1195     /// Should we continue evaluation as much as possible after encountering a
1196     /// construct which can't be reduced to a value?
1197     bool keepEvaluatingAfterFailure() const override {
1198       if (!StepsLeft)
1199         return false;
1200 
1201       switch (EvalMode) {
1202       case EM_ConstantExpression:
1203       case EM_ConstantExpressionUnevaluated:
1204       case EM_ConstantFold:
1205       case EM_IgnoreSideEffects:
1206         return checkingPotentialConstantExpression() ||
1207                checkingForUndefinedBehavior();
1208       }
1209       llvm_unreachable("Missed EvalMode case");
1210     }
1211 
1212     /// Notes that we failed to evaluate an expression that other expressions
1213     /// directly depend on, and determine if we should keep evaluating. This
1214     /// should only be called if we actually intend to keep evaluating.
1215     ///
1216     /// Call noteSideEffect() instead if we may be able to ignore the value that
1217     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1218     ///
1219     /// (Foo(), 1)      // use noteSideEffect
1220     /// (Foo() || true) // use noteSideEffect
1221     /// Foo() + 1       // use noteFailure
1222     LLVM_NODISCARD bool noteFailure() {
1223       // Failure when evaluating some expression often means there is some
1224       // subexpression whose evaluation was skipped. Therefore, (because we
1225       // don't track whether we skipped an expression when unwinding after an
1226       // evaluation failure) every evaluation failure that bubbles up from a
1227       // subexpression implies that a side-effect has potentially happened. We
1228       // skip setting the HasSideEffects flag to true until we decide to
1229       // continue evaluating after that point, which happens here.
1230       bool KeepGoing = keepEvaluatingAfterFailure();
1231       EvalStatus.HasSideEffects |= KeepGoing;
1232       return KeepGoing;
1233     }
1234 
1235     class ArrayInitLoopIndex {
1236       EvalInfo &Info;
1237       uint64_t OuterIndex;
1238 
1239     public:
1240       ArrayInitLoopIndex(EvalInfo &Info)
1241           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1242         Info.ArrayInitIndex = 0;
1243       }
1244       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1245 
1246       operator uint64_t&() { return Info.ArrayInitIndex; }
1247     };
1248   };
1249 
1250   /// Object used to treat all foldable expressions as constant expressions.
1251   struct FoldConstant {
1252     EvalInfo &Info;
1253     bool Enabled;
1254     bool HadNoPriorDiags;
1255     EvalInfo::EvaluationMode OldMode;
1256 
1257     explicit FoldConstant(EvalInfo &Info, bool Enabled)
1258       : Info(Info),
1259         Enabled(Enabled),
1260         HadNoPriorDiags(Info.EvalStatus.Diag &&
1261                         Info.EvalStatus.Diag->empty() &&
1262                         !Info.EvalStatus.HasSideEffects),
1263         OldMode(Info.EvalMode) {
1264       if (Enabled)
1265         Info.EvalMode = EvalInfo::EM_ConstantFold;
1266     }
1267     void keepDiagnostics() { Enabled = false; }
1268     ~FoldConstant() {
1269       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1270           !Info.EvalStatus.HasSideEffects)
1271         Info.EvalStatus.Diag->clear();
1272       Info.EvalMode = OldMode;
1273     }
1274   };
1275 
1276   /// RAII object used to set the current evaluation mode to ignore
1277   /// side-effects.
1278   struct IgnoreSideEffectsRAII {
1279     EvalInfo &Info;
1280     EvalInfo::EvaluationMode OldMode;
1281     explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1282         : Info(Info), OldMode(Info.EvalMode) {
1283       Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1284     }
1285 
1286     ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1287   };
1288 
1289   /// RAII object used to optionally suppress diagnostics and side-effects from
1290   /// a speculative evaluation.
1291   class SpeculativeEvaluationRAII {
1292     EvalInfo *Info = nullptr;
1293     Expr::EvalStatus OldStatus;
1294     unsigned OldSpeculativeEvaluationDepth;
1295 
1296     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1297       Info = Other.Info;
1298       OldStatus = Other.OldStatus;
1299       OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1300       Other.Info = nullptr;
1301     }
1302 
1303     void maybeRestoreState() {
1304       if (!Info)
1305         return;
1306 
1307       Info->EvalStatus = OldStatus;
1308       Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1309     }
1310 
1311   public:
1312     SpeculativeEvaluationRAII() = default;
1313 
1314     SpeculativeEvaluationRAII(
1315         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1316         : Info(&Info), OldStatus(Info.EvalStatus),
1317           OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1318       Info.EvalStatus.Diag = NewDiag;
1319       Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1320     }
1321 
1322     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1323     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1324       moveFromAndCancel(std::move(Other));
1325     }
1326 
1327     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1328       maybeRestoreState();
1329       moveFromAndCancel(std::move(Other));
1330       return *this;
1331     }
1332 
1333     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1334   };
1335 
1336   /// RAII object wrapping a full-expression or block scope, and handling
1337   /// the ending of the lifetime of temporaries created within it.
1338   template<ScopeKind Kind>
1339   class ScopeRAII {
1340     EvalInfo &Info;
1341     unsigned OldStackSize;
1342   public:
1343     ScopeRAII(EvalInfo &Info)
1344         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1345       // Push a new temporary version. This is needed to distinguish between
1346       // temporaries created in different iterations of a loop.
1347       Info.CurrentCall->pushTempVersion();
1348     }
1349     bool destroy(bool RunDestructors = true) {
1350       bool OK = cleanup(Info, RunDestructors, OldStackSize);
1351       OldStackSize = -1U;
1352       return OK;
1353     }
1354     ~ScopeRAII() {
1355       if (OldStackSize != -1U)
1356         destroy(false);
1357       // Body moved to a static method to encourage the compiler to inline away
1358       // instances of this class.
1359       Info.CurrentCall->popTempVersion();
1360     }
1361   private:
1362     static bool cleanup(EvalInfo &Info, bool RunDestructors,
1363                         unsigned OldStackSize) {
1364       assert(OldStackSize <= Info.CleanupStack.size() &&
1365              "running cleanups out of order?");
1366 
1367       // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1368       // for a full-expression scope.
1369       bool Success = true;
1370       for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1371         if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1372           if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1373             Success = false;
1374             break;
1375           }
1376         }
1377       }
1378 
1379       // Compact any retained cleanups.
1380       auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1381       if (Kind != ScopeKind::Block)
1382         NewEnd =
1383             std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1384               return C.isDestroyedAtEndOf(Kind);
1385             });
1386       Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1387       return Success;
1388     }
1389   };
1390   typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1391   typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1392   typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1393 }
1394 
1395 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1396                                          CheckSubobjectKind CSK) {
1397   if (Invalid)
1398     return false;
1399   if (isOnePastTheEnd()) {
1400     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1401       << CSK;
1402     setInvalid();
1403     return false;
1404   }
1405   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1406   // must actually be at least one array element; even a VLA cannot have a
1407   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1408   return true;
1409 }
1410 
1411 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1412                                                                 const Expr *E) {
1413   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1414   // Do not set the designator as invalid: we can represent this situation,
1415   // and correct handling of __builtin_object_size requires us to do so.
1416 }
1417 
1418 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1419                                                     const Expr *E,
1420                                                     const APSInt &N) {
1421   // If we're complaining, we must be able to statically determine the size of
1422   // the most derived array.
1423   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1424     Info.CCEDiag(E, diag::note_constexpr_array_index)
1425       << N << /*array*/ 0
1426       << static_cast<unsigned>(getMostDerivedArraySize());
1427   else
1428     Info.CCEDiag(E, diag::note_constexpr_array_index)
1429       << N << /*non-array*/ 1;
1430   setInvalid();
1431 }
1432 
1433 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1434                                const FunctionDecl *Callee, const LValue *This,
1435                                CallRef Call)
1436     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1437       Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1438   Info.CurrentCall = this;
1439   ++Info.CallStackDepth;
1440 }
1441 
1442 CallStackFrame::~CallStackFrame() {
1443   assert(Info.CurrentCall == this && "calls retired out of order");
1444   --Info.CallStackDepth;
1445   Info.CurrentCall = Caller;
1446 }
1447 
1448 static bool isRead(AccessKinds AK) {
1449   return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1450 }
1451 
1452 static bool isModification(AccessKinds AK) {
1453   switch (AK) {
1454   case AK_Read:
1455   case AK_ReadObjectRepresentation:
1456   case AK_MemberCall:
1457   case AK_DynamicCast:
1458   case AK_TypeId:
1459     return false;
1460   case AK_Assign:
1461   case AK_Increment:
1462   case AK_Decrement:
1463   case AK_Construct:
1464   case AK_Destroy:
1465     return true;
1466   }
1467   llvm_unreachable("unknown access kind");
1468 }
1469 
1470 static bool isAnyAccess(AccessKinds AK) {
1471   return isRead(AK) || isModification(AK);
1472 }
1473 
1474 /// Is this an access per the C++ definition?
1475 static bool isFormalAccess(AccessKinds AK) {
1476   return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1477 }
1478 
1479 /// Is this kind of axcess valid on an indeterminate object value?
1480 static bool isValidIndeterminateAccess(AccessKinds AK) {
1481   switch (AK) {
1482   case AK_Read:
1483   case AK_Increment:
1484   case AK_Decrement:
1485     // These need the object's value.
1486     return false;
1487 
1488   case AK_ReadObjectRepresentation:
1489   case AK_Assign:
1490   case AK_Construct:
1491   case AK_Destroy:
1492     // Construction and destruction don't need the value.
1493     return true;
1494 
1495   case AK_MemberCall:
1496   case AK_DynamicCast:
1497   case AK_TypeId:
1498     // These aren't really meaningful on scalars.
1499     return true;
1500   }
1501   llvm_unreachable("unknown access kind");
1502 }
1503 
1504 namespace {
1505   struct ComplexValue {
1506   private:
1507     bool IsInt;
1508 
1509   public:
1510     APSInt IntReal, IntImag;
1511     APFloat FloatReal, FloatImag;
1512 
1513     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1514 
1515     void makeComplexFloat() { IsInt = false; }
1516     bool isComplexFloat() const { return !IsInt; }
1517     APFloat &getComplexFloatReal() { return FloatReal; }
1518     APFloat &getComplexFloatImag() { return FloatImag; }
1519 
1520     void makeComplexInt() { IsInt = true; }
1521     bool isComplexInt() const { return IsInt; }
1522     APSInt &getComplexIntReal() { return IntReal; }
1523     APSInt &getComplexIntImag() { return IntImag; }
1524 
1525     void moveInto(APValue &v) const {
1526       if (isComplexFloat())
1527         v = APValue(FloatReal, FloatImag);
1528       else
1529         v = APValue(IntReal, IntImag);
1530     }
1531     void setFrom(const APValue &v) {
1532       assert(v.isComplexFloat() || v.isComplexInt());
1533       if (v.isComplexFloat()) {
1534         makeComplexFloat();
1535         FloatReal = v.getComplexFloatReal();
1536         FloatImag = v.getComplexFloatImag();
1537       } else {
1538         makeComplexInt();
1539         IntReal = v.getComplexIntReal();
1540         IntImag = v.getComplexIntImag();
1541       }
1542     }
1543   };
1544 
1545   struct LValue {
1546     APValue::LValueBase Base;
1547     CharUnits Offset;
1548     SubobjectDesignator Designator;
1549     bool IsNullPtr : 1;
1550     bool InvalidBase : 1;
1551 
1552     const APValue::LValueBase getLValueBase() const { return Base; }
1553     CharUnits &getLValueOffset() { return Offset; }
1554     const CharUnits &getLValueOffset() const { return Offset; }
1555     SubobjectDesignator &getLValueDesignator() { return Designator; }
1556     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1557     bool isNullPointer() const { return IsNullPtr;}
1558 
1559     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1560     unsigned getLValueVersion() const { return Base.getVersion(); }
1561 
1562     void moveInto(APValue &V) const {
1563       if (Designator.Invalid)
1564         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1565       else {
1566         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1567         V = APValue(Base, Offset, Designator.Entries,
1568                     Designator.IsOnePastTheEnd, IsNullPtr);
1569       }
1570     }
1571     void setFrom(ASTContext &Ctx, const APValue &V) {
1572       assert(V.isLValue() && "Setting LValue from a non-LValue?");
1573       Base = V.getLValueBase();
1574       Offset = V.getLValueOffset();
1575       InvalidBase = false;
1576       Designator = SubobjectDesignator(Ctx, V);
1577       IsNullPtr = V.isNullPointer();
1578     }
1579 
1580     void set(APValue::LValueBase B, bool BInvalid = false) {
1581 #ifndef NDEBUG
1582       // We only allow a few types of invalid bases. Enforce that here.
1583       if (BInvalid) {
1584         const auto *E = B.get<const Expr *>();
1585         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1586                "Unexpected type of invalid base");
1587       }
1588 #endif
1589 
1590       Base = B;
1591       Offset = CharUnits::fromQuantity(0);
1592       InvalidBase = BInvalid;
1593       Designator = SubobjectDesignator(getType(B));
1594       IsNullPtr = false;
1595     }
1596 
1597     void setNull(ASTContext &Ctx, QualType PointerTy) {
1598       Base = (const ValueDecl *)nullptr;
1599       Offset =
1600           CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1601       InvalidBase = false;
1602       Designator = SubobjectDesignator(PointerTy->getPointeeType());
1603       IsNullPtr = true;
1604     }
1605 
1606     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1607       set(B, true);
1608     }
1609 
1610     std::string toString(ASTContext &Ctx, QualType T) const {
1611       APValue Printable;
1612       moveInto(Printable);
1613       return Printable.getAsString(Ctx, T);
1614     }
1615 
1616   private:
1617     // Check that this LValue is not based on a null pointer. If it is, produce
1618     // a diagnostic and mark the designator as invalid.
1619     template <typename GenDiagType>
1620     bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1621       if (Designator.Invalid)
1622         return false;
1623       if (IsNullPtr) {
1624         GenDiag();
1625         Designator.setInvalid();
1626         return false;
1627       }
1628       return true;
1629     }
1630 
1631   public:
1632     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1633                           CheckSubobjectKind CSK) {
1634       return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1635         Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1636       });
1637     }
1638 
1639     bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1640                                        AccessKinds AK) {
1641       return checkNullPointerDiagnosingWith([&Info, E, AK] {
1642         Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1643       });
1644     }
1645 
1646     // Check this LValue refers to an object. If not, set the designator to be
1647     // invalid and emit a diagnostic.
1648     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1649       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1650              Designator.checkSubobject(Info, E, CSK);
1651     }
1652 
1653     void addDecl(EvalInfo &Info, const Expr *E,
1654                  const Decl *D, bool Virtual = false) {
1655       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1656         Designator.addDeclUnchecked(D, Virtual);
1657     }
1658     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1659       if (!Designator.Entries.empty()) {
1660         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1661         Designator.setInvalid();
1662         return;
1663       }
1664       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1665         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1666         Designator.FirstEntryIsAnUnsizedArray = true;
1667         Designator.addUnsizedArrayUnchecked(ElemTy);
1668       }
1669     }
1670     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1671       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1672         Designator.addArrayUnchecked(CAT);
1673     }
1674     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1675       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1676         Designator.addComplexUnchecked(EltTy, Imag);
1677     }
1678     void clearIsNullPointer() {
1679       IsNullPtr = false;
1680     }
1681     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1682                               const APSInt &Index, CharUnits ElementSize) {
1683       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1684       // but we're not required to diagnose it and it's valid in C++.)
1685       if (!Index)
1686         return;
1687 
1688       // Compute the new offset in the appropriate width, wrapping at 64 bits.
1689       // FIXME: When compiling for a 32-bit target, we should use 32-bit
1690       // offsets.
1691       uint64_t Offset64 = Offset.getQuantity();
1692       uint64_t ElemSize64 = ElementSize.getQuantity();
1693       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1694       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1695 
1696       if (checkNullPointer(Info, E, CSK_ArrayIndex))
1697         Designator.adjustIndex(Info, E, Index);
1698       clearIsNullPointer();
1699     }
1700     void adjustOffset(CharUnits N) {
1701       Offset += N;
1702       if (N.getQuantity())
1703         clearIsNullPointer();
1704     }
1705   };
1706 
1707   struct MemberPtr {
1708     MemberPtr() {}
1709     explicit MemberPtr(const ValueDecl *Decl)
1710         : DeclAndIsDerivedMember(Decl, false) {}
1711 
1712     /// The member or (direct or indirect) field referred to by this member
1713     /// pointer, or 0 if this is a null member pointer.
1714     const ValueDecl *getDecl() const {
1715       return DeclAndIsDerivedMember.getPointer();
1716     }
1717     /// Is this actually a member of some type derived from the relevant class?
1718     bool isDerivedMember() const {
1719       return DeclAndIsDerivedMember.getInt();
1720     }
1721     /// Get the class which the declaration actually lives in.
1722     const CXXRecordDecl *getContainingRecord() const {
1723       return cast<CXXRecordDecl>(
1724           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1725     }
1726 
1727     void moveInto(APValue &V) const {
1728       V = APValue(getDecl(), isDerivedMember(), Path);
1729     }
1730     void setFrom(const APValue &V) {
1731       assert(V.isMemberPointer());
1732       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1733       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1734       Path.clear();
1735       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1736       Path.insert(Path.end(), P.begin(), P.end());
1737     }
1738 
1739     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1740     /// whether the member is a member of some class derived from the class type
1741     /// of the member pointer.
1742     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1743     /// Path - The path of base/derived classes from the member declaration's
1744     /// class (exclusive) to the class type of the member pointer (inclusive).
1745     SmallVector<const CXXRecordDecl*, 4> Path;
1746 
1747     /// Perform a cast towards the class of the Decl (either up or down the
1748     /// hierarchy).
1749     bool castBack(const CXXRecordDecl *Class) {
1750       assert(!Path.empty());
1751       const CXXRecordDecl *Expected;
1752       if (Path.size() >= 2)
1753         Expected = Path[Path.size() - 2];
1754       else
1755         Expected = getContainingRecord();
1756       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1757         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1758         // if B does not contain the original member and is not a base or
1759         // derived class of the class containing the original member, the result
1760         // of the cast is undefined.
1761         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1762         // (D::*). We consider that to be a language defect.
1763         return false;
1764       }
1765       Path.pop_back();
1766       return true;
1767     }
1768     /// Perform a base-to-derived member pointer cast.
1769     bool castToDerived(const CXXRecordDecl *Derived) {
1770       if (!getDecl())
1771         return true;
1772       if (!isDerivedMember()) {
1773         Path.push_back(Derived);
1774         return true;
1775       }
1776       if (!castBack(Derived))
1777         return false;
1778       if (Path.empty())
1779         DeclAndIsDerivedMember.setInt(false);
1780       return true;
1781     }
1782     /// Perform a derived-to-base member pointer cast.
1783     bool castToBase(const CXXRecordDecl *Base) {
1784       if (!getDecl())
1785         return true;
1786       if (Path.empty())
1787         DeclAndIsDerivedMember.setInt(true);
1788       if (isDerivedMember()) {
1789         Path.push_back(Base);
1790         return true;
1791       }
1792       return castBack(Base);
1793     }
1794   };
1795 
1796   /// Compare two member pointers, which are assumed to be of the same type.
1797   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1798     if (!LHS.getDecl() || !RHS.getDecl())
1799       return !LHS.getDecl() && !RHS.getDecl();
1800     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1801       return false;
1802     return LHS.Path == RHS.Path;
1803   }
1804 }
1805 
1806 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1807 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1808                             const LValue &This, const Expr *E,
1809                             bool AllowNonLiteralTypes = false);
1810 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1811                            bool InvalidBaseOK = false);
1812 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1813                             bool InvalidBaseOK = false);
1814 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1815                                   EvalInfo &Info);
1816 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1817 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1818 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1819                                     EvalInfo &Info);
1820 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1821 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1822 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1823                            EvalInfo &Info);
1824 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1825 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1826                                   EvalInfo &Info);
1827 
1828 /// Evaluate an integer or fixed point expression into an APResult.
1829 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1830                                         EvalInfo &Info);
1831 
1832 /// Evaluate only a fixed point expression into an APResult.
1833 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1834                                EvalInfo &Info);
1835 
1836 //===----------------------------------------------------------------------===//
1837 // Misc utilities
1838 //===----------------------------------------------------------------------===//
1839 
1840 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1841 /// preserving its value (by extending by up to one bit as needed).
1842 static void negateAsSigned(APSInt &Int) {
1843   if (Int.isUnsigned() || Int.isMinSignedValue()) {
1844     Int = Int.extend(Int.getBitWidth() + 1);
1845     Int.setIsSigned(true);
1846   }
1847   Int = -Int;
1848 }
1849 
1850 template<typename KeyT>
1851 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1852                                          ScopeKind Scope, LValue &LV) {
1853   unsigned Version = getTempVersion();
1854   APValue::LValueBase Base(Key, Index, Version);
1855   LV.set(Base);
1856   return createLocal(Base, Key, T, Scope);
1857 }
1858 
1859 /// Allocate storage for a parameter of a function call made in this frame.
1860 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1861                                      LValue &LV) {
1862   assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1863   APValue::LValueBase Base(PVD, Index, Args.Version);
1864   LV.set(Base);
1865   // We always destroy parameters at the end of the call, even if we'd allow
1866   // them to live to the end of the full-expression at runtime, in order to
1867   // give portable results and match other compilers.
1868   return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1869 }
1870 
1871 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1872                                      QualType T, ScopeKind Scope) {
1873   assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1874   unsigned Version = Base.getVersion();
1875   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1876   assert(Result.isAbsent() && "local created multiple times");
1877 
1878   // If we're creating a local immediately in the operand of a speculative
1879   // evaluation, don't register a cleanup to be run outside the speculative
1880   // evaluation context, since we won't actually be able to initialize this
1881   // object.
1882   if (Index <= Info.SpeculativeEvaluationDepth) {
1883     if (T.isDestructedType())
1884       Info.noteSideEffect();
1885   } else {
1886     Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1887   }
1888   return Result;
1889 }
1890 
1891 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1892   if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1893     FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1894     return nullptr;
1895   }
1896 
1897   DynamicAllocLValue DA(NumHeapAllocs++);
1898   LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1899   auto Result = HeapAllocs.emplace(std::piecewise_construct,
1900                                    std::forward_as_tuple(DA), std::tuple<>());
1901   assert(Result.second && "reused a heap alloc index?");
1902   Result.first->second.AllocExpr = E;
1903   return &Result.first->second.Value;
1904 }
1905 
1906 /// Produce a string describing the given constexpr call.
1907 void CallStackFrame::describe(raw_ostream &Out) {
1908   unsigned ArgIndex = 0;
1909   bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1910                       !isa<CXXConstructorDecl>(Callee) &&
1911                       cast<CXXMethodDecl>(Callee)->isInstance();
1912 
1913   if (!IsMemberCall)
1914     Out << *Callee << '(';
1915 
1916   if (This && IsMemberCall) {
1917     APValue Val;
1918     This->moveInto(Val);
1919     Val.printPretty(Out, Info.Ctx,
1920                     This->Designator.MostDerivedType);
1921     // FIXME: Add parens around Val if needed.
1922     Out << "->" << *Callee << '(';
1923     IsMemberCall = false;
1924   }
1925 
1926   for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1927        E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1928     if (ArgIndex > (unsigned)IsMemberCall)
1929       Out << ", ";
1930 
1931     const ParmVarDecl *Param = *I;
1932     APValue *V = Info.getParamSlot(Arguments, Param);
1933     if (V)
1934       V->printPretty(Out, Info.Ctx, Param->getType());
1935     else
1936       Out << "<...>";
1937 
1938     if (ArgIndex == 0 && IsMemberCall)
1939       Out << "->" << *Callee << '(';
1940   }
1941 
1942   Out << ')';
1943 }
1944 
1945 /// Evaluate an expression to see if it had side-effects, and discard its
1946 /// result.
1947 /// \return \c true if the caller should keep evaluating.
1948 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1949   assert(!E->isValueDependent());
1950   APValue Scratch;
1951   if (!Evaluate(Scratch, Info, E))
1952     // We don't need the value, but we might have skipped a side effect here.
1953     return Info.noteSideEffect();
1954   return true;
1955 }
1956 
1957 /// Should this call expression be treated as a constant?
1958 static bool IsConstantCall(const CallExpr *E) {
1959   unsigned Builtin = E->getBuiltinCallee();
1960   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1961           Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
1962           Builtin == Builtin::BI__builtin_function_start);
1963 }
1964 
1965 static bool IsGlobalLValue(APValue::LValueBase B) {
1966   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1967   // constant expression of pointer type that evaluates to...
1968 
1969   // ... a null pointer value, or a prvalue core constant expression of type
1970   // std::nullptr_t.
1971   if (!B) return true;
1972 
1973   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1974     // ... the address of an object with static storage duration,
1975     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1976       return VD->hasGlobalStorage();
1977     if (isa<TemplateParamObjectDecl>(D))
1978       return true;
1979     // ... the address of a function,
1980     // ... the address of a GUID [MS extension],
1981     return isa<FunctionDecl>(D) || isa<MSGuidDecl>(D);
1982   }
1983 
1984   if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1985     return true;
1986 
1987   const Expr *E = B.get<const Expr*>();
1988   switch (E->getStmtClass()) {
1989   default:
1990     return false;
1991   case Expr::CompoundLiteralExprClass: {
1992     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1993     return CLE->isFileScope() && CLE->isLValue();
1994   }
1995   case Expr::MaterializeTemporaryExprClass:
1996     // A materialized temporary might have been lifetime-extended to static
1997     // storage duration.
1998     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1999   // A string literal has static storage duration.
2000   case Expr::StringLiteralClass:
2001   case Expr::PredefinedExprClass:
2002   case Expr::ObjCStringLiteralClass:
2003   case Expr::ObjCEncodeExprClass:
2004     return true;
2005   case Expr::ObjCBoxedExprClass:
2006     return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2007   case Expr::CallExprClass:
2008     return IsConstantCall(cast<CallExpr>(E));
2009   // For GCC compatibility, &&label has static storage duration.
2010   case Expr::AddrLabelExprClass:
2011     return true;
2012   // A Block literal expression may be used as the initialization value for
2013   // Block variables at global or local static scope.
2014   case Expr::BlockExprClass:
2015     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2016   case Expr::ImplicitValueInitExprClass:
2017     // FIXME:
2018     // We can never form an lvalue with an implicit value initialization as its
2019     // base through expression evaluation, so these only appear in one case: the
2020     // implicit variable declaration we invent when checking whether a constexpr
2021     // constructor can produce a constant expression. We must assume that such
2022     // an expression might be a global lvalue.
2023     return true;
2024   }
2025 }
2026 
2027 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2028   return LVal.Base.dyn_cast<const ValueDecl*>();
2029 }
2030 
2031 static bool IsLiteralLValue(const LValue &Value) {
2032   if (Value.getLValueCallIndex())
2033     return false;
2034   const Expr *E = Value.Base.dyn_cast<const Expr*>();
2035   return E && !isa<MaterializeTemporaryExpr>(E);
2036 }
2037 
2038 static bool IsWeakLValue(const LValue &Value) {
2039   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2040   return Decl && Decl->isWeak();
2041 }
2042 
2043 static bool isZeroSized(const LValue &Value) {
2044   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2045   if (Decl && isa<VarDecl>(Decl)) {
2046     QualType Ty = Decl->getType();
2047     if (Ty->isArrayType())
2048       return Ty->isIncompleteType() ||
2049              Decl->getASTContext().getTypeSize(Ty) == 0;
2050   }
2051   return false;
2052 }
2053 
2054 static bool HasSameBase(const LValue &A, const LValue &B) {
2055   if (!A.getLValueBase())
2056     return !B.getLValueBase();
2057   if (!B.getLValueBase())
2058     return false;
2059 
2060   if (A.getLValueBase().getOpaqueValue() !=
2061       B.getLValueBase().getOpaqueValue())
2062     return false;
2063 
2064   return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2065          A.getLValueVersion() == B.getLValueVersion();
2066 }
2067 
2068 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2069   assert(Base && "no location for a null lvalue");
2070   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2071 
2072   // For a parameter, find the corresponding call stack frame (if it still
2073   // exists), and point at the parameter of the function definition we actually
2074   // invoked.
2075   if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2076     unsigned Idx = PVD->getFunctionScopeIndex();
2077     for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2078       if (F->Arguments.CallIndex == Base.getCallIndex() &&
2079           F->Arguments.Version == Base.getVersion() && F->Callee &&
2080           Idx < F->Callee->getNumParams()) {
2081         VD = F->Callee->getParamDecl(Idx);
2082         break;
2083       }
2084     }
2085   }
2086 
2087   if (VD)
2088     Info.Note(VD->getLocation(), diag::note_declared_at);
2089   else if (const Expr *E = Base.dyn_cast<const Expr*>())
2090     Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2091   else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2092     // FIXME: Produce a note for dangling pointers too.
2093     if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
2094       Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2095                 diag::note_constexpr_dynamic_alloc_here);
2096   }
2097   // We have no information to show for a typeid(T) object.
2098 }
2099 
2100 enum class CheckEvaluationResultKind {
2101   ConstantExpression,
2102   FullyInitialized,
2103 };
2104 
2105 /// Materialized temporaries that we've already checked to determine if they're
2106 /// initializsed by a constant expression.
2107 using CheckedTemporaries =
2108     llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2109 
2110 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2111                                   EvalInfo &Info, SourceLocation DiagLoc,
2112                                   QualType Type, const APValue &Value,
2113                                   ConstantExprKind Kind,
2114                                   SourceLocation SubobjectLoc,
2115                                   CheckedTemporaries &CheckedTemps);
2116 
2117 /// Check that this reference or pointer core constant expression is a valid
2118 /// value for an address or reference constant expression. Return true if we
2119 /// can fold this expression, whether or not it's a constant expression.
2120 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2121                                           QualType Type, const LValue &LVal,
2122                                           ConstantExprKind Kind,
2123                                           CheckedTemporaries &CheckedTemps) {
2124   bool IsReferenceType = Type->isReferenceType();
2125 
2126   APValue::LValueBase Base = LVal.getLValueBase();
2127   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2128 
2129   const Expr *BaseE = Base.dyn_cast<const Expr *>();
2130   const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2131 
2132   // Additional restrictions apply in a template argument. We only enforce the
2133   // C++20 restrictions here; additional syntactic and semantic restrictions
2134   // are applied elsewhere.
2135   if (isTemplateArgument(Kind)) {
2136     int InvalidBaseKind = -1;
2137     StringRef Ident;
2138     if (Base.is<TypeInfoLValue>())
2139       InvalidBaseKind = 0;
2140     else if (isa_and_nonnull<StringLiteral>(BaseE))
2141       InvalidBaseKind = 1;
2142     else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2143              isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2144       InvalidBaseKind = 2;
2145     else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2146       InvalidBaseKind = 3;
2147       Ident = PE->getIdentKindName();
2148     }
2149 
2150     if (InvalidBaseKind != -1) {
2151       Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2152           << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2153           << Ident;
2154       return false;
2155     }
2156   }
2157 
2158   if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) {
2159     if (FD->isConsteval()) {
2160       Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2161           << !Type->isAnyPointerType();
2162       Info.Note(FD->getLocation(), diag::note_declared_at);
2163       return false;
2164     }
2165   }
2166 
2167   // Check that the object is a global. Note that the fake 'this' object we
2168   // manufacture when checking potential constant expressions is conservatively
2169   // assumed to be global here.
2170   if (!IsGlobalLValue(Base)) {
2171     if (Info.getLangOpts().CPlusPlus11) {
2172       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2173       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2174         << IsReferenceType << !Designator.Entries.empty()
2175         << !!VD << VD;
2176 
2177       auto *VarD = dyn_cast_or_null<VarDecl>(VD);
2178       if (VarD && VarD->isConstexpr()) {
2179         // Non-static local constexpr variables have unintuitive semantics:
2180         //   constexpr int a = 1;
2181         //   constexpr const int *p = &a;
2182         // ... is invalid because the address of 'a' is not constant. Suggest
2183         // adding a 'static' in this case.
2184         Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2185             << VarD
2186             << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2187       } else {
2188         NoteLValueLocation(Info, Base);
2189       }
2190     } else {
2191       Info.FFDiag(Loc);
2192     }
2193     // Don't allow references to temporaries to escape.
2194     return false;
2195   }
2196   assert((Info.checkingPotentialConstantExpression() ||
2197           LVal.getLValueCallIndex() == 0) &&
2198          "have call index for global lvalue");
2199 
2200   if (Base.is<DynamicAllocLValue>()) {
2201     Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2202         << IsReferenceType << !Designator.Entries.empty();
2203     NoteLValueLocation(Info, Base);
2204     return false;
2205   }
2206 
2207   if (BaseVD) {
2208     if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2209       // Check if this is a thread-local variable.
2210       if (Var->getTLSKind())
2211         // FIXME: Diagnostic!
2212         return false;
2213 
2214       // A dllimport variable never acts like a constant, unless we're
2215       // evaluating a value for use only in name mangling.
2216       if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2217         // FIXME: Diagnostic!
2218         return false;
2219 
2220       // In CUDA/HIP device compilation, only device side variables have
2221       // constant addresses.
2222       if (Info.getCtx().getLangOpts().CUDA &&
2223           Info.getCtx().getLangOpts().CUDAIsDevice &&
2224           Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
2225         if ((!Var->hasAttr<CUDADeviceAttr>() &&
2226              !Var->hasAttr<CUDAConstantAttr>() &&
2227              !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2228              !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2229             Var->hasAttr<HIPManagedAttr>())
2230           return false;
2231       }
2232     }
2233     if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2234       // __declspec(dllimport) must be handled very carefully:
2235       // We must never initialize an expression with the thunk in C++.
2236       // Doing otherwise would allow the same id-expression to yield
2237       // different addresses for the same function in different translation
2238       // units.  However, this means that we must dynamically initialize the
2239       // expression with the contents of the import address table at runtime.
2240       //
2241       // The C language has no notion of ODR; furthermore, it has no notion of
2242       // dynamic initialization.  This means that we are permitted to
2243       // perform initialization with the address of the thunk.
2244       if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2245           FD->hasAttr<DLLImportAttr>())
2246         // FIXME: Diagnostic!
2247         return false;
2248     }
2249   } else if (const auto *MTE =
2250                  dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2251     if (CheckedTemps.insert(MTE).second) {
2252       QualType TempType = getType(Base);
2253       if (TempType.isDestructedType()) {
2254         Info.FFDiag(MTE->getExprLoc(),
2255                     diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2256             << TempType;
2257         return false;
2258       }
2259 
2260       APValue *V = MTE->getOrCreateValue(false);
2261       assert(V && "evasluation result refers to uninitialised temporary");
2262       if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2263                                  Info, MTE->getExprLoc(), TempType, *V,
2264                                  Kind, SourceLocation(), CheckedTemps))
2265         return false;
2266     }
2267   }
2268 
2269   // Allow address constant expressions to be past-the-end pointers. This is
2270   // an extension: the standard requires them to point to an object.
2271   if (!IsReferenceType)
2272     return true;
2273 
2274   // A reference constant expression must refer to an object.
2275   if (!Base) {
2276     // FIXME: diagnostic
2277     Info.CCEDiag(Loc);
2278     return true;
2279   }
2280 
2281   // Does this refer one past the end of some object?
2282   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2283     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2284       << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2285     NoteLValueLocation(Info, Base);
2286   }
2287 
2288   return true;
2289 }
2290 
2291 /// Member pointers are constant expressions unless they point to a
2292 /// non-virtual dllimport member function.
2293 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2294                                                  SourceLocation Loc,
2295                                                  QualType Type,
2296                                                  const APValue &Value,
2297                                                  ConstantExprKind Kind) {
2298   const ValueDecl *Member = Value.getMemberPointerDecl();
2299   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2300   if (!FD)
2301     return true;
2302   if (FD->isConsteval()) {
2303     Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2304     Info.Note(FD->getLocation(), diag::note_declared_at);
2305     return false;
2306   }
2307   return isForManglingOnly(Kind) || FD->isVirtual() ||
2308          !FD->hasAttr<DLLImportAttr>();
2309 }
2310 
2311 /// Check that this core constant expression is of literal type, and if not,
2312 /// produce an appropriate diagnostic.
2313 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2314                              const LValue *This = nullptr) {
2315   if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx))
2316     return true;
2317 
2318   // C++1y: A constant initializer for an object o [...] may also invoke
2319   // constexpr constructors for o and its subobjects even if those objects
2320   // are of non-literal class types.
2321   //
2322   // C++11 missed this detail for aggregates, so classes like this:
2323   //   struct foo_t { union { int i; volatile int j; } u; };
2324   // are not (obviously) initializable like so:
2325   //   __attribute__((__require_constant_initialization__))
2326   //   static const foo_t x = {{0}};
2327   // because "i" is a subobject with non-literal initialization (due to the
2328   // volatile member of the union). See:
2329   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2330   // Therefore, we use the C++1y behavior.
2331   if (This && Info.EvaluatingDecl == This->getLValueBase())
2332     return true;
2333 
2334   // Prvalue constant expressions must be of literal types.
2335   if (Info.getLangOpts().CPlusPlus11)
2336     Info.FFDiag(E, diag::note_constexpr_nonliteral)
2337       << E->getType();
2338   else
2339     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2340   return false;
2341 }
2342 
2343 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2344                                   EvalInfo &Info, SourceLocation DiagLoc,
2345                                   QualType Type, const APValue &Value,
2346                                   ConstantExprKind Kind,
2347                                   SourceLocation SubobjectLoc,
2348                                   CheckedTemporaries &CheckedTemps) {
2349   if (!Value.hasValue()) {
2350     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2351       << true << Type;
2352     if (SubobjectLoc.isValid())
2353       Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2354     return false;
2355   }
2356 
2357   // We allow _Atomic(T) to be initialized from anything that T can be
2358   // initialized from.
2359   if (const AtomicType *AT = Type->getAs<AtomicType>())
2360     Type = AT->getValueType();
2361 
2362   // Core issue 1454: For a literal constant expression of array or class type,
2363   // each subobject of its value shall have been initialized by a constant
2364   // expression.
2365   if (Value.isArray()) {
2366     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2367     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2368       if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2369                                  Value.getArrayInitializedElt(I), Kind,
2370                                  SubobjectLoc, CheckedTemps))
2371         return false;
2372     }
2373     if (!Value.hasArrayFiller())
2374       return true;
2375     return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2376                                  Value.getArrayFiller(), Kind, SubobjectLoc,
2377                                  CheckedTemps);
2378   }
2379   if (Value.isUnion() && Value.getUnionField()) {
2380     return CheckEvaluationResult(
2381         CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2382         Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(),
2383         CheckedTemps);
2384   }
2385   if (Value.isStruct()) {
2386     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2387     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2388       unsigned BaseIndex = 0;
2389       for (const CXXBaseSpecifier &BS : CD->bases()) {
2390         if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2391                                    Value.getStructBase(BaseIndex), Kind,
2392                                    BS.getBeginLoc(), CheckedTemps))
2393           return false;
2394         ++BaseIndex;
2395       }
2396     }
2397     for (const auto *I : RD->fields()) {
2398       if (I->isUnnamedBitfield())
2399         continue;
2400 
2401       if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2402                                  Value.getStructField(I->getFieldIndex()),
2403                                  Kind, I->getLocation(), CheckedTemps))
2404         return false;
2405     }
2406   }
2407 
2408   if (Value.isLValue() &&
2409       CERK == CheckEvaluationResultKind::ConstantExpression) {
2410     LValue LVal;
2411     LVal.setFrom(Info.Ctx, Value);
2412     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2413                                          CheckedTemps);
2414   }
2415 
2416   if (Value.isMemberPointer() &&
2417       CERK == CheckEvaluationResultKind::ConstantExpression)
2418     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2419 
2420   // Everything else is fine.
2421   return true;
2422 }
2423 
2424 /// Check that this core constant expression value is a valid value for a
2425 /// constant expression. If not, report an appropriate diagnostic. Does not
2426 /// check that the expression is of literal type.
2427 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2428                                     QualType Type, const APValue &Value,
2429                                     ConstantExprKind Kind) {
2430   // Nothing to check for a constant expression of type 'cv void'.
2431   if (Type->isVoidType())
2432     return true;
2433 
2434   CheckedTemporaries CheckedTemps;
2435   return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2436                                Info, DiagLoc, Type, Value, Kind,
2437                                SourceLocation(), CheckedTemps);
2438 }
2439 
2440 /// Check that this evaluated value is fully-initialized and can be loaded by
2441 /// an lvalue-to-rvalue conversion.
2442 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2443                                   QualType Type, const APValue &Value) {
2444   CheckedTemporaries CheckedTemps;
2445   return CheckEvaluationResult(
2446       CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2447       ConstantExprKind::Normal, SourceLocation(), CheckedTemps);
2448 }
2449 
2450 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2451 /// "the allocated storage is deallocated within the evaluation".
2452 static bool CheckMemoryLeaks(EvalInfo &Info) {
2453   if (!Info.HeapAllocs.empty()) {
2454     // We can still fold to a constant despite a compile-time memory leak,
2455     // so long as the heap allocation isn't referenced in the result (we check
2456     // that in CheckConstantExpression).
2457     Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2458                  diag::note_constexpr_memory_leak)
2459         << unsigned(Info.HeapAllocs.size() - 1);
2460   }
2461   return true;
2462 }
2463 
2464 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2465   // A null base expression indicates a null pointer.  These are always
2466   // evaluatable, and they are false unless the offset is zero.
2467   if (!Value.getLValueBase()) {
2468     Result = !Value.getLValueOffset().isZero();
2469     return true;
2470   }
2471 
2472   // We have a non-null base.  These are generally known to be true, but if it's
2473   // a weak declaration it can be null at runtime.
2474   Result = true;
2475   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2476   return !Decl || !Decl->isWeak();
2477 }
2478 
2479 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2480   switch (Val.getKind()) {
2481   case APValue::None:
2482   case APValue::Indeterminate:
2483     return false;
2484   case APValue::Int:
2485     Result = Val.getInt().getBoolValue();
2486     return true;
2487   case APValue::FixedPoint:
2488     Result = Val.getFixedPoint().getBoolValue();
2489     return true;
2490   case APValue::Float:
2491     Result = !Val.getFloat().isZero();
2492     return true;
2493   case APValue::ComplexInt:
2494     Result = Val.getComplexIntReal().getBoolValue() ||
2495              Val.getComplexIntImag().getBoolValue();
2496     return true;
2497   case APValue::ComplexFloat:
2498     Result = !Val.getComplexFloatReal().isZero() ||
2499              !Val.getComplexFloatImag().isZero();
2500     return true;
2501   case APValue::LValue:
2502     return EvalPointerValueAsBool(Val, Result);
2503   case APValue::MemberPointer:
2504     Result = Val.getMemberPointerDecl();
2505     return true;
2506   case APValue::Vector:
2507   case APValue::Array:
2508   case APValue::Struct:
2509   case APValue::Union:
2510   case APValue::AddrLabelDiff:
2511     return false;
2512   }
2513 
2514   llvm_unreachable("unknown APValue kind");
2515 }
2516 
2517 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2518                                        EvalInfo &Info) {
2519   assert(!E->isValueDependent());
2520   assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2521   APValue Val;
2522   if (!Evaluate(Val, Info, E))
2523     return false;
2524   return HandleConversionToBool(Val, Result);
2525 }
2526 
2527 template<typename T>
2528 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2529                            const T &SrcValue, QualType DestType) {
2530   Info.CCEDiag(E, diag::note_constexpr_overflow)
2531     << SrcValue << DestType;
2532   return Info.noteUndefinedBehavior();
2533 }
2534 
2535 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2536                                  QualType SrcType, const APFloat &Value,
2537                                  QualType DestType, APSInt &Result) {
2538   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2539   // Determine whether we are converting to unsigned or signed.
2540   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2541 
2542   Result = APSInt(DestWidth, !DestSigned);
2543   bool ignored;
2544   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2545       & APFloat::opInvalidOp)
2546     return HandleOverflow(Info, E, Value, DestType);
2547   return true;
2548 }
2549 
2550 /// Get rounding mode used for evaluation of the specified expression.
2551 /// \param[out] DynamicRM Is set to true is the requested rounding mode is
2552 ///                       dynamic.
2553 /// If rounding mode is unknown at compile time, still try to evaluate the
2554 /// expression. If the result is exact, it does not depend on rounding mode.
2555 /// So return "tonearest" mode instead of "dynamic".
2556 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E,
2557                                                 bool &DynamicRM) {
2558   llvm::RoundingMode RM =
2559       E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2560   DynamicRM = (RM == llvm::RoundingMode::Dynamic);
2561   if (DynamicRM)
2562     RM = llvm::RoundingMode::NearestTiesToEven;
2563   return RM;
2564 }
2565 
2566 /// Check if the given evaluation result is allowed for constant evaluation.
2567 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2568                                      APFloat::opStatus St) {
2569   // In a constant context, assume that any dynamic rounding mode or FP
2570   // exception state matches the default floating-point environment.
2571   if (Info.InConstantContext)
2572     return true;
2573 
2574   FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2575   if ((St & APFloat::opInexact) &&
2576       FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2577     // Inexact result means that it depends on rounding mode. If the requested
2578     // mode is dynamic, the evaluation cannot be made in compile time.
2579     Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2580     return false;
2581   }
2582 
2583   if ((St != APFloat::opOK) &&
2584       (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2585        FPO.getFPExceptionMode() != LangOptions::FPE_Ignore ||
2586        FPO.getAllowFEnvAccess())) {
2587     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2588     return false;
2589   }
2590 
2591   if ((St & APFloat::opStatus::opInvalidOp) &&
2592       FPO.getFPExceptionMode() != LangOptions::FPE_Ignore) {
2593     // There is no usefully definable result.
2594     Info.FFDiag(E);
2595     return false;
2596   }
2597 
2598   // FIXME: if:
2599   // - evaluation triggered other FP exception, and
2600   // - exception mode is not "ignore", and
2601   // - the expression being evaluated is not a part of global variable
2602   //   initializer,
2603   // the evaluation probably need to be rejected.
2604   return true;
2605 }
2606 
2607 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2608                                    QualType SrcType, QualType DestType,
2609                                    APFloat &Result) {
2610   assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2611   bool DynamicRM;
2612   llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2613   APFloat::opStatus St;
2614   APFloat Value = Result;
2615   bool ignored;
2616   St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2617   return checkFloatingPointResult(Info, E, St);
2618 }
2619 
2620 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2621                                  QualType DestType, QualType SrcType,
2622                                  const APSInt &Value) {
2623   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2624   // Figure out if this is a truncate, extend or noop cast.
2625   // If the input is signed, do a sign extend, noop, or truncate.
2626   APSInt Result = Value.extOrTrunc(DestWidth);
2627   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2628   if (DestType->isBooleanType())
2629     Result = Value.getBoolValue();
2630   return Result;
2631 }
2632 
2633 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2634                                  const FPOptions FPO,
2635                                  QualType SrcType, const APSInt &Value,
2636                                  QualType DestType, APFloat &Result) {
2637   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2638   APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(),
2639        APFloat::rmNearestTiesToEven);
2640   if (!Info.InConstantContext && St != llvm::APFloatBase::opOK &&
2641       FPO.isFPConstrained()) {
2642     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2643     return false;
2644   }
2645   return true;
2646 }
2647 
2648 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2649                                   APValue &Value, const FieldDecl *FD) {
2650   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2651 
2652   if (!Value.isInt()) {
2653     // Trying to store a pointer-cast-to-integer into a bitfield.
2654     // FIXME: In this case, we should provide the diagnostic for casting
2655     // a pointer to an integer.
2656     assert(Value.isLValue() && "integral value neither int nor lvalue?");
2657     Info.FFDiag(E);
2658     return false;
2659   }
2660 
2661   APSInt &Int = Value.getInt();
2662   unsigned OldBitWidth = Int.getBitWidth();
2663   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2664   if (NewBitWidth < OldBitWidth)
2665     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2666   return true;
2667 }
2668 
2669 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2670                                   llvm::APInt &Res) {
2671   APValue SVal;
2672   if (!Evaluate(SVal, Info, E))
2673     return false;
2674   if (SVal.isInt()) {
2675     Res = SVal.getInt();
2676     return true;
2677   }
2678   if (SVal.isFloat()) {
2679     Res = SVal.getFloat().bitcastToAPInt();
2680     return true;
2681   }
2682   if (SVal.isVector()) {
2683     QualType VecTy = E->getType();
2684     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2685     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2686     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2687     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2688     Res = llvm::APInt::getZero(VecSize);
2689     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2690       APValue &Elt = SVal.getVectorElt(i);
2691       llvm::APInt EltAsInt;
2692       if (Elt.isInt()) {
2693         EltAsInt = Elt.getInt();
2694       } else if (Elt.isFloat()) {
2695         EltAsInt = Elt.getFloat().bitcastToAPInt();
2696       } else {
2697         // Don't try to handle vectors of anything other than int or float
2698         // (not sure if it's possible to hit this case).
2699         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2700         return false;
2701       }
2702       unsigned BaseEltSize = EltAsInt.getBitWidth();
2703       if (BigEndian)
2704         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2705       else
2706         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2707     }
2708     return true;
2709   }
2710   // Give up if the input isn't an int, float, or vector.  For example, we
2711   // reject "(v4i16)(intptr_t)&a".
2712   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2713   return false;
2714 }
2715 
2716 /// Perform the given integer operation, which is known to need at most BitWidth
2717 /// bits, and check for overflow in the original type (if that type was not an
2718 /// unsigned type).
2719 template<typename Operation>
2720 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2721                                  const APSInt &LHS, const APSInt &RHS,
2722                                  unsigned BitWidth, Operation Op,
2723                                  APSInt &Result) {
2724   if (LHS.isUnsigned()) {
2725     Result = Op(LHS, RHS);
2726     return true;
2727   }
2728 
2729   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2730   Result = Value.trunc(LHS.getBitWidth());
2731   if (Result.extend(BitWidth) != Value) {
2732     if (Info.checkingForUndefinedBehavior())
2733       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2734                                        diag::warn_integer_constant_overflow)
2735           << toString(Result, 10) << E->getType();
2736     return HandleOverflow(Info, E, Value, E->getType());
2737   }
2738   return true;
2739 }
2740 
2741 /// Perform the given binary integer operation.
2742 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2743                               BinaryOperatorKind Opcode, APSInt RHS,
2744                               APSInt &Result) {
2745   switch (Opcode) {
2746   default:
2747     Info.FFDiag(E);
2748     return false;
2749   case BO_Mul:
2750     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2751                                 std::multiplies<APSInt>(), Result);
2752   case BO_Add:
2753     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2754                                 std::plus<APSInt>(), Result);
2755   case BO_Sub:
2756     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2757                                 std::minus<APSInt>(), Result);
2758   case BO_And: Result = LHS & RHS; return true;
2759   case BO_Xor: Result = LHS ^ RHS; return true;
2760   case BO_Or:  Result = LHS | RHS; return true;
2761   case BO_Div:
2762   case BO_Rem:
2763     if (RHS == 0) {
2764       Info.FFDiag(E, diag::note_expr_divide_by_zero);
2765       return false;
2766     }
2767     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2768     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2769     // this operation and gives the two's complement result.
2770     if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2771         LHS.isMinSignedValue())
2772       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2773                             E->getType());
2774     return true;
2775   case BO_Shl: {
2776     if (Info.getLangOpts().OpenCL)
2777       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2778       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2779                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2780                     RHS.isUnsigned());
2781     else if (RHS.isSigned() && RHS.isNegative()) {
2782       // During constant-folding, a negative shift is an opposite shift. Such
2783       // a shift is not a constant expression.
2784       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2785       RHS = -RHS;
2786       goto shift_right;
2787     }
2788   shift_left:
2789     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2790     // the shifted type.
2791     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2792     if (SA != RHS) {
2793       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2794         << RHS << E->getType() << LHS.getBitWidth();
2795     } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2796       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2797       // operand, and must not overflow the corresponding unsigned type.
2798       // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2799       // E1 x 2^E2 module 2^N.
2800       if (LHS.isNegative())
2801         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2802       else if (LHS.countLeadingZeros() < SA)
2803         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2804     }
2805     Result = LHS << SA;
2806     return true;
2807   }
2808   case BO_Shr: {
2809     if (Info.getLangOpts().OpenCL)
2810       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2811       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2812                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2813                     RHS.isUnsigned());
2814     else if (RHS.isSigned() && RHS.isNegative()) {
2815       // During constant-folding, a negative shift is an opposite shift. Such a
2816       // shift is not a constant expression.
2817       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2818       RHS = -RHS;
2819       goto shift_left;
2820     }
2821   shift_right:
2822     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2823     // shifted type.
2824     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2825     if (SA != RHS)
2826       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2827         << RHS << E->getType() << LHS.getBitWidth();
2828     Result = LHS >> SA;
2829     return true;
2830   }
2831 
2832   case BO_LT: Result = LHS < RHS; return true;
2833   case BO_GT: Result = LHS > RHS; return true;
2834   case BO_LE: Result = LHS <= RHS; return true;
2835   case BO_GE: Result = LHS >= RHS; return true;
2836   case BO_EQ: Result = LHS == RHS; return true;
2837   case BO_NE: Result = LHS != RHS; return true;
2838   case BO_Cmp:
2839     llvm_unreachable("BO_Cmp should be handled elsewhere");
2840   }
2841 }
2842 
2843 /// Perform the given binary floating-point operation, in-place, on LHS.
2844 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2845                                   APFloat &LHS, BinaryOperatorKind Opcode,
2846                                   const APFloat &RHS) {
2847   bool DynamicRM;
2848   llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2849   APFloat::opStatus St;
2850   switch (Opcode) {
2851   default:
2852     Info.FFDiag(E);
2853     return false;
2854   case BO_Mul:
2855     St = LHS.multiply(RHS, RM);
2856     break;
2857   case BO_Add:
2858     St = LHS.add(RHS, RM);
2859     break;
2860   case BO_Sub:
2861     St = LHS.subtract(RHS, RM);
2862     break;
2863   case BO_Div:
2864     // [expr.mul]p4:
2865     //   If the second operand of / or % is zero the behavior is undefined.
2866     if (RHS.isZero())
2867       Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2868     St = LHS.divide(RHS, RM);
2869     break;
2870   }
2871 
2872   // [expr.pre]p4:
2873   //   If during the evaluation of an expression, the result is not
2874   //   mathematically defined [...], the behavior is undefined.
2875   // FIXME: C++ rules require us to not conform to IEEE 754 here.
2876   if (LHS.isNaN()) {
2877     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2878     return Info.noteUndefinedBehavior();
2879   }
2880 
2881   return checkFloatingPointResult(Info, E, St);
2882 }
2883 
2884 static bool handleLogicalOpForVector(const APInt &LHSValue,
2885                                      BinaryOperatorKind Opcode,
2886                                      const APInt &RHSValue, APInt &Result) {
2887   bool LHS = (LHSValue != 0);
2888   bool RHS = (RHSValue != 0);
2889 
2890   if (Opcode == BO_LAnd)
2891     Result = LHS && RHS;
2892   else
2893     Result = LHS || RHS;
2894   return true;
2895 }
2896 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2897                                      BinaryOperatorKind Opcode,
2898                                      const APFloat &RHSValue, APInt &Result) {
2899   bool LHS = !LHSValue.isZero();
2900   bool RHS = !RHSValue.isZero();
2901 
2902   if (Opcode == BO_LAnd)
2903     Result = LHS && RHS;
2904   else
2905     Result = LHS || RHS;
2906   return true;
2907 }
2908 
2909 static bool handleLogicalOpForVector(const APValue &LHSValue,
2910                                      BinaryOperatorKind Opcode,
2911                                      const APValue &RHSValue, APInt &Result) {
2912   // The result is always an int type, however operands match the first.
2913   if (LHSValue.getKind() == APValue::Int)
2914     return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2915                                     RHSValue.getInt(), Result);
2916   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2917   return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2918                                   RHSValue.getFloat(), Result);
2919 }
2920 
2921 template <typename APTy>
2922 static bool
2923 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2924                                const APTy &RHSValue, APInt &Result) {
2925   switch (Opcode) {
2926   default:
2927     llvm_unreachable("unsupported binary operator");
2928   case BO_EQ:
2929     Result = (LHSValue == RHSValue);
2930     break;
2931   case BO_NE:
2932     Result = (LHSValue != RHSValue);
2933     break;
2934   case BO_LT:
2935     Result = (LHSValue < RHSValue);
2936     break;
2937   case BO_GT:
2938     Result = (LHSValue > RHSValue);
2939     break;
2940   case BO_LE:
2941     Result = (LHSValue <= RHSValue);
2942     break;
2943   case BO_GE:
2944     Result = (LHSValue >= RHSValue);
2945     break;
2946   }
2947 
2948   // The boolean operations on these vector types use an instruction that
2949   // results in a mask of '-1' for the 'truth' value.  Ensure that we negate 1
2950   // to -1 to make sure that we produce the correct value.
2951   Result.negate();
2952 
2953   return true;
2954 }
2955 
2956 static bool handleCompareOpForVector(const APValue &LHSValue,
2957                                      BinaryOperatorKind Opcode,
2958                                      const APValue &RHSValue, APInt &Result) {
2959   // The result is always an int type, however operands match the first.
2960   if (LHSValue.getKind() == APValue::Int)
2961     return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2962                                           RHSValue.getInt(), Result);
2963   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2964   return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2965                                         RHSValue.getFloat(), Result);
2966 }
2967 
2968 // Perform binary operations for vector types, in place on the LHS.
2969 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
2970                                     BinaryOperatorKind Opcode,
2971                                     APValue &LHSValue,
2972                                     const APValue &RHSValue) {
2973   assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
2974          "Operation not supported on vector types");
2975 
2976   const auto *VT = E->getType()->castAs<VectorType>();
2977   unsigned NumElements = VT->getNumElements();
2978   QualType EltTy = VT->getElementType();
2979 
2980   // In the cases (typically C as I've observed) where we aren't evaluating
2981   // constexpr but are checking for cases where the LHS isn't yet evaluatable,
2982   // just give up.
2983   if (!LHSValue.isVector()) {
2984     assert(LHSValue.isLValue() &&
2985            "A vector result that isn't a vector OR uncalculated LValue");
2986     Info.FFDiag(E);
2987     return false;
2988   }
2989 
2990   assert(LHSValue.getVectorLength() == NumElements &&
2991          RHSValue.getVectorLength() == NumElements && "Different vector sizes");
2992 
2993   SmallVector<APValue, 4> ResultElements;
2994 
2995   for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
2996     APValue LHSElt = LHSValue.getVectorElt(EltNum);
2997     APValue RHSElt = RHSValue.getVectorElt(EltNum);
2998 
2999     if (EltTy->isIntegerType()) {
3000       APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
3001                        EltTy->isUnsignedIntegerType()};
3002       bool Success = true;
3003 
3004       if (BinaryOperator::isLogicalOp(Opcode))
3005         Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3006       else if (BinaryOperator::isComparisonOp(Opcode))
3007         Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3008       else
3009         Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
3010                                     RHSElt.getInt(), EltResult);
3011 
3012       if (!Success) {
3013         Info.FFDiag(E);
3014         return false;
3015       }
3016       ResultElements.emplace_back(EltResult);
3017 
3018     } else if (EltTy->isFloatingType()) {
3019       assert(LHSElt.getKind() == APValue::Float &&
3020              RHSElt.getKind() == APValue::Float &&
3021              "Mismatched LHS/RHS/Result Type");
3022       APFloat LHSFloat = LHSElt.getFloat();
3023 
3024       if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3025                                  RHSElt.getFloat())) {
3026         Info.FFDiag(E);
3027         return false;
3028       }
3029 
3030       ResultElements.emplace_back(LHSFloat);
3031     }
3032   }
3033 
3034   LHSValue = APValue(ResultElements.data(), ResultElements.size());
3035   return true;
3036 }
3037 
3038 /// Cast an lvalue referring to a base subobject to a derived class, by
3039 /// truncating the lvalue's path to the given length.
3040 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3041                                const RecordDecl *TruncatedType,
3042                                unsigned TruncatedElements) {
3043   SubobjectDesignator &D = Result.Designator;
3044 
3045   // Check we actually point to a derived class object.
3046   if (TruncatedElements == D.Entries.size())
3047     return true;
3048   assert(TruncatedElements >= D.MostDerivedPathLength &&
3049          "not casting to a derived class");
3050   if (!Result.checkSubobject(Info, E, CSK_Derived))
3051     return false;
3052 
3053   // Truncate the path to the subobject, and remove any derived-to-base offsets.
3054   const RecordDecl *RD = TruncatedType;
3055   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3056     if (RD->isInvalidDecl()) return false;
3057     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3058     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3059     if (isVirtualBaseClass(D.Entries[I]))
3060       Result.Offset -= Layout.getVBaseClassOffset(Base);
3061     else
3062       Result.Offset -= Layout.getBaseClassOffset(Base);
3063     RD = Base;
3064   }
3065   D.Entries.resize(TruncatedElements);
3066   return true;
3067 }
3068 
3069 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3070                                    const CXXRecordDecl *Derived,
3071                                    const CXXRecordDecl *Base,
3072                                    const ASTRecordLayout *RL = nullptr) {
3073   if (!RL) {
3074     if (Derived->isInvalidDecl()) return false;
3075     RL = &Info.Ctx.getASTRecordLayout(Derived);
3076   }
3077 
3078   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3079   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3080   return true;
3081 }
3082 
3083 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3084                              const CXXRecordDecl *DerivedDecl,
3085                              const CXXBaseSpecifier *Base) {
3086   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3087 
3088   if (!Base->isVirtual())
3089     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3090 
3091   SubobjectDesignator &D = Obj.Designator;
3092   if (D.Invalid)
3093     return false;
3094 
3095   // Extract most-derived object and corresponding type.
3096   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3097   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3098     return false;
3099 
3100   // Find the virtual base class.
3101   if (DerivedDecl->isInvalidDecl()) return false;
3102   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3103   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3104   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3105   return true;
3106 }
3107 
3108 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3109                                  QualType Type, LValue &Result) {
3110   for (CastExpr::path_const_iterator PathI = E->path_begin(),
3111                                      PathE = E->path_end();
3112        PathI != PathE; ++PathI) {
3113     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3114                           *PathI))
3115       return false;
3116     Type = (*PathI)->getType();
3117   }
3118   return true;
3119 }
3120 
3121 /// Cast an lvalue referring to a derived class to a known base subobject.
3122 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3123                             const CXXRecordDecl *DerivedRD,
3124                             const CXXRecordDecl *BaseRD) {
3125   CXXBasePaths Paths(/*FindAmbiguities=*/false,
3126                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
3127   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3128     llvm_unreachable("Class must be derived from the passed in base class!");
3129 
3130   for (CXXBasePathElement &Elem : Paths.front())
3131     if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3132       return false;
3133   return true;
3134 }
3135 
3136 /// Update LVal to refer to the given field, which must be a member of the type
3137 /// currently described by LVal.
3138 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3139                                const FieldDecl *FD,
3140                                const ASTRecordLayout *RL = nullptr) {
3141   if (!RL) {
3142     if (FD->getParent()->isInvalidDecl()) return false;
3143     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3144   }
3145 
3146   unsigned I = FD->getFieldIndex();
3147   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3148   LVal.addDecl(Info, E, FD);
3149   return true;
3150 }
3151 
3152 /// Update LVal to refer to the given indirect field.
3153 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3154                                        LValue &LVal,
3155                                        const IndirectFieldDecl *IFD) {
3156   for (const auto *C : IFD->chain())
3157     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3158       return false;
3159   return true;
3160 }
3161 
3162 /// Get the size of the given type in char units.
3163 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
3164                          QualType Type, CharUnits &Size) {
3165   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3166   // extension.
3167   if (Type->isVoidType() || Type->isFunctionType()) {
3168     Size = CharUnits::One();
3169     return true;
3170   }
3171 
3172   if (Type->isDependentType()) {
3173     Info.FFDiag(Loc);
3174     return false;
3175   }
3176 
3177   if (!Type->isConstantSizeType()) {
3178     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3179     // FIXME: Better diagnostic.
3180     Info.FFDiag(Loc);
3181     return false;
3182   }
3183 
3184   Size = Info.Ctx.getTypeSizeInChars(Type);
3185   return true;
3186 }
3187 
3188 /// Update a pointer value to model pointer arithmetic.
3189 /// \param Info - Information about the ongoing evaluation.
3190 /// \param E - The expression being evaluated, for diagnostic purposes.
3191 /// \param LVal - The pointer value to be updated.
3192 /// \param EltTy - The pointee type represented by LVal.
3193 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3194 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3195                                         LValue &LVal, QualType EltTy,
3196                                         APSInt Adjustment) {
3197   CharUnits SizeOfPointee;
3198   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3199     return false;
3200 
3201   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3202   return true;
3203 }
3204 
3205 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3206                                         LValue &LVal, QualType EltTy,
3207                                         int64_t Adjustment) {
3208   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3209                                      APSInt::get(Adjustment));
3210 }
3211 
3212 /// Update an lvalue to refer to a component of a complex number.
3213 /// \param Info - Information about the ongoing evaluation.
3214 /// \param LVal - The lvalue to be updated.
3215 /// \param EltTy - The complex number's component type.
3216 /// \param Imag - False for the real component, true for the imaginary.
3217 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3218                                        LValue &LVal, QualType EltTy,
3219                                        bool Imag) {
3220   if (Imag) {
3221     CharUnits SizeOfComponent;
3222     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3223       return false;
3224     LVal.Offset += SizeOfComponent;
3225   }
3226   LVal.addComplex(Info, E, EltTy, Imag);
3227   return true;
3228 }
3229 
3230 /// Try to evaluate the initializer for a variable declaration.
3231 ///
3232 /// \param Info   Information about the ongoing evaluation.
3233 /// \param E      An expression to be used when printing diagnostics.
3234 /// \param VD     The variable whose initializer should be obtained.
3235 /// \param Version The version of the variable within the frame.
3236 /// \param Frame  The frame in which the variable was created. Must be null
3237 ///               if this variable is not local to the evaluation.
3238 /// \param Result Filled in with a pointer to the value of the variable.
3239 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3240                                 const VarDecl *VD, CallStackFrame *Frame,
3241                                 unsigned Version, APValue *&Result) {
3242   APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3243 
3244   // If this is a local variable, dig out its value.
3245   if (Frame) {
3246     Result = Frame->getTemporary(VD, Version);
3247     if (Result)
3248       return true;
3249 
3250     if (!isa<ParmVarDecl>(VD)) {
3251       // Assume variables referenced within a lambda's call operator that were
3252       // not declared within the call operator are captures and during checking
3253       // of a potential constant expression, assume they are unknown constant
3254       // expressions.
3255       assert(isLambdaCallOperator(Frame->Callee) &&
3256              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3257              "missing value for local variable");
3258       if (Info.checkingPotentialConstantExpression())
3259         return false;
3260       // FIXME: This diagnostic is bogus; we do support captures. Is this code
3261       // still reachable at all?
3262       Info.FFDiag(E->getBeginLoc(),
3263                   diag::note_unimplemented_constexpr_lambda_feature_ast)
3264           << "captures not currently allowed";
3265       return false;
3266     }
3267   }
3268 
3269   // If we're currently evaluating the initializer of this declaration, use that
3270   // in-flight value.
3271   if (Info.EvaluatingDecl == Base) {
3272     Result = Info.EvaluatingDeclValue;
3273     return true;
3274   }
3275 
3276   if (isa<ParmVarDecl>(VD)) {
3277     // Assume parameters of a potential constant expression are usable in
3278     // constant expressions.
3279     if (!Info.checkingPotentialConstantExpression() ||
3280         !Info.CurrentCall->Callee ||
3281         !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3282       if (Info.getLangOpts().CPlusPlus11) {
3283         Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3284             << VD;
3285         NoteLValueLocation(Info, Base);
3286       } else {
3287         Info.FFDiag(E);
3288       }
3289     }
3290     return false;
3291   }
3292 
3293   // Dig out the initializer, and use the declaration which it's attached to.
3294   // FIXME: We should eventually check whether the variable has a reachable
3295   // initializing declaration.
3296   const Expr *Init = VD->getAnyInitializer(VD);
3297   if (!Init) {
3298     // Don't diagnose during potential constant expression checking; an
3299     // initializer might be added later.
3300     if (!Info.checkingPotentialConstantExpression()) {
3301       Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3302         << VD;
3303       NoteLValueLocation(Info, Base);
3304     }
3305     return false;
3306   }
3307 
3308   if (Init->isValueDependent()) {
3309     // The DeclRefExpr is not value-dependent, but the variable it refers to
3310     // has a value-dependent initializer. This should only happen in
3311     // constant-folding cases, where the variable is not actually of a suitable
3312     // type for use in a constant expression (otherwise the DeclRefExpr would
3313     // have been value-dependent too), so diagnose that.
3314     assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3315     if (!Info.checkingPotentialConstantExpression()) {
3316       Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3317                          ? diag::note_constexpr_ltor_non_constexpr
3318                          : diag::note_constexpr_ltor_non_integral, 1)
3319           << VD << VD->getType();
3320       NoteLValueLocation(Info, Base);
3321     }
3322     return false;
3323   }
3324 
3325   // Check that we can fold the initializer. In C++, we will have already done
3326   // this in the cases where it matters for conformance.
3327   SmallVector<PartialDiagnosticAt, 8> Notes;
3328   if (!VD->evaluateValue(Notes)) {
3329     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
3330               Notes.size() + 1) << VD;
3331     NoteLValueLocation(Info, Base);
3332     Info.addNotes(Notes);
3333     return false;
3334   }
3335 
3336   // Check that the variable is actually usable in constant expressions. For a
3337   // const integral variable or a reference, we might have a non-constant
3338   // initializer that we can nonetheless evaluate the initializer for. Such
3339   // variables are not usable in constant expressions. In C++98, the
3340   // initializer also syntactically needs to be an ICE.
3341   //
3342   // FIXME: We don't diagnose cases that aren't potentially usable in constant
3343   // expressions here; doing so would regress diagnostics for things like
3344   // reading from a volatile constexpr variable.
3345   if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3346        VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3347       ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3348        !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3349     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3350     NoteLValueLocation(Info, Base);
3351   }
3352 
3353   // Never use the initializer of a weak variable, not even for constant
3354   // folding. We can't be sure that this is the definition that will be used.
3355   if (VD->isWeak()) {
3356     Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3357     NoteLValueLocation(Info, Base);
3358     return false;
3359   }
3360 
3361   Result = VD->getEvaluatedValue();
3362   return true;
3363 }
3364 
3365 /// Get the base index of the given base class within an APValue representing
3366 /// the given derived class.
3367 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3368                              const CXXRecordDecl *Base) {
3369   Base = Base->getCanonicalDecl();
3370   unsigned Index = 0;
3371   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3372          E = Derived->bases_end(); I != E; ++I, ++Index) {
3373     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3374       return Index;
3375   }
3376 
3377   llvm_unreachable("base class missing from derived class's bases list");
3378 }
3379 
3380 /// Extract the value of a character from a string literal.
3381 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3382                                             uint64_t Index) {
3383   assert(!isa<SourceLocExpr>(Lit) &&
3384          "SourceLocExpr should have already been converted to a StringLiteral");
3385 
3386   // FIXME: Support MakeStringConstant
3387   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3388     std::string Str;
3389     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3390     assert(Index <= Str.size() && "Index too large");
3391     return APSInt::getUnsigned(Str.c_str()[Index]);
3392   }
3393 
3394   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3395     Lit = PE->getFunctionName();
3396   const StringLiteral *S = cast<StringLiteral>(Lit);
3397   const ConstantArrayType *CAT =
3398       Info.Ctx.getAsConstantArrayType(S->getType());
3399   assert(CAT && "string literal isn't an array");
3400   QualType CharType = CAT->getElementType();
3401   assert(CharType->isIntegerType() && "unexpected character type");
3402 
3403   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3404                CharType->isUnsignedIntegerType());
3405   if (Index < S->getLength())
3406     Value = S->getCodeUnit(Index);
3407   return Value;
3408 }
3409 
3410 // Expand a string literal into an array of characters.
3411 //
3412 // FIXME: This is inefficient; we should probably introduce something similar
3413 // to the LLVM ConstantDataArray to make this cheaper.
3414 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3415                                 APValue &Result,
3416                                 QualType AllocType = QualType()) {
3417   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3418       AllocType.isNull() ? S->getType() : AllocType);
3419   assert(CAT && "string literal isn't an array");
3420   QualType CharType = CAT->getElementType();
3421   assert(CharType->isIntegerType() && "unexpected character type");
3422 
3423   unsigned Elts = CAT->getSize().getZExtValue();
3424   Result = APValue(APValue::UninitArray(),
3425                    std::min(S->getLength(), Elts), Elts);
3426   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3427                CharType->isUnsignedIntegerType());
3428   if (Result.hasArrayFiller())
3429     Result.getArrayFiller() = APValue(Value);
3430   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3431     Value = S->getCodeUnit(I);
3432     Result.getArrayInitializedElt(I) = APValue(Value);
3433   }
3434 }
3435 
3436 // Expand an array so that it has more than Index filled elements.
3437 static void expandArray(APValue &Array, unsigned Index) {
3438   unsigned Size = Array.getArraySize();
3439   assert(Index < Size);
3440 
3441   // Always at least double the number of elements for which we store a value.
3442   unsigned OldElts = Array.getArrayInitializedElts();
3443   unsigned NewElts = std::max(Index+1, OldElts * 2);
3444   NewElts = std::min(Size, std::max(NewElts, 8u));
3445 
3446   // Copy the data across.
3447   APValue NewValue(APValue::UninitArray(), NewElts, Size);
3448   for (unsigned I = 0; I != OldElts; ++I)
3449     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3450   for (unsigned I = OldElts; I != NewElts; ++I)
3451     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3452   if (NewValue.hasArrayFiller())
3453     NewValue.getArrayFiller() = Array.getArrayFiller();
3454   Array.swap(NewValue);
3455 }
3456 
3457 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3458 /// conversion. If it's of class type, we may assume that the copy operation
3459 /// is trivial. Note that this is never true for a union type with fields
3460 /// (because the copy always "reads" the active member) and always true for
3461 /// a non-class type.
3462 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3463 static bool isReadByLvalueToRvalueConversion(QualType T) {
3464   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3465   return !RD || isReadByLvalueToRvalueConversion(RD);
3466 }
3467 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3468   // FIXME: A trivial copy of a union copies the object representation, even if
3469   // the union is empty.
3470   if (RD->isUnion())
3471     return !RD->field_empty();
3472   if (RD->isEmpty())
3473     return false;
3474 
3475   for (auto *Field : RD->fields())
3476     if (!Field->isUnnamedBitfield() &&
3477         isReadByLvalueToRvalueConversion(Field->getType()))
3478       return true;
3479 
3480   for (auto &BaseSpec : RD->bases())
3481     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3482       return true;
3483 
3484   return false;
3485 }
3486 
3487 /// Diagnose an attempt to read from any unreadable field within the specified
3488 /// type, which might be a class type.
3489 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3490                                   QualType T) {
3491   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3492   if (!RD)
3493     return false;
3494 
3495   if (!RD->hasMutableFields())
3496     return false;
3497 
3498   for (auto *Field : RD->fields()) {
3499     // If we're actually going to read this field in some way, then it can't
3500     // be mutable. If we're in a union, then assigning to a mutable field
3501     // (even an empty one) can change the active member, so that's not OK.
3502     // FIXME: Add core issue number for the union case.
3503     if (Field->isMutable() &&
3504         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3505       Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3506       Info.Note(Field->getLocation(), diag::note_declared_at);
3507       return true;
3508     }
3509 
3510     if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3511       return true;
3512   }
3513 
3514   for (auto &BaseSpec : RD->bases())
3515     if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3516       return true;
3517 
3518   // All mutable fields were empty, and thus not actually read.
3519   return false;
3520 }
3521 
3522 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3523                                         APValue::LValueBase Base,
3524                                         bool MutableSubobject = false) {
3525   // A temporary or transient heap allocation we created.
3526   if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3527     return true;
3528 
3529   switch (Info.IsEvaluatingDecl) {
3530   case EvalInfo::EvaluatingDeclKind::None:
3531     return false;
3532 
3533   case EvalInfo::EvaluatingDeclKind::Ctor:
3534     // The variable whose initializer we're evaluating.
3535     if (Info.EvaluatingDecl == Base)
3536       return true;
3537 
3538     // A temporary lifetime-extended by the variable whose initializer we're
3539     // evaluating.
3540     if (auto *BaseE = Base.dyn_cast<const Expr *>())
3541       if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3542         return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3543     return false;
3544 
3545   case EvalInfo::EvaluatingDeclKind::Dtor:
3546     // C++2a [expr.const]p6:
3547     //   [during constant destruction] the lifetime of a and its non-mutable
3548     //   subobjects (but not its mutable subobjects) [are] considered to start
3549     //   within e.
3550     if (MutableSubobject || Base != Info.EvaluatingDecl)
3551       return false;
3552     // FIXME: We can meaningfully extend this to cover non-const objects, but
3553     // we will need special handling: we should be able to access only
3554     // subobjects of such objects that are themselves declared const.
3555     QualType T = getType(Base);
3556     return T.isConstQualified() || T->isReferenceType();
3557   }
3558 
3559   llvm_unreachable("unknown evaluating decl kind");
3560 }
3561 
3562 namespace {
3563 /// A handle to a complete object (an object that is not a subobject of
3564 /// another object).
3565 struct CompleteObject {
3566   /// The identity of the object.
3567   APValue::LValueBase Base;
3568   /// The value of the complete object.
3569   APValue *Value;
3570   /// The type of the complete object.
3571   QualType Type;
3572 
3573   CompleteObject() : Value(nullptr) {}
3574   CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3575       : Base(Base), Value(Value), Type(Type) {}
3576 
3577   bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3578     // If this isn't a "real" access (eg, if it's just accessing the type
3579     // info), allow it. We assume the type doesn't change dynamically for
3580     // subobjects of constexpr objects (even though we'd hit UB here if it
3581     // did). FIXME: Is this right?
3582     if (!isAnyAccess(AK))
3583       return true;
3584 
3585     // In C++14 onwards, it is permitted to read a mutable member whose
3586     // lifetime began within the evaluation.
3587     // FIXME: Should we also allow this in C++11?
3588     if (!Info.getLangOpts().CPlusPlus14)
3589       return false;
3590     return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3591   }
3592 
3593   explicit operator bool() const { return !Type.isNull(); }
3594 };
3595 } // end anonymous namespace
3596 
3597 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3598                                  bool IsMutable = false) {
3599   // C++ [basic.type.qualifier]p1:
3600   // - A const object is an object of type const T or a non-mutable subobject
3601   //   of a const object.
3602   if (ObjType.isConstQualified() && !IsMutable)
3603     SubobjType.addConst();
3604   // - A volatile object is an object of type const T or a subobject of a
3605   //   volatile object.
3606   if (ObjType.isVolatileQualified())
3607     SubobjType.addVolatile();
3608   return SubobjType;
3609 }
3610 
3611 /// Find the designated sub-object of an rvalue.
3612 template<typename SubobjectHandler>
3613 typename SubobjectHandler::result_type
3614 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3615               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3616   if (Sub.Invalid)
3617     // A diagnostic will have already been produced.
3618     return handler.failed();
3619   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3620     if (Info.getLangOpts().CPlusPlus11)
3621       Info.FFDiag(E, Sub.isOnePastTheEnd()
3622                          ? diag::note_constexpr_access_past_end
3623                          : diag::note_constexpr_access_unsized_array)
3624           << handler.AccessKind;
3625     else
3626       Info.FFDiag(E);
3627     return handler.failed();
3628   }
3629 
3630   APValue *O = Obj.Value;
3631   QualType ObjType = Obj.Type;
3632   const FieldDecl *LastField = nullptr;
3633   const FieldDecl *VolatileField = nullptr;
3634 
3635   // Walk the designator's path to find the subobject.
3636   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3637     // Reading an indeterminate value is undefined, but assigning over one is OK.
3638     if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3639         (O->isIndeterminate() &&
3640          !isValidIndeterminateAccess(handler.AccessKind))) {
3641       if (!Info.checkingPotentialConstantExpression())
3642         Info.FFDiag(E, diag::note_constexpr_access_uninit)
3643             << handler.AccessKind << O->isIndeterminate();
3644       return handler.failed();
3645     }
3646 
3647     // C++ [class.ctor]p5, C++ [class.dtor]p5:
3648     //    const and volatile semantics are not applied on an object under
3649     //    {con,de}struction.
3650     if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3651         ObjType->isRecordType() &&
3652         Info.isEvaluatingCtorDtor(
3653             Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
3654                                          Sub.Entries.begin() + I)) !=
3655                           ConstructionPhase::None) {
3656       ObjType = Info.Ctx.getCanonicalType(ObjType);
3657       ObjType.removeLocalConst();
3658       ObjType.removeLocalVolatile();
3659     }
3660 
3661     // If this is our last pass, check that the final object type is OK.
3662     if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3663       // Accesses to volatile objects are prohibited.
3664       if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3665         if (Info.getLangOpts().CPlusPlus) {
3666           int DiagKind;
3667           SourceLocation Loc;
3668           const NamedDecl *Decl = nullptr;
3669           if (VolatileField) {
3670             DiagKind = 2;
3671             Loc = VolatileField->getLocation();
3672             Decl = VolatileField;
3673           } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3674             DiagKind = 1;
3675             Loc = VD->getLocation();
3676             Decl = VD;
3677           } else {
3678             DiagKind = 0;
3679             if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3680               Loc = E->getExprLoc();
3681           }
3682           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3683               << handler.AccessKind << DiagKind << Decl;
3684           Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3685         } else {
3686           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3687         }
3688         return handler.failed();
3689       }
3690 
3691       // If we are reading an object of class type, there may still be more
3692       // things we need to check: if there are any mutable subobjects, we
3693       // cannot perform this read. (This only happens when performing a trivial
3694       // copy or assignment.)
3695       if (ObjType->isRecordType() &&
3696           !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3697           diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3698         return handler.failed();
3699     }
3700 
3701     if (I == N) {
3702       if (!handler.found(*O, ObjType))
3703         return false;
3704 
3705       // If we modified a bit-field, truncate it to the right width.
3706       if (isModification(handler.AccessKind) &&
3707           LastField && LastField->isBitField() &&
3708           !truncateBitfieldValue(Info, E, *O, LastField))
3709         return false;
3710 
3711       return true;
3712     }
3713 
3714     LastField = nullptr;
3715     if (ObjType->isArrayType()) {
3716       // Next subobject is an array element.
3717       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3718       assert(CAT && "vla in literal type?");
3719       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3720       if (CAT->getSize().ule(Index)) {
3721         // Note, it should not be possible to form a pointer with a valid
3722         // designator which points more than one past the end of the array.
3723         if (Info.getLangOpts().CPlusPlus11)
3724           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3725             << handler.AccessKind;
3726         else
3727           Info.FFDiag(E);
3728         return handler.failed();
3729       }
3730 
3731       ObjType = CAT->getElementType();
3732 
3733       if (O->getArrayInitializedElts() > Index)
3734         O = &O->getArrayInitializedElt(Index);
3735       else if (!isRead(handler.AccessKind)) {
3736         expandArray(*O, Index);
3737         O = &O->getArrayInitializedElt(Index);
3738       } else
3739         O = &O->getArrayFiller();
3740     } else if (ObjType->isAnyComplexType()) {
3741       // Next subobject is a complex number.
3742       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3743       if (Index > 1) {
3744         if (Info.getLangOpts().CPlusPlus11)
3745           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3746             << handler.AccessKind;
3747         else
3748           Info.FFDiag(E);
3749         return handler.failed();
3750       }
3751 
3752       ObjType = getSubobjectType(
3753           ObjType, ObjType->castAs<ComplexType>()->getElementType());
3754 
3755       assert(I == N - 1 && "extracting subobject of scalar?");
3756       if (O->isComplexInt()) {
3757         return handler.found(Index ? O->getComplexIntImag()
3758                                    : O->getComplexIntReal(), ObjType);
3759       } else {
3760         assert(O->isComplexFloat());
3761         return handler.found(Index ? O->getComplexFloatImag()
3762                                    : O->getComplexFloatReal(), ObjType);
3763       }
3764     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3765       if (Field->isMutable() &&
3766           !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3767         Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3768           << handler.AccessKind << Field;
3769         Info.Note(Field->getLocation(), diag::note_declared_at);
3770         return handler.failed();
3771       }
3772 
3773       // Next subobject is a class, struct or union field.
3774       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3775       if (RD->isUnion()) {
3776         const FieldDecl *UnionField = O->getUnionField();
3777         if (!UnionField ||
3778             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3779           if (I == N - 1 && handler.AccessKind == AK_Construct) {
3780             // Placement new onto an inactive union member makes it active.
3781             O->setUnion(Field, APValue());
3782           } else {
3783             // FIXME: If O->getUnionValue() is absent, report that there's no
3784             // active union member rather than reporting the prior active union
3785             // member. We'll need to fix nullptr_t to not use APValue() as its
3786             // representation first.
3787             Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3788                 << handler.AccessKind << Field << !UnionField << UnionField;
3789             return handler.failed();
3790           }
3791         }
3792         O = &O->getUnionValue();
3793       } else
3794         O = &O->getStructField(Field->getFieldIndex());
3795 
3796       ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3797       LastField = Field;
3798       if (Field->getType().isVolatileQualified())
3799         VolatileField = Field;
3800     } else {
3801       // Next subobject is a base class.
3802       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3803       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3804       O = &O->getStructBase(getBaseIndex(Derived, Base));
3805 
3806       ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3807     }
3808   }
3809 }
3810 
3811 namespace {
3812 struct ExtractSubobjectHandler {
3813   EvalInfo &Info;
3814   const Expr *E;
3815   APValue &Result;
3816   const AccessKinds AccessKind;
3817 
3818   typedef bool result_type;
3819   bool failed() { return false; }
3820   bool found(APValue &Subobj, QualType SubobjType) {
3821     Result = Subobj;
3822     if (AccessKind == AK_ReadObjectRepresentation)
3823       return true;
3824     return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3825   }
3826   bool found(APSInt &Value, QualType SubobjType) {
3827     Result = APValue(Value);
3828     return true;
3829   }
3830   bool found(APFloat &Value, QualType SubobjType) {
3831     Result = APValue(Value);
3832     return true;
3833   }
3834 };
3835 } // end anonymous namespace
3836 
3837 /// Extract the designated sub-object of an rvalue.
3838 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3839                              const CompleteObject &Obj,
3840                              const SubobjectDesignator &Sub, APValue &Result,
3841                              AccessKinds AK = AK_Read) {
3842   assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3843   ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3844   return findSubobject(Info, E, Obj, Sub, Handler);
3845 }
3846 
3847 namespace {
3848 struct ModifySubobjectHandler {
3849   EvalInfo &Info;
3850   APValue &NewVal;
3851   const Expr *E;
3852 
3853   typedef bool result_type;
3854   static const AccessKinds AccessKind = AK_Assign;
3855 
3856   bool checkConst(QualType QT) {
3857     // Assigning to a const object has undefined behavior.
3858     if (QT.isConstQualified()) {
3859       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3860       return false;
3861     }
3862     return true;
3863   }
3864 
3865   bool failed() { return false; }
3866   bool found(APValue &Subobj, QualType SubobjType) {
3867     if (!checkConst(SubobjType))
3868       return false;
3869     // We've been given ownership of NewVal, so just swap it in.
3870     Subobj.swap(NewVal);
3871     return true;
3872   }
3873   bool found(APSInt &Value, QualType SubobjType) {
3874     if (!checkConst(SubobjType))
3875       return false;
3876     if (!NewVal.isInt()) {
3877       // Maybe trying to write a cast pointer value into a complex?
3878       Info.FFDiag(E);
3879       return false;
3880     }
3881     Value = NewVal.getInt();
3882     return true;
3883   }
3884   bool found(APFloat &Value, QualType SubobjType) {
3885     if (!checkConst(SubobjType))
3886       return false;
3887     Value = NewVal.getFloat();
3888     return true;
3889   }
3890 };
3891 } // end anonymous namespace
3892 
3893 const AccessKinds ModifySubobjectHandler::AccessKind;
3894 
3895 /// Update the designated sub-object of an rvalue to the given value.
3896 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3897                             const CompleteObject &Obj,
3898                             const SubobjectDesignator &Sub,
3899                             APValue &NewVal) {
3900   ModifySubobjectHandler Handler = { Info, NewVal, E };
3901   return findSubobject(Info, E, Obj, Sub, Handler);
3902 }
3903 
3904 /// Find the position where two subobject designators diverge, or equivalently
3905 /// the length of the common initial subsequence.
3906 static unsigned FindDesignatorMismatch(QualType ObjType,
3907                                        const SubobjectDesignator &A,
3908                                        const SubobjectDesignator &B,
3909                                        bool &WasArrayIndex) {
3910   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3911   for (/**/; I != N; ++I) {
3912     if (!ObjType.isNull() &&
3913         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3914       // Next subobject is an array element.
3915       if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3916         WasArrayIndex = true;
3917         return I;
3918       }
3919       if (ObjType->isAnyComplexType())
3920         ObjType = ObjType->castAs<ComplexType>()->getElementType();
3921       else
3922         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3923     } else {
3924       if (A.Entries[I].getAsBaseOrMember() !=
3925           B.Entries[I].getAsBaseOrMember()) {
3926         WasArrayIndex = false;
3927         return I;
3928       }
3929       if (const FieldDecl *FD = getAsField(A.Entries[I]))
3930         // Next subobject is a field.
3931         ObjType = FD->getType();
3932       else
3933         // Next subobject is a base class.
3934         ObjType = QualType();
3935     }
3936   }
3937   WasArrayIndex = false;
3938   return I;
3939 }
3940 
3941 /// Determine whether the given subobject designators refer to elements of the
3942 /// same array object.
3943 static bool AreElementsOfSameArray(QualType ObjType,
3944                                    const SubobjectDesignator &A,
3945                                    const SubobjectDesignator &B) {
3946   if (A.Entries.size() != B.Entries.size())
3947     return false;
3948 
3949   bool IsArray = A.MostDerivedIsArrayElement;
3950   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3951     // A is a subobject of the array element.
3952     return false;
3953 
3954   // If A (and B) designates an array element, the last entry will be the array
3955   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3956   // of length 1' case, and the entire path must match.
3957   bool WasArrayIndex;
3958   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3959   return CommonLength >= A.Entries.size() - IsArray;
3960 }
3961 
3962 /// Find the complete object to which an LValue refers.
3963 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3964                                          AccessKinds AK, const LValue &LVal,
3965                                          QualType LValType) {
3966   if (LVal.InvalidBase) {
3967     Info.FFDiag(E);
3968     return CompleteObject();
3969   }
3970 
3971   if (!LVal.Base) {
3972     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3973     return CompleteObject();
3974   }
3975 
3976   CallStackFrame *Frame = nullptr;
3977   unsigned Depth = 0;
3978   if (LVal.getLValueCallIndex()) {
3979     std::tie(Frame, Depth) =
3980         Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3981     if (!Frame) {
3982       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3983         << AK << LVal.Base.is<const ValueDecl*>();
3984       NoteLValueLocation(Info, LVal.Base);
3985       return CompleteObject();
3986     }
3987   }
3988 
3989   bool IsAccess = isAnyAccess(AK);
3990 
3991   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3992   // is not a constant expression (even if the object is non-volatile). We also
3993   // apply this rule to C++98, in order to conform to the expected 'volatile'
3994   // semantics.
3995   if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3996     if (Info.getLangOpts().CPlusPlus)
3997       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3998         << AK << LValType;
3999     else
4000       Info.FFDiag(E);
4001     return CompleteObject();
4002   }
4003 
4004   // Compute value storage location and type of base object.
4005   APValue *BaseVal = nullptr;
4006   QualType BaseType = getType(LVal.Base);
4007 
4008   if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4009       lifetimeStartedInEvaluation(Info, LVal.Base)) {
4010     // This is the object whose initializer we're evaluating, so its lifetime
4011     // started in the current evaluation.
4012     BaseVal = Info.EvaluatingDeclValue;
4013   } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4014     // Allow reading from a GUID declaration.
4015     if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
4016       if (isModification(AK)) {
4017         // All the remaining cases do not permit modification of the object.
4018         Info.FFDiag(E, diag::note_constexpr_modify_global);
4019         return CompleteObject();
4020       }
4021       APValue &V = GD->getAsAPValue();
4022       if (V.isAbsent()) {
4023         Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4024             << GD->getType();
4025         return CompleteObject();
4026       }
4027       return CompleteObject(LVal.Base, &V, GD->getType());
4028     }
4029 
4030     // Allow reading from template parameter objects.
4031     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4032       if (isModification(AK)) {
4033         Info.FFDiag(E, diag::note_constexpr_modify_global);
4034         return CompleteObject();
4035       }
4036       return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4037                             TPO->getType());
4038     }
4039 
4040     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4041     // In C++11, constexpr, non-volatile variables initialized with constant
4042     // expressions are constant expressions too. Inside constexpr functions,
4043     // parameters are constant expressions even if they're non-const.
4044     // In C++1y, objects local to a constant expression (those with a Frame) are
4045     // both readable and writable inside constant expressions.
4046     // In C, such things can also be folded, although they are not ICEs.
4047     const VarDecl *VD = dyn_cast<VarDecl>(D);
4048     if (VD) {
4049       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4050         VD = VDef;
4051     }
4052     if (!VD || VD->isInvalidDecl()) {
4053       Info.FFDiag(E);
4054       return CompleteObject();
4055     }
4056 
4057     bool IsConstant = BaseType.isConstant(Info.Ctx);
4058 
4059     // Unless we're looking at a local variable or argument in a constexpr call,
4060     // the variable we're reading must be const.
4061     if (!Frame) {
4062       if (IsAccess && isa<ParmVarDecl>(VD)) {
4063         // Access of a parameter that's not associated with a frame isn't going
4064         // to work out, but we can leave it to evaluateVarDeclInit to provide a
4065         // suitable diagnostic.
4066       } else if (Info.getLangOpts().CPlusPlus14 &&
4067                  lifetimeStartedInEvaluation(Info, LVal.Base)) {
4068         // OK, we can read and modify an object if we're in the process of
4069         // evaluating its initializer, because its lifetime began in this
4070         // evaluation.
4071       } else if (isModification(AK)) {
4072         // All the remaining cases do not permit modification of the object.
4073         Info.FFDiag(E, diag::note_constexpr_modify_global);
4074         return CompleteObject();
4075       } else if (VD->isConstexpr()) {
4076         // OK, we can read this variable.
4077       } else if (BaseType->isIntegralOrEnumerationType()) {
4078         if (!IsConstant) {
4079           if (!IsAccess)
4080             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4081           if (Info.getLangOpts().CPlusPlus) {
4082             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4083             Info.Note(VD->getLocation(), diag::note_declared_at);
4084           } else {
4085             Info.FFDiag(E);
4086           }
4087           return CompleteObject();
4088         }
4089       } else if (!IsAccess) {
4090         return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4091       } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4092                  BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4093         // This variable might end up being constexpr. Don't diagnose it yet.
4094       } else if (IsConstant) {
4095         // Keep evaluating to see what we can do. In particular, we support
4096         // folding of const floating-point types, in order to make static const
4097         // data members of such types (supported as an extension) more useful.
4098         if (Info.getLangOpts().CPlusPlus) {
4099           Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4100                               ? diag::note_constexpr_ltor_non_constexpr
4101                               : diag::note_constexpr_ltor_non_integral, 1)
4102               << VD << BaseType;
4103           Info.Note(VD->getLocation(), diag::note_declared_at);
4104         } else {
4105           Info.CCEDiag(E);
4106         }
4107       } else {
4108         // Never allow reading a non-const value.
4109         if (Info.getLangOpts().CPlusPlus) {
4110           Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4111                              ? diag::note_constexpr_ltor_non_constexpr
4112                              : diag::note_constexpr_ltor_non_integral, 1)
4113               << VD << BaseType;
4114           Info.Note(VD->getLocation(), diag::note_declared_at);
4115         } else {
4116           Info.FFDiag(E);
4117         }
4118         return CompleteObject();
4119       }
4120     }
4121 
4122     if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4123       return CompleteObject();
4124   } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4125     Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
4126     if (!Alloc) {
4127       Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4128       return CompleteObject();
4129     }
4130     return CompleteObject(LVal.Base, &(*Alloc)->Value,
4131                           LVal.Base.getDynamicAllocType());
4132   } else {
4133     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4134 
4135     if (!Frame) {
4136       if (const MaterializeTemporaryExpr *MTE =
4137               dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4138         assert(MTE->getStorageDuration() == SD_Static &&
4139                "should have a frame for a non-global materialized temporary");
4140 
4141         // C++20 [expr.const]p4: [DR2126]
4142         //   An object or reference is usable in constant expressions if it is
4143         //   - a temporary object of non-volatile const-qualified literal type
4144         //     whose lifetime is extended to that of a variable that is usable
4145         //     in constant expressions
4146         //
4147         // C++20 [expr.const]p5:
4148         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4149         //   - a non-volatile glvalue that refers to an object that is usable
4150         //     in constant expressions, or
4151         //   - a non-volatile glvalue of literal type that refers to a
4152         //     non-volatile object whose lifetime began within the evaluation
4153         //     of E;
4154         //
4155         // C++11 misses the 'began within the evaluation of e' check and
4156         // instead allows all temporaries, including things like:
4157         //   int &&r = 1;
4158         //   int x = ++r;
4159         //   constexpr int k = r;
4160         // Therefore we use the C++14-onwards rules in C++11 too.
4161         //
4162         // Note that temporaries whose lifetimes began while evaluating a
4163         // variable's constructor are not usable while evaluating the
4164         // corresponding destructor, not even if they're of const-qualified
4165         // types.
4166         if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4167             !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4168           if (!IsAccess)
4169             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4170           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4171           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4172           return CompleteObject();
4173         }
4174 
4175         BaseVal = MTE->getOrCreateValue(false);
4176         assert(BaseVal && "got reference to unevaluated temporary");
4177       } else {
4178         if (!IsAccess)
4179           return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4180         APValue Val;
4181         LVal.moveInto(Val);
4182         Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4183             << AK
4184             << Val.getAsString(Info.Ctx,
4185                                Info.Ctx.getLValueReferenceType(LValType));
4186         NoteLValueLocation(Info, LVal.Base);
4187         return CompleteObject();
4188       }
4189     } else {
4190       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4191       assert(BaseVal && "missing value for temporary");
4192     }
4193   }
4194 
4195   // In C++14, we can't safely access any mutable state when we might be
4196   // evaluating after an unmodeled side effect. Parameters are modeled as state
4197   // in the caller, but aren't visible once the call returns, so they can be
4198   // modified in a speculatively-evaluated call.
4199   //
4200   // FIXME: Not all local state is mutable. Allow local constant subobjects
4201   // to be read here (but take care with 'mutable' fields).
4202   unsigned VisibleDepth = Depth;
4203   if (llvm::isa_and_nonnull<ParmVarDecl>(
4204           LVal.Base.dyn_cast<const ValueDecl *>()))
4205     ++VisibleDepth;
4206   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4207        Info.EvalStatus.HasSideEffects) ||
4208       (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4209     return CompleteObject();
4210 
4211   return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4212 }
4213 
4214 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4215 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4216 /// glvalue referred to by an entity of reference type.
4217 ///
4218 /// \param Info - Information about the ongoing evaluation.
4219 /// \param Conv - The expression for which we are performing the conversion.
4220 ///               Used for diagnostics.
4221 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4222 ///               case of a non-class type).
4223 /// \param LVal - The glvalue on which we are attempting to perform this action.
4224 /// \param RVal - The produced value will be placed here.
4225 /// \param WantObjectRepresentation - If true, we're looking for the object
4226 ///               representation rather than the value, and in particular,
4227 ///               there is no requirement that the result be fully initialized.
4228 static bool
4229 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4230                                const LValue &LVal, APValue &RVal,
4231                                bool WantObjectRepresentation = false) {
4232   if (LVal.Designator.Invalid)
4233     return false;
4234 
4235   // Check for special cases where there is no existing APValue to look at.
4236   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4237 
4238   AccessKinds AK =
4239       WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4240 
4241   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4242     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4243       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4244       // initializer until now for such expressions. Such an expression can't be
4245       // an ICE in C, so this only matters for fold.
4246       if (Type.isVolatileQualified()) {
4247         Info.FFDiag(Conv);
4248         return false;
4249       }
4250       APValue Lit;
4251       if (!Evaluate(Lit, Info, CLE->getInitializer()))
4252         return false;
4253       CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4254       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4255     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4256       // Special-case character extraction so we don't have to construct an
4257       // APValue for the whole string.
4258       assert(LVal.Designator.Entries.size() <= 1 &&
4259              "Can only read characters from string literals");
4260       if (LVal.Designator.Entries.empty()) {
4261         // Fail for now for LValue to RValue conversion of an array.
4262         // (This shouldn't show up in C/C++, but it could be triggered by a
4263         // weird EvaluateAsRValue call from a tool.)
4264         Info.FFDiag(Conv);
4265         return false;
4266       }
4267       if (LVal.Designator.isOnePastTheEnd()) {
4268         if (Info.getLangOpts().CPlusPlus11)
4269           Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4270         else
4271           Info.FFDiag(Conv);
4272         return false;
4273       }
4274       uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4275       RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4276       return true;
4277     }
4278   }
4279 
4280   CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4281   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4282 }
4283 
4284 /// Perform an assignment of Val to LVal. Takes ownership of Val.
4285 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4286                              QualType LValType, APValue &Val) {
4287   if (LVal.Designator.Invalid)
4288     return false;
4289 
4290   if (!Info.getLangOpts().CPlusPlus14) {
4291     Info.FFDiag(E);
4292     return false;
4293   }
4294 
4295   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4296   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4297 }
4298 
4299 namespace {
4300 struct CompoundAssignSubobjectHandler {
4301   EvalInfo &Info;
4302   const CompoundAssignOperator *E;
4303   QualType PromotedLHSType;
4304   BinaryOperatorKind Opcode;
4305   const APValue &RHS;
4306 
4307   static const AccessKinds AccessKind = AK_Assign;
4308 
4309   typedef bool result_type;
4310 
4311   bool checkConst(QualType QT) {
4312     // Assigning to a const object has undefined behavior.
4313     if (QT.isConstQualified()) {
4314       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4315       return false;
4316     }
4317     return true;
4318   }
4319 
4320   bool failed() { return false; }
4321   bool found(APValue &Subobj, QualType SubobjType) {
4322     switch (Subobj.getKind()) {
4323     case APValue::Int:
4324       return found(Subobj.getInt(), SubobjType);
4325     case APValue::Float:
4326       return found(Subobj.getFloat(), SubobjType);
4327     case APValue::ComplexInt:
4328     case APValue::ComplexFloat:
4329       // FIXME: Implement complex compound assignment.
4330       Info.FFDiag(E);
4331       return false;
4332     case APValue::LValue:
4333       return foundPointer(Subobj, SubobjType);
4334     case APValue::Vector:
4335       return foundVector(Subobj, SubobjType);
4336     default:
4337       // FIXME: can this happen?
4338       Info.FFDiag(E);
4339       return false;
4340     }
4341   }
4342 
4343   bool foundVector(APValue &Value, QualType SubobjType) {
4344     if (!checkConst(SubobjType))
4345       return false;
4346 
4347     if (!SubobjType->isVectorType()) {
4348       Info.FFDiag(E);
4349       return false;
4350     }
4351     return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4352   }
4353 
4354   bool found(APSInt &Value, QualType SubobjType) {
4355     if (!checkConst(SubobjType))
4356       return false;
4357 
4358     if (!SubobjType->isIntegerType()) {
4359       // We don't support compound assignment on integer-cast-to-pointer
4360       // values.
4361       Info.FFDiag(E);
4362       return false;
4363     }
4364 
4365     if (RHS.isInt()) {
4366       APSInt LHS =
4367           HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4368       if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4369         return false;
4370       Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4371       return true;
4372     } else if (RHS.isFloat()) {
4373       const FPOptions FPO = E->getFPFeaturesInEffect(
4374                                     Info.Ctx.getLangOpts());
4375       APFloat FValue(0.0);
4376       return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4377                                   PromotedLHSType, FValue) &&
4378              handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4379              HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4380                                   Value);
4381     }
4382 
4383     Info.FFDiag(E);
4384     return false;
4385   }
4386   bool found(APFloat &Value, QualType SubobjType) {
4387     return checkConst(SubobjType) &&
4388            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4389                                   Value) &&
4390            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4391            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4392   }
4393   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4394     if (!checkConst(SubobjType))
4395       return false;
4396 
4397     QualType PointeeType;
4398     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4399       PointeeType = PT->getPointeeType();
4400 
4401     if (PointeeType.isNull() || !RHS.isInt() ||
4402         (Opcode != BO_Add && Opcode != BO_Sub)) {
4403       Info.FFDiag(E);
4404       return false;
4405     }
4406 
4407     APSInt Offset = RHS.getInt();
4408     if (Opcode == BO_Sub)
4409       negateAsSigned(Offset);
4410 
4411     LValue LVal;
4412     LVal.setFrom(Info.Ctx, Subobj);
4413     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4414       return false;
4415     LVal.moveInto(Subobj);
4416     return true;
4417   }
4418 };
4419 } // end anonymous namespace
4420 
4421 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4422 
4423 /// Perform a compound assignment of LVal <op>= RVal.
4424 static bool handleCompoundAssignment(EvalInfo &Info,
4425                                      const CompoundAssignOperator *E,
4426                                      const LValue &LVal, QualType LValType,
4427                                      QualType PromotedLValType,
4428                                      BinaryOperatorKind Opcode,
4429                                      const APValue &RVal) {
4430   if (LVal.Designator.Invalid)
4431     return false;
4432 
4433   if (!Info.getLangOpts().CPlusPlus14) {
4434     Info.FFDiag(E);
4435     return false;
4436   }
4437 
4438   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4439   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4440                                              RVal };
4441   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4442 }
4443 
4444 namespace {
4445 struct IncDecSubobjectHandler {
4446   EvalInfo &Info;
4447   const UnaryOperator *E;
4448   AccessKinds AccessKind;
4449   APValue *Old;
4450 
4451   typedef bool result_type;
4452 
4453   bool checkConst(QualType QT) {
4454     // Assigning to a const object has undefined behavior.
4455     if (QT.isConstQualified()) {
4456       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4457       return false;
4458     }
4459     return true;
4460   }
4461 
4462   bool failed() { return false; }
4463   bool found(APValue &Subobj, QualType SubobjType) {
4464     // Stash the old value. Also clear Old, so we don't clobber it later
4465     // if we're post-incrementing a complex.
4466     if (Old) {
4467       *Old = Subobj;
4468       Old = nullptr;
4469     }
4470 
4471     switch (Subobj.getKind()) {
4472     case APValue::Int:
4473       return found(Subobj.getInt(), SubobjType);
4474     case APValue::Float:
4475       return found(Subobj.getFloat(), SubobjType);
4476     case APValue::ComplexInt:
4477       return found(Subobj.getComplexIntReal(),
4478                    SubobjType->castAs<ComplexType>()->getElementType()
4479                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4480     case APValue::ComplexFloat:
4481       return found(Subobj.getComplexFloatReal(),
4482                    SubobjType->castAs<ComplexType>()->getElementType()
4483                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4484     case APValue::LValue:
4485       return foundPointer(Subobj, SubobjType);
4486     default:
4487       // FIXME: can this happen?
4488       Info.FFDiag(E);
4489       return false;
4490     }
4491   }
4492   bool found(APSInt &Value, QualType SubobjType) {
4493     if (!checkConst(SubobjType))
4494       return false;
4495 
4496     if (!SubobjType->isIntegerType()) {
4497       // We don't support increment / decrement on integer-cast-to-pointer
4498       // values.
4499       Info.FFDiag(E);
4500       return false;
4501     }
4502 
4503     if (Old) *Old = APValue(Value);
4504 
4505     // bool arithmetic promotes to int, and the conversion back to bool
4506     // doesn't reduce mod 2^n, so special-case it.
4507     if (SubobjType->isBooleanType()) {
4508       if (AccessKind == AK_Increment)
4509         Value = 1;
4510       else
4511         Value = !Value;
4512       return true;
4513     }
4514 
4515     bool WasNegative = Value.isNegative();
4516     if (AccessKind == AK_Increment) {
4517       ++Value;
4518 
4519       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4520         APSInt ActualValue(Value, /*IsUnsigned*/true);
4521         return HandleOverflow(Info, E, ActualValue, SubobjType);
4522       }
4523     } else {
4524       --Value;
4525 
4526       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4527         unsigned BitWidth = Value.getBitWidth();
4528         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4529         ActualValue.setBit(BitWidth);
4530         return HandleOverflow(Info, E, ActualValue, SubobjType);
4531       }
4532     }
4533     return true;
4534   }
4535   bool found(APFloat &Value, QualType SubobjType) {
4536     if (!checkConst(SubobjType))
4537       return false;
4538 
4539     if (Old) *Old = APValue(Value);
4540 
4541     APFloat One(Value.getSemantics(), 1);
4542     if (AccessKind == AK_Increment)
4543       Value.add(One, APFloat::rmNearestTiesToEven);
4544     else
4545       Value.subtract(One, APFloat::rmNearestTiesToEven);
4546     return true;
4547   }
4548   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4549     if (!checkConst(SubobjType))
4550       return false;
4551 
4552     QualType PointeeType;
4553     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4554       PointeeType = PT->getPointeeType();
4555     else {
4556       Info.FFDiag(E);
4557       return false;
4558     }
4559 
4560     LValue LVal;
4561     LVal.setFrom(Info.Ctx, Subobj);
4562     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4563                                      AccessKind == AK_Increment ? 1 : -1))
4564       return false;
4565     LVal.moveInto(Subobj);
4566     return true;
4567   }
4568 };
4569 } // end anonymous namespace
4570 
4571 /// Perform an increment or decrement on LVal.
4572 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4573                          QualType LValType, bool IsIncrement, APValue *Old) {
4574   if (LVal.Designator.Invalid)
4575     return false;
4576 
4577   if (!Info.getLangOpts().CPlusPlus14) {
4578     Info.FFDiag(E);
4579     return false;
4580   }
4581 
4582   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4583   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4584   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4585   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4586 }
4587 
4588 /// Build an lvalue for the object argument of a member function call.
4589 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4590                                    LValue &This) {
4591   if (Object->getType()->isPointerType() && Object->isPRValue())
4592     return EvaluatePointer(Object, This, Info);
4593 
4594   if (Object->isGLValue())
4595     return EvaluateLValue(Object, This, Info);
4596 
4597   if (Object->getType()->isLiteralType(Info.Ctx))
4598     return EvaluateTemporary(Object, This, Info);
4599 
4600   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4601   return false;
4602 }
4603 
4604 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4605 /// lvalue referring to the result.
4606 ///
4607 /// \param Info - Information about the ongoing evaluation.
4608 /// \param LV - An lvalue referring to the base of the member pointer.
4609 /// \param RHS - The member pointer expression.
4610 /// \param IncludeMember - Specifies whether the member itself is included in
4611 ///        the resulting LValue subobject designator. This is not possible when
4612 ///        creating a bound member function.
4613 /// \return The field or method declaration to which the member pointer refers,
4614 ///         or 0 if evaluation fails.
4615 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4616                                                   QualType LVType,
4617                                                   LValue &LV,
4618                                                   const Expr *RHS,
4619                                                   bool IncludeMember = true) {
4620   MemberPtr MemPtr;
4621   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4622     return nullptr;
4623 
4624   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4625   // member value, the behavior is undefined.
4626   if (!MemPtr.getDecl()) {
4627     // FIXME: Specific diagnostic.
4628     Info.FFDiag(RHS);
4629     return nullptr;
4630   }
4631 
4632   if (MemPtr.isDerivedMember()) {
4633     // This is a member of some derived class. Truncate LV appropriately.
4634     // The end of the derived-to-base path for the base object must match the
4635     // derived-to-base path for the member pointer.
4636     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4637         LV.Designator.Entries.size()) {
4638       Info.FFDiag(RHS);
4639       return nullptr;
4640     }
4641     unsigned PathLengthToMember =
4642         LV.Designator.Entries.size() - MemPtr.Path.size();
4643     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4644       const CXXRecordDecl *LVDecl = getAsBaseClass(
4645           LV.Designator.Entries[PathLengthToMember + I]);
4646       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4647       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4648         Info.FFDiag(RHS);
4649         return nullptr;
4650       }
4651     }
4652 
4653     // Truncate the lvalue to the appropriate derived class.
4654     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4655                             PathLengthToMember))
4656       return nullptr;
4657   } else if (!MemPtr.Path.empty()) {
4658     // Extend the LValue path with the member pointer's path.
4659     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4660                                   MemPtr.Path.size() + IncludeMember);
4661 
4662     // Walk down to the appropriate base class.
4663     if (const PointerType *PT = LVType->getAs<PointerType>())
4664       LVType = PT->getPointeeType();
4665     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4666     assert(RD && "member pointer access on non-class-type expression");
4667     // The first class in the path is that of the lvalue.
4668     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4669       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4670       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4671         return nullptr;
4672       RD = Base;
4673     }
4674     // Finally cast to the class containing the member.
4675     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4676                                 MemPtr.getContainingRecord()))
4677       return nullptr;
4678   }
4679 
4680   // Add the member. Note that we cannot build bound member functions here.
4681   if (IncludeMember) {
4682     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4683       if (!HandleLValueMember(Info, RHS, LV, FD))
4684         return nullptr;
4685     } else if (const IndirectFieldDecl *IFD =
4686                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4687       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4688         return nullptr;
4689     } else {
4690       llvm_unreachable("can't construct reference to bound member function");
4691     }
4692   }
4693 
4694   return MemPtr.getDecl();
4695 }
4696 
4697 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4698                                                   const BinaryOperator *BO,
4699                                                   LValue &LV,
4700                                                   bool IncludeMember = true) {
4701   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4702 
4703   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4704     if (Info.noteFailure()) {
4705       MemberPtr MemPtr;
4706       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4707     }
4708     return nullptr;
4709   }
4710 
4711   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4712                                    BO->getRHS(), IncludeMember);
4713 }
4714 
4715 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4716 /// the provided lvalue, which currently refers to the base object.
4717 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4718                                     LValue &Result) {
4719   SubobjectDesignator &D = Result.Designator;
4720   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4721     return false;
4722 
4723   QualType TargetQT = E->getType();
4724   if (const PointerType *PT = TargetQT->getAs<PointerType>())
4725     TargetQT = PT->getPointeeType();
4726 
4727   // Check this cast lands within the final derived-to-base subobject path.
4728   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4729     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4730       << D.MostDerivedType << TargetQT;
4731     return false;
4732   }
4733 
4734   // Check the type of the final cast. We don't need to check the path,
4735   // since a cast can only be formed if the path is unique.
4736   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4737   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4738   const CXXRecordDecl *FinalType;
4739   if (NewEntriesSize == D.MostDerivedPathLength)
4740     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4741   else
4742     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4743   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4744     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4745       << D.MostDerivedType << TargetQT;
4746     return false;
4747   }
4748 
4749   // Truncate the lvalue to the appropriate derived class.
4750   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4751 }
4752 
4753 /// Get the value to use for a default-initialized object of type T.
4754 /// Return false if it encounters something invalid.
4755 static bool getDefaultInitValue(QualType T, APValue &Result) {
4756   bool Success = true;
4757   if (auto *RD = T->getAsCXXRecordDecl()) {
4758     if (RD->isInvalidDecl()) {
4759       Result = APValue();
4760       return false;
4761     }
4762     if (RD->isUnion()) {
4763       Result = APValue((const FieldDecl *)nullptr);
4764       return true;
4765     }
4766     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4767                      std::distance(RD->field_begin(), RD->field_end()));
4768 
4769     unsigned Index = 0;
4770     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4771                                                   End = RD->bases_end();
4772          I != End; ++I, ++Index)
4773       Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));
4774 
4775     for (const auto *I : RD->fields()) {
4776       if (I->isUnnamedBitfield())
4777         continue;
4778       Success &= getDefaultInitValue(I->getType(),
4779                                      Result.getStructField(I->getFieldIndex()));
4780     }
4781     return Success;
4782   }
4783 
4784   if (auto *AT =
4785           dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4786     Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4787     if (Result.hasArrayFiller())
4788       Success &=
4789           getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4790 
4791     return Success;
4792   }
4793 
4794   Result = APValue::IndeterminateValue();
4795   return true;
4796 }
4797 
4798 namespace {
4799 enum EvalStmtResult {
4800   /// Evaluation failed.
4801   ESR_Failed,
4802   /// Hit a 'return' statement.
4803   ESR_Returned,
4804   /// Evaluation succeeded.
4805   ESR_Succeeded,
4806   /// Hit a 'continue' statement.
4807   ESR_Continue,
4808   /// Hit a 'break' statement.
4809   ESR_Break,
4810   /// Still scanning for 'case' or 'default' statement.
4811   ESR_CaseNotFound
4812 };
4813 }
4814 
4815 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4816   // We don't need to evaluate the initializer for a static local.
4817   if (!VD->hasLocalStorage())
4818     return true;
4819 
4820   LValue Result;
4821   APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4822                                                    ScopeKind::Block, Result);
4823 
4824   const Expr *InitE = VD->getInit();
4825   if (!InitE) {
4826     if (VD->getType()->isDependentType())
4827       return Info.noteSideEffect();
4828     return getDefaultInitValue(VD->getType(), Val);
4829   }
4830   if (InitE->isValueDependent())
4831     return false;
4832 
4833   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4834     // Wipe out any partially-computed value, to allow tracking that this
4835     // evaluation failed.
4836     Val = APValue();
4837     return false;
4838   }
4839 
4840   return true;
4841 }
4842 
4843 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4844   bool OK = true;
4845 
4846   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4847     OK &= EvaluateVarDecl(Info, VD);
4848 
4849   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4850     for (auto *BD : DD->bindings())
4851       if (auto *VD = BD->getHoldingVar())
4852         OK &= EvaluateDecl(Info, VD);
4853 
4854   return OK;
4855 }
4856 
4857 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4858   assert(E->isValueDependent());
4859   if (Info.noteSideEffect())
4860     return true;
4861   assert(E->containsErrors() && "valid value-dependent expression should never "
4862                                 "reach invalid code path.");
4863   return false;
4864 }
4865 
4866 /// Evaluate a condition (either a variable declaration or an expression).
4867 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4868                          const Expr *Cond, bool &Result) {
4869   if (Cond->isValueDependent())
4870     return false;
4871   FullExpressionRAII Scope(Info);
4872   if (CondDecl && !EvaluateDecl(Info, CondDecl))
4873     return false;
4874   if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4875     return false;
4876   return Scope.destroy();
4877 }
4878 
4879 namespace {
4880 /// A location where the result (returned value) of evaluating a
4881 /// statement should be stored.
4882 struct StmtResult {
4883   /// The APValue that should be filled in with the returned value.
4884   APValue &Value;
4885   /// The location containing the result, if any (used to support RVO).
4886   const LValue *Slot;
4887 };
4888 
4889 struct TempVersionRAII {
4890   CallStackFrame &Frame;
4891 
4892   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4893     Frame.pushTempVersion();
4894   }
4895 
4896   ~TempVersionRAII() {
4897     Frame.popTempVersion();
4898   }
4899 };
4900 
4901 }
4902 
4903 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4904                                    const Stmt *S,
4905                                    const SwitchCase *SC = nullptr);
4906 
4907 /// Evaluate the body of a loop, and translate the result as appropriate.
4908 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4909                                        const Stmt *Body,
4910                                        const SwitchCase *Case = nullptr) {
4911   BlockScopeRAII Scope(Info);
4912 
4913   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4914   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4915     ESR = ESR_Failed;
4916 
4917   switch (ESR) {
4918   case ESR_Break:
4919     return ESR_Succeeded;
4920   case ESR_Succeeded:
4921   case ESR_Continue:
4922     return ESR_Continue;
4923   case ESR_Failed:
4924   case ESR_Returned:
4925   case ESR_CaseNotFound:
4926     return ESR;
4927   }
4928   llvm_unreachable("Invalid EvalStmtResult!");
4929 }
4930 
4931 /// Evaluate a switch statement.
4932 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4933                                      const SwitchStmt *SS) {
4934   BlockScopeRAII Scope(Info);
4935 
4936   // Evaluate the switch condition.
4937   APSInt Value;
4938   {
4939     if (const Stmt *Init = SS->getInit()) {
4940       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4941       if (ESR != ESR_Succeeded) {
4942         if (ESR != ESR_Failed && !Scope.destroy())
4943           ESR = ESR_Failed;
4944         return ESR;
4945       }
4946     }
4947 
4948     FullExpressionRAII CondScope(Info);
4949     if (SS->getConditionVariable() &&
4950         !EvaluateDecl(Info, SS->getConditionVariable()))
4951       return ESR_Failed;
4952     if (SS->getCond()->isValueDependent()) {
4953       if (!EvaluateDependentExpr(SS->getCond(), Info))
4954         return ESR_Failed;
4955     } else {
4956       if (!EvaluateInteger(SS->getCond(), Value, Info))
4957         return ESR_Failed;
4958     }
4959     if (!CondScope.destroy())
4960       return ESR_Failed;
4961   }
4962 
4963   // Find the switch case corresponding to the value of the condition.
4964   // FIXME: Cache this lookup.
4965   const SwitchCase *Found = nullptr;
4966   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
4967        SC = SC->getNextSwitchCase()) {
4968     if (isa<DefaultStmt>(SC)) {
4969       Found = SC;
4970       continue;
4971     }
4972 
4973     const CaseStmt *CS = cast<CaseStmt>(SC);
4974     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
4975     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
4976                               : LHS;
4977     if (LHS <= Value && Value <= RHS) {
4978       Found = SC;
4979       break;
4980     }
4981   }
4982 
4983   if (!Found)
4984     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4985 
4986   // Search the switch body for the switch case and evaluate it from there.
4987   EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
4988   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4989     return ESR_Failed;
4990 
4991   switch (ESR) {
4992   case ESR_Break:
4993     return ESR_Succeeded;
4994   case ESR_Succeeded:
4995   case ESR_Continue:
4996   case ESR_Failed:
4997   case ESR_Returned:
4998     return ESR;
4999   case ESR_CaseNotFound:
5000     // This can only happen if the switch case is nested within a statement
5001     // expression. We have no intention of supporting that.
5002     Info.FFDiag(Found->getBeginLoc(),
5003                 diag::note_constexpr_stmt_expr_unsupported);
5004     return ESR_Failed;
5005   }
5006   llvm_unreachable("Invalid EvalStmtResult!");
5007 }
5008 
5009 // Evaluate a statement.
5010 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5011                                    const Stmt *S, const SwitchCase *Case) {
5012   if (!Info.nextStep(S))
5013     return ESR_Failed;
5014 
5015   // If we're hunting down a 'case' or 'default' label, recurse through
5016   // substatements until we hit the label.
5017   if (Case) {
5018     switch (S->getStmtClass()) {
5019     case Stmt::CompoundStmtClass:
5020       // FIXME: Precompute which substatement of a compound statement we
5021       // would jump to, and go straight there rather than performing a
5022       // linear scan each time.
5023     case Stmt::LabelStmtClass:
5024     case Stmt::AttributedStmtClass:
5025     case Stmt::DoStmtClass:
5026       break;
5027 
5028     case Stmt::CaseStmtClass:
5029     case Stmt::DefaultStmtClass:
5030       if (Case == S)
5031         Case = nullptr;
5032       break;
5033 
5034     case Stmt::IfStmtClass: {
5035       // FIXME: Precompute which side of an 'if' we would jump to, and go
5036       // straight there rather than scanning both sides.
5037       const IfStmt *IS = cast<IfStmt>(S);
5038 
5039       // Wrap the evaluation in a block scope, in case it's a DeclStmt
5040       // preceded by our switch label.
5041       BlockScopeRAII Scope(Info);
5042 
5043       // Step into the init statement in case it brings an (uninitialized)
5044       // variable into scope.
5045       if (const Stmt *Init = IS->getInit()) {
5046         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5047         if (ESR != ESR_CaseNotFound) {
5048           assert(ESR != ESR_Succeeded);
5049           return ESR;
5050         }
5051       }
5052 
5053       // Condition variable must be initialized if it exists.
5054       // FIXME: We can skip evaluating the body if there's a condition
5055       // variable, as there can't be any case labels within it.
5056       // (The same is true for 'for' statements.)
5057 
5058       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5059       if (ESR == ESR_Failed)
5060         return ESR;
5061       if (ESR != ESR_CaseNotFound)
5062         return Scope.destroy() ? ESR : ESR_Failed;
5063       if (!IS->getElse())
5064         return ESR_CaseNotFound;
5065 
5066       ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5067       if (ESR == ESR_Failed)
5068         return ESR;
5069       if (ESR != ESR_CaseNotFound)
5070         return Scope.destroy() ? ESR : ESR_Failed;
5071       return ESR_CaseNotFound;
5072     }
5073 
5074     case Stmt::WhileStmtClass: {
5075       EvalStmtResult ESR =
5076           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5077       if (ESR != ESR_Continue)
5078         return ESR;
5079       break;
5080     }
5081 
5082     case Stmt::ForStmtClass: {
5083       const ForStmt *FS = cast<ForStmt>(S);
5084       BlockScopeRAII Scope(Info);
5085 
5086       // Step into the init statement in case it brings an (uninitialized)
5087       // variable into scope.
5088       if (const Stmt *Init = FS->getInit()) {
5089         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5090         if (ESR != ESR_CaseNotFound) {
5091           assert(ESR != ESR_Succeeded);
5092           return ESR;
5093         }
5094       }
5095 
5096       EvalStmtResult ESR =
5097           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5098       if (ESR != ESR_Continue)
5099         return ESR;
5100       if (const auto *Inc = FS->getInc()) {
5101         if (Inc->isValueDependent()) {
5102           if (!EvaluateDependentExpr(Inc, Info))
5103             return ESR_Failed;
5104         } else {
5105           FullExpressionRAII IncScope(Info);
5106           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5107             return ESR_Failed;
5108         }
5109       }
5110       break;
5111     }
5112 
5113     case Stmt::DeclStmtClass: {
5114       // Start the lifetime of any uninitialized variables we encounter. They
5115       // might be used by the selected branch of the switch.
5116       const DeclStmt *DS = cast<DeclStmt>(S);
5117       for (const auto *D : DS->decls()) {
5118         if (const auto *VD = dyn_cast<VarDecl>(D)) {
5119           if (VD->hasLocalStorage() && !VD->getInit())
5120             if (!EvaluateVarDecl(Info, VD))
5121               return ESR_Failed;
5122           // FIXME: If the variable has initialization that can't be jumped
5123           // over, bail out of any immediately-surrounding compound-statement
5124           // too. There can't be any case labels here.
5125         }
5126       }
5127       return ESR_CaseNotFound;
5128     }
5129 
5130     default:
5131       return ESR_CaseNotFound;
5132     }
5133   }
5134 
5135   switch (S->getStmtClass()) {
5136   default:
5137     if (const Expr *E = dyn_cast<Expr>(S)) {
5138       if (E->isValueDependent()) {
5139         if (!EvaluateDependentExpr(E, Info))
5140           return ESR_Failed;
5141       } else {
5142         // Don't bother evaluating beyond an expression-statement which couldn't
5143         // be evaluated.
5144         // FIXME: Do we need the FullExpressionRAII object here?
5145         // VisitExprWithCleanups should create one when necessary.
5146         FullExpressionRAII Scope(Info);
5147         if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5148           return ESR_Failed;
5149       }
5150       return ESR_Succeeded;
5151     }
5152 
5153     Info.FFDiag(S->getBeginLoc());
5154     return ESR_Failed;
5155 
5156   case Stmt::NullStmtClass:
5157     return ESR_Succeeded;
5158 
5159   case Stmt::DeclStmtClass: {
5160     const DeclStmt *DS = cast<DeclStmt>(S);
5161     for (const auto *D : DS->decls()) {
5162       // Each declaration initialization is its own full-expression.
5163       FullExpressionRAII Scope(Info);
5164       if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5165         return ESR_Failed;
5166       if (!Scope.destroy())
5167         return ESR_Failed;
5168     }
5169     return ESR_Succeeded;
5170   }
5171 
5172   case Stmt::ReturnStmtClass: {
5173     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5174     FullExpressionRAII Scope(Info);
5175     if (RetExpr && RetExpr->isValueDependent()) {
5176       EvaluateDependentExpr(RetExpr, Info);
5177       // We know we returned, but we don't know what the value is.
5178       return ESR_Failed;
5179     }
5180     if (RetExpr &&
5181         !(Result.Slot
5182               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5183               : Evaluate(Result.Value, Info, RetExpr)))
5184       return ESR_Failed;
5185     return Scope.destroy() ? ESR_Returned : ESR_Failed;
5186   }
5187 
5188   case Stmt::CompoundStmtClass: {
5189     BlockScopeRAII Scope(Info);
5190 
5191     const CompoundStmt *CS = cast<CompoundStmt>(S);
5192     for (const auto *BI : CS->body()) {
5193       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5194       if (ESR == ESR_Succeeded)
5195         Case = nullptr;
5196       else if (ESR != ESR_CaseNotFound) {
5197         if (ESR != ESR_Failed && !Scope.destroy())
5198           return ESR_Failed;
5199         return ESR;
5200       }
5201     }
5202     if (Case)
5203       return ESR_CaseNotFound;
5204     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5205   }
5206 
5207   case Stmt::IfStmtClass: {
5208     const IfStmt *IS = cast<IfStmt>(S);
5209 
5210     // Evaluate the condition, as either a var decl or as an expression.
5211     BlockScopeRAII Scope(Info);
5212     if (const Stmt *Init = IS->getInit()) {
5213       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5214       if (ESR != ESR_Succeeded) {
5215         if (ESR != ESR_Failed && !Scope.destroy())
5216           return ESR_Failed;
5217         return ESR;
5218       }
5219     }
5220     bool Cond;
5221     if (IS->isConsteval())
5222       Cond = IS->isNonNegatedConsteval();
5223     else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(),
5224                            Cond))
5225       return ESR_Failed;
5226 
5227     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5228       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5229       if (ESR != ESR_Succeeded) {
5230         if (ESR != ESR_Failed && !Scope.destroy())
5231           return ESR_Failed;
5232         return ESR;
5233       }
5234     }
5235     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5236   }
5237 
5238   case Stmt::WhileStmtClass: {
5239     const WhileStmt *WS = cast<WhileStmt>(S);
5240     while (true) {
5241       BlockScopeRAII Scope(Info);
5242       bool Continue;
5243       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5244                         Continue))
5245         return ESR_Failed;
5246       if (!Continue)
5247         break;
5248 
5249       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5250       if (ESR != ESR_Continue) {
5251         if (ESR != ESR_Failed && !Scope.destroy())
5252           return ESR_Failed;
5253         return ESR;
5254       }
5255       if (!Scope.destroy())
5256         return ESR_Failed;
5257     }
5258     return ESR_Succeeded;
5259   }
5260 
5261   case Stmt::DoStmtClass: {
5262     const DoStmt *DS = cast<DoStmt>(S);
5263     bool Continue;
5264     do {
5265       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5266       if (ESR != ESR_Continue)
5267         return ESR;
5268       Case = nullptr;
5269 
5270       if (DS->getCond()->isValueDependent()) {
5271         EvaluateDependentExpr(DS->getCond(), Info);
5272         // Bailout as we don't know whether to keep going or terminate the loop.
5273         return ESR_Failed;
5274       }
5275       FullExpressionRAII CondScope(Info);
5276       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5277           !CondScope.destroy())
5278         return ESR_Failed;
5279     } while (Continue);
5280     return ESR_Succeeded;
5281   }
5282 
5283   case Stmt::ForStmtClass: {
5284     const ForStmt *FS = cast<ForStmt>(S);
5285     BlockScopeRAII ForScope(Info);
5286     if (FS->getInit()) {
5287       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5288       if (ESR != ESR_Succeeded) {
5289         if (ESR != ESR_Failed && !ForScope.destroy())
5290           return ESR_Failed;
5291         return ESR;
5292       }
5293     }
5294     while (true) {
5295       BlockScopeRAII IterScope(Info);
5296       bool Continue = true;
5297       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5298                                          FS->getCond(), Continue))
5299         return ESR_Failed;
5300       if (!Continue)
5301         break;
5302 
5303       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5304       if (ESR != ESR_Continue) {
5305         if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5306           return ESR_Failed;
5307         return ESR;
5308       }
5309 
5310       if (const auto *Inc = FS->getInc()) {
5311         if (Inc->isValueDependent()) {
5312           if (!EvaluateDependentExpr(Inc, Info))
5313             return ESR_Failed;
5314         } else {
5315           FullExpressionRAII IncScope(Info);
5316           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5317             return ESR_Failed;
5318         }
5319       }
5320 
5321       if (!IterScope.destroy())
5322         return ESR_Failed;
5323     }
5324     return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5325   }
5326 
5327   case Stmt::CXXForRangeStmtClass: {
5328     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5329     BlockScopeRAII Scope(Info);
5330 
5331     // Evaluate the init-statement if present.
5332     if (FS->getInit()) {
5333       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5334       if (ESR != ESR_Succeeded) {
5335         if (ESR != ESR_Failed && !Scope.destroy())
5336           return ESR_Failed;
5337         return ESR;
5338       }
5339     }
5340 
5341     // Initialize the __range variable.
5342     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5343     if (ESR != ESR_Succeeded) {
5344       if (ESR != ESR_Failed && !Scope.destroy())
5345         return ESR_Failed;
5346       return ESR;
5347     }
5348 
5349     // In error-recovery cases it's possible to get here even if we failed to
5350     // synthesize the __begin and __end variables.
5351     if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5352       return ESR_Failed;
5353 
5354     // Create the __begin and __end iterators.
5355     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5356     if (ESR != ESR_Succeeded) {
5357       if (ESR != ESR_Failed && !Scope.destroy())
5358         return ESR_Failed;
5359       return ESR;
5360     }
5361     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5362     if (ESR != ESR_Succeeded) {
5363       if (ESR != ESR_Failed && !Scope.destroy())
5364         return ESR_Failed;
5365       return ESR;
5366     }
5367 
5368     while (true) {
5369       // Condition: __begin != __end.
5370       {
5371         if (FS->getCond()->isValueDependent()) {
5372           EvaluateDependentExpr(FS->getCond(), Info);
5373           // We don't know whether to keep going or terminate the loop.
5374           return ESR_Failed;
5375         }
5376         bool Continue = true;
5377         FullExpressionRAII CondExpr(Info);
5378         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5379           return ESR_Failed;
5380         if (!Continue)
5381           break;
5382       }
5383 
5384       // User's variable declaration, initialized by *__begin.
5385       BlockScopeRAII InnerScope(Info);
5386       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5387       if (ESR != ESR_Succeeded) {
5388         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5389           return ESR_Failed;
5390         return ESR;
5391       }
5392 
5393       // Loop body.
5394       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5395       if (ESR != ESR_Continue) {
5396         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5397           return ESR_Failed;
5398         return ESR;
5399       }
5400       if (FS->getInc()->isValueDependent()) {
5401         if (!EvaluateDependentExpr(FS->getInc(), Info))
5402           return ESR_Failed;
5403       } else {
5404         // Increment: ++__begin
5405         if (!EvaluateIgnoredValue(Info, FS->getInc()))
5406           return ESR_Failed;
5407       }
5408 
5409       if (!InnerScope.destroy())
5410         return ESR_Failed;
5411     }
5412 
5413     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5414   }
5415 
5416   case Stmt::SwitchStmtClass:
5417     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5418 
5419   case Stmt::ContinueStmtClass:
5420     return ESR_Continue;
5421 
5422   case Stmt::BreakStmtClass:
5423     return ESR_Break;
5424 
5425   case Stmt::LabelStmtClass:
5426     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5427 
5428   case Stmt::AttributedStmtClass:
5429     // As a general principle, C++11 attributes can be ignored without
5430     // any semantic impact.
5431     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5432                         Case);
5433 
5434   case Stmt::CaseStmtClass:
5435   case Stmt::DefaultStmtClass:
5436     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5437   case Stmt::CXXTryStmtClass:
5438     // Evaluate try blocks by evaluating all sub statements.
5439     return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5440   }
5441 }
5442 
5443 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5444 /// default constructor. If so, we'll fold it whether or not it's marked as
5445 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5446 /// so we need special handling.
5447 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5448                                            const CXXConstructorDecl *CD,
5449                                            bool IsValueInitialization) {
5450   if (!CD->isTrivial() || !CD->isDefaultConstructor())
5451     return false;
5452 
5453   // Value-initialization does not call a trivial default constructor, so such a
5454   // call is a core constant expression whether or not the constructor is
5455   // constexpr.
5456   if (!CD->isConstexpr() && !IsValueInitialization) {
5457     if (Info.getLangOpts().CPlusPlus11) {
5458       // FIXME: If DiagDecl is an implicitly-declared special member function,
5459       // we should be much more explicit about why it's not constexpr.
5460       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5461         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5462       Info.Note(CD->getLocation(), diag::note_declared_at);
5463     } else {
5464       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5465     }
5466   }
5467   return true;
5468 }
5469 
5470 /// CheckConstexprFunction - Check that a function can be called in a constant
5471 /// expression.
5472 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5473                                    const FunctionDecl *Declaration,
5474                                    const FunctionDecl *Definition,
5475                                    const Stmt *Body) {
5476   // Potential constant expressions can contain calls to declared, but not yet
5477   // defined, constexpr functions.
5478   if (Info.checkingPotentialConstantExpression() && !Definition &&
5479       Declaration->isConstexpr())
5480     return false;
5481 
5482   // Bail out if the function declaration itself is invalid.  We will
5483   // have produced a relevant diagnostic while parsing it, so just
5484   // note the problematic sub-expression.
5485   if (Declaration->isInvalidDecl()) {
5486     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5487     return false;
5488   }
5489 
5490   // DR1872: An instantiated virtual constexpr function can't be called in a
5491   // constant expression (prior to C++20). We can still constant-fold such a
5492   // call.
5493   if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5494       cast<CXXMethodDecl>(Declaration)->isVirtual())
5495     Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5496 
5497   if (Definition && Definition->isInvalidDecl()) {
5498     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5499     return false;
5500   }
5501 
5502   // Can we evaluate this function call?
5503   if (Definition && Definition->isConstexpr() && Body)
5504     return true;
5505 
5506   if (Info.getLangOpts().CPlusPlus11) {
5507     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5508 
5509     // If this function is not constexpr because it is an inherited
5510     // non-constexpr constructor, diagnose that directly.
5511     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5512     if (CD && CD->isInheritingConstructor()) {
5513       auto *Inherited = CD->getInheritedConstructor().getConstructor();
5514       if (!Inherited->isConstexpr())
5515         DiagDecl = CD = Inherited;
5516     }
5517 
5518     // FIXME: If DiagDecl is an implicitly-declared special member function
5519     // or an inheriting constructor, we should be much more explicit about why
5520     // it's not constexpr.
5521     if (CD && CD->isInheritingConstructor())
5522       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5523         << CD->getInheritedConstructor().getConstructor()->getParent();
5524     else
5525       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5526         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5527     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5528   } else {
5529     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5530   }
5531   return false;
5532 }
5533 
5534 namespace {
5535 struct CheckDynamicTypeHandler {
5536   AccessKinds AccessKind;
5537   typedef bool result_type;
5538   bool failed() { return false; }
5539   bool found(APValue &Subobj, QualType SubobjType) { return true; }
5540   bool found(APSInt &Value, QualType SubobjType) { return true; }
5541   bool found(APFloat &Value, QualType SubobjType) { return true; }
5542 };
5543 } // end anonymous namespace
5544 
5545 /// Check that we can access the notional vptr of an object / determine its
5546 /// dynamic type.
5547 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5548                              AccessKinds AK, bool Polymorphic) {
5549   if (This.Designator.Invalid)
5550     return false;
5551 
5552   CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5553 
5554   if (!Obj)
5555     return false;
5556 
5557   if (!Obj.Value) {
5558     // The object is not usable in constant expressions, so we can't inspect
5559     // its value to see if it's in-lifetime or what the active union members
5560     // are. We can still check for a one-past-the-end lvalue.
5561     if (This.Designator.isOnePastTheEnd() ||
5562         This.Designator.isMostDerivedAnUnsizedArray()) {
5563       Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5564                          ? diag::note_constexpr_access_past_end
5565                          : diag::note_constexpr_access_unsized_array)
5566           << AK;
5567       return false;
5568     } else if (Polymorphic) {
5569       // Conservatively refuse to perform a polymorphic operation if we would
5570       // not be able to read a notional 'vptr' value.
5571       APValue Val;
5572       This.moveInto(Val);
5573       QualType StarThisType =
5574           Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5575       Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5576           << AK << Val.getAsString(Info.Ctx, StarThisType);
5577       return false;
5578     }
5579     return true;
5580   }
5581 
5582   CheckDynamicTypeHandler Handler{AK};
5583   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5584 }
5585 
5586 /// Check that the pointee of the 'this' pointer in a member function call is
5587 /// either within its lifetime or in its period of construction or destruction.
5588 static bool
5589 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5590                                      const LValue &This,
5591                                      const CXXMethodDecl *NamedMember) {
5592   return checkDynamicType(
5593       Info, E, This,
5594       isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5595 }
5596 
5597 struct DynamicType {
5598   /// The dynamic class type of the object.
5599   const CXXRecordDecl *Type;
5600   /// The corresponding path length in the lvalue.
5601   unsigned PathLength;
5602 };
5603 
5604 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5605                                              unsigned PathLength) {
5606   assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5607       Designator.Entries.size() && "invalid path length");
5608   return (PathLength == Designator.MostDerivedPathLength)
5609              ? Designator.MostDerivedType->getAsCXXRecordDecl()
5610              : getAsBaseClass(Designator.Entries[PathLength - 1]);
5611 }
5612 
5613 /// Determine the dynamic type of an object.
5614 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
5615                                                 LValue &This, AccessKinds AK) {
5616   // If we don't have an lvalue denoting an object of class type, there is no
5617   // meaningful dynamic type. (We consider objects of non-class type to have no
5618   // dynamic type.)
5619   if (!checkDynamicType(Info, E, This, AK, true))
5620     return None;
5621 
5622   // Refuse to compute a dynamic type in the presence of virtual bases. This
5623   // shouldn't happen other than in constant-folding situations, since literal
5624   // types can't have virtual bases.
5625   //
5626   // Note that consumers of DynamicType assume that the type has no virtual
5627   // bases, and will need modifications if this restriction is relaxed.
5628   const CXXRecordDecl *Class =
5629       This.Designator.MostDerivedType->getAsCXXRecordDecl();
5630   if (!Class || Class->getNumVBases()) {
5631     Info.FFDiag(E);
5632     return None;
5633   }
5634 
5635   // FIXME: For very deep class hierarchies, it might be beneficial to use a
5636   // binary search here instead. But the overwhelmingly common case is that
5637   // we're not in the middle of a constructor, so it probably doesn't matter
5638   // in practice.
5639   ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5640   for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5641        PathLength <= Path.size(); ++PathLength) {
5642     switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5643                                       Path.slice(0, PathLength))) {
5644     case ConstructionPhase::Bases:
5645     case ConstructionPhase::DestroyingBases:
5646       // We're constructing or destroying a base class. This is not the dynamic
5647       // type.
5648       break;
5649 
5650     case ConstructionPhase::None:
5651     case ConstructionPhase::AfterBases:
5652     case ConstructionPhase::AfterFields:
5653     case ConstructionPhase::Destroying:
5654       // We've finished constructing the base classes and not yet started
5655       // destroying them again, so this is the dynamic type.
5656       return DynamicType{getBaseClassType(This.Designator, PathLength),
5657                          PathLength};
5658     }
5659   }
5660 
5661   // CWG issue 1517: we're constructing a base class of the object described by
5662   // 'This', so that object has not yet begun its period of construction and
5663   // any polymorphic operation on it results in undefined behavior.
5664   Info.FFDiag(E);
5665   return None;
5666 }
5667 
5668 /// Perform virtual dispatch.
5669 static const CXXMethodDecl *HandleVirtualDispatch(
5670     EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5671     llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5672   Optional<DynamicType> DynType = ComputeDynamicType(
5673       Info, E, This,
5674       isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5675   if (!DynType)
5676     return nullptr;
5677 
5678   // Find the final overrider. It must be declared in one of the classes on the
5679   // path from the dynamic type to the static type.
5680   // FIXME: If we ever allow literal types to have virtual base classes, that
5681   // won't be true.
5682   const CXXMethodDecl *Callee = Found;
5683   unsigned PathLength = DynType->PathLength;
5684   for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5685     const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5686     const CXXMethodDecl *Overrider =
5687         Found->getCorrespondingMethodDeclaredInClass(Class, false);
5688     if (Overrider) {
5689       Callee = Overrider;
5690       break;
5691     }
5692   }
5693 
5694   // C++2a [class.abstract]p6:
5695   //   the effect of making a virtual call to a pure virtual function [...] is
5696   //   undefined
5697   if (Callee->isPure()) {
5698     Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5699     Info.Note(Callee->getLocation(), diag::note_declared_at);
5700     return nullptr;
5701   }
5702 
5703   // If necessary, walk the rest of the path to determine the sequence of
5704   // covariant adjustment steps to apply.
5705   if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5706                                        Found->getReturnType())) {
5707     CovariantAdjustmentPath.push_back(Callee->getReturnType());
5708     for (unsigned CovariantPathLength = PathLength + 1;
5709          CovariantPathLength != This.Designator.Entries.size();
5710          ++CovariantPathLength) {
5711       const CXXRecordDecl *NextClass =
5712           getBaseClassType(This.Designator, CovariantPathLength);
5713       const CXXMethodDecl *Next =
5714           Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5715       if (Next && !Info.Ctx.hasSameUnqualifiedType(
5716                       Next->getReturnType(), CovariantAdjustmentPath.back()))
5717         CovariantAdjustmentPath.push_back(Next->getReturnType());
5718     }
5719     if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5720                                          CovariantAdjustmentPath.back()))
5721       CovariantAdjustmentPath.push_back(Found->getReturnType());
5722   }
5723 
5724   // Perform 'this' adjustment.
5725   if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5726     return nullptr;
5727 
5728   return Callee;
5729 }
5730 
5731 /// Perform the adjustment from a value returned by a virtual function to
5732 /// a value of the statically expected type, which may be a pointer or
5733 /// reference to a base class of the returned type.
5734 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5735                                             APValue &Result,
5736                                             ArrayRef<QualType> Path) {
5737   assert(Result.isLValue() &&
5738          "unexpected kind of APValue for covariant return");
5739   if (Result.isNullPointer())
5740     return true;
5741 
5742   LValue LVal;
5743   LVal.setFrom(Info.Ctx, Result);
5744 
5745   const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5746   for (unsigned I = 1; I != Path.size(); ++I) {
5747     const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5748     assert(OldClass && NewClass && "unexpected kind of covariant return");
5749     if (OldClass != NewClass &&
5750         !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5751       return false;
5752     OldClass = NewClass;
5753   }
5754 
5755   LVal.moveInto(Result);
5756   return true;
5757 }
5758 
5759 /// Determine whether \p Base, which is known to be a direct base class of
5760 /// \p Derived, is a public base class.
5761 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5762                               const CXXRecordDecl *Base) {
5763   for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5764     auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5765     if (BaseClass && declaresSameEntity(BaseClass, Base))
5766       return BaseSpec.getAccessSpecifier() == AS_public;
5767   }
5768   llvm_unreachable("Base is not a direct base of Derived");
5769 }
5770 
5771 /// Apply the given dynamic cast operation on the provided lvalue.
5772 ///
5773 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5774 /// to find a suitable target subobject.
5775 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5776                               LValue &Ptr) {
5777   // We can't do anything with a non-symbolic pointer value.
5778   SubobjectDesignator &D = Ptr.Designator;
5779   if (D.Invalid)
5780     return false;
5781 
5782   // C++ [expr.dynamic.cast]p6:
5783   //   If v is a null pointer value, the result is a null pointer value.
5784   if (Ptr.isNullPointer() && !E->isGLValue())
5785     return true;
5786 
5787   // For all the other cases, we need the pointer to point to an object within
5788   // its lifetime / period of construction / destruction, and we need to know
5789   // its dynamic type.
5790   Optional<DynamicType> DynType =
5791       ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5792   if (!DynType)
5793     return false;
5794 
5795   // C++ [expr.dynamic.cast]p7:
5796   //   If T is "pointer to cv void", then the result is a pointer to the most
5797   //   derived object
5798   if (E->getType()->isVoidPointerType())
5799     return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5800 
5801   const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5802   assert(C && "dynamic_cast target is not void pointer nor class");
5803   CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5804 
5805   auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5806     // C++ [expr.dynamic.cast]p9:
5807     if (!E->isGLValue()) {
5808       //   The value of a failed cast to pointer type is the null pointer value
5809       //   of the required result type.
5810       Ptr.setNull(Info.Ctx, E->getType());
5811       return true;
5812     }
5813 
5814     //   A failed cast to reference type throws [...] std::bad_cast.
5815     unsigned DiagKind;
5816     if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5817                    DynType->Type->isDerivedFrom(C)))
5818       DiagKind = 0;
5819     else if (!Paths || Paths->begin() == Paths->end())
5820       DiagKind = 1;
5821     else if (Paths->isAmbiguous(CQT))
5822       DiagKind = 2;
5823     else {
5824       assert(Paths->front().Access != AS_public && "why did the cast fail?");
5825       DiagKind = 3;
5826     }
5827     Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5828         << DiagKind << Ptr.Designator.getType(Info.Ctx)
5829         << Info.Ctx.getRecordType(DynType->Type)
5830         << E->getType().getUnqualifiedType();
5831     return false;
5832   };
5833 
5834   // Runtime check, phase 1:
5835   //   Walk from the base subobject towards the derived object looking for the
5836   //   target type.
5837   for (int PathLength = Ptr.Designator.Entries.size();
5838        PathLength >= (int)DynType->PathLength; --PathLength) {
5839     const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5840     if (declaresSameEntity(Class, C))
5841       return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5842     // We can only walk across public inheritance edges.
5843     if (PathLength > (int)DynType->PathLength &&
5844         !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5845                            Class))
5846       return RuntimeCheckFailed(nullptr);
5847   }
5848 
5849   // Runtime check, phase 2:
5850   //   Search the dynamic type for an unambiguous public base of type C.
5851   CXXBasePaths Paths(/*FindAmbiguities=*/true,
5852                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
5853   if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5854       Paths.front().Access == AS_public) {
5855     // Downcast to the dynamic type...
5856     if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5857       return false;
5858     // ... then upcast to the chosen base class subobject.
5859     for (CXXBasePathElement &Elem : Paths.front())
5860       if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5861         return false;
5862     return true;
5863   }
5864 
5865   // Otherwise, the runtime check fails.
5866   return RuntimeCheckFailed(&Paths);
5867 }
5868 
5869 namespace {
5870 struct StartLifetimeOfUnionMemberHandler {
5871   EvalInfo &Info;
5872   const Expr *LHSExpr;
5873   const FieldDecl *Field;
5874   bool DuringInit;
5875   bool Failed = false;
5876   static const AccessKinds AccessKind = AK_Assign;
5877 
5878   typedef bool result_type;
5879   bool failed() { return Failed; }
5880   bool found(APValue &Subobj, QualType SubobjType) {
5881     // We are supposed to perform no initialization but begin the lifetime of
5882     // the object. We interpret that as meaning to do what default
5883     // initialization of the object would do if all constructors involved were
5884     // trivial:
5885     //  * All base, non-variant member, and array element subobjects' lifetimes
5886     //    begin
5887     //  * No variant members' lifetimes begin
5888     //  * All scalar subobjects whose lifetimes begin have indeterminate values
5889     assert(SubobjType->isUnionType());
5890     if (declaresSameEntity(Subobj.getUnionField(), Field)) {
5891       // This union member is already active. If it's also in-lifetime, there's
5892       // nothing to do.
5893       if (Subobj.getUnionValue().hasValue())
5894         return true;
5895     } else if (DuringInit) {
5896       // We're currently in the process of initializing a different union
5897       // member.  If we carried on, that initialization would attempt to
5898       // store to an inactive union member, resulting in undefined behavior.
5899       Info.FFDiag(LHSExpr,
5900                   diag::note_constexpr_union_member_change_during_init);
5901       return false;
5902     }
5903     APValue Result;
5904     Failed = !getDefaultInitValue(Field->getType(), Result);
5905     Subobj.setUnion(Field, Result);
5906     return true;
5907   }
5908   bool found(APSInt &Value, QualType SubobjType) {
5909     llvm_unreachable("wrong value kind for union object");
5910   }
5911   bool found(APFloat &Value, QualType SubobjType) {
5912     llvm_unreachable("wrong value kind for union object");
5913   }
5914 };
5915 } // end anonymous namespace
5916 
5917 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5918 
5919 /// Handle a builtin simple-assignment or a call to a trivial assignment
5920 /// operator whose left-hand side might involve a union member access. If it
5921 /// does, implicitly start the lifetime of any accessed union elements per
5922 /// C++20 [class.union]5.
5923 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5924                                           const LValue &LHS) {
5925   if (LHS.InvalidBase || LHS.Designator.Invalid)
5926     return false;
5927 
5928   llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5929   // C++ [class.union]p5:
5930   //   define the set S(E) of subexpressions of E as follows:
5931   unsigned PathLength = LHS.Designator.Entries.size();
5932   for (const Expr *E = LHSExpr; E != nullptr;) {
5933     //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
5934     if (auto *ME = dyn_cast<MemberExpr>(E)) {
5935       auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5936       // Note that we can't implicitly start the lifetime of a reference,
5937       // so we don't need to proceed any further if we reach one.
5938       if (!FD || FD->getType()->isReferenceType())
5939         break;
5940 
5941       //    ... and also contains A.B if B names a union member ...
5942       if (FD->getParent()->isUnion()) {
5943         //    ... of a non-class, non-array type, or of a class type with a
5944         //    trivial default constructor that is not deleted, or an array of
5945         //    such types.
5946         auto *RD =
5947             FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5948         if (!RD || RD->hasTrivialDefaultConstructor())
5949           UnionPathLengths.push_back({PathLength - 1, FD});
5950       }
5951 
5952       E = ME->getBase();
5953       --PathLength;
5954       assert(declaresSameEntity(FD,
5955                                 LHS.Designator.Entries[PathLength]
5956                                     .getAsBaseOrMember().getPointer()));
5957 
5958       //   -- If E is of the form A[B] and is interpreted as a built-in array
5959       //      subscripting operator, S(E) is [S(the array operand, if any)].
5960     } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
5961       // Step over an ArrayToPointerDecay implicit cast.
5962       auto *Base = ASE->getBase()->IgnoreImplicit();
5963       if (!Base->getType()->isArrayType())
5964         break;
5965 
5966       E = Base;
5967       --PathLength;
5968 
5969     } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5970       // Step over a derived-to-base conversion.
5971       E = ICE->getSubExpr();
5972       if (ICE->getCastKind() == CK_NoOp)
5973         continue;
5974       if (ICE->getCastKind() != CK_DerivedToBase &&
5975           ICE->getCastKind() != CK_UncheckedDerivedToBase)
5976         break;
5977       // Walk path backwards as we walk up from the base to the derived class.
5978       for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
5979         --PathLength;
5980         (void)Elt;
5981         assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
5982                                   LHS.Designator.Entries[PathLength]
5983                                       .getAsBaseOrMember().getPointer()));
5984       }
5985 
5986     //   -- Otherwise, S(E) is empty.
5987     } else {
5988       break;
5989     }
5990   }
5991 
5992   // Common case: no unions' lifetimes are started.
5993   if (UnionPathLengths.empty())
5994     return true;
5995 
5996   //   if modification of X [would access an inactive union member], an object
5997   //   of the type of X is implicitly created
5998   CompleteObject Obj =
5999       findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
6000   if (!Obj)
6001     return false;
6002   for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6003            llvm::reverse(UnionPathLengths)) {
6004     // Form a designator for the union object.
6005     SubobjectDesignator D = LHS.Designator;
6006     D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
6007 
6008     bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
6009                       ConstructionPhase::AfterBases;
6010     StartLifetimeOfUnionMemberHandler StartLifetime{
6011         Info, LHSExpr, LengthAndField.second, DuringInit};
6012     if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
6013       return false;
6014   }
6015 
6016   return true;
6017 }
6018 
6019 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6020                             CallRef Call, EvalInfo &Info,
6021                             bool NonNull = false) {
6022   LValue LV;
6023   // Create the parameter slot and register its destruction. For a vararg
6024   // argument, create a temporary.
6025   // FIXME: For calling conventions that destroy parameters in the callee,
6026   // should we consider performing destruction when the function returns
6027   // instead?
6028   APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
6029                    : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
6030                                                        ScopeKind::Call, LV);
6031   if (!EvaluateInPlace(V, Info, LV, Arg))
6032     return false;
6033 
6034   // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6035   // undefined behavior, so is non-constant.
6036   if (NonNull && V.isLValue() && V.isNullPointer()) {
6037     Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6038     return false;
6039   }
6040 
6041   return true;
6042 }
6043 
6044 /// Evaluate the arguments to a function call.
6045 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6046                          EvalInfo &Info, const FunctionDecl *Callee,
6047                          bool RightToLeft = false) {
6048   bool Success = true;
6049   llvm::SmallBitVector ForbiddenNullArgs;
6050   if (Callee->hasAttr<NonNullAttr>()) {
6051     ForbiddenNullArgs.resize(Args.size());
6052     for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6053       if (!Attr->args_size()) {
6054         ForbiddenNullArgs.set();
6055         break;
6056       } else
6057         for (auto Idx : Attr->args()) {
6058           unsigned ASTIdx = Idx.getASTIndex();
6059           if (ASTIdx >= Args.size())
6060             continue;
6061           ForbiddenNullArgs[ASTIdx] = true;
6062         }
6063     }
6064   }
6065   for (unsigned I = 0; I < Args.size(); I++) {
6066     unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6067     const ParmVarDecl *PVD =
6068         Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6069     bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6070     if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6071       // If we're checking for a potential constant expression, evaluate all
6072       // initializers even if some of them fail.
6073       if (!Info.noteFailure())
6074         return false;
6075       Success = false;
6076     }
6077   }
6078   return Success;
6079 }
6080 
6081 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6082 /// constructor or assignment operator.
6083 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6084                               const Expr *E, APValue &Result,
6085                               bool CopyObjectRepresentation) {
6086   // Find the reference argument.
6087   CallStackFrame *Frame = Info.CurrentCall;
6088   APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6089   if (!RefValue) {
6090     Info.FFDiag(E);
6091     return false;
6092   }
6093 
6094   // Copy out the contents of the RHS object.
6095   LValue RefLValue;
6096   RefLValue.setFrom(Info.Ctx, *RefValue);
6097   return handleLValueToRValueConversion(
6098       Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6099       CopyObjectRepresentation);
6100 }
6101 
6102 /// Evaluate a function call.
6103 static bool HandleFunctionCall(SourceLocation CallLoc,
6104                                const FunctionDecl *Callee, const LValue *This,
6105                                ArrayRef<const Expr *> Args, CallRef Call,
6106                                const Stmt *Body, EvalInfo &Info,
6107                                APValue &Result, const LValue *ResultSlot) {
6108   if (!Info.CheckCallLimit(CallLoc))
6109     return false;
6110 
6111   CallStackFrame Frame(Info, CallLoc, Callee, This, Call);
6112 
6113   // For a trivial copy or move assignment, perform an APValue copy. This is
6114   // essential for unions, where the operations performed by the assignment
6115   // operator cannot be represented as statements.
6116   //
6117   // Skip this for non-union classes with no fields; in that case, the defaulted
6118   // copy/move does not actually read the object.
6119   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6120   if (MD && MD->isDefaulted() &&
6121       (MD->getParent()->isUnion() ||
6122        (MD->isTrivial() &&
6123         isReadByLvalueToRvalueConversion(MD->getParent())))) {
6124     assert(This &&
6125            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6126     APValue RHSValue;
6127     if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6128                            MD->getParent()->isUnion()))
6129       return false;
6130     if (Info.getLangOpts().CPlusPlus20 && MD->isTrivial() &&
6131         !HandleUnionActiveMemberChange(Info, Args[0], *This))
6132       return false;
6133     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6134                           RHSValue))
6135       return false;
6136     This->moveInto(Result);
6137     return true;
6138   } else if (MD && isLambdaCallOperator(MD)) {
6139     // We're in a lambda; determine the lambda capture field maps unless we're
6140     // just constexpr checking a lambda's call operator. constexpr checking is
6141     // done before the captures have been added to the closure object (unless
6142     // we're inferring constexpr-ness), so we don't have access to them in this
6143     // case. But since we don't need the captures to constexpr check, we can
6144     // just ignore them.
6145     if (!Info.checkingPotentialConstantExpression())
6146       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6147                                         Frame.LambdaThisCaptureField);
6148   }
6149 
6150   StmtResult Ret = {Result, ResultSlot};
6151   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6152   if (ESR == ESR_Succeeded) {
6153     if (Callee->getReturnType()->isVoidType())
6154       return true;
6155     Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6156   }
6157   return ESR == ESR_Returned;
6158 }
6159 
6160 /// Evaluate a constructor call.
6161 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6162                                   CallRef Call,
6163                                   const CXXConstructorDecl *Definition,
6164                                   EvalInfo &Info, APValue &Result) {
6165   SourceLocation CallLoc = E->getExprLoc();
6166   if (!Info.CheckCallLimit(CallLoc))
6167     return false;
6168 
6169   const CXXRecordDecl *RD = Definition->getParent();
6170   if (RD->getNumVBases()) {
6171     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6172     return false;
6173   }
6174 
6175   EvalInfo::EvaluatingConstructorRAII EvalObj(
6176       Info,
6177       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6178       RD->getNumBases());
6179   CallStackFrame Frame(Info, CallLoc, Definition, &This, Call);
6180 
6181   // FIXME: Creating an APValue just to hold a nonexistent return value is
6182   // wasteful.
6183   APValue RetVal;
6184   StmtResult Ret = {RetVal, nullptr};
6185 
6186   // If it's a delegating constructor, delegate.
6187   if (Definition->isDelegatingConstructor()) {
6188     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6189     if ((*I)->getInit()->isValueDependent()) {
6190       if (!EvaluateDependentExpr((*I)->getInit(), Info))
6191         return false;
6192     } else {
6193       FullExpressionRAII InitScope(Info);
6194       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6195           !InitScope.destroy())
6196         return false;
6197     }
6198     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6199   }
6200 
6201   // For a trivial copy or move constructor, perform an APValue copy. This is
6202   // essential for unions (or classes with anonymous union members), where the
6203   // operations performed by the constructor cannot be represented by
6204   // ctor-initializers.
6205   //
6206   // Skip this for empty non-union classes; we should not perform an
6207   // lvalue-to-rvalue conversion on them because their copy constructor does not
6208   // actually read them.
6209   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6210       (Definition->getParent()->isUnion() ||
6211        (Definition->isTrivial() &&
6212         isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6213     return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6214                              Definition->getParent()->isUnion());
6215   }
6216 
6217   // Reserve space for the struct members.
6218   if (!Result.hasValue()) {
6219     if (!RD->isUnion())
6220       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6221                        std::distance(RD->field_begin(), RD->field_end()));
6222     else
6223       // A union starts with no active member.
6224       Result = APValue((const FieldDecl*)nullptr);
6225   }
6226 
6227   if (RD->isInvalidDecl()) return false;
6228   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6229 
6230   // A scope for temporaries lifetime-extended by reference members.
6231   BlockScopeRAII LifetimeExtendedScope(Info);
6232 
6233   bool Success = true;
6234   unsigned BasesSeen = 0;
6235 #ifndef NDEBUG
6236   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6237 #endif
6238   CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6239   auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6240     // We might be initializing the same field again if this is an indirect
6241     // field initialization.
6242     if (FieldIt == RD->field_end() ||
6243         FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6244       assert(Indirect && "fields out of order?");
6245       return;
6246     }
6247 
6248     // Default-initialize any fields with no explicit initializer.
6249     for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6250       assert(FieldIt != RD->field_end() && "missing field?");
6251       if (!FieldIt->isUnnamedBitfield())
6252         Success &= getDefaultInitValue(
6253             FieldIt->getType(),
6254             Result.getStructField(FieldIt->getFieldIndex()));
6255     }
6256     ++FieldIt;
6257   };
6258   for (const auto *I : Definition->inits()) {
6259     LValue Subobject = This;
6260     LValue SubobjectParent = This;
6261     APValue *Value = &Result;
6262 
6263     // Determine the subobject to initialize.
6264     FieldDecl *FD = nullptr;
6265     if (I->isBaseInitializer()) {
6266       QualType BaseType(I->getBaseClass(), 0);
6267 #ifndef NDEBUG
6268       // Non-virtual base classes are initialized in the order in the class
6269       // definition. We have already checked for virtual base classes.
6270       assert(!BaseIt->isVirtual() && "virtual base for literal type");
6271       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
6272              "base class initializers not in expected order");
6273       ++BaseIt;
6274 #endif
6275       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6276                                   BaseType->getAsCXXRecordDecl(), &Layout))
6277         return false;
6278       Value = &Result.getStructBase(BasesSeen++);
6279     } else if ((FD = I->getMember())) {
6280       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6281         return false;
6282       if (RD->isUnion()) {
6283         Result = APValue(FD);
6284         Value = &Result.getUnionValue();
6285       } else {
6286         SkipToField(FD, false);
6287         Value = &Result.getStructField(FD->getFieldIndex());
6288       }
6289     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6290       // Walk the indirect field decl's chain to find the object to initialize,
6291       // and make sure we've initialized every step along it.
6292       auto IndirectFieldChain = IFD->chain();
6293       for (auto *C : IndirectFieldChain) {
6294         FD = cast<FieldDecl>(C);
6295         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6296         // Switch the union field if it differs. This happens if we had
6297         // preceding zero-initialization, and we're now initializing a union
6298         // subobject other than the first.
6299         // FIXME: In this case, the values of the other subobjects are
6300         // specified, since zero-initialization sets all padding bits to zero.
6301         if (!Value->hasValue() ||
6302             (Value->isUnion() && Value->getUnionField() != FD)) {
6303           if (CD->isUnion())
6304             *Value = APValue(FD);
6305           else
6306             // FIXME: This immediately starts the lifetime of all members of
6307             // an anonymous struct. It would be preferable to strictly start
6308             // member lifetime in initialization order.
6309             Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6310         }
6311         // Store Subobject as its parent before updating it for the last element
6312         // in the chain.
6313         if (C == IndirectFieldChain.back())
6314           SubobjectParent = Subobject;
6315         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6316           return false;
6317         if (CD->isUnion())
6318           Value = &Value->getUnionValue();
6319         else {
6320           if (C == IndirectFieldChain.front() && !RD->isUnion())
6321             SkipToField(FD, true);
6322           Value = &Value->getStructField(FD->getFieldIndex());
6323         }
6324       }
6325     } else {
6326       llvm_unreachable("unknown base initializer kind");
6327     }
6328 
6329     // Need to override This for implicit field initializers as in this case
6330     // This refers to innermost anonymous struct/union containing initializer,
6331     // not to currently constructed class.
6332     const Expr *Init = I->getInit();
6333     if (Init->isValueDependent()) {
6334       if (!EvaluateDependentExpr(Init, Info))
6335         return false;
6336     } else {
6337       ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6338                                     isa<CXXDefaultInitExpr>(Init));
6339       FullExpressionRAII InitScope(Info);
6340       if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6341           (FD && FD->isBitField() &&
6342            !truncateBitfieldValue(Info, Init, *Value, FD))) {
6343         // If we're checking for a potential constant expression, evaluate all
6344         // initializers even if some of them fail.
6345         if (!Info.noteFailure())
6346           return false;
6347         Success = false;
6348       }
6349     }
6350 
6351     // This is the point at which the dynamic type of the object becomes this
6352     // class type.
6353     if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6354       EvalObj.finishedConstructingBases();
6355   }
6356 
6357   // Default-initialize any remaining fields.
6358   if (!RD->isUnion()) {
6359     for (; FieldIt != RD->field_end(); ++FieldIt) {
6360       if (!FieldIt->isUnnamedBitfield())
6361         Success &= getDefaultInitValue(
6362             FieldIt->getType(),
6363             Result.getStructField(FieldIt->getFieldIndex()));
6364     }
6365   }
6366 
6367   EvalObj.finishedConstructingFields();
6368 
6369   return Success &&
6370          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6371          LifetimeExtendedScope.destroy();
6372 }
6373 
6374 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6375                                   ArrayRef<const Expr*> Args,
6376                                   const CXXConstructorDecl *Definition,
6377                                   EvalInfo &Info, APValue &Result) {
6378   CallScopeRAII CallScope(Info);
6379   CallRef Call = Info.CurrentCall->createCall(Definition);
6380   if (!EvaluateArgs(Args, Call, Info, Definition))
6381     return false;
6382 
6383   return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6384          CallScope.destroy();
6385 }
6386 
6387 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
6388                                   const LValue &This, APValue &Value,
6389                                   QualType T) {
6390   // Objects can only be destroyed while they're within their lifetimes.
6391   // FIXME: We have no representation for whether an object of type nullptr_t
6392   // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6393   // as indeterminate instead?
6394   if (Value.isAbsent() && !T->isNullPtrType()) {
6395     APValue Printable;
6396     This.moveInto(Printable);
6397     Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
6398       << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6399     return false;
6400   }
6401 
6402   // Invent an expression for location purposes.
6403   // FIXME: We shouldn't need to do this.
6404   OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_PRValue);
6405 
6406   // For arrays, destroy elements right-to-left.
6407   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6408     uint64_t Size = CAT->getSize().getZExtValue();
6409     QualType ElemT = CAT->getElementType();
6410 
6411     LValue ElemLV = This;
6412     ElemLV.addArray(Info, &LocE, CAT);
6413     if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6414       return false;
6415 
6416     // Ensure that we have actual array elements available to destroy; the
6417     // destructors might mutate the value, so we can't run them on the array
6418     // filler.
6419     if (Size && Size > Value.getArrayInitializedElts())
6420       expandArray(Value, Value.getArraySize() - 1);
6421 
6422     for (; Size != 0; --Size) {
6423       APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6424       if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6425           !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
6426         return false;
6427     }
6428 
6429     // End the lifetime of this array now.
6430     Value = APValue();
6431     return true;
6432   }
6433 
6434   const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6435   if (!RD) {
6436     if (T.isDestructedType()) {
6437       Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
6438       return false;
6439     }
6440 
6441     Value = APValue();
6442     return true;
6443   }
6444 
6445   if (RD->getNumVBases()) {
6446     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6447     return false;
6448   }
6449 
6450   const CXXDestructorDecl *DD = RD->getDestructor();
6451   if (!DD && !RD->hasTrivialDestructor()) {
6452     Info.FFDiag(CallLoc);
6453     return false;
6454   }
6455 
6456   if (!DD || DD->isTrivial() ||
6457       (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6458     // A trivial destructor just ends the lifetime of the object. Check for
6459     // this case before checking for a body, because we might not bother
6460     // building a body for a trivial destructor. Note that it doesn't matter
6461     // whether the destructor is constexpr in this case; all trivial
6462     // destructors are constexpr.
6463     //
6464     // If an anonymous union would be destroyed, some enclosing destructor must
6465     // have been explicitly defined, and the anonymous union destruction should
6466     // have no effect.
6467     Value = APValue();
6468     return true;
6469   }
6470 
6471   if (!Info.CheckCallLimit(CallLoc))
6472     return false;
6473 
6474   const FunctionDecl *Definition = nullptr;
6475   const Stmt *Body = DD->getBody(Definition);
6476 
6477   if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
6478     return false;
6479 
6480   CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef());
6481 
6482   // We're now in the period of destruction of this object.
6483   unsigned BasesLeft = RD->getNumBases();
6484   EvalInfo::EvaluatingDestructorRAII EvalObj(
6485       Info,
6486       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6487   if (!EvalObj.DidInsert) {
6488     // C++2a [class.dtor]p19:
6489     //   the behavior is undefined if the destructor is invoked for an object
6490     //   whose lifetime has ended
6491     // (Note that formally the lifetime ends when the period of destruction
6492     // begins, even though certain uses of the object remain valid until the
6493     // period of destruction ends.)
6494     Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
6495     return false;
6496   }
6497 
6498   // FIXME: Creating an APValue just to hold a nonexistent return value is
6499   // wasteful.
6500   APValue RetVal;
6501   StmtResult Ret = {RetVal, nullptr};
6502   if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6503     return false;
6504 
6505   // A union destructor does not implicitly destroy its members.
6506   if (RD->isUnion())
6507     return true;
6508 
6509   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6510 
6511   // We don't have a good way to iterate fields in reverse, so collect all the
6512   // fields first and then walk them backwards.
6513   SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
6514   for (const FieldDecl *FD : llvm::reverse(Fields)) {
6515     if (FD->isUnnamedBitfield())
6516       continue;
6517 
6518     LValue Subobject = This;
6519     if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6520       return false;
6521 
6522     APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6523     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6524                                FD->getType()))
6525       return false;
6526   }
6527 
6528   if (BasesLeft != 0)
6529     EvalObj.startedDestroyingBases();
6530 
6531   // Destroy base classes in reverse order.
6532   for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6533     --BasesLeft;
6534 
6535     QualType BaseType = Base.getType();
6536     LValue Subobject = This;
6537     if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6538                                 BaseType->getAsCXXRecordDecl(), &Layout))
6539       return false;
6540 
6541     APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6542     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6543                                BaseType))
6544       return false;
6545   }
6546   assert(BasesLeft == 0 && "NumBases was wrong?");
6547 
6548   // The period of destruction ends now. The object is gone.
6549   Value = APValue();
6550   return true;
6551 }
6552 
6553 namespace {
6554 struct DestroyObjectHandler {
6555   EvalInfo &Info;
6556   const Expr *E;
6557   const LValue &This;
6558   const AccessKinds AccessKind;
6559 
6560   typedef bool result_type;
6561   bool failed() { return false; }
6562   bool found(APValue &Subobj, QualType SubobjType) {
6563     return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
6564                                  SubobjType);
6565   }
6566   bool found(APSInt &Value, QualType SubobjType) {
6567     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6568     return false;
6569   }
6570   bool found(APFloat &Value, QualType SubobjType) {
6571     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6572     return false;
6573   }
6574 };
6575 }
6576 
6577 /// Perform a destructor or pseudo-destructor call on the given object, which
6578 /// might in general not be a complete object.
6579 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6580                               const LValue &This, QualType ThisType) {
6581   CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6582   DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6583   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6584 }
6585 
6586 /// Destroy and end the lifetime of the given complete object.
6587 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6588                               APValue::LValueBase LVBase, APValue &Value,
6589                               QualType T) {
6590   // If we've had an unmodeled side-effect, we can't rely on mutable state
6591   // (such as the object we're about to destroy) being correct.
6592   if (Info.EvalStatus.HasSideEffects)
6593     return false;
6594 
6595   LValue LV;
6596   LV.set({LVBase});
6597   return HandleDestructionImpl(Info, Loc, LV, Value, T);
6598 }
6599 
6600 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
6601 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6602                                   LValue &Result) {
6603   if (Info.checkingPotentialConstantExpression() ||
6604       Info.SpeculativeEvaluationDepth)
6605     return false;
6606 
6607   // This is permitted only within a call to std::allocator<T>::allocate.
6608   auto Caller = Info.getStdAllocatorCaller("allocate");
6609   if (!Caller) {
6610     Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6611                                      ? diag::note_constexpr_new_untyped
6612                                      : diag::note_constexpr_new);
6613     return false;
6614   }
6615 
6616   QualType ElemType = Caller.ElemType;
6617   if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6618     Info.FFDiag(E->getExprLoc(),
6619                 diag::note_constexpr_new_not_complete_object_type)
6620         << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6621     return false;
6622   }
6623 
6624   APSInt ByteSize;
6625   if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6626     return false;
6627   bool IsNothrow = false;
6628   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6629     EvaluateIgnoredValue(Info, E->getArg(I));
6630     IsNothrow |= E->getType()->isNothrowT();
6631   }
6632 
6633   CharUnits ElemSize;
6634   if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6635     return false;
6636   APInt Size, Remainder;
6637   APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6638   APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6639   if (Remainder != 0) {
6640     // This likely indicates a bug in the implementation of 'std::allocator'.
6641     Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6642         << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6643     return false;
6644   }
6645 
6646   if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6647     if (IsNothrow) {
6648       Result.setNull(Info.Ctx, E->getType());
6649       return true;
6650     }
6651 
6652     Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6653     return false;
6654   }
6655 
6656   QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6657                                                      ArrayType::Normal, 0);
6658   APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6659   *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6660   Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6661   return true;
6662 }
6663 
6664 static bool hasVirtualDestructor(QualType T) {
6665   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6666     if (CXXDestructorDecl *DD = RD->getDestructor())
6667       return DD->isVirtual();
6668   return false;
6669 }
6670 
6671 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6672   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6673     if (CXXDestructorDecl *DD = RD->getDestructor())
6674       return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6675   return nullptr;
6676 }
6677 
6678 /// Check that the given object is a suitable pointer to a heap allocation that
6679 /// still exists and is of the right kind for the purpose of a deletion.
6680 ///
6681 /// On success, returns the heap allocation to deallocate. On failure, produces
6682 /// a diagnostic and returns None.
6683 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6684                                             const LValue &Pointer,
6685                                             DynAlloc::Kind DeallocKind) {
6686   auto PointerAsString = [&] {
6687     return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6688   };
6689 
6690   DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6691   if (!DA) {
6692     Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6693         << PointerAsString();
6694     if (Pointer.Base)
6695       NoteLValueLocation(Info, Pointer.Base);
6696     return None;
6697   }
6698 
6699   Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6700   if (!Alloc) {
6701     Info.FFDiag(E, diag::note_constexpr_double_delete);
6702     return None;
6703   }
6704 
6705   QualType AllocType = Pointer.Base.getDynamicAllocType();
6706   if (DeallocKind != (*Alloc)->getKind()) {
6707     Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6708         << DeallocKind << (*Alloc)->getKind() << AllocType;
6709     NoteLValueLocation(Info, Pointer.Base);
6710     return None;
6711   }
6712 
6713   bool Subobject = false;
6714   if (DeallocKind == DynAlloc::New) {
6715     Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6716                 Pointer.Designator.isOnePastTheEnd();
6717   } else {
6718     Subobject = Pointer.Designator.Entries.size() != 1 ||
6719                 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6720   }
6721   if (Subobject) {
6722     Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6723         << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6724     return None;
6725   }
6726 
6727   return Alloc;
6728 }
6729 
6730 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
6731 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6732   if (Info.checkingPotentialConstantExpression() ||
6733       Info.SpeculativeEvaluationDepth)
6734     return false;
6735 
6736   // This is permitted only within a call to std::allocator<T>::deallocate.
6737   if (!Info.getStdAllocatorCaller("deallocate")) {
6738     Info.FFDiag(E->getExprLoc());
6739     return true;
6740   }
6741 
6742   LValue Pointer;
6743   if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6744     return false;
6745   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6746     EvaluateIgnoredValue(Info, E->getArg(I));
6747 
6748   if (Pointer.Designator.Invalid)
6749     return false;
6750 
6751   // Deleting a null pointer would have no effect, but it's not permitted by
6752   // std::allocator<T>::deallocate's contract.
6753   if (Pointer.isNullPointer()) {
6754     Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6755     return true;
6756   }
6757 
6758   if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6759     return false;
6760 
6761   Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6762   return true;
6763 }
6764 
6765 //===----------------------------------------------------------------------===//
6766 // Generic Evaluation
6767 //===----------------------------------------------------------------------===//
6768 namespace {
6769 
6770 class BitCastBuffer {
6771   // FIXME: We're going to need bit-level granularity when we support
6772   // bit-fields.
6773   // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6774   // we don't support a host or target where that is the case. Still, we should
6775   // use a more generic type in case we ever do.
6776   SmallVector<Optional<unsigned char>, 32> Bytes;
6777 
6778   static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6779                 "Need at least 8 bit unsigned char");
6780 
6781   bool TargetIsLittleEndian;
6782 
6783 public:
6784   BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6785       : Bytes(Width.getQuantity()),
6786         TargetIsLittleEndian(TargetIsLittleEndian) {}
6787 
6788   LLVM_NODISCARD
6789   bool readObject(CharUnits Offset, CharUnits Width,
6790                   SmallVectorImpl<unsigned char> &Output) const {
6791     for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6792       // If a byte of an integer is uninitialized, then the whole integer is
6793       // uninitialized.
6794       if (!Bytes[I.getQuantity()])
6795         return false;
6796       Output.push_back(*Bytes[I.getQuantity()]);
6797     }
6798     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6799       std::reverse(Output.begin(), Output.end());
6800     return true;
6801   }
6802 
6803   void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6804     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6805       std::reverse(Input.begin(), Input.end());
6806 
6807     size_t Index = 0;
6808     for (unsigned char Byte : Input) {
6809       assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6810       Bytes[Offset.getQuantity() + Index] = Byte;
6811       ++Index;
6812     }
6813   }
6814 
6815   size_t size() { return Bytes.size(); }
6816 };
6817 
6818 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6819 /// target would represent the value at runtime.
6820 class APValueToBufferConverter {
6821   EvalInfo &Info;
6822   BitCastBuffer Buffer;
6823   const CastExpr *BCE;
6824 
6825   APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6826                            const CastExpr *BCE)
6827       : Info(Info),
6828         Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6829         BCE(BCE) {}
6830 
6831   bool visit(const APValue &Val, QualType Ty) {
6832     return visit(Val, Ty, CharUnits::fromQuantity(0));
6833   }
6834 
6835   // Write out Val with type Ty into Buffer starting at Offset.
6836   bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6837     assert((size_t)Offset.getQuantity() <= Buffer.size());
6838 
6839     // As a special case, nullptr_t has an indeterminate value.
6840     if (Ty->isNullPtrType())
6841       return true;
6842 
6843     // Dig through Src to find the byte at SrcOffset.
6844     switch (Val.getKind()) {
6845     case APValue::Indeterminate:
6846     case APValue::None:
6847       return true;
6848 
6849     case APValue::Int:
6850       return visitInt(Val.getInt(), Ty, Offset);
6851     case APValue::Float:
6852       return visitFloat(Val.getFloat(), Ty, Offset);
6853     case APValue::Array:
6854       return visitArray(Val, Ty, Offset);
6855     case APValue::Struct:
6856       return visitRecord(Val, Ty, Offset);
6857 
6858     case APValue::ComplexInt:
6859     case APValue::ComplexFloat:
6860     case APValue::Vector:
6861     case APValue::FixedPoint:
6862       // FIXME: We should support these.
6863 
6864     case APValue::Union:
6865     case APValue::MemberPointer:
6866     case APValue::AddrLabelDiff: {
6867       Info.FFDiag(BCE->getBeginLoc(),
6868                   diag::note_constexpr_bit_cast_unsupported_type)
6869           << Ty;
6870       return false;
6871     }
6872 
6873     case APValue::LValue:
6874       llvm_unreachable("LValue subobject in bit_cast?");
6875     }
6876     llvm_unreachable("Unhandled APValue::ValueKind");
6877   }
6878 
6879   bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6880     const RecordDecl *RD = Ty->getAsRecordDecl();
6881     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6882 
6883     // Visit the base classes.
6884     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6885       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6886         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6887         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6888 
6889         if (!visitRecord(Val.getStructBase(I), BS.getType(),
6890                          Layout.getBaseClassOffset(BaseDecl) + Offset))
6891           return false;
6892       }
6893     }
6894 
6895     // Visit the fields.
6896     unsigned FieldIdx = 0;
6897     for (FieldDecl *FD : RD->fields()) {
6898       if (FD->isBitField()) {
6899         Info.FFDiag(BCE->getBeginLoc(),
6900                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6901         return false;
6902       }
6903 
6904       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6905 
6906       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
6907              "only bit-fields can have sub-char alignment");
6908       CharUnits FieldOffset =
6909           Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6910       QualType FieldTy = FD->getType();
6911       if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6912         return false;
6913       ++FieldIdx;
6914     }
6915 
6916     return true;
6917   }
6918 
6919   bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6920     const auto *CAT =
6921         dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6922     if (!CAT)
6923       return false;
6924 
6925     CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6926     unsigned NumInitializedElts = Val.getArrayInitializedElts();
6927     unsigned ArraySize = Val.getArraySize();
6928     // First, initialize the initialized elements.
6929     for (unsigned I = 0; I != NumInitializedElts; ++I) {
6930       const APValue &SubObj = Val.getArrayInitializedElt(I);
6931       if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6932         return false;
6933     }
6934 
6935     // Next, initialize the rest of the array using the filler.
6936     if (Val.hasArrayFiller()) {
6937       const APValue &Filler = Val.getArrayFiller();
6938       for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6939         if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6940           return false;
6941       }
6942     }
6943 
6944     return true;
6945   }
6946 
6947   bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
6948     APSInt AdjustedVal = Val;
6949     unsigned Width = AdjustedVal.getBitWidth();
6950     if (Ty->isBooleanType()) {
6951       Width = Info.Ctx.getTypeSize(Ty);
6952       AdjustedVal = AdjustedVal.extend(Width);
6953     }
6954 
6955     SmallVector<unsigned char, 8> Bytes(Width / 8);
6956     llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
6957     Buffer.writeObject(Offset, Bytes);
6958     return true;
6959   }
6960 
6961   bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
6962     APSInt AsInt(Val.bitcastToAPInt());
6963     return visitInt(AsInt, Ty, Offset);
6964   }
6965 
6966 public:
6967   static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
6968                                          const CastExpr *BCE) {
6969     CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
6970     APValueToBufferConverter Converter(Info, DstSize, BCE);
6971     if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
6972       return None;
6973     return Converter.Buffer;
6974   }
6975 };
6976 
6977 /// Write an BitCastBuffer into an APValue.
6978 class BufferToAPValueConverter {
6979   EvalInfo &Info;
6980   const BitCastBuffer &Buffer;
6981   const CastExpr *BCE;
6982 
6983   BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
6984                            const CastExpr *BCE)
6985       : Info(Info), Buffer(Buffer), BCE(BCE) {}
6986 
6987   // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
6988   // with an invalid type, so anything left is a deficiency on our part (FIXME).
6989   // Ideally this will be unreachable.
6990   llvm::NoneType unsupportedType(QualType Ty) {
6991     Info.FFDiag(BCE->getBeginLoc(),
6992                 diag::note_constexpr_bit_cast_unsupported_type)
6993         << Ty;
6994     return None;
6995   }
6996 
6997   llvm::NoneType unrepresentableValue(QualType Ty, const APSInt &Val) {
6998     Info.FFDiag(BCE->getBeginLoc(),
6999                 diag::note_constexpr_bit_cast_unrepresentable_value)
7000         << Ty << toString(Val, /*Radix=*/10);
7001     return None;
7002   }
7003 
7004   Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7005                           const EnumType *EnumSugar = nullptr) {
7006     if (T->isNullPtrType()) {
7007       uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
7008       return APValue((Expr *)nullptr,
7009                      /*Offset=*/CharUnits::fromQuantity(NullValue),
7010                      APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7011     }
7012 
7013     CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7014 
7015     // Work around floating point types that contain unused padding bytes. This
7016     // is really just `long double` on x86, which is the only fundamental type
7017     // with padding bytes.
7018     if (T->isRealFloatingType()) {
7019       const llvm::fltSemantics &Semantics =
7020           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7021       unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
7022       assert(NumBits % 8 == 0);
7023       CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
7024       if (NumBytes != SizeOf)
7025         SizeOf = NumBytes;
7026     }
7027 
7028     SmallVector<uint8_t, 8> Bytes;
7029     if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
7030       // If this is std::byte or unsigned char, then its okay to store an
7031       // indeterminate value.
7032       bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7033       bool IsUChar =
7034           !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7035                          T->isSpecificBuiltinType(BuiltinType::Char_U));
7036       if (!IsStdByte && !IsUChar) {
7037         QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7038         Info.FFDiag(BCE->getExprLoc(),
7039                     diag::note_constexpr_bit_cast_indet_dest)
7040             << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7041         return None;
7042       }
7043 
7044       return APValue::IndeterminateValue();
7045     }
7046 
7047     APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7048     llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7049 
7050     if (T->isIntegralOrEnumerationType()) {
7051       Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7052 
7053       unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7054       if (IntWidth != Val.getBitWidth()) {
7055         APSInt Truncated = Val.trunc(IntWidth);
7056         if (Truncated.extend(Val.getBitWidth()) != Val)
7057           return unrepresentableValue(QualType(T, 0), Val);
7058         Val = Truncated;
7059       }
7060 
7061       return APValue(Val);
7062     }
7063 
7064     if (T->isRealFloatingType()) {
7065       const llvm::fltSemantics &Semantics =
7066           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7067       return APValue(APFloat(Semantics, Val));
7068     }
7069 
7070     return unsupportedType(QualType(T, 0));
7071   }
7072 
7073   Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7074     const RecordDecl *RD = RTy->getAsRecordDecl();
7075     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7076 
7077     unsigned NumBases = 0;
7078     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7079       NumBases = CXXRD->getNumBases();
7080 
7081     APValue ResultVal(APValue::UninitStruct(), NumBases,
7082                       std::distance(RD->field_begin(), RD->field_end()));
7083 
7084     // Visit the base classes.
7085     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7086       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7087         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7088         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7089         if (BaseDecl->isEmpty() ||
7090             Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7091           continue;
7092 
7093         Optional<APValue> SubObj = visitType(
7094             BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7095         if (!SubObj)
7096           return None;
7097         ResultVal.getStructBase(I) = *SubObj;
7098       }
7099     }
7100 
7101     // Visit the fields.
7102     unsigned FieldIdx = 0;
7103     for (FieldDecl *FD : RD->fields()) {
7104       // FIXME: We don't currently support bit-fields. A lot of the logic for
7105       // this is in CodeGen, so we need to factor it around.
7106       if (FD->isBitField()) {
7107         Info.FFDiag(BCE->getBeginLoc(),
7108                     diag::note_constexpr_bit_cast_unsupported_bitfield);
7109         return None;
7110       }
7111 
7112       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7113       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7114 
7115       CharUnits FieldOffset =
7116           CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7117           Offset;
7118       QualType FieldTy = FD->getType();
7119       Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7120       if (!SubObj)
7121         return None;
7122       ResultVal.getStructField(FieldIdx) = *SubObj;
7123       ++FieldIdx;
7124     }
7125 
7126     return ResultVal;
7127   }
7128 
7129   Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7130     QualType RepresentationType = Ty->getDecl()->getIntegerType();
7131     assert(!RepresentationType.isNull() &&
7132            "enum forward decl should be caught by Sema");
7133     const auto *AsBuiltin =
7134         RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7135     // Recurse into the underlying type. Treat std::byte transparently as
7136     // unsigned char.
7137     return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7138   }
7139 
7140   Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7141     size_t Size = Ty->getSize().getLimitedValue();
7142     CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7143 
7144     APValue ArrayValue(APValue::UninitArray(), Size, Size);
7145     for (size_t I = 0; I != Size; ++I) {
7146       Optional<APValue> ElementValue =
7147           visitType(Ty->getElementType(), Offset + I * ElementWidth);
7148       if (!ElementValue)
7149         return None;
7150       ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7151     }
7152 
7153     return ArrayValue;
7154   }
7155 
7156   Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7157     return unsupportedType(QualType(Ty, 0));
7158   }
7159 
7160   Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7161     QualType Can = Ty.getCanonicalType();
7162 
7163     switch (Can->getTypeClass()) {
7164 #define TYPE(Class, Base)                                                      \
7165   case Type::Class:                                                            \
7166     return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7167 #define ABSTRACT_TYPE(Class, Base)
7168 #define NON_CANONICAL_TYPE(Class, Base)                                        \
7169   case Type::Class:                                                            \
7170     llvm_unreachable("non-canonical type should be impossible!");
7171 #define DEPENDENT_TYPE(Class, Base)                                            \
7172   case Type::Class:                                                            \
7173     llvm_unreachable(                                                          \
7174         "dependent types aren't supported in the constant evaluator!");
7175 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
7176   case Type::Class:                                                            \
7177     llvm_unreachable("either dependent or not canonical!");
7178 #include "clang/AST/TypeNodes.inc"
7179     }
7180     llvm_unreachable("Unhandled Type::TypeClass");
7181   }
7182 
7183 public:
7184   // Pull out a full value of type DstType.
7185   static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7186                                    const CastExpr *BCE) {
7187     BufferToAPValueConverter Converter(Info, Buffer, BCE);
7188     return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7189   }
7190 };
7191 
7192 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7193                                                  QualType Ty, EvalInfo *Info,
7194                                                  const ASTContext &Ctx,
7195                                                  bool CheckingDest) {
7196   Ty = Ty.getCanonicalType();
7197 
7198   auto diag = [&](int Reason) {
7199     if (Info)
7200       Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7201           << CheckingDest << (Reason == 4) << Reason;
7202     return false;
7203   };
7204   auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7205     if (Info)
7206       Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7207           << NoteTy << Construct << Ty;
7208     return false;
7209   };
7210 
7211   if (Ty->isUnionType())
7212     return diag(0);
7213   if (Ty->isPointerType())
7214     return diag(1);
7215   if (Ty->isMemberPointerType())
7216     return diag(2);
7217   if (Ty.isVolatileQualified())
7218     return diag(3);
7219 
7220   if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7221     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7222       for (CXXBaseSpecifier &BS : CXXRD->bases())
7223         if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7224                                                   CheckingDest))
7225           return note(1, BS.getType(), BS.getBeginLoc());
7226     }
7227     for (FieldDecl *FD : Record->fields()) {
7228       if (FD->getType()->isReferenceType())
7229         return diag(4);
7230       if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7231                                                 CheckingDest))
7232         return note(0, FD->getType(), FD->getBeginLoc());
7233     }
7234   }
7235 
7236   if (Ty->isArrayType() &&
7237       !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7238                                             Info, Ctx, CheckingDest))
7239     return false;
7240 
7241   return true;
7242 }
7243 
7244 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7245                                              const ASTContext &Ctx,
7246                                              const CastExpr *BCE) {
7247   bool DestOK = checkBitCastConstexprEligibilityType(
7248       BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7249   bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7250                                 BCE->getBeginLoc(),
7251                                 BCE->getSubExpr()->getType(), Info, Ctx, false);
7252   return SourceOK;
7253 }
7254 
7255 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7256                                         APValue &SourceValue,
7257                                         const CastExpr *BCE) {
7258   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7259          "no host or target supports non 8-bit chars");
7260   assert(SourceValue.isLValue() &&
7261          "LValueToRValueBitcast requires an lvalue operand!");
7262 
7263   if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7264     return false;
7265 
7266   LValue SourceLValue;
7267   APValue SourceRValue;
7268   SourceLValue.setFrom(Info.Ctx, SourceValue);
7269   if (!handleLValueToRValueConversion(
7270           Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7271           SourceRValue, /*WantObjectRepresentation=*/true))
7272     return false;
7273 
7274   // Read out SourceValue into a char buffer.
7275   Optional<BitCastBuffer> Buffer =
7276       APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7277   if (!Buffer)
7278     return false;
7279 
7280   // Write out the buffer into a new APValue.
7281   Optional<APValue> MaybeDestValue =
7282       BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7283   if (!MaybeDestValue)
7284     return false;
7285 
7286   DestValue = std::move(*MaybeDestValue);
7287   return true;
7288 }
7289 
7290 template <class Derived>
7291 class ExprEvaluatorBase
7292   : public ConstStmtVisitor<Derived, bool> {
7293 private:
7294   Derived &getDerived() { return static_cast<Derived&>(*this); }
7295   bool DerivedSuccess(const APValue &V, const Expr *E) {
7296     return getDerived().Success(V, E);
7297   }
7298   bool DerivedZeroInitialization(const Expr *E) {
7299     return getDerived().ZeroInitialization(E);
7300   }
7301 
7302   // Check whether a conditional operator with a non-constant condition is a
7303   // potential constant expression. If neither arm is a potential constant
7304   // expression, then the conditional operator is not either.
7305   template<typename ConditionalOperator>
7306   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7307     assert(Info.checkingPotentialConstantExpression());
7308 
7309     // Speculatively evaluate both arms.
7310     SmallVector<PartialDiagnosticAt, 8> Diag;
7311     {
7312       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7313       StmtVisitorTy::Visit(E->getFalseExpr());
7314       if (Diag.empty())
7315         return;
7316     }
7317 
7318     {
7319       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7320       Diag.clear();
7321       StmtVisitorTy::Visit(E->getTrueExpr());
7322       if (Diag.empty())
7323         return;
7324     }
7325 
7326     Error(E, diag::note_constexpr_conditional_never_const);
7327   }
7328 
7329 
7330   template<typename ConditionalOperator>
7331   bool HandleConditionalOperator(const ConditionalOperator *E) {
7332     bool BoolResult;
7333     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7334       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7335         CheckPotentialConstantConditional(E);
7336         return false;
7337       }
7338       if (Info.noteFailure()) {
7339         StmtVisitorTy::Visit(E->getTrueExpr());
7340         StmtVisitorTy::Visit(E->getFalseExpr());
7341       }
7342       return false;
7343     }
7344 
7345     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7346     return StmtVisitorTy::Visit(EvalExpr);
7347   }
7348 
7349 protected:
7350   EvalInfo &Info;
7351   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7352   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7353 
7354   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7355     return Info.CCEDiag(E, D);
7356   }
7357 
7358   bool ZeroInitialization(const Expr *E) { return Error(E); }
7359 
7360 public:
7361   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7362 
7363   EvalInfo &getEvalInfo() { return Info; }
7364 
7365   /// Report an evaluation error. This should only be called when an error is
7366   /// first discovered. When propagating an error, just return false.
7367   bool Error(const Expr *E, diag::kind D) {
7368     Info.FFDiag(E, D);
7369     return false;
7370   }
7371   bool Error(const Expr *E) {
7372     return Error(E, diag::note_invalid_subexpr_in_const_expr);
7373   }
7374 
7375   bool VisitStmt(const Stmt *) {
7376     llvm_unreachable("Expression evaluator should not be called on stmts");
7377   }
7378   bool VisitExpr(const Expr *E) {
7379     return Error(E);
7380   }
7381 
7382   bool VisitConstantExpr(const ConstantExpr *E) {
7383     if (E->hasAPValueResult())
7384       return DerivedSuccess(E->getAPValueResult(), E);
7385 
7386     return StmtVisitorTy::Visit(E->getSubExpr());
7387   }
7388 
7389   bool VisitParenExpr(const ParenExpr *E)
7390     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7391   bool VisitUnaryExtension(const UnaryOperator *E)
7392     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7393   bool VisitUnaryPlus(const UnaryOperator *E)
7394     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7395   bool VisitChooseExpr(const ChooseExpr *E)
7396     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
7397   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7398     { return StmtVisitorTy::Visit(E->getResultExpr()); }
7399   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7400     { return StmtVisitorTy::Visit(E->getReplacement()); }
7401   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7402     TempVersionRAII RAII(*Info.CurrentCall);
7403     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7404     return StmtVisitorTy::Visit(E->getExpr());
7405   }
7406   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7407     TempVersionRAII RAII(*Info.CurrentCall);
7408     // The initializer may not have been parsed yet, or might be erroneous.
7409     if (!E->getExpr())
7410       return Error(E);
7411     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7412     return StmtVisitorTy::Visit(E->getExpr());
7413   }
7414 
7415   bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7416     FullExpressionRAII Scope(Info);
7417     return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7418   }
7419 
7420   // Temporaries are registered when created, so we don't care about
7421   // CXXBindTemporaryExpr.
7422   bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7423     return StmtVisitorTy::Visit(E->getSubExpr());
7424   }
7425 
7426   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7427     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7428     return static_cast<Derived*>(this)->VisitCastExpr(E);
7429   }
7430   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7431     if (!Info.Ctx.getLangOpts().CPlusPlus20)
7432       CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7433     return static_cast<Derived*>(this)->VisitCastExpr(E);
7434   }
7435   bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7436     return static_cast<Derived*>(this)->VisitCastExpr(E);
7437   }
7438 
7439   bool VisitBinaryOperator(const BinaryOperator *E) {
7440     switch (E->getOpcode()) {
7441     default:
7442       return Error(E);
7443 
7444     case BO_Comma:
7445       VisitIgnoredValue(E->getLHS());
7446       return StmtVisitorTy::Visit(E->getRHS());
7447 
7448     case BO_PtrMemD:
7449     case BO_PtrMemI: {
7450       LValue Obj;
7451       if (!HandleMemberPointerAccess(Info, E, Obj))
7452         return false;
7453       APValue Result;
7454       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7455         return false;
7456       return DerivedSuccess(Result, E);
7457     }
7458     }
7459   }
7460 
7461   bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7462     return StmtVisitorTy::Visit(E->getSemanticForm());
7463   }
7464 
7465   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7466     // Evaluate and cache the common expression. We treat it as a temporary,
7467     // even though it's not quite the same thing.
7468     LValue CommonLV;
7469     if (!Evaluate(Info.CurrentCall->createTemporary(
7470                       E->getOpaqueValue(),
7471                       getStorageType(Info.Ctx, E->getOpaqueValue()),
7472                       ScopeKind::FullExpression, CommonLV),
7473                   Info, E->getCommon()))
7474       return false;
7475 
7476     return HandleConditionalOperator(E);
7477   }
7478 
7479   bool VisitConditionalOperator(const ConditionalOperator *E) {
7480     bool IsBcpCall = false;
7481     // If the condition (ignoring parens) is a __builtin_constant_p call,
7482     // the result is a constant expression if it can be folded without
7483     // side-effects. This is an important GNU extension. See GCC PR38377
7484     // for discussion.
7485     if (const CallExpr *CallCE =
7486           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7487       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7488         IsBcpCall = true;
7489 
7490     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7491     // constant expression; we can't check whether it's potentially foldable.
7492     // FIXME: We should instead treat __builtin_constant_p as non-constant if
7493     // it would return 'false' in this mode.
7494     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7495       return false;
7496 
7497     FoldConstant Fold(Info, IsBcpCall);
7498     if (!HandleConditionalOperator(E)) {
7499       Fold.keepDiagnostics();
7500       return false;
7501     }
7502 
7503     return true;
7504   }
7505 
7506   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7507     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
7508       return DerivedSuccess(*Value, E);
7509 
7510     const Expr *Source = E->getSourceExpr();
7511     if (!Source)
7512       return Error(E);
7513     if (Source == E) {
7514       assert(0 && "OpaqueValueExpr recursively refers to itself");
7515       return Error(E);
7516     }
7517     return StmtVisitorTy::Visit(Source);
7518   }
7519 
7520   bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7521     for (const Expr *SemE : E->semantics()) {
7522       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7523         // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7524         // result expression: there could be two different LValues that would
7525         // refer to the same object in that case, and we can't model that.
7526         if (SemE == E->getResultExpr())
7527           return Error(E);
7528 
7529         // Unique OVEs get evaluated if and when we encounter them when
7530         // emitting the rest of the semantic form, rather than eagerly.
7531         if (OVE->isUnique())
7532           continue;
7533 
7534         LValue LV;
7535         if (!Evaluate(Info.CurrentCall->createTemporary(
7536                           OVE, getStorageType(Info.Ctx, OVE),
7537                           ScopeKind::FullExpression, LV),
7538                       Info, OVE->getSourceExpr()))
7539           return false;
7540       } else if (SemE == E->getResultExpr()) {
7541         if (!StmtVisitorTy::Visit(SemE))
7542           return false;
7543       } else {
7544         if (!EvaluateIgnoredValue(Info, SemE))
7545           return false;
7546       }
7547     }
7548     return true;
7549   }
7550 
7551   bool VisitCallExpr(const CallExpr *E) {
7552     APValue Result;
7553     if (!handleCallExpr(E, Result, nullptr))
7554       return false;
7555     return DerivedSuccess(Result, E);
7556   }
7557 
7558   bool handleCallExpr(const CallExpr *E, APValue &Result,
7559                      const LValue *ResultSlot) {
7560     CallScopeRAII CallScope(Info);
7561 
7562     const Expr *Callee = E->getCallee()->IgnoreParens();
7563     QualType CalleeType = Callee->getType();
7564 
7565     const FunctionDecl *FD = nullptr;
7566     LValue *This = nullptr, ThisVal;
7567     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
7568     bool HasQualifier = false;
7569 
7570     CallRef Call;
7571 
7572     // Extract function decl and 'this' pointer from the callee.
7573     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7574       const CXXMethodDecl *Member = nullptr;
7575       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7576         // Explicit bound member calls, such as x.f() or p->g();
7577         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7578           return false;
7579         Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7580         if (!Member)
7581           return Error(Callee);
7582         This = &ThisVal;
7583         HasQualifier = ME->hasQualifier();
7584       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7585         // Indirect bound member calls ('.*' or '->*').
7586         const ValueDecl *D =
7587             HandleMemberPointerAccess(Info, BE, ThisVal, false);
7588         if (!D)
7589           return false;
7590         Member = dyn_cast<CXXMethodDecl>(D);
7591         if (!Member)
7592           return Error(Callee);
7593         This = &ThisVal;
7594       } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7595         if (!Info.getLangOpts().CPlusPlus20)
7596           Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7597         return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7598                HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7599       } else
7600         return Error(Callee);
7601       FD = Member;
7602     } else if (CalleeType->isFunctionPointerType()) {
7603       LValue CalleeLV;
7604       if (!EvaluatePointer(Callee, CalleeLV, Info))
7605         return false;
7606 
7607       if (!CalleeLV.getLValueOffset().isZero())
7608         return Error(Callee);
7609       FD = dyn_cast_or_null<FunctionDecl>(
7610           CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7611       if (!FD)
7612         return Error(Callee);
7613       // Don't call function pointers which have been cast to some other type.
7614       // Per DR (no number yet), the caller and callee can differ in noexcept.
7615       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7616         CalleeType->getPointeeType(), FD->getType())) {
7617         return Error(E);
7618       }
7619 
7620       // For an (overloaded) assignment expression, evaluate the RHS before the
7621       // LHS.
7622       auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7623       if (OCE && OCE->isAssignmentOp()) {
7624         assert(Args.size() == 2 && "wrong number of arguments in assignment");
7625         Call = Info.CurrentCall->createCall(FD);
7626         if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
7627                           Info, FD, /*RightToLeft=*/true))
7628           return false;
7629       }
7630 
7631       // Overloaded operator calls to member functions are represented as normal
7632       // calls with '*this' as the first argument.
7633       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7634       if (MD && !MD->isStatic()) {
7635         // FIXME: When selecting an implicit conversion for an overloaded
7636         // operator delete, we sometimes try to evaluate calls to conversion
7637         // operators without a 'this' parameter!
7638         if (Args.empty())
7639           return Error(E);
7640 
7641         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7642           return false;
7643         This = &ThisVal;
7644         Args = Args.slice(1);
7645       } else if (MD && MD->isLambdaStaticInvoker()) {
7646         // Map the static invoker for the lambda back to the call operator.
7647         // Conveniently, we don't have to slice out the 'this' argument (as is
7648         // being done for the non-static case), since a static member function
7649         // doesn't have an implicit argument passed in.
7650         const CXXRecordDecl *ClosureClass = MD->getParent();
7651         assert(
7652             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7653             "Number of captures must be zero for conversion to function-ptr");
7654 
7655         const CXXMethodDecl *LambdaCallOp =
7656             ClosureClass->getLambdaCallOperator();
7657 
7658         // Set 'FD', the function that will be called below, to the call
7659         // operator.  If the closure object represents a generic lambda, find
7660         // the corresponding specialization of the call operator.
7661 
7662         if (ClosureClass->isGenericLambda()) {
7663           assert(MD->isFunctionTemplateSpecialization() &&
7664                  "A generic lambda's static-invoker function must be a "
7665                  "template specialization");
7666           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7667           FunctionTemplateDecl *CallOpTemplate =
7668               LambdaCallOp->getDescribedFunctionTemplate();
7669           void *InsertPos = nullptr;
7670           FunctionDecl *CorrespondingCallOpSpecialization =
7671               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7672           assert(CorrespondingCallOpSpecialization &&
7673                  "We must always have a function call operator specialization "
7674                  "that corresponds to our static invoker specialization");
7675           FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7676         } else
7677           FD = LambdaCallOp;
7678       } else if (FD->isReplaceableGlobalAllocationFunction()) {
7679         if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7680             FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7681           LValue Ptr;
7682           if (!HandleOperatorNewCall(Info, E, Ptr))
7683             return false;
7684           Ptr.moveInto(Result);
7685           return CallScope.destroy();
7686         } else {
7687           return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
7688         }
7689       }
7690     } else
7691       return Error(E);
7692 
7693     // Evaluate the arguments now if we've not already done so.
7694     if (!Call) {
7695       Call = Info.CurrentCall->createCall(FD);
7696       if (!EvaluateArgs(Args, Call, Info, FD))
7697         return false;
7698     }
7699 
7700     SmallVector<QualType, 4> CovariantAdjustmentPath;
7701     if (This) {
7702       auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7703       if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
7704         // Perform virtual dispatch, if necessary.
7705         FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
7706                                    CovariantAdjustmentPath);
7707         if (!FD)
7708           return false;
7709       } else {
7710         // Check that the 'this' pointer points to an object of the right type.
7711         // FIXME: If this is an assignment operator call, we may need to change
7712         // the active union member before we check this.
7713         if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7714           return false;
7715       }
7716     }
7717 
7718     // Destructor calls are different enough that they have their own codepath.
7719     if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7720       assert(This && "no 'this' pointer for destructor call");
7721       return HandleDestruction(Info, E, *This,
7722                                Info.Ctx.getRecordType(DD->getParent())) &&
7723              CallScope.destroy();
7724     }
7725 
7726     const FunctionDecl *Definition = nullptr;
7727     Stmt *Body = FD->getBody(Definition);
7728 
7729     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7730         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call,
7731                             Body, Info, Result, ResultSlot))
7732       return false;
7733 
7734     if (!CovariantAdjustmentPath.empty() &&
7735         !HandleCovariantReturnAdjustment(Info, E, Result,
7736                                          CovariantAdjustmentPath))
7737       return false;
7738 
7739     return CallScope.destroy();
7740   }
7741 
7742   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7743     return StmtVisitorTy::Visit(E->getInitializer());
7744   }
7745   bool VisitInitListExpr(const InitListExpr *E) {
7746     if (E->getNumInits() == 0)
7747       return DerivedZeroInitialization(E);
7748     if (E->getNumInits() == 1)
7749       return StmtVisitorTy::Visit(E->getInit(0));
7750     return Error(E);
7751   }
7752   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7753     return DerivedZeroInitialization(E);
7754   }
7755   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7756     return DerivedZeroInitialization(E);
7757   }
7758   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7759     return DerivedZeroInitialization(E);
7760   }
7761 
7762   /// A member expression where the object is a prvalue is itself a prvalue.
7763   bool VisitMemberExpr(const MemberExpr *E) {
7764     assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7765            "missing temporary materialization conversion");
7766     assert(!E->isArrow() && "missing call to bound member function?");
7767 
7768     APValue Val;
7769     if (!Evaluate(Val, Info, E->getBase()))
7770       return false;
7771 
7772     QualType BaseTy = E->getBase()->getType();
7773 
7774     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7775     if (!FD) return Error(E);
7776     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7777     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7778            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7779 
7780     // Note: there is no lvalue base here. But this case should only ever
7781     // happen in C or in C++98, where we cannot be evaluating a constexpr
7782     // constructor, which is the only case the base matters.
7783     CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7784     SubobjectDesignator Designator(BaseTy);
7785     Designator.addDeclUnchecked(FD);
7786 
7787     APValue Result;
7788     return extractSubobject(Info, E, Obj, Designator, Result) &&
7789            DerivedSuccess(Result, E);
7790   }
7791 
7792   bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7793     APValue Val;
7794     if (!Evaluate(Val, Info, E->getBase()))
7795       return false;
7796 
7797     if (Val.isVector()) {
7798       SmallVector<uint32_t, 4> Indices;
7799       E->getEncodedElementAccess(Indices);
7800       if (Indices.size() == 1) {
7801         // Return scalar.
7802         return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7803       } else {
7804         // Construct new APValue vector.
7805         SmallVector<APValue, 4> Elts;
7806         for (unsigned I = 0; I < Indices.size(); ++I) {
7807           Elts.push_back(Val.getVectorElt(Indices[I]));
7808         }
7809         APValue VecResult(Elts.data(), Indices.size());
7810         return DerivedSuccess(VecResult, E);
7811       }
7812     }
7813 
7814     return false;
7815   }
7816 
7817   bool VisitCastExpr(const CastExpr *E) {
7818     switch (E->getCastKind()) {
7819     default:
7820       break;
7821 
7822     case CK_AtomicToNonAtomic: {
7823       APValue AtomicVal;
7824       // This does not need to be done in place even for class/array types:
7825       // atomic-to-non-atomic conversion implies copying the object
7826       // representation.
7827       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7828         return false;
7829       return DerivedSuccess(AtomicVal, E);
7830     }
7831 
7832     case CK_NoOp:
7833     case CK_UserDefinedConversion:
7834       return StmtVisitorTy::Visit(E->getSubExpr());
7835 
7836     case CK_LValueToRValue: {
7837       LValue LVal;
7838       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7839         return false;
7840       APValue RVal;
7841       // Note, we use the subexpression's type in order to retain cv-qualifiers.
7842       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7843                                           LVal, RVal))
7844         return false;
7845       return DerivedSuccess(RVal, E);
7846     }
7847     case CK_LValueToRValueBitCast: {
7848       APValue DestValue, SourceValue;
7849       if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7850         return false;
7851       if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7852         return false;
7853       return DerivedSuccess(DestValue, E);
7854     }
7855 
7856     case CK_AddressSpaceConversion: {
7857       APValue Value;
7858       if (!Evaluate(Value, Info, E->getSubExpr()))
7859         return false;
7860       return DerivedSuccess(Value, E);
7861     }
7862     }
7863 
7864     return Error(E);
7865   }
7866 
7867   bool VisitUnaryPostInc(const UnaryOperator *UO) {
7868     return VisitUnaryPostIncDec(UO);
7869   }
7870   bool VisitUnaryPostDec(const UnaryOperator *UO) {
7871     return VisitUnaryPostIncDec(UO);
7872   }
7873   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7874     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7875       return Error(UO);
7876 
7877     LValue LVal;
7878     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7879       return false;
7880     APValue RVal;
7881     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7882                       UO->isIncrementOp(), &RVal))
7883       return false;
7884     return DerivedSuccess(RVal, UO);
7885   }
7886 
7887   bool VisitStmtExpr(const StmtExpr *E) {
7888     // We will have checked the full-expressions inside the statement expression
7889     // when they were completed, and don't need to check them again now.
7890     llvm::SaveAndRestore<bool> NotCheckingForUB(
7891         Info.CheckingForUndefinedBehavior, false);
7892 
7893     const CompoundStmt *CS = E->getSubStmt();
7894     if (CS->body_empty())
7895       return true;
7896 
7897     BlockScopeRAII Scope(Info);
7898     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7899                                            BE = CS->body_end();
7900          /**/; ++BI) {
7901       if (BI + 1 == BE) {
7902         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7903         if (!FinalExpr) {
7904           Info.FFDiag((*BI)->getBeginLoc(),
7905                       diag::note_constexpr_stmt_expr_unsupported);
7906           return false;
7907         }
7908         return this->Visit(FinalExpr) && Scope.destroy();
7909       }
7910 
7911       APValue ReturnValue;
7912       StmtResult Result = { ReturnValue, nullptr };
7913       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7914       if (ESR != ESR_Succeeded) {
7915         // FIXME: If the statement-expression terminated due to 'return',
7916         // 'break', or 'continue', it would be nice to propagate that to
7917         // the outer statement evaluation rather than bailing out.
7918         if (ESR != ESR_Failed)
7919           Info.FFDiag((*BI)->getBeginLoc(),
7920                       diag::note_constexpr_stmt_expr_unsupported);
7921         return false;
7922       }
7923     }
7924 
7925     llvm_unreachable("Return from function from the loop above.");
7926   }
7927 
7928   /// Visit a value which is evaluated, but whose value is ignored.
7929   void VisitIgnoredValue(const Expr *E) {
7930     EvaluateIgnoredValue(Info, E);
7931   }
7932 
7933   /// Potentially visit a MemberExpr's base expression.
7934   void VisitIgnoredBaseExpression(const Expr *E) {
7935     // While MSVC doesn't evaluate the base expression, it does diagnose the
7936     // presence of side-effecting behavior.
7937     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
7938       return;
7939     VisitIgnoredValue(E);
7940   }
7941 };
7942 
7943 } // namespace
7944 
7945 //===----------------------------------------------------------------------===//
7946 // Common base class for lvalue and temporary evaluation.
7947 //===----------------------------------------------------------------------===//
7948 namespace {
7949 template<class Derived>
7950 class LValueExprEvaluatorBase
7951   : public ExprEvaluatorBase<Derived> {
7952 protected:
7953   LValue &Result;
7954   bool InvalidBaseOK;
7955   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
7956   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
7957 
7958   bool Success(APValue::LValueBase B) {
7959     Result.set(B);
7960     return true;
7961   }
7962 
7963   bool evaluatePointer(const Expr *E, LValue &Result) {
7964     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
7965   }
7966 
7967 public:
7968   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
7969       : ExprEvaluatorBaseTy(Info), Result(Result),
7970         InvalidBaseOK(InvalidBaseOK) {}
7971 
7972   bool Success(const APValue &V, const Expr *E) {
7973     Result.setFrom(this->Info.Ctx, V);
7974     return true;
7975   }
7976 
7977   bool VisitMemberExpr(const MemberExpr *E) {
7978     // Handle non-static data members.
7979     QualType BaseTy;
7980     bool EvalOK;
7981     if (E->isArrow()) {
7982       EvalOK = evaluatePointer(E->getBase(), Result);
7983       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
7984     } else if (E->getBase()->isPRValue()) {
7985       assert(E->getBase()->getType()->isRecordType());
7986       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
7987       BaseTy = E->getBase()->getType();
7988     } else {
7989       EvalOK = this->Visit(E->getBase());
7990       BaseTy = E->getBase()->getType();
7991     }
7992     if (!EvalOK) {
7993       if (!InvalidBaseOK)
7994         return false;
7995       Result.setInvalid(E);
7996       return true;
7997     }
7998 
7999     const ValueDecl *MD = E->getMemberDecl();
8000     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
8001       assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8002              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8003       (void)BaseTy;
8004       if (!HandleLValueMember(this->Info, E, Result, FD))
8005         return false;
8006     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
8007       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8008         return false;
8009     } else
8010       return this->Error(E);
8011 
8012     if (MD->getType()->isReferenceType()) {
8013       APValue RefValue;
8014       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8015                                           RefValue))
8016         return false;
8017       return Success(RefValue, E);
8018     }
8019     return true;
8020   }
8021 
8022   bool VisitBinaryOperator(const BinaryOperator *E) {
8023     switch (E->getOpcode()) {
8024     default:
8025       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8026 
8027     case BO_PtrMemD:
8028     case BO_PtrMemI:
8029       return HandleMemberPointerAccess(this->Info, E, Result);
8030     }
8031   }
8032 
8033   bool VisitCastExpr(const CastExpr *E) {
8034     switch (E->getCastKind()) {
8035     default:
8036       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8037 
8038     case CK_DerivedToBase:
8039     case CK_UncheckedDerivedToBase:
8040       if (!this->Visit(E->getSubExpr()))
8041         return false;
8042 
8043       // Now figure out the necessary offset to add to the base LV to get from
8044       // the derived class to the base class.
8045       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8046                                   Result);
8047     }
8048   }
8049 };
8050 }
8051 
8052 //===----------------------------------------------------------------------===//
8053 // LValue Evaluation
8054 //
8055 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8056 // function designators (in C), decl references to void objects (in C), and
8057 // temporaries (if building with -Wno-address-of-temporary).
8058 //
8059 // LValue evaluation produces values comprising a base expression of one of the
8060 // following types:
8061 // - Declarations
8062 //  * VarDecl
8063 //  * FunctionDecl
8064 // - Literals
8065 //  * CompoundLiteralExpr in C (and in global scope in C++)
8066 //  * StringLiteral
8067 //  * PredefinedExpr
8068 //  * ObjCStringLiteralExpr
8069 //  * ObjCEncodeExpr
8070 //  * AddrLabelExpr
8071 //  * BlockExpr
8072 //  * CallExpr for a MakeStringConstant builtin
8073 // - typeid(T) expressions, as TypeInfoLValues
8074 // - Locals and temporaries
8075 //  * MaterializeTemporaryExpr
8076 //  * Any Expr, with a CallIndex indicating the function in which the temporary
8077 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
8078 //    from the AST (FIXME).
8079 //  * A MaterializeTemporaryExpr that has static storage duration, with no
8080 //    CallIndex, for a lifetime-extended temporary.
8081 //  * The ConstantExpr that is currently being evaluated during evaluation of an
8082 //    immediate invocation.
8083 // plus an offset in bytes.
8084 //===----------------------------------------------------------------------===//
8085 namespace {
8086 class LValueExprEvaluator
8087   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8088 public:
8089   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8090     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8091 
8092   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8093   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8094 
8095   bool VisitDeclRefExpr(const DeclRefExpr *E);
8096   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8097   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8098   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8099   bool VisitMemberExpr(const MemberExpr *E);
8100   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
8101   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8102   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8103   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8104   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8105   bool VisitUnaryDeref(const UnaryOperator *E);
8106   bool VisitUnaryReal(const UnaryOperator *E);
8107   bool VisitUnaryImag(const UnaryOperator *E);
8108   bool VisitUnaryPreInc(const UnaryOperator *UO) {
8109     return VisitUnaryPreIncDec(UO);
8110   }
8111   bool VisitUnaryPreDec(const UnaryOperator *UO) {
8112     return VisitUnaryPreIncDec(UO);
8113   }
8114   bool VisitBinAssign(const BinaryOperator *BO);
8115   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8116 
8117   bool VisitCastExpr(const CastExpr *E) {
8118     switch (E->getCastKind()) {
8119     default:
8120       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8121 
8122     case CK_LValueBitCast:
8123       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8124       if (!Visit(E->getSubExpr()))
8125         return false;
8126       Result.Designator.setInvalid();
8127       return true;
8128 
8129     case CK_BaseToDerived:
8130       if (!Visit(E->getSubExpr()))
8131         return false;
8132       return HandleBaseToDerivedCast(Info, E, Result);
8133 
8134     case CK_Dynamic:
8135       if (!Visit(E->getSubExpr()))
8136         return false;
8137       return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8138     }
8139   }
8140 };
8141 } // end anonymous namespace
8142 
8143 /// Evaluate an expression as an lvalue. This can be legitimately called on
8144 /// expressions which are not glvalues, in three cases:
8145 ///  * function designators in C, and
8146 ///  * "extern void" objects
8147 ///  * @selector() expressions in Objective-C
8148 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8149                            bool InvalidBaseOK) {
8150   assert(!E->isValueDependent());
8151   assert(E->isGLValue() || E->getType()->isFunctionType() ||
8152          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
8153   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8154 }
8155 
8156 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8157   const NamedDecl *D = E->getDecl();
8158   if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl>(D))
8159     return Success(cast<ValueDecl>(D));
8160   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8161     return VisitVarDecl(E, VD);
8162   if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8163     return Visit(BD->getBinding());
8164   return Error(E);
8165 }
8166 
8167 
8168 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8169 
8170   // If we are within a lambda's call operator, check whether the 'VD' referred
8171   // to within 'E' actually represents a lambda-capture that maps to a
8172   // data-member/field within the closure object, and if so, evaluate to the
8173   // field or what the field refers to.
8174   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8175       isa<DeclRefExpr>(E) &&
8176       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8177     // We don't always have a complete capture-map when checking or inferring if
8178     // the function call operator meets the requirements of a constexpr function
8179     // - but we don't need to evaluate the captures to determine constexprness
8180     // (dcl.constexpr C++17).
8181     if (Info.checkingPotentialConstantExpression())
8182       return false;
8183 
8184     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8185       // Start with 'Result' referring to the complete closure object...
8186       Result = *Info.CurrentCall->This;
8187       // ... then update it to refer to the field of the closure object
8188       // that represents the capture.
8189       if (!HandleLValueMember(Info, E, Result, FD))
8190         return false;
8191       // And if the field is of reference type, update 'Result' to refer to what
8192       // the field refers to.
8193       if (FD->getType()->isReferenceType()) {
8194         APValue RVal;
8195         if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8196                                             RVal))
8197           return false;
8198         Result.setFrom(Info.Ctx, RVal);
8199       }
8200       return true;
8201     }
8202   }
8203 
8204   CallStackFrame *Frame = nullptr;
8205   unsigned Version = 0;
8206   if (VD->hasLocalStorage()) {
8207     // Only if a local variable was declared in the function currently being
8208     // evaluated, do we expect to be able to find its value in the current
8209     // frame. (Otherwise it was likely declared in an enclosing context and
8210     // could either have a valid evaluatable value (for e.g. a constexpr
8211     // variable) or be ill-formed (and trigger an appropriate evaluation
8212     // diagnostic)).
8213     CallStackFrame *CurrFrame = Info.CurrentCall;
8214     if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8215       // Function parameters are stored in some caller's frame. (Usually the
8216       // immediate caller, but for an inherited constructor they may be more
8217       // distant.)
8218       if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8219         if (CurrFrame->Arguments) {
8220           VD = CurrFrame->Arguments.getOrigParam(PVD);
8221           Frame =
8222               Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8223           Version = CurrFrame->Arguments.Version;
8224         }
8225       } else {
8226         Frame = CurrFrame;
8227         Version = CurrFrame->getCurrentTemporaryVersion(VD);
8228       }
8229     }
8230   }
8231 
8232   if (!VD->getType()->isReferenceType()) {
8233     if (Frame) {
8234       Result.set({VD, Frame->Index, Version});
8235       return true;
8236     }
8237     return Success(VD);
8238   }
8239 
8240   if (!Info.getLangOpts().CPlusPlus11) {
8241     Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8242         << VD << VD->getType();
8243     Info.Note(VD->getLocation(), diag::note_declared_at);
8244   }
8245 
8246   APValue *V;
8247   if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8248     return false;
8249   if (!V->hasValue()) {
8250     // FIXME: Is it possible for V to be indeterminate here? If so, we should
8251     // adjust the diagnostic to say that.
8252     if (!Info.checkingPotentialConstantExpression())
8253       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8254     return false;
8255   }
8256   return Success(*V, E);
8257 }
8258 
8259 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8260     const MaterializeTemporaryExpr *E) {
8261   // Walk through the expression to find the materialized temporary itself.
8262   SmallVector<const Expr *, 2> CommaLHSs;
8263   SmallVector<SubobjectAdjustment, 2> Adjustments;
8264   const Expr *Inner =
8265       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8266 
8267   // If we passed any comma operators, evaluate their LHSs.
8268   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
8269     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
8270       return false;
8271 
8272   // A materialized temporary with static storage duration can appear within the
8273   // result of a constant expression evaluation, so we need to preserve its
8274   // value for use outside this evaluation.
8275   APValue *Value;
8276   if (E->getStorageDuration() == SD_Static) {
8277     // FIXME: What about SD_Thread?
8278     Value = E->getOrCreateValue(true);
8279     *Value = APValue();
8280     Result.set(E);
8281   } else {
8282     Value = &Info.CurrentCall->createTemporary(
8283         E, E->getType(),
8284         E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8285                                                      : ScopeKind::Block,
8286         Result);
8287   }
8288 
8289   QualType Type = Inner->getType();
8290 
8291   // Materialize the temporary itself.
8292   if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8293     *Value = APValue();
8294     return false;
8295   }
8296 
8297   // Adjust our lvalue to refer to the desired subobject.
8298   for (unsigned I = Adjustments.size(); I != 0; /**/) {
8299     --I;
8300     switch (Adjustments[I].Kind) {
8301     case SubobjectAdjustment::DerivedToBaseAdjustment:
8302       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8303                                 Type, Result))
8304         return false;
8305       Type = Adjustments[I].DerivedToBase.BasePath->getType();
8306       break;
8307 
8308     case SubobjectAdjustment::FieldAdjustment:
8309       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8310         return false;
8311       Type = Adjustments[I].Field->getType();
8312       break;
8313 
8314     case SubobjectAdjustment::MemberPointerAdjustment:
8315       if (!HandleMemberPointerAccess(this->Info, Type, Result,
8316                                      Adjustments[I].Ptr.RHS))
8317         return false;
8318       Type = Adjustments[I].Ptr.MPT->getPointeeType();
8319       break;
8320     }
8321   }
8322 
8323   return true;
8324 }
8325 
8326 bool
8327 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8328   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8329          "lvalue compound literal in c++?");
8330   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8331   // only see this when folding in C, so there's no standard to follow here.
8332   return Success(E);
8333 }
8334 
8335 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8336   TypeInfoLValue TypeInfo;
8337 
8338   if (!E->isPotentiallyEvaluated()) {
8339     if (E->isTypeOperand())
8340       TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8341     else
8342       TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8343   } else {
8344     if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8345       Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8346         << E->getExprOperand()->getType()
8347         << E->getExprOperand()->getSourceRange();
8348     }
8349 
8350     if (!Visit(E->getExprOperand()))
8351       return false;
8352 
8353     Optional<DynamicType> DynType =
8354         ComputeDynamicType(Info, E, Result, AK_TypeId);
8355     if (!DynType)
8356       return false;
8357 
8358     TypeInfo =
8359         TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8360   }
8361 
8362   return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8363 }
8364 
8365 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8366   return Success(E->getGuidDecl());
8367 }
8368 
8369 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8370   // Handle static data members.
8371   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8372     VisitIgnoredBaseExpression(E->getBase());
8373     return VisitVarDecl(E, VD);
8374   }
8375 
8376   // Handle static member functions.
8377   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8378     if (MD->isStatic()) {
8379       VisitIgnoredBaseExpression(E->getBase());
8380       return Success(MD);
8381     }
8382   }
8383 
8384   // Handle non-static data members.
8385   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8386 }
8387 
8388 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8389   // FIXME: Deal with vectors as array subscript bases.
8390   if (E->getBase()->getType()->isVectorType())
8391     return Error(E);
8392 
8393   APSInt Index;
8394   bool Success = true;
8395 
8396   // C++17's rules require us to evaluate the LHS first, regardless of which
8397   // side is the base.
8398   for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8399     if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8400                                 : !EvaluateInteger(SubExpr, Index, Info)) {
8401       if (!Info.noteFailure())
8402         return false;
8403       Success = false;
8404     }
8405   }
8406 
8407   return Success &&
8408          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8409 }
8410 
8411 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8412   return evaluatePointer(E->getSubExpr(), Result);
8413 }
8414 
8415 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8416   if (!Visit(E->getSubExpr()))
8417     return false;
8418   // __real is a no-op on scalar lvalues.
8419   if (E->getSubExpr()->getType()->isAnyComplexType())
8420     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8421   return true;
8422 }
8423 
8424 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8425   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8426          "lvalue __imag__ on scalar?");
8427   if (!Visit(E->getSubExpr()))
8428     return false;
8429   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8430   return true;
8431 }
8432 
8433 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8434   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8435     return Error(UO);
8436 
8437   if (!this->Visit(UO->getSubExpr()))
8438     return false;
8439 
8440   return handleIncDec(
8441       this->Info, UO, Result, UO->getSubExpr()->getType(),
8442       UO->isIncrementOp(), nullptr);
8443 }
8444 
8445 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8446     const CompoundAssignOperator *CAO) {
8447   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8448     return Error(CAO);
8449 
8450   bool Success = true;
8451 
8452   // C++17 onwards require that we evaluate the RHS first.
8453   APValue RHS;
8454   if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8455     if (!Info.noteFailure())
8456       return false;
8457     Success = false;
8458   }
8459 
8460   // The overall lvalue result is the result of evaluating the LHS.
8461   if (!this->Visit(CAO->getLHS()) || !Success)
8462     return false;
8463 
8464   return handleCompoundAssignment(
8465       this->Info, CAO,
8466       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8467       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8468 }
8469 
8470 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8471   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8472     return Error(E);
8473 
8474   bool Success = true;
8475 
8476   // C++17 onwards require that we evaluate the RHS first.
8477   APValue NewVal;
8478   if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8479     if (!Info.noteFailure())
8480       return false;
8481     Success = false;
8482   }
8483 
8484   if (!this->Visit(E->getLHS()) || !Success)
8485     return false;
8486 
8487   if (Info.getLangOpts().CPlusPlus20 &&
8488       !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8489     return false;
8490 
8491   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8492                           NewVal);
8493 }
8494 
8495 //===----------------------------------------------------------------------===//
8496 // Pointer Evaluation
8497 //===----------------------------------------------------------------------===//
8498 
8499 /// Attempts to compute the number of bytes available at the pointer
8500 /// returned by a function with the alloc_size attribute. Returns true if we
8501 /// were successful. Places an unsigned number into `Result`.
8502 ///
8503 /// This expects the given CallExpr to be a call to a function with an
8504 /// alloc_size attribute.
8505 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8506                                             const CallExpr *Call,
8507                                             llvm::APInt &Result) {
8508   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8509 
8510   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8511   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8512   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8513   if (Call->getNumArgs() <= SizeArgNo)
8514     return false;
8515 
8516   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8517     Expr::EvalResult ExprResult;
8518     if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8519       return false;
8520     Into = ExprResult.Val.getInt();
8521     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8522       return false;
8523     Into = Into.zextOrSelf(BitsInSizeT);
8524     return true;
8525   };
8526 
8527   APSInt SizeOfElem;
8528   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8529     return false;
8530 
8531   if (!AllocSize->getNumElemsParam().isValid()) {
8532     Result = std::move(SizeOfElem);
8533     return true;
8534   }
8535 
8536   APSInt NumberOfElems;
8537   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8538   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8539     return false;
8540 
8541   bool Overflow;
8542   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8543   if (Overflow)
8544     return false;
8545 
8546   Result = std::move(BytesAvailable);
8547   return true;
8548 }
8549 
8550 /// Convenience function. LVal's base must be a call to an alloc_size
8551 /// function.
8552 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8553                                             const LValue &LVal,
8554                                             llvm::APInt &Result) {
8555   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8556          "Can't get the size of a non alloc_size function");
8557   const auto *Base = LVal.getLValueBase().get<const Expr *>();
8558   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8559   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8560 }
8561 
8562 /// Attempts to evaluate the given LValueBase as the result of a call to
8563 /// a function with the alloc_size attribute. If it was possible to do so, this
8564 /// function will return true, make Result's Base point to said function call,
8565 /// and mark Result's Base as invalid.
8566 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8567                                       LValue &Result) {
8568   if (Base.isNull())
8569     return false;
8570 
8571   // Because we do no form of static analysis, we only support const variables.
8572   //
8573   // Additionally, we can't support parameters, nor can we support static
8574   // variables (in the latter case, use-before-assign isn't UB; in the former,
8575   // we have no clue what they'll be assigned to).
8576   const auto *VD =
8577       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8578   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8579     return false;
8580 
8581   const Expr *Init = VD->getAnyInitializer();
8582   if (!Init)
8583     return false;
8584 
8585   const Expr *E = Init->IgnoreParens();
8586   if (!tryUnwrapAllocSizeCall(E))
8587     return false;
8588 
8589   // Store E instead of E unwrapped so that the type of the LValue's base is
8590   // what the user wanted.
8591   Result.setInvalid(E);
8592 
8593   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8594   Result.addUnsizedArray(Info, E, Pointee);
8595   return true;
8596 }
8597 
8598 namespace {
8599 class PointerExprEvaluator
8600   : public ExprEvaluatorBase<PointerExprEvaluator> {
8601   LValue &Result;
8602   bool InvalidBaseOK;
8603 
8604   bool Success(const Expr *E) {
8605     Result.set(E);
8606     return true;
8607   }
8608 
8609   bool evaluateLValue(const Expr *E, LValue &Result) {
8610     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8611   }
8612 
8613   bool evaluatePointer(const Expr *E, LValue &Result) {
8614     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8615   }
8616 
8617   bool visitNonBuiltinCallExpr(const CallExpr *E);
8618 public:
8619 
8620   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8621       : ExprEvaluatorBaseTy(info), Result(Result),
8622         InvalidBaseOK(InvalidBaseOK) {}
8623 
8624   bool Success(const APValue &V, const Expr *E) {
8625     Result.setFrom(Info.Ctx, V);
8626     return true;
8627   }
8628   bool ZeroInitialization(const Expr *E) {
8629     Result.setNull(Info.Ctx, E->getType());
8630     return true;
8631   }
8632 
8633   bool VisitBinaryOperator(const BinaryOperator *E);
8634   bool VisitCastExpr(const CastExpr* E);
8635   bool VisitUnaryAddrOf(const UnaryOperator *E);
8636   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8637       { return Success(E); }
8638   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8639     if (E->isExpressibleAsConstantInitializer())
8640       return Success(E);
8641     if (Info.noteFailure())
8642       EvaluateIgnoredValue(Info, E->getSubExpr());
8643     return Error(E);
8644   }
8645   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8646       { return Success(E); }
8647   bool VisitCallExpr(const CallExpr *E);
8648   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
8649   bool VisitBlockExpr(const BlockExpr *E) {
8650     if (!E->getBlockDecl()->hasCaptures())
8651       return Success(E);
8652     return Error(E);
8653   }
8654   bool VisitCXXThisExpr(const CXXThisExpr *E) {
8655     // Can't look at 'this' when checking a potential constant expression.
8656     if (Info.checkingPotentialConstantExpression())
8657       return false;
8658     if (!Info.CurrentCall->This) {
8659       if (Info.getLangOpts().CPlusPlus11)
8660         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8661       else
8662         Info.FFDiag(E);
8663       return false;
8664     }
8665     Result = *Info.CurrentCall->This;
8666     // If we are inside a lambda's call operator, the 'this' expression refers
8667     // to the enclosing '*this' object (either by value or reference) which is
8668     // either copied into the closure object's field that represents the '*this'
8669     // or refers to '*this'.
8670     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8671       // Ensure we actually have captured 'this'. (an error will have
8672       // been previously reported if not).
8673       if (!Info.CurrentCall->LambdaThisCaptureField)
8674         return false;
8675 
8676       // Update 'Result' to refer to the data member/field of the closure object
8677       // that represents the '*this' capture.
8678       if (!HandleLValueMember(Info, E, Result,
8679                              Info.CurrentCall->LambdaThisCaptureField))
8680         return false;
8681       // If we captured '*this' by reference, replace the field with its referent.
8682       if (Info.CurrentCall->LambdaThisCaptureField->getType()
8683               ->isPointerType()) {
8684         APValue RVal;
8685         if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
8686                                             RVal))
8687           return false;
8688 
8689         Result.setFrom(Info.Ctx, RVal);
8690       }
8691     }
8692     return true;
8693   }
8694 
8695   bool VisitCXXNewExpr(const CXXNewExpr *E);
8696 
8697   bool VisitSourceLocExpr(const SourceLocExpr *E) {
8698     assert(E->isStringType() && "SourceLocExpr isn't a pointer type?");
8699     APValue LValResult = E->EvaluateInContext(
8700         Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
8701     Result.setFrom(Info.Ctx, LValResult);
8702     return true;
8703   }
8704 
8705   bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
8706     std::string ResultStr = E->ComputeName(Info.Ctx);
8707 
8708     QualType CharTy = Info.Ctx.CharTy.withConst();
8709     APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()),
8710                ResultStr.size() + 1);
8711     QualType ArrayTy = Info.Ctx.getConstantArrayType(CharTy, Size, nullptr,
8712                                                      ArrayType::Normal, 0);
8713 
8714     StringLiteral *SL =
8715         StringLiteral::Create(Info.Ctx, ResultStr, StringLiteral::Ascii,
8716                               /*Pascal*/ false, ArrayTy, E->getLocation());
8717 
8718     evaluateLValue(SL, Result);
8719     Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy));
8720     return true;
8721   }
8722 
8723   // FIXME: Missing: @protocol, @selector
8724 };
8725 } // end anonymous namespace
8726 
8727 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
8728                             bool InvalidBaseOK) {
8729   assert(!E->isValueDependent());
8730   assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
8731   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8732 }
8733 
8734 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8735   if (E->getOpcode() != BO_Add &&
8736       E->getOpcode() != BO_Sub)
8737     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8738 
8739   const Expr *PExp = E->getLHS();
8740   const Expr *IExp = E->getRHS();
8741   if (IExp->getType()->isPointerType())
8742     std::swap(PExp, IExp);
8743 
8744   bool EvalPtrOK = evaluatePointer(PExp, Result);
8745   if (!EvalPtrOK && !Info.noteFailure())
8746     return false;
8747 
8748   llvm::APSInt Offset;
8749   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
8750     return false;
8751 
8752   if (E->getOpcode() == BO_Sub)
8753     negateAsSigned(Offset);
8754 
8755   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
8756   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
8757 }
8758 
8759 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8760   return evaluateLValue(E->getSubExpr(), Result);
8761 }
8762 
8763 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8764   const Expr *SubExpr = E->getSubExpr();
8765 
8766   switch (E->getCastKind()) {
8767   default:
8768     break;
8769   case CK_BitCast:
8770   case CK_CPointerToObjCPointerCast:
8771   case CK_BlockPointerToObjCPointerCast:
8772   case CK_AnyPointerToBlockPointerCast:
8773   case CK_AddressSpaceConversion:
8774     if (!Visit(SubExpr))
8775       return false;
8776     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8777     // permitted in constant expressions in C++11. Bitcasts from cv void* are
8778     // also static_casts, but we disallow them as a resolution to DR1312.
8779     if (!E->getType()->isVoidPointerType()) {
8780       if (!Result.InvalidBase && !Result.Designator.Invalid &&
8781           !Result.IsNullPtr &&
8782           Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8783                                           E->getType()->getPointeeType()) &&
8784           Info.getStdAllocatorCaller("allocate")) {
8785         // Inside a call to std::allocator::allocate and friends, we permit
8786         // casting from void* back to cv1 T* for a pointer that points to a
8787         // cv2 T.
8788       } else {
8789         Result.Designator.setInvalid();
8790         if (SubExpr->getType()->isVoidPointerType())
8791           CCEDiag(E, diag::note_constexpr_invalid_cast)
8792             << 3 << SubExpr->getType();
8793         else
8794           CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8795       }
8796     }
8797     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8798       ZeroInitialization(E);
8799     return true;
8800 
8801   case CK_DerivedToBase:
8802   case CK_UncheckedDerivedToBase:
8803     if (!evaluatePointer(E->getSubExpr(), Result))
8804       return false;
8805     if (!Result.Base && Result.Offset.isZero())
8806       return true;
8807 
8808     // Now figure out the necessary offset to add to the base LV to get from
8809     // the derived class to the base class.
8810     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8811                                   castAs<PointerType>()->getPointeeType(),
8812                                 Result);
8813 
8814   case CK_BaseToDerived:
8815     if (!Visit(E->getSubExpr()))
8816       return false;
8817     if (!Result.Base && Result.Offset.isZero())
8818       return true;
8819     return HandleBaseToDerivedCast(Info, E, Result);
8820 
8821   case CK_Dynamic:
8822     if (!Visit(E->getSubExpr()))
8823       return false;
8824     return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8825 
8826   case CK_NullToPointer:
8827     VisitIgnoredValue(E->getSubExpr());
8828     return ZeroInitialization(E);
8829 
8830   case CK_IntegralToPointer: {
8831     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8832 
8833     APValue Value;
8834     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
8835       break;
8836 
8837     if (Value.isInt()) {
8838       unsigned Size = Info.Ctx.getTypeSize(E->getType());
8839       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8840       Result.Base = (Expr*)nullptr;
8841       Result.InvalidBase = false;
8842       Result.Offset = CharUnits::fromQuantity(N);
8843       Result.Designator.setInvalid();
8844       Result.IsNullPtr = false;
8845       return true;
8846     } else {
8847       // Cast is of an lvalue, no need to change value.
8848       Result.setFrom(Info.Ctx, Value);
8849       return true;
8850     }
8851   }
8852 
8853   case CK_ArrayToPointerDecay: {
8854     if (SubExpr->isGLValue()) {
8855       if (!evaluateLValue(SubExpr, Result))
8856         return false;
8857     } else {
8858       APValue &Value = Info.CurrentCall->createTemporary(
8859           SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
8860       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8861         return false;
8862     }
8863     // The result is a pointer to the first element of the array.
8864     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8865     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8866       Result.addArray(Info, E, CAT);
8867     else
8868       Result.addUnsizedArray(Info, E, AT->getElementType());
8869     return true;
8870   }
8871 
8872   case CK_FunctionToPointerDecay:
8873     return evaluateLValue(SubExpr, Result);
8874 
8875   case CK_LValueToRValue: {
8876     LValue LVal;
8877     if (!evaluateLValue(E->getSubExpr(), LVal))
8878       return false;
8879 
8880     APValue RVal;
8881     // Note, we use the subexpression's type in order to retain cv-qualifiers.
8882     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8883                                         LVal, RVal))
8884       return InvalidBaseOK &&
8885              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
8886     return Success(RVal, E);
8887   }
8888   }
8889 
8890   return ExprEvaluatorBaseTy::VisitCastExpr(E);
8891 }
8892 
8893 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
8894                                 UnaryExprOrTypeTrait ExprKind) {
8895   // C++ [expr.alignof]p3:
8896   //     When alignof is applied to a reference type, the result is the
8897   //     alignment of the referenced type.
8898   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
8899     T = Ref->getPointeeType();
8900 
8901   if (T.getQualifiers().hasUnaligned())
8902     return CharUnits::One();
8903 
8904   const bool AlignOfReturnsPreferred =
8905       Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
8906 
8907   // __alignof is defined to return the preferred alignment.
8908   // Before 8, clang returned the preferred alignment for alignof and _Alignof
8909   // as well.
8910   if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
8911     return Info.Ctx.toCharUnitsFromBits(
8912       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
8913   // alignof and _Alignof are defined to return the ABI alignment.
8914   else if (ExprKind == UETT_AlignOf)
8915     return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
8916   else
8917     llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
8918 }
8919 
8920 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
8921                                 UnaryExprOrTypeTrait ExprKind) {
8922   E = E->IgnoreParens();
8923 
8924   // The kinds of expressions that we have special-case logic here for
8925   // should be kept up to date with the special checks for those
8926   // expressions in Sema.
8927 
8928   // alignof decl is always accepted, even if it doesn't make sense: we default
8929   // to 1 in those cases.
8930   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8931     return Info.Ctx.getDeclAlign(DRE->getDecl(),
8932                                  /*RefAsPointee*/true);
8933 
8934   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
8935     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
8936                                  /*RefAsPointee*/true);
8937 
8938   return GetAlignOfType(Info, E->getType(), ExprKind);
8939 }
8940 
8941 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
8942   if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
8943     return Info.Ctx.getDeclAlign(VD);
8944   if (const auto *E = Value.Base.dyn_cast<const Expr *>())
8945     return GetAlignOfExpr(Info, E, UETT_AlignOf);
8946   return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
8947 }
8948 
8949 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
8950 /// __builtin_is_aligned and __builtin_assume_aligned.
8951 static bool getAlignmentArgument(const Expr *E, QualType ForType,
8952                                  EvalInfo &Info, APSInt &Alignment) {
8953   if (!EvaluateInteger(E, Alignment, Info))
8954     return false;
8955   if (Alignment < 0 || !Alignment.isPowerOf2()) {
8956     Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
8957     return false;
8958   }
8959   unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
8960   APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
8961   if (APSInt::compareValues(Alignment, MaxValue) > 0) {
8962     Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
8963         << MaxValue << ForType << Alignment;
8964     return false;
8965   }
8966   // Ensure both alignment and source value have the same bit width so that we
8967   // don't assert when computing the resulting value.
8968   APSInt ExtAlignment =
8969       APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
8970   assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
8971          "Alignment should not be changed by ext/trunc");
8972   Alignment = ExtAlignment;
8973   assert(Alignment.getBitWidth() == SrcWidth);
8974   return true;
8975 }
8976 
8977 // To be clear: this happily visits unsupported builtins. Better name welcomed.
8978 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
8979   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
8980     return true;
8981 
8982   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
8983     return false;
8984 
8985   Result.setInvalid(E);
8986   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
8987   Result.addUnsizedArray(Info, E, PointeeTy);
8988   return true;
8989 }
8990 
8991 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
8992   if (IsConstantCall(E))
8993     return Success(E);
8994 
8995   if (unsigned BuiltinOp = E->getBuiltinCallee())
8996     return VisitBuiltinCallExpr(E, BuiltinOp);
8997 
8998   return visitNonBuiltinCallExpr(E);
8999 }
9000 
9001 // Determine if T is a character type for which we guarantee that
9002 // sizeof(T) == 1.
9003 static bool isOneByteCharacterType(QualType T) {
9004   return T->isCharType() || T->isChar8Type();
9005 }
9006 
9007 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9008                                                 unsigned BuiltinOp) {
9009   switch (BuiltinOp) {
9010   case Builtin::BI__builtin_addressof:
9011     return evaluateLValue(E->getArg(0), Result);
9012   case Builtin::BI__builtin_assume_aligned: {
9013     // We need to be very careful here because: if the pointer does not have the
9014     // asserted alignment, then the behavior is undefined, and undefined
9015     // behavior is non-constant.
9016     if (!evaluatePointer(E->getArg(0), Result))
9017       return false;
9018 
9019     LValue OffsetResult(Result);
9020     APSInt Alignment;
9021     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9022                               Alignment))
9023       return false;
9024     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
9025 
9026     if (E->getNumArgs() > 2) {
9027       APSInt Offset;
9028       if (!EvaluateInteger(E->getArg(2), Offset, Info))
9029         return false;
9030 
9031       int64_t AdditionalOffset = -Offset.getZExtValue();
9032       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
9033     }
9034 
9035     // If there is a base object, then it must have the correct alignment.
9036     if (OffsetResult.Base) {
9037       CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
9038 
9039       if (BaseAlignment < Align) {
9040         Result.Designator.setInvalid();
9041         // FIXME: Add support to Diagnostic for long / long long.
9042         CCEDiag(E->getArg(0),
9043                 diag::note_constexpr_baa_insufficient_alignment) << 0
9044           << (unsigned)BaseAlignment.getQuantity()
9045           << (unsigned)Align.getQuantity();
9046         return false;
9047       }
9048     }
9049 
9050     // The offset must also have the correct alignment.
9051     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9052       Result.Designator.setInvalid();
9053 
9054       (OffsetResult.Base
9055            ? CCEDiag(E->getArg(0),
9056                      diag::note_constexpr_baa_insufficient_alignment) << 1
9057            : CCEDiag(E->getArg(0),
9058                      diag::note_constexpr_baa_value_insufficient_alignment))
9059         << (int)OffsetResult.Offset.getQuantity()
9060         << (unsigned)Align.getQuantity();
9061       return false;
9062     }
9063 
9064     return true;
9065   }
9066   case Builtin::BI__builtin_align_up:
9067   case Builtin::BI__builtin_align_down: {
9068     if (!evaluatePointer(E->getArg(0), Result))
9069       return false;
9070     APSInt Alignment;
9071     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9072                               Alignment))
9073       return false;
9074     CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9075     CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9076     // For align_up/align_down, we can return the same value if the alignment
9077     // is known to be greater or equal to the requested value.
9078     if (PtrAlign.getQuantity() >= Alignment)
9079       return true;
9080 
9081     // The alignment could be greater than the minimum at run-time, so we cannot
9082     // infer much about the resulting pointer value. One case is possible:
9083     // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9084     // can infer the correct index if the requested alignment is smaller than
9085     // the base alignment so we can perform the computation on the offset.
9086     if (BaseAlignment.getQuantity() >= Alignment) {
9087       assert(Alignment.getBitWidth() <= 64 &&
9088              "Cannot handle > 64-bit address-space");
9089       uint64_t Alignment64 = Alignment.getZExtValue();
9090       CharUnits NewOffset = CharUnits::fromQuantity(
9091           BuiltinOp == Builtin::BI__builtin_align_down
9092               ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9093               : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9094       Result.adjustOffset(NewOffset - Result.Offset);
9095       // TODO: diagnose out-of-bounds values/only allow for arrays?
9096       return true;
9097     }
9098     // Otherwise, we cannot constant-evaluate the result.
9099     Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9100         << Alignment;
9101     return false;
9102   }
9103   case Builtin::BI__builtin_operator_new:
9104     return HandleOperatorNewCall(Info, E, Result);
9105   case Builtin::BI__builtin_launder:
9106     return evaluatePointer(E->getArg(0), Result);
9107   case Builtin::BIstrchr:
9108   case Builtin::BIwcschr:
9109   case Builtin::BImemchr:
9110   case Builtin::BIwmemchr:
9111     if (Info.getLangOpts().CPlusPlus11)
9112       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9113         << /*isConstexpr*/0 << /*isConstructor*/0
9114         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9115     else
9116       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9117     LLVM_FALLTHROUGH;
9118   case Builtin::BI__builtin_strchr:
9119   case Builtin::BI__builtin_wcschr:
9120   case Builtin::BI__builtin_memchr:
9121   case Builtin::BI__builtin_char_memchr:
9122   case Builtin::BI__builtin_wmemchr: {
9123     if (!Visit(E->getArg(0)))
9124       return false;
9125     APSInt Desired;
9126     if (!EvaluateInteger(E->getArg(1), Desired, Info))
9127       return false;
9128     uint64_t MaxLength = uint64_t(-1);
9129     if (BuiltinOp != Builtin::BIstrchr &&
9130         BuiltinOp != Builtin::BIwcschr &&
9131         BuiltinOp != Builtin::BI__builtin_strchr &&
9132         BuiltinOp != Builtin::BI__builtin_wcschr) {
9133       APSInt N;
9134       if (!EvaluateInteger(E->getArg(2), N, Info))
9135         return false;
9136       MaxLength = N.getExtValue();
9137     }
9138     // We cannot find the value if there are no candidates to match against.
9139     if (MaxLength == 0u)
9140       return ZeroInitialization(E);
9141     if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9142         Result.Designator.Invalid)
9143       return false;
9144     QualType CharTy = Result.Designator.getType(Info.Ctx);
9145     bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9146                      BuiltinOp == Builtin::BI__builtin_memchr;
9147     assert(IsRawByte ||
9148            Info.Ctx.hasSameUnqualifiedType(
9149                CharTy, E->getArg(0)->getType()->getPointeeType()));
9150     // Pointers to const void may point to objects of incomplete type.
9151     if (IsRawByte && CharTy->isIncompleteType()) {
9152       Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9153       return false;
9154     }
9155     // Give up on byte-oriented matching against multibyte elements.
9156     // FIXME: We can compare the bytes in the correct order.
9157     if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9158       Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9159           << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
9160           << CharTy;
9161       return false;
9162     }
9163     // Figure out what value we're actually looking for (after converting to
9164     // the corresponding unsigned type if necessary).
9165     uint64_t DesiredVal;
9166     bool StopAtNull = false;
9167     switch (BuiltinOp) {
9168     case Builtin::BIstrchr:
9169     case Builtin::BI__builtin_strchr:
9170       // strchr compares directly to the passed integer, and therefore
9171       // always fails if given an int that is not a char.
9172       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9173                                                   E->getArg(1)->getType(),
9174                                                   Desired),
9175                                Desired))
9176         return ZeroInitialization(E);
9177       StopAtNull = true;
9178       LLVM_FALLTHROUGH;
9179     case Builtin::BImemchr:
9180     case Builtin::BI__builtin_memchr:
9181     case Builtin::BI__builtin_char_memchr:
9182       // memchr compares by converting both sides to unsigned char. That's also
9183       // correct for strchr if we get this far (to cope with plain char being
9184       // unsigned in the strchr case).
9185       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9186       break;
9187 
9188     case Builtin::BIwcschr:
9189     case Builtin::BI__builtin_wcschr:
9190       StopAtNull = true;
9191       LLVM_FALLTHROUGH;
9192     case Builtin::BIwmemchr:
9193     case Builtin::BI__builtin_wmemchr:
9194       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9195       DesiredVal = Desired.getZExtValue();
9196       break;
9197     }
9198 
9199     for (; MaxLength; --MaxLength) {
9200       APValue Char;
9201       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9202           !Char.isInt())
9203         return false;
9204       if (Char.getInt().getZExtValue() == DesiredVal)
9205         return true;
9206       if (StopAtNull && !Char.getInt())
9207         break;
9208       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9209         return false;
9210     }
9211     // Not found: return nullptr.
9212     return ZeroInitialization(E);
9213   }
9214 
9215   case Builtin::BImemcpy:
9216   case Builtin::BImemmove:
9217   case Builtin::BIwmemcpy:
9218   case Builtin::BIwmemmove:
9219     if (Info.getLangOpts().CPlusPlus11)
9220       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9221         << /*isConstexpr*/0 << /*isConstructor*/0
9222         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9223     else
9224       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9225     LLVM_FALLTHROUGH;
9226   case Builtin::BI__builtin_memcpy:
9227   case Builtin::BI__builtin_memmove:
9228   case Builtin::BI__builtin_wmemcpy:
9229   case Builtin::BI__builtin_wmemmove: {
9230     bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9231                  BuiltinOp == Builtin::BIwmemmove ||
9232                  BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9233                  BuiltinOp == Builtin::BI__builtin_wmemmove;
9234     bool Move = BuiltinOp == Builtin::BImemmove ||
9235                 BuiltinOp == Builtin::BIwmemmove ||
9236                 BuiltinOp == Builtin::BI__builtin_memmove ||
9237                 BuiltinOp == Builtin::BI__builtin_wmemmove;
9238 
9239     // The result of mem* is the first argument.
9240     if (!Visit(E->getArg(0)))
9241       return false;
9242     LValue Dest = Result;
9243 
9244     LValue Src;
9245     if (!EvaluatePointer(E->getArg(1), Src, Info))
9246       return false;
9247 
9248     APSInt N;
9249     if (!EvaluateInteger(E->getArg(2), N, Info))
9250       return false;
9251     assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9252 
9253     // If the size is zero, we treat this as always being a valid no-op.
9254     // (Even if one of the src and dest pointers is null.)
9255     if (!N)
9256       return true;
9257 
9258     // Otherwise, if either of the operands is null, we can't proceed. Don't
9259     // try to determine the type of the copied objects, because there aren't
9260     // any.
9261     if (!Src.Base || !Dest.Base) {
9262       APValue Val;
9263       (!Src.Base ? Src : Dest).moveInto(Val);
9264       Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9265           << Move << WChar << !!Src.Base
9266           << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9267       return false;
9268     }
9269     if (Src.Designator.Invalid || Dest.Designator.Invalid)
9270       return false;
9271 
9272     // We require that Src and Dest are both pointers to arrays of
9273     // trivially-copyable type. (For the wide version, the designator will be
9274     // invalid if the designated object is not a wchar_t.)
9275     QualType T = Dest.Designator.getType(Info.Ctx);
9276     QualType SrcT = Src.Designator.getType(Info.Ctx);
9277     if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9278       // FIXME: Consider using our bit_cast implementation to support this.
9279       Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9280       return false;
9281     }
9282     if (T->isIncompleteType()) {
9283       Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9284       return false;
9285     }
9286     if (!T.isTriviallyCopyableType(Info.Ctx)) {
9287       Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9288       return false;
9289     }
9290 
9291     // Figure out how many T's we're copying.
9292     uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9293     if (!WChar) {
9294       uint64_t Remainder;
9295       llvm::APInt OrigN = N;
9296       llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9297       if (Remainder) {
9298         Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9299             << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9300             << (unsigned)TSize;
9301         return false;
9302       }
9303     }
9304 
9305     // Check that the copying will remain within the arrays, just so that we
9306     // can give a more meaningful diagnostic. This implicitly also checks that
9307     // N fits into 64 bits.
9308     uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9309     uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9310     if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9311       Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9312           << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9313           << toString(N, 10, /*Signed*/false);
9314       return false;
9315     }
9316     uint64_t NElems = N.getZExtValue();
9317     uint64_t NBytes = NElems * TSize;
9318 
9319     // Check for overlap.
9320     int Direction = 1;
9321     if (HasSameBase(Src, Dest)) {
9322       uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9323       uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9324       if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9325         // Dest is inside the source region.
9326         if (!Move) {
9327           Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9328           return false;
9329         }
9330         // For memmove and friends, copy backwards.
9331         if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9332             !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9333           return false;
9334         Direction = -1;
9335       } else if (!Move && SrcOffset >= DestOffset &&
9336                  SrcOffset - DestOffset < NBytes) {
9337         // Src is inside the destination region for memcpy: invalid.
9338         Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9339         return false;
9340       }
9341     }
9342 
9343     while (true) {
9344       APValue Val;
9345       // FIXME: Set WantObjectRepresentation to true if we're copying a
9346       // char-like type?
9347       if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9348           !handleAssignment(Info, E, Dest, T, Val))
9349         return false;
9350       // Do not iterate past the last element; if we're copying backwards, that
9351       // might take us off the start of the array.
9352       if (--NElems == 0)
9353         return true;
9354       if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9355           !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9356         return false;
9357     }
9358   }
9359 
9360   default:
9361     break;
9362   }
9363 
9364   return visitNonBuiltinCallExpr(E);
9365 }
9366 
9367 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9368                                      APValue &Result, const InitListExpr *ILE,
9369                                      QualType AllocType);
9370 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9371                                           APValue &Result,
9372                                           const CXXConstructExpr *CCE,
9373                                           QualType AllocType);
9374 
9375 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9376   if (!Info.getLangOpts().CPlusPlus20)
9377     Info.CCEDiag(E, diag::note_constexpr_new);
9378 
9379   // We cannot speculatively evaluate a delete expression.
9380   if (Info.SpeculativeEvaluationDepth)
9381     return false;
9382 
9383   FunctionDecl *OperatorNew = E->getOperatorNew();
9384 
9385   bool IsNothrow = false;
9386   bool IsPlacement = false;
9387   if (OperatorNew->isReservedGlobalPlacementOperator() &&
9388       Info.CurrentCall->isStdFunction() && !E->isArray()) {
9389     // FIXME Support array placement new.
9390     assert(E->getNumPlacementArgs() == 1);
9391     if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9392       return false;
9393     if (Result.Designator.Invalid)
9394       return false;
9395     IsPlacement = true;
9396   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9397     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9398         << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9399     return false;
9400   } else if (E->getNumPlacementArgs()) {
9401     // The only new-placement list we support is of the form (std::nothrow).
9402     //
9403     // FIXME: There is no restriction on this, but it's not clear that any
9404     // other form makes any sense. We get here for cases such as:
9405     //
9406     //   new (std::align_val_t{N}) X(int)
9407     //
9408     // (which should presumably be valid only if N is a multiple of
9409     // alignof(int), and in any case can't be deallocated unless N is
9410     // alignof(X) and X has new-extended alignment).
9411     if (E->getNumPlacementArgs() != 1 ||
9412         !E->getPlacementArg(0)->getType()->isNothrowT())
9413       return Error(E, diag::note_constexpr_new_placement);
9414 
9415     LValue Nothrow;
9416     if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9417       return false;
9418     IsNothrow = true;
9419   }
9420 
9421   const Expr *Init = E->getInitializer();
9422   const InitListExpr *ResizedArrayILE = nullptr;
9423   const CXXConstructExpr *ResizedArrayCCE = nullptr;
9424   bool ValueInit = false;
9425 
9426   QualType AllocType = E->getAllocatedType();
9427   if (Optional<const Expr*> ArraySize = E->getArraySize()) {
9428     const Expr *Stripped = *ArraySize;
9429     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9430          Stripped = ICE->getSubExpr())
9431       if (ICE->getCastKind() != CK_NoOp &&
9432           ICE->getCastKind() != CK_IntegralCast)
9433         break;
9434 
9435     llvm::APSInt ArrayBound;
9436     if (!EvaluateInteger(Stripped, ArrayBound, Info))
9437       return false;
9438 
9439     // C++ [expr.new]p9:
9440     //   The expression is erroneous if:
9441     //   -- [...] its value before converting to size_t [or] applying the
9442     //      second standard conversion sequence is less than zero
9443     if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9444       if (IsNothrow)
9445         return ZeroInitialization(E);
9446 
9447       Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9448           << ArrayBound << (*ArraySize)->getSourceRange();
9449       return false;
9450     }
9451 
9452     //   -- its value is such that the size of the allocated object would
9453     //      exceed the implementation-defined limit
9454     if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
9455                                                 ArrayBound) >
9456         ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
9457       if (IsNothrow)
9458         return ZeroInitialization(E);
9459 
9460       Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
9461         << ArrayBound << (*ArraySize)->getSourceRange();
9462       return false;
9463     }
9464 
9465     //   -- the new-initializer is a braced-init-list and the number of
9466     //      array elements for which initializers are provided [...]
9467     //      exceeds the number of elements to initialize
9468     if (!Init) {
9469       // No initialization is performed.
9470     } else if (isa<CXXScalarValueInitExpr>(Init) ||
9471                isa<ImplicitValueInitExpr>(Init)) {
9472       ValueInit = true;
9473     } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9474       ResizedArrayCCE = CCE;
9475     } else {
9476       auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9477       assert(CAT && "unexpected type for array initializer");
9478 
9479       unsigned Bits =
9480           std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9481       llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
9482       llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
9483       if (InitBound.ugt(AllocBound)) {
9484         if (IsNothrow)
9485           return ZeroInitialization(E);
9486 
9487         Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9488             << toString(AllocBound, 10, /*Signed=*/false)
9489             << toString(InitBound, 10, /*Signed=*/false)
9490             << (*ArraySize)->getSourceRange();
9491         return false;
9492       }
9493 
9494       // If the sizes differ, we must have an initializer list, and we need
9495       // special handling for this case when we initialize.
9496       if (InitBound != AllocBound)
9497         ResizedArrayILE = cast<InitListExpr>(Init);
9498     }
9499 
9500     AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9501                                               ArrayType::Normal, 0);
9502   } else {
9503     assert(!AllocType->isArrayType() &&
9504            "array allocation with non-array new");
9505   }
9506 
9507   APValue *Val;
9508   if (IsPlacement) {
9509     AccessKinds AK = AK_Construct;
9510     struct FindObjectHandler {
9511       EvalInfo &Info;
9512       const Expr *E;
9513       QualType AllocType;
9514       const AccessKinds AccessKind;
9515       APValue *Value;
9516 
9517       typedef bool result_type;
9518       bool failed() { return false; }
9519       bool found(APValue &Subobj, QualType SubobjType) {
9520         // FIXME: Reject the cases where [basic.life]p8 would not permit the
9521         // old name of the object to be used to name the new object.
9522         if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9523           Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9524             SubobjType << AllocType;
9525           return false;
9526         }
9527         Value = &Subobj;
9528         return true;
9529       }
9530       bool found(APSInt &Value, QualType SubobjType) {
9531         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9532         return false;
9533       }
9534       bool found(APFloat &Value, QualType SubobjType) {
9535         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9536         return false;
9537       }
9538     } Handler = {Info, E, AllocType, AK, nullptr};
9539 
9540     CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9541     if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9542       return false;
9543 
9544     Val = Handler.Value;
9545 
9546     // [basic.life]p1:
9547     //   The lifetime of an object o of type T ends when [...] the storage
9548     //   which the object occupies is [...] reused by an object that is not
9549     //   nested within o (6.6.2).
9550     *Val = APValue();
9551   } else {
9552     // Perform the allocation and obtain a pointer to the resulting object.
9553     Val = Info.createHeapAlloc(E, AllocType, Result);
9554     if (!Val)
9555       return false;
9556   }
9557 
9558   if (ValueInit) {
9559     ImplicitValueInitExpr VIE(AllocType);
9560     if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9561       return false;
9562   } else if (ResizedArrayILE) {
9563     if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9564                                   AllocType))
9565       return false;
9566   } else if (ResizedArrayCCE) {
9567     if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9568                                        AllocType))
9569       return false;
9570   } else if (Init) {
9571     if (!EvaluateInPlace(*Val, Info, Result, Init))
9572       return false;
9573   } else if (!getDefaultInitValue(AllocType, *Val)) {
9574     return false;
9575   }
9576 
9577   // Array new returns a pointer to the first element, not a pointer to the
9578   // array.
9579   if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9580     Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9581 
9582   return true;
9583 }
9584 //===----------------------------------------------------------------------===//
9585 // Member Pointer Evaluation
9586 //===----------------------------------------------------------------------===//
9587 
9588 namespace {
9589 class MemberPointerExprEvaluator
9590   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9591   MemberPtr &Result;
9592 
9593   bool Success(const ValueDecl *D) {
9594     Result = MemberPtr(D);
9595     return true;
9596   }
9597 public:
9598 
9599   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9600     : ExprEvaluatorBaseTy(Info), Result(Result) {}
9601 
9602   bool Success(const APValue &V, const Expr *E) {
9603     Result.setFrom(V);
9604     return true;
9605   }
9606   bool ZeroInitialization(const Expr *E) {
9607     return Success((const ValueDecl*)nullptr);
9608   }
9609 
9610   bool VisitCastExpr(const CastExpr *E);
9611   bool VisitUnaryAddrOf(const UnaryOperator *E);
9612 };
9613 } // end anonymous namespace
9614 
9615 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9616                                   EvalInfo &Info) {
9617   assert(!E->isValueDependent());
9618   assert(E->isPRValue() && E->getType()->isMemberPointerType());
9619   return MemberPointerExprEvaluator(Info, Result).Visit(E);
9620 }
9621 
9622 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9623   switch (E->getCastKind()) {
9624   default:
9625     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9626 
9627   case CK_NullToMemberPointer:
9628     VisitIgnoredValue(E->getSubExpr());
9629     return ZeroInitialization(E);
9630 
9631   case CK_BaseToDerivedMemberPointer: {
9632     if (!Visit(E->getSubExpr()))
9633       return false;
9634     if (E->path_empty())
9635       return true;
9636     // Base-to-derived member pointer casts store the path in derived-to-base
9637     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9638     // the wrong end of the derived->base arc, so stagger the path by one class.
9639     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
9640     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
9641          PathI != PathE; ++PathI) {
9642       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9643       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
9644       if (!Result.castToDerived(Derived))
9645         return Error(E);
9646     }
9647     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
9648     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
9649       return Error(E);
9650     return true;
9651   }
9652 
9653   case CK_DerivedToBaseMemberPointer:
9654     if (!Visit(E->getSubExpr()))
9655       return false;
9656     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9657          PathE = E->path_end(); PathI != PathE; ++PathI) {
9658       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9659       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9660       if (!Result.castToBase(Base))
9661         return Error(E);
9662     }
9663     return true;
9664   }
9665 }
9666 
9667 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9668   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9669   // member can be formed.
9670   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
9671 }
9672 
9673 //===----------------------------------------------------------------------===//
9674 // Record Evaluation
9675 //===----------------------------------------------------------------------===//
9676 
9677 namespace {
9678   class RecordExprEvaluator
9679   : public ExprEvaluatorBase<RecordExprEvaluator> {
9680     const LValue &This;
9681     APValue &Result;
9682   public:
9683 
9684     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
9685       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
9686 
9687     bool Success(const APValue &V, const Expr *E) {
9688       Result = V;
9689       return true;
9690     }
9691     bool ZeroInitialization(const Expr *E) {
9692       return ZeroInitialization(E, E->getType());
9693     }
9694     bool ZeroInitialization(const Expr *E, QualType T);
9695 
9696     bool VisitCallExpr(const CallExpr *E) {
9697       return handleCallExpr(E, Result, &This);
9698     }
9699     bool VisitCastExpr(const CastExpr *E);
9700     bool VisitInitListExpr(const InitListExpr *E);
9701     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9702       return VisitCXXConstructExpr(E, E->getType());
9703     }
9704     bool VisitLambdaExpr(const LambdaExpr *E);
9705     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
9706     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
9707     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
9708     bool VisitBinCmp(const BinaryOperator *E);
9709   };
9710 }
9711 
9712 /// Perform zero-initialization on an object of non-union class type.
9713 /// C++11 [dcl.init]p5:
9714 ///  To zero-initialize an object or reference of type T means:
9715 ///    [...]
9716 ///    -- if T is a (possibly cv-qualified) non-union class type,
9717 ///       each non-static data member and each base-class subobject is
9718 ///       zero-initialized
9719 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
9720                                           const RecordDecl *RD,
9721                                           const LValue &This, APValue &Result) {
9722   assert(!RD->isUnion() && "Expected non-union class type");
9723   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
9724   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
9725                    std::distance(RD->field_begin(), RD->field_end()));
9726 
9727   if (RD->isInvalidDecl()) return false;
9728   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9729 
9730   if (CD) {
9731     unsigned Index = 0;
9732     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
9733            End = CD->bases_end(); I != End; ++I, ++Index) {
9734       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
9735       LValue Subobject = This;
9736       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
9737         return false;
9738       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
9739                                          Result.getStructBase(Index)))
9740         return false;
9741     }
9742   }
9743 
9744   for (const auto *I : RD->fields()) {
9745     // -- if T is a reference type, no initialization is performed.
9746     if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
9747       continue;
9748 
9749     LValue Subobject = This;
9750     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
9751       return false;
9752 
9753     ImplicitValueInitExpr VIE(I->getType());
9754     if (!EvaluateInPlace(
9755           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
9756       return false;
9757   }
9758 
9759   return true;
9760 }
9761 
9762 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
9763   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
9764   if (RD->isInvalidDecl()) return false;
9765   if (RD->isUnion()) {
9766     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9767     // object's first non-static named data member is zero-initialized
9768     RecordDecl::field_iterator I = RD->field_begin();
9769     while (I != RD->field_end() && (*I)->isUnnamedBitfield())
9770       ++I;
9771     if (I == RD->field_end()) {
9772       Result = APValue((const FieldDecl*)nullptr);
9773       return true;
9774     }
9775 
9776     LValue Subobject = This;
9777     if (!HandleLValueMember(Info, E, Subobject, *I))
9778       return false;
9779     Result = APValue(*I);
9780     ImplicitValueInitExpr VIE(I->getType());
9781     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
9782   }
9783 
9784   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
9785     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
9786     return false;
9787   }
9788 
9789   return HandleClassZeroInitialization(Info, E, RD, This, Result);
9790 }
9791 
9792 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
9793   switch (E->getCastKind()) {
9794   default:
9795     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9796 
9797   case CK_ConstructorConversion:
9798     return Visit(E->getSubExpr());
9799 
9800   case CK_DerivedToBase:
9801   case CK_UncheckedDerivedToBase: {
9802     APValue DerivedObject;
9803     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9804       return false;
9805     if (!DerivedObject.isStruct())
9806       return Error(E->getSubExpr());
9807 
9808     // Derived-to-base rvalue conversion: just slice off the derived part.
9809     APValue *Value = &DerivedObject;
9810     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9811     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9812          PathE = E->path_end(); PathI != PathE; ++PathI) {
9813       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
9814       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9815       Value = &Value->getStructBase(getBaseIndex(RD, Base));
9816       RD = Base;
9817     }
9818     Result = *Value;
9819     return true;
9820   }
9821   }
9822 }
9823 
9824 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9825   if (E->isTransparent())
9826     return Visit(E->getInit(0));
9827 
9828   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
9829   if (RD->isInvalidDecl()) return false;
9830   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9831   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
9832 
9833   EvalInfo::EvaluatingConstructorRAII EvalObj(
9834       Info,
9835       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
9836       CXXRD && CXXRD->getNumBases());
9837 
9838   if (RD->isUnion()) {
9839     const FieldDecl *Field = E->getInitializedFieldInUnion();
9840     Result = APValue(Field);
9841     if (!Field)
9842       return true;
9843 
9844     // If the initializer list for a union does not contain any elements, the
9845     // first element of the union is value-initialized.
9846     // FIXME: The element should be initialized from an initializer list.
9847     //        Is this difference ever observable for initializer lists which
9848     //        we don't build?
9849     ImplicitValueInitExpr VIE(Field->getType());
9850     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
9851 
9852     LValue Subobject = This;
9853     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
9854       return false;
9855 
9856     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9857     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9858                                   isa<CXXDefaultInitExpr>(InitExpr));
9859 
9860     if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
9861       if (Field->isBitField())
9862         return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
9863                                      Field);
9864       return true;
9865     }
9866 
9867     return false;
9868   }
9869 
9870   if (!Result.hasValue())
9871     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
9872                      std::distance(RD->field_begin(), RD->field_end()));
9873   unsigned ElementNo = 0;
9874   bool Success = true;
9875 
9876   // Initialize base classes.
9877   if (CXXRD && CXXRD->getNumBases()) {
9878     for (const auto &Base : CXXRD->bases()) {
9879       assert(ElementNo < E->getNumInits() && "missing init for base class");
9880       const Expr *Init = E->getInit(ElementNo);
9881 
9882       LValue Subobject = This;
9883       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
9884         return false;
9885 
9886       APValue &FieldVal = Result.getStructBase(ElementNo);
9887       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
9888         if (!Info.noteFailure())
9889           return false;
9890         Success = false;
9891       }
9892       ++ElementNo;
9893     }
9894 
9895     EvalObj.finishedConstructingBases();
9896   }
9897 
9898   // Initialize members.
9899   for (const auto *Field : RD->fields()) {
9900     // Anonymous bit-fields are not considered members of the class for
9901     // purposes of aggregate initialization.
9902     if (Field->isUnnamedBitfield())
9903       continue;
9904 
9905     LValue Subobject = This;
9906 
9907     bool HaveInit = ElementNo < E->getNumInits();
9908 
9909     // FIXME: Diagnostics here should point to the end of the initializer
9910     // list, not the start.
9911     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
9912                             Subobject, Field, &Layout))
9913       return false;
9914 
9915     // Perform an implicit value-initialization for members beyond the end of
9916     // the initializer list.
9917     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
9918     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
9919 
9920     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9921     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9922                                   isa<CXXDefaultInitExpr>(Init));
9923 
9924     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9925     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
9926         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
9927                                                        FieldVal, Field))) {
9928       if (!Info.noteFailure())
9929         return false;
9930       Success = false;
9931     }
9932   }
9933 
9934   EvalObj.finishedConstructingFields();
9935 
9936   return Success;
9937 }
9938 
9939 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
9940                                                 QualType T) {
9941   // Note that E's type is not necessarily the type of our class here; we might
9942   // be initializing an array element instead.
9943   const CXXConstructorDecl *FD = E->getConstructor();
9944   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
9945 
9946   bool ZeroInit = E->requiresZeroInitialization();
9947   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
9948     // If we've already performed zero-initialization, we're already done.
9949     if (Result.hasValue())
9950       return true;
9951 
9952     if (ZeroInit)
9953       return ZeroInitialization(E, T);
9954 
9955     return getDefaultInitValue(T, Result);
9956   }
9957 
9958   const FunctionDecl *Definition = nullptr;
9959   auto Body = FD->getBody(Definition);
9960 
9961   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9962     return false;
9963 
9964   // Avoid materializing a temporary for an elidable copy/move constructor.
9965   if (E->isElidable() && !ZeroInit) {
9966     // FIXME: This only handles the simplest case, where the source object
9967     //        is passed directly as the first argument to the constructor.
9968     //        This should also handle stepping though implicit casts and
9969     //        and conversion sequences which involve two steps, with a
9970     //        conversion operator followed by a converting constructor.
9971     const Expr *SrcObj = E->getArg(0);
9972     assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
9973     assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
9974     if (const MaterializeTemporaryExpr *ME =
9975             dyn_cast<MaterializeTemporaryExpr>(SrcObj))
9976       return Visit(ME->getSubExpr());
9977   }
9978 
9979   if (ZeroInit && !ZeroInitialization(E, T))
9980     return false;
9981 
9982   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
9983   return HandleConstructorCall(E, This, Args,
9984                                cast<CXXConstructorDecl>(Definition), Info,
9985                                Result);
9986 }
9987 
9988 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
9989     const CXXInheritedCtorInitExpr *E) {
9990   if (!Info.CurrentCall) {
9991     assert(Info.checkingPotentialConstantExpression());
9992     return false;
9993   }
9994 
9995   const CXXConstructorDecl *FD = E->getConstructor();
9996   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
9997     return false;
9998 
9999   const FunctionDecl *Definition = nullptr;
10000   auto Body = FD->getBody(Definition);
10001 
10002   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10003     return false;
10004 
10005   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10006                                cast<CXXConstructorDecl>(Definition), Info,
10007                                Result);
10008 }
10009 
10010 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10011     const CXXStdInitializerListExpr *E) {
10012   const ConstantArrayType *ArrayType =
10013       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
10014 
10015   LValue Array;
10016   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
10017     return false;
10018 
10019   // Get a pointer to the first element of the array.
10020   Array.addArray(Info, E, ArrayType);
10021 
10022   auto InvalidType = [&] {
10023     Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
10024       << E->getType();
10025     return false;
10026   };
10027 
10028   // FIXME: Perform the checks on the field types in SemaInit.
10029   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10030   RecordDecl::field_iterator Field = Record->field_begin();
10031   if (Field == Record->field_end())
10032     return InvalidType();
10033 
10034   // Start pointer.
10035   if (!Field->getType()->isPointerType() ||
10036       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10037                             ArrayType->getElementType()))
10038     return InvalidType();
10039 
10040   // FIXME: What if the initializer_list type has base classes, etc?
10041   Result = APValue(APValue::UninitStruct(), 0, 2);
10042   Array.moveInto(Result.getStructField(0));
10043 
10044   if (++Field == Record->field_end())
10045     return InvalidType();
10046 
10047   if (Field->getType()->isPointerType() &&
10048       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10049                            ArrayType->getElementType())) {
10050     // End pointer.
10051     if (!HandleLValueArrayAdjustment(Info, E, Array,
10052                                      ArrayType->getElementType(),
10053                                      ArrayType->getSize().getZExtValue()))
10054       return false;
10055     Array.moveInto(Result.getStructField(1));
10056   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
10057     // Length.
10058     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
10059   else
10060     return InvalidType();
10061 
10062   if (++Field != Record->field_end())
10063     return InvalidType();
10064 
10065   return true;
10066 }
10067 
10068 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10069   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10070   if (ClosureClass->isInvalidDecl())
10071     return false;
10072 
10073   const size_t NumFields =
10074       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10075 
10076   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10077                                             E->capture_init_end()) &&
10078          "The number of lambda capture initializers should equal the number of "
10079          "fields within the closure type");
10080 
10081   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10082   // Iterate through all the lambda's closure object's fields and initialize
10083   // them.
10084   auto *CaptureInitIt = E->capture_init_begin();
10085   const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
10086   bool Success = true;
10087   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10088   for (const auto *Field : ClosureClass->fields()) {
10089     assert(CaptureInitIt != E->capture_init_end());
10090     // Get the initializer for this field
10091     Expr *const CurFieldInit = *CaptureInitIt++;
10092 
10093     // If there is no initializer, either this is a VLA or an error has
10094     // occurred.
10095     if (!CurFieldInit)
10096       return Error(E);
10097 
10098     LValue Subobject = This;
10099 
10100     if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10101       return false;
10102 
10103     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10104     if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10105       if (!Info.keepEvaluatingAfterFailure())
10106         return false;
10107       Success = false;
10108     }
10109     ++CaptureIt;
10110   }
10111   return Success;
10112 }
10113 
10114 static bool EvaluateRecord(const Expr *E, const LValue &This,
10115                            APValue &Result, EvalInfo &Info) {
10116   assert(!E->isValueDependent());
10117   assert(E->isPRValue() && E->getType()->isRecordType() &&
10118          "can't evaluate expression as a record rvalue");
10119   return RecordExprEvaluator(Info, This, Result).Visit(E);
10120 }
10121 
10122 //===----------------------------------------------------------------------===//
10123 // Temporary Evaluation
10124 //
10125 // Temporaries are represented in the AST as rvalues, but generally behave like
10126 // lvalues. The full-object of which the temporary is a subobject is implicitly
10127 // materialized so that a reference can bind to it.
10128 //===----------------------------------------------------------------------===//
10129 namespace {
10130 class TemporaryExprEvaluator
10131   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10132 public:
10133   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10134     LValueExprEvaluatorBaseTy(Info, Result, false) {}
10135 
10136   /// Visit an expression which constructs the value of this temporary.
10137   bool VisitConstructExpr(const Expr *E) {
10138     APValue &Value = Info.CurrentCall->createTemporary(
10139         E, E->getType(), ScopeKind::FullExpression, Result);
10140     return EvaluateInPlace(Value, Info, Result, E);
10141   }
10142 
10143   bool VisitCastExpr(const CastExpr *E) {
10144     switch (E->getCastKind()) {
10145     default:
10146       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10147 
10148     case CK_ConstructorConversion:
10149       return VisitConstructExpr(E->getSubExpr());
10150     }
10151   }
10152   bool VisitInitListExpr(const InitListExpr *E) {
10153     return VisitConstructExpr(E);
10154   }
10155   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10156     return VisitConstructExpr(E);
10157   }
10158   bool VisitCallExpr(const CallExpr *E) {
10159     return VisitConstructExpr(E);
10160   }
10161   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10162     return VisitConstructExpr(E);
10163   }
10164   bool VisitLambdaExpr(const LambdaExpr *E) {
10165     return VisitConstructExpr(E);
10166   }
10167 };
10168 } // end anonymous namespace
10169 
10170 /// Evaluate an expression of record type as a temporary.
10171 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10172   assert(!E->isValueDependent());
10173   assert(E->isPRValue() && E->getType()->isRecordType());
10174   return TemporaryExprEvaluator(Info, Result).Visit(E);
10175 }
10176 
10177 //===----------------------------------------------------------------------===//
10178 // Vector Evaluation
10179 //===----------------------------------------------------------------------===//
10180 
10181 namespace {
10182   class VectorExprEvaluator
10183   : public ExprEvaluatorBase<VectorExprEvaluator> {
10184     APValue &Result;
10185   public:
10186 
10187     VectorExprEvaluator(EvalInfo &info, APValue &Result)
10188       : ExprEvaluatorBaseTy(info), Result(Result) {}
10189 
10190     bool Success(ArrayRef<APValue> V, const Expr *E) {
10191       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10192       // FIXME: remove this APValue copy.
10193       Result = APValue(V.data(), V.size());
10194       return true;
10195     }
10196     bool Success(const APValue &V, const Expr *E) {
10197       assert(V.isVector());
10198       Result = V;
10199       return true;
10200     }
10201     bool ZeroInitialization(const Expr *E);
10202 
10203     bool VisitUnaryReal(const UnaryOperator *E)
10204       { return Visit(E->getSubExpr()); }
10205     bool VisitCastExpr(const CastExpr* E);
10206     bool VisitInitListExpr(const InitListExpr *E);
10207     bool VisitUnaryImag(const UnaryOperator *E);
10208     bool VisitBinaryOperator(const BinaryOperator *E);
10209     bool VisitUnaryOperator(const UnaryOperator *E);
10210     // FIXME: Missing: conditional operator (for GNU
10211     //                 conditional select), shufflevector, ExtVectorElementExpr
10212   };
10213 } // end anonymous namespace
10214 
10215 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10216   assert(E->isPRValue() && E->getType()->isVectorType() &&
10217          "not a vector prvalue");
10218   return VectorExprEvaluator(Info, Result).Visit(E);
10219 }
10220 
10221 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10222   const VectorType *VTy = E->getType()->castAs<VectorType>();
10223   unsigned NElts = VTy->getNumElements();
10224 
10225   const Expr *SE = E->getSubExpr();
10226   QualType SETy = SE->getType();
10227 
10228   switch (E->getCastKind()) {
10229   case CK_VectorSplat: {
10230     APValue Val = APValue();
10231     if (SETy->isIntegerType()) {
10232       APSInt IntResult;
10233       if (!EvaluateInteger(SE, IntResult, Info))
10234         return false;
10235       Val = APValue(std::move(IntResult));
10236     } else if (SETy->isRealFloatingType()) {
10237       APFloat FloatResult(0.0);
10238       if (!EvaluateFloat(SE, FloatResult, Info))
10239         return false;
10240       Val = APValue(std::move(FloatResult));
10241     } else {
10242       return Error(E);
10243     }
10244 
10245     // Splat and create vector APValue.
10246     SmallVector<APValue, 4> Elts(NElts, Val);
10247     return Success(Elts, E);
10248   }
10249   case CK_BitCast: {
10250     // Evaluate the operand into an APInt we can extract from.
10251     llvm::APInt SValInt;
10252     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
10253       return false;
10254     // Extract the elements
10255     QualType EltTy = VTy->getElementType();
10256     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
10257     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
10258     SmallVector<APValue, 4> Elts;
10259     if (EltTy->isRealFloatingType()) {
10260       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
10261       unsigned FloatEltSize = EltSize;
10262       if (&Sem == &APFloat::x87DoubleExtended())
10263         FloatEltSize = 80;
10264       for (unsigned i = 0; i < NElts; i++) {
10265         llvm::APInt Elt;
10266         if (BigEndian)
10267           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
10268         else
10269           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
10270         Elts.push_back(APValue(APFloat(Sem, Elt)));
10271       }
10272     } else if (EltTy->isIntegerType()) {
10273       for (unsigned i = 0; i < NElts; i++) {
10274         llvm::APInt Elt;
10275         if (BigEndian)
10276           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
10277         else
10278           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
10279         Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType())));
10280       }
10281     } else {
10282       return Error(E);
10283     }
10284     return Success(Elts, E);
10285   }
10286   default:
10287     return ExprEvaluatorBaseTy::VisitCastExpr(E);
10288   }
10289 }
10290 
10291 bool
10292 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10293   const VectorType *VT = E->getType()->castAs<VectorType>();
10294   unsigned NumInits = E->getNumInits();
10295   unsigned NumElements = VT->getNumElements();
10296 
10297   QualType EltTy = VT->getElementType();
10298   SmallVector<APValue, 4> Elements;
10299 
10300   // The number of initializers can be less than the number of
10301   // vector elements. For OpenCL, this can be due to nested vector
10302   // initialization. For GCC compatibility, missing trailing elements
10303   // should be initialized with zeroes.
10304   unsigned CountInits = 0, CountElts = 0;
10305   while (CountElts < NumElements) {
10306     // Handle nested vector initialization.
10307     if (CountInits < NumInits
10308         && E->getInit(CountInits)->getType()->isVectorType()) {
10309       APValue v;
10310       if (!EvaluateVector(E->getInit(CountInits), v, Info))
10311         return Error(E);
10312       unsigned vlen = v.getVectorLength();
10313       for (unsigned j = 0; j < vlen; j++)
10314         Elements.push_back(v.getVectorElt(j));
10315       CountElts += vlen;
10316     } else if (EltTy->isIntegerType()) {
10317       llvm::APSInt sInt(32);
10318       if (CountInits < NumInits) {
10319         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10320           return false;
10321       } else // trailing integer zero.
10322         sInt = Info.Ctx.MakeIntValue(0, EltTy);
10323       Elements.push_back(APValue(sInt));
10324       CountElts++;
10325     } else {
10326       llvm::APFloat f(0.0);
10327       if (CountInits < NumInits) {
10328         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10329           return false;
10330       } else // trailing float zero.
10331         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10332       Elements.push_back(APValue(f));
10333       CountElts++;
10334     }
10335     CountInits++;
10336   }
10337   return Success(Elements, E);
10338 }
10339 
10340 bool
10341 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10342   const auto *VT = E->getType()->castAs<VectorType>();
10343   QualType EltTy = VT->getElementType();
10344   APValue ZeroElement;
10345   if (EltTy->isIntegerType())
10346     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10347   else
10348     ZeroElement =
10349         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10350 
10351   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10352   return Success(Elements, E);
10353 }
10354 
10355 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10356   VisitIgnoredValue(E->getSubExpr());
10357   return ZeroInitialization(E);
10358 }
10359 
10360 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10361   BinaryOperatorKind Op = E->getOpcode();
10362   assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10363          "Operation not supported on vector types");
10364 
10365   if (Op == BO_Comma)
10366     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10367 
10368   Expr *LHS = E->getLHS();
10369   Expr *RHS = E->getRHS();
10370 
10371   assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10372          "Must both be vector types");
10373   // Checking JUST the types are the same would be fine, except shifts don't
10374   // need to have their types be the same (since you always shift by an int).
10375   assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10376              E->getType()->castAs<VectorType>()->getNumElements() &&
10377          RHS->getType()->castAs<VectorType>()->getNumElements() ==
10378              E->getType()->castAs<VectorType>()->getNumElements() &&
10379          "All operands must be the same size.");
10380 
10381   APValue LHSValue;
10382   APValue RHSValue;
10383   bool LHSOK = Evaluate(LHSValue, Info, LHS);
10384   if (!LHSOK && !Info.noteFailure())
10385     return false;
10386   if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10387     return false;
10388 
10389   if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10390     return false;
10391 
10392   return Success(LHSValue, E);
10393 }
10394 
10395 static llvm::Optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10396                                                          QualType ResultTy,
10397                                                          UnaryOperatorKind Op,
10398                                                          APValue Elt) {
10399   switch (Op) {
10400   case UO_Plus:
10401     // Nothing to do here.
10402     return Elt;
10403   case UO_Minus:
10404     if (Elt.getKind() == APValue::Int) {
10405       Elt.getInt().negate();
10406     } else {
10407       assert(Elt.getKind() == APValue::Float &&
10408              "Vector can only be int or float type");
10409       Elt.getFloat().changeSign();
10410     }
10411     return Elt;
10412   case UO_Not:
10413     // This is only valid for integral types anyway, so we don't have to handle
10414     // float here.
10415     assert(Elt.getKind() == APValue::Int &&
10416            "Vector operator ~ can only be int");
10417     Elt.getInt().flipAllBits();
10418     return Elt;
10419   case UO_LNot: {
10420     if (Elt.getKind() == APValue::Int) {
10421       Elt.getInt() = !Elt.getInt();
10422       // operator ! on vectors returns -1 for 'truth', so negate it.
10423       Elt.getInt().negate();
10424       return Elt;
10425     }
10426     assert(Elt.getKind() == APValue::Float &&
10427            "Vector can only be int or float type");
10428     // Float types result in an int of the same size, but -1 for true, or 0 for
10429     // false.
10430     APSInt EltResult{Ctx.getIntWidth(ResultTy),
10431                      ResultTy->isUnsignedIntegerType()};
10432     if (Elt.getFloat().isZero())
10433       EltResult.setAllBits();
10434     else
10435       EltResult.clearAllBits();
10436 
10437     return APValue{EltResult};
10438   }
10439   default:
10440     // FIXME: Implement the rest of the unary operators.
10441     return llvm::None;
10442   }
10443 }
10444 
10445 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10446   Expr *SubExpr = E->getSubExpr();
10447   const auto *VD = SubExpr->getType()->castAs<VectorType>();
10448   // This result element type differs in the case of negating a floating point
10449   // vector, since the result type is the a vector of the equivilant sized
10450   // integer.
10451   const QualType ResultEltTy = VD->getElementType();
10452   UnaryOperatorKind Op = E->getOpcode();
10453 
10454   APValue SubExprValue;
10455   if (!Evaluate(SubExprValue, Info, SubExpr))
10456     return false;
10457 
10458   // FIXME: This vector evaluator someday needs to be changed to be LValue
10459   // aware/keep LValue information around, rather than dealing with just vector
10460   // types directly. Until then, we cannot handle cases where the operand to
10461   // these unary operators is an LValue. The only case I've been able to see
10462   // cause this is operator++ assigning to a member expression (only valid in
10463   // altivec compilations) in C mode, so this shouldn't limit us too much.
10464   if (SubExprValue.isLValue())
10465     return false;
10466 
10467   assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
10468          "Vector length doesn't match type?");
10469 
10470   SmallVector<APValue, 4> ResultElements;
10471   for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10472     llvm::Optional<APValue> Elt = handleVectorUnaryOperator(
10473         Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum));
10474     if (!Elt)
10475       return false;
10476     ResultElements.push_back(*Elt);
10477   }
10478   return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10479 }
10480 
10481 //===----------------------------------------------------------------------===//
10482 // Array Evaluation
10483 //===----------------------------------------------------------------------===//
10484 
10485 namespace {
10486   class ArrayExprEvaluator
10487   : public ExprEvaluatorBase<ArrayExprEvaluator> {
10488     const LValue &This;
10489     APValue &Result;
10490   public:
10491 
10492     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10493       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10494 
10495     bool Success(const APValue &V, const Expr *E) {
10496       assert(V.isArray() && "expected array");
10497       Result = V;
10498       return true;
10499     }
10500 
10501     bool ZeroInitialization(const Expr *E) {
10502       const ConstantArrayType *CAT =
10503           Info.Ctx.getAsConstantArrayType(E->getType());
10504       if (!CAT) {
10505         if (E->getType()->isIncompleteArrayType()) {
10506           // We can be asked to zero-initialize a flexible array member; this
10507           // is represented as an ImplicitValueInitExpr of incomplete array
10508           // type. In this case, the array has zero elements.
10509           Result = APValue(APValue::UninitArray(), 0, 0);
10510           return true;
10511         }
10512         // FIXME: We could handle VLAs here.
10513         return Error(E);
10514       }
10515 
10516       Result = APValue(APValue::UninitArray(), 0,
10517                        CAT->getSize().getZExtValue());
10518       if (!Result.hasArrayFiller())
10519         return true;
10520 
10521       // Zero-initialize all elements.
10522       LValue Subobject = This;
10523       Subobject.addArray(Info, E, CAT);
10524       ImplicitValueInitExpr VIE(CAT->getElementType());
10525       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10526     }
10527 
10528     bool VisitCallExpr(const CallExpr *E) {
10529       return handleCallExpr(E, Result, &This);
10530     }
10531     bool VisitInitListExpr(const InitListExpr *E,
10532                            QualType AllocType = QualType());
10533     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10534     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10535     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10536                                const LValue &Subobject,
10537                                APValue *Value, QualType Type);
10538     bool VisitStringLiteral(const StringLiteral *E,
10539                             QualType AllocType = QualType()) {
10540       expandStringLiteral(Info, E, Result, AllocType);
10541       return true;
10542     }
10543   };
10544 } // end anonymous namespace
10545 
10546 static bool EvaluateArray(const Expr *E, const LValue &This,
10547                           APValue &Result, EvalInfo &Info) {
10548   assert(!E->isValueDependent());
10549   assert(E->isPRValue() && E->getType()->isArrayType() &&
10550          "not an array prvalue");
10551   return ArrayExprEvaluator(Info, This, Result).Visit(E);
10552 }
10553 
10554 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10555                                      APValue &Result, const InitListExpr *ILE,
10556                                      QualType AllocType) {
10557   assert(!ILE->isValueDependent());
10558   assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
10559          "not an array prvalue");
10560   return ArrayExprEvaluator(Info, This, Result)
10561       .VisitInitListExpr(ILE, AllocType);
10562 }
10563 
10564 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10565                                           APValue &Result,
10566                                           const CXXConstructExpr *CCE,
10567                                           QualType AllocType) {
10568   assert(!CCE->isValueDependent());
10569   assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
10570          "not an array prvalue");
10571   return ArrayExprEvaluator(Info, This, Result)
10572       .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
10573 }
10574 
10575 // Return true iff the given array filler may depend on the element index.
10576 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10577   // For now, just allow non-class value-initialization and initialization
10578   // lists comprised of them.
10579   if (isa<ImplicitValueInitExpr>(FillerExpr))
10580     return false;
10581   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10582     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10583       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10584         return true;
10585     }
10586     return false;
10587   }
10588   return true;
10589 }
10590 
10591 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10592                                            QualType AllocType) {
10593   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10594       AllocType.isNull() ? E->getType() : AllocType);
10595   if (!CAT)
10596     return Error(E);
10597 
10598   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10599   // an appropriately-typed string literal enclosed in braces.
10600   if (E->isStringLiteralInit()) {
10601     auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts());
10602     // FIXME: Support ObjCEncodeExpr here once we support it in
10603     // ArrayExprEvaluator generally.
10604     if (!SL)
10605       return Error(E);
10606     return VisitStringLiteral(SL, AllocType);
10607   }
10608   // Any other transparent list init will need proper handling of the
10609   // AllocType; we can't just recurse to the inner initializer.
10610   assert(!E->isTransparent() &&
10611          "transparent array list initialization is not string literal init?");
10612 
10613   bool Success = true;
10614 
10615   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
10616          "zero-initialized array shouldn't have any initialized elts");
10617   APValue Filler;
10618   if (Result.isArray() && Result.hasArrayFiller())
10619     Filler = Result.getArrayFiller();
10620 
10621   unsigned NumEltsToInit = E->getNumInits();
10622   unsigned NumElts = CAT->getSize().getZExtValue();
10623   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
10624 
10625   // If the initializer might depend on the array index, run it for each
10626   // array element.
10627   if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
10628     NumEltsToInit = NumElts;
10629 
10630   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
10631                           << NumEltsToInit << ".\n");
10632 
10633   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
10634 
10635   // If the array was previously zero-initialized, preserve the
10636   // zero-initialized values.
10637   if (Filler.hasValue()) {
10638     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
10639       Result.getArrayInitializedElt(I) = Filler;
10640     if (Result.hasArrayFiller())
10641       Result.getArrayFiller() = Filler;
10642   }
10643 
10644   LValue Subobject = This;
10645   Subobject.addArray(Info, E, CAT);
10646   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
10647     const Expr *Init =
10648         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
10649     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10650                          Info, Subobject, Init) ||
10651         !HandleLValueArrayAdjustment(Info, Init, Subobject,
10652                                      CAT->getElementType(), 1)) {
10653       if (!Info.noteFailure())
10654         return false;
10655       Success = false;
10656     }
10657   }
10658 
10659   if (!Result.hasArrayFiller())
10660     return Success;
10661 
10662   // If we get here, we have a trivial filler, which we can just evaluate
10663   // once and splat over the rest of the array elements.
10664   assert(FillerExpr && "no array filler for incomplete init list");
10665   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
10666                          FillerExpr) && Success;
10667 }
10668 
10669 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
10670   LValue CommonLV;
10671   if (E->getCommonExpr() &&
10672       !Evaluate(Info.CurrentCall->createTemporary(
10673                     E->getCommonExpr(),
10674                     getStorageType(Info.Ctx, E->getCommonExpr()),
10675                     ScopeKind::FullExpression, CommonLV),
10676                 Info, E->getCommonExpr()->getSourceExpr()))
10677     return false;
10678 
10679   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
10680 
10681   uint64_t Elements = CAT->getSize().getZExtValue();
10682   Result = APValue(APValue::UninitArray(), Elements, Elements);
10683 
10684   LValue Subobject = This;
10685   Subobject.addArray(Info, E, CAT);
10686 
10687   bool Success = true;
10688   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
10689     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10690                          Info, Subobject, E->getSubExpr()) ||
10691         !HandleLValueArrayAdjustment(Info, E, Subobject,
10692                                      CAT->getElementType(), 1)) {
10693       if (!Info.noteFailure())
10694         return false;
10695       Success = false;
10696     }
10697   }
10698 
10699   return Success;
10700 }
10701 
10702 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
10703   return VisitCXXConstructExpr(E, This, &Result, E->getType());
10704 }
10705 
10706 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10707                                                const LValue &Subobject,
10708                                                APValue *Value,
10709                                                QualType Type) {
10710   bool HadZeroInit = Value->hasValue();
10711 
10712   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
10713     unsigned FinalSize = CAT->getSize().getZExtValue();
10714 
10715     // Preserve the array filler if we had prior zero-initialization.
10716     APValue Filler =
10717       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
10718                                              : APValue();
10719 
10720     *Value = APValue(APValue::UninitArray(), 0, FinalSize);
10721     if (FinalSize == 0)
10722       return true;
10723 
10724     LValue ArrayElt = Subobject;
10725     ArrayElt.addArray(Info, E, CAT);
10726     // We do the whole initialization in two passes, first for just one element,
10727     // then for the whole array. It's possible we may find out we can't do const
10728     // init in the first pass, in which case we avoid allocating a potentially
10729     // large array. We don't do more passes because expanding array requires
10730     // copying the data, which is wasteful.
10731     for (const unsigned N : {1u, FinalSize}) {
10732       unsigned OldElts = Value->getArrayInitializedElts();
10733       if (OldElts == N)
10734         break;
10735 
10736       // Expand the array to appropriate size.
10737       APValue NewValue(APValue::UninitArray(), N, FinalSize);
10738       for (unsigned I = 0; I < OldElts; ++I)
10739         NewValue.getArrayInitializedElt(I).swap(
10740             Value->getArrayInitializedElt(I));
10741       Value->swap(NewValue);
10742 
10743       if (HadZeroInit)
10744         for (unsigned I = OldElts; I < N; ++I)
10745           Value->getArrayInitializedElt(I) = Filler;
10746 
10747       // Initialize the elements.
10748       for (unsigned I = OldElts; I < N; ++I) {
10749         if (!VisitCXXConstructExpr(E, ArrayElt,
10750                                    &Value->getArrayInitializedElt(I),
10751                                    CAT->getElementType()) ||
10752             !HandleLValueArrayAdjustment(Info, E, ArrayElt,
10753                                          CAT->getElementType(), 1))
10754           return false;
10755         // When checking for const initilization any diagnostic is considered
10756         // an error.
10757         if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
10758             !Info.keepEvaluatingAfterFailure())
10759           return false;
10760       }
10761     }
10762 
10763     return true;
10764   }
10765 
10766   if (!Type->isRecordType())
10767     return Error(E);
10768 
10769   return RecordExprEvaluator(Info, Subobject, *Value)
10770              .VisitCXXConstructExpr(E, Type);
10771 }
10772 
10773 //===----------------------------------------------------------------------===//
10774 // Integer Evaluation
10775 //
10776 // As a GNU extension, we support casting pointers to sufficiently-wide integer
10777 // types and back in constant folding. Integer values are thus represented
10778 // either as an integer-valued APValue, or as an lvalue-valued APValue.
10779 //===----------------------------------------------------------------------===//
10780 
10781 namespace {
10782 class IntExprEvaluator
10783         : public ExprEvaluatorBase<IntExprEvaluator> {
10784   APValue &Result;
10785 public:
10786   IntExprEvaluator(EvalInfo &info, APValue &result)
10787       : ExprEvaluatorBaseTy(info), Result(result) {}
10788 
10789   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
10790     assert(E->getType()->isIntegralOrEnumerationType() &&
10791            "Invalid evaluation result.");
10792     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
10793            "Invalid evaluation result.");
10794     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10795            "Invalid evaluation result.");
10796     Result = APValue(SI);
10797     return true;
10798   }
10799   bool Success(const llvm::APSInt &SI, const Expr *E) {
10800     return Success(SI, E, Result);
10801   }
10802 
10803   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
10804     assert(E->getType()->isIntegralOrEnumerationType() &&
10805            "Invalid evaluation result.");
10806     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10807            "Invalid evaluation result.");
10808     Result = APValue(APSInt(I));
10809     Result.getInt().setIsUnsigned(
10810                             E->getType()->isUnsignedIntegerOrEnumerationType());
10811     return true;
10812   }
10813   bool Success(const llvm::APInt &I, const Expr *E) {
10814     return Success(I, E, Result);
10815   }
10816 
10817   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
10818     assert(E->getType()->isIntegralOrEnumerationType() &&
10819            "Invalid evaluation result.");
10820     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
10821     return true;
10822   }
10823   bool Success(uint64_t Value, const Expr *E) {
10824     return Success(Value, E, Result);
10825   }
10826 
10827   bool Success(CharUnits Size, const Expr *E) {
10828     return Success(Size.getQuantity(), E);
10829   }
10830 
10831   bool Success(const APValue &V, const Expr *E) {
10832     if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
10833       Result = V;
10834       return true;
10835     }
10836     return Success(V.getInt(), E);
10837   }
10838 
10839   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
10840 
10841   //===--------------------------------------------------------------------===//
10842   //                            Visitor Methods
10843   //===--------------------------------------------------------------------===//
10844 
10845   bool VisitIntegerLiteral(const IntegerLiteral *E) {
10846     return Success(E->getValue(), E);
10847   }
10848   bool VisitCharacterLiteral(const CharacterLiteral *E) {
10849     return Success(E->getValue(), E);
10850   }
10851 
10852   bool CheckReferencedDecl(const Expr *E, const Decl *D);
10853   bool VisitDeclRefExpr(const DeclRefExpr *E) {
10854     if (CheckReferencedDecl(E, E->getDecl()))
10855       return true;
10856 
10857     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
10858   }
10859   bool VisitMemberExpr(const MemberExpr *E) {
10860     if (CheckReferencedDecl(E, E->getMemberDecl())) {
10861       VisitIgnoredBaseExpression(E->getBase());
10862       return true;
10863     }
10864 
10865     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
10866   }
10867 
10868   bool VisitCallExpr(const CallExpr *E);
10869   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
10870   bool VisitBinaryOperator(const BinaryOperator *E);
10871   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
10872   bool VisitUnaryOperator(const UnaryOperator *E);
10873 
10874   bool VisitCastExpr(const CastExpr* E);
10875   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
10876 
10877   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
10878     return Success(E->getValue(), E);
10879   }
10880 
10881   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
10882     return Success(E->getValue(), E);
10883   }
10884 
10885   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
10886     if (Info.ArrayInitIndex == uint64_t(-1)) {
10887       // We were asked to evaluate this subexpression independent of the
10888       // enclosing ArrayInitLoopExpr. We can't do that.
10889       Info.FFDiag(E);
10890       return false;
10891     }
10892     return Success(Info.ArrayInitIndex, E);
10893   }
10894 
10895   // Note, GNU defines __null as an integer, not a pointer.
10896   bool VisitGNUNullExpr(const GNUNullExpr *E) {
10897     return ZeroInitialization(E);
10898   }
10899 
10900   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
10901     return Success(E->getValue(), E);
10902   }
10903 
10904   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
10905     return Success(E->getValue(), E);
10906   }
10907 
10908   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
10909     return Success(E->getValue(), E);
10910   }
10911 
10912   bool VisitUnaryReal(const UnaryOperator *E);
10913   bool VisitUnaryImag(const UnaryOperator *E);
10914 
10915   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
10916   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
10917   bool VisitSourceLocExpr(const SourceLocExpr *E);
10918   bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
10919   bool VisitRequiresExpr(const RequiresExpr *E);
10920   // FIXME: Missing: array subscript of vector, member of vector
10921 };
10922 
10923 class FixedPointExprEvaluator
10924     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
10925   APValue &Result;
10926 
10927  public:
10928   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
10929       : ExprEvaluatorBaseTy(info), Result(result) {}
10930 
10931   bool Success(const llvm::APInt &I, const Expr *E) {
10932     return Success(
10933         APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10934   }
10935 
10936   bool Success(uint64_t Value, const Expr *E) {
10937     return Success(
10938         APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10939   }
10940 
10941   bool Success(const APValue &V, const Expr *E) {
10942     return Success(V.getFixedPoint(), E);
10943   }
10944 
10945   bool Success(const APFixedPoint &V, const Expr *E) {
10946     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
10947     assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10948            "Invalid evaluation result.");
10949     Result = APValue(V);
10950     return true;
10951   }
10952 
10953   //===--------------------------------------------------------------------===//
10954   //                            Visitor Methods
10955   //===--------------------------------------------------------------------===//
10956 
10957   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
10958     return Success(E->getValue(), E);
10959   }
10960 
10961   bool VisitCastExpr(const CastExpr *E);
10962   bool VisitUnaryOperator(const UnaryOperator *E);
10963   bool VisitBinaryOperator(const BinaryOperator *E);
10964 };
10965 } // end anonymous namespace
10966 
10967 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
10968 /// produce either the integer value or a pointer.
10969 ///
10970 /// GCC has a heinous extension which folds casts between pointer types and
10971 /// pointer-sized integral types. We support this by allowing the evaluation of
10972 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
10973 /// Some simple arithmetic on such values is supported (they are treated much
10974 /// like char*).
10975 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
10976                                     EvalInfo &Info) {
10977   assert(!E->isValueDependent());
10978   assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
10979   return IntExprEvaluator(Info, Result).Visit(E);
10980 }
10981 
10982 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
10983   assert(!E->isValueDependent());
10984   APValue Val;
10985   if (!EvaluateIntegerOrLValue(E, Val, Info))
10986     return false;
10987   if (!Val.isInt()) {
10988     // FIXME: It would be better to produce the diagnostic for casting
10989     //        a pointer to an integer.
10990     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
10991     return false;
10992   }
10993   Result = Val.getInt();
10994   return true;
10995 }
10996 
10997 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
10998   APValue Evaluated = E->EvaluateInContext(
10999       Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
11000   return Success(Evaluated, E);
11001 }
11002 
11003 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
11004                                EvalInfo &Info) {
11005   assert(!E->isValueDependent());
11006   if (E->getType()->isFixedPointType()) {
11007     APValue Val;
11008     if (!FixedPointExprEvaluator(Info, Val).Visit(E))
11009       return false;
11010     if (!Val.isFixedPoint())
11011       return false;
11012 
11013     Result = Val.getFixedPoint();
11014     return true;
11015   }
11016   return false;
11017 }
11018 
11019 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
11020                                         EvalInfo &Info) {
11021   assert(!E->isValueDependent());
11022   if (E->getType()->isIntegerType()) {
11023     auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
11024     APSInt Val;
11025     if (!EvaluateInteger(E, Val, Info))
11026       return false;
11027     Result = APFixedPoint(Val, FXSema);
11028     return true;
11029   } else if (E->getType()->isFixedPointType()) {
11030     return EvaluateFixedPoint(E, Result, Info);
11031   }
11032   return false;
11033 }
11034 
11035 /// Check whether the given declaration can be directly converted to an integral
11036 /// rvalue. If not, no diagnostic is produced; there are other things we can
11037 /// try.
11038 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
11039   // Enums are integer constant exprs.
11040   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
11041     // Check for signedness/width mismatches between E type and ECD value.
11042     bool SameSign = (ECD->getInitVal().isSigned()
11043                      == E->getType()->isSignedIntegerOrEnumerationType());
11044     bool SameWidth = (ECD->getInitVal().getBitWidth()
11045                       == Info.Ctx.getIntWidth(E->getType()));
11046     if (SameSign && SameWidth)
11047       return Success(ECD->getInitVal(), E);
11048     else {
11049       // Get rid of mismatch (otherwise Success assertions will fail)
11050       // by computing a new value matching the type of E.
11051       llvm::APSInt Val = ECD->getInitVal();
11052       if (!SameSign)
11053         Val.setIsSigned(!ECD->getInitVal().isSigned());
11054       if (!SameWidth)
11055         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
11056       return Success(Val, E);
11057     }
11058   }
11059   return false;
11060 }
11061 
11062 /// Values returned by __builtin_classify_type, chosen to match the values
11063 /// produced by GCC's builtin.
11064 enum class GCCTypeClass {
11065   None = -1,
11066   Void = 0,
11067   Integer = 1,
11068   // GCC reserves 2 for character types, but instead classifies them as
11069   // integers.
11070   Enum = 3,
11071   Bool = 4,
11072   Pointer = 5,
11073   // GCC reserves 6 for references, but appears to never use it (because
11074   // expressions never have reference type, presumably).
11075   PointerToDataMember = 7,
11076   RealFloat = 8,
11077   Complex = 9,
11078   // GCC reserves 10 for functions, but does not use it since GCC version 6 due
11079   // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
11080   // GCC claims to reserve 11 for pointers to member functions, but *actually*
11081   // uses 12 for that purpose, same as for a class or struct. Maybe it
11082   // internally implements a pointer to member as a struct?  Who knows.
11083   PointerToMemberFunction = 12, // Not a bug, see above.
11084   ClassOrStruct = 12,
11085   Union = 13,
11086   // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
11087   // decay to pointer. (Prior to version 6 it was only used in C++ mode).
11088   // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
11089   // literals.
11090 };
11091 
11092 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11093 /// as GCC.
11094 static GCCTypeClass
11095 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
11096   assert(!T->isDependentType() && "unexpected dependent type");
11097 
11098   QualType CanTy = T.getCanonicalType();
11099   const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
11100 
11101   switch (CanTy->getTypeClass()) {
11102 #define TYPE(ID, BASE)
11103 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11104 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11105 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11106 #include "clang/AST/TypeNodes.inc"
11107   case Type::Auto:
11108   case Type::DeducedTemplateSpecialization:
11109       llvm_unreachable("unexpected non-canonical or dependent type");
11110 
11111   case Type::Builtin:
11112     switch (BT->getKind()) {
11113 #define BUILTIN_TYPE(ID, SINGLETON_ID)
11114 #define SIGNED_TYPE(ID, SINGLETON_ID) \
11115     case BuiltinType::ID: return GCCTypeClass::Integer;
11116 #define FLOATING_TYPE(ID, SINGLETON_ID) \
11117     case BuiltinType::ID: return GCCTypeClass::RealFloat;
11118 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11119     case BuiltinType::ID: break;
11120 #include "clang/AST/BuiltinTypes.def"
11121     case BuiltinType::Void:
11122       return GCCTypeClass::Void;
11123 
11124     case BuiltinType::Bool:
11125       return GCCTypeClass::Bool;
11126 
11127     case BuiltinType::Char_U:
11128     case BuiltinType::UChar:
11129     case BuiltinType::WChar_U:
11130     case BuiltinType::Char8:
11131     case BuiltinType::Char16:
11132     case BuiltinType::Char32:
11133     case BuiltinType::UShort:
11134     case BuiltinType::UInt:
11135     case BuiltinType::ULong:
11136     case BuiltinType::ULongLong:
11137     case BuiltinType::UInt128:
11138       return GCCTypeClass::Integer;
11139 
11140     case BuiltinType::UShortAccum:
11141     case BuiltinType::UAccum:
11142     case BuiltinType::ULongAccum:
11143     case BuiltinType::UShortFract:
11144     case BuiltinType::UFract:
11145     case BuiltinType::ULongFract:
11146     case BuiltinType::SatUShortAccum:
11147     case BuiltinType::SatUAccum:
11148     case BuiltinType::SatULongAccum:
11149     case BuiltinType::SatUShortFract:
11150     case BuiltinType::SatUFract:
11151     case BuiltinType::SatULongFract:
11152       return GCCTypeClass::None;
11153 
11154     case BuiltinType::NullPtr:
11155 
11156     case BuiltinType::ObjCId:
11157     case BuiltinType::ObjCClass:
11158     case BuiltinType::ObjCSel:
11159 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11160     case BuiltinType::Id:
11161 #include "clang/Basic/OpenCLImageTypes.def"
11162 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11163     case BuiltinType::Id:
11164 #include "clang/Basic/OpenCLExtensionTypes.def"
11165     case BuiltinType::OCLSampler:
11166     case BuiltinType::OCLEvent:
11167     case BuiltinType::OCLClkEvent:
11168     case BuiltinType::OCLQueue:
11169     case BuiltinType::OCLReserveID:
11170 #define SVE_TYPE(Name, Id, SingletonId) \
11171     case BuiltinType::Id:
11172 #include "clang/Basic/AArch64SVEACLETypes.def"
11173 #define PPC_VECTOR_TYPE(Name, Id, Size) \
11174     case BuiltinType::Id:
11175 #include "clang/Basic/PPCTypes.def"
11176 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11177 #include "clang/Basic/RISCVVTypes.def"
11178       return GCCTypeClass::None;
11179 
11180     case BuiltinType::Dependent:
11181       llvm_unreachable("unexpected dependent type");
11182     };
11183     llvm_unreachable("unexpected placeholder type");
11184 
11185   case Type::Enum:
11186     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11187 
11188   case Type::Pointer:
11189   case Type::ConstantArray:
11190   case Type::VariableArray:
11191   case Type::IncompleteArray:
11192   case Type::FunctionNoProto:
11193   case Type::FunctionProto:
11194     return GCCTypeClass::Pointer;
11195 
11196   case Type::MemberPointer:
11197     return CanTy->isMemberDataPointerType()
11198                ? GCCTypeClass::PointerToDataMember
11199                : GCCTypeClass::PointerToMemberFunction;
11200 
11201   case Type::Complex:
11202     return GCCTypeClass::Complex;
11203 
11204   case Type::Record:
11205     return CanTy->isUnionType() ? GCCTypeClass::Union
11206                                 : GCCTypeClass::ClassOrStruct;
11207 
11208   case Type::Atomic:
11209     // GCC classifies _Atomic T the same as T.
11210     return EvaluateBuiltinClassifyType(
11211         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11212 
11213   case Type::BlockPointer:
11214   case Type::Vector:
11215   case Type::ExtVector:
11216   case Type::ConstantMatrix:
11217   case Type::ObjCObject:
11218   case Type::ObjCInterface:
11219   case Type::ObjCObjectPointer:
11220   case Type::Pipe:
11221   case Type::BitInt:
11222     // GCC classifies vectors as None. We follow its lead and classify all
11223     // other types that don't fit into the regular classification the same way.
11224     return GCCTypeClass::None;
11225 
11226   case Type::LValueReference:
11227   case Type::RValueReference:
11228     llvm_unreachable("invalid type for expression");
11229   }
11230 
11231   llvm_unreachable("unexpected type class");
11232 }
11233 
11234 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11235 /// as GCC.
11236 static GCCTypeClass
11237 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11238   // If no argument was supplied, default to None. This isn't
11239   // ideal, however it is what gcc does.
11240   if (E->getNumArgs() == 0)
11241     return GCCTypeClass::None;
11242 
11243   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11244   // being an ICE, but still folds it to a constant using the type of the first
11245   // argument.
11246   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11247 }
11248 
11249 /// EvaluateBuiltinConstantPForLValue - Determine the result of
11250 /// __builtin_constant_p when applied to the given pointer.
11251 ///
11252 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
11253 /// or it points to the first character of a string literal.
11254 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11255   APValue::LValueBase Base = LV.getLValueBase();
11256   if (Base.isNull()) {
11257     // A null base is acceptable.
11258     return true;
11259   } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11260     if (!isa<StringLiteral>(E))
11261       return false;
11262     return LV.getLValueOffset().isZero();
11263   } else if (Base.is<TypeInfoLValue>()) {
11264     // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11265     // evaluate to true.
11266     return true;
11267   } else {
11268     // Any other base is not constant enough for GCC.
11269     return false;
11270   }
11271 }
11272 
11273 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11274 /// GCC as we can manage.
11275 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11276   // This evaluation is not permitted to have side-effects, so evaluate it in
11277   // a speculative evaluation context.
11278   SpeculativeEvaluationRAII SpeculativeEval(Info);
11279 
11280   // Constant-folding is always enabled for the operand of __builtin_constant_p
11281   // (even when the enclosing evaluation context otherwise requires a strict
11282   // language-specific constant expression).
11283   FoldConstant Fold(Info, true);
11284 
11285   QualType ArgType = Arg->getType();
11286 
11287   // __builtin_constant_p always has one operand. The rules which gcc follows
11288   // are not precisely documented, but are as follows:
11289   //
11290   //  - If the operand is of integral, floating, complex or enumeration type,
11291   //    and can be folded to a known value of that type, it returns 1.
11292   //  - If the operand can be folded to a pointer to the first character
11293   //    of a string literal (or such a pointer cast to an integral type)
11294   //    or to a null pointer or an integer cast to a pointer, it returns 1.
11295   //
11296   // Otherwise, it returns 0.
11297   //
11298   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11299   // its support for this did not work prior to GCC 9 and is not yet well
11300   // understood.
11301   if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11302       ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11303       ArgType->isNullPtrType()) {
11304     APValue V;
11305     if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
11306       Fold.keepDiagnostics();
11307       return false;
11308     }
11309 
11310     // For a pointer (possibly cast to integer), there are special rules.
11311     if (V.getKind() == APValue::LValue)
11312       return EvaluateBuiltinConstantPForLValue(V);
11313 
11314     // Otherwise, any constant value is good enough.
11315     return V.hasValue();
11316   }
11317 
11318   // Anything else isn't considered to be sufficiently constant.
11319   return false;
11320 }
11321 
11322 /// Retrieves the "underlying object type" of the given expression,
11323 /// as used by __builtin_object_size.
11324 static QualType getObjectType(APValue::LValueBase B) {
11325   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11326     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
11327       return VD->getType();
11328   } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11329     if (isa<CompoundLiteralExpr>(E))
11330       return E->getType();
11331   } else if (B.is<TypeInfoLValue>()) {
11332     return B.getTypeInfoType();
11333   } else if (B.is<DynamicAllocLValue>()) {
11334     return B.getDynamicAllocType();
11335   }
11336 
11337   return QualType();
11338 }
11339 
11340 /// A more selective version of E->IgnoreParenCasts for
11341 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11342 /// to change the type of E.
11343 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11344 ///
11345 /// Always returns an RValue with a pointer representation.
11346 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11347   assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
11348 
11349   auto *NoParens = E->IgnoreParens();
11350   auto *Cast = dyn_cast<CastExpr>(NoParens);
11351   if (Cast == nullptr)
11352     return NoParens;
11353 
11354   // We only conservatively allow a few kinds of casts, because this code is
11355   // inherently a simple solution that seeks to support the common case.
11356   auto CastKind = Cast->getCastKind();
11357   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11358       CastKind != CK_AddressSpaceConversion)
11359     return NoParens;
11360 
11361   auto *SubExpr = Cast->getSubExpr();
11362   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
11363     return NoParens;
11364   return ignorePointerCastsAndParens(SubExpr);
11365 }
11366 
11367 /// Checks to see if the given LValue's Designator is at the end of the LValue's
11368 /// record layout. e.g.
11369 ///   struct { struct { int a, b; } fst, snd; } obj;
11370 ///   obj.fst   // no
11371 ///   obj.snd   // yes
11372 ///   obj.fst.a // no
11373 ///   obj.fst.b // no
11374 ///   obj.snd.a // no
11375 ///   obj.snd.b // yes
11376 ///
11377 /// Please note: this function is specialized for how __builtin_object_size
11378 /// views "objects".
11379 ///
11380 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
11381 /// correct result, it will always return true.
11382 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11383   assert(!LVal.Designator.Invalid);
11384 
11385   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11386     const RecordDecl *Parent = FD->getParent();
11387     Invalid = Parent->isInvalidDecl();
11388     if (Invalid || Parent->isUnion())
11389       return true;
11390     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
11391     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11392   };
11393 
11394   auto &Base = LVal.getLValueBase();
11395   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
11396     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
11397       bool Invalid;
11398       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11399         return Invalid;
11400     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
11401       for (auto *FD : IFD->chain()) {
11402         bool Invalid;
11403         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
11404           return Invalid;
11405       }
11406     }
11407   }
11408 
11409   unsigned I = 0;
11410   QualType BaseType = getType(Base);
11411   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11412     // If we don't know the array bound, conservatively assume we're looking at
11413     // the final array element.
11414     ++I;
11415     if (BaseType->isIncompleteArrayType())
11416       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
11417     else
11418       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11419   }
11420 
11421   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11422     const auto &Entry = LVal.Designator.Entries[I];
11423     if (BaseType->isArrayType()) {
11424       // Because __builtin_object_size treats arrays as objects, we can ignore
11425       // the index iff this is the last array in the Designator.
11426       if (I + 1 == E)
11427         return true;
11428       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
11429       uint64_t Index = Entry.getAsArrayIndex();
11430       if (Index + 1 != CAT->getSize())
11431         return false;
11432       BaseType = CAT->getElementType();
11433     } else if (BaseType->isAnyComplexType()) {
11434       const auto *CT = BaseType->castAs<ComplexType>();
11435       uint64_t Index = Entry.getAsArrayIndex();
11436       if (Index != 1)
11437         return false;
11438       BaseType = CT->getElementType();
11439     } else if (auto *FD = getAsField(Entry)) {
11440       bool Invalid;
11441       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11442         return Invalid;
11443       BaseType = FD->getType();
11444     } else {
11445       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11446       return false;
11447     }
11448   }
11449   return true;
11450 }
11451 
11452 /// Tests to see if the LValue has a user-specified designator (that isn't
11453 /// necessarily valid). Note that this always returns 'true' if the LValue has
11454 /// an unsized array as its first designator entry, because there's currently no
11455 /// way to tell if the user typed *foo or foo[0].
11456 static bool refersToCompleteObject(const LValue &LVal) {
11457   if (LVal.Designator.Invalid)
11458     return false;
11459 
11460   if (!LVal.Designator.Entries.empty())
11461     return LVal.Designator.isMostDerivedAnUnsizedArray();
11462 
11463   if (!LVal.InvalidBase)
11464     return true;
11465 
11466   // If `E` is a MemberExpr, then the first part of the designator is hiding in
11467   // the LValueBase.
11468   const auto *E = LVal.Base.dyn_cast<const Expr *>();
11469   return !E || !isa<MemberExpr>(E);
11470 }
11471 
11472 /// Attempts to detect a user writing into a piece of memory that's impossible
11473 /// to figure out the size of by just using types.
11474 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11475   const SubobjectDesignator &Designator = LVal.Designator;
11476   // Notes:
11477   // - Users can only write off of the end when we have an invalid base. Invalid
11478   //   bases imply we don't know where the memory came from.
11479   // - We used to be a bit more aggressive here; we'd only be conservative if
11480   //   the array at the end was flexible, or if it had 0 or 1 elements. This
11481   //   broke some common standard library extensions (PR30346), but was
11482   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
11483   //   with some sort of list. OTOH, it seems that GCC is always
11484   //   conservative with the last element in structs (if it's an array), so our
11485   //   current behavior is more compatible than an explicit list approach would
11486   //   be.
11487   return LVal.InvalidBase &&
11488          Designator.Entries.size() == Designator.MostDerivedPathLength &&
11489          Designator.MostDerivedIsArrayElement &&
11490          isDesignatorAtObjectEnd(Ctx, LVal);
11491 }
11492 
11493 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11494 /// Fails if the conversion would cause loss of precision.
11495 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11496                                             CharUnits &Result) {
11497   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11498   if (Int.ugt(CharUnitsMax))
11499     return false;
11500   Result = CharUnits::fromQuantity(Int.getZExtValue());
11501   return true;
11502 }
11503 
11504 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11505 /// determine how many bytes exist from the beginning of the object to either
11506 /// the end of the current subobject, or the end of the object itself, depending
11507 /// on what the LValue looks like + the value of Type.
11508 ///
11509 /// If this returns false, the value of Result is undefined.
11510 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
11511                                unsigned Type, const LValue &LVal,
11512                                CharUnits &EndOffset) {
11513   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
11514 
11515   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
11516     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
11517       return false;
11518     return HandleSizeof(Info, ExprLoc, Ty, Result);
11519   };
11520 
11521   // We want to evaluate the size of the entire object. This is a valid fallback
11522   // for when Type=1 and the designator is invalid, because we're asked for an
11523   // upper-bound.
11524   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
11525     // Type=3 wants a lower bound, so we can't fall back to this.
11526     if (Type == 3 && !DetermineForCompleteObject)
11527       return false;
11528 
11529     llvm::APInt APEndOffset;
11530     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11531         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11532       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11533 
11534     if (LVal.InvalidBase)
11535       return false;
11536 
11537     QualType BaseTy = getObjectType(LVal.getLValueBase());
11538     return CheckedHandleSizeof(BaseTy, EndOffset);
11539   }
11540 
11541   // We want to evaluate the size of a subobject.
11542   const SubobjectDesignator &Designator = LVal.Designator;
11543 
11544   // The following is a moderately common idiom in C:
11545   //
11546   // struct Foo { int a; char c[1]; };
11547   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
11548   // strcpy(&F->c[0], Bar);
11549   //
11550   // In order to not break too much legacy code, we need to support it.
11551   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
11552     // If we can resolve this to an alloc_size call, we can hand that back,
11553     // because we know for certain how many bytes there are to write to.
11554     llvm::APInt APEndOffset;
11555     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11556         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11557       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11558 
11559     // If we cannot determine the size of the initial allocation, then we can't
11560     // given an accurate upper-bound. However, we are still able to give
11561     // conservative lower-bounds for Type=3.
11562     if (Type == 1)
11563       return false;
11564   }
11565 
11566   CharUnits BytesPerElem;
11567   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
11568     return false;
11569 
11570   // According to the GCC documentation, we want the size of the subobject
11571   // denoted by the pointer. But that's not quite right -- what we actually
11572   // want is the size of the immediately-enclosing array, if there is one.
11573   int64_t ElemsRemaining;
11574   if (Designator.MostDerivedIsArrayElement &&
11575       Designator.Entries.size() == Designator.MostDerivedPathLength) {
11576     uint64_t ArraySize = Designator.getMostDerivedArraySize();
11577     uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
11578     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
11579   } else {
11580     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
11581   }
11582 
11583   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
11584   return true;
11585 }
11586 
11587 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
11588 /// returns true and stores the result in @p Size.
11589 ///
11590 /// If @p WasError is non-null, this will report whether the failure to evaluate
11591 /// is to be treated as an Error in IntExprEvaluator.
11592 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
11593                                          EvalInfo &Info, uint64_t &Size) {
11594   // Determine the denoted object.
11595   LValue LVal;
11596   {
11597     // The operand of __builtin_object_size is never evaluated for side-effects.
11598     // If there are any, but we can determine the pointed-to object anyway, then
11599     // ignore the side-effects.
11600     SpeculativeEvaluationRAII SpeculativeEval(Info);
11601     IgnoreSideEffectsRAII Fold(Info);
11602 
11603     if (E->isGLValue()) {
11604       // It's possible for us to be given GLValues if we're called via
11605       // Expr::tryEvaluateObjectSize.
11606       APValue RVal;
11607       if (!EvaluateAsRValue(Info, E, RVal))
11608         return false;
11609       LVal.setFrom(Info.Ctx, RVal);
11610     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
11611                                 /*InvalidBaseOK=*/true))
11612       return false;
11613   }
11614 
11615   // If we point to before the start of the object, there are no accessible
11616   // bytes.
11617   if (LVal.getLValueOffset().isNegative()) {
11618     Size = 0;
11619     return true;
11620   }
11621 
11622   CharUnits EndOffset;
11623   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
11624     return false;
11625 
11626   // If we've fallen outside of the end offset, just pretend there's nothing to
11627   // write to/read from.
11628   if (EndOffset <= LVal.getLValueOffset())
11629     Size = 0;
11630   else
11631     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
11632   return true;
11633 }
11634 
11635 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
11636   if (unsigned BuiltinOp = E->getBuiltinCallee())
11637     return VisitBuiltinCallExpr(E, BuiltinOp);
11638 
11639   return ExprEvaluatorBaseTy::VisitCallExpr(E);
11640 }
11641 
11642 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
11643                                      APValue &Val, APSInt &Alignment) {
11644   QualType SrcTy = E->getArg(0)->getType();
11645   if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
11646     return false;
11647   // Even though we are evaluating integer expressions we could get a pointer
11648   // argument for the __builtin_is_aligned() case.
11649   if (SrcTy->isPointerType()) {
11650     LValue Ptr;
11651     if (!EvaluatePointer(E->getArg(0), Ptr, Info))
11652       return false;
11653     Ptr.moveInto(Val);
11654   } else if (!SrcTy->isIntegralOrEnumerationType()) {
11655     Info.FFDiag(E->getArg(0));
11656     return false;
11657   } else {
11658     APSInt SrcInt;
11659     if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
11660       return false;
11661     assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
11662            "Bit widths must be the same");
11663     Val = APValue(SrcInt);
11664   }
11665   assert(Val.hasValue());
11666   return true;
11667 }
11668 
11669 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
11670                                             unsigned BuiltinOp) {
11671   switch (BuiltinOp) {
11672   default:
11673     return ExprEvaluatorBaseTy::VisitCallExpr(E);
11674 
11675   case Builtin::BI__builtin_dynamic_object_size:
11676   case Builtin::BI__builtin_object_size: {
11677     // The type was checked when we built the expression.
11678     unsigned Type =
11679         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11680     assert(Type <= 3 && "unexpected type");
11681 
11682     uint64_t Size;
11683     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
11684       return Success(Size, E);
11685 
11686     if (E->getArg(0)->HasSideEffects(Info.Ctx))
11687       return Success((Type & 2) ? 0 : -1, E);
11688 
11689     // Expression had no side effects, but we couldn't statically determine the
11690     // size of the referenced object.
11691     switch (Info.EvalMode) {
11692     case EvalInfo::EM_ConstantExpression:
11693     case EvalInfo::EM_ConstantFold:
11694     case EvalInfo::EM_IgnoreSideEffects:
11695       // Leave it to IR generation.
11696       return Error(E);
11697     case EvalInfo::EM_ConstantExpressionUnevaluated:
11698       // Reduce it to a constant now.
11699       return Success((Type & 2) ? 0 : -1, E);
11700     }
11701 
11702     llvm_unreachable("unexpected EvalMode");
11703   }
11704 
11705   case Builtin::BI__builtin_os_log_format_buffer_size: {
11706     analyze_os_log::OSLogBufferLayout Layout;
11707     analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
11708     return Success(Layout.size().getQuantity(), E);
11709   }
11710 
11711   case Builtin::BI__builtin_is_aligned: {
11712     APValue Src;
11713     APSInt Alignment;
11714     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11715       return false;
11716     if (Src.isLValue()) {
11717       // If we evaluated a pointer, check the minimum known alignment.
11718       LValue Ptr;
11719       Ptr.setFrom(Info.Ctx, Src);
11720       CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
11721       CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
11722       // We can return true if the known alignment at the computed offset is
11723       // greater than the requested alignment.
11724       assert(PtrAlign.isPowerOfTwo());
11725       assert(Alignment.isPowerOf2());
11726       if (PtrAlign.getQuantity() >= Alignment)
11727         return Success(1, E);
11728       // If the alignment is not known to be sufficient, some cases could still
11729       // be aligned at run time. However, if the requested alignment is less or
11730       // equal to the base alignment and the offset is not aligned, we know that
11731       // the run-time value can never be aligned.
11732       if (BaseAlignment.getQuantity() >= Alignment &&
11733           PtrAlign.getQuantity() < Alignment)
11734         return Success(0, E);
11735       // Otherwise we can't infer whether the value is sufficiently aligned.
11736       // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
11737       //  in cases where we can't fully evaluate the pointer.
11738       Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
11739           << Alignment;
11740       return false;
11741     }
11742     assert(Src.isInt());
11743     return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
11744   }
11745   case Builtin::BI__builtin_align_up: {
11746     APValue Src;
11747     APSInt Alignment;
11748     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11749       return false;
11750     if (!Src.isInt())
11751       return Error(E);
11752     APSInt AlignedVal =
11753         APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
11754                Src.getInt().isUnsigned());
11755     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11756     return Success(AlignedVal, E);
11757   }
11758   case Builtin::BI__builtin_align_down: {
11759     APValue Src;
11760     APSInt Alignment;
11761     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11762       return false;
11763     if (!Src.isInt())
11764       return Error(E);
11765     APSInt AlignedVal =
11766         APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
11767     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11768     return Success(AlignedVal, E);
11769   }
11770 
11771   case Builtin::BI__builtin_bitreverse8:
11772   case Builtin::BI__builtin_bitreverse16:
11773   case Builtin::BI__builtin_bitreverse32:
11774   case Builtin::BI__builtin_bitreverse64: {
11775     APSInt Val;
11776     if (!EvaluateInteger(E->getArg(0), Val, Info))
11777       return false;
11778 
11779     return Success(Val.reverseBits(), E);
11780   }
11781 
11782   case Builtin::BI__builtin_bswap16:
11783   case Builtin::BI__builtin_bswap32:
11784   case Builtin::BI__builtin_bswap64: {
11785     APSInt Val;
11786     if (!EvaluateInteger(E->getArg(0), Val, Info))
11787       return false;
11788 
11789     return Success(Val.byteSwap(), E);
11790   }
11791 
11792   case Builtin::BI__builtin_classify_type:
11793     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
11794 
11795   case Builtin::BI__builtin_clrsb:
11796   case Builtin::BI__builtin_clrsbl:
11797   case Builtin::BI__builtin_clrsbll: {
11798     APSInt Val;
11799     if (!EvaluateInteger(E->getArg(0), Val, Info))
11800       return false;
11801 
11802     return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
11803   }
11804 
11805   case Builtin::BI__builtin_clz:
11806   case Builtin::BI__builtin_clzl:
11807   case Builtin::BI__builtin_clzll:
11808   case Builtin::BI__builtin_clzs: {
11809     APSInt Val;
11810     if (!EvaluateInteger(E->getArg(0), Val, Info))
11811       return false;
11812     if (!Val)
11813       return Error(E);
11814 
11815     return Success(Val.countLeadingZeros(), E);
11816   }
11817 
11818   case Builtin::BI__builtin_constant_p: {
11819     const Expr *Arg = E->getArg(0);
11820     if (EvaluateBuiltinConstantP(Info, Arg))
11821       return Success(true, E);
11822     if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
11823       // Outside a constant context, eagerly evaluate to false in the presence
11824       // of side-effects in order to avoid -Wunsequenced false-positives in
11825       // a branch on __builtin_constant_p(expr).
11826       return Success(false, E);
11827     }
11828     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11829     return false;
11830   }
11831 
11832   case Builtin::BI__builtin_is_constant_evaluated: {
11833     const auto *Callee = Info.CurrentCall->getCallee();
11834     if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
11835         (Info.CallStackDepth == 1 ||
11836          (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
11837           Callee->getIdentifier() &&
11838           Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
11839       // FIXME: Find a better way to avoid duplicated diagnostics.
11840       if (Info.EvalStatus.Diag)
11841         Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
11842                                                : Info.CurrentCall->CallLoc,
11843                     diag::warn_is_constant_evaluated_always_true_constexpr)
11844             << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
11845                                          : "std::is_constant_evaluated");
11846     }
11847 
11848     return Success(Info.InConstantContext, E);
11849   }
11850 
11851   case Builtin::BI__builtin_ctz:
11852   case Builtin::BI__builtin_ctzl:
11853   case Builtin::BI__builtin_ctzll:
11854   case Builtin::BI__builtin_ctzs: {
11855     APSInt Val;
11856     if (!EvaluateInteger(E->getArg(0), Val, Info))
11857       return false;
11858     if (!Val)
11859       return Error(E);
11860 
11861     return Success(Val.countTrailingZeros(), E);
11862   }
11863 
11864   case Builtin::BI__builtin_eh_return_data_regno: {
11865     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11866     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
11867     return Success(Operand, E);
11868   }
11869 
11870   case Builtin::BI__builtin_expect:
11871   case Builtin::BI__builtin_expect_with_probability:
11872     return Visit(E->getArg(0));
11873 
11874   case Builtin::BI__builtin_ffs:
11875   case Builtin::BI__builtin_ffsl:
11876   case Builtin::BI__builtin_ffsll: {
11877     APSInt Val;
11878     if (!EvaluateInteger(E->getArg(0), Val, Info))
11879       return false;
11880 
11881     unsigned N = Val.countTrailingZeros();
11882     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
11883   }
11884 
11885   case Builtin::BI__builtin_fpclassify: {
11886     APFloat Val(0.0);
11887     if (!EvaluateFloat(E->getArg(5), Val, Info))
11888       return false;
11889     unsigned Arg;
11890     switch (Val.getCategory()) {
11891     case APFloat::fcNaN: Arg = 0; break;
11892     case APFloat::fcInfinity: Arg = 1; break;
11893     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
11894     case APFloat::fcZero: Arg = 4; break;
11895     }
11896     return Visit(E->getArg(Arg));
11897   }
11898 
11899   case Builtin::BI__builtin_isinf_sign: {
11900     APFloat Val(0.0);
11901     return EvaluateFloat(E->getArg(0), Val, Info) &&
11902            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
11903   }
11904 
11905   case Builtin::BI__builtin_isinf: {
11906     APFloat Val(0.0);
11907     return EvaluateFloat(E->getArg(0), Val, Info) &&
11908            Success(Val.isInfinity() ? 1 : 0, E);
11909   }
11910 
11911   case Builtin::BI__builtin_isfinite: {
11912     APFloat Val(0.0);
11913     return EvaluateFloat(E->getArg(0), Val, Info) &&
11914            Success(Val.isFinite() ? 1 : 0, E);
11915   }
11916 
11917   case Builtin::BI__builtin_isnan: {
11918     APFloat Val(0.0);
11919     return EvaluateFloat(E->getArg(0), Val, Info) &&
11920            Success(Val.isNaN() ? 1 : 0, E);
11921   }
11922 
11923   case Builtin::BI__builtin_isnormal: {
11924     APFloat Val(0.0);
11925     return EvaluateFloat(E->getArg(0), Val, Info) &&
11926            Success(Val.isNormal() ? 1 : 0, E);
11927   }
11928 
11929   case Builtin::BI__builtin_parity:
11930   case Builtin::BI__builtin_parityl:
11931   case Builtin::BI__builtin_parityll: {
11932     APSInt Val;
11933     if (!EvaluateInteger(E->getArg(0), Val, Info))
11934       return false;
11935 
11936     return Success(Val.countPopulation() % 2, E);
11937   }
11938 
11939   case Builtin::BI__builtin_popcount:
11940   case Builtin::BI__builtin_popcountl:
11941   case Builtin::BI__builtin_popcountll: {
11942     APSInt Val;
11943     if (!EvaluateInteger(E->getArg(0), Val, Info))
11944       return false;
11945 
11946     return Success(Val.countPopulation(), E);
11947   }
11948 
11949   case Builtin::BI__builtin_rotateleft8:
11950   case Builtin::BI__builtin_rotateleft16:
11951   case Builtin::BI__builtin_rotateleft32:
11952   case Builtin::BI__builtin_rotateleft64:
11953   case Builtin::BI_rotl8: // Microsoft variants of rotate right
11954   case Builtin::BI_rotl16:
11955   case Builtin::BI_rotl:
11956   case Builtin::BI_lrotl:
11957   case Builtin::BI_rotl64: {
11958     APSInt Val, Amt;
11959     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
11960         !EvaluateInteger(E->getArg(1), Amt, Info))
11961       return false;
11962 
11963     return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
11964   }
11965 
11966   case Builtin::BI__builtin_rotateright8:
11967   case Builtin::BI__builtin_rotateright16:
11968   case Builtin::BI__builtin_rotateright32:
11969   case Builtin::BI__builtin_rotateright64:
11970   case Builtin::BI_rotr8: // Microsoft variants of rotate right
11971   case Builtin::BI_rotr16:
11972   case Builtin::BI_rotr:
11973   case Builtin::BI_lrotr:
11974   case Builtin::BI_rotr64: {
11975     APSInt Val, Amt;
11976     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
11977         !EvaluateInteger(E->getArg(1), Amt, Info))
11978       return false;
11979 
11980     return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
11981   }
11982 
11983   case Builtin::BIstrlen:
11984   case Builtin::BIwcslen:
11985     // A call to strlen is not a constant expression.
11986     if (Info.getLangOpts().CPlusPlus11)
11987       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
11988         << /*isConstexpr*/0 << /*isConstructor*/0
11989         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
11990     else
11991       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
11992     LLVM_FALLTHROUGH;
11993   case Builtin::BI__builtin_strlen:
11994   case Builtin::BI__builtin_wcslen: {
11995     // As an extension, we support __builtin_strlen() as a constant expression,
11996     // and support folding strlen() to a constant.
11997     uint64_t StrLen;
11998     if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info))
11999       return Success(StrLen, E);
12000     return false;
12001   }
12002 
12003   case Builtin::BIstrcmp:
12004   case Builtin::BIwcscmp:
12005   case Builtin::BIstrncmp:
12006   case Builtin::BIwcsncmp:
12007   case Builtin::BImemcmp:
12008   case Builtin::BIbcmp:
12009   case Builtin::BIwmemcmp:
12010     // A call to strlen is not a constant expression.
12011     if (Info.getLangOpts().CPlusPlus11)
12012       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12013         << /*isConstexpr*/0 << /*isConstructor*/0
12014         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
12015     else
12016       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12017     LLVM_FALLTHROUGH;
12018   case Builtin::BI__builtin_strcmp:
12019   case Builtin::BI__builtin_wcscmp:
12020   case Builtin::BI__builtin_strncmp:
12021   case Builtin::BI__builtin_wcsncmp:
12022   case Builtin::BI__builtin_memcmp:
12023   case Builtin::BI__builtin_bcmp:
12024   case Builtin::BI__builtin_wmemcmp: {
12025     LValue String1, String2;
12026     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
12027         !EvaluatePointer(E->getArg(1), String2, Info))
12028       return false;
12029 
12030     uint64_t MaxLength = uint64_t(-1);
12031     if (BuiltinOp != Builtin::BIstrcmp &&
12032         BuiltinOp != Builtin::BIwcscmp &&
12033         BuiltinOp != Builtin::BI__builtin_strcmp &&
12034         BuiltinOp != Builtin::BI__builtin_wcscmp) {
12035       APSInt N;
12036       if (!EvaluateInteger(E->getArg(2), N, Info))
12037         return false;
12038       MaxLength = N.getExtValue();
12039     }
12040 
12041     // Empty substrings compare equal by definition.
12042     if (MaxLength == 0u)
12043       return Success(0, E);
12044 
12045     if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12046         !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12047         String1.Designator.Invalid || String2.Designator.Invalid)
12048       return false;
12049 
12050     QualType CharTy1 = String1.Designator.getType(Info.Ctx);
12051     QualType CharTy2 = String2.Designator.getType(Info.Ctx);
12052 
12053     bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12054                      BuiltinOp == Builtin::BIbcmp ||
12055                      BuiltinOp == Builtin::BI__builtin_memcmp ||
12056                      BuiltinOp == Builtin::BI__builtin_bcmp;
12057 
12058     assert(IsRawByte ||
12059            (Info.Ctx.hasSameUnqualifiedType(
12060                 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
12061             Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
12062 
12063     // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12064     // 'char8_t', but no other types.
12065     if (IsRawByte &&
12066         !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
12067       // FIXME: Consider using our bit_cast implementation to support this.
12068       Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12069           << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
12070           << CharTy1 << CharTy2;
12071       return false;
12072     }
12073 
12074     const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12075       return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12076              handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12077              Char1.isInt() && Char2.isInt();
12078     };
12079     const auto &AdvanceElems = [&] {
12080       return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12081              HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12082     };
12083 
12084     bool StopAtNull =
12085         (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12086          BuiltinOp != Builtin::BIwmemcmp &&
12087          BuiltinOp != Builtin::BI__builtin_memcmp &&
12088          BuiltinOp != Builtin::BI__builtin_bcmp &&
12089          BuiltinOp != Builtin::BI__builtin_wmemcmp);
12090     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12091                   BuiltinOp == Builtin::BIwcsncmp ||
12092                   BuiltinOp == Builtin::BIwmemcmp ||
12093                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
12094                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12095                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
12096 
12097     for (; MaxLength; --MaxLength) {
12098       APValue Char1, Char2;
12099       if (!ReadCurElems(Char1, Char2))
12100         return false;
12101       if (Char1.getInt().ne(Char2.getInt())) {
12102         if (IsWide) // wmemcmp compares with wchar_t signedness.
12103           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12104         // memcmp always compares unsigned chars.
12105         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
12106       }
12107       if (StopAtNull && !Char1.getInt())
12108         return Success(0, E);
12109       assert(!(StopAtNull && !Char2.getInt()));
12110       if (!AdvanceElems())
12111         return false;
12112     }
12113     // We hit the strncmp / memcmp limit.
12114     return Success(0, E);
12115   }
12116 
12117   case Builtin::BI__atomic_always_lock_free:
12118   case Builtin::BI__atomic_is_lock_free:
12119   case Builtin::BI__c11_atomic_is_lock_free: {
12120     APSInt SizeVal;
12121     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
12122       return false;
12123 
12124     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12125     // of two less than or equal to the maximum inline atomic width, we know it
12126     // is lock-free.  If the size isn't a power of two, or greater than the
12127     // maximum alignment where we promote atomics, we know it is not lock-free
12128     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
12129     // the answer can only be determined at runtime; for example, 16-byte
12130     // atomics have lock-free implementations on some, but not all,
12131     // x86-64 processors.
12132 
12133     // Check power-of-two.
12134     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
12135     if (Size.isPowerOfTwo()) {
12136       // Check against inlining width.
12137       unsigned InlineWidthBits =
12138           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12139       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
12140         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12141             Size == CharUnits::One() ||
12142             E->getArg(1)->isNullPointerConstant(Info.Ctx,
12143                                                 Expr::NPC_NeverValueDependent))
12144           // OK, we will inline appropriately-aligned operations of this size,
12145           // and _Atomic(T) is appropriately-aligned.
12146           return Success(1, E);
12147 
12148         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
12149           castAs<PointerType>()->getPointeeType();
12150         if (!PointeeType->isIncompleteType() &&
12151             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
12152           // OK, we will inline operations on this object.
12153           return Success(1, E);
12154         }
12155       }
12156     }
12157 
12158     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12159         Success(0, E) : Error(E);
12160   }
12161   case Builtin::BI__builtin_add_overflow:
12162   case Builtin::BI__builtin_sub_overflow:
12163   case Builtin::BI__builtin_mul_overflow:
12164   case Builtin::BI__builtin_sadd_overflow:
12165   case Builtin::BI__builtin_uadd_overflow:
12166   case Builtin::BI__builtin_uaddl_overflow:
12167   case Builtin::BI__builtin_uaddll_overflow:
12168   case Builtin::BI__builtin_usub_overflow:
12169   case Builtin::BI__builtin_usubl_overflow:
12170   case Builtin::BI__builtin_usubll_overflow:
12171   case Builtin::BI__builtin_umul_overflow:
12172   case Builtin::BI__builtin_umull_overflow:
12173   case Builtin::BI__builtin_umulll_overflow:
12174   case Builtin::BI__builtin_saddl_overflow:
12175   case Builtin::BI__builtin_saddll_overflow:
12176   case Builtin::BI__builtin_ssub_overflow:
12177   case Builtin::BI__builtin_ssubl_overflow:
12178   case Builtin::BI__builtin_ssubll_overflow:
12179   case Builtin::BI__builtin_smul_overflow:
12180   case Builtin::BI__builtin_smull_overflow:
12181   case Builtin::BI__builtin_smulll_overflow: {
12182     LValue ResultLValue;
12183     APSInt LHS, RHS;
12184 
12185     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
12186     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
12187         !EvaluateInteger(E->getArg(1), RHS, Info) ||
12188         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
12189       return false;
12190 
12191     APSInt Result;
12192     bool DidOverflow = false;
12193 
12194     // If the types don't have to match, enlarge all 3 to the largest of them.
12195     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12196         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12197         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12198       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12199                       ResultType->isSignedIntegerOrEnumerationType();
12200       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12201                       ResultType->isSignedIntegerOrEnumerationType();
12202       uint64_t LHSSize = LHS.getBitWidth();
12203       uint64_t RHSSize = RHS.getBitWidth();
12204       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
12205       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
12206 
12207       // Add an additional bit if the signedness isn't uniformly agreed to. We
12208       // could do this ONLY if there is a signed and an unsigned that both have
12209       // MaxBits, but the code to check that is pretty nasty.  The issue will be
12210       // caught in the shrink-to-result later anyway.
12211       if (IsSigned && !AllSigned)
12212         ++MaxBits;
12213 
12214       LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
12215       RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
12216       Result = APSInt(MaxBits, !IsSigned);
12217     }
12218 
12219     // Find largest int.
12220     switch (BuiltinOp) {
12221     default:
12222       llvm_unreachable("Invalid value for BuiltinOp");
12223     case Builtin::BI__builtin_add_overflow:
12224     case Builtin::BI__builtin_sadd_overflow:
12225     case Builtin::BI__builtin_saddl_overflow:
12226     case Builtin::BI__builtin_saddll_overflow:
12227     case Builtin::BI__builtin_uadd_overflow:
12228     case Builtin::BI__builtin_uaddl_overflow:
12229     case Builtin::BI__builtin_uaddll_overflow:
12230       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
12231                               : LHS.uadd_ov(RHS, DidOverflow);
12232       break;
12233     case Builtin::BI__builtin_sub_overflow:
12234     case Builtin::BI__builtin_ssub_overflow:
12235     case Builtin::BI__builtin_ssubl_overflow:
12236     case Builtin::BI__builtin_ssubll_overflow:
12237     case Builtin::BI__builtin_usub_overflow:
12238     case Builtin::BI__builtin_usubl_overflow:
12239     case Builtin::BI__builtin_usubll_overflow:
12240       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
12241                               : LHS.usub_ov(RHS, DidOverflow);
12242       break;
12243     case Builtin::BI__builtin_mul_overflow:
12244     case Builtin::BI__builtin_smul_overflow:
12245     case Builtin::BI__builtin_smull_overflow:
12246     case Builtin::BI__builtin_smulll_overflow:
12247     case Builtin::BI__builtin_umul_overflow:
12248     case Builtin::BI__builtin_umull_overflow:
12249     case Builtin::BI__builtin_umulll_overflow:
12250       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
12251                               : LHS.umul_ov(RHS, DidOverflow);
12252       break;
12253     }
12254 
12255     // In the case where multiple sizes are allowed, truncate and see if
12256     // the values are the same.
12257     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12258         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12259         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12260       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12261       // since it will give us the behavior of a TruncOrSelf in the case where
12262       // its parameter <= its size.  We previously set Result to be at least the
12263       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12264       // will work exactly like TruncOrSelf.
12265       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
12266       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12267 
12268       if (!APSInt::isSameValue(Temp, Result))
12269         DidOverflow = true;
12270       Result = Temp;
12271     }
12272 
12273     APValue APV{Result};
12274     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12275       return false;
12276     return Success(DidOverflow, E);
12277   }
12278   }
12279 }
12280 
12281 /// Determine whether this is a pointer past the end of the complete
12282 /// object referred to by the lvalue.
12283 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12284                                             const LValue &LV) {
12285   // A null pointer can be viewed as being "past the end" but we don't
12286   // choose to look at it that way here.
12287   if (!LV.getLValueBase())
12288     return false;
12289 
12290   // If the designator is valid and refers to a subobject, we're not pointing
12291   // past the end.
12292   if (!LV.getLValueDesignator().Invalid &&
12293       !LV.getLValueDesignator().isOnePastTheEnd())
12294     return false;
12295 
12296   // A pointer to an incomplete type might be past-the-end if the type's size is
12297   // zero.  We cannot tell because the type is incomplete.
12298   QualType Ty = getType(LV.getLValueBase());
12299   if (Ty->isIncompleteType())
12300     return true;
12301 
12302   // We're a past-the-end pointer if we point to the byte after the object,
12303   // no matter what our type or path is.
12304   auto Size = Ctx.getTypeSizeInChars(Ty);
12305   return LV.getLValueOffset() == Size;
12306 }
12307 
12308 namespace {
12309 
12310 /// Data recursive integer evaluator of certain binary operators.
12311 ///
12312 /// We use a data recursive algorithm for binary operators so that we are able
12313 /// to handle extreme cases of chained binary operators without causing stack
12314 /// overflow.
12315 class DataRecursiveIntBinOpEvaluator {
12316   struct EvalResult {
12317     APValue Val;
12318     bool Failed;
12319 
12320     EvalResult() : Failed(false) { }
12321 
12322     void swap(EvalResult &RHS) {
12323       Val.swap(RHS.Val);
12324       Failed = RHS.Failed;
12325       RHS.Failed = false;
12326     }
12327   };
12328 
12329   struct Job {
12330     const Expr *E;
12331     EvalResult LHSResult; // meaningful only for binary operator expression.
12332     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12333 
12334     Job() = default;
12335     Job(Job &&) = default;
12336 
12337     void startSpeculativeEval(EvalInfo &Info) {
12338       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12339     }
12340 
12341   private:
12342     SpeculativeEvaluationRAII SpecEvalRAII;
12343   };
12344 
12345   SmallVector<Job, 16> Queue;
12346 
12347   IntExprEvaluator &IntEval;
12348   EvalInfo &Info;
12349   APValue &FinalResult;
12350 
12351 public:
12352   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12353     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12354 
12355   /// True if \param E is a binary operator that we are going to handle
12356   /// data recursively.
12357   /// We handle binary operators that are comma, logical, or that have operands
12358   /// with integral or enumeration type.
12359   static bool shouldEnqueue(const BinaryOperator *E) {
12360     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12361            (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
12362             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12363             E->getRHS()->getType()->isIntegralOrEnumerationType());
12364   }
12365 
12366   bool Traverse(const BinaryOperator *E) {
12367     enqueue(E);
12368     EvalResult PrevResult;
12369     while (!Queue.empty())
12370       process(PrevResult);
12371 
12372     if (PrevResult.Failed) return false;
12373 
12374     FinalResult.swap(PrevResult.Val);
12375     return true;
12376   }
12377 
12378 private:
12379   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12380     return IntEval.Success(Value, E, Result);
12381   }
12382   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12383     return IntEval.Success(Value, E, Result);
12384   }
12385   bool Error(const Expr *E) {
12386     return IntEval.Error(E);
12387   }
12388   bool Error(const Expr *E, diag::kind D) {
12389     return IntEval.Error(E, D);
12390   }
12391 
12392   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12393     return Info.CCEDiag(E, D);
12394   }
12395 
12396   // Returns true if visiting the RHS is necessary, false otherwise.
12397   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12398                          bool &SuppressRHSDiags);
12399 
12400   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12401                   const BinaryOperator *E, APValue &Result);
12402 
12403   void EvaluateExpr(const Expr *E, EvalResult &Result) {
12404     Result.Failed = !Evaluate(Result.Val, Info, E);
12405     if (Result.Failed)
12406       Result.Val = APValue();
12407   }
12408 
12409   void process(EvalResult &Result);
12410 
12411   void enqueue(const Expr *E) {
12412     E = E->IgnoreParens();
12413     Queue.resize(Queue.size()+1);
12414     Queue.back().E = E;
12415     Queue.back().Kind = Job::AnyExprKind;
12416   }
12417 };
12418 
12419 }
12420 
12421 bool DataRecursiveIntBinOpEvaluator::
12422        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12423                          bool &SuppressRHSDiags) {
12424   if (E->getOpcode() == BO_Comma) {
12425     // Ignore LHS but note if we could not evaluate it.
12426     if (LHSResult.Failed)
12427       return Info.noteSideEffect();
12428     return true;
12429   }
12430 
12431   if (E->isLogicalOp()) {
12432     bool LHSAsBool;
12433     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
12434       // We were able to evaluate the LHS, see if we can get away with not
12435       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12436       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12437         Success(LHSAsBool, E, LHSResult.Val);
12438         return false; // Ignore RHS
12439       }
12440     } else {
12441       LHSResult.Failed = true;
12442 
12443       // Since we weren't able to evaluate the left hand side, it
12444       // might have had side effects.
12445       if (!Info.noteSideEffect())
12446         return false;
12447 
12448       // We can't evaluate the LHS; however, sometimes the result
12449       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12450       // Don't ignore RHS and suppress diagnostics from this arm.
12451       SuppressRHSDiags = true;
12452     }
12453 
12454     return true;
12455   }
12456 
12457   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12458          E->getRHS()->getType()->isIntegralOrEnumerationType());
12459 
12460   if (LHSResult.Failed && !Info.noteFailure())
12461     return false; // Ignore RHS;
12462 
12463   return true;
12464 }
12465 
12466 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
12467                                     bool IsSub) {
12468   // Compute the new offset in the appropriate width, wrapping at 64 bits.
12469   // FIXME: When compiling for a 32-bit target, we should use 32-bit
12470   // offsets.
12471   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
12472   CharUnits &Offset = LVal.getLValueOffset();
12473   uint64_t Offset64 = Offset.getQuantity();
12474   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
12475   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
12476                                          : Offset64 + Index64);
12477 }
12478 
12479 bool DataRecursiveIntBinOpEvaluator::
12480        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12481                   const BinaryOperator *E, APValue &Result) {
12482   if (E->getOpcode() == BO_Comma) {
12483     if (RHSResult.Failed)
12484       return false;
12485     Result = RHSResult.Val;
12486     return true;
12487   }
12488 
12489   if (E->isLogicalOp()) {
12490     bool lhsResult, rhsResult;
12491     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
12492     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
12493 
12494     if (LHSIsOK) {
12495       if (RHSIsOK) {
12496         if (E->getOpcode() == BO_LOr)
12497           return Success(lhsResult || rhsResult, E, Result);
12498         else
12499           return Success(lhsResult && rhsResult, E, Result);
12500       }
12501     } else {
12502       if (RHSIsOK) {
12503         // We can't evaluate the LHS; however, sometimes the result
12504         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12505         if (rhsResult == (E->getOpcode() == BO_LOr))
12506           return Success(rhsResult, E, Result);
12507       }
12508     }
12509 
12510     return false;
12511   }
12512 
12513   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12514          E->getRHS()->getType()->isIntegralOrEnumerationType());
12515 
12516   if (LHSResult.Failed || RHSResult.Failed)
12517     return false;
12518 
12519   const APValue &LHSVal = LHSResult.Val;
12520   const APValue &RHSVal = RHSResult.Val;
12521 
12522   // Handle cases like (unsigned long)&a + 4.
12523   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
12524     Result = LHSVal;
12525     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
12526     return true;
12527   }
12528 
12529   // Handle cases like 4 + (unsigned long)&a
12530   if (E->getOpcode() == BO_Add &&
12531       RHSVal.isLValue() && LHSVal.isInt()) {
12532     Result = RHSVal;
12533     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
12534     return true;
12535   }
12536 
12537   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
12538     // Handle (intptr_t)&&A - (intptr_t)&&B.
12539     if (!LHSVal.getLValueOffset().isZero() ||
12540         !RHSVal.getLValueOffset().isZero())
12541       return false;
12542     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
12543     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
12544     if (!LHSExpr || !RHSExpr)
12545       return false;
12546     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12547     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12548     if (!LHSAddrExpr || !RHSAddrExpr)
12549       return false;
12550     // Make sure both labels come from the same function.
12551     if (LHSAddrExpr->getLabel()->getDeclContext() !=
12552         RHSAddrExpr->getLabel()->getDeclContext())
12553       return false;
12554     Result = APValue(LHSAddrExpr, RHSAddrExpr);
12555     return true;
12556   }
12557 
12558   // All the remaining cases expect both operands to be an integer
12559   if (!LHSVal.isInt() || !RHSVal.isInt())
12560     return Error(E);
12561 
12562   // Set up the width and signedness manually, in case it can't be deduced
12563   // from the operation we're performing.
12564   // FIXME: Don't do this in the cases where we can deduce it.
12565   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
12566                E->getType()->isUnsignedIntegerOrEnumerationType());
12567   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
12568                          RHSVal.getInt(), Value))
12569     return false;
12570   return Success(Value, E, Result);
12571 }
12572 
12573 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
12574   Job &job = Queue.back();
12575 
12576   switch (job.Kind) {
12577     case Job::AnyExprKind: {
12578       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
12579         if (shouldEnqueue(Bop)) {
12580           job.Kind = Job::BinOpKind;
12581           enqueue(Bop->getLHS());
12582           return;
12583         }
12584       }
12585 
12586       EvaluateExpr(job.E, Result);
12587       Queue.pop_back();
12588       return;
12589     }
12590 
12591     case Job::BinOpKind: {
12592       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12593       bool SuppressRHSDiags = false;
12594       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
12595         Queue.pop_back();
12596         return;
12597       }
12598       if (SuppressRHSDiags)
12599         job.startSpeculativeEval(Info);
12600       job.LHSResult.swap(Result);
12601       job.Kind = Job::BinOpVisitedLHSKind;
12602       enqueue(Bop->getRHS());
12603       return;
12604     }
12605 
12606     case Job::BinOpVisitedLHSKind: {
12607       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12608       EvalResult RHS;
12609       RHS.swap(Result);
12610       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
12611       Queue.pop_back();
12612       return;
12613     }
12614   }
12615 
12616   llvm_unreachable("Invalid Job::Kind!");
12617 }
12618 
12619 namespace {
12620 enum class CmpResult {
12621   Unequal,
12622   Less,
12623   Equal,
12624   Greater,
12625   Unordered,
12626 };
12627 }
12628 
12629 template <class SuccessCB, class AfterCB>
12630 static bool
12631 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
12632                                  SuccessCB &&Success, AfterCB &&DoAfter) {
12633   assert(!E->isValueDependent());
12634   assert(E->isComparisonOp() && "expected comparison operator");
12635   assert((E->getOpcode() == BO_Cmp ||
12636           E->getType()->isIntegralOrEnumerationType()) &&
12637          "unsupported binary expression evaluation");
12638   auto Error = [&](const Expr *E) {
12639     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12640     return false;
12641   };
12642 
12643   bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
12644   bool IsEquality = E->isEqualityOp();
12645 
12646   QualType LHSTy = E->getLHS()->getType();
12647   QualType RHSTy = E->getRHS()->getType();
12648 
12649   if (LHSTy->isIntegralOrEnumerationType() &&
12650       RHSTy->isIntegralOrEnumerationType()) {
12651     APSInt LHS, RHS;
12652     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
12653     if (!LHSOK && !Info.noteFailure())
12654       return false;
12655     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
12656       return false;
12657     if (LHS < RHS)
12658       return Success(CmpResult::Less, E);
12659     if (LHS > RHS)
12660       return Success(CmpResult::Greater, E);
12661     return Success(CmpResult::Equal, E);
12662   }
12663 
12664   if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
12665     APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
12666     APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
12667 
12668     bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
12669     if (!LHSOK && !Info.noteFailure())
12670       return false;
12671     if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
12672       return false;
12673     if (LHSFX < RHSFX)
12674       return Success(CmpResult::Less, E);
12675     if (LHSFX > RHSFX)
12676       return Success(CmpResult::Greater, E);
12677     return Success(CmpResult::Equal, E);
12678   }
12679 
12680   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
12681     ComplexValue LHS, RHS;
12682     bool LHSOK;
12683     if (E->isAssignmentOp()) {
12684       LValue LV;
12685       EvaluateLValue(E->getLHS(), LV, Info);
12686       LHSOK = false;
12687     } else if (LHSTy->isRealFloatingType()) {
12688       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
12689       if (LHSOK) {
12690         LHS.makeComplexFloat();
12691         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
12692       }
12693     } else {
12694       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
12695     }
12696     if (!LHSOK && !Info.noteFailure())
12697       return false;
12698 
12699     if (E->getRHS()->getType()->isRealFloatingType()) {
12700       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
12701         return false;
12702       RHS.makeComplexFloat();
12703       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
12704     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12705       return false;
12706 
12707     if (LHS.isComplexFloat()) {
12708       APFloat::cmpResult CR_r =
12709         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
12710       APFloat::cmpResult CR_i =
12711         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
12712       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
12713       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12714     } else {
12715       assert(IsEquality && "invalid complex comparison");
12716       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
12717                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
12718       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12719     }
12720   }
12721 
12722   if (LHSTy->isRealFloatingType() &&
12723       RHSTy->isRealFloatingType()) {
12724     APFloat RHS(0.0), LHS(0.0);
12725 
12726     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
12727     if (!LHSOK && !Info.noteFailure())
12728       return false;
12729 
12730     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
12731       return false;
12732 
12733     assert(E->isComparisonOp() && "Invalid binary operator!");
12734     llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
12735     if (!Info.InConstantContext &&
12736         APFloatCmpResult == APFloat::cmpUnordered &&
12737         E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
12738       // Note: Compares may raise invalid in some cases involving NaN or sNaN.
12739       Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
12740       return false;
12741     }
12742     auto GetCmpRes = [&]() {
12743       switch (APFloatCmpResult) {
12744       case APFloat::cmpEqual:
12745         return CmpResult::Equal;
12746       case APFloat::cmpLessThan:
12747         return CmpResult::Less;
12748       case APFloat::cmpGreaterThan:
12749         return CmpResult::Greater;
12750       case APFloat::cmpUnordered:
12751         return CmpResult::Unordered;
12752       }
12753       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
12754     };
12755     return Success(GetCmpRes(), E);
12756   }
12757 
12758   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
12759     LValue LHSValue, RHSValue;
12760 
12761     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12762     if (!LHSOK && !Info.noteFailure())
12763       return false;
12764 
12765     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12766       return false;
12767 
12768     // Reject differing bases from the normal codepath; we special-case
12769     // comparisons to null.
12770     if (!HasSameBase(LHSValue, RHSValue)) {
12771       // Inequalities and subtractions between unrelated pointers have
12772       // unspecified or undefined behavior.
12773       if (!IsEquality) {
12774         Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified);
12775         return false;
12776       }
12777       // A constant address may compare equal to the address of a symbol.
12778       // The one exception is that address of an object cannot compare equal
12779       // to a null pointer constant.
12780       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
12781           (!RHSValue.Base && !RHSValue.Offset.isZero()))
12782         return Error(E);
12783       // It's implementation-defined whether distinct literals will have
12784       // distinct addresses. In clang, the result of such a comparison is
12785       // unspecified, so it is not a constant expression. However, we do know
12786       // that the address of a literal will be non-null.
12787       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
12788           LHSValue.Base && RHSValue.Base)
12789         return Error(E);
12790       // We can't tell whether weak symbols will end up pointing to the same
12791       // object.
12792       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
12793         return Error(E);
12794       // We can't compare the address of the start of one object with the
12795       // past-the-end address of another object, per C++ DR1652.
12796       if ((LHSValue.Base && LHSValue.Offset.isZero() &&
12797            isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
12798           (RHSValue.Base && RHSValue.Offset.isZero() &&
12799            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
12800         return Error(E);
12801       // We can't tell whether an object is at the same address as another
12802       // zero sized object.
12803       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
12804           (LHSValue.Base && isZeroSized(RHSValue)))
12805         return Error(E);
12806       return Success(CmpResult::Unequal, E);
12807     }
12808 
12809     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12810     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12811 
12812     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12813     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12814 
12815     // C++11 [expr.rel]p3:
12816     //   Pointers to void (after pointer conversions) can be compared, with a
12817     //   result defined as follows: If both pointers represent the same
12818     //   address or are both the null pointer value, the result is true if the
12819     //   operator is <= or >= and false otherwise; otherwise the result is
12820     //   unspecified.
12821     // We interpret this as applying to pointers to *cv* void.
12822     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
12823       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
12824 
12825     // C++11 [expr.rel]p2:
12826     // - If two pointers point to non-static data members of the same object,
12827     //   or to subobjects or array elements fo such members, recursively, the
12828     //   pointer to the later declared member compares greater provided the
12829     //   two members have the same access control and provided their class is
12830     //   not a union.
12831     //   [...]
12832     // - Otherwise pointer comparisons are unspecified.
12833     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
12834       bool WasArrayIndex;
12835       unsigned Mismatch = FindDesignatorMismatch(
12836           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
12837       // At the point where the designators diverge, the comparison has a
12838       // specified value if:
12839       //  - we are comparing array indices
12840       //  - we are comparing fields of a union, or fields with the same access
12841       // Otherwise, the result is unspecified and thus the comparison is not a
12842       // constant expression.
12843       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
12844           Mismatch < RHSDesignator.Entries.size()) {
12845         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
12846         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
12847         if (!LF && !RF)
12848           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
12849         else if (!LF)
12850           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12851               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
12852               << RF->getParent() << RF;
12853         else if (!RF)
12854           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12855               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
12856               << LF->getParent() << LF;
12857         else if (!LF->getParent()->isUnion() &&
12858                  LF->getAccess() != RF->getAccess())
12859           Info.CCEDiag(E,
12860                        diag::note_constexpr_pointer_comparison_differing_access)
12861               << LF << LF->getAccess() << RF << RF->getAccess()
12862               << LF->getParent();
12863       }
12864     }
12865 
12866     // The comparison here must be unsigned, and performed with the same
12867     // width as the pointer.
12868     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
12869     uint64_t CompareLHS = LHSOffset.getQuantity();
12870     uint64_t CompareRHS = RHSOffset.getQuantity();
12871     assert(PtrSize <= 64 && "Unexpected pointer width");
12872     uint64_t Mask = ~0ULL >> (64 - PtrSize);
12873     CompareLHS &= Mask;
12874     CompareRHS &= Mask;
12875 
12876     // If there is a base and this is a relational operator, we can only
12877     // compare pointers within the object in question; otherwise, the result
12878     // depends on where the object is located in memory.
12879     if (!LHSValue.Base.isNull() && IsRelational) {
12880       QualType BaseTy = getType(LHSValue.Base);
12881       if (BaseTy->isIncompleteType())
12882         return Error(E);
12883       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
12884       uint64_t OffsetLimit = Size.getQuantity();
12885       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
12886         return Error(E);
12887     }
12888 
12889     if (CompareLHS < CompareRHS)
12890       return Success(CmpResult::Less, E);
12891     if (CompareLHS > CompareRHS)
12892       return Success(CmpResult::Greater, E);
12893     return Success(CmpResult::Equal, E);
12894   }
12895 
12896   if (LHSTy->isMemberPointerType()) {
12897     assert(IsEquality && "unexpected member pointer operation");
12898     assert(RHSTy->isMemberPointerType() && "invalid comparison");
12899 
12900     MemberPtr LHSValue, RHSValue;
12901 
12902     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
12903     if (!LHSOK && !Info.noteFailure())
12904       return false;
12905 
12906     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12907       return false;
12908 
12909     // C++11 [expr.eq]p2:
12910     //   If both operands are null, they compare equal. Otherwise if only one is
12911     //   null, they compare unequal.
12912     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
12913       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
12914       return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12915     }
12916 
12917     //   Otherwise if either is a pointer to a virtual member function, the
12918     //   result is unspecified.
12919     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
12920       if (MD->isVirtual())
12921         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12922     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
12923       if (MD->isVirtual())
12924         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12925 
12926     //   Otherwise they compare equal if and only if they would refer to the
12927     //   same member of the same most derived object or the same subobject if
12928     //   they were dereferenced with a hypothetical object of the associated
12929     //   class type.
12930     bool Equal = LHSValue == RHSValue;
12931     return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12932   }
12933 
12934   if (LHSTy->isNullPtrType()) {
12935     assert(E->isComparisonOp() && "unexpected nullptr operation");
12936     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
12937     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
12938     // are compared, the result is true of the operator is <=, >= or ==, and
12939     // false otherwise.
12940     return Success(CmpResult::Equal, E);
12941   }
12942 
12943   return DoAfter();
12944 }
12945 
12946 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
12947   if (!CheckLiteralType(Info, E))
12948     return false;
12949 
12950   auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12951     ComparisonCategoryResult CCR;
12952     switch (CR) {
12953     case CmpResult::Unequal:
12954       llvm_unreachable("should never produce Unequal for three-way comparison");
12955     case CmpResult::Less:
12956       CCR = ComparisonCategoryResult::Less;
12957       break;
12958     case CmpResult::Equal:
12959       CCR = ComparisonCategoryResult::Equal;
12960       break;
12961     case CmpResult::Greater:
12962       CCR = ComparisonCategoryResult::Greater;
12963       break;
12964     case CmpResult::Unordered:
12965       CCR = ComparisonCategoryResult::Unordered;
12966       break;
12967     }
12968     // Evaluation succeeded. Lookup the information for the comparison category
12969     // type and fetch the VarDecl for the result.
12970     const ComparisonCategoryInfo &CmpInfo =
12971         Info.Ctx.CompCategories.getInfoForType(E->getType());
12972     const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
12973     // Check and evaluate the result as a constant expression.
12974     LValue LV;
12975     LV.set(VD);
12976     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
12977       return false;
12978     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
12979                                    ConstantExprKind::Normal);
12980   };
12981   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12982     return ExprEvaluatorBaseTy::VisitBinCmp(E);
12983   });
12984 }
12985 
12986 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12987   // We don't support assignment in C. C++ assignments don't get here because
12988   // assignment is an lvalue in C++.
12989   if (E->isAssignmentOp()) {
12990     Error(E);
12991     if (!Info.noteFailure())
12992       return false;
12993   }
12994 
12995   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
12996     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
12997 
12998   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
12999           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
13000          "DataRecursiveIntBinOpEvaluator should have handled integral types");
13001 
13002   if (E->isComparisonOp()) {
13003     // Evaluate builtin binary comparisons by evaluating them as three-way
13004     // comparisons and then translating the result.
13005     auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13006       assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
13007              "should only produce Unequal for equality comparisons");
13008       bool IsEqual   = CR == CmpResult::Equal,
13009            IsLess    = CR == CmpResult::Less,
13010            IsGreater = CR == CmpResult::Greater;
13011       auto Op = E->getOpcode();
13012       switch (Op) {
13013       default:
13014         llvm_unreachable("unsupported binary operator");
13015       case BO_EQ:
13016       case BO_NE:
13017         return Success(IsEqual == (Op == BO_EQ), E);
13018       case BO_LT:
13019         return Success(IsLess, E);
13020       case BO_GT:
13021         return Success(IsGreater, E);
13022       case BO_LE:
13023         return Success(IsEqual || IsLess, E);
13024       case BO_GE:
13025         return Success(IsEqual || IsGreater, E);
13026       }
13027     };
13028     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13029       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13030     });
13031   }
13032 
13033   QualType LHSTy = E->getLHS()->getType();
13034   QualType RHSTy = E->getRHS()->getType();
13035 
13036   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
13037       E->getOpcode() == BO_Sub) {
13038     LValue LHSValue, RHSValue;
13039 
13040     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13041     if (!LHSOK && !Info.noteFailure())
13042       return false;
13043 
13044     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13045       return false;
13046 
13047     // Reject differing bases from the normal codepath; we special-case
13048     // comparisons to null.
13049     if (!HasSameBase(LHSValue, RHSValue)) {
13050       // Handle &&A - &&B.
13051       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
13052         return Error(E);
13053       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13054       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13055       if (!LHSExpr || !RHSExpr)
13056         return Error(E);
13057       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13058       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13059       if (!LHSAddrExpr || !RHSAddrExpr)
13060         return Error(E);
13061       // Make sure both labels come from the same function.
13062       if (LHSAddrExpr->getLabel()->getDeclContext() !=
13063           RHSAddrExpr->getLabel()->getDeclContext())
13064         return Error(E);
13065       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13066     }
13067     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13068     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13069 
13070     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13071     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13072 
13073     // C++11 [expr.add]p6:
13074     //   Unless both pointers point to elements of the same array object, or
13075     //   one past the last element of the array object, the behavior is
13076     //   undefined.
13077     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
13078         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
13079                                 RHSDesignator))
13080       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
13081 
13082     QualType Type = E->getLHS()->getType();
13083     QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
13084 
13085     CharUnits ElementSize;
13086     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
13087       return false;
13088 
13089     // As an extension, a type may have zero size (empty struct or union in
13090     // C, array of zero length). Pointer subtraction in such cases has
13091     // undefined behavior, so is not constant.
13092     if (ElementSize.isZero()) {
13093       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
13094           << ElementType;
13095       return false;
13096     }
13097 
13098     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
13099     // and produce incorrect results when it overflows. Such behavior
13100     // appears to be non-conforming, but is common, so perhaps we should
13101     // assume the standard intended for such cases to be undefined behavior
13102     // and check for them.
13103 
13104     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
13105     // overflow in the final conversion to ptrdiff_t.
13106     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
13107     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
13108     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
13109                     false);
13110     APSInt TrueResult = (LHS - RHS) / ElemSize;
13111     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
13112 
13113     if (Result.extend(65) != TrueResult &&
13114         !HandleOverflow(Info, E, TrueResult, E->getType()))
13115       return false;
13116     return Success(Result, E);
13117   }
13118 
13119   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13120 }
13121 
13122 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
13123 /// a result as the expression's type.
13124 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
13125                                     const UnaryExprOrTypeTraitExpr *E) {
13126   switch(E->getKind()) {
13127   case UETT_PreferredAlignOf:
13128   case UETT_AlignOf: {
13129     if (E->isArgumentType())
13130       return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
13131                      E);
13132     else
13133       return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
13134                      E);
13135   }
13136 
13137   case UETT_VecStep: {
13138     QualType Ty = E->getTypeOfArgument();
13139 
13140     if (Ty->isVectorType()) {
13141       unsigned n = Ty->castAs<VectorType>()->getNumElements();
13142 
13143       // The vec_step built-in functions that take a 3-component
13144       // vector return 4. (OpenCL 1.1 spec 6.11.12)
13145       if (n == 3)
13146         n = 4;
13147 
13148       return Success(n, E);
13149     } else
13150       return Success(1, E);
13151   }
13152 
13153   case UETT_SizeOf: {
13154     QualType SrcTy = E->getTypeOfArgument();
13155     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13156     //   the result is the size of the referenced type."
13157     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13158       SrcTy = Ref->getPointeeType();
13159 
13160     CharUnits Sizeof;
13161     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
13162       return false;
13163     return Success(Sizeof, E);
13164   }
13165   case UETT_OpenMPRequiredSimdAlign:
13166     assert(E->isArgumentType());
13167     return Success(
13168         Info.Ctx.toCharUnitsFromBits(
13169                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
13170             .getQuantity(),
13171         E);
13172   }
13173 
13174   llvm_unreachable("unknown expr/type trait");
13175 }
13176 
13177 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13178   CharUnits Result;
13179   unsigned n = OOE->getNumComponents();
13180   if (n == 0)
13181     return Error(OOE);
13182   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13183   for (unsigned i = 0; i != n; ++i) {
13184     OffsetOfNode ON = OOE->getComponent(i);
13185     switch (ON.getKind()) {
13186     case OffsetOfNode::Array: {
13187       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
13188       APSInt IdxResult;
13189       if (!EvaluateInteger(Idx, IdxResult, Info))
13190         return false;
13191       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
13192       if (!AT)
13193         return Error(OOE);
13194       CurrentType = AT->getElementType();
13195       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
13196       Result += IdxResult.getSExtValue() * ElementSize;
13197       break;
13198     }
13199 
13200     case OffsetOfNode::Field: {
13201       FieldDecl *MemberDecl = ON.getField();
13202       const RecordType *RT = CurrentType->getAs<RecordType>();
13203       if (!RT)
13204         return Error(OOE);
13205       RecordDecl *RD = RT->getDecl();
13206       if (RD->isInvalidDecl()) return false;
13207       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13208       unsigned i = MemberDecl->getFieldIndex();
13209       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13210       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
13211       CurrentType = MemberDecl->getType().getNonReferenceType();
13212       break;
13213     }
13214 
13215     case OffsetOfNode::Identifier:
13216       llvm_unreachable("dependent __builtin_offsetof");
13217 
13218     case OffsetOfNode::Base: {
13219       CXXBaseSpecifier *BaseSpec = ON.getBase();
13220       if (BaseSpec->isVirtual())
13221         return Error(OOE);
13222 
13223       // Find the layout of the class whose base we are looking into.
13224       const RecordType *RT = CurrentType->getAs<RecordType>();
13225       if (!RT)
13226         return Error(OOE);
13227       RecordDecl *RD = RT->getDecl();
13228       if (RD->isInvalidDecl()) return false;
13229       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13230 
13231       // Find the base class itself.
13232       CurrentType = BaseSpec->getType();
13233       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13234       if (!BaseRT)
13235         return Error(OOE);
13236 
13237       // Add the offset to the base.
13238       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
13239       break;
13240     }
13241     }
13242   }
13243   return Success(Result, OOE);
13244 }
13245 
13246 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13247   switch (E->getOpcode()) {
13248   default:
13249     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13250     // See C99 6.6p3.
13251     return Error(E);
13252   case UO_Extension:
13253     // FIXME: Should extension allow i-c-e extension expressions in its scope?
13254     // If so, we could clear the diagnostic ID.
13255     return Visit(E->getSubExpr());
13256   case UO_Plus:
13257     // The result is just the value.
13258     return Visit(E->getSubExpr());
13259   case UO_Minus: {
13260     if (!Visit(E->getSubExpr()))
13261       return false;
13262     if (!Result.isInt()) return Error(E);
13263     const APSInt &Value = Result.getInt();
13264     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
13265         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
13266                         E->getType()))
13267       return false;
13268     return Success(-Value, E);
13269   }
13270   case UO_Not: {
13271     if (!Visit(E->getSubExpr()))
13272       return false;
13273     if (!Result.isInt()) return Error(E);
13274     return Success(~Result.getInt(), E);
13275   }
13276   case UO_LNot: {
13277     bool bres;
13278     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13279       return false;
13280     return Success(!bres, E);
13281   }
13282   }
13283 }
13284 
13285 /// HandleCast - This is used to evaluate implicit or explicit casts where the
13286 /// result type is integer.
13287 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13288   const Expr *SubExpr = E->getSubExpr();
13289   QualType DestType = E->getType();
13290   QualType SrcType = SubExpr->getType();
13291 
13292   switch (E->getCastKind()) {
13293   case CK_BaseToDerived:
13294   case CK_DerivedToBase:
13295   case CK_UncheckedDerivedToBase:
13296   case CK_Dynamic:
13297   case CK_ToUnion:
13298   case CK_ArrayToPointerDecay:
13299   case CK_FunctionToPointerDecay:
13300   case CK_NullToPointer:
13301   case CK_NullToMemberPointer:
13302   case CK_BaseToDerivedMemberPointer:
13303   case CK_DerivedToBaseMemberPointer:
13304   case CK_ReinterpretMemberPointer:
13305   case CK_ConstructorConversion:
13306   case CK_IntegralToPointer:
13307   case CK_ToVoid:
13308   case CK_VectorSplat:
13309   case CK_IntegralToFloating:
13310   case CK_FloatingCast:
13311   case CK_CPointerToObjCPointerCast:
13312   case CK_BlockPointerToObjCPointerCast:
13313   case CK_AnyPointerToBlockPointerCast:
13314   case CK_ObjCObjectLValueCast:
13315   case CK_FloatingRealToComplex:
13316   case CK_FloatingComplexToReal:
13317   case CK_FloatingComplexCast:
13318   case CK_FloatingComplexToIntegralComplex:
13319   case CK_IntegralRealToComplex:
13320   case CK_IntegralComplexCast:
13321   case CK_IntegralComplexToFloatingComplex:
13322   case CK_BuiltinFnToFnPtr:
13323   case CK_ZeroToOCLOpaqueType:
13324   case CK_NonAtomicToAtomic:
13325   case CK_AddressSpaceConversion:
13326   case CK_IntToOCLSampler:
13327   case CK_FloatingToFixedPoint:
13328   case CK_FixedPointToFloating:
13329   case CK_FixedPointCast:
13330   case CK_IntegralToFixedPoint:
13331   case CK_MatrixCast:
13332     llvm_unreachable("invalid cast kind for integral value");
13333 
13334   case CK_BitCast:
13335   case CK_Dependent:
13336   case CK_LValueBitCast:
13337   case CK_ARCProduceObject:
13338   case CK_ARCConsumeObject:
13339   case CK_ARCReclaimReturnedObject:
13340   case CK_ARCExtendBlockObject:
13341   case CK_CopyAndAutoreleaseBlockObject:
13342     return Error(E);
13343 
13344   case CK_UserDefinedConversion:
13345   case CK_LValueToRValue:
13346   case CK_AtomicToNonAtomic:
13347   case CK_NoOp:
13348   case CK_LValueToRValueBitCast:
13349     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13350 
13351   case CK_MemberPointerToBoolean:
13352   case CK_PointerToBoolean:
13353   case CK_IntegralToBoolean:
13354   case CK_FloatingToBoolean:
13355   case CK_BooleanToSignedIntegral:
13356   case CK_FloatingComplexToBoolean:
13357   case CK_IntegralComplexToBoolean: {
13358     bool BoolResult;
13359     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
13360       return false;
13361     uint64_t IntResult = BoolResult;
13362     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13363       IntResult = (uint64_t)-1;
13364     return Success(IntResult, E);
13365   }
13366 
13367   case CK_FixedPointToIntegral: {
13368     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
13369     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13370       return false;
13371     bool Overflowed;
13372     llvm::APSInt Result = Src.convertToInt(
13373         Info.Ctx.getIntWidth(DestType),
13374         DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
13375     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13376       return false;
13377     return Success(Result, E);
13378   }
13379 
13380   case CK_FixedPointToBoolean: {
13381     // Unsigned padding does not affect this.
13382     APValue Val;
13383     if (!Evaluate(Val, Info, SubExpr))
13384       return false;
13385     return Success(Val.getFixedPoint().getBoolValue(), E);
13386   }
13387 
13388   case CK_IntegralCast: {
13389     if (!Visit(SubExpr))
13390       return false;
13391 
13392     if (!Result.isInt()) {
13393       // Allow casts of address-of-label differences if they are no-ops
13394       // or narrowing.  (The narrowing case isn't actually guaranteed to
13395       // be constant-evaluatable except in some narrow cases which are hard
13396       // to detect here.  We let it through on the assumption the user knows
13397       // what they are doing.)
13398       if (Result.isAddrLabelDiff())
13399         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
13400       // Only allow casts of lvalues if they are lossless.
13401       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
13402     }
13403 
13404     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
13405                                       Result.getInt()), E);
13406   }
13407 
13408   case CK_PointerToIntegral: {
13409     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
13410 
13411     LValue LV;
13412     if (!EvaluatePointer(SubExpr, LV, Info))
13413       return false;
13414 
13415     if (LV.getLValueBase()) {
13416       // Only allow based lvalue casts if they are lossless.
13417       // FIXME: Allow a larger integer size than the pointer size, and allow
13418       // narrowing back down to pointer width in subsequent integral casts.
13419       // FIXME: Check integer type's active bits, not its type size.
13420       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
13421         return Error(E);
13422 
13423       LV.Designator.setInvalid();
13424       LV.moveInto(Result);
13425       return true;
13426     }
13427 
13428     APSInt AsInt;
13429     APValue V;
13430     LV.moveInto(V);
13431     if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
13432       llvm_unreachable("Can't cast this!");
13433 
13434     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
13435   }
13436 
13437   case CK_IntegralComplexToReal: {
13438     ComplexValue C;
13439     if (!EvaluateComplex(SubExpr, C, Info))
13440       return false;
13441     return Success(C.getComplexIntReal(), E);
13442   }
13443 
13444   case CK_FloatingToIntegral: {
13445     APFloat F(0.0);
13446     if (!EvaluateFloat(SubExpr, F, Info))
13447       return false;
13448 
13449     APSInt Value;
13450     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
13451       return false;
13452     return Success(Value, E);
13453   }
13454   }
13455 
13456   llvm_unreachable("unknown cast resulting in integral value");
13457 }
13458 
13459 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13460   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13461     ComplexValue LV;
13462     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13463       return false;
13464     if (!LV.isComplexInt())
13465       return Error(E);
13466     return Success(LV.getComplexIntReal(), E);
13467   }
13468 
13469   return Visit(E->getSubExpr());
13470 }
13471 
13472 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13473   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
13474     ComplexValue LV;
13475     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13476       return false;
13477     if (!LV.isComplexInt())
13478       return Error(E);
13479     return Success(LV.getComplexIntImag(), E);
13480   }
13481 
13482   VisitIgnoredValue(E->getSubExpr());
13483   return Success(0, E);
13484 }
13485 
13486 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
13487   return Success(E->getPackLength(), E);
13488 }
13489 
13490 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
13491   return Success(E->getValue(), E);
13492 }
13493 
13494 bool IntExprEvaluator::VisitConceptSpecializationExpr(
13495        const ConceptSpecializationExpr *E) {
13496   return Success(E->isSatisfied(), E);
13497 }
13498 
13499 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
13500   return Success(E->isSatisfied(), E);
13501 }
13502 
13503 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13504   switch (E->getOpcode()) {
13505     default:
13506       // Invalid unary operators
13507       return Error(E);
13508     case UO_Plus:
13509       // The result is just the value.
13510       return Visit(E->getSubExpr());
13511     case UO_Minus: {
13512       if (!Visit(E->getSubExpr())) return false;
13513       if (!Result.isFixedPoint())
13514         return Error(E);
13515       bool Overflowed;
13516       APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
13517       if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
13518         return false;
13519       return Success(Negated, E);
13520     }
13521     case UO_LNot: {
13522       bool bres;
13523       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13524         return false;
13525       return Success(!bres, E);
13526     }
13527   }
13528 }
13529 
13530 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
13531   const Expr *SubExpr = E->getSubExpr();
13532   QualType DestType = E->getType();
13533   assert(DestType->isFixedPointType() &&
13534          "Expected destination type to be a fixed point type");
13535   auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
13536 
13537   switch (E->getCastKind()) {
13538   case CK_FixedPointCast: {
13539     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13540     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13541       return false;
13542     bool Overflowed;
13543     APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
13544     if (Overflowed) {
13545       if (Info.checkingForUndefinedBehavior())
13546         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13547                                          diag::warn_fixedpoint_constant_overflow)
13548           << Result.toString() << E->getType();
13549       if (!HandleOverflow(Info, E, Result, E->getType()))
13550         return false;
13551     }
13552     return Success(Result, E);
13553   }
13554   case CK_IntegralToFixedPoint: {
13555     APSInt Src;
13556     if (!EvaluateInteger(SubExpr, Src, Info))
13557       return false;
13558 
13559     bool Overflowed;
13560     APFixedPoint IntResult = APFixedPoint::getFromIntValue(
13561         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13562 
13563     if (Overflowed) {
13564       if (Info.checkingForUndefinedBehavior())
13565         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13566                                          diag::warn_fixedpoint_constant_overflow)
13567           << IntResult.toString() << E->getType();
13568       if (!HandleOverflow(Info, E, IntResult, E->getType()))
13569         return false;
13570     }
13571 
13572     return Success(IntResult, E);
13573   }
13574   case CK_FloatingToFixedPoint: {
13575     APFloat Src(0.0);
13576     if (!EvaluateFloat(SubExpr, Src, Info))
13577       return false;
13578 
13579     bool Overflowed;
13580     APFixedPoint Result = APFixedPoint::getFromFloatValue(
13581         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13582 
13583     if (Overflowed) {
13584       if (Info.checkingForUndefinedBehavior())
13585         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13586                                          diag::warn_fixedpoint_constant_overflow)
13587           << Result.toString() << E->getType();
13588       if (!HandleOverflow(Info, E, Result, E->getType()))
13589         return false;
13590     }
13591 
13592     return Success(Result, E);
13593   }
13594   case CK_NoOp:
13595   case CK_LValueToRValue:
13596     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13597   default:
13598     return Error(E);
13599   }
13600 }
13601 
13602 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13603   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13604     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13605 
13606   const Expr *LHS = E->getLHS();
13607   const Expr *RHS = E->getRHS();
13608   FixedPointSemantics ResultFXSema =
13609       Info.Ctx.getFixedPointSemantics(E->getType());
13610 
13611   APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
13612   if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
13613     return false;
13614   APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
13615   if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
13616     return false;
13617 
13618   bool OpOverflow = false, ConversionOverflow = false;
13619   APFixedPoint Result(LHSFX.getSemantics());
13620   switch (E->getOpcode()) {
13621   case BO_Add: {
13622     Result = LHSFX.add(RHSFX, &OpOverflow)
13623                   .convert(ResultFXSema, &ConversionOverflow);
13624     break;
13625   }
13626   case BO_Sub: {
13627     Result = LHSFX.sub(RHSFX, &OpOverflow)
13628                   .convert(ResultFXSema, &ConversionOverflow);
13629     break;
13630   }
13631   case BO_Mul: {
13632     Result = LHSFX.mul(RHSFX, &OpOverflow)
13633                   .convert(ResultFXSema, &ConversionOverflow);
13634     break;
13635   }
13636   case BO_Div: {
13637     if (RHSFX.getValue() == 0) {
13638       Info.FFDiag(E, diag::note_expr_divide_by_zero);
13639       return false;
13640     }
13641     Result = LHSFX.div(RHSFX, &OpOverflow)
13642                   .convert(ResultFXSema, &ConversionOverflow);
13643     break;
13644   }
13645   case BO_Shl:
13646   case BO_Shr: {
13647     FixedPointSemantics LHSSema = LHSFX.getSemantics();
13648     llvm::APSInt RHSVal = RHSFX.getValue();
13649 
13650     unsigned ShiftBW =
13651         LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
13652     unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
13653     // Embedded-C 4.1.6.2.2:
13654     //   The right operand must be nonnegative and less than the total number
13655     //   of (nonpadding) bits of the fixed-point operand ...
13656     if (RHSVal.isNegative())
13657       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
13658     else if (Amt != RHSVal)
13659       Info.CCEDiag(E, diag::note_constexpr_large_shift)
13660           << RHSVal << E->getType() << ShiftBW;
13661 
13662     if (E->getOpcode() == BO_Shl)
13663       Result = LHSFX.shl(Amt, &OpOverflow);
13664     else
13665       Result = LHSFX.shr(Amt, &OpOverflow);
13666     break;
13667   }
13668   default:
13669     return false;
13670   }
13671   if (OpOverflow || ConversionOverflow) {
13672     if (Info.checkingForUndefinedBehavior())
13673       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13674                                        diag::warn_fixedpoint_constant_overflow)
13675         << Result.toString() << E->getType();
13676     if (!HandleOverflow(Info, E, Result, E->getType()))
13677       return false;
13678   }
13679   return Success(Result, E);
13680 }
13681 
13682 //===----------------------------------------------------------------------===//
13683 // Float Evaluation
13684 //===----------------------------------------------------------------------===//
13685 
13686 namespace {
13687 class FloatExprEvaluator
13688   : public ExprEvaluatorBase<FloatExprEvaluator> {
13689   APFloat &Result;
13690 public:
13691   FloatExprEvaluator(EvalInfo &info, APFloat &result)
13692     : ExprEvaluatorBaseTy(info), Result(result) {}
13693 
13694   bool Success(const APValue &V, const Expr *e) {
13695     Result = V.getFloat();
13696     return true;
13697   }
13698 
13699   bool ZeroInitialization(const Expr *E) {
13700     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
13701     return true;
13702   }
13703 
13704   bool VisitCallExpr(const CallExpr *E);
13705 
13706   bool VisitUnaryOperator(const UnaryOperator *E);
13707   bool VisitBinaryOperator(const BinaryOperator *E);
13708   bool VisitFloatingLiteral(const FloatingLiteral *E);
13709   bool VisitCastExpr(const CastExpr *E);
13710 
13711   bool VisitUnaryReal(const UnaryOperator *E);
13712   bool VisitUnaryImag(const UnaryOperator *E);
13713 
13714   // FIXME: Missing: array subscript of vector, member of vector
13715 };
13716 } // end anonymous namespace
13717 
13718 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
13719   assert(!E->isValueDependent());
13720   assert(E->isPRValue() && E->getType()->isRealFloatingType());
13721   return FloatExprEvaluator(Info, Result).Visit(E);
13722 }
13723 
13724 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
13725                                   QualType ResultTy,
13726                                   const Expr *Arg,
13727                                   bool SNaN,
13728                                   llvm::APFloat &Result) {
13729   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
13730   if (!S) return false;
13731 
13732   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
13733 
13734   llvm::APInt fill;
13735 
13736   // Treat empty strings as if they were zero.
13737   if (S->getString().empty())
13738     fill = llvm::APInt(32, 0);
13739   else if (S->getString().getAsInteger(0, fill))
13740     return false;
13741 
13742   if (Context.getTargetInfo().isNan2008()) {
13743     if (SNaN)
13744       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13745     else
13746       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13747   } else {
13748     // Prior to IEEE 754-2008, architectures were allowed to choose whether
13749     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
13750     // a different encoding to what became a standard in 2008, and for pre-
13751     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
13752     // sNaN. This is now known as "legacy NaN" encoding.
13753     if (SNaN)
13754       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13755     else
13756       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13757   }
13758 
13759   return true;
13760 }
13761 
13762 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
13763   switch (E->getBuiltinCallee()) {
13764   default:
13765     return ExprEvaluatorBaseTy::VisitCallExpr(E);
13766 
13767   case Builtin::BI__builtin_huge_val:
13768   case Builtin::BI__builtin_huge_valf:
13769   case Builtin::BI__builtin_huge_vall:
13770   case Builtin::BI__builtin_huge_valf128:
13771   case Builtin::BI__builtin_inf:
13772   case Builtin::BI__builtin_inff:
13773   case Builtin::BI__builtin_infl:
13774   case Builtin::BI__builtin_inff128: {
13775     const llvm::fltSemantics &Sem =
13776       Info.Ctx.getFloatTypeSemantics(E->getType());
13777     Result = llvm::APFloat::getInf(Sem);
13778     return true;
13779   }
13780 
13781   case Builtin::BI__builtin_nans:
13782   case Builtin::BI__builtin_nansf:
13783   case Builtin::BI__builtin_nansl:
13784   case Builtin::BI__builtin_nansf128:
13785     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13786                                true, Result))
13787       return Error(E);
13788     return true;
13789 
13790   case Builtin::BI__builtin_nan:
13791   case Builtin::BI__builtin_nanf:
13792   case Builtin::BI__builtin_nanl:
13793   case Builtin::BI__builtin_nanf128:
13794     // If this is __builtin_nan() turn this into a nan, otherwise we
13795     // can't constant fold it.
13796     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13797                                false, Result))
13798       return Error(E);
13799     return true;
13800 
13801   case Builtin::BI__builtin_fabs:
13802   case Builtin::BI__builtin_fabsf:
13803   case Builtin::BI__builtin_fabsl:
13804   case Builtin::BI__builtin_fabsf128:
13805     // The C standard says "fabs raises no floating-point exceptions,
13806     // even if x is a signaling NaN. The returned value is independent of
13807     // the current rounding direction mode."  Therefore constant folding can
13808     // proceed without regard to the floating point settings.
13809     // Reference, WG14 N2478 F.10.4.3
13810     if (!EvaluateFloat(E->getArg(0), Result, Info))
13811       return false;
13812 
13813     if (Result.isNegative())
13814       Result.changeSign();
13815     return true;
13816 
13817   case Builtin::BI__arithmetic_fence:
13818     return EvaluateFloat(E->getArg(0), Result, Info);
13819 
13820   // FIXME: Builtin::BI__builtin_powi
13821   // FIXME: Builtin::BI__builtin_powif
13822   // FIXME: Builtin::BI__builtin_powil
13823 
13824   case Builtin::BI__builtin_copysign:
13825   case Builtin::BI__builtin_copysignf:
13826   case Builtin::BI__builtin_copysignl:
13827   case Builtin::BI__builtin_copysignf128: {
13828     APFloat RHS(0.);
13829     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
13830         !EvaluateFloat(E->getArg(1), RHS, Info))
13831       return false;
13832     Result.copySign(RHS);
13833     return true;
13834   }
13835   }
13836 }
13837 
13838 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13839   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13840     ComplexValue CV;
13841     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13842       return false;
13843     Result = CV.FloatReal;
13844     return true;
13845   }
13846 
13847   return Visit(E->getSubExpr());
13848 }
13849 
13850 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13851   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13852     ComplexValue CV;
13853     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13854       return false;
13855     Result = CV.FloatImag;
13856     return true;
13857   }
13858 
13859   VisitIgnoredValue(E->getSubExpr());
13860   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
13861   Result = llvm::APFloat::getZero(Sem);
13862   return true;
13863 }
13864 
13865 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13866   switch (E->getOpcode()) {
13867   default: return Error(E);
13868   case UO_Plus:
13869     return EvaluateFloat(E->getSubExpr(), Result, Info);
13870   case UO_Minus:
13871     // In C standard, WG14 N2478 F.3 p4
13872     // "the unary - raises no floating point exceptions,
13873     // even if the operand is signalling."
13874     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
13875       return false;
13876     Result.changeSign();
13877     return true;
13878   }
13879 }
13880 
13881 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13882   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13883     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13884 
13885   APFloat RHS(0.0);
13886   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
13887   if (!LHSOK && !Info.noteFailure())
13888     return false;
13889   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
13890          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
13891 }
13892 
13893 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
13894   Result = E->getValue();
13895   return true;
13896 }
13897 
13898 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
13899   const Expr* SubExpr = E->getSubExpr();
13900 
13901   switch (E->getCastKind()) {
13902   default:
13903     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13904 
13905   case CK_IntegralToFloating: {
13906     APSInt IntResult;
13907     const FPOptions FPO = E->getFPFeaturesInEffect(
13908                                   Info.Ctx.getLangOpts());
13909     return EvaluateInteger(SubExpr, IntResult, Info) &&
13910            HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
13911                                 IntResult, E->getType(), Result);
13912   }
13913 
13914   case CK_FixedPointToFloating: {
13915     APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13916     if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
13917       return false;
13918     Result =
13919         FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
13920     return true;
13921   }
13922 
13923   case CK_FloatingCast: {
13924     if (!Visit(SubExpr))
13925       return false;
13926     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
13927                                   Result);
13928   }
13929 
13930   case CK_FloatingComplexToReal: {
13931     ComplexValue V;
13932     if (!EvaluateComplex(SubExpr, V, Info))
13933       return false;
13934     Result = V.getComplexFloatReal();
13935     return true;
13936   }
13937   }
13938 }
13939 
13940 //===----------------------------------------------------------------------===//
13941 // Complex Evaluation (for float and integer)
13942 //===----------------------------------------------------------------------===//
13943 
13944 namespace {
13945 class ComplexExprEvaluator
13946   : public ExprEvaluatorBase<ComplexExprEvaluator> {
13947   ComplexValue &Result;
13948 
13949 public:
13950   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
13951     : ExprEvaluatorBaseTy(info), Result(Result) {}
13952 
13953   bool Success(const APValue &V, const Expr *e) {
13954     Result.setFrom(V);
13955     return true;
13956   }
13957 
13958   bool ZeroInitialization(const Expr *E);
13959 
13960   //===--------------------------------------------------------------------===//
13961   //                            Visitor Methods
13962   //===--------------------------------------------------------------------===//
13963 
13964   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
13965   bool VisitCastExpr(const CastExpr *E);
13966   bool VisitBinaryOperator(const BinaryOperator *E);
13967   bool VisitUnaryOperator(const UnaryOperator *E);
13968   bool VisitInitListExpr(const InitListExpr *E);
13969   bool VisitCallExpr(const CallExpr *E);
13970 };
13971 } // end anonymous namespace
13972 
13973 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
13974                             EvalInfo &Info) {
13975   assert(!E->isValueDependent());
13976   assert(E->isPRValue() && E->getType()->isAnyComplexType());
13977   return ComplexExprEvaluator(Info, Result).Visit(E);
13978 }
13979 
13980 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
13981   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
13982   if (ElemTy->isRealFloatingType()) {
13983     Result.makeComplexFloat();
13984     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
13985     Result.FloatReal = Zero;
13986     Result.FloatImag = Zero;
13987   } else {
13988     Result.makeComplexInt();
13989     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
13990     Result.IntReal = Zero;
13991     Result.IntImag = Zero;
13992   }
13993   return true;
13994 }
13995 
13996 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
13997   const Expr* SubExpr = E->getSubExpr();
13998 
13999   if (SubExpr->getType()->isRealFloatingType()) {
14000     Result.makeComplexFloat();
14001     APFloat &Imag = Result.FloatImag;
14002     if (!EvaluateFloat(SubExpr, Imag, Info))
14003       return false;
14004 
14005     Result.FloatReal = APFloat(Imag.getSemantics());
14006     return true;
14007   } else {
14008     assert(SubExpr->getType()->isIntegerType() &&
14009            "Unexpected imaginary literal.");
14010 
14011     Result.makeComplexInt();
14012     APSInt &Imag = Result.IntImag;
14013     if (!EvaluateInteger(SubExpr, Imag, Info))
14014       return false;
14015 
14016     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
14017     return true;
14018   }
14019 }
14020 
14021 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
14022 
14023   switch (E->getCastKind()) {
14024   case CK_BitCast:
14025   case CK_BaseToDerived:
14026   case CK_DerivedToBase:
14027   case CK_UncheckedDerivedToBase:
14028   case CK_Dynamic:
14029   case CK_ToUnion:
14030   case CK_ArrayToPointerDecay:
14031   case CK_FunctionToPointerDecay:
14032   case CK_NullToPointer:
14033   case CK_NullToMemberPointer:
14034   case CK_BaseToDerivedMemberPointer:
14035   case CK_DerivedToBaseMemberPointer:
14036   case CK_MemberPointerToBoolean:
14037   case CK_ReinterpretMemberPointer:
14038   case CK_ConstructorConversion:
14039   case CK_IntegralToPointer:
14040   case CK_PointerToIntegral:
14041   case CK_PointerToBoolean:
14042   case CK_ToVoid:
14043   case CK_VectorSplat:
14044   case CK_IntegralCast:
14045   case CK_BooleanToSignedIntegral:
14046   case CK_IntegralToBoolean:
14047   case CK_IntegralToFloating:
14048   case CK_FloatingToIntegral:
14049   case CK_FloatingToBoolean:
14050   case CK_FloatingCast:
14051   case CK_CPointerToObjCPointerCast:
14052   case CK_BlockPointerToObjCPointerCast:
14053   case CK_AnyPointerToBlockPointerCast:
14054   case CK_ObjCObjectLValueCast:
14055   case CK_FloatingComplexToReal:
14056   case CK_FloatingComplexToBoolean:
14057   case CK_IntegralComplexToReal:
14058   case CK_IntegralComplexToBoolean:
14059   case CK_ARCProduceObject:
14060   case CK_ARCConsumeObject:
14061   case CK_ARCReclaimReturnedObject:
14062   case CK_ARCExtendBlockObject:
14063   case CK_CopyAndAutoreleaseBlockObject:
14064   case CK_BuiltinFnToFnPtr:
14065   case CK_ZeroToOCLOpaqueType:
14066   case CK_NonAtomicToAtomic:
14067   case CK_AddressSpaceConversion:
14068   case CK_IntToOCLSampler:
14069   case CK_FloatingToFixedPoint:
14070   case CK_FixedPointToFloating:
14071   case CK_FixedPointCast:
14072   case CK_FixedPointToBoolean:
14073   case CK_FixedPointToIntegral:
14074   case CK_IntegralToFixedPoint:
14075   case CK_MatrixCast:
14076     llvm_unreachable("invalid cast kind for complex value");
14077 
14078   case CK_LValueToRValue:
14079   case CK_AtomicToNonAtomic:
14080   case CK_NoOp:
14081   case CK_LValueToRValueBitCast:
14082     return ExprEvaluatorBaseTy::VisitCastExpr(E);
14083 
14084   case CK_Dependent:
14085   case CK_LValueBitCast:
14086   case CK_UserDefinedConversion:
14087     return Error(E);
14088 
14089   case CK_FloatingRealToComplex: {
14090     APFloat &Real = Result.FloatReal;
14091     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
14092       return false;
14093 
14094     Result.makeComplexFloat();
14095     Result.FloatImag = APFloat(Real.getSemantics());
14096     return true;
14097   }
14098 
14099   case CK_FloatingComplexCast: {
14100     if (!Visit(E->getSubExpr()))
14101       return false;
14102 
14103     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14104     QualType From
14105       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14106 
14107     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
14108            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
14109   }
14110 
14111   case CK_FloatingComplexToIntegralComplex: {
14112     if (!Visit(E->getSubExpr()))
14113       return false;
14114 
14115     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14116     QualType From
14117       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14118     Result.makeComplexInt();
14119     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
14120                                 To, Result.IntReal) &&
14121            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
14122                                 To, Result.IntImag);
14123   }
14124 
14125   case CK_IntegralRealToComplex: {
14126     APSInt &Real = Result.IntReal;
14127     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
14128       return false;
14129 
14130     Result.makeComplexInt();
14131     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
14132     return true;
14133   }
14134 
14135   case CK_IntegralComplexCast: {
14136     if (!Visit(E->getSubExpr()))
14137       return false;
14138 
14139     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14140     QualType From
14141       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14142 
14143     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
14144     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
14145     return true;
14146   }
14147 
14148   case CK_IntegralComplexToFloatingComplex: {
14149     if (!Visit(E->getSubExpr()))
14150       return false;
14151 
14152     const FPOptions FPO = E->getFPFeaturesInEffect(
14153                                   Info.Ctx.getLangOpts());
14154     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14155     QualType From
14156       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14157     Result.makeComplexFloat();
14158     return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14159                                 To, Result.FloatReal) &&
14160            HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14161                                 To, Result.FloatImag);
14162   }
14163   }
14164 
14165   llvm_unreachable("unknown cast resulting in complex value");
14166 }
14167 
14168 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14169   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14170     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14171 
14172   // Track whether the LHS or RHS is real at the type system level. When this is
14173   // the case we can simplify our evaluation strategy.
14174   bool LHSReal = false, RHSReal = false;
14175 
14176   bool LHSOK;
14177   if (E->getLHS()->getType()->isRealFloatingType()) {
14178     LHSReal = true;
14179     APFloat &Real = Result.FloatReal;
14180     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
14181     if (LHSOK) {
14182       Result.makeComplexFloat();
14183       Result.FloatImag = APFloat(Real.getSemantics());
14184     }
14185   } else {
14186     LHSOK = Visit(E->getLHS());
14187   }
14188   if (!LHSOK && !Info.noteFailure())
14189     return false;
14190 
14191   ComplexValue RHS;
14192   if (E->getRHS()->getType()->isRealFloatingType()) {
14193     RHSReal = true;
14194     APFloat &Real = RHS.FloatReal;
14195     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
14196       return false;
14197     RHS.makeComplexFloat();
14198     RHS.FloatImag = APFloat(Real.getSemantics());
14199   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
14200     return false;
14201 
14202   assert(!(LHSReal && RHSReal) &&
14203          "Cannot have both operands of a complex operation be real.");
14204   switch (E->getOpcode()) {
14205   default: return Error(E);
14206   case BO_Add:
14207     if (Result.isComplexFloat()) {
14208       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
14209                                        APFloat::rmNearestTiesToEven);
14210       if (LHSReal)
14211         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14212       else if (!RHSReal)
14213         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
14214                                          APFloat::rmNearestTiesToEven);
14215     } else {
14216       Result.getComplexIntReal() += RHS.getComplexIntReal();
14217       Result.getComplexIntImag() += RHS.getComplexIntImag();
14218     }
14219     break;
14220   case BO_Sub:
14221     if (Result.isComplexFloat()) {
14222       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
14223                                             APFloat::rmNearestTiesToEven);
14224       if (LHSReal) {
14225         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14226         Result.getComplexFloatImag().changeSign();
14227       } else if (!RHSReal) {
14228         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
14229                                               APFloat::rmNearestTiesToEven);
14230       }
14231     } else {
14232       Result.getComplexIntReal() -= RHS.getComplexIntReal();
14233       Result.getComplexIntImag() -= RHS.getComplexIntImag();
14234     }
14235     break;
14236   case BO_Mul:
14237     if (Result.isComplexFloat()) {
14238       // This is an implementation of complex multiplication according to the
14239       // constraints laid out in C11 Annex G. The implementation uses the
14240       // following naming scheme:
14241       //   (a + ib) * (c + id)
14242       ComplexValue LHS = Result;
14243       APFloat &A = LHS.getComplexFloatReal();
14244       APFloat &B = LHS.getComplexFloatImag();
14245       APFloat &C = RHS.getComplexFloatReal();
14246       APFloat &D = RHS.getComplexFloatImag();
14247       APFloat &ResR = Result.getComplexFloatReal();
14248       APFloat &ResI = Result.getComplexFloatImag();
14249       if (LHSReal) {
14250         assert(!RHSReal && "Cannot have two real operands for a complex op!");
14251         ResR = A * C;
14252         ResI = A * D;
14253       } else if (RHSReal) {
14254         ResR = C * A;
14255         ResI = C * B;
14256       } else {
14257         // In the fully general case, we need to handle NaNs and infinities
14258         // robustly.
14259         APFloat AC = A * C;
14260         APFloat BD = B * D;
14261         APFloat AD = A * D;
14262         APFloat BC = B * C;
14263         ResR = AC - BD;
14264         ResI = AD + BC;
14265         if (ResR.isNaN() && ResI.isNaN()) {
14266           bool Recalc = false;
14267           if (A.isInfinity() || B.isInfinity()) {
14268             A = APFloat::copySign(
14269                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14270             B = APFloat::copySign(
14271                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14272             if (C.isNaN())
14273               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14274             if (D.isNaN())
14275               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14276             Recalc = true;
14277           }
14278           if (C.isInfinity() || D.isInfinity()) {
14279             C = APFloat::copySign(
14280                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14281             D = APFloat::copySign(
14282                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14283             if (A.isNaN())
14284               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14285             if (B.isNaN())
14286               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14287             Recalc = true;
14288           }
14289           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14290                           AD.isInfinity() || BC.isInfinity())) {
14291             if (A.isNaN())
14292               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14293             if (B.isNaN())
14294               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14295             if (C.isNaN())
14296               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14297             if (D.isNaN())
14298               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14299             Recalc = true;
14300           }
14301           if (Recalc) {
14302             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
14303             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
14304           }
14305         }
14306       }
14307     } else {
14308       ComplexValue LHS = Result;
14309       Result.getComplexIntReal() =
14310         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
14311          LHS.getComplexIntImag() * RHS.getComplexIntImag());
14312       Result.getComplexIntImag() =
14313         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
14314          LHS.getComplexIntImag() * RHS.getComplexIntReal());
14315     }
14316     break;
14317   case BO_Div:
14318     if (Result.isComplexFloat()) {
14319       // This is an implementation of complex division according to the
14320       // constraints laid out in C11 Annex G. The implementation uses the
14321       // following naming scheme:
14322       //   (a + ib) / (c + id)
14323       ComplexValue LHS = Result;
14324       APFloat &A = LHS.getComplexFloatReal();
14325       APFloat &B = LHS.getComplexFloatImag();
14326       APFloat &C = RHS.getComplexFloatReal();
14327       APFloat &D = RHS.getComplexFloatImag();
14328       APFloat &ResR = Result.getComplexFloatReal();
14329       APFloat &ResI = Result.getComplexFloatImag();
14330       if (RHSReal) {
14331         ResR = A / C;
14332         ResI = B / C;
14333       } else {
14334         if (LHSReal) {
14335           // No real optimizations we can do here, stub out with zero.
14336           B = APFloat::getZero(A.getSemantics());
14337         }
14338         int DenomLogB = 0;
14339         APFloat MaxCD = maxnum(abs(C), abs(D));
14340         if (MaxCD.isFinite()) {
14341           DenomLogB = ilogb(MaxCD);
14342           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
14343           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
14344         }
14345         APFloat Denom = C * C + D * D;
14346         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
14347                       APFloat::rmNearestTiesToEven);
14348         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
14349                       APFloat::rmNearestTiesToEven);
14350         if (ResR.isNaN() && ResI.isNaN()) {
14351           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
14352             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
14353             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
14354           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
14355                      D.isFinite()) {
14356             A = APFloat::copySign(
14357                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14358             B = APFloat::copySign(
14359                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14360             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
14361             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
14362           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
14363             C = APFloat::copySign(
14364                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14365             D = APFloat::copySign(
14366                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14367             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
14368             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
14369           }
14370         }
14371       }
14372     } else {
14373       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
14374         return Error(E, diag::note_expr_divide_by_zero);
14375 
14376       ComplexValue LHS = Result;
14377       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
14378         RHS.getComplexIntImag() * RHS.getComplexIntImag();
14379       Result.getComplexIntReal() =
14380         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
14381          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
14382       Result.getComplexIntImag() =
14383         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
14384          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
14385     }
14386     break;
14387   }
14388 
14389   return true;
14390 }
14391 
14392 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14393   // Get the operand value into 'Result'.
14394   if (!Visit(E->getSubExpr()))
14395     return false;
14396 
14397   switch (E->getOpcode()) {
14398   default:
14399     return Error(E);
14400   case UO_Extension:
14401     return true;
14402   case UO_Plus:
14403     // The result is always just the subexpr.
14404     return true;
14405   case UO_Minus:
14406     if (Result.isComplexFloat()) {
14407       Result.getComplexFloatReal().changeSign();
14408       Result.getComplexFloatImag().changeSign();
14409     }
14410     else {
14411       Result.getComplexIntReal() = -Result.getComplexIntReal();
14412       Result.getComplexIntImag() = -Result.getComplexIntImag();
14413     }
14414     return true;
14415   case UO_Not:
14416     if (Result.isComplexFloat())
14417       Result.getComplexFloatImag().changeSign();
14418     else
14419       Result.getComplexIntImag() = -Result.getComplexIntImag();
14420     return true;
14421   }
14422 }
14423 
14424 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
14425   if (E->getNumInits() == 2) {
14426     if (E->getType()->isComplexType()) {
14427       Result.makeComplexFloat();
14428       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
14429         return false;
14430       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
14431         return false;
14432     } else {
14433       Result.makeComplexInt();
14434       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
14435         return false;
14436       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
14437         return false;
14438     }
14439     return true;
14440   }
14441   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
14442 }
14443 
14444 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
14445   switch (E->getBuiltinCallee()) {
14446   case Builtin::BI__builtin_complex:
14447     Result.makeComplexFloat();
14448     if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
14449       return false;
14450     if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
14451       return false;
14452     return true;
14453 
14454   default:
14455     break;
14456   }
14457 
14458   return ExprEvaluatorBaseTy::VisitCallExpr(E);
14459 }
14460 
14461 //===----------------------------------------------------------------------===//
14462 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
14463 // implicit conversion.
14464 //===----------------------------------------------------------------------===//
14465 
14466 namespace {
14467 class AtomicExprEvaluator :
14468     public ExprEvaluatorBase<AtomicExprEvaluator> {
14469   const LValue *This;
14470   APValue &Result;
14471 public:
14472   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
14473       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
14474 
14475   bool Success(const APValue &V, const Expr *E) {
14476     Result = V;
14477     return true;
14478   }
14479 
14480   bool ZeroInitialization(const Expr *E) {
14481     ImplicitValueInitExpr VIE(
14482         E->getType()->castAs<AtomicType>()->getValueType());
14483     // For atomic-qualified class (and array) types in C++, initialize the
14484     // _Atomic-wrapped subobject directly, in-place.
14485     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
14486                 : Evaluate(Result, Info, &VIE);
14487   }
14488 
14489   bool VisitCastExpr(const CastExpr *E) {
14490     switch (E->getCastKind()) {
14491     default:
14492       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14493     case CK_NonAtomicToAtomic:
14494       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
14495                   : Evaluate(Result, Info, E->getSubExpr());
14496     }
14497   }
14498 };
14499 } // end anonymous namespace
14500 
14501 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
14502                            EvalInfo &Info) {
14503   assert(!E->isValueDependent());
14504   assert(E->isPRValue() && E->getType()->isAtomicType());
14505   return AtomicExprEvaluator(Info, This, Result).Visit(E);
14506 }
14507 
14508 //===----------------------------------------------------------------------===//
14509 // Void expression evaluation, primarily for a cast to void on the LHS of a
14510 // comma operator
14511 //===----------------------------------------------------------------------===//
14512 
14513 namespace {
14514 class VoidExprEvaluator
14515   : public ExprEvaluatorBase<VoidExprEvaluator> {
14516 public:
14517   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
14518 
14519   bool Success(const APValue &V, const Expr *e) { return true; }
14520 
14521   bool ZeroInitialization(const Expr *E) { return true; }
14522 
14523   bool VisitCastExpr(const CastExpr *E) {
14524     switch (E->getCastKind()) {
14525     default:
14526       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14527     case CK_ToVoid:
14528       VisitIgnoredValue(E->getSubExpr());
14529       return true;
14530     }
14531   }
14532 
14533   bool VisitCallExpr(const CallExpr *E) {
14534     switch (E->getBuiltinCallee()) {
14535     case Builtin::BI__assume:
14536     case Builtin::BI__builtin_assume:
14537       // The argument is not evaluated!
14538       return true;
14539 
14540     case Builtin::BI__builtin_operator_delete:
14541       return HandleOperatorDeleteCall(Info, E);
14542 
14543     default:
14544       break;
14545     }
14546 
14547     return ExprEvaluatorBaseTy::VisitCallExpr(E);
14548   }
14549 
14550   bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
14551 };
14552 } // end anonymous namespace
14553 
14554 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
14555   // We cannot speculatively evaluate a delete expression.
14556   if (Info.SpeculativeEvaluationDepth)
14557     return false;
14558 
14559   FunctionDecl *OperatorDelete = E->getOperatorDelete();
14560   if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
14561     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14562         << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
14563     return false;
14564   }
14565 
14566   const Expr *Arg = E->getArgument();
14567 
14568   LValue Pointer;
14569   if (!EvaluatePointer(Arg, Pointer, Info))
14570     return false;
14571   if (Pointer.Designator.Invalid)
14572     return false;
14573 
14574   // Deleting a null pointer has no effect.
14575   if (Pointer.isNullPointer()) {
14576     // This is the only case where we need to produce an extension warning:
14577     // the only other way we can succeed is if we find a dynamic allocation,
14578     // and we will have warned when we allocated it in that case.
14579     if (!Info.getLangOpts().CPlusPlus20)
14580       Info.CCEDiag(E, diag::note_constexpr_new);
14581     return true;
14582   }
14583 
14584   Optional<DynAlloc *> Alloc = CheckDeleteKind(
14585       Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
14586   if (!Alloc)
14587     return false;
14588   QualType AllocType = Pointer.Base.getDynamicAllocType();
14589 
14590   // For the non-array case, the designator must be empty if the static type
14591   // does not have a virtual destructor.
14592   if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
14593       !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
14594     Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
14595         << Arg->getType()->getPointeeType() << AllocType;
14596     return false;
14597   }
14598 
14599   // For a class type with a virtual destructor, the selected operator delete
14600   // is the one looked up when building the destructor.
14601   if (!E->isArrayForm() && !E->isGlobalDelete()) {
14602     const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
14603     if (VirtualDelete &&
14604         !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
14605       Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14606           << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
14607       return false;
14608     }
14609   }
14610 
14611   if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
14612                          (*Alloc)->Value, AllocType))
14613     return false;
14614 
14615   if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
14616     // The element was already erased. This means the destructor call also
14617     // deleted the object.
14618     // FIXME: This probably results in undefined behavior before we get this
14619     // far, and should be diagnosed elsewhere first.
14620     Info.FFDiag(E, diag::note_constexpr_double_delete);
14621     return false;
14622   }
14623 
14624   return true;
14625 }
14626 
14627 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
14628   assert(!E->isValueDependent());
14629   assert(E->isPRValue() && E->getType()->isVoidType());
14630   return VoidExprEvaluator(Info).Visit(E);
14631 }
14632 
14633 //===----------------------------------------------------------------------===//
14634 // Top level Expr::EvaluateAsRValue method.
14635 //===----------------------------------------------------------------------===//
14636 
14637 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
14638   assert(!E->isValueDependent());
14639   // In C, function designators are not lvalues, but we evaluate them as if they
14640   // are.
14641   QualType T = E->getType();
14642   if (E->isGLValue() || T->isFunctionType()) {
14643     LValue LV;
14644     if (!EvaluateLValue(E, LV, Info))
14645       return false;
14646     LV.moveInto(Result);
14647   } else if (T->isVectorType()) {
14648     if (!EvaluateVector(E, Result, Info))
14649       return false;
14650   } else if (T->isIntegralOrEnumerationType()) {
14651     if (!IntExprEvaluator(Info, Result).Visit(E))
14652       return false;
14653   } else if (T->hasPointerRepresentation()) {
14654     LValue LV;
14655     if (!EvaluatePointer(E, LV, Info))
14656       return false;
14657     LV.moveInto(Result);
14658   } else if (T->isRealFloatingType()) {
14659     llvm::APFloat F(0.0);
14660     if (!EvaluateFloat(E, F, Info))
14661       return false;
14662     Result = APValue(F);
14663   } else if (T->isAnyComplexType()) {
14664     ComplexValue C;
14665     if (!EvaluateComplex(E, C, Info))
14666       return false;
14667     C.moveInto(Result);
14668   } else if (T->isFixedPointType()) {
14669     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
14670   } else if (T->isMemberPointerType()) {
14671     MemberPtr P;
14672     if (!EvaluateMemberPointer(E, P, Info))
14673       return false;
14674     P.moveInto(Result);
14675     return true;
14676   } else if (T->isArrayType()) {
14677     LValue LV;
14678     APValue &Value =
14679         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14680     if (!EvaluateArray(E, LV, Value, Info))
14681       return false;
14682     Result = Value;
14683   } else if (T->isRecordType()) {
14684     LValue LV;
14685     APValue &Value =
14686         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14687     if (!EvaluateRecord(E, LV, Value, Info))
14688       return false;
14689     Result = Value;
14690   } else if (T->isVoidType()) {
14691     if (!Info.getLangOpts().CPlusPlus11)
14692       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
14693         << E->getType();
14694     if (!EvaluateVoid(E, Info))
14695       return false;
14696   } else if (T->isAtomicType()) {
14697     QualType Unqual = T.getAtomicUnqualifiedType();
14698     if (Unqual->isArrayType() || Unqual->isRecordType()) {
14699       LValue LV;
14700       APValue &Value = Info.CurrentCall->createTemporary(
14701           E, Unqual, ScopeKind::FullExpression, LV);
14702       if (!EvaluateAtomic(E, &LV, Value, Info))
14703         return false;
14704     } else {
14705       if (!EvaluateAtomic(E, nullptr, Result, Info))
14706         return false;
14707     }
14708   } else if (Info.getLangOpts().CPlusPlus11) {
14709     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
14710     return false;
14711   } else {
14712     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
14713     return false;
14714   }
14715 
14716   return true;
14717 }
14718 
14719 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
14720 /// cases, the in-place evaluation is essential, since later initializers for
14721 /// an object can indirectly refer to subobjects which were initialized earlier.
14722 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
14723                             const Expr *E, bool AllowNonLiteralTypes) {
14724   assert(!E->isValueDependent());
14725 
14726   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
14727     return false;
14728 
14729   if (E->isPRValue()) {
14730     // Evaluate arrays and record types in-place, so that later initializers can
14731     // refer to earlier-initialized members of the object.
14732     QualType T = E->getType();
14733     if (T->isArrayType())
14734       return EvaluateArray(E, This, Result, Info);
14735     else if (T->isRecordType())
14736       return EvaluateRecord(E, This, Result, Info);
14737     else if (T->isAtomicType()) {
14738       QualType Unqual = T.getAtomicUnqualifiedType();
14739       if (Unqual->isArrayType() || Unqual->isRecordType())
14740         return EvaluateAtomic(E, &This, Result, Info);
14741     }
14742   }
14743 
14744   // For any other type, in-place evaluation is unimportant.
14745   return Evaluate(Result, Info, E);
14746 }
14747 
14748 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
14749 /// lvalue-to-rvalue cast if it is an lvalue.
14750 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
14751   assert(!E->isValueDependent());
14752   if (Info.EnableNewConstInterp) {
14753     if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
14754       return false;
14755   } else {
14756     if (E->getType().isNull())
14757       return false;
14758 
14759     if (!CheckLiteralType(Info, E))
14760       return false;
14761 
14762     if (!::Evaluate(Result, Info, E))
14763       return false;
14764 
14765     if (E->isGLValue()) {
14766       LValue LV;
14767       LV.setFrom(Info.Ctx, Result);
14768       if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
14769         return false;
14770     }
14771   }
14772 
14773   // Check this core constant expression is a constant expression.
14774   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
14775                                  ConstantExprKind::Normal) &&
14776          CheckMemoryLeaks(Info);
14777 }
14778 
14779 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
14780                                  const ASTContext &Ctx, bool &IsConst) {
14781   // Fast-path evaluations of integer literals, since we sometimes see files
14782   // containing vast quantities of these.
14783   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
14784     Result.Val = APValue(APSInt(L->getValue(),
14785                                 L->getType()->isUnsignedIntegerType()));
14786     IsConst = true;
14787     return true;
14788   }
14789 
14790   // This case should be rare, but we need to check it before we check on
14791   // the type below.
14792   if (Exp->getType().isNull()) {
14793     IsConst = false;
14794     return true;
14795   }
14796 
14797   // FIXME: Evaluating values of large array and record types can cause
14798   // performance problems. Only do so in C++11 for now.
14799   if (Exp->isPRValue() &&
14800       (Exp->getType()->isArrayType() || Exp->getType()->isRecordType()) &&
14801       !Ctx.getLangOpts().CPlusPlus11) {
14802     IsConst = false;
14803     return true;
14804   }
14805   return false;
14806 }
14807 
14808 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
14809                                       Expr::SideEffectsKind SEK) {
14810   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
14811          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
14812 }
14813 
14814 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
14815                              const ASTContext &Ctx, EvalInfo &Info) {
14816   assert(!E->isValueDependent());
14817   bool IsConst;
14818   if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
14819     return IsConst;
14820 
14821   return EvaluateAsRValue(Info, E, Result.Val);
14822 }
14823 
14824 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
14825                           const ASTContext &Ctx,
14826                           Expr::SideEffectsKind AllowSideEffects,
14827                           EvalInfo &Info) {
14828   assert(!E->isValueDependent());
14829   if (!E->getType()->isIntegralOrEnumerationType())
14830     return false;
14831 
14832   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
14833       !ExprResult.Val.isInt() ||
14834       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14835     return false;
14836 
14837   return true;
14838 }
14839 
14840 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
14841                                  const ASTContext &Ctx,
14842                                  Expr::SideEffectsKind AllowSideEffects,
14843                                  EvalInfo &Info) {
14844   assert(!E->isValueDependent());
14845   if (!E->getType()->isFixedPointType())
14846     return false;
14847 
14848   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
14849     return false;
14850 
14851   if (!ExprResult.Val.isFixedPoint() ||
14852       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14853     return false;
14854 
14855   return true;
14856 }
14857 
14858 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
14859 /// any crazy technique (that has nothing to do with language standards) that
14860 /// we want to.  If this function returns true, it returns the folded constant
14861 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
14862 /// will be applied to the result.
14863 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
14864                             bool InConstantContext) const {
14865   assert(!isValueDependent() &&
14866          "Expression evaluator can't be called on a dependent expression.");
14867   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14868   Info.InConstantContext = InConstantContext;
14869   return ::EvaluateAsRValue(this, Result, Ctx, Info);
14870 }
14871 
14872 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
14873                                       bool InConstantContext) const {
14874   assert(!isValueDependent() &&
14875          "Expression evaluator can't be called on a dependent expression.");
14876   EvalResult Scratch;
14877   return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
14878          HandleConversionToBool(Scratch.Val, Result);
14879 }
14880 
14881 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
14882                          SideEffectsKind AllowSideEffects,
14883                          bool InConstantContext) const {
14884   assert(!isValueDependent() &&
14885          "Expression evaluator can't be called on a dependent expression.");
14886   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14887   Info.InConstantContext = InConstantContext;
14888   return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
14889 }
14890 
14891 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
14892                                 SideEffectsKind AllowSideEffects,
14893                                 bool InConstantContext) const {
14894   assert(!isValueDependent() &&
14895          "Expression evaluator can't be called on a dependent expression.");
14896   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14897   Info.InConstantContext = InConstantContext;
14898   return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
14899 }
14900 
14901 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
14902                            SideEffectsKind AllowSideEffects,
14903                            bool InConstantContext) const {
14904   assert(!isValueDependent() &&
14905          "Expression evaluator can't be called on a dependent expression.");
14906 
14907   if (!getType()->isRealFloatingType())
14908     return false;
14909 
14910   EvalResult ExprResult;
14911   if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
14912       !ExprResult.Val.isFloat() ||
14913       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14914     return false;
14915 
14916   Result = ExprResult.Val.getFloat();
14917   return true;
14918 }
14919 
14920 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
14921                             bool InConstantContext) const {
14922   assert(!isValueDependent() &&
14923          "Expression evaluator can't be called on a dependent expression.");
14924 
14925   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
14926   Info.InConstantContext = InConstantContext;
14927   LValue LV;
14928   CheckedTemporaries CheckedTemps;
14929   if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
14930       Result.HasSideEffects ||
14931       !CheckLValueConstantExpression(Info, getExprLoc(),
14932                                      Ctx.getLValueReferenceType(getType()), LV,
14933                                      ConstantExprKind::Normal, CheckedTemps))
14934     return false;
14935 
14936   LV.moveInto(Result.Val);
14937   return true;
14938 }
14939 
14940 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
14941                                 APValue DestroyedValue, QualType Type,
14942                                 SourceLocation Loc, Expr::EvalStatus &EStatus,
14943                                 bool IsConstantDestruction) {
14944   EvalInfo Info(Ctx, EStatus,
14945                 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
14946                                       : EvalInfo::EM_ConstantFold);
14947   Info.setEvaluatingDecl(Base, DestroyedValue,
14948                          EvalInfo::EvaluatingDeclKind::Dtor);
14949   Info.InConstantContext = IsConstantDestruction;
14950 
14951   LValue LVal;
14952   LVal.set(Base);
14953 
14954   if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
14955       EStatus.HasSideEffects)
14956     return false;
14957 
14958   if (!Info.discardCleanups())
14959     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14960 
14961   return true;
14962 }
14963 
14964 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
14965                                   ConstantExprKind Kind) const {
14966   assert(!isValueDependent() &&
14967          "Expression evaluator can't be called on a dependent expression.");
14968 
14969   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
14970   EvalInfo Info(Ctx, Result, EM);
14971   Info.InConstantContext = true;
14972 
14973   // The type of the object we're initializing is 'const T' for a class NTTP.
14974   QualType T = getType();
14975   if (Kind == ConstantExprKind::ClassTemplateArgument)
14976     T.addConst();
14977 
14978   // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
14979   // represent the result of the evaluation. CheckConstantExpression ensures
14980   // this doesn't escape.
14981   MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
14982   APValue::LValueBase Base(&BaseMTE);
14983 
14984   Info.setEvaluatingDecl(Base, Result.Val);
14985   LValue LVal;
14986   LVal.set(Base);
14987 
14988   if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || Result.HasSideEffects)
14989     return false;
14990 
14991   if (!Info.discardCleanups())
14992     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14993 
14994   if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
14995                                Result.Val, Kind))
14996     return false;
14997   if (!CheckMemoryLeaks(Info))
14998     return false;
14999 
15000   // If this is a class template argument, it's required to have constant
15001   // destruction too.
15002   if (Kind == ConstantExprKind::ClassTemplateArgument &&
15003       (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
15004                             true) ||
15005        Result.HasSideEffects)) {
15006     // FIXME: Prefix a note to indicate that the problem is lack of constant
15007     // destruction.
15008     return false;
15009   }
15010 
15011   return true;
15012 }
15013 
15014 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
15015                                  const VarDecl *VD,
15016                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
15017   assert(!isValueDependent() &&
15018          "Expression evaluator can't be called on a dependent expression.");
15019 
15020   // FIXME: Evaluating initializers for large array and record types can cause
15021   // performance problems. Only do so in C++11 for now.
15022   if (isPRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
15023       !Ctx.getLangOpts().CPlusPlus11)
15024     return false;
15025 
15026   Expr::EvalStatus EStatus;
15027   EStatus.Diag = &Notes;
15028 
15029   EvalInfo Info(Ctx, EStatus, VD->isConstexpr()
15030                                       ? EvalInfo::EM_ConstantExpression
15031                                       : EvalInfo::EM_ConstantFold);
15032   Info.setEvaluatingDecl(VD, Value);
15033   Info.InConstantContext = true;
15034 
15035   SourceLocation DeclLoc = VD->getLocation();
15036   QualType DeclTy = VD->getType();
15037 
15038   if (Info.EnableNewConstInterp) {
15039     auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
15040     if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
15041       return false;
15042   } else {
15043     LValue LVal;
15044     LVal.set(VD);
15045 
15046     if (!EvaluateInPlace(Value, Info, LVal, this,
15047                          /*AllowNonLiteralTypes=*/true) ||
15048         EStatus.HasSideEffects)
15049       return false;
15050 
15051     // At this point, any lifetime-extended temporaries are completely
15052     // initialized.
15053     Info.performLifetimeExtension();
15054 
15055     if (!Info.discardCleanups())
15056       llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15057   }
15058   return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
15059                                  ConstantExprKind::Normal) &&
15060          CheckMemoryLeaks(Info);
15061 }
15062 
15063 bool VarDecl::evaluateDestruction(
15064     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
15065   Expr::EvalStatus EStatus;
15066   EStatus.Diag = &Notes;
15067 
15068   // Only treat the destruction as constant destruction if we formally have
15069   // constant initialization (or are usable in a constant expression).
15070   bool IsConstantDestruction = hasConstantInitialization();
15071 
15072   // Make a copy of the value for the destructor to mutate, if we know it.
15073   // Otherwise, treat the value as default-initialized; if the destructor works
15074   // anyway, then the destruction is constant (and must be essentially empty).
15075   APValue DestroyedValue;
15076   if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
15077     DestroyedValue = *getEvaluatedValue();
15078   else if (!getDefaultInitValue(getType(), DestroyedValue))
15079     return false;
15080 
15081   if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
15082                            getType(), getLocation(), EStatus,
15083                            IsConstantDestruction) ||
15084       EStatus.HasSideEffects)
15085     return false;
15086 
15087   ensureEvaluatedStmt()->HasConstantDestruction = true;
15088   return true;
15089 }
15090 
15091 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
15092 /// constant folded, but discard the result.
15093 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
15094   assert(!isValueDependent() &&
15095          "Expression evaluator can't be called on a dependent expression.");
15096 
15097   EvalResult Result;
15098   return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
15099          !hasUnacceptableSideEffect(Result, SEK);
15100 }
15101 
15102 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
15103                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15104   assert(!isValueDependent() &&
15105          "Expression evaluator can't be called on a dependent expression.");
15106 
15107   EvalResult EVResult;
15108   EVResult.Diag = Diag;
15109   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15110   Info.InConstantContext = true;
15111 
15112   bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
15113   (void)Result;
15114   assert(Result && "Could not evaluate expression");
15115   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15116 
15117   return EVResult.Val.getInt();
15118 }
15119 
15120 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
15121     const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15122   assert(!isValueDependent() &&
15123          "Expression evaluator can't be called on a dependent expression.");
15124 
15125   EvalResult EVResult;
15126   EVResult.Diag = Diag;
15127   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15128   Info.InConstantContext = true;
15129   Info.CheckingForUndefinedBehavior = true;
15130 
15131   bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
15132   (void)Result;
15133   assert(Result && "Could not evaluate expression");
15134   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15135 
15136   return EVResult.Val.getInt();
15137 }
15138 
15139 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
15140   assert(!isValueDependent() &&
15141          "Expression evaluator can't be called on a dependent expression.");
15142 
15143   bool IsConst;
15144   EvalResult EVResult;
15145   if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
15146     EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15147     Info.CheckingForUndefinedBehavior = true;
15148     (void)::EvaluateAsRValue(Info, this, EVResult.Val);
15149   }
15150 }
15151 
15152 bool Expr::EvalResult::isGlobalLValue() const {
15153   assert(Val.isLValue());
15154   return IsGlobalLValue(Val.getLValueBase());
15155 }
15156 
15157 /// isIntegerConstantExpr - this recursive routine will test if an expression is
15158 /// an integer constant expression.
15159 
15160 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
15161 /// comma, etc
15162 
15163 // CheckICE - This function does the fundamental ICE checking: the returned
15164 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15165 // and a (possibly null) SourceLocation indicating the location of the problem.
15166 //
15167 // Note that to reduce code duplication, this helper does no evaluation
15168 // itself; the caller checks whether the expression is evaluatable, and
15169 // in the rare cases where CheckICE actually cares about the evaluated
15170 // value, it calls into Evaluate.
15171 
15172 namespace {
15173 
15174 enum ICEKind {
15175   /// This expression is an ICE.
15176   IK_ICE,
15177   /// This expression is not an ICE, but if it isn't evaluated, it's
15178   /// a legal subexpression for an ICE. This return value is used to handle
15179   /// the comma operator in C99 mode, and non-constant subexpressions.
15180   IK_ICEIfUnevaluated,
15181   /// This expression is not an ICE, and is not a legal subexpression for one.
15182   IK_NotICE
15183 };
15184 
15185 struct ICEDiag {
15186   ICEKind Kind;
15187   SourceLocation Loc;
15188 
15189   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
15190 };
15191 
15192 }
15193 
15194 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
15195 
15196 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
15197 
15198 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
15199   Expr::EvalResult EVResult;
15200   Expr::EvalStatus Status;
15201   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15202 
15203   Info.InConstantContext = true;
15204   if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
15205       !EVResult.Val.isInt())
15206     return ICEDiag(IK_NotICE, E->getBeginLoc());
15207 
15208   return NoDiag();
15209 }
15210 
15211 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
15212   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
15213   if (!E->getType()->isIntegralOrEnumerationType())
15214     return ICEDiag(IK_NotICE, E->getBeginLoc());
15215 
15216   switch (E->getStmtClass()) {
15217 #define ABSTRACT_STMT(Node)
15218 #define STMT(Node, Base) case Expr::Node##Class:
15219 #define EXPR(Node, Base)
15220 #include "clang/AST/StmtNodes.inc"
15221   case Expr::PredefinedExprClass:
15222   case Expr::FloatingLiteralClass:
15223   case Expr::ImaginaryLiteralClass:
15224   case Expr::StringLiteralClass:
15225   case Expr::ArraySubscriptExprClass:
15226   case Expr::MatrixSubscriptExprClass:
15227   case Expr::OMPArraySectionExprClass:
15228   case Expr::OMPArrayShapingExprClass:
15229   case Expr::OMPIteratorExprClass:
15230   case Expr::MemberExprClass:
15231   case Expr::CompoundAssignOperatorClass:
15232   case Expr::CompoundLiteralExprClass:
15233   case Expr::ExtVectorElementExprClass:
15234   case Expr::DesignatedInitExprClass:
15235   case Expr::ArrayInitLoopExprClass:
15236   case Expr::ArrayInitIndexExprClass:
15237   case Expr::NoInitExprClass:
15238   case Expr::DesignatedInitUpdateExprClass:
15239   case Expr::ImplicitValueInitExprClass:
15240   case Expr::ParenListExprClass:
15241   case Expr::VAArgExprClass:
15242   case Expr::AddrLabelExprClass:
15243   case Expr::StmtExprClass:
15244   case Expr::CXXMemberCallExprClass:
15245   case Expr::CUDAKernelCallExprClass:
15246   case Expr::CXXAddrspaceCastExprClass:
15247   case Expr::CXXDynamicCastExprClass:
15248   case Expr::CXXTypeidExprClass:
15249   case Expr::CXXUuidofExprClass:
15250   case Expr::MSPropertyRefExprClass:
15251   case Expr::MSPropertySubscriptExprClass:
15252   case Expr::CXXNullPtrLiteralExprClass:
15253   case Expr::UserDefinedLiteralClass:
15254   case Expr::CXXThisExprClass:
15255   case Expr::CXXThrowExprClass:
15256   case Expr::CXXNewExprClass:
15257   case Expr::CXXDeleteExprClass:
15258   case Expr::CXXPseudoDestructorExprClass:
15259   case Expr::UnresolvedLookupExprClass:
15260   case Expr::TypoExprClass:
15261   case Expr::RecoveryExprClass:
15262   case Expr::DependentScopeDeclRefExprClass:
15263   case Expr::CXXConstructExprClass:
15264   case Expr::CXXInheritedCtorInitExprClass:
15265   case Expr::CXXStdInitializerListExprClass:
15266   case Expr::CXXBindTemporaryExprClass:
15267   case Expr::ExprWithCleanupsClass:
15268   case Expr::CXXTemporaryObjectExprClass:
15269   case Expr::CXXUnresolvedConstructExprClass:
15270   case Expr::CXXDependentScopeMemberExprClass:
15271   case Expr::UnresolvedMemberExprClass:
15272   case Expr::ObjCStringLiteralClass:
15273   case Expr::ObjCBoxedExprClass:
15274   case Expr::ObjCArrayLiteralClass:
15275   case Expr::ObjCDictionaryLiteralClass:
15276   case Expr::ObjCEncodeExprClass:
15277   case Expr::ObjCMessageExprClass:
15278   case Expr::ObjCSelectorExprClass:
15279   case Expr::ObjCProtocolExprClass:
15280   case Expr::ObjCIvarRefExprClass:
15281   case Expr::ObjCPropertyRefExprClass:
15282   case Expr::ObjCSubscriptRefExprClass:
15283   case Expr::ObjCIsaExprClass:
15284   case Expr::ObjCAvailabilityCheckExprClass:
15285   case Expr::ShuffleVectorExprClass:
15286   case Expr::ConvertVectorExprClass:
15287   case Expr::BlockExprClass:
15288   case Expr::NoStmtClass:
15289   case Expr::OpaqueValueExprClass:
15290   case Expr::PackExpansionExprClass:
15291   case Expr::SubstNonTypeTemplateParmPackExprClass:
15292   case Expr::FunctionParmPackExprClass:
15293   case Expr::AsTypeExprClass:
15294   case Expr::ObjCIndirectCopyRestoreExprClass:
15295   case Expr::MaterializeTemporaryExprClass:
15296   case Expr::PseudoObjectExprClass:
15297   case Expr::AtomicExprClass:
15298   case Expr::LambdaExprClass:
15299   case Expr::CXXFoldExprClass:
15300   case Expr::CoawaitExprClass:
15301   case Expr::DependentCoawaitExprClass:
15302   case Expr::CoyieldExprClass:
15303   case Expr::SYCLUniqueStableNameExprClass:
15304     return ICEDiag(IK_NotICE, E->getBeginLoc());
15305 
15306   case Expr::InitListExprClass: {
15307     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
15308     // form "T x = { a };" is equivalent to "T x = a;".
15309     // Unless we're initializing a reference, T is a scalar as it is known to be
15310     // of integral or enumeration type.
15311     if (E->isPRValue())
15312       if (cast<InitListExpr>(E)->getNumInits() == 1)
15313         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
15314     return ICEDiag(IK_NotICE, E->getBeginLoc());
15315   }
15316 
15317   case Expr::SizeOfPackExprClass:
15318   case Expr::GNUNullExprClass:
15319   case Expr::SourceLocExprClass:
15320     return NoDiag();
15321 
15322   case Expr::SubstNonTypeTemplateParmExprClass:
15323     return
15324       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
15325 
15326   case Expr::ConstantExprClass:
15327     return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
15328 
15329   case Expr::ParenExprClass:
15330     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
15331   case Expr::GenericSelectionExprClass:
15332     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
15333   case Expr::IntegerLiteralClass:
15334   case Expr::FixedPointLiteralClass:
15335   case Expr::CharacterLiteralClass:
15336   case Expr::ObjCBoolLiteralExprClass:
15337   case Expr::CXXBoolLiteralExprClass:
15338   case Expr::CXXScalarValueInitExprClass:
15339   case Expr::TypeTraitExprClass:
15340   case Expr::ConceptSpecializationExprClass:
15341   case Expr::RequiresExprClass:
15342   case Expr::ArrayTypeTraitExprClass:
15343   case Expr::ExpressionTraitExprClass:
15344   case Expr::CXXNoexceptExprClass:
15345     return NoDiag();
15346   case Expr::CallExprClass:
15347   case Expr::CXXOperatorCallExprClass: {
15348     // C99 6.6/3 allows function calls within unevaluated subexpressions of
15349     // constant expressions, but they can never be ICEs because an ICE cannot
15350     // contain an operand of (pointer to) function type.
15351     const CallExpr *CE = cast<CallExpr>(E);
15352     if (CE->getBuiltinCallee())
15353       return CheckEvalInICE(E, Ctx);
15354     return ICEDiag(IK_NotICE, E->getBeginLoc());
15355   }
15356   case Expr::CXXRewrittenBinaryOperatorClass:
15357     return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
15358                     Ctx);
15359   case Expr::DeclRefExprClass: {
15360     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
15361     if (isa<EnumConstantDecl>(D))
15362       return NoDiag();
15363 
15364     // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
15365     // integer variables in constant expressions:
15366     //
15367     // C++ 7.1.5.1p2
15368     //   A variable of non-volatile const-qualified integral or enumeration
15369     //   type initialized by an ICE can be used in ICEs.
15370     //
15371     // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
15372     // that mode, use of reference variables should not be allowed.
15373     const VarDecl *VD = dyn_cast<VarDecl>(D);
15374     if (VD && VD->isUsableInConstantExpressions(Ctx) &&
15375         !VD->getType()->isReferenceType())
15376       return NoDiag();
15377 
15378     return ICEDiag(IK_NotICE, E->getBeginLoc());
15379   }
15380   case Expr::UnaryOperatorClass: {
15381     const UnaryOperator *Exp = cast<UnaryOperator>(E);
15382     switch (Exp->getOpcode()) {
15383     case UO_PostInc:
15384     case UO_PostDec:
15385     case UO_PreInc:
15386     case UO_PreDec:
15387     case UO_AddrOf:
15388     case UO_Deref:
15389     case UO_Coawait:
15390       // C99 6.6/3 allows increment and decrement within unevaluated
15391       // subexpressions of constant expressions, but they can never be ICEs
15392       // because an ICE cannot contain an lvalue operand.
15393       return ICEDiag(IK_NotICE, E->getBeginLoc());
15394     case UO_Extension:
15395     case UO_LNot:
15396     case UO_Plus:
15397     case UO_Minus:
15398     case UO_Not:
15399     case UO_Real:
15400     case UO_Imag:
15401       return CheckICE(Exp->getSubExpr(), Ctx);
15402     }
15403     llvm_unreachable("invalid unary operator class");
15404   }
15405   case Expr::OffsetOfExprClass: {
15406     // Note that per C99, offsetof must be an ICE. And AFAIK, using
15407     // EvaluateAsRValue matches the proposed gcc behavior for cases like
15408     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
15409     // compliance: we should warn earlier for offsetof expressions with
15410     // array subscripts that aren't ICEs, and if the array subscripts
15411     // are ICEs, the value of the offsetof must be an integer constant.
15412     return CheckEvalInICE(E, Ctx);
15413   }
15414   case Expr::UnaryExprOrTypeTraitExprClass: {
15415     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
15416     if ((Exp->getKind() ==  UETT_SizeOf) &&
15417         Exp->getTypeOfArgument()->isVariableArrayType())
15418       return ICEDiag(IK_NotICE, E->getBeginLoc());
15419     return NoDiag();
15420   }
15421   case Expr::BinaryOperatorClass: {
15422     const BinaryOperator *Exp = cast<BinaryOperator>(E);
15423     switch (Exp->getOpcode()) {
15424     case BO_PtrMemD:
15425     case BO_PtrMemI:
15426     case BO_Assign:
15427     case BO_MulAssign:
15428     case BO_DivAssign:
15429     case BO_RemAssign:
15430     case BO_AddAssign:
15431     case BO_SubAssign:
15432     case BO_ShlAssign:
15433     case BO_ShrAssign:
15434     case BO_AndAssign:
15435     case BO_XorAssign:
15436     case BO_OrAssign:
15437       // C99 6.6/3 allows assignments within unevaluated subexpressions of
15438       // constant expressions, but they can never be ICEs because an ICE cannot
15439       // contain an lvalue operand.
15440       return ICEDiag(IK_NotICE, E->getBeginLoc());
15441 
15442     case BO_Mul:
15443     case BO_Div:
15444     case BO_Rem:
15445     case BO_Add:
15446     case BO_Sub:
15447     case BO_Shl:
15448     case BO_Shr:
15449     case BO_LT:
15450     case BO_GT:
15451     case BO_LE:
15452     case BO_GE:
15453     case BO_EQ:
15454     case BO_NE:
15455     case BO_And:
15456     case BO_Xor:
15457     case BO_Or:
15458     case BO_Comma:
15459     case BO_Cmp: {
15460       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15461       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15462       if (Exp->getOpcode() == BO_Div ||
15463           Exp->getOpcode() == BO_Rem) {
15464         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
15465         // we don't evaluate one.
15466         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
15467           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
15468           if (REval == 0)
15469             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15470           if (REval.isSigned() && REval.isAllOnes()) {
15471             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
15472             if (LEval.isMinSignedValue())
15473               return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15474           }
15475         }
15476       }
15477       if (Exp->getOpcode() == BO_Comma) {
15478         if (Ctx.getLangOpts().C99) {
15479           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
15480           // if it isn't evaluated.
15481           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
15482             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15483         } else {
15484           // In both C89 and C++, commas in ICEs are illegal.
15485           return ICEDiag(IK_NotICE, E->getBeginLoc());
15486         }
15487       }
15488       return Worst(LHSResult, RHSResult);
15489     }
15490     case BO_LAnd:
15491     case BO_LOr: {
15492       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15493       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15494       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
15495         // Rare case where the RHS has a comma "side-effect"; we need
15496         // to actually check the condition to see whether the side
15497         // with the comma is evaluated.
15498         if ((Exp->getOpcode() == BO_LAnd) !=
15499             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
15500           return RHSResult;
15501         return NoDiag();
15502       }
15503 
15504       return Worst(LHSResult, RHSResult);
15505     }
15506     }
15507     llvm_unreachable("invalid binary operator kind");
15508   }
15509   case Expr::ImplicitCastExprClass:
15510   case Expr::CStyleCastExprClass:
15511   case Expr::CXXFunctionalCastExprClass:
15512   case Expr::CXXStaticCastExprClass:
15513   case Expr::CXXReinterpretCastExprClass:
15514   case Expr::CXXConstCastExprClass:
15515   case Expr::ObjCBridgedCastExprClass: {
15516     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
15517     if (isa<ExplicitCastExpr>(E)) {
15518       if (const FloatingLiteral *FL
15519             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
15520         unsigned DestWidth = Ctx.getIntWidth(E->getType());
15521         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
15522         APSInt IgnoredVal(DestWidth, !DestSigned);
15523         bool Ignored;
15524         // If the value does not fit in the destination type, the behavior is
15525         // undefined, so we are not required to treat it as a constant
15526         // expression.
15527         if (FL->getValue().convertToInteger(IgnoredVal,
15528                                             llvm::APFloat::rmTowardZero,
15529                                             &Ignored) & APFloat::opInvalidOp)
15530           return ICEDiag(IK_NotICE, E->getBeginLoc());
15531         return NoDiag();
15532       }
15533     }
15534     switch (cast<CastExpr>(E)->getCastKind()) {
15535     case CK_LValueToRValue:
15536     case CK_AtomicToNonAtomic:
15537     case CK_NonAtomicToAtomic:
15538     case CK_NoOp:
15539     case CK_IntegralToBoolean:
15540     case CK_IntegralCast:
15541       return CheckICE(SubExpr, Ctx);
15542     default:
15543       return ICEDiag(IK_NotICE, E->getBeginLoc());
15544     }
15545   }
15546   case Expr::BinaryConditionalOperatorClass: {
15547     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
15548     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
15549     if (CommonResult.Kind == IK_NotICE) return CommonResult;
15550     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15551     if (FalseResult.Kind == IK_NotICE) return FalseResult;
15552     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
15553     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
15554         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
15555     return FalseResult;
15556   }
15557   case Expr::ConditionalOperatorClass: {
15558     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
15559     // If the condition (ignoring parens) is a __builtin_constant_p call,
15560     // then only the true side is actually considered in an integer constant
15561     // expression, and it is fully evaluated.  This is an important GNU
15562     // extension.  See GCC PR38377 for discussion.
15563     if (const CallExpr *CallCE
15564         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
15565       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
15566         return CheckEvalInICE(E, Ctx);
15567     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
15568     if (CondResult.Kind == IK_NotICE)
15569       return CondResult;
15570 
15571     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
15572     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15573 
15574     if (TrueResult.Kind == IK_NotICE)
15575       return TrueResult;
15576     if (FalseResult.Kind == IK_NotICE)
15577       return FalseResult;
15578     if (CondResult.Kind == IK_ICEIfUnevaluated)
15579       return CondResult;
15580     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
15581       return NoDiag();
15582     // Rare case where the diagnostics depend on which side is evaluated
15583     // Note that if we get here, CondResult is 0, and at least one of
15584     // TrueResult and FalseResult is non-zero.
15585     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
15586       return FalseResult;
15587     return TrueResult;
15588   }
15589   case Expr::CXXDefaultArgExprClass:
15590     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
15591   case Expr::CXXDefaultInitExprClass:
15592     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
15593   case Expr::ChooseExprClass: {
15594     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
15595   }
15596   case Expr::BuiltinBitCastExprClass: {
15597     if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
15598       return ICEDiag(IK_NotICE, E->getBeginLoc());
15599     return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
15600   }
15601   }
15602 
15603   llvm_unreachable("Invalid StmtClass!");
15604 }
15605 
15606 /// Evaluate an expression as a C++11 integral constant expression.
15607 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
15608                                                     const Expr *E,
15609                                                     llvm::APSInt *Value,
15610                                                     SourceLocation *Loc) {
15611   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
15612     if (Loc) *Loc = E->getExprLoc();
15613     return false;
15614   }
15615 
15616   APValue Result;
15617   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
15618     return false;
15619 
15620   if (!Result.isInt()) {
15621     if (Loc) *Loc = E->getExprLoc();
15622     return false;
15623   }
15624 
15625   if (Value) *Value = Result.getInt();
15626   return true;
15627 }
15628 
15629 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
15630                                  SourceLocation *Loc) const {
15631   assert(!isValueDependent() &&
15632          "Expression evaluator can't be called on a dependent expression.");
15633 
15634   if (Ctx.getLangOpts().CPlusPlus11)
15635     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
15636 
15637   ICEDiag D = CheckICE(this, Ctx);
15638   if (D.Kind != IK_ICE) {
15639     if (Loc) *Loc = D.Loc;
15640     return false;
15641   }
15642   return true;
15643 }
15644 
15645 Optional<llvm::APSInt> Expr::getIntegerConstantExpr(const ASTContext &Ctx,
15646                                                     SourceLocation *Loc,
15647                                                     bool isEvaluated) const {
15648   if (isValueDependent()) {
15649     // Expression evaluator can't succeed on a dependent expression.
15650     return None;
15651   }
15652 
15653   APSInt Value;
15654 
15655   if (Ctx.getLangOpts().CPlusPlus11) {
15656     if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
15657       return Value;
15658     return None;
15659   }
15660 
15661   if (!isIntegerConstantExpr(Ctx, Loc))
15662     return None;
15663 
15664   // The only possible side-effects here are due to UB discovered in the
15665   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
15666   // required to treat the expression as an ICE, so we produce the folded
15667   // value.
15668   EvalResult ExprResult;
15669   Expr::EvalStatus Status;
15670   EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
15671   Info.InConstantContext = true;
15672 
15673   if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
15674     llvm_unreachable("ICE cannot be evaluated!");
15675 
15676   return ExprResult.Val.getInt();
15677 }
15678 
15679 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
15680   assert(!isValueDependent() &&
15681          "Expression evaluator can't be called on a dependent expression.");
15682 
15683   return CheckICE(this, Ctx).Kind == IK_ICE;
15684 }
15685 
15686 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
15687                                SourceLocation *Loc) const {
15688   assert(!isValueDependent() &&
15689          "Expression evaluator can't be called on a dependent expression.");
15690 
15691   // We support this checking in C++98 mode in order to diagnose compatibility
15692   // issues.
15693   assert(Ctx.getLangOpts().CPlusPlus);
15694 
15695   // Build evaluation settings.
15696   Expr::EvalStatus Status;
15697   SmallVector<PartialDiagnosticAt, 8> Diags;
15698   Status.Diag = &Diags;
15699   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15700 
15701   APValue Scratch;
15702   bool IsConstExpr =
15703       ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
15704       // FIXME: We don't produce a diagnostic for this, but the callers that
15705       // call us on arbitrary full-expressions should generally not care.
15706       Info.discardCleanups() && !Status.HasSideEffects;
15707 
15708   if (!Diags.empty()) {
15709     IsConstExpr = false;
15710     if (Loc) *Loc = Diags[0].first;
15711   } else if (!IsConstExpr) {
15712     // FIXME: This shouldn't happen.
15713     if (Loc) *Loc = getExprLoc();
15714   }
15715 
15716   return IsConstExpr;
15717 }
15718 
15719 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
15720                                     const FunctionDecl *Callee,
15721                                     ArrayRef<const Expr*> Args,
15722                                     const Expr *This) const {
15723   assert(!isValueDependent() &&
15724          "Expression evaluator can't be called on a dependent expression.");
15725 
15726   Expr::EvalStatus Status;
15727   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
15728   Info.InConstantContext = true;
15729 
15730   LValue ThisVal;
15731   const LValue *ThisPtr = nullptr;
15732   if (This) {
15733 #ifndef NDEBUG
15734     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
15735     assert(MD && "Don't provide `this` for non-methods.");
15736     assert(!MD->isStatic() && "Don't provide `this` for static methods.");
15737 #endif
15738     if (!This->isValueDependent() &&
15739         EvaluateObjectArgument(Info, This, ThisVal) &&
15740         !Info.EvalStatus.HasSideEffects)
15741       ThisPtr = &ThisVal;
15742 
15743     // Ignore any side-effects from a failed evaluation. This is safe because
15744     // they can't interfere with any other argument evaluation.
15745     Info.EvalStatus.HasSideEffects = false;
15746   }
15747 
15748   CallRef Call = Info.CurrentCall->createCall(Callee);
15749   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
15750        I != E; ++I) {
15751     unsigned Idx = I - Args.begin();
15752     if (Idx >= Callee->getNumParams())
15753       break;
15754     const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
15755     if ((*I)->isValueDependent() ||
15756         !EvaluateCallArg(PVD, *I, Call, Info) ||
15757         Info.EvalStatus.HasSideEffects) {
15758       // If evaluation fails, throw away the argument entirely.
15759       if (APValue *Slot = Info.getParamSlot(Call, PVD))
15760         *Slot = APValue();
15761     }
15762 
15763     // Ignore any side-effects from a failed evaluation. This is safe because
15764     // they can't interfere with any other argument evaluation.
15765     Info.EvalStatus.HasSideEffects = false;
15766   }
15767 
15768   // Parameter cleanups happen in the caller and are not part of this
15769   // evaluation.
15770   Info.discardCleanups();
15771   Info.EvalStatus.HasSideEffects = false;
15772 
15773   // Build fake call to Callee.
15774   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call);
15775   // FIXME: Missing ExprWithCleanups in enable_if conditions?
15776   FullExpressionRAII Scope(Info);
15777   return Evaluate(Value, Info, this) && Scope.destroy() &&
15778          !Info.EvalStatus.HasSideEffects;
15779 }
15780 
15781 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
15782                                    SmallVectorImpl<
15783                                      PartialDiagnosticAt> &Diags) {
15784   // FIXME: It would be useful to check constexpr function templates, but at the
15785   // moment the constant expression evaluator cannot cope with the non-rigorous
15786   // ASTs which we build for dependent expressions.
15787   if (FD->isDependentContext())
15788     return true;
15789 
15790   Expr::EvalStatus Status;
15791   Status.Diag = &Diags;
15792 
15793   EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
15794   Info.InConstantContext = true;
15795   Info.CheckingPotentialConstantExpression = true;
15796 
15797   // The constexpr VM attempts to compile all methods to bytecode here.
15798   if (Info.EnableNewConstInterp) {
15799     Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
15800     return Diags.empty();
15801   }
15802 
15803   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
15804   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
15805 
15806   // Fabricate an arbitrary expression on the stack and pretend that it
15807   // is a temporary being used as the 'this' pointer.
15808   LValue This;
15809   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
15810   This.set({&VIE, Info.CurrentCall->Index});
15811 
15812   ArrayRef<const Expr*> Args;
15813 
15814   APValue Scratch;
15815   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
15816     // Evaluate the call as a constant initializer, to allow the construction
15817     // of objects of non-literal types.
15818     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
15819     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
15820   } else {
15821     SourceLocation Loc = FD->getLocation();
15822     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
15823                        Args, CallRef(), FD->getBody(), Info, Scratch, nullptr);
15824   }
15825 
15826   return Diags.empty();
15827 }
15828 
15829 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
15830                                               const FunctionDecl *FD,
15831                                               SmallVectorImpl<
15832                                                 PartialDiagnosticAt> &Diags) {
15833   assert(!E->isValueDependent() &&
15834          "Expression evaluator can't be called on a dependent expression.");
15835 
15836   Expr::EvalStatus Status;
15837   Status.Diag = &Diags;
15838 
15839   EvalInfo Info(FD->getASTContext(), Status,
15840                 EvalInfo::EM_ConstantExpressionUnevaluated);
15841   Info.InConstantContext = true;
15842   Info.CheckingPotentialConstantExpression = true;
15843 
15844   // Fabricate a call stack frame to give the arguments a plausible cover story.
15845   CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef());
15846 
15847   APValue ResultScratch;
15848   Evaluate(ResultScratch, Info, E);
15849   return Diags.empty();
15850 }
15851 
15852 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
15853                                  unsigned Type) const {
15854   if (!getType()->isPointerType())
15855     return false;
15856 
15857   Expr::EvalStatus Status;
15858   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
15859   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
15860 }
15861 
15862 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
15863                                   EvalInfo &Info) {
15864   if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
15865     return false;
15866 
15867   LValue String;
15868 
15869   if (!EvaluatePointer(E, String, Info))
15870     return false;
15871 
15872   QualType CharTy = E->getType()->getPointeeType();
15873 
15874   // Fast path: if it's a string literal, search the string value.
15875   if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
15876           String.getLValueBase().dyn_cast<const Expr *>())) {
15877     StringRef Str = S->getBytes();
15878     int64_t Off = String.Offset.getQuantity();
15879     if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
15880         S->getCharByteWidth() == 1 &&
15881         // FIXME: Add fast-path for wchar_t too.
15882         Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
15883       Str = Str.substr(Off);
15884 
15885       StringRef::size_type Pos = Str.find(0);
15886       if (Pos != StringRef::npos)
15887         Str = Str.substr(0, Pos);
15888 
15889       Result = Str.size();
15890       return true;
15891     }
15892 
15893     // Fall through to slow path.
15894   }
15895 
15896   // Slow path: scan the bytes of the string looking for the terminating 0.
15897   for (uint64_t Strlen = 0; /**/; ++Strlen) {
15898     APValue Char;
15899     if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
15900         !Char.isInt())
15901       return false;
15902     if (!Char.getInt()) {
15903       Result = Strlen;
15904       return true;
15905     }
15906     if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
15907       return false;
15908   }
15909 }
15910 
15911 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
15912   Expr::EvalStatus Status;
15913   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
15914   return EvaluateBuiltinStrLen(this, Result, Info);
15915 }
15916