xref: /freebsd-src/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 //  * A success/failure flag indicating whether constant folding was successful.
14 //    This is the 'bool' return value used by most of the code in this file. A
15 //    'false' return value indicates that constant folding has failed, and any
16 //    appropriate diagnostic has already been produced.
17 //
18 //  * An evaluated result, valid only if constant folding has not failed.
19 //
20 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 //    where it is possible to determine the evaluated result regardless.
23 //
24 //  * A set of notes indicating why the evaluation was not a constant expression
25 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 //    too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "llvm/ADT/APFixedPoint.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/SaveAndRestore.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cstring>
61 #include <functional>
62 
63 #define DEBUG_TYPE "exprconstant"
64 
65 using namespace clang;
66 using llvm::APFixedPoint;
67 using llvm::APInt;
68 using llvm::APSInt;
69 using llvm::APFloat;
70 using llvm::FixedPointSemantics;
71 using llvm::Optional;
72 
73 namespace {
74   struct LValue;
75   class CallStackFrame;
76   class EvalInfo;
77 
78   using SourceLocExprScopeGuard =
79       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
80 
81   static QualType getType(APValue::LValueBase B) {
82     return B.getType();
83   }
84 
85   /// Get an LValue path entry, which is known to not be an array index, as a
86   /// field declaration.
87   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
88     return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
89   }
90   /// Get an LValue path entry, which is known to not be an array index, as a
91   /// base class declaration.
92   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
93     return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
94   }
95   /// Determine whether this LValue path entry for a base class names a virtual
96   /// base class.
97   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
98     return E.getAsBaseOrMember().getInt();
99   }
100 
101   /// Given an expression, determine the type used to store the result of
102   /// evaluating that expression.
103   static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
104     if (E->isPRValue())
105       return E->getType();
106     return Ctx.getLValueReferenceType(E->getType());
107   }
108 
109   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
110   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
111     if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
112       return DirectCallee->getAttr<AllocSizeAttr>();
113     if (const Decl *IndirectCallee = CE->getCalleeDecl())
114       return IndirectCallee->getAttr<AllocSizeAttr>();
115     return nullptr;
116   }
117 
118   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
119   /// This will look through a single cast.
120   ///
121   /// Returns null if we couldn't unwrap a function with alloc_size.
122   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
123     if (!E->getType()->isPointerType())
124       return nullptr;
125 
126     E = E->IgnoreParens();
127     // If we're doing a variable assignment from e.g. malloc(N), there will
128     // probably be a cast of some kind. In exotic cases, we might also see a
129     // top-level ExprWithCleanups. Ignore them either way.
130     if (const auto *FE = dyn_cast<FullExpr>(E))
131       E = FE->getSubExpr()->IgnoreParens();
132 
133     if (const auto *Cast = dyn_cast<CastExpr>(E))
134       E = Cast->getSubExpr()->IgnoreParens();
135 
136     if (const auto *CE = dyn_cast<CallExpr>(E))
137       return getAllocSizeAttr(CE) ? CE : nullptr;
138     return nullptr;
139   }
140 
141   /// Determines whether or not the given Base contains a call to a function
142   /// with the alloc_size attribute.
143   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
144     const auto *E = Base.dyn_cast<const Expr *>();
145     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
146   }
147 
148   /// Determines whether the given kind of constant expression is only ever
149   /// used for name mangling. If so, it's permitted to reference things that we
150   /// can't generate code for (in particular, dllimported functions).
151   static bool isForManglingOnly(ConstantExprKind Kind) {
152     switch (Kind) {
153     case ConstantExprKind::Normal:
154     case ConstantExprKind::ClassTemplateArgument:
155     case ConstantExprKind::ImmediateInvocation:
156       // Note that non-type template arguments of class type are emitted as
157       // template parameter objects.
158       return false;
159 
160     case ConstantExprKind::NonClassTemplateArgument:
161       return true;
162     }
163     llvm_unreachable("unknown ConstantExprKind");
164   }
165 
166   static bool isTemplateArgument(ConstantExprKind Kind) {
167     switch (Kind) {
168     case ConstantExprKind::Normal:
169     case ConstantExprKind::ImmediateInvocation:
170       return false;
171 
172     case ConstantExprKind::ClassTemplateArgument:
173     case ConstantExprKind::NonClassTemplateArgument:
174       return true;
175     }
176     llvm_unreachable("unknown ConstantExprKind");
177   }
178 
179   /// The bound to claim that an array of unknown bound has.
180   /// The value in MostDerivedArraySize is undefined in this case. So, set it
181   /// to an arbitrary value that's likely to loudly break things if it's used.
182   static const uint64_t AssumedSizeForUnsizedArray =
183       std::numeric_limits<uint64_t>::max() / 2;
184 
185   /// Determines if an LValue with the given LValueBase will have an unsized
186   /// array in its designator.
187   /// Find the path length and type of the most-derived subobject in the given
188   /// path, and find the size of the containing array, if any.
189   static unsigned
190   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
191                            ArrayRef<APValue::LValuePathEntry> Path,
192                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
193                            bool &FirstEntryIsUnsizedArray) {
194     // This only accepts LValueBases from APValues, and APValues don't support
195     // arrays that lack size info.
196     assert(!isBaseAnAllocSizeCall(Base) &&
197            "Unsized arrays shouldn't appear here");
198     unsigned MostDerivedLength = 0;
199     Type = getType(Base);
200 
201     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
202       if (Type->isArrayType()) {
203         const ArrayType *AT = Ctx.getAsArrayType(Type);
204         Type = AT->getElementType();
205         MostDerivedLength = I + 1;
206         IsArray = true;
207 
208         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
209           ArraySize = CAT->getSize().getZExtValue();
210         } else {
211           assert(I == 0 && "unexpected unsized array designator");
212           FirstEntryIsUnsizedArray = true;
213           ArraySize = AssumedSizeForUnsizedArray;
214         }
215       } else if (Type->isAnyComplexType()) {
216         const ComplexType *CT = Type->castAs<ComplexType>();
217         Type = CT->getElementType();
218         ArraySize = 2;
219         MostDerivedLength = I + 1;
220         IsArray = true;
221       } else if (const FieldDecl *FD = getAsField(Path[I])) {
222         Type = FD->getType();
223         ArraySize = 0;
224         MostDerivedLength = I + 1;
225         IsArray = false;
226       } else {
227         // Path[I] describes a base class.
228         ArraySize = 0;
229         IsArray = false;
230       }
231     }
232     return MostDerivedLength;
233   }
234 
235   /// A path from a glvalue to a subobject of that glvalue.
236   struct SubobjectDesignator {
237     /// True if the subobject was named in a manner not supported by C++11. Such
238     /// lvalues can still be folded, but they are not core constant expressions
239     /// and we cannot perform lvalue-to-rvalue conversions on them.
240     unsigned Invalid : 1;
241 
242     /// Is this a pointer one past the end of an object?
243     unsigned IsOnePastTheEnd : 1;
244 
245     /// Indicator of whether the first entry is an unsized array.
246     unsigned FirstEntryIsAnUnsizedArray : 1;
247 
248     /// Indicator of whether the most-derived object is an array element.
249     unsigned MostDerivedIsArrayElement : 1;
250 
251     /// The length of the path to the most-derived object of which this is a
252     /// subobject.
253     unsigned MostDerivedPathLength : 28;
254 
255     /// The size of the array of which the most-derived object is an element.
256     /// This will always be 0 if the most-derived object is not an array
257     /// element. 0 is not an indicator of whether or not the most-derived object
258     /// is an array, however, because 0-length arrays are allowed.
259     ///
260     /// If the current array is an unsized array, the value of this is
261     /// undefined.
262     uint64_t MostDerivedArraySize;
263 
264     /// The type of the most derived object referred to by this address.
265     QualType MostDerivedType;
266 
267     typedef APValue::LValuePathEntry PathEntry;
268 
269     /// The entries on the path from the glvalue to the designated subobject.
270     SmallVector<PathEntry, 8> Entries;
271 
272     SubobjectDesignator() : Invalid(true) {}
273 
274     explicit SubobjectDesignator(QualType T)
275         : Invalid(false), IsOnePastTheEnd(false),
276           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
277           MostDerivedPathLength(0), MostDerivedArraySize(0),
278           MostDerivedType(T) {}
279 
280     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
281         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
282           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
283           MostDerivedPathLength(0), MostDerivedArraySize(0) {
284       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
285       if (!Invalid) {
286         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
287         ArrayRef<PathEntry> VEntries = V.getLValuePath();
288         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
289         if (V.getLValueBase()) {
290           bool IsArray = false;
291           bool FirstIsUnsizedArray = false;
292           MostDerivedPathLength = findMostDerivedSubobject(
293               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
294               MostDerivedType, IsArray, FirstIsUnsizedArray);
295           MostDerivedIsArrayElement = IsArray;
296           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
297         }
298       }
299     }
300 
301     void truncate(ASTContext &Ctx, APValue::LValueBase Base,
302                   unsigned NewLength) {
303       if (Invalid)
304         return;
305 
306       assert(Base && "cannot truncate path for null pointer");
307       assert(NewLength <= Entries.size() && "not a truncation");
308 
309       if (NewLength == Entries.size())
310         return;
311       Entries.resize(NewLength);
312 
313       bool IsArray = false;
314       bool FirstIsUnsizedArray = false;
315       MostDerivedPathLength = findMostDerivedSubobject(
316           Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
317           FirstIsUnsizedArray);
318       MostDerivedIsArrayElement = IsArray;
319       FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
320     }
321 
322     void setInvalid() {
323       Invalid = true;
324       Entries.clear();
325     }
326 
327     /// Determine whether the most derived subobject is an array without a
328     /// known bound.
329     bool isMostDerivedAnUnsizedArray() const {
330       assert(!Invalid && "Calling this makes no sense on invalid designators");
331       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
332     }
333 
334     /// Determine what the most derived array's size is. Results in an assertion
335     /// failure if the most derived array lacks a size.
336     uint64_t getMostDerivedArraySize() const {
337       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
338       return MostDerivedArraySize;
339     }
340 
341     /// Determine whether this is a one-past-the-end pointer.
342     bool isOnePastTheEnd() const {
343       assert(!Invalid);
344       if (IsOnePastTheEnd)
345         return true;
346       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
347           Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
348               MostDerivedArraySize)
349         return true;
350       return false;
351     }
352 
353     /// Get the range of valid index adjustments in the form
354     ///   {maximum value that can be subtracted from this pointer,
355     ///    maximum value that can be added to this pointer}
356     std::pair<uint64_t, uint64_t> validIndexAdjustments() {
357       if (Invalid || isMostDerivedAnUnsizedArray())
358         return {0, 0};
359 
360       // [expr.add]p4: For the purposes of these operators, a pointer to a
361       // nonarray object behaves the same as a pointer to the first element of
362       // an array of length one with the type of the object as its element type.
363       bool IsArray = MostDerivedPathLength == Entries.size() &&
364                      MostDerivedIsArrayElement;
365       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
366                                     : (uint64_t)IsOnePastTheEnd;
367       uint64_t ArraySize =
368           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
369       return {ArrayIndex, ArraySize - ArrayIndex};
370     }
371 
372     /// Check that this refers to a valid subobject.
373     bool isValidSubobject() const {
374       if (Invalid)
375         return false;
376       return !isOnePastTheEnd();
377     }
378     /// Check that this refers to a valid subobject, and if not, produce a
379     /// relevant diagnostic and set the designator as invalid.
380     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
381 
382     /// Get the type of the designated object.
383     QualType getType(ASTContext &Ctx) const {
384       assert(!Invalid && "invalid designator has no subobject type");
385       return MostDerivedPathLength == Entries.size()
386                  ? MostDerivedType
387                  : Ctx.getRecordType(getAsBaseClass(Entries.back()));
388     }
389 
390     /// Update this designator to refer to the first element within this array.
391     void addArrayUnchecked(const ConstantArrayType *CAT) {
392       Entries.push_back(PathEntry::ArrayIndex(0));
393 
394       // This is a most-derived object.
395       MostDerivedType = CAT->getElementType();
396       MostDerivedIsArrayElement = true;
397       MostDerivedArraySize = CAT->getSize().getZExtValue();
398       MostDerivedPathLength = Entries.size();
399     }
400     /// Update this designator to refer to the first element within the array of
401     /// elements of type T. This is an array of unknown size.
402     void addUnsizedArrayUnchecked(QualType ElemTy) {
403       Entries.push_back(PathEntry::ArrayIndex(0));
404 
405       MostDerivedType = ElemTy;
406       MostDerivedIsArrayElement = true;
407       // The value in MostDerivedArraySize is undefined in this case. So, set it
408       // to an arbitrary value that's likely to loudly break things if it's
409       // used.
410       MostDerivedArraySize = AssumedSizeForUnsizedArray;
411       MostDerivedPathLength = Entries.size();
412     }
413     /// Update this designator to refer to the given base or member of this
414     /// object.
415     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
416       Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
417 
418       // If this isn't a base class, it's a new most-derived object.
419       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
420         MostDerivedType = FD->getType();
421         MostDerivedIsArrayElement = false;
422         MostDerivedArraySize = 0;
423         MostDerivedPathLength = Entries.size();
424       }
425     }
426     /// Update this designator to refer to the given complex component.
427     void addComplexUnchecked(QualType EltTy, bool Imag) {
428       Entries.push_back(PathEntry::ArrayIndex(Imag));
429 
430       // This is technically a most-derived object, though in practice this
431       // is unlikely to matter.
432       MostDerivedType = EltTy;
433       MostDerivedIsArrayElement = true;
434       MostDerivedArraySize = 2;
435       MostDerivedPathLength = Entries.size();
436     }
437     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
438     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
439                                    const APSInt &N);
440     /// Add N to the address of this subobject.
441     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
442       if (Invalid || !N) return;
443       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
444       if (isMostDerivedAnUnsizedArray()) {
445         diagnoseUnsizedArrayPointerArithmetic(Info, E);
446         // Can't verify -- trust that the user is doing the right thing (or if
447         // not, trust that the caller will catch the bad behavior).
448         // FIXME: Should we reject if this overflows, at least?
449         Entries.back() = PathEntry::ArrayIndex(
450             Entries.back().getAsArrayIndex() + TruncatedN);
451         return;
452       }
453 
454       // [expr.add]p4: For the purposes of these operators, a pointer to a
455       // nonarray object behaves the same as a pointer to the first element of
456       // an array of length one with the type of the object as its element type.
457       bool IsArray = MostDerivedPathLength == Entries.size() &&
458                      MostDerivedIsArrayElement;
459       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
460                                     : (uint64_t)IsOnePastTheEnd;
461       uint64_t ArraySize =
462           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
463 
464       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
465         // Calculate the actual index in a wide enough type, so we can include
466         // it in the note.
467         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
468         (llvm::APInt&)N += ArrayIndex;
469         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
470         diagnosePointerArithmetic(Info, E, N);
471         setInvalid();
472         return;
473       }
474 
475       ArrayIndex += TruncatedN;
476       assert(ArrayIndex <= ArraySize &&
477              "bounds check succeeded for out-of-bounds index");
478 
479       if (IsArray)
480         Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
481       else
482         IsOnePastTheEnd = (ArrayIndex != 0);
483     }
484   };
485 
486   /// A scope at the end of which an object can need to be destroyed.
487   enum class ScopeKind {
488     Block,
489     FullExpression,
490     Call
491   };
492 
493   /// A reference to a particular call and its arguments.
494   struct CallRef {
495     CallRef() : OrigCallee(), CallIndex(0), Version() {}
496     CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
497         : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
498 
499     explicit operator bool() const { return OrigCallee; }
500 
501     /// Get the parameter that the caller initialized, corresponding to the
502     /// given parameter in the callee.
503     const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
504       return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
505                         : PVD;
506     }
507 
508     /// The callee at the point where the arguments were evaluated. This might
509     /// be different from the actual callee (a different redeclaration, or a
510     /// virtual override), but this function's parameters are the ones that
511     /// appear in the parameter map.
512     const FunctionDecl *OrigCallee;
513     /// The call index of the frame that holds the argument values.
514     unsigned CallIndex;
515     /// The version of the parameters corresponding to this call.
516     unsigned Version;
517   };
518 
519   /// A stack frame in the constexpr call stack.
520   class CallStackFrame : public interp::Frame {
521   public:
522     EvalInfo &Info;
523 
524     /// Parent - The caller of this stack frame.
525     CallStackFrame *Caller;
526 
527     /// Callee - The function which was called.
528     const FunctionDecl *Callee;
529 
530     /// This - The binding for the this pointer in this call, if any.
531     const LValue *This;
532 
533     /// Information on how to find the arguments to this call. Our arguments
534     /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
535     /// key and this value as the version.
536     CallRef Arguments;
537 
538     /// Source location information about the default argument or default
539     /// initializer expression we're evaluating, if any.
540     CurrentSourceLocExprScope CurSourceLocExprScope;
541 
542     // Note that we intentionally use std::map here so that references to
543     // values are stable.
544     typedef std::pair<const void *, unsigned> MapKeyTy;
545     typedef std::map<MapKeyTy, APValue> MapTy;
546     /// Temporaries - Temporary lvalues materialized within this stack frame.
547     MapTy Temporaries;
548 
549     /// CallLoc - The location of the call expression for this call.
550     SourceLocation CallLoc;
551 
552     /// Index - The call index of this call.
553     unsigned Index;
554 
555     /// The stack of integers for tracking version numbers for temporaries.
556     SmallVector<unsigned, 2> TempVersionStack = {1};
557     unsigned CurTempVersion = TempVersionStack.back();
558 
559     unsigned getTempVersion() const { return TempVersionStack.back(); }
560 
561     void pushTempVersion() {
562       TempVersionStack.push_back(++CurTempVersion);
563     }
564 
565     void popTempVersion() {
566       TempVersionStack.pop_back();
567     }
568 
569     CallRef createCall(const FunctionDecl *Callee) {
570       return {Callee, Index, ++CurTempVersion};
571     }
572 
573     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
574     // on the overall stack usage of deeply-recursing constexpr evaluations.
575     // (We should cache this map rather than recomputing it repeatedly.)
576     // But let's try this and see how it goes; we can look into caching the map
577     // as a later change.
578 
579     /// LambdaCaptureFields - Mapping from captured variables/this to
580     /// corresponding data members in the closure class.
581     llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
582     FieldDecl *LambdaThisCaptureField;
583 
584     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
585                    const FunctionDecl *Callee, const LValue *This,
586                    CallRef Arguments);
587     ~CallStackFrame();
588 
589     // Return the temporary for Key whose version number is Version.
590     APValue *getTemporary(const void *Key, unsigned Version) {
591       MapKeyTy KV(Key, Version);
592       auto LB = Temporaries.lower_bound(KV);
593       if (LB != Temporaries.end() && LB->first == KV)
594         return &LB->second;
595       // Pair (Key,Version) wasn't found in the map. Check that no elements
596       // in the map have 'Key' as their key.
597       assert((LB == Temporaries.end() || LB->first.first != Key) &&
598              (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
599              "Element with key 'Key' found in map");
600       return nullptr;
601     }
602 
603     // Return the current temporary for Key in the map.
604     APValue *getCurrentTemporary(const void *Key) {
605       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
606       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
607         return &std::prev(UB)->second;
608       return nullptr;
609     }
610 
611     // Return the version number of the current temporary for Key.
612     unsigned getCurrentTemporaryVersion(const void *Key) const {
613       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
614       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
615         return std::prev(UB)->first.second;
616       return 0;
617     }
618 
619     /// Allocate storage for an object of type T in this stack frame.
620     /// Populates LV with a handle to the created object. Key identifies
621     /// the temporary within the stack frame, and must not be reused without
622     /// bumping the temporary version number.
623     template<typename KeyT>
624     APValue &createTemporary(const KeyT *Key, QualType T,
625                              ScopeKind Scope, LValue &LV);
626 
627     /// Allocate storage for a parameter of a function call made in this frame.
628     APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
629 
630     void describe(llvm::raw_ostream &OS) override;
631 
632     Frame *getCaller() const override { return Caller; }
633     SourceLocation getCallLocation() const override { return CallLoc; }
634     const FunctionDecl *getCallee() const override { return Callee; }
635 
636     bool isStdFunction() const {
637       for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
638         if (DC->isStdNamespace())
639           return true;
640       return false;
641     }
642 
643   private:
644     APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
645                          ScopeKind Scope);
646   };
647 
648   /// Temporarily override 'this'.
649   class ThisOverrideRAII {
650   public:
651     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
652         : Frame(Frame), OldThis(Frame.This) {
653       if (Enable)
654         Frame.This = NewThis;
655     }
656     ~ThisOverrideRAII() {
657       Frame.This = OldThis;
658     }
659   private:
660     CallStackFrame &Frame;
661     const LValue *OldThis;
662   };
663 }
664 
665 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
666                               const LValue &This, QualType ThisType);
667 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
668                               APValue::LValueBase LVBase, APValue &Value,
669                               QualType T);
670 
671 namespace {
672   /// A cleanup, and a flag indicating whether it is lifetime-extended.
673   class Cleanup {
674     llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
675     APValue::LValueBase Base;
676     QualType T;
677 
678   public:
679     Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
680             ScopeKind Scope)
681         : Value(Val, Scope), Base(Base), T(T) {}
682 
683     /// Determine whether this cleanup should be performed at the end of the
684     /// given kind of scope.
685     bool isDestroyedAtEndOf(ScopeKind K) const {
686       return (int)Value.getInt() >= (int)K;
687     }
688     bool endLifetime(EvalInfo &Info, bool RunDestructors) {
689       if (RunDestructors) {
690         SourceLocation Loc;
691         if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
692           Loc = VD->getLocation();
693         else if (const Expr *E = Base.dyn_cast<const Expr*>())
694           Loc = E->getExprLoc();
695         return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
696       }
697       *Value.getPointer() = APValue();
698       return true;
699     }
700 
701     bool hasSideEffect() {
702       return T.isDestructedType();
703     }
704   };
705 
706   /// A reference to an object whose construction we are currently evaluating.
707   struct ObjectUnderConstruction {
708     APValue::LValueBase Base;
709     ArrayRef<APValue::LValuePathEntry> Path;
710     friend bool operator==(const ObjectUnderConstruction &LHS,
711                            const ObjectUnderConstruction &RHS) {
712       return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
713     }
714     friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
715       return llvm::hash_combine(Obj.Base, Obj.Path);
716     }
717   };
718   enum class ConstructionPhase {
719     None,
720     Bases,
721     AfterBases,
722     AfterFields,
723     Destroying,
724     DestroyingBases
725   };
726 }
727 
728 namespace llvm {
729 template<> struct DenseMapInfo<ObjectUnderConstruction> {
730   using Base = DenseMapInfo<APValue::LValueBase>;
731   static ObjectUnderConstruction getEmptyKey() {
732     return {Base::getEmptyKey(), {}}; }
733   static ObjectUnderConstruction getTombstoneKey() {
734     return {Base::getTombstoneKey(), {}};
735   }
736   static unsigned getHashValue(const ObjectUnderConstruction &Object) {
737     return hash_value(Object);
738   }
739   static bool isEqual(const ObjectUnderConstruction &LHS,
740                       const ObjectUnderConstruction &RHS) {
741     return LHS == RHS;
742   }
743 };
744 }
745 
746 namespace {
747   /// A dynamically-allocated heap object.
748   struct DynAlloc {
749     /// The value of this heap-allocated object.
750     APValue Value;
751     /// The allocating expression; used for diagnostics. Either a CXXNewExpr
752     /// or a CallExpr (the latter is for direct calls to operator new inside
753     /// std::allocator<T>::allocate).
754     const Expr *AllocExpr = nullptr;
755 
756     enum Kind {
757       New,
758       ArrayNew,
759       StdAllocator
760     };
761 
762     /// Get the kind of the allocation. This must match between allocation
763     /// and deallocation.
764     Kind getKind() const {
765       if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
766         return NE->isArray() ? ArrayNew : New;
767       assert(isa<CallExpr>(AllocExpr));
768       return StdAllocator;
769     }
770   };
771 
772   struct DynAllocOrder {
773     bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
774       return L.getIndex() < R.getIndex();
775     }
776   };
777 
778   /// EvalInfo - This is a private struct used by the evaluator to capture
779   /// information about a subexpression as it is folded.  It retains information
780   /// about the AST context, but also maintains information about the folded
781   /// expression.
782   ///
783   /// If an expression could be evaluated, it is still possible it is not a C
784   /// "integer constant expression" or constant expression.  If not, this struct
785   /// captures information about how and why not.
786   ///
787   /// One bit of information passed *into* the request for constant folding
788   /// indicates whether the subexpression is "evaluated" or not according to C
789   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
790   /// evaluate the expression regardless of what the RHS is, but C only allows
791   /// certain things in certain situations.
792   class EvalInfo : public interp::State {
793   public:
794     ASTContext &Ctx;
795 
796     /// EvalStatus - Contains information about the evaluation.
797     Expr::EvalStatus &EvalStatus;
798 
799     /// CurrentCall - The top of the constexpr call stack.
800     CallStackFrame *CurrentCall;
801 
802     /// CallStackDepth - The number of calls in the call stack right now.
803     unsigned CallStackDepth;
804 
805     /// NextCallIndex - The next call index to assign.
806     unsigned NextCallIndex;
807 
808     /// StepsLeft - The remaining number of evaluation steps we're permitted
809     /// to perform. This is essentially a limit for the number of statements
810     /// we will evaluate.
811     unsigned StepsLeft;
812 
813     /// Enable the experimental new constant interpreter. If an expression is
814     /// not supported by the interpreter, an error is triggered.
815     bool EnableNewConstInterp;
816 
817     /// BottomFrame - The frame in which evaluation started. This must be
818     /// initialized after CurrentCall and CallStackDepth.
819     CallStackFrame BottomFrame;
820 
821     /// A stack of values whose lifetimes end at the end of some surrounding
822     /// evaluation frame.
823     llvm::SmallVector<Cleanup, 16> CleanupStack;
824 
825     /// EvaluatingDecl - This is the declaration whose initializer is being
826     /// evaluated, if any.
827     APValue::LValueBase EvaluatingDecl;
828 
829     enum class EvaluatingDeclKind {
830       None,
831       /// We're evaluating the construction of EvaluatingDecl.
832       Ctor,
833       /// We're evaluating the destruction of EvaluatingDecl.
834       Dtor,
835     };
836     EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
837 
838     /// EvaluatingDeclValue - This is the value being constructed for the
839     /// declaration whose initializer is being evaluated, if any.
840     APValue *EvaluatingDeclValue;
841 
842     /// Set of objects that are currently being constructed.
843     llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
844         ObjectsUnderConstruction;
845 
846     /// Current heap allocations, along with the location where each was
847     /// allocated. We use std::map here because we need stable addresses
848     /// for the stored APValues.
849     std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
850 
851     /// The number of heap allocations performed so far in this evaluation.
852     unsigned NumHeapAllocs = 0;
853 
854     struct EvaluatingConstructorRAII {
855       EvalInfo &EI;
856       ObjectUnderConstruction Object;
857       bool DidInsert;
858       EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
859                                 bool HasBases)
860           : EI(EI), Object(Object) {
861         DidInsert =
862             EI.ObjectsUnderConstruction
863                 .insert({Object, HasBases ? ConstructionPhase::Bases
864                                           : ConstructionPhase::AfterBases})
865                 .second;
866       }
867       void finishedConstructingBases() {
868         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
869       }
870       void finishedConstructingFields() {
871         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
872       }
873       ~EvaluatingConstructorRAII() {
874         if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
875       }
876     };
877 
878     struct EvaluatingDestructorRAII {
879       EvalInfo &EI;
880       ObjectUnderConstruction Object;
881       bool DidInsert;
882       EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
883           : EI(EI), Object(Object) {
884         DidInsert = EI.ObjectsUnderConstruction
885                         .insert({Object, ConstructionPhase::Destroying})
886                         .second;
887       }
888       void startedDestroyingBases() {
889         EI.ObjectsUnderConstruction[Object] =
890             ConstructionPhase::DestroyingBases;
891       }
892       ~EvaluatingDestructorRAII() {
893         if (DidInsert)
894           EI.ObjectsUnderConstruction.erase(Object);
895       }
896     };
897 
898     ConstructionPhase
899     isEvaluatingCtorDtor(APValue::LValueBase Base,
900                          ArrayRef<APValue::LValuePathEntry> Path) {
901       return ObjectsUnderConstruction.lookup({Base, Path});
902     }
903 
904     /// If we're currently speculatively evaluating, the outermost call stack
905     /// depth at which we can mutate state, otherwise 0.
906     unsigned SpeculativeEvaluationDepth = 0;
907 
908     /// The current array initialization index, if we're performing array
909     /// initialization.
910     uint64_t ArrayInitIndex = -1;
911 
912     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
913     /// notes attached to it will also be stored, otherwise they will not be.
914     bool HasActiveDiagnostic;
915 
916     /// Have we emitted a diagnostic explaining why we couldn't constant
917     /// fold (not just why it's not strictly a constant expression)?
918     bool HasFoldFailureDiagnostic;
919 
920     /// Whether or not we're in a context where the front end requires a
921     /// constant value.
922     bool InConstantContext;
923 
924     /// Whether we're checking that an expression is a potential constant
925     /// expression. If so, do not fail on constructs that could become constant
926     /// later on (such as a use of an undefined global).
927     bool CheckingPotentialConstantExpression = false;
928 
929     /// Whether we're checking for an expression that has undefined behavior.
930     /// If so, we will produce warnings if we encounter an operation that is
931     /// always undefined.
932     ///
933     /// Note that we still need to evaluate the expression normally when this
934     /// is set; this is used when evaluating ICEs in C.
935     bool CheckingForUndefinedBehavior = false;
936 
937     enum EvaluationMode {
938       /// Evaluate as a constant expression. Stop if we find that the expression
939       /// is not a constant expression.
940       EM_ConstantExpression,
941 
942       /// Evaluate as a constant expression. Stop if we find that the expression
943       /// is not a constant expression. Some expressions can be retried in the
944       /// optimizer if we don't constant fold them here, but in an unevaluated
945       /// context we try to fold them immediately since the optimizer never
946       /// gets a chance to look at it.
947       EM_ConstantExpressionUnevaluated,
948 
949       /// Fold the expression to a constant. Stop if we hit a side-effect that
950       /// we can't model.
951       EM_ConstantFold,
952 
953       /// Evaluate in any way we know how. Don't worry about side-effects that
954       /// can't be modeled.
955       EM_IgnoreSideEffects,
956     } EvalMode;
957 
958     /// Are we checking whether the expression is a potential constant
959     /// expression?
960     bool checkingPotentialConstantExpression() const override  {
961       return CheckingPotentialConstantExpression;
962     }
963 
964     /// Are we checking an expression for overflow?
965     // FIXME: We should check for any kind of undefined or suspicious behavior
966     // in such constructs, not just overflow.
967     bool checkingForUndefinedBehavior() const override {
968       return CheckingForUndefinedBehavior;
969     }
970 
971     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
972         : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
973           CallStackDepth(0), NextCallIndex(1),
974           StepsLeft(C.getLangOpts().ConstexprStepLimit),
975           EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
976           BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()),
977           EvaluatingDecl((const ValueDecl *)nullptr),
978           EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
979           HasFoldFailureDiagnostic(false), InConstantContext(false),
980           EvalMode(Mode) {}
981 
982     ~EvalInfo() {
983       discardCleanups();
984     }
985 
986     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
987                            EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
988       EvaluatingDecl = Base;
989       IsEvaluatingDecl = EDK;
990       EvaluatingDeclValue = &Value;
991     }
992 
993     bool CheckCallLimit(SourceLocation Loc) {
994       // Don't perform any constexpr calls (other than the call we're checking)
995       // when checking a potential constant expression.
996       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
997         return false;
998       if (NextCallIndex == 0) {
999         // NextCallIndex has wrapped around.
1000         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1001         return false;
1002       }
1003       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1004         return true;
1005       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1006         << getLangOpts().ConstexprCallDepth;
1007       return false;
1008     }
1009 
1010     std::pair<CallStackFrame *, unsigned>
1011     getCallFrameAndDepth(unsigned CallIndex) {
1012       assert(CallIndex && "no call index in getCallFrameAndDepth");
1013       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1014       // be null in this loop.
1015       unsigned Depth = CallStackDepth;
1016       CallStackFrame *Frame = CurrentCall;
1017       while (Frame->Index > CallIndex) {
1018         Frame = Frame->Caller;
1019         --Depth;
1020       }
1021       if (Frame->Index == CallIndex)
1022         return {Frame, Depth};
1023       return {nullptr, 0};
1024     }
1025 
1026     bool nextStep(const Stmt *S) {
1027       if (!StepsLeft) {
1028         FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1029         return false;
1030       }
1031       --StepsLeft;
1032       return true;
1033     }
1034 
1035     APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1036 
1037     Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
1038       Optional<DynAlloc*> Result;
1039       auto It = HeapAllocs.find(DA);
1040       if (It != HeapAllocs.end())
1041         Result = &It->second;
1042       return Result;
1043     }
1044 
1045     /// Get the allocated storage for the given parameter of the given call.
1046     APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1047       CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1048       return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1049                    : nullptr;
1050     }
1051 
1052     /// Information about a stack frame for std::allocator<T>::[de]allocate.
1053     struct StdAllocatorCaller {
1054       unsigned FrameIndex;
1055       QualType ElemType;
1056       explicit operator bool() const { return FrameIndex != 0; };
1057     };
1058 
1059     StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1060       for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1061            Call = Call->Caller) {
1062         const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1063         if (!MD)
1064           continue;
1065         const IdentifierInfo *FnII = MD->getIdentifier();
1066         if (!FnII || !FnII->isStr(FnName))
1067           continue;
1068 
1069         const auto *CTSD =
1070             dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1071         if (!CTSD)
1072           continue;
1073 
1074         const IdentifierInfo *ClassII = CTSD->getIdentifier();
1075         const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1076         if (CTSD->isInStdNamespace() && ClassII &&
1077             ClassII->isStr("allocator") && TAL.size() >= 1 &&
1078             TAL[0].getKind() == TemplateArgument::Type)
1079           return {Call->Index, TAL[0].getAsType()};
1080       }
1081 
1082       return {};
1083     }
1084 
1085     void performLifetimeExtension() {
1086       // Disable the cleanups for lifetime-extended temporaries.
1087       llvm::erase_if(CleanupStack, [](Cleanup &C) {
1088         return !C.isDestroyedAtEndOf(ScopeKind::FullExpression);
1089       });
1090     }
1091 
1092     /// Throw away any remaining cleanups at the end of evaluation. If any
1093     /// cleanups would have had a side-effect, note that as an unmodeled
1094     /// side-effect and return false. Otherwise, return true.
1095     bool discardCleanups() {
1096       for (Cleanup &C : CleanupStack) {
1097         if (C.hasSideEffect() && !noteSideEffect()) {
1098           CleanupStack.clear();
1099           return false;
1100         }
1101       }
1102       CleanupStack.clear();
1103       return true;
1104     }
1105 
1106   private:
1107     interp::Frame *getCurrentFrame() override { return CurrentCall; }
1108     const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1109 
1110     bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1111     void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1112 
1113     void setFoldFailureDiagnostic(bool Flag) override {
1114       HasFoldFailureDiagnostic = Flag;
1115     }
1116 
1117     Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1118 
1119     ASTContext &getCtx() const override { return Ctx; }
1120 
1121     // If we have a prior diagnostic, it will be noting that the expression
1122     // isn't a constant expression. This diagnostic is more important,
1123     // unless we require this evaluation to produce a constant expression.
1124     //
1125     // FIXME: We might want to show both diagnostics to the user in
1126     // EM_ConstantFold mode.
1127     bool hasPriorDiagnostic() override {
1128       if (!EvalStatus.Diag->empty()) {
1129         switch (EvalMode) {
1130         case EM_ConstantFold:
1131         case EM_IgnoreSideEffects:
1132           if (!HasFoldFailureDiagnostic)
1133             break;
1134           // We've already failed to fold something. Keep that diagnostic.
1135           LLVM_FALLTHROUGH;
1136         case EM_ConstantExpression:
1137         case EM_ConstantExpressionUnevaluated:
1138           setActiveDiagnostic(false);
1139           return true;
1140         }
1141       }
1142       return false;
1143     }
1144 
1145     unsigned getCallStackDepth() override { return CallStackDepth; }
1146 
1147   public:
1148     /// Should we continue evaluation after encountering a side-effect that we
1149     /// couldn't model?
1150     bool keepEvaluatingAfterSideEffect() {
1151       switch (EvalMode) {
1152       case EM_IgnoreSideEffects:
1153         return true;
1154 
1155       case EM_ConstantExpression:
1156       case EM_ConstantExpressionUnevaluated:
1157       case EM_ConstantFold:
1158         // By default, assume any side effect might be valid in some other
1159         // evaluation of this expression from a different context.
1160         return checkingPotentialConstantExpression() ||
1161                checkingForUndefinedBehavior();
1162       }
1163       llvm_unreachable("Missed EvalMode case");
1164     }
1165 
1166     /// Note that we have had a side-effect, and determine whether we should
1167     /// keep evaluating.
1168     bool noteSideEffect() {
1169       EvalStatus.HasSideEffects = true;
1170       return keepEvaluatingAfterSideEffect();
1171     }
1172 
1173     /// Should we continue evaluation after encountering undefined behavior?
1174     bool keepEvaluatingAfterUndefinedBehavior() {
1175       switch (EvalMode) {
1176       case EM_IgnoreSideEffects:
1177       case EM_ConstantFold:
1178         return true;
1179 
1180       case EM_ConstantExpression:
1181       case EM_ConstantExpressionUnevaluated:
1182         return checkingForUndefinedBehavior();
1183       }
1184       llvm_unreachable("Missed EvalMode case");
1185     }
1186 
1187     /// Note that we hit something that was technically undefined behavior, but
1188     /// that we can evaluate past it (such as signed overflow or floating-point
1189     /// division by zero.)
1190     bool noteUndefinedBehavior() override {
1191       EvalStatus.HasUndefinedBehavior = true;
1192       return keepEvaluatingAfterUndefinedBehavior();
1193     }
1194 
1195     /// Should we continue evaluation as much as possible after encountering a
1196     /// construct which can't be reduced to a value?
1197     bool keepEvaluatingAfterFailure() const override {
1198       if (!StepsLeft)
1199         return false;
1200 
1201       switch (EvalMode) {
1202       case EM_ConstantExpression:
1203       case EM_ConstantExpressionUnevaluated:
1204       case EM_ConstantFold:
1205       case EM_IgnoreSideEffects:
1206         return checkingPotentialConstantExpression() ||
1207                checkingForUndefinedBehavior();
1208       }
1209       llvm_unreachable("Missed EvalMode case");
1210     }
1211 
1212     /// Notes that we failed to evaluate an expression that other expressions
1213     /// directly depend on, and determine if we should keep evaluating. This
1214     /// should only be called if we actually intend to keep evaluating.
1215     ///
1216     /// Call noteSideEffect() instead if we may be able to ignore the value that
1217     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1218     ///
1219     /// (Foo(), 1)      // use noteSideEffect
1220     /// (Foo() || true) // use noteSideEffect
1221     /// Foo() + 1       // use noteFailure
1222     LLVM_NODISCARD bool noteFailure() {
1223       // Failure when evaluating some expression often means there is some
1224       // subexpression whose evaluation was skipped. Therefore, (because we
1225       // don't track whether we skipped an expression when unwinding after an
1226       // evaluation failure) every evaluation failure that bubbles up from a
1227       // subexpression implies that a side-effect has potentially happened. We
1228       // skip setting the HasSideEffects flag to true until we decide to
1229       // continue evaluating after that point, which happens here.
1230       bool KeepGoing = keepEvaluatingAfterFailure();
1231       EvalStatus.HasSideEffects |= KeepGoing;
1232       return KeepGoing;
1233     }
1234 
1235     class ArrayInitLoopIndex {
1236       EvalInfo &Info;
1237       uint64_t OuterIndex;
1238 
1239     public:
1240       ArrayInitLoopIndex(EvalInfo &Info)
1241           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1242         Info.ArrayInitIndex = 0;
1243       }
1244       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1245 
1246       operator uint64_t&() { return Info.ArrayInitIndex; }
1247     };
1248   };
1249 
1250   /// Object used to treat all foldable expressions as constant expressions.
1251   struct FoldConstant {
1252     EvalInfo &Info;
1253     bool Enabled;
1254     bool HadNoPriorDiags;
1255     EvalInfo::EvaluationMode OldMode;
1256 
1257     explicit FoldConstant(EvalInfo &Info, bool Enabled)
1258       : Info(Info),
1259         Enabled(Enabled),
1260         HadNoPriorDiags(Info.EvalStatus.Diag &&
1261                         Info.EvalStatus.Diag->empty() &&
1262                         !Info.EvalStatus.HasSideEffects),
1263         OldMode(Info.EvalMode) {
1264       if (Enabled)
1265         Info.EvalMode = EvalInfo::EM_ConstantFold;
1266     }
1267     void keepDiagnostics() { Enabled = false; }
1268     ~FoldConstant() {
1269       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1270           !Info.EvalStatus.HasSideEffects)
1271         Info.EvalStatus.Diag->clear();
1272       Info.EvalMode = OldMode;
1273     }
1274   };
1275 
1276   /// RAII object used to set the current evaluation mode to ignore
1277   /// side-effects.
1278   struct IgnoreSideEffectsRAII {
1279     EvalInfo &Info;
1280     EvalInfo::EvaluationMode OldMode;
1281     explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1282         : Info(Info), OldMode(Info.EvalMode) {
1283       Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1284     }
1285 
1286     ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1287   };
1288 
1289   /// RAII object used to optionally suppress diagnostics and side-effects from
1290   /// a speculative evaluation.
1291   class SpeculativeEvaluationRAII {
1292     EvalInfo *Info = nullptr;
1293     Expr::EvalStatus OldStatus;
1294     unsigned OldSpeculativeEvaluationDepth;
1295 
1296     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1297       Info = Other.Info;
1298       OldStatus = Other.OldStatus;
1299       OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1300       Other.Info = nullptr;
1301     }
1302 
1303     void maybeRestoreState() {
1304       if (!Info)
1305         return;
1306 
1307       Info->EvalStatus = OldStatus;
1308       Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1309     }
1310 
1311   public:
1312     SpeculativeEvaluationRAII() = default;
1313 
1314     SpeculativeEvaluationRAII(
1315         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1316         : Info(&Info), OldStatus(Info.EvalStatus),
1317           OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1318       Info.EvalStatus.Diag = NewDiag;
1319       Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1320     }
1321 
1322     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1323     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1324       moveFromAndCancel(std::move(Other));
1325     }
1326 
1327     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1328       maybeRestoreState();
1329       moveFromAndCancel(std::move(Other));
1330       return *this;
1331     }
1332 
1333     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1334   };
1335 
1336   /// RAII object wrapping a full-expression or block scope, and handling
1337   /// the ending of the lifetime of temporaries created within it.
1338   template<ScopeKind Kind>
1339   class ScopeRAII {
1340     EvalInfo &Info;
1341     unsigned OldStackSize;
1342   public:
1343     ScopeRAII(EvalInfo &Info)
1344         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1345       // Push a new temporary version. This is needed to distinguish between
1346       // temporaries created in different iterations of a loop.
1347       Info.CurrentCall->pushTempVersion();
1348     }
1349     bool destroy(bool RunDestructors = true) {
1350       bool OK = cleanup(Info, RunDestructors, OldStackSize);
1351       OldStackSize = -1U;
1352       return OK;
1353     }
1354     ~ScopeRAII() {
1355       if (OldStackSize != -1U)
1356         destroy(false);
1357       // Body moved to a static method to encourage the compiler to inline away
1358       // instances of this class.
1359       Info.CurrentCall->popTempVersion();
1360     }
1361   private:
1362     static bool cleanup(EvalInfo &Info, bool RunDestructors,
1363                         unsigned OldStackSize) {
1364       assert(OldStackSize <= Info.CleanupStack.size() &&
1365              "running cleanups out of order?");
1366 
1367       // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1368       // for a full-expression scope.
1369       bool Success = true;
1370       for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1371         if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1372           if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1373             Success = false;
1374             break;
1375           }
1376         }
1377       }
1378 
1379       // Compact any retained cleanups.
1380       auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1381       if (Kind != ScopeKind::Block)
1382         NewEnd =
1383             std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1384               return C.isDestroyedAtEndOf(Kind);
1385             });
1386       Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1387       return Success;
1388     }
1389   };
1390   typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1391   typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1392   typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1393 }
1394 
1395 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1396                                          CheckSubobjectKind CSK) {
1397   if (Invalid)
1398     return false;
1399   if (isOnePastTheEnd()) {
1400     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1401       << CSK;
1402     setInvalid();
1403     return false;
1404   }
1405   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1406   // must actually be at least one array element; even a VLA cannot have a
1407   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1408   return true;
1409 }
1410 
1411 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1412                                                                 const Expr *E) {
1413   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1414   // Do not set the designator as invalid: we can represent this situation,
1415   // and correct handling of __builtin_object_size requires us to do so.
1416 }
1417 
1418 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1419                                                     const Expr *E,
1420                                                     const APSInt &N) {
1421   // If we're complaining, we must be able to statically determine the size of
1422   // the most derived array.
1423   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1424     Info.CCEDiag(E, diag::note_constexpr_array_index)
1425       << N << /*array*/ 0
1426       << static_cast<unsigned>(getMostDerivedArraySize());
1427   else
1428     Info.CCEDiag(E, diag::note_constexpr_array_index)
1429       << N << /*non-array*/ 1;
1430   setInvalid();
1431 }
1432 
1433 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1434                                const FunctionDecl *Callee, const LValue *This,
1435                                CallRef Call)
1436     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1437       Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1438   Info.CurrentCall = this;
1439   ++Info.CallStackDepth;
1440 }
1441 
1442 CallStackFrame::~CallStackFrame() {
1443   assert(Info.CurrentCall == this && "calls retired out of order");
1444   --Info.CallStackDepth;
1445   Info.CurrentCall = Caller;
1446 }
1447 
1448 static bool isRead(AccessKinds AK) {
1449   return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1450 }
1451 
1452 static bool isModification(AccessKinds AK) {
1453   switch (AK) {
1454   case AK_Read:
1455   case AK_ReadObjectRepresentation:
1456   case AK_MemberCall:
1457   case AK_DynamicCast:
1458   case AK_TypeId:
1459     return false;
1460   case AK_Assign:
1461   case AK_Increment:
1462   case AK_Decrement:
1463   case AK_Construct:
1464   case AK_Destroy:
1465     return true;
1466   }
1467   llvm_unreachable("unknown access kind");
1468 }
1469 
1470 static bool isAnyAccess(AccessKinds AK) {
1471   return isRead(AK) || isModification(AK);
1472 }
1473 
1474 /// Is this an access per the C++ definition?
1475 static bool isFormalAccess(AccessKinds AK) {
1476   return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1477 }
1478 
1479 /// Is this kind of axcess valid on an indeterminate object value?
1480 static bool isValidIndeterminateAccess(AccessKinds AK) {
1481   switch (AK) {
1482   case AK_Read:
1483   case AK_Increment:
1484   case AK_Decrement:
1485     // These need the object's value.
1486     return false;
1487 
1488   case AK_ReadObjectRepresentation:
1489   case AK_Assign:
1490   case AK_Construct:
1491   case AK_Destroy:
1492     // Construction and destruction don't need the value.
1493     return true;
1494 
1495   case AK_MemberCall:
1496   case AK_DynamicCast:
1497   case AK_TypeId:
1498     // These aren't really meaningful on scalars.
1499     return true;
1500   }
1501   llvm_unreachable("unknown access kind");
1502 }
1503 
1504 namespace {
1505   struct ComplexValue {
1506   private:
1507     bool IsInt;
1508 
1509   public:
1510     APSInt IntReal, IntImag;
1511     APFloat FloatReal, FloatImag;
1512 
1513     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1514 
1515     void makeComplexFloat() { IsInt = false; }
1516     bool isComplexFloat() const { return !IsInt; }
1517     APFloat &getComplexFloatReal() { return FloatReal; }
1518     APFloat &getComplexFloatImag() { return FloatImag; }
1519 
1520     void makeComplexInt() { IsInt = true; }
1521     bool isComplexInt() const { return IsInt; }
1522     APSInt &getComplexIntReal() { return IntReal; }
1523     APSInt &getComplexIntImag() { return IntImag; }
1524 
1525     void moveInto(APValue &v) const {
1526       if (isComplexFloat())
1527         v = APValue(FloatReal, FloatImag);
1528       else
1529         v = APValue(IntReal, IntImag);
1530     }
1531     void setFrom(const APValue &v) {
1532       assert(v.isComplexFloat() || v.isComplexInt());
1533       if (v.isComplexFloat()) {
1534         makeComplexFloat();
1535         FloatReal = v.getComplexFloatReal();
1536         FloatImag = v.getComplexFloatImag();
1537       } else {
1538         makeComplexInt();
1539         IntReal = v.getComplexIntReal();
1540         IntImag = v.getComplexIntImag();
1541       }
1542     }
1543   };
1544 
1545   struct LValue {
1546     APValue::LValueBase Base;
1547     CharUnits Offset;
1548     SubobjectDesignator Designator;
1549     bool IsNullPtr : 1;
1550     bool InvalidBase : 1;
1551 
1552     const APValue::LValueBase getLValueBase() const { return Base; }
1553     CharUnits &getLValueOffset() { return Offset; }
1554     const CharUnits &getLValueOffset() const { return Offset; }
1555     SubobjectDesignator &getLValueDesignator() { return Designator; }
1556     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1557     bool isNullPointer() const { return IsNullPtr;}
1558 
1559     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1560     unsigned getLValueVersion() const { return Base.getVersion(); }
1561 
1562     void moveInto(APValue &V) const {
1563       if (Designator.Invalid)
1564         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1565       else {
1566         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1567         V = APValue(Base, Offset, Designator.Entries,
1568                     Designator.IsOnePastTheEnd, IsNullPtr);
1569       }
1570     }
1571     void setFrom(ASTContext &Ctx, const APValue &V) {
1572       assert(V.isLValue() && "Setting LValue from a non-LValue?");
1573       Base = V.getLValueBase();
1574       Offset = V.getLValueOffset();
1575       InvalidBase = false;
1576       Designator = SubobjectDesignator(Ctx, V);
1577       IsNullPtr = V.isNullPointer();
1578     }
1579 
1580     void set(APValue::LValueBase B, bool BInvalid = false) {
1581 #ifndef NDEBUG
1582       // We only allow a few types of invalid bases. Enforce that here.
1583       if (BInvalid) {
1584         const auto *E = B.get<const Expr *>();
1585         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1586                "Unexpected type of invalid base");
1587       }
1588 #endif
1589 
1590       Base = B;
1591       Offset = CharUnits::fromQuantity(0);
1592       InvalidBase = BInvalid;
1593       Designator = SubobjectDesignator(getType(B));
1594       IsNullPtr = false;
1595     }
1596 
1597     void setNull(ASTContext &Ctx, QualType PointerTy) {
1598       Base = (const ValueDecl *)nullptr;
1599       Offset =
1600           CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1601       InvalidBase = false;
1602       Designator = SubobjectDesignator(PointerTy->getPointeeType());
1603       IsNullPtr = true;
1604     }
1605 
1606     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1607       set(B, true);
1608     }
1609 
1610     std::string toString(ASTContext &Ctx, QualType T) const {
1611       APValue Printable;
1612       moveInto(Printable);
1613       return Printable.getAsString(Ctx, T);
1614     }
1615 
1616   private:
1617     // Check that this LValue is not based on a null pointer. If it is, produce
1618     // a diagnostic and mark the designator as invalid.
1619     template <typename GenDiagType>
1620     bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1621       if (Designator.Invalid)
1622         return false;
1623       if (IsNullPtr) {
1624         GenDiag();
1625         Designator.setInvalid();
1626         return false;
1627       }
1628       return true;
1629     }
1630 
1631   public:
1632     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1633                           CheckSubobjectKind CSK) {
1634       return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1635         Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1636       });
1637     }
1638 
1639     bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1640                                        AccessKinds AK) {
1641       return checkNullPointerDiagnosingWith([&Info, E, AK] {
1642         Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1643       });
1644     }
1645 
1646     // Check this LValue refers to an object. If not, set the designator to be
1647     // invalid and emit a diagnostic.
1648     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1649       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1650              Designator.checkSubobject(Info, E, CSK);
1651     }
1652 
1653     void addDecl(EvalInfo &Info, const Expr *E,
1654                  const Decl *D, bool Virtual = false) {
1655       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1656         Designator.addDeclUnchecked(D, Virtual);
1657     }
1658     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1659       if (!Designator.Entries.empty()) {
1660         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1661         Designator.setInvalid();
1662         return;
1663       }
1664       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1665         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1666         Designator.FirstEntryIsAnUnsizedArray = true;
1667         Designator.addUnsizedArrayUnchecked(ElemTy);
1668       }
1669     }
1670     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1671       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1672         Designator.addArrayUnchecked(CAT);
1673     }
1674     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1675       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1676         Designator.addComplexUnchecked(EltTy, Imag);
1677     }
1678     void clearIsNullPointer() {
1679       IsNullPtr = false;
1680     }
1681     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1682                               const APSInt &Index, CharUnits ElementSize) {
1683       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1684       // but we're not required to diagnose it and it's valid in C++.)
1685       if (!Index)
1686         return;
1687 
1688       // Compute the new offset in the appropriate width, wrapping at 64 bits.
1689       // FIXME: When compiling for a 32-bit target, we should use 32-bit
1690       // offsets.
1691       uint64_t Offset64 = Offset.getQuantity();
1692       uint64_t ElemSize64 = ElementSize.getQuantity();
1693       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1694       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1695 
1696       if (checkNullPointer(Info, E, CSK_ArrayIndex))
1697         Designator.adjustIndex(Info, E, Index);
1698       clearIsNullPointer();
1699     }
1700     void adjustOffset(CharUnits N) {
1701       Offset += N;
1702       if (N.getQuantity())
1703         clearIsNullPointer();
1704     }
1705   };
1706 
1707   struct MemberPtr {
1708     MemberPtr() {}
1709     explicit MemberPtr(const ValueDecl *Decl) :
1710       DeclAndIsDerivedMember(Decl, false), Path() {}
1711 
1712     /// The member or (direct or indirect) field referred to by this member
1713     /// pointer, or 0 if this is a null member pointer.
1714     const ValueDecl *getDecl() const {
1715       return DeclAndIsDerivedMember.getPointer();
1716     }
1717     /// Is this actually a member of some type derived from the relevant class?
1718     bool isDerivedMember() const {
1719       return DeclAndIsDerivedMember.getInt();
1720     }
1721     /// Get the class which the declaration actually lives in.
1722     const CXXRecordDecl *getContainingRecord() const {
1723       return cast<CXXRecordDecl>(
1724           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1725     }
1726 
1727     void moveInto(APValue &V) const {
1728       V = APValue(getDecl(), isDerivedMember(), Path);
1729     }
1730     void setFrom(const APValue &V) {
1731       assert(V.isMemberPointer());
1732       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1733       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1734       Path.clear();
1735       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1736       Path.insert(Path.end(), P.begin(), P.end());
1737     }
1738 
1739     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1740     /// whether the member is a member of some class derived from the class type
1741     /// of the member pointer.
1742     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1743     /// Path - The path of base/derived classes from the member declaration's
1744     /// class (exclusive) to the class type of the member pointer (inclusive).
1745     SmallVector<const CXXRecordDecl*, 4> Path;
1746 
1747     /// Perform a cast towards the class of the Decl (either up or down the
1748     /// hierarchy).
1749     bool castBack(const CXXRecordDecl *Class) {
1750       assert(!Path.empty());
1751       const CXXRecordDecl *Expected;
1752       if (Path.size() >= 2)
1753         Expected = Path[Path.size() - 2];
1754       else
1755         Expected = getContainingRecord();
1756       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1757         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1758         // if B does not contain the original member and is not a base or
1759         // derived class of the class containing the original member, the result
1760         // of the cast is undefined.
1761         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1762         // (D::*). We consider that to be a language defect.
1763         return false;
1764       }
1765       Path.pop_back();
1766       return true;
1767     }
1768     /// Perform a base-to-derived member pointer cast.
1769     bool castToDerived(const CXXRecordDecl *Derived) {
1770       if (!getDecl())
1771         return true;
1772       if (!isDerivedMember()) {
1773         Path.push_back(Derived);
1774         return true;
1775       }
1776       if (!castBack(Derived))
1777         return false;
1778       if (Path.empty())
1779         DeclAndIsDerivedMember.setInt(false);
1780       return true;
1781     }
1782     /// Perform a derived-to-base member pointer cast.
1783     bool castToBase(const CXXRecordDecl *Base) {
1784       if (!getDecl())
1785         return true;
1786       if (Path.empty())
1787         DeclAndIsDerivedMember.setInt(true);
1788       if (isDerivedMember()) {
1789         Path.push_back(Base);
1790         return true;
1791       }
1792       return castBack(Base);
1793     }
1794   };
1795 
1796   /// Compare two member pointers, which are assumed to be of the same type.
1797   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1798     if (!LHS.getDecl() || !RHS.getDecl())
1799       return !LHS.getDecl() && !RHS.getDecl();
1800     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1801       return false;
1802     return LHS.Path == RHS.Path;
1803   }
1804 }
1805 
1806 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1807 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1808                             const LValue &This, const Expr *E,
1809                             bool AllowNonLiteralTypes = false);
1810 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1811                            bool InvalidBaseOK = false);
1812 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1813                             bool InvalidBaseOK = false);
1814 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1815                                   EvalInfo &Info);
1816 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1817 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1818 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1819                                     EvalInfo &Info);
1820 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1821 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1822 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1823                            EvalInfo &Info);
1824 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1825 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1826                                   EvalInfo &Info);
1827 
1828 /// Evaluate an integer or fixed point expression into an APResult.
1829 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1830                                         EvalInfo &Info);
1831 
1832 /// Evaluate only a fixed point expression into an APResult.
1833 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1834                                EvalInfo &Info);
1835 
1836 //===----------------------------------------------------------------------===//
1837 // Misc utilities
1838 //===----------------------------------------------------------------------===//
1839 
1840 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1841 /// preserving its value (by extending by up to one bit as needed).
1842 static void negateAsSigned(APSInt &Int) {
1843   if (Int.isUnsigned() || Int.isMinSignedValue()) {
1844     Int = Int.extend(Int.getBitWidth() + 1);
1845     Int.setIsSigned(true);
1846   }
1847   Int = -Int;
1848 }
1849 
1850 template<typename KeyT>
1851 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1852                                          ScopeKind Scope, LValue &LV) {
1853   unsigned Version = getTempVersion();
1854   APValue::LValueBase Base(Key, Index, Version);
1855   LV.set(Base);
1856   return createLocal(Base, Key, T, Scope);
1857 }
1858 
1859 /// Allocate storage for a parameter of a function call made in this frame.
1860 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1861                                      LValue &LV) {
1862   assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1863   APValue::LValueBase Base(PVD, Index, Args.Version);
1864   LV.set(Base);
1865   // We always destroy parameters at the end of the call, even if we'd allow
1866   // them to live to the end of the full-expression at runtime, in order to
1867   // give portable results and match other compilers.
1868   return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1869 }
1870 
1871 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1872                                      QualType T, ScopeKind Scope) {
1873   assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1874   unsigned Version = Base.getVersion();
1875   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1876   assert(Result.isAbsent() && "local created multiple times");
1877 
1878   // If we're creating a local immediately in the operand of a speculative
1879   // evaluation, don't register a cleanup to be run outside the speculative
1880   // evaluation context, since we won't actually be able to initialize this
1881   // object.
1882   if (Index <= Info.SpeculativeEvaluationDepth) {
1883     if (T.isDestructedType())
1884       Info.noteSideEffect();
1885   } else {
1886     Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1887   }
1888   return Result;
1889 }
1890 
1891 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1892   if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1893     FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1894     return nullptr;
1895   }
1896 
1897   DynamicAllocLValue DA(NumHeapAllocs++);
1898   LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1899   auto Result = HeapAllocs.emplace(std::piecewise_construct,
1900                                    std::forward_as_tuple(DA), std::tuple<>());
1901   assert(Result.second && "reused a heap alloc index?");
1902   Result.first->second.AllocExpr = E;
1903   return &Result.first->second.Value;
1904 }
1905 
1906 /// Produce a string describing the given constexpr call.
1907 void CallStackFrame::describe(raw_ostream &Out) {
1908   unsigned ArgIndex = 0;
1909   bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1910                       !isa<CXXConstructorDecl>(Callee) &&
1911                       cast<CXXMethodDecl>(Callee)->isInstance();
1912 
1913   if (!IsMemberCall)
1914     Out << *Callee << '(';
1915 
1916   if (This && IsMemberCall) {
1917     APValue Val;
1918     This->moveInto(Val);
1919     Val.printPretty(Out, Info.Ctx,
1920                     This->Designator.MostDerivedType);
1921     // FIXME: Add parens around Val if needed.
1922     Out << "->" << *Callee << '(';
1923     IsMemberCall = false;
1924   }
1925 
1926   for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1927        E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1928     if (ArgIndex > (unsigned)IsMemberCall)
1929       Out << ", ";
1930 
1931     const ParmVarDecl *Param = *I;
1932     APValue *V = Info.getParamSlot(Arguments, Param);
1933     if (V)
1934       V->printPretty(Out, Info.Ctx, Param->getType());
1935     else
1936       Out << "<...>";
1937 
1938     if (ArgIndex == 0 && IsMemberCall)
1939       Out << "->" << *Callee << '(';
1940   }
1941 
1942   Out << ')';
1943 }
1944 
1945 /// Evaluate an expression to see if it had side-effects, and discard its
1946 /// result.
1947 /// \return \c true if the caller should keep evaluating.
1948 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1949   assert(!E->isValueDependent());
1950   APValue Scratch;
1951   if (!Evaluate(Scratch, Info, E))
1952     // We don't need the value, but we might have skipped a side effect here.
1953     return Info.noteSideEffect();
1954   return true;
1955 }
1956 
1957 /// Should this call expression be treated as a constant?
1958 static bool IsConstantCall(const CallExpr *E) {
1959   unsigned Builtin = E->getBuiltinCallee();
1960   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1961           Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
1962           Builtin == Builtin::BI__builtin_function_start);
1963 }
1964 
1965 static bool IsGlobalLValue(APValue::LValueBase B) {
1966   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1967   // constant expression of pointer type that evaluates to...
1968 
1969   // ... a null pointer value, or a prvalue core constant expression of type
1970   // std::nullptr_t.
1971   if (!B) return true;
1972 
1973   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1974     // ... the address of an object with static storage duration,
1975     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1976       return VD->hasGlobalStorage();
1977     if (isa<TemplateParamObjectDecl>(D))
1978       return true;
1979     // ... the address of a function,
1980     // ... the address of a GUID [MS extension],
1981     return isa<FunctionDecl>(D) || isa<MSGuidDecl>(D);
1982   }
1983 
1984   if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1985     return true;
1986 
1987   const Expr *E = B.get<const Expr*>();
1988   switch (E->getStmtClass()) {
1989   default:
1990     return false;
1991   case Expr::CompoundLiteralExprClass: {
1992     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1993     return CLE->isFileScope() && CLE->isLValue();
1994   }
1995   case Expr::MaterializeTemporaryExprClass:
1996     // A materialized temporary might have been lifetime-extended to static
1997     // storage duration.
1998     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1999   // A string literal has static storage duration.
2000   case Expr::StringLiteralClass:
2001   case Expr::PredefinedExprClass:
2002   case Expr::ObjCStringLiteralClass:
2003   case Expr::ObjCEncodeExprClass:
2004     return true;
2005   case Expr::ObjCBoxedExprClass:
2006     return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2007   case Expr::CallExprClass:
2008     return IsConstantCall(cast<CallExpr>(E));
2009   // For GCC compatibility, &&label has static storage duration.
2010   case Expr::AddrLabelExprClass:
2011     return true;
2012   // A Block literal expression may be used as the initialization value for
2013   // Block variables at global or local static scope.
2014   case Expr::BlockExprClass:
2015     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2016   case Expr::ImplicitValueInitExprClass:
2017     // FIXME:
2018     // We can never form an lvalue with an implicit value initialization as its
2019     // base through expression evaluation, so these only appear in one case: the
2020     // implicit variable declaration we invent when checking whether a constexpr
2021     // constructor can produce a constant expression. We must assume that such
2022     // an expression might be a global lvalue.
2023     return true;
2024   }
2025 }
2026 
2027 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2028   return LVal.Base.dyn_cast<const ValueDecl*>();
2029 }
2030 
2031 static bool IsLiteralLValue(const LValue &Value) {
2032   if (Value.getLValueCallIndex())
2033     return false;
2034   const Expr *E = Value.Base.dyn_cast<const Expr*>();
2035   return E && !isa<MaterializeTemporaryExpr>(E);
2036 }
2037 
2038 static bool IsWeakLValue(const LValue &Value) {
2039   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2040   return Decl && Decl->isWeak();
2041 }
2042 
2043 static bool isZeroSized(const LValue &Value) {
2044   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2045   if (Decl && isa<VarDecl>(Decl)) {
2046     QualType Ty = Decl->getType();
2047     if (Ty->isArrayType())
2048       return Ty->isIncompleteType() ||
2049              Decl->getASTContext().getTypeSize(Ty) == 0;
2050   }
2051   return false;
2052 }
2053 
2054 static bool HasSameBase(const LValue &A, const LValue &B) {
2055   if (!A.getLValueBase())
2056     return !B.getLValueBase();
2057   if (!B.getLValueBase())
2058     return false;
2059 
2060   if (A.getLValueBase().getOpaqueValue() !=
2061       B.getLValueBase().getOpaqueValue())
2062     return false;
2063 
2064   return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2065          A.getLValueVersion() == B.getLValueVersion();
2066 }
2067 
2068 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2069   assert(Base && "no location for a null lvalue");
2070   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2071 
2072   // For a parameter, find the corresponding call stack frame (if it still
2073   // exists), and point at the parameter of the function definition we actually
2074   // invoked.
2075   if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2076     unsigned Idx = PVD->getFunctionScopeIndex();
2077     for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2078       if (F->Arguments.CallIndex == Base.getCallIndex() &&
2079           F->Arguments.Version == Base.getVersion() && F->Callee &&
2080           Idx < F->Callee->getNumParams()) {
2081         VD = F->Callee->getParamDecl(Idx);
2082         break;
2083       }
2084     }
2085   }
2086 
2087   if (VD)
2088     Info.Note(VD->getLocation(), diag::note_declared_at);
2089   else if (const Expr *E = Base.dyn_cast<const Expr*>())
2090     Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2091   else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2092     // FIXME: Produce a note for dangling pointers too.
2093     if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
2094       Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2095                 diag::note_constexpr_dynamic_alloc_here);
2096   }
2097   // We have no information to show for a typeid(T) object.
2098 }
2099 
2100 enum class CheckEvaluationResultKind {
2101   ConstantExpression,
2102   FullyInitialized,
2103 };
2104 
2105 /// Materialized temporaries that we've already checked to determine if they're
2106 /// initializsed by a constant expression.
2107 using CheckedTemporaries =
2108     llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2109 
2110 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2111                                   EvalInfo &Info, SourceLocation DiagLoc,
2112                                   QualType Type, const APValue &Value,
2113                                   ConstantExprKind Kind,
2114                                   SourceLocation SubobjectLoc,
2115                                   CheckedTemporaries &CheckedTemps);
2116 
2117 /// Check that this reference or pointer core constant expression is a valid
2118 /// value for an address or reference constant expression. Return true if we
2119 /// can fold this expression, whether or not it's a constant expression.
2120 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2121                                           QualType Type, const LValue &LVal,
2122                                           ConstantExprKind Kind,
2123                                           CheckedTemporaries &CheckedTemps) {
2124   bool IsReferenceType = Type->isReferenceType();
2125 
2126   APValue::LValueBase Base = LVal.getLValueBase();
2127   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2128 
2129   const Expr *BaseE = Base.dyn_cast<const Expr *>();
2130   const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2131 
2132   // Additional restrictions apply in a template argument. We only enforce the
2133   // C++20 restrictions here; additional syntactic and semantic restrictions
2134   // are applied elsewhere.
2135   if (isTemplateArgument(Kind)) {
2136     int InvalidBaseKind = -1;
2137     StringRef Ident;
2138     if (Base.is<TypeInfoLValue>())
2139       InvalidBaseKind = 0;
2140     else if (isa_and_nonnull<StringLiteral>(BaseE))
2141       InvalidBaseKind = 1;
2142     else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2143              isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2144       InvalidBaseKind = 2;
2145     else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2146       InvalidBaseKind = 3;
2147       Ident = PE->getIdentKindName();
2148     }
2149 
2150     if (InvalidBaseKind != -1) {
2151       Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2152           << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2153           << Ident;
2154       return false;
2155     }
2156   }
2157 
2158   if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) {
2159     if (FD->isConsteval()) {
2160       Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2161           << !Type->isAnyPointerType();
2162       Info.Note(FD->getLocation(), diag::note_declared_at);
2163       return false;
2164     }
2165   }
2166 
2167   // Check that the object is a global. Note that the fake 'this' object we
2168   // manufacture when checking potential constant expressions is conservatively
2169   // assumed to be global here.
2170   if (!IsGlobalLValue(Base)) {
2171     if (Info.getLangOpts().CPlusPlus11) {
2172       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2173       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2174         << IsReferenceType << !Designator.Entries.empty()
2175         << !!VD << VD;
2176 
2177       auto *VarD = dyn_cast_or_null<VarDecl>(VD);
2178       if (VarD && VarD->isConstexpr()) {
2179         // Non-static local constexpr variables have unintuitive semantics:
2180         //   constexpr int a = 1;
2181         //   constexpr const int *p = &a;
2182         // ... is invalid because the address of 'a' is not constant. Suggest
2183         // adding a 'static' in this case.
2184         Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2185             << VarD
2186             << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2187       } else {
2188         NoteLValueLocation(Info, Base);
2189       }
2190     } else {
2191       Info.FFDiag(Loc);
2192     }
2193     // Don't allow references to temporaries to escape.
2194     return false;
2195   }
2196   assert((Info.checkingPotentialConstantExpression() ||
2197           LVal.getLValueCallIndex() == 0) &&
2198          "have call index for global lvalue");
2199 
2200   if (Base.is<DynamicAllocLValue>()) {
2201     Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2202         << IsReferenceType << !Designator.Entries.empty();
2203     NoteLValueLocation(Info, Base);
2204     return false;
2205   }
2206 
2207   if (BaseVD) {
2208     if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2209       // Check if this is a thread-local variable.
2210       if (Var->getTLSKind())
2211         // FIXME: Diagnostic!
2212         return false;
2213 
2214       // A dllimport variable never acts like a constant, unless we're
2215       // evaluating a value for use only in name mangling.
2216       if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2217         // FIXME: Diagnostic!
2218         return false;
2219     }
2220     if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2221       // __declspec(dllimport) must be handled very carefully:
2222       // We must never initialize an expression with the thunk in C++.
2223       // Doing otherwise would allow the same id-expression to yield
2224       // different addresses for the same function in different translation
2225       // units.  However, this means that we must dynamically initialize the
2226       // expression with the contents of the import address table at runtime.
2227       //
2228       // The C language has no notion of ODR; furthermore, it has no notion of
2229       // dynamic initialization.  This means that we are permitted to
2230       // perform initialization with the address of the thunk.
2231       if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2232           FD->hasAttr<DLLImportAttr>())
2233         // FIXME: Diagnostic!
2234         return false;
2235     }
2236   } else if (const auto *MTE =
2237                  dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2238     if (CheckedTemps.insert(MTE).second) {
2239       QualType TempType = getType(Base);
2240       if (TempType.isDestructedType()) {
2241         Info.FFDiag(MTE->getExprLoc(),
2242                     diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2243             << TempType;
2244         return false;
2245       }
2246 
2247       APValue *V = MTE->getOrCreateValue(false);
2248       assert(V && "evasluation result refers to uninitialised temporary");
2249       if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2250                                  Info, MTE->getExprLoc(), TempType, *V,
2251                                  Kind, SourceLocation(), CheckedTemps))
2252         return false;
2253     }
2254   }
2255 
2256   // Allow address constant expressions to be past-the-end pointers. This is
2257   // an extension: the standard requires them to point to an object.
2258   if (!IsReferenceType)
2259     return true;
2260 
2261   // A reference constant expression must refer to an object.
2262   if (!Base) {
2263     // FIXME: diagnostic
2264     Info.CCEDiag(Loc);
2265     return true;
2266   }
2267 
2268   // Does this refer one past the end of some object?
2269   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2270     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2271       << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2272     NoteLValueLocation(Info, Base);
2273   }
2274 
2275   return true;
2276 }
2277 
2278 /// Member pointers are constant expressions unless they point to a
2279 /// non-virtual dllimport member function.
2280 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2281                                                  SourceLocation Loc,
2282                                                  QualType Type,
2283                                                  const APValue &Value,
2284                                                  ConstantExprKind Kind) {
2285   const ValueDecl *Member = Value.getMemberPointerDecl();
2286   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2287   if (!FD)
2288     return true;
2289   if (FD->isConsteval()) {
2290     Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2291     Info.Note(FD->getLocation(), diag::note_declared_at);
2292     return false;
2293   }
2294   return isForManglingOnly(Kind) || FD->isVirtual() ||
2295          !FD->hasAttr<DLLImportAttr>();
2296 }
2297 
2298 /// Check that this core constant expression is of literal type, and if not,
2299 /// produce an appropriate diagnostic.
2300 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2301                              const LValue *This = nullptr) {
2302   if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx))
2303     return true;
2304 
2305   // C++1y: A constant initializer for an object o [...] may also invoke
2306   // constexpr constructors for o and its subobjects even if those objects
2307   // are of non-literal class types.
2308   //
2309   // C++11 missed this detail for aggregates, so classes like this:
2310   //   struct foo_t { union { int i; volatile int j; } u; };
2311   // are not (obviously) initializable like so:
2312   //   __attribute__((__require_constant_initialization__))
2313   //   static const foo_t x = {{0}};
2314   // because "i" is a subobject with non-literal initialization (due to the
2315   // volatile member of the union). See:
2316   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2317   // Therefore, we use the C++1y behavior.
2318   if (This && Info.EvaluatingDecl == This->getLValueBase())
2319     return true;
2320 
2321   // Prvalue constant expressions must be of literal types.
2322   if (Info.getLangOpts().CPlusPlus11)
2323     Info.FFDiag(E, diag::note_constexpr_nonliteral)
2324       << E->getType();
2325   else
2326     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2327   return false;
2328 }
2329 
2330 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2331                                   EvalInfo &Info, SourceLocation DiagLoc,
2332                                   QualType Type, const APValue &Value,
2333                                   ConstantExprKind Kind,
2334                                   SourceLocation SubobjectLoc,
2335                                   CheckedTemporaries &CheckedTemps) {
2336   if (!Value.hasValue()) {
2337     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2338       << true << Type;
2339     if (SubobjectLoc.isValid())
2340       Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2341     return false;
2342   }
2343 
2344   // We allow _Atomic(T) to be initialized from anything that T can be
2345   // initialized from.
2346   if (const AtomicType *AT = Type->getAs<AtomicType>())
2347     Type = AT->getValueType();
2348 
2349   // Core issue 1454: For a literal constant expression of array or class type,
2350   // each subobject of its value shall have been initialized by a constant
2351   // expression.
2352   if (Value.isArray()) {
2353     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2354     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2355       if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2356                                  Value.getArrayInitializedElt(I), Kind,
2357                                  SubobjectLoc, CheckedTemps))
2358         return false;
2359     }
2360     if (!Value.hasArrayFiller())
2361       return true;
2362     return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2363                                  Value.getArrayFiller(), Kind, SubobjectLoc,
2364                                  CheckedTemps);
2365   }
2366   if (Value.isUnion() && Value.getUnionField()) {
2367     return CheckEvaluationResult(
2368         CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2369         Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(),
2370         CheckedTemps);
2371   }
2372   if (Value.isStruct()) {
2373     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2374     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2375       unsigned BaseIndex = 0;
2376       for (const CXXBaseSpecifier &BS : CD->bases()) {
2377         if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2378                                    Value.getStructBase(BaseIndex), Kind,
2379                                    BS.getBeginLoc(), CheckedTemps))
2380           return false;
2381         ++BaseIndex;
2382       }
2383     }
2384     for (const auto *I : RD->fields()) {
2385       if (I->isUnnamedBitfield())
2386         continue;
2387 
2388       if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2389                                  Value.getStructField(I->getFieldIndex()),
2390                                  Kind, I->getLocation(), CheckedTemps))
2391         return false;
2392     }
2393   }
2394 
2395   if (Value.isLValue() &&
2396       CERK == CheckEvaluationResultKind::ConstantExpression) {
2397     LValue LVal;
2398     LVal.setFrom(Info.Ctx, Value);
2399     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2400                                          CheckedTemps);
2401   }
2402 
2403   if (Value.isMemberPointer() &&
2404       CERK == CheckEvaluationResultKind::ConstantExpression)
2405     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2406 
2407   // Everything else is fine.
2408   return true;
2409 }
2410 
2411 /// Check that this core constant expression value is a valid value for a
2412 /// constant expression. If not, report an appropriate diagnostic. Does not
2413 /// check that the expression is of literal type.
2414 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2415                                     QualType Type, const APValue &Value,
2416                                     ConstantExprKind Kind) {
2417   // Nothing to check for a constant expression of type 'cv void'.
2418   if (Type->isVoidType())
2419     return true;
2420 
2421   CheckedTemporaries CheckedTemps;
2422   return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2423                                Info, DiagLoc, Type, Value, Kind,
2424                                SourceLocation(), CheckedTemps);
2425 }
2426 
2427 /// Check that this evaluated value is fully-initialized and can be loaded by
2428 /// an lvalue-to-rvalue conversion.
2429 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2430                                   QualType Type, const APValue &Value) {
2431   CheckedTemporaries CheckedTemps;
2432   return CheckEvaluationResult(
2433       CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2434       ConstantExprKind::Normal, SourceLocation(), CheckedTemps);
2435 }
2436 
2437 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2438 /// "the allocated storage is deallocated within the evaluation".
2439 static bool CheckMemoryLeaks(EvalInfo &Info) {
2440   if (!Info.HeapAllocs.empty()) {
2441     // We can still fold to a constant despite a compile-time memory leak,
2442     // so long as the heap allocation isn't referenced in the result (we check
2443     // that in CheckConstantExpression).
2444     Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2445                  diag::note_constexpr_memory_leak)
2446         << unsigned(Info.HeapAllocs.size() - 1);
2447   }
2448   return true;
2449 }
2450 
2451 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2452   // A null base expression indicates a null pointer.  These are always
2453   // evaluatable, and they are false unless the offset is zero.
2454   if (!Value.getLValueBase()) {
2455     Result = !Value.getLValueOffset().isZero();
2456     return true;
2457   }
2458 
2459   // We have a non-null base.  These are generally known to be true, but if it's
2460   // a weak declaration it can be null at runtime.
2461   Result = true;
2462   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2463   return !Decl || !Decl->isWeak();
2464 }
2465 
2466 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2467   switch (Val.getKind()) {
2468   case APValue::None:
2469   case APValue::Indeterminate:
2470     return false;
2471   case APValue::Int:
2472     Result = Val.getInt().getBoolValue();
2473     return true;
2474   case APValue::FixedPoint:
2475     Result = Val.getFixedPoint().getBoolValue();
2476     return true;
2477   case APValue::Float:
2478     Result = !Val.getFloat().isZero();
2479     return true;
2480   case APValue::ComplexInt:
2481     Result = Val.getComplexIntReal().getBoolValue() ||
2482              Val.getComplexIntImag().getBoolValue();
2483     return true;
2484   case APValue::ComplexFloat:
2485     Result = !Val.getComplexFloatReal().isZero() ||
2486              !Val.getComplexFloatImag().isZero();
2487     return true;
2488   case APValue::LValue:
2489     return EvalPointerValueAsBool(Val, Result);
2490   case APValue::MemberPointer:
2491     Result = Val.getMemberPointerDecl();
2492     return true;
2493   case APValue::Vector:
2494   case APValue::Array:
2495   case APValue::Struct:
2496   case APValue::Union:
2497   case APValue::AddrLabelDiff:
2498     return false;
2499   }
2500 
2501   llvm_unreachable("unknown APValue kind");
2502 }
2503 
2504 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2505                                        EvalInfo &Info) {
2506   assert(!E->isValueDependent());
2507   assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2508   APValue Val;
2509   if (!Evaluate(Val, Info, E))
2510     return false;
2511   return HandleConversionToBool(Val, Result);
2512 }
2513 
2514 template<typename T>
2515 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2516                            const T &SrcValue, QualType DestType) {
2517   Info.CCEDiag(E, diag::note_constexpr_overflow)
2518     << SrcValue << DestType;
2519   return Info.noteUndefinedBehavior();
2520 }
2521 
2522 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2523                                  QualType SrcType, const APFloat &Value,
2524                                  QualType DestType, APSInt &Result) {
2525   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2526   // Determine whether we are converting to unsigned or signed.
2527   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2528 
2529   Result = APSInt(DestWidth, !DestSigned);
2530   bool ignored;
2531   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2532       & APFloat::opInvalidOp)
2533     return HandleOverflow(Info, E, Value, DestType);
2534   return true;
2535 }
2536 
2537 /// Get rounding mode used for evaluation of the specified expression.
2538 /// \param[out] DynamicRM Is set to true is the requested rounding mode is
2539 ///                       dynamic.
2540 /// If rounding mode is unknown at compile time, still try to evaluate the
2541 /// expression. If the result is exact, it does not depend on rounding mode.
2542 /// So return "tonearest" mode instead of "dynamic".
2543 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E,
2544                                                 bool &DynamicRM) {
2545   llvm::RoundingMode RM =
2546       E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2547   DynamicRM = (RM == llvm::RoundingMode::Dynamic);
2548   if (DynamicRM)
2549     RM = llvm::RoundingMode::NearestTiesToEven;
2550   return RM;
2551 }
2552 
2553 /// Check if the given evaluation result is allowed for constant evaluation.
2554 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2555                                      APFloat::opStatus St) {
2556   // In a constant context, assume that any dynamic rounding mode or FP
2557   // exception state matches the default floating-point environment.
2558   if (Info.InConstantContext)
2559     return true;
2560 
2561   FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2562   if ((St & APFloat::opInexact) &&
2563       FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2564     // Inexact result means that it depends on rounding mode. If the requested
2565     // mode is dynamic, the evaluation cannot be made in compile time.
2566     Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2567     return false;
2568   }
2569 
2570   if ((St != APFloat::opOK) &&
2571       (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2572        FPO.getFPExceptionMode() != LangOptions::FPE_Ignore ||
2573        FPO.getAllowFEnvAccess())) {
2574     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2575     return false;
2576   }
2577 
2578   if ((St & APFloat::opStatus::opInvalidOp) &&
2579       FPO.getFPExceptionMode() != LangOptions::FPE_Ignore) {
2580     // There is no usefully definable result.
2581     Info.FFDiag(E);
2582     return false;
2583   }
2584 
2585   // FIXME: if:
2586   // - evaluation triggered other FP exception, and
2587   // - exception mode is not "ignore", and
2588   // - the expression being evaluated is not a part of global variable
2589   //   initializer,
2590   // the evaluation probably need to be rejected.
2591   return true;
2592 }
2593 
2594 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2595                                    QualType SrcType, QualType DestType,
2596                                    APFloat &Result) {
2597   assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2598   bool DynamicRM;
2599   llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2600   APFloat::opStatus St;
2601   APFloat Value = Result;
2602   bool ignored;
2603   St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2604   return checkFloatingPointResult(Info, E, St);
2605 }
2606 
2607 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2608                                  QualType DestType, QualType SrcType,
2609                                  const APSInt &Value) {
2610   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2611   // Figure out if this is a truncate, extend or noop cast.
2612   // If the input is signed, do a sign extend, noop, or truncate.
2613   APSInt Result = Value.extOrTrunc(DestWidth);
2614   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2615   if (DestType->isBooleanType())
2616     Result = Value.getBoolValue();
2617   return Result;
2618 }
2619 
2620 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2621                                  const FPOptions FPO,
2622                                  QualType SrcType, const APSInt &Value,
2623                                  QualType DestType, APFloat &Result) {
2624   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2625   APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(),
2626        APFloat::rmNearestTiesToEven);
2627   if (!Info.InConstantContext && St != llvm::APFloatBase::opOK &&
2628       FPO.isFPConstrained()) {
2629     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2630     return false;
2631   }
2632   return true;
2633 }
2634 
2635 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2636                                   APValue &Value, const FieldDecl *FD) {
2637   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2638 
2639   if (!Value.isInt()) {
2640     // Trying to store a pointer-cast-to-integer into a bitfield.
2641     // FIXME: In this case, we should provide the diagnostic for casting
2642     // a pointer to an integer.
2643     assert(Value.isLValue() && "integral value neither int nor lvalue?");
2644     Info.FFDiag(E);
2645     return false;
2646   }
2647 
2648   APSInt &Int = Value.getInt();
2649   unsigned OldBitWidth = Int.getBitWidth();
2650   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2651   if (NewBitWidth < OldBitWidth)
2652     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2653   return true;
2654 }
2655 
2656 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2657                                   llvm::APInt &Res) {
2658   APValue SVal;
2659   if (!Evaluate(SVal, Info, E))
2660     return false;
2661   if (SVal.isInt()) {
2662     Res = SVal.getInt();
2663     return true;
2664   }
2665   if (SVal.isFloat()) {
2666     Res = SVal.getFloat().bitcastToAPInt();
2667     return true;
2668   }
2669   if (SVal.isVector()) {
2670     QualType VecTy = E->getType();
2671     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2672     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2673     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2674     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2675     Res = llvm::APInt::getZero(VecSize);
2676     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2677       APValue &Elt = SVal.getVectorElt(i);
2678       llvm::APInt EltAsInt;
2679       if (Elt.isInt()) {
2680         EltAsInt = Elt.getInt();
2681       } else if (Elt.isFloat()) {
2682         EltAsInt = Elt.getFloat().bitcastToAPInt();
2683       } else {
2684         // Don't try to handle vectors of anything other than int or float
2685         // (not sure if it's possible to hit this case).
2686         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2687         return false;
2688       }
2689       unsigned BaseEltSize = EltAsInt.getBitWidth();
2690       if (BigEndian)
2691         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2692       else
2693         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2694     }
2695     return true;
2696   }
2697   // Give up if the input isn't an int, float, or vector.  For example, we
2698   // reject "(v4i16)(intptr_t)&a".
2699   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2700   return false;
2701 }
2702 
2703 /// Perform the given integer operation, which is known to need at most BitWidth
2704 /// bits, and check for overflow in the original type (if that type was not an
2705 /// unsigned type).
2706 template<typename Operation>
2707 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2708                                  const APSInt &LHS, const APSInt &RHS,
2709                                  unsigned BitWidth, Operation Op,
2710                                  APSInt &Result) {
2711   if (LHS.isUnsigned()) {
2712     Result = Op(LHS, RHS);
2713     return true;
2714   }
2715 
2716   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2717   Result = Value.trunc(LHS.getBitWidth());
2718   if (Result.extend(BitWidth) != Value) {
2719     if (Info.checkingForUndefinedBehavior())
2720       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2721                                        diag::warn_integer_constant_overflow)
2722           << toString(Result, 10) << E->getType();
2723     return HandleOverflow(Info, E, Value, E->getType());
2724   }
2725   return true;
2726 }
2727 
2728 /// Perform the given binary integer operation.
2729 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2730                               BinaryOperatorKind Opcode, APSInt RHS,
2731                               APSInt &Result) {
2732   switch (Opcode) {
2733   default:
2734     Info.FFDiag(E);
2735     return false;
2736   case BO_Mul:
2737     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2738                                 std::multiplies<APSInt>(), Result);
2739   case BO_Add:
2740     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2741                                 std::plus<APSInt>(), Result);
2742   case BO_Sub:
2743     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2744                                 std::minus<APSInt>(), Result);
2745   case BO_And: Result = LHS & RHS; return true;
2746   case BO_Xor: Result = LHS ^ RHS; return true;
2747   case BO_Or:  Result = LHS | RHS; return true;
2748   case BO_Div:
2749   case BO_Rem:
2750     if (RHS == 0) {
2751       Info.FFDiag(E, diag::note_expr_divide_by_zero);
2752       return false;
2753     }
2754     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2755     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2756     // this operation and gives the two's complement result.
2757     if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2758         LHS.isMinSignedValue())
2759       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2760                             E->getType());
2761     return true;
2762   case BO_Shl: {
2763     if (Info.getLangOpts().OpenCL)
2764       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2765       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2766                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2767                     RHS.isUnsigned());
2768     else if (RHS.isSigned() && RHS.isNegative()) {
2769       // During constant-folding, a negative shift is an opposite shift. Such
2770       // a shift is not a constant expression.
2771       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2772       RHS = -RHS;
2773       goto shift_right;
2774     }
2775   shift_left:
2776     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2777     // the shifted type.
2778     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2779     if (SA != RHS) {
2780       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2781         << RHS << E->getType() << LHS.getBitWidth();
2782     } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2783       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2784       // operand, and must not overflow the corresponding unsigned type.
2785       // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2786       // E1 x 2^E2 module 2^N.
2787       if (LHS.isNegative())
2788         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2789       else if (LHS.countLeadingZeros() < SA)
2790         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2791     }
2792     Result = LHS << SA;
2793     return true;
2794   }
2795   case BO_Shr: {
2796     if (Info.getLangOpts().OpenCL)
2797       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2798       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2799                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2800                     RHS.isUnsigned());
2801     else if (RHS.isSigned() && RHS.isNegative()) {
2802       // During constant-folding, a negative shift is an opposite shift. Such a
2803       // shift is not a constant expression.
2804       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2805       RHS = -RHS;
2806       goto shift_left;
2807     }
2808   shift_right:
2809     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2810     // shifted type.
2811     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2812     if (SA != RHS)
2813       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2814         << RHS << E->getType() << LHS.getBitWidth();
2815     Result = LHS >> SA;
2816     return true;
2817   }
2818 
2819   case BO_LT: Result = LHS < RHS; return true;
2820   case BO_GT: Result = LHS > RHS; return true;
2821   case BO_LE: Result = LHS <= RHS; return true;
2822   case BO_GE: Result = LHS >= RHS; return true;
2823   case BO_EQ: Result = LHS == RHS; return true;
2824   case BO_NE: Result = LHS != RHS; return true;
2825   case BO_Cmp:
2826     llvm_unreachable("BO_Cmp should be handled elsewhere");
2827   }
2828 }
2829 
2830 /// Perform the given binary floating-point operation, in-place, on LHS.
2831 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2832                                   APFloat &LHS, BinaryOperatorKind Opcode,
2833                                   const APFloat &RHS) {
2834   bool DynamicRM;
2835   llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2836   APFloat::opStatus St;
2837   switch (Opcode) {
2838   default:
2839     Info.FFDiag(E);
2840     return false;
2841   case BO_Mul:
2842     St = LHS.multiply(RHS, RM);
2843     break;
2844   case BO_Add:
2845     St = LHS.add(RHS, RM);
2846     break;
2847   case BO_Sub:
2848     St = LHS.subtract(RHS, RM);
2849     break;
2850   case BO_Div:
2851     // [expr.mul]p4:
2852     //   If the second operand of / or % is zero the behavior is undefined.
2853     if (RHS.isZero())
2854       Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2855     St = LHS.divide(RHS, RM);
2856     break;
2857   }
2858 
2859   // [expr.pre]p4:
2860   //   If during the evaluation of an expression, the result is not
2861   //   mathematically defined [...], the behavior is undefined.
2862   // FIXME: C++ rules require us to not conform to IEEE 754 here.
2863   if (LHS.isNaN()) {
2864     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2865     return Info.noteUndefinedBehavior();
2866   }
2867 
2868   return checkFloatingPointResult(Info, E, St);
2869 }
2870 
2871 static bool handleLogicalOpForVector(const APInt &LHSValue,
2872                                      BinaryOperatorKind Opcode,
2873                                      const APInt &RHSValue, APInt &Result) {
2874   bool LHS = (LHSValue != 0);
2875   bool RHS = (RHSValue != 0);
2876 
2877   if (Opcode == BO_LAnd)
2878     Result = LHS && RHS;
2879   else
2880     Result = LHS || RHS;
2881   return true;
2882 }
2883 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2884                                      BinaryOperatorKind Opcode,
2885                                      const APFloat &RHSValue, APInt &Result) {
2886   bool LHS = !LHSValue.isZero();
2887   bool RHS = !RHSValue.isZero();
2888 
2889   if (Opcode == BO_LAnd)
2890     Result = LHS && RHS;
2891   else
2892     Result = LHS || RHS;
2893   return true;
2894 }
2895 
2896 static bool handleLogicalOpForVector(const APValue &LHSValue,
2897                                      BinaryOperatorKind Opcode,
2898                                      const APValue &RHSValue, APInt &Result) {
2899   // The result is always an int type, however operands match the first.
2900   if (LHSValue.getKind() == APValue::Int)
2901     return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2902                                     RHSValue.getInt(), Result);
2903   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2904   return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2905                                   RHSValue.getFloat(), Result);
2906 }
2907 
2908 template <typename APTy>
2909 static bool
2910 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2911                                const APTy &RHSValue, APInt &Result) {
2912   switch (Opcode) {
2913   default:
2914     llvm_unreachable("unsupported binary operator");
2915   case BO_EQ:
2916     Result = (LHSValue == RHSValue);
2917     break;
2918   case BO_NE:
2919     Result = (LHSValue != RHSValue);
2920     break;
2921   case BO_LT:
2922     Result = (LHSValue < RHSValue);
2923     break;
2924   case BO_GT:
2925     Result = (LHSValue > RHSValue);
2926     break;
2927   case BO_LE:
2928     Result = (LHSValue <= RHSValue);
2929     break;
2930   case BO_GE:
2931     Result = (LHSValue >= RHSValue);
2932     break;
2933   }
2934 
2935   // The boolean operations on these vector types use an instruction that
2936   // results in a mask of '-1' for the 'truth' value.  Ensure that we negate 1
2937   // to -1 to make sure that we produce the correct value.
2938   Result.negate();
2939 
2940   return true;
2941 }
2942 
2943 static bool handleCompareOpForVector(const APValue &LHSValue,
2944                                      BinaryOperatorKind Opcode,
2945                                      const APValue &RHSValue, APInt &Result) {
2946   // The result is always an int type, however operands match the first.
2947   if (LHSValue.getKind() == APValue::Int)
2948     return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2949                                           RHSValue.getInt(), Result);
2950   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2951   return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2952                                         RHSValue.getFloat(), Result);
2953 }
2954 
2955 // Perform binary operations for vector types, in place on the LHS.
2956 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
2957                                     BinaryOperatorKind Opcode,
2958                                     APValue &LHSValue,
2959                                     const APValue &RHSValue) {
2960   assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
2961          "Operation not supported on vector types");
2962 
2963   const auto *VT = E->getType()->castAs<VectorType>();
2964   unsigned NumElements = VT->getNumElements();
2965   QualType EltTy = VT->getElementType();
2966 
2967   // In the cases (typically C as I've observed) where we aren't evaluating
2968   // constexpr but are checking for cases where the LHS isn't yet evaluatable,
2969   // just give up.
2970   if (!LHSValue.isVector()) {
2971     assert(LHSValue.isLValue() &&
2972            "A vector result that isn't a vector OR uncalculated LValue");
2973     Info.FFDiag(E);
2974     return false;
2975   }
2976 
2977   assert(LHSValue.getVectorLength() == NumElements &&
2978          RHSValue.getVectorLength() == NumElements && "Different vector sizes");
2979 
2980   SmallVector<APValue, 4> ResultElements;
2981 
2982   for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
2983     APValue LHSElt = LHSValue.getVectorElt(EltNum);
2984     APValue RHSElt = RHSValue.getVectorElt(EltNum);
2985 
2986     if (EltTy->isIntegerType()) {
2987       APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
2988                        EltTy->isUnsignedIntegerType()};
2989       bool Success = true;
2990 
2991       if (BinaryOperator::isLogicalOp(Opcode))
2992         Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
2993       else if (BinaryOperator::isComparisonOp(Opcode))
2994         Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
2995       else
2996         Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
2997                                     RHSElt.getInt(), EltResult);
2998 
2999       if (!Success) {
3000         Info.FFDiag(E);
3001         return false;
3002       }
3003       ResultElements.emplace_back(EltResult);
3004 
3005     } else if (EltTy->isFloatingType()) {
3006       assert(LHSElt.getKind() == APValue::Float &&
3007              RHSElt.getKind() == APValue::Float &&
3008              "Mismatched LHS/RHS/Result Type");
3009       APFloat LHSFloat = LHSElt.getFloat();
3010 
3011       if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3012                                  RHSElt.getFloat())) {
3013         Info.FFDiag(E);
3014         return false;
3015       }
3016 
3017       ResultElements.emplace_back(LHSFloat);
3018     }
3019   }
3020 
3021   LHSValue = APValue(ResultElements.data(), ResultElements.size());
3022   return true;
3023 }
3024 
3025 /// Cast an lvalue referring to a base subobject to a derived class, by
3026 /// truncating the lvalue's path to the given length.
3027 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3028                                const RecordDecl *TruncatedType,
3029                                unsigned TruncatedElements) {
3030   SubobjectDesignator &D = Result.Designator;
3031 
3032   // Check we actually point to a derived class object.
3033   if (TruncatedElements == D.Entries.size())
3034     return true;
3035   assert(TruncatedElements >= D.MostDerivedPathLength &&
3036          "not casting to a derived class");
3037   if (!Result.checkSubobject(Info, E, CSK_Derived))
3038     return false;
3039 
3040   // Truncate the path to the subobject, and remove any derived-to-base offsets.
3041   const RecordDecl *RD = TruncatedType;
3042   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3043     if (RD->isInvalidDecl()) return false;
3044     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3045     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3046     if (isVirtualBaseClass(D.Entries[I]))
3047       Result.Offset -= Layout.getVBaseClassOffset(Base);
3048     else
3049       Result.Offset -= Layout.getBaseClassOffset(Base);
3050     RD = Base;
3051   }
3052   D.Entries.resize(TruncatedElements);
3053   return true;
3054 }
3055 
3056 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3057                                    const CXXRecordDecl *Derived,
3058                                    const CXXRecordDecl *Base,
3059                                    const ASTRecordLayout *RL = nullptr) {
3060   if (!RL) {
3061     if (Derived->isInvalidDecl()) return false;
3062     RL = &Info.Ctx.getASTRecordLayout(Derived);
3063   }
3064 
3065   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3066   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3067   return true;
3068 }
3069 
3070 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3071                              const CXXRecordDecl *DerivedDecl,
3072                              const CXXBaseSpecifier *Base) {
3073   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3074 
3075   if (!Base->isVirtual())
3076     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3077 
3078   SubobjectDesignator &D = Obj.Designator;
3079   if (D.Invalid)
3080     return false;
3081 
3082   // Extract most-derived object and corresponding type.
3083   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3084   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3085     return false;
3086 
3087   // Find the virtual base class.
3088   if (DerivedDecl->isInvalidDecl()) return false;
3089   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3090   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3091   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3092   return true;
3093 }
3094 
3095 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3096                                  QualType Type, LValue &Result) {
3097   for (CastExpr::path_const_iterator PathI = E->path_begin(),
3098                                      PathE = E->path_end();
3099        PathI != PathE; ++PathI) {
3100     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3101                           *PathI))
3102       return false;
3103     Type = (*PathI)->getType();
3104   }
3105   return true;
3106 }
3107 
3108 /// Cast an lvalue referring to a derived class to a known base subobject.
3109 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3110                             const CXXRecordDecl *DerivedRD,
3111                             const CXXRecordDecl *BaseRD) {
3112   CXXBasePaths Paths(/*FindAmbiguities=*/false,
3113                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
3114   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3115     llvm_unreachable("Class must be derived from the passed in base class!");
3116 
3117   for (CXXBasePathElement &Elem : Paths.front())
3118     if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3119       return false;
3120   return true;
3121 }
3122 
3123 /// Update LVal to refer to the given field, which must be a member of the type
3124 /// currently described by LVal.
3125 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3126                                const FieldDecl *FD,
3127                                const ASTRecordLayout *RL = nullptr) {
3128   if (!RL) {
3129     if (FD->getParent()->isInvalidDecl()) return false;
3130     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3131   }
3132 
3133   unsigned I = FD->getFieldIndex();
3134   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3135   LVal.addDecl(Info, E, FD);
3136   return true;
3137 }
3138 
3139 /// Update LVal to refer to the given indirect field.
3140 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3141                                        LValue &LVal,
3142                                        const IndirectFieldDecl *IFD) {
3143   for (const auto *C : IFD->chain())
3144     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3145       return false;
3146   return true;
3147 }
3148 
3149 /// Get the size of the given type in char units.
3150 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
3151                          QualType Type, CharUnits &Size) {
3152   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3153   // extension.
3154   if (Type->isVoidType() || Type->isFunctionType()) {
3155     Size = CharUnits::One();
3156     return true;
3157   }
3158 
3159   if (Type->isDependentType()) {
3160     Info.FFDiag(Loc);
3161     return false;
3162   }
3163 
3164   if (!Type->isConstantSizeType()) {
3165     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3166     // FIXME: Better diagnostic.
3167     Info.FFDiag(Loc);
3168     return false;
3169   }
3170 
3171   Size = Info.Ctx.getTypeSizeInChars(Type);
3172   return true;
3173 }
3174 
3175 /// Update a pointer value to model pointer arithmetic.
3176 /// \param Info - Information about the ongoing evaluation.
3177 /// \param E - The expression being evaluated, for diagnostic purposes.
3178 /// \param LVal - The pointer value to be updated.
3179 /// \param EltTy - The pointee type represented by LVal.
3180 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3181 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3182                                         LValue &LVal, QualType EltTy,
3183                                         APSInt Adjustment) {
3184   CharUnits SizeOfPointee;
3185   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3186     return false;
3187 
3188   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3189   return true;
3190 }
3191 
3192 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3193                                         LValue &LVal, QualType EltTy,
3194                                         int64_t Adjustment) {
3195   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3196                                      APSInt::get(Adjustment));
3197 }
3198 
3199 /// Update an lvalue to refer to a component of a complex number.
3200 /// \param Info - Information about the ongoing evaluation.
3201 /// \param LVal - The lvalue to be updated.
3202 /// \param EltTy - The complex number's component type.
3203 /// \param Imag - False for the real component, true for the imaginary.
3204 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3205                                        LValue &LVal, QualType EltTy,
3206                                        bool Imag) {
3207   if (Imag) {
3208     CharUnits SizeOfComponent;
3209     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3210       return false;
3211     LVal.Offset += SizeOfComponent;
3212   }
3213   LVal.addComplex(Info, E, EltTy, Imag);
3214   return true;
3215 }
3216 
3217 /// Try to evaluate the initializer for a variable declaration.
3218 ///
3219 /// \param Info   Information about the ongoing evaluation.
3220 /// \param E      An expression to be used when printing diagnostics.
3221 /// \param VD     The variable whose initializer should be obtained.
3222 /// \param Version The version of the variable within the frame.
3223 /// \param Frame  The frame in which the variable was created. Must be null
3224 ///               if this variable is not local to the evaluation.
3225 /// \param Result Filled in with a pointer to the value of the variable.
3226 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3227                                 const VarDecl *VD, CallStackFrame *Frame,
3228                                 unsigned Version, APValue *&Result) {
3229   APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3230 
3231   // If this is a local variable, dig out its value.
3232   if (Frame) {
3233     Result = Frame->getTemporary(VD, Version);
3234     if (Result)
3235       return true;
3236 
3237     if (!isa<ParmVarDecl>(VD)) {
3238       // Assume variables referenced within a lambda's call operator that were
3239       // not declared within the call operator are captures and during checking
3240       // of a potential constant expression, assume they are unknown constant
3241       // expressions.
3242       assert(isLambdaCallOperator(Frame->Callee) &&
3243              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3244              "missing value for local variable");
3245       if (Info.checkingPotentialConstantExpression())
3246         return false;
3247       // FIXME: This diagnostic is bogus; we do support captures. Is this code
3248       // still reachable at all?
3249       Info.FFDiag(E->getBeginLoc(),
3250                   diag::note_unimplemented_constexpr_lambda_feature_ast)
3251           << "captures not currently allowed";
3252       return false;
3253     }
3254   }
3255 
3256   // If we're currently evaluating the initializer of this declaration, use that
3257   // in-flight value.
3258   if (Info.EvaluatingDecl == Base) {
3259     Result = Info.EvaluatingDeclValue;
3260     return true;
3261   }
3262 
3263   if (isa<ParmVarDecl>(VD)) {
3264     // Assume parameters of a potential constant expression are usable in
3265     // constant expressions.
3266     if (!Info.checkingPotentialConstantExpression() ||
3267         !Info.CurrentCall->Callee ||
3268         !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3269       if (Info.getLangOpts().CPlusPlus11) {
3270         Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3271             << VD;
3272         NoteLValueLocation(Info, Base);
3273       } else {
3274         Info.FFDiag(E);
3275       }
3276     }
3277     return false;
3278   }
3279 
3280   // Dig out the initializer, and use the declaration which it's attached to.
3281   // FIXME: We should eventually check whether the variable has a reachable
3282   // initializing declaration.
3283   const Expr *Init = VD->getAnyInitializer(VD);
3284   if (!Init) {
3285     // Don't diagnose during potential constant expression checking; an
3286     // initializer might be added later.
3287     if (!Info.checkingPotentialConstantExpression()) {
3288       Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3289         << VD;
3290       NoteLValueLocation(Info, Base);
3291     }
3292     return false;
3293   }
3294 
3295   if (Init->isValueDependent()) {
3296     // The DeclRefExpr is not value-dependent, but the variable it refers to
3297     // has a value-dependent initializer. This should only happen in
3298     // constant-folding cases, where the variable is not actually of a suitable
3299     // type for use in a constant expression (otherwise the DeclRefExpr would
3300     // have been value-dependent too), so diagnose that.
3301     assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3302     if (!Info.checkingPotentialConstantExpression()) {
3303       Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3304                          ? diag::note_constexpr_ltor_non_constexpr
3305                          : diag::note_constexpr_ltor_non_integral, 1)
3306           << VD << VD->getType();
3307       NoteLValueLocation(Info, Base);
3308     }
3309     return false;
3310   }
3311 
3312   // Check that we can fold the initializer. In C++, we will have already done
3313   // this in the cases where it matters for conformance.
3314   SmallVector<PartialDiagnosticAt, 8> Notes;
3315   if (!VD->evaluateValue(Notes)) {
3316     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
3317               Notes.size() + 1) << VD;
3318     NoteLValueLocation(Info, Base);
3319     Info.addNotes(Notes);
3320     return false;
3321   }
3322 
3323   // Check that the variable is actually usable in constant expressions. For a
3324   // const integral variable or a reference, we might have a non-constant
3325   // initializer that we can nonetheless evaluate the initializer for. Such
3326   // variables are not usable in constant expressions. In C++98, the
3327   // initializer also syntactically needs to be an ICE.
3328   //
3329   // FIXME: We don't diagnose cases that aren't potentially usable in constant
3330   // expressions here; doing so would regress diagnostics for things like
3331   // reading from a volatile constexpr variable.
3332   if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3333        VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3334       ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3335        !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3336     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3337     NoteLValueLocation(Info, Base);
3338   }
3339 
3340   // Never use the initializer of a weak variable, not even for constant
3341   // folding. We can't be sure that this is the definition that will be used.
3342   if (VD->isWeak()) {
3343     Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3344     NoteLValueLocation(Info, Base);
3345     return false;
3346   }
3347 
3348   Result = VD->getEvaluatedValue();
3349   return true;
3350 }
3351 
3352 /// Get the base index of the given base class within an APValue representing
3353 /// the given derived class.
3354 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3355                              const CXXRecordDecl *Base) {
3356   Base = Base->getCanonicalDecl();
3357   unsigned Index = 0;
3358   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3359          E = Derived->bases_end(); I != E; ++I, ++Index) {
3360     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3361       return Index;
3362   }
3363 
3364   llvm_unreachable("base class missing from derived class's bases list");
3365 }
3366 
3367 /// Extract the value of a character from a string literal.
3368 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3369                                             uint64_t Index) {
3370   assert(!isa<SourceLocExpr>(Lit) &&
3371          "SourceLocExpr should have already been converted to a StringLiteral");
3372 
3373   // FIXME: Support MakeStringConstant
3374   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3375     std::string Str;
3376     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3377     assert(Index <= Str.size() && "Index too large");
3378     return APSInt::getUnsigned(Str.c_str()[Index]);
3379   }
3380 
3381   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3382     Lit = PE->getFunctionName();
3383   const StringLiteral *S = cast<StringLiteral>(Lit);
3384   const ConstantArrayType *CAT =
3385       Info.Ctx.getAsConstantArrayType(S->getType());
3386   assert(CAT && "string literal isn't an array");
3387   QualType CharType = CAT->getElementType();
3388   assert(CharType->isIntegerType() && "unexpected character type");
3389 
3390   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3391                CharType->isUnsignedIntegerType());
3392   if (Index < S->getLength())
3393     Value = S->getCodeUnit(Index);
3394   return Value;
3395 }
3396 
3397 // Expand a string literal into an array of characters.
3398 //
3399 // FIXME: This is inefficient; we should probably introduce something similar
3400 // to the LLVM ConstantDataArray to make this cheaper.
3401 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3402                                 APValue &Result,
3403                                 QualType AllocType = QualType()) {
3404   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3405       AllocType.isNull() ? S->getType() : AllocType);
3406   assert(CAT && "string literal isn't an array");
3407   QualType CharType = CAT->getElementType();
3408   assert(CharType->isIntegerType() && "unexpected character type");
3409 
3410   unsigned Elts = CAT->getSize().getZExtValue();
3411   Result = APValue(APValue::UninitArray(),
3412                    std::min(S->getLength(), Elts), Elts);
3413   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3414                CharType->isUnsignedIntegerType());
3415   if (Result.hasArrayFiller())
3416     Result.getArrayFiller() = APValue(Value);
3417   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3418     Value = S->getCodeUnit(I);
3419     Result.getArrayInitializedElt(I) = APValue(Value);
3420   }
3421 }
3422 
3423 // Expand an array so that it has more than Index filled elements.
3424 static void expandArray(APValue &Array, unsigned Index) {
3425   unsigned Size = Array.getArraySize();
3426   assert(Index < Size);
3427 
3428   // Always at least double the number of elements for which we store a value.
3429   unsigned OldElts = Array.getArrayInitializedElts();
3430   unsigned NewElts = std::max(Index+1, OldElts * 2);
3431   NewElts = std::min(Size, std::max(NewElts, 8u));
3432 
3433   // Copy the data across.
3434   APValue NewValue(APValue::UninitArray(), NewElts, Size);
3435   for (unsigned I = 0; I != OldElts; ++I)
3436     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3437   for (unsigned I = OldElts; I != NewElts; ++I)
3438     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3439   if (NewValue.hasArrayFiller())
3440     NewValue.getArrayFiller() = Array.getArrayFiller();
3441   Array.swap(NewValue);
3442 }
3443 
3444 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3445 /// conversion. If it's of class type, we may assume that the copy operation
3446 /// is trivial. Note that this is never true for a union type with fields
3447 /// (because the copy always "reads" the active member) and always true for
3448 /// a non-class type.
3449 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3450 static bool isReadByLvalueToRvalueConversion(QualType T) {
3451   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3452   return !RD || isReadByLvalueToRvalueConversion(RD);
3453 }
3454 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3455   // FIXME: A trivial copy of a union copies the object representation, even if
3456   // the union is empty.
3457   if (RD->isUnion())
3458     return !RD->field_empty();
3459   if (RD->isEmpty())
3460     return false;
3461 
3462   for (auto *Field : RD->fields())
3463     if (!Field->isUnnamedBitfield() &&
3464         isReadByLvalueToRvalueConversion(Field->getType()))
3465       return true;
3466 
3467   for (auto &BaseSpec : RD->bases())
3468     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3469       return true;
3470 
3471   return false;
3472 }
3473 
3474 /// Diagnose an attempt to read from any unreadable field within the specified
3475 /// type, which might be a class type.
3476 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3477                                   QualType T) {
3478   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3479   if (!RD)
3480     return false;
3481 
3482   if (!RD->hasMutableFields())
3483     return false;
3484 
3485   for (auto *Field : RD->fields()) {
3486     // If we're actually going to read this field in some way, then it can't
3487     // be mutable. If we're in a union, then assigning to a mutable field
3488     // (even an empty one) can change the active member, so that's not OK.
3489     // FIXME: Add core issue number for the union case.
3490     if (Field->isMutable() &&
3491         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3492       Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3493       Info.Note(Field->getLocation(), diag::note_declared_at);
3494       return true;
3495     }
3496 
3497     if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3498       return true;
3499   }
3500 
3501   for (auto &BaseSpec : RD->bases())
3502     if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3503       return true;
3504 
3505   // All mutable fields were empty, and thus not actually read.
3506   return false;
3507 }
3508 
3509 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3510                                         APValue::LValueBase Base,
3511                                         bool MutableSubobject = false) {
3512   // A temporary or transient heap allocation we created.
3513   if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3514     return true;
3515 
3516   switch (Info.IsEvaluatingDecl) {
3517   case EvalInfo::EvaluatingDeclKind::None:
3518     return false;
3519 
3520   case EvalInfo::EvaluatingDeclKind::Ctor:
3521     // The variable whose initializer we're evaluating.
3522     if (Info.EvaluatingDecl == Base)
3523       return true;
3524 
3525     // A temporary lifetime-extended by the variable whose initializer we're
3526     // evaluating.
3527     if (auto *BaseE = Base.dyn_cast<const Expr *>())
3528       if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3529         return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3530     return false;
3531 
3532   case EvalInfo::EvaluatingDeclKind::Dtor:
3533     // C++2a [expr.const]p6:
3534     //   [during constant destruction] the lifetime of a and its non-mutable
3535     //   subobjects (but not its mutable subobjects) [are] considered to start
3536     //   within e.
3537     if (MutableSubobject || Base != Info.EvaluatingDecl)
3538       return false;
3539     // FIXME: We can meaningfully extend this to cover non-const objects, but
3540     // we will need special handling: we should be able to access only
3541     // subobjects of such objects that are themselves declared const.
3542     QualType T = getType(Base);
3543     return T.isConstQualified() || T->isReferenceType();
3544   }
3545 
3546   llvm_unreachable("unknown evaluating decl kind");
3547 }
3548 
3549 namespace {
3550 /// A handle to a complete object (an object that is not a subobject of
3551 /// another object).
3552 struct CompleteObject {
3553   /// The identity of the object.
3554   APValue::LValueBase Base;
3555   /// The value of the complete object.
3556   APValue *Value;
3557   /// The type of the complete object.
3558   QualType Type;
3559 
3560   CompleteObject() : Value(nullptr) {}
3561   CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3562       : Base(Base), Value(Value), Type(Type) {}
3563 
3564   bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3565     // If this isn't a "real" access (eg, if it's just accessing the type
3566     // info), allow it. We assume the type doesn't change dynamically for
3567     // subobjects of constexpr objects (even though we'd hit UB here if it
3568     // did). FIXME: Is this right?
3569     if (!isAnyAccess(AK))
3570       return true;
3571 
3572     // In C++14 onwards, it is permitted to read a mutable member whose
3573     // lifetime began within the evaluation.
3574     // FIXME: Should we also allow this in C++11?
3575     if (!Info.getLangOpts().CPlusPlus14)
3576       return false;
3577     return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3578   }
3579 
3580   explicit operator bool() const { return !Type.isNull(); }
3581 };
3582 } // end anonymous namespace
3583 
3584 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3585                                  bool IsMutable = false) {
3586   // C++ [basic.type.qualifier]p1:
3587   // - A const object is an object of type const T or a non-mutable subobject
3588   //   of a const object.
3589   if (ObjType.isConstQualified() && !IsMutable)
3590     SubobjType.addConst();
3591   // - A volatile object is an object of type const T or a subobject of a
3592   //   volatile object.
3593   if (ObjType.isVolatileQualified())
3594     SubobjType.addVolatile();
3595   return SubobjType;
3596 }
3597 
3598 /// Find the designated sub-object of an rvalue.
3599 template<typename SubobjectHandler>
3600 typename SubobjectHandler::result_type
3601 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3602               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3603   if (Sub.Invalid)
3604     // A diagnostic will have already been produced.
3605     return handler.failed();
3606   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3607     if (Info.getLangOpts().CPlusPlus11)
3608       Info.FFDiag(E, Sub.isOnePastTheEnd()
3609                          ? diag::note_constexpr_access_past_end
3610                          : diag::note_constexpr_access_unsized_array)
3611           << handler.AccessKind;
3612     else
3613       Info.FFDiag(E);
3614     return handler.failed();
3615   }
3616 
3617   APValue *O = Obj.Value;
3618   QualType ObjType = Obj.Type;
3619   const FieldDecl *LastField = nullptr;
3620   const FieldDecl *VolatileField = nullptr;
3621 
3622   // Walk the designator's path to find the subobject.
3623   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3624     // Reading an indeterminate value is undefined, but assigning over one is OK.
3625     if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3626         (O->isIndeterminate() &&
3627          !isValidIndeterminateAccess(handler.AccessKind))) {
3628       if (!Info.checkingPotentialConstantExpression())
3629         Info.FFDiag(E, diag::note_constexpr_access_uninit)
3630             << handler.AccessKind << O->isIndeterminate();
3631       return handler.failed();
3632     }
3633 
3634     // C++ [class.ctor]p5, C++ [class.dtor]p5:
3635     //    const and volatile semantics are not applied on an object under
3636     //    {con,de}struction.
3637     if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3638         ObjType->isRecordType() &&
3639         Info.isEvaluatingCtorDtor(
3640             Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
3641                                          Sub.Entries.begin() + I)) !=
3642                           ConstructionPhase::None) {
3643       ObjType = Info.Ctx.getCanonicalType(ObjType);
3644       ObjType.removeLocalConst();
3645       ObjType.removeLocalVolatile();
3646     }
3647 
3648     // If this is our last pass, check that the final object type is OK.
3649     if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3650       // Accesses to volatile objects are prohibited.
3651       if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3652         if (Info.getLangOpts().CPlusPlus) {
3653           int DiagKind;
3654           SourceLocation Loc;
3655           const NamedDecl *Decl = nullptr;
3656           if (VolatileField) {
3657             DiagKind = 2;
3658             Loc = VolatileField->getLocation();
3659             Decl = VolatileField;
3660           } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3661             DiagKind = 1;
3662             Loc = VD->getLocation();
3663             Decl = VD;
3664           } else {
3665             DiagKind = 0;
3666             if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3667               Loc = E->getExprLoc();
3668           }
3669           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3670               << handler.AccessKind << DiagKind << Decl;
3671           Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3672         } else {
3673           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3674         }
3675         return handler.failed();
3676       }
3677 
3678       // If we are reading an object of class type, there may still be more
3679       // things we need to check: if there are any mutable subobjects, we
3680       // cannot perform this read. (This only happens when performing a trivial
3681       // copy or assignment.)
3682       if (ObjType->isRecordType() &&
3683           !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3684           diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3685         return handler.failed();
3686     }
3687 
3688     if (I == N) {
3689       if (!handler.found(*O, ObjType))
3690         return false;
3691 
3692       // If we modified a bit-field, truncate it to the right width.
3693       if (isModification(handler.AccessKind) &&
3694           LastField && LastField->isBitField() &&
3695           !truncateBitfieldValue(Info, E, *O, LastField))
3696         return false;
3697 
3698       return true;
3699     }
3700 
3701     LastField = nullptr;
3702     if (ObjType->isArrayType()) {
3703       // Next subobject is an array element.
3704       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3705       assert(CAT && "vla in literal type?");
3706       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3707       if (CAT->getSize().ule(Index)) {
3708         // Note, it should not be possible to form a pointer with a valid
3709         // designator which points more than one past the end of the array.
3710         if (Info.getLangOpts().CPlusPlus11)
3711           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3712             << handler.AccessKind;
3713         else
3714           Info.FFDiag(E);
3715         return handler.failed();
3716       }
3717 
3718       ObjType = CAT->getElementType();
3719 
3720       if (O->getArrayInitializedElts() > Index)
3721         O = &O->getArrayInitializedElt(Index);
3722       else if (!isRead(handler.AccessKind)) {
3723         expandArray(*O, Index);
3724         O = &O->getArrayInitializedElt(Index);
3725       } else
3726         O = &O->getArrayFiller();
3727     } else if (ObjType->isAnyComplexType()) {
3728       // Next subobject is a complex number.
3729       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3730       if (Index > 1) {
3731         if (Info.getLangOpts().CPlusPlus11)
3732           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3733             << handler.AccessKind;
3734         else
3735           Info.FFDiag(E);
3736         return handler.failed();
3737       }
3738 
3739       ObjType = getSubobjectType(
3740           ObjType, ObjType->castAs<ComplexType>()->getElementType());
3741 
3742       assert(I == N - 1 && "extracting subobject of scalar?");
3743       if (O->isComplexInt()) {
3744         return handler.found(Index ? O->getComplexIntImag()
3745                                    : O->getComplexIntReal(), ObjType);
3746       } else {
3747         assert(O->isComplexFloat());
3748         return handler.found(Index ? O->getComplexFloatImag()
3749                                    : O->getComplexFloatReal(), ObjType);
3750       }
3751     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3752       if (Field->isMutable() &&
3753           !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3754         Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3755           << handler.AccessKind << Field;
3756         Info.Note(Field->getLocation(), diag::note_declared_at);
3757         return handler.failed();
3758       }
3759 
3760       // Next subobject is a class, struct or union field.
3761       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3762       if (RD->isUnion()) {
3763         const FieldDecl *UnionField = O->getUnionField();
3764         if (!UnionField ||
3765             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3766           if (I == N - 1 && handler.AccessKind == AK_Construct) {
3767             // Placement new onto an inactive union member makes it active.
3768             O->setUnion(Field, APValue());
3769           } else {
3770             // FIXME: If O->getUnionValue() is absent, report that there's no
3771             // active union member rather than reporting the prior active union
3772             // member. We'll need to fix nullptr_t to not use APValue() as its
3773             // representation first.
3774             Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3775                 << handler.AccessKind << Field << !UnionField << UnionField;
3776             return handler.failed();
3777           }
3778         }
3779         O = &O->getUnionValue();
3780       } else
3781         O = &O->getStructField(Field->getFieldIndex());
3782 
3783       ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3784       LastField = Field;
3785       if (Field->getType().isVolatileQualified())
3786         VolatileField = Field;
3787     } else {
3788       // Next subobject is a base class.
3789       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3790       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3791       O = &O->getStructBase(getBaseIndex(Derived, Base));
3792 
3793       ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3794     }
3795   }
3796 }
3797 
3798 namespace {
3799 struct ExtractSubobjectHandler {
3800   EvalInfo &Info;
3801   const Expr *E;
3802   APValue &Result;
3803   const AccessKinds AccessKind;
3804 
3805   typedef bool result_type;
3806   bool failed() { return false; }
3807   bool found(APValue &Subobj, QualType SubobjType) {
3808     Result = Subobj;
3809     if (AccessKind == AK_ReadObjectRepresentation)
3810       return true;
3811     return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3812   }
3813   bool found(APSInt &Value, QualType SubobjType) {
3814     Result = APValue(Value);
3815     return true;
3816   }
3817   bool found(APFloat &Value, QualType SubobjType) {
3818     Result = APValue(Value);
3819     return true;
3820   }
3821 };
3822 } // end anonymous namespace
3823 
3824 /// Extract the designated sub-object of an rvalue.
3825 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3826                              const CompleteObject &Obj,
3827                              const SubobjectDesignator &Sub, APValue &Result,
3828                              AccessKinds AK = AK_Read) {
3829   assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3830   ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3831   return findSubobject(Info, E, Obj, Sub, Handler);
3832 }
3833 
3834 namespace {
3835 struct ModifySubobjectHandler {
3836   EvalInfo &Info;
3837   APValue &NewVal;
3838   const Expr *E;
3839 
3840   typedef bool result_type;
3841   static const AccessKinds AccessKind = AK_Assign;
3842 
3843   bool checkConst(QualType QT) {
3844     // Assigning to a const object has undefined behavior.
3845     if (QT.isConstQualified()) {
3846       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3847       return false;
3848     }
3849     return true;
3850   }
3851 
3852   bool failed() { return false; }
3853   bool found(APValue &Subobj, QualType SubobjType) {
3854     if (!checkConst(SubobjType))
3855       return false;
3856     // We've been given ownership of NewVal, so just swap it in.
3857     Subobj.swap(NewVal);
3858     return true;
3859   }
3860   bool found(APSInt &Value, QualType SubobjType) {
3861     if (!checkConst(SubobjType))
3862       return false;
3863     if (!NewVal.isInt()) {
3864       // Maybe trying to write a cast pointer value into a complex?
3865       Info.FFDiag(E);
3866       return false;
3867     }
3868     Value = NewVal.getInt();
3869     return true;
3870   }
3871   bool found(APFloat &Value, QualType SubobjType) {
3872     if (!checkConst(SubobjType))
3873       return false;
3874     Value = NewVal.getFloat();
3875     return true;
3876   }
3877 };
3878 } // end anonymous namespace
3879 
3880 const AccessKinds ModifySubobjectHandler::AccessKind;
3881 
3882 /// Update the designated sub-object of an rvalue to the given value.
3883 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3884                             const CompleteObject &Obj,
3885                             const SubobjectDesignator &Sub,
3886                             APValue &NewVal) {
3887   ModifySubobjectHandler Handler = { Info, NewVal, E };
3888   return findSubobject(Info, E, Obj, Sub, Handler);
3889 }
3890 
3891 /// Find the position where two subobject designators diverge, or equivalently
3892 /// the length of the common initial subsequence.
3893 static unsigned FindDesignatorMismatch(QualType ObjType,
3894                                        const SubobjectDesignator &A,
3895                                        const SubobjectDesignator &B,
3896                                        bool &WasArrayIndex) {
3897   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3898   for (/**/; I != N; ++I) {
3899     if (!ObjType.isNull() &&
3900         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3901       // Next subobject is an array element.
3902       if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3903         WasArrayIndex = true;
3904         return I;
3905       }
3906       if (ObjType->isAnyComplexType())
3907         ObjType = ObjType->castAs<ComplexType>()->getElementType();
3908       else
3909         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3910     } else {
3911       if (A.Entries[I].getAsBaseOrMember() !=
3912           B.Entries[I].getAsBaseOrMember()) {
3913         WasArrayIndex = false;
3914         return I;
3915       }
3916       if (const FieldDecl *FD = getAsField(A.Entries[I]))
3917         // Next subobject is a field.
3918         ObjType = FD->getType();
3919       else
3920         // Next subobject is a base class.
3921         ObjType = QualType();
3922     }
3923   }
3924   WasArrayIndex = false;
3925   return I;
3926 }
3927 
3928 /// Determine whether the given subobject designators refer to elements of the
3929 /// same array object.
3930 static bool AreElementsOfSameArray(QualType ObjType,
3931                                    const SubobjectDesignator &A,
3932                                    const SubobjectDesignator &B) {
3933   if (A.Entries.size() != B.Entries.size())
3934     return false;
3935 
3936   bool IsArray = A.MostDerivedIsArrayElement;
3937   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3938     // A is a subobject of the array element.
3939     return false;
3940 
3941   // If A (and B) designates an array element, the last entry will be the array
3942   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3943   // of length 1' case, and the entire path must match.
3944   bool WasArrayIndex;
3945   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3946   return CommonLength >= A.Entries.size() - IsArray;
3947 }
3948 
3949 /// Find the complete object to which an LValue refers.
3950 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3951                                          AccessKinds AK, const LValue &LVal,
3952                                          QualType LValType) {
3953   if (LVal.InvalidBase) {
3954     Info.FFDiag(E);
3955     return CompleteObject();
3956   }
3957 
3958   if (!LVal.Base) {
3959     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3960     return CompleteObject();
3961   }
3962 
3963   CallStackFrame *Frame = nullptr;
3964   unsigned Depth = 0;
3965   if (LVal.getLValueCallIndex()) {
3966     std::tie(Frame, Depth) =
3967         Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3968     if (!Frame) {
3969       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3970         << AK << LVal.Base.is<const ValueDecl*>();
3971       NoteLValueLocation(Info, LVal.Base);
3972       return CompleteObject();
3973     }
3974   }
3975 
3976   bool IsAccess = isAnyAccess(AK);
3977 
3978   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3979   // is not a constant expression (even if the object is non-volatile). We also
3980   // apply this rule to C++98, in order to conform to the expected 'volatile'
3981   // semantics.
3982   if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3983     if (Info.getLangOpts().CPlusPlus)
3984       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3985         << AK << LValType;
3986     else
3987       Info.FFDiag(E);
3988     return CompleteObject();
3989   }
3990 
3991   // Compute value storage location and type of base object.
3992   APValue *BaseVal = nullptr;
3993   QualType BaseType = getType(LVal.Base);
3994 
3995   if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
3996       lifetimeStartedInEvaluation(Info, LVal.Base)) {
3997     // This is the object whose initializer we're evaluating, so its lifetime
3998     // started in the current evaluation.
3999     BaseVal = Info.EvaluatingDeclValue;
4000   } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4001     // Allow reading from a GUID declaration.
4002     if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
4003       if (isModification(AK)) {
4004         // All the remaining cases do not permit modification of the object.
4005         Info.FFDiag(E, diag::note_constexpr_modify_global);
4006         return CompleteObject();
4007       }
4008       APValue &V = GD->getAsAPValue();
4009       if (V.isAbsent()) {
4010         Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4011             << GD->getType();
4012         return CompleteObject();
4013       }
4014       return CompleteObject(LVal.Base, &V, GD->getType());
4015     }
4016 
4017     // Allow reading from template parameter objects.
4018     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4019       if (isModification(AK)) {
4020         Info.FFDiag(E, diag::note_constexpr_modify_global);
4021         return CompleteObject();
4022       }
4023       return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4024                             TPO->getType());
4025     }
4026 
4027     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4028     // In C++11, constexpr, non-volatile variables initialized with constant
4029     // expressions are constant expressions too. Inside constexpr functions,
4030     // parameters are constant expressions even if they're non-const.
4031     // In C++1y, objects local to a constant expression (those with a Frame) are
4032     // both readable and writable inside constant expressions.
4033     // In C, such things can also be folded, although they are not ICEs.
4034     const VarDecl *VD = dyn_cast<VarDecl>(D);
4035     if (VD) {
4036       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4037         VD = VDef;
4038     }
4039     if (!VD || VD->isInvalidDecl()) {
4040       Info.FFDiag(E);
4041       return CompleteObject();
4042     }
4043 
4044     bool IsConstant = BaseType.isConstant(Info.Ctx);
4045 
4046     // Unless we're looking at a local variable or argument in a constexpr call,
4047     // the variable we're reading must be const.
4048     if (!Frame) {
4049       if (IsAccess && isa<ParmVarDecl>(VD)) {
4050         // Access of a parameter that's not associated with a frame isn't going
4051         // to work out, but we can leave it to evaluateVarDeclInit to provide a
4052         // suitable diagnostic.
4053       } else if (Info.getLangOpts().CPlusPlus14 &&
4054                  lifetimeStartedInEvaluation(Info, LVal.Base)) {
4055         // OK, we can read and modify an object if we're in the process of
4056         // evaluating its initializer, because its lifetime began in this
4057         // evaluation.
4058       } else if (isModification(AK)) {
4059         // All the remaining cases do not permit modification of the object.
4060         Info.FFDiag(E, diag::note_constexpr_modify_global);
4061         return CompleteObject();
4062       } else if (VD->isConstexpr()) {
4063         // OK, we can read this variable.
4064       } else if (BaseType->isIntegralOrEnumerationType()) {
4065         if (!IsConstant) {
4066           if (!IsAccess)
4067             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4068           if (Info.getLangOpts().CPlusPlus) {
4069             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4070             Info.Note(VD->getLocation(), diag::note_declared_at);
4071           } else {
4072             Info.FFDiag(E);
4073           }
4074           return CompleteObject();
4075         }
4076       } else if (!IsAccess) {
4077         return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4078       } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4079                  BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4080         // This variable might end up being constexpr. Don't diagnose it yet.
4081       } else if (IsConstant) {
4082         // Keep evaluating to see what we can do. In particular, we support
4083         // folding of const floating-point types, in order to make static const
4084         // data members of such types (supported as an extension) more useful.
4085         if (Info.getLangOpts().CPlusPlus) {
4086           Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4087                               ? diag::note_constexpr_ltor_non_constexpr
4088                               : diag::note_constexpr_ltor_non_integral, 1)
4089               << VD << BaseType;
4090           Info.Note(VD->getLocation(), diag::note_declared_at);
4091         } else {
4092           Info.CCEDiag(E);
4093         }
4094       } else {
4095         // Never allow reading a non-const value.
4096         if (Info.getLangOpts().CPlusPlus) {
4097           Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4098                              ? diag::note_constexpr_ltor_non_constexpr
4099                              : diag::note_constexpr_ltor_non_integral, 1)
4100               << VD << BaseType;
4101           Info.Note(VD->getLocation(), diag::note_declared_at);
4102         } else {
4103           Info.FFDiag(E);
4104         }
4105         return CompleteObject();
4106       }
4107     }
4108 
4109     if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4110       return CompleteObject();
4111   } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4112     Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
4113     if (!Alloc) {
4114       Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4115       return CompleteObject();
4116     }
4117     return CompleteObject(LVal.Base, &(*Alloc)->Value,
4118                           LVal.Base.getDynamicAllocType());
4119   } else {
4120     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4121 
4122     if (!Frame) {
4123       if (const MaterializeTemporaryExpr *MTE =
4124               dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4125         assert(MTE->getStorageDuration() == SD_Static &&
4126                "should have a frame for a non-global materialized temporary");
4127 
4128         // C++20 [expr.const]p4: [DR2126]
4129         //   An object or reference is usable in constant expressions if it is
4130         //   - a temporary object of non-volatile const-qualified literal type
4131         //     whose lifetime is extended to that of a variable that is usable
4132         //     in constant expressions
4133         //
4134         // C++20 [expr.const]p5:
4135         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4136         //   - a non-volatile glvalue that refers to an object that is usable
4137         //     in constant expressions, or
4138         //   - a non-volatile glvalue of literal type that refers to a
4139         //     non-volatile object whose lifetime began within the evaluation
4140         //     of E;
4141         //
4142         // C++11 misses the 'began within the evaluation of e' check and
4143         // instead allows all temporaries, including things like:
4144         //   int &&r = 1;
4145         //   int x = ++r;
4146         //   constexpr int k = r;
4147         // Therefore we use the C++14-onwards rules in C++11 too.
4148         //
4149         // Note that temporaries whose lifetimes began while evaluating a
4150         // variable's constructor are not usable while evaluating the
4151         // corresponding destructor, not even if they're of const-qualified
4152         // types.
4153         if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4154             !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4155           if (!IsAccess)
4156             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4157           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4158           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4159           return CompleteObject();
4160         }
4161 
4162         BaseVal = MTE->getOrCreateValue(false);
4163         assert(BaseVal && "got reference to unevaluated temporary");
4164       } else {
4165         if (!IsAccess)
4166           return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4167         APValue Val;
4168         LVal.moveInto(Val);
4169         Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4170             << AK
4171             << Val.getAsString(Info.Ctx,
4172                                Info.Ctx.getLValueReferenceType(LValType));
4173         NoteLValueLocation(Info, LVal.Base);
4174         return CompleteObject();
4175       }
4176     } else {
4177       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4178       assert(BaseVal && "missing value for temporary");
4179     }
4180   }
4181 
4182   // In C++14, we can't safely access any mutable state when we might be
4183   // evaluating after an unmodeled side effect. Parameters are modeled as state
4184   // in the caller, but aren't visible once the call returns, so they can be
4185   // modified in a speculatively-evaluated call.
4186   //
4187   // FIXME: Not all local state is mutable. Allow local constant subobjects
4188   // to be read here (but take care with 'mutable' fields).
4189   unsigned VisibleDepth = Depth;
4190   if (llvm::isa_and_nonnull<ParmVarDecl>(
4191           LVal.Base.dyn_cast<const ValueDecl *>()))
4192     ++VisibleDepth;
4193   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4194        Info.EvalStatus.HasSideEffects) ||
4195       (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4196     return CompleteObject();
4197 
4198   return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4199 }
4200 
4201 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4202 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4203 /// glvalue referred to by an entity of reference type.
4204 ///
4205 /// \param Info - Information about the ongoing evaluation.
4206 /// \param Conv - The expression for which we are performing the conversion.
4207 ///               Used for diagnostics.
4208 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4209 ///               case of a non-class type).
4210 /// \param LVal - The glvalue on which we are attempting to perform this action.
4211 /// \param RVal - The produced value will be placed here.
4212 /// \param WantObjectRepresentation - If true, we're looking for the object
4213 ///               representation rather than the value, and in particular,
4214 ///               there is no requirement that the result be fully initialized.
4215 static bool
4216 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4217                                const LValue &LVal, APValue &RVal,
4218                                bool WantObjectRepresentation = false) {
4219   if (LVal.Designator.Invalid)
4220     return false;
4221 
4222   // Check for special cases where there is no existing APValue to look at.
4223   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4224 
4225   AccessKinds AK =
4226       WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4227 
4228   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4229     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4230       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4231       // initializer until now for such expressions. Such an expression can't be
4232       // an ICE in C, so this only matters for fold.
4233       if (Type.isVolatileQualified()) {
4234         Info.FFDiag(Conv);
4235         return false;
4236       }
4237       APValue Lit;
4238       if (!Evaluate(Lit, Info, CLE->getInitializer()))
4239         return false;
4240       CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4241       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4242     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4243       // Special-case character extraction so we don't have to construct an
4244       // APValue for the whole string.
4245       assert(LVal.Designator.Entries.size() <= 1 &&
4246              "Can only read characters from string literals");
4247       if (LVal.Designator.Entries.empty()) {
4248         // Fail for now for LValue to RValue conversion of an array.
4249         // (This shouldn't show up in C/C++, but it could be triggered by a
4250         // weird EvaluateAsRValue call from a tool.)
4251         Info.FFDiag(Conv);
4252         return false;
4253       }
4254       if (LVal.Designator.isOnePastTheEnd()) {
4255         if (Info.getLangOpts().CPlusPlus11)
4256           Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4257         else
4258           Info.FFDiag(Conv);
4259         return false;
4260       }
4261       uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4262       RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4263       return true;
4264     }
4265   }
4266 
4267   CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4268   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4269 }
4270 
4271 /// Perform an assignment of Val to LVal. Takes ownership of Val.
4272 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4273                              QualType LValType, APValue &Val) {
4274   if (LVal.Designator.Invalid)
4275     return false;
4276 
4277   if (!Info.getLangOpts().CPlusPlus14) {
4278     Info.FFDiag(E);
4279     return false;
4280   }
4281 
4282   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4283   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4284 }
4285 
4286 namespace {
4287 struct CompoundAssignSubobjectHandler {
4288   EvalInfo &Info;
4289   const CompoundAssignOperator *E;
4290   QualType PromotedLHSType;
4291   BinaryOperatorKind Opcode;
4292   const APValue &RHS;
4293 
4294   static const AccessKinds AccessKind = AK_Assign;
4295 
4296   typedef bool result_type;
4297 
4298   bool checkConst(QualType QT) {
4299     // Assigning to a const object has undefined behavior.
4300     if (QT.isConstQualified()) {
4301       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4302       return false;
4303     }
4304     return true;
4305   }
4306 
4307   bool failed() { return false; }
4308   bool found(APValue &Subobj, QualType SubobjType) {
4309     switch (Subobj.getKind()) {
4310     case APValue::Int:
4311       return found(Subobj.getInt(), SubobjType);
4312     case APValue::Float:
4313       return found(Subobj.getFloat(), SubobjType);
4314     case APValue::ComplexInt:
4315     case APValue::ComplexFloat:
4316       // FIXME: Implement complex compound assignment.
4317       Info.FFDiag(E);
4318       return false;
4319     case APValue::LValue:
4320       return foundPointer(Subobj, SubobjType);
4321     case APValue::Vector:
4322       return foundVector(Subobj, SubobjType);
4323     default:
4324       // FIXME: can this happen?
4325       Info.FFDiag(E);
4326       return false;
4327     }
4328   }
4329 
4330   bool foundVector(APValue &Value, QualType SubobjType) {
4331     if (!checkConst(SubobjType))
4332       return false;
4333 
4334     if (!SubobjType->isVectorType()) {
4335       Info.FFDiag(E);
4336       return false;
4337     }
4338     return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4339   }
4340 
4341   bool found(APSInt &Value, QualType SubobjType) {
4342     if (!checkConst(SubobjType))
4343       return false;
4344 
4345     if (!SubobjType->isIntegerType()) {
4346       // We don't support compound assignment on integer-cast-to-pointer
4347       // values.
4348       Info.FFDiag(E);
4349       return false;
4350     }
4351 
4352     if (RHS.isInt()) {
4353       APSInt LHS =
4354           HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4355       if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4356         return false;
4357       Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4358       return true;
4359     } else if (RHS.isFloat()) {
4360       const FPOptions FPO = E->getFPFeaturesInEffect(
4361                                     Info.Ctx.getLangOpts());
4362       APFloat FValue(0.0);
4363       return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4364                                   PromotedLHSType, FValue) &&
4365              handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4366              HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4367                                   Value);
4368     }
4369 
4370     Info.FFDiag(E);
4371     return false;
4372   }
4373   bool found(APFloat &Value, QualType SubobjType) {
4374     return checkConst(SubobjType) &&
4375            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4376                                   Value) &&
4377            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4378            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4379   }
4380   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4381     if (!checkConst(SubobjType))
4382       return false;
4383 
4384     QualType PointeeType;
4385     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4386       PointeeType = PT->getPointeeType();
4387 
4388     if (PointeeType.isNull() || !RHS.isInt() ||
4389         (Opcode != BO_Add && Opcode != BO_Sub)) {
4390       Info.FFDiag(E);
4391       return false;
4392     }
4393 
4394     APSInt Offset = RHS.getInt();
4395     if (Opcode == BO_Sub)
4396       negateAsSigned(Offset);
4397 
4398     LValue LVal;
4399     LVal.setFrom(Info.Ctx, Subobj);
4400     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4401       return false;
4402     LVal.moveInto(Subobj);
4403     return true;
4404   }
4405 };
4406 } // end anonymous namespace
4407 
4408 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4409 
4410 /// Perform a compound assignment of LVal <op>= RVal.
4411 static bool handleCompoundAssignment(EvalInfo &Info,
4412                                      const CompoundAssignOperator *E,
4413                                      const LValue &LVal, QualType LValType,
4414                                      QualType PromotedLValType,
4415                                      BinaryOperatorKind Opcode,
4416                                      const APValue &RVal) {
4417   if (LVal.Designator.Invalid)
4418     return false;
4419 
4420   if (!Info.getLangOpts().CPlusPlus14) {
4421     Info.FFDiag(E);
4422     return false;
4423   }
4424 
4425   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4426   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4427                                              RVal };
4428   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4429 }
4430 
4431 namespace {
4432 struct IncDecSubobjectHandler {
4433   EvalInfo &Info;
4434   const UnaryOperator *E;
4435   AccessKinds AccessKind;
4436   APValue *Old;
4437 
4438   typedef bool result_type;
4439 
4440   bool checkConst(QualType QT) {
4441     // Assigning to a const object has undefined behavior.
4442     if (QT.isConstQualified()) {
4443       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4444       return false;
4445     }
4446     return true;
4447   }
4448 
4449   bool failed() { return false; }
4450   bool found(APValue &Subobj, QualType SubobjType) {
4451     // Stash the old value. Also clear Old, so we don't clobber it later
4452     // if we're post-incrementing a complex.
4453     if (Old) {
4454       *Old = Subobj;
4455       Old = nullptr;
4456     }
4457 
4458     switch (Subobj.getKind()) {
4459     case APValue::Int:
4460       return found(Subobj.getInt(), SubobjType);
4461     case APValue::Float:
4462       return found(Subobj.getFloat(), SubobjType);
4463     case APValue::ComplexInt:
4464       return found(Subobj.getComplexIntReal(),
4465                    SubobjType->castAs<ComplexType>()->getElementType()
4466                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4467     case APValue::ComplexFloat:
4468       return found(Subobj.getComplexFloatReal(),
4469                    SubobjType->castAs<ComplexType>()->getElementType()
4470                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4471     case APValue::LValue:
4472       return foundPointer(Subobj, SubobjType);
4473     default:
4474       // FIXME: can this happen?
4475       Info.FFDiag(E);
4476       return false;
4477     }
4478   }
4479   bool found(APSInt &Value, QualType SubobjType) {
4480     if (!checkConst(SubobjType))
4481       return false;
4482 
4483     if (!SubobjType->isIntegerType()) {
4484       // We don't support increment / decrement on integer-cast-to-pointer
4485       // values.
4486       Info.FFDiag(E);
4487       return false;
4488     }
4489 
4490     if (Old) *Old = APValue(Value);
4491 
4492     // bool arithmetic promotes to int, and the conversion back to bool
4493     // doesn't reduce mod 2^n, so special-case it.
4494     if (SubobjType->isBooleanType()) {
4495       if (AccessKind == AK_Increment)
4496         Value = 1;
4497       else
4498         Value = !Value;
4499       return true;
4500     }
4501 
4502     bool WasNegative = Value.isNegative();
4503     if (AccessKind == AK_Increment) {
4504       ++Value;
4505 
4506       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4507         APSInt ActualValue(Value, /*IsUnsigned*/true);
4508         return HandleOverflow(Info, E, ActualValue, SubobjType);
4509       }
4510     } else {
4511       --Value;
4512 
4513       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4514         unsigned BitWidth = Value.getBitWidth();
4515         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4516         ActualValue.setBit(BitWidth);
4517         return HandleOverflow(Info, E, ActualValue, SubobjType);
4518       }
4519     }
4520     return true;
4521   }
4522   bool found(APFloat &Value, QualType SubobjType) {
4523     if (!checkConst(SubobjType))
4524       return false;
4525 
4526     if (Old) *Old = APValue(Value);
4527 
4528     APFloat One(Value.getSemantics(), 1);
4529     if (AccessKind == AK_Increment)
4530       Value.add(One, APFloat::rmNearestTiesToEven);
4531     else
4532       Value.subtract(One, APFloat::rmNearestTiesToEven);
4533     return true;
4534   }
4535   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4536     if (!checkConst(SubobjType))
4537       return false;
4538 
4539     QualType PointeeType;
4540     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4541       PointeeType = PT->getPointeeType();
4542     else {
4543       Info.FFDiag(E);
4544       return false;
4545     }
4546 
4547     LValue LVal;
4548     LVal.setFrom(Info.Ctx, Subobj);
4549     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4550                                      AccessKind == AK_Increment ? 1 : -1))
4551       return false;
4552     LVal.moveInto(Subobj);
4553     return true;
4554   }
4555 };
4556 } // end anonymous namespace
4557 
4558 /// Perform an increment or decrement on LVal.
4559 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4560                          QualType LValType, bool IsIncrement, APValue *Old) {
4561   if (LVal.Designator.Invalid)
4562     return false;
4563 
4564   if (!Info.getLangOpts().CPlusPlus14) {
4565     Info.FFDiag(E);
4566     return false;
4567   }
4568 
4569   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4570   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4571   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4572   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4573 }
4574 
4575 /// Build an lvalue for the object argument of a member function call.
4576 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4577                                    LValue &This) {
4578   if (Object->getType()->isPointerType() && Object->isPRValue())
4579     return EvaluatePointer(Object, This, Info);
4580 
4581   if (Object->isGLValue())
4582     return EvaluateLValue(Object, This, Info);
4583 
4584   if (Object->getType()->isLiteralType(Info.Ctx))
4585     return EvaluateTemporary(Object, This, Info);
4586 
4587   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4588   return false;
4589 }
4590 
4591 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4592 /// lvalue referring to the result.
4593 ///
4594 /// \param Info - Information about the ongoing evaluation.
4595 /// \param LV - An lvalue referring to the base of the member pointer.
4596 /// \param RHS - The member pointer expression.
4597 /// \param IncludeMember - Specifies whether the member itself is included in
4598 ///        the resulting LValue subobject designator. This is not possible when
4599 ///        creating a bound member function.
4600 /// \return The field or method declaration to which the member pointer refers,
4601 ///         or 0 if evaluation fails.
4602 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4603                                                   QualType LVType,
4604                                                   LValue &LV,
4605                                                   const Expr *RHS,
4606                                                   bool IncludeMember = true) {
4607   MemberPtr MemPtr;
4608   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4609     return nullptr;
4610 
4611   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4612   // member value, the behavior is undefined.
4613   if (!MemPtr.getDecl()) {
4614     // FIXME: Specific diagnostic.
4615     Info.FFDiag(RHS);
4616     return nullptr;
4617   }
4618 
4619   if (MemPtr.isDerivedMember()) {
4620     // This is a member of some derived class. Truncate LV appropriately.
4621     // The end of the derived-to-base path for the base object must match the
4622     // derived-to-base path for the member pointer.
4623     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4624         LV.Designator.Entries.size()) {
4625       Info.FFDiag(RHS);
4626       return nullptr;
4627     }
4628     unsigned PathLengthToMember =
4629         LV.Designator.Entries.size() - MemPtr.Path.size();
4630     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4631       const CXXRecordDecl *LVDecl = getAsBaseClass(
4632           LV.Designator.Entries[PathLengthToMember + I]);
4633       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4634       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4635         Info.FFDiag(RHS);
4636         return nullptr;
4637       }
4638     }
4639 
4640     // Truncate the lvalue to the appropriate derived class.
4641     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4642                             PathLengthToMember))
4643       return nullptr;
4644   } else if (!MemPtr.Path.empty()) {
4645     // Extend the LValue path with the member pointer's path.
4646     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4647                                   MemPtr.Path.size() + IncludeMember);
4648 
4649     // Walk down to the appropriate base class.
4650     if (const PointerType *PT = LVType->getAs<PointerType>())
4651       LVType = PT->getPointeeType();
4652     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4653     assert(RD && "member pointer access on non-class-type expression");
4654     // The first class in the path is that of the lvalue.
4655     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4656       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4657       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4658         return nullptr;
4659       RD = Base;
4660     }
4661     // Finally cast to the class containing the member.
4662     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4663                                 MemPtr.getContainingRecord()))
4664       return nullptr;
4665   }
4666 
4667   // Add the member. Note that we cannot build bound member functions here.
4668   if (IncludeMember) {
4669     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4670       if (!HandleLValueMember(Info, RHS, LV, FD))
4671         return nullptr;
4672     } else if (const IndirectFieldDecl *IFD =
4673                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4674       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4675         return nullptr;
4676     } else {
4677       llvm_unreachable("can't construct reference to bound member function");
4678     }
4679   }
4680 
4681   return MemPtr.getDecl();
4682 }
4683 
4684 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4685                                                   const BinaryOperator *BO,
4686                                                   LValue &LV,
4687                                                   bool IncludeMember = true) {
4688   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4689 
4690   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4691     if (Info.noteFailure()) {
4692       MemberPtr MemPtr;
4693       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4694     }
4695     return nullptr;
4696   }
4697 
4698   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4699                                    BO->getRHS(), IncludeMember);
4700 }
4701 
4702 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4703 /// the provided lvalue, which currently refers to the base object.
4704 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4705                                     LValue &Result) {
4706   SubobjectDesignator &D = Result.Designator;
4707   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4708     return false;
4709 
4710   QualType TargetQT = E->getType();
4711   if (const PointerType *PT = TargetQT->getAs<PointerType>())
4712     TargetQT = PT->getPointeeType();
4713 
4714   // Check this cast lands within the final derived-to-base subobject path.
4715   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4716     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4717       << D.MostDerivedType << TargetQT;
4718     return false;
4719   }
4720 
4721   // Check the type of the final cast. We don't need to check the path,
4722   // since a cast can only be formed if the path is unique.
4723   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4724   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4725   const CXXRecordDecl *FinalType;
4726   if (NewEntriesSize == D.MostDerivedPathLength)
4727     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4728   else
4729     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4730   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4731     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4732       << D.MostDerivedType << TargetQT;
4733     return false;
4734   }
4735 
4736   // Truncate the lvalue to the appropriate derived class.
4737   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4738 }
4739 
4740 /// Get the value to use for a default-initialized object of type T.
4741 /// Return false if it encounters something invalid.
4742 static bool getDefaultInitValue(QualType T, APValue &Result) {
4743   bool Success = true;
4744   if (auto *RD = T->getAsCXXRecordDecl()) {
4745     if (RD->isInvalidDecl()) {
4746       Result = APValue();
4747       return false;
4748     }
4749     if (RD->isUnion()) {
4750       Result = APValue((const FieldDecl *)nullptr);
4751       return true;
4752     }
4753     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4754                      std::distance(RD->field_begin(), RD->field_end()));
4755 
4756     unsigned Index = 0;
4757     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4758                                                   End = RD->bases_end();
4759          I != End; ++I, ++Index)
4760       Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));
4761 
4762     for (const auto *I : RD->fields()) {
4763       if (I->isUnnamedBitfield())
4764         continue;
4765       Success &= getDefaultInitValue(I->getType(),
4766                                      Result.getStructField(I->getFieldIndex()));
4767     }
4768     return Success;
4769   }
4770 
4771   if (auto *AT =
4772           dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4773     Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4774     if (Result.hasArrayFiller())
4775       Success &=
4776           getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4777 
4778     return Success;
4779   }
4780 
4781   Result = APValue::IndeterminateValue();
4782   return true;
4783 }
4784 
4785 namespace {
4786 enum EvalStmtResult {
4787   /// Evaluation failed.
4788   ESR_Failed,
4789   /// Hit a 'return' statement.
4790   ESR_Returned,
4791   /// Evaluation succeeded.
4792   ESR_Succeeded,
4793   /// Hit a 'continue' statement.
4794   ESR_Continue,
4795   /// Hit a 'break' statement.
4796   ESR_Break,
4797   /// Still scanning for 'case' or 'default' statement.
4798   ESR_CaseNotFound
4799 };
4800 }
4801 
4802 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4803   // We don't need to evaluate the initializer for a static local.
4804   if (!VD->hasLocalStorage())
4805     return true;
4806 
4807   LValue Result;
4808   APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4809                                                    ScopeKind::Block, Result);
4810 
4811   const Expr *InitE = VD->getInit();
4812   if (!InitE) {
4813     if (VD->getType()->isDependentType())
4814       return Info.noteSideEffect();
4815     return getDefaultInitValue(VD->getType(), Val);
4816   }
4817   if (InitE->isValueDependent())
4818     return false;
4819 
4820   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4821     // Wipe out any partially-computed value, to allow tracking that this
4822     // evaluation failed.
4823     Val = APValue();
4824     return false;
4825   }
4826 
4827   return true;
4828 }
4829 
4830 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4831   bool OK = true;
4832 
4833   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4834     OK &= EvaluateVarDecl(Info, VD);
4835 
4836   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4837     for (auto *BD : DD->bindings())
4838       if (auto *VD = BD->getHoldingVar())
4839         OK &= EvaluateDecl(Info, VD);
4840 
4841   return OK;
4842 }
4843 
4844 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4845   assert(E->isValueDependent());
4846   if (Info.noteSideEffect())
4847     return true;
4848   assert(E->containsErrors() && "valid value-dependent expression should never "
4849                                 "reach invalid code path.");
4850   return false;
4851 }
4852 
4853 /// Evaluate a condition (either a variable declaration or an expression).
4854 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4855                          const Expr *Cond, bool &Result) {
4856   if (Cond->isValueDependent())
4857     return false;
4858   FullExpressionRAII Scope(Info);
4859   if (CondDecl && !EvaluateDecl(Info, CondDecl))
4860     return false;
4861   if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4862     return false;
4863   return Scope.destroy();
4864 }
4865 
4866 namespace {
4867 /// A location where the result (returned value) of evaluating a
4868 /// statement should be stored.
4869 struct StmtResult {
4870   /// The APValue that should be filled in with the returned value.
4871   APValue &Value;
4872   /// The location containing the result, if any (used to support RVO).
4873   const LValue *Slot;
4874 };
4875 
4876 struct TempVersionRAII {
4877   CallStackFrame &Frame;
4878 
4879   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4880     Frame.pushTempVersion();
4881   }
4882 
4883   ~TempVersionRAII() {
4884     Frame.popTempVersion();
4885   }
4886 };
4887 
4888 }
4889 
4890 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4891                                    const Stmt *S,
4892                                    const SwitchCase *SC = nullptr);
4893 
4894 /// Evaluate the body of a loop, and translate the result as appropriate.
4895 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4896                                        const Stmt *Body,
4897                                        const SwitchCase *Case = nullptr) {
4898   BlockScopeRAII Scope(Info);
4899 
4900   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4901   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4902     ESR = ESR_Failed;
4903 
4904   switch (ESR) {
4905   case ESR_Break:
4906     return ESR_Succeeded;
4907   case ESR_Succeeded:
4908   case ESR_Continue:
4909     return ESR_Continue;
4910   case ESR_Failed:
4911   case ESR_Returned:
4912   case ESR_CaseNotFound:
4913     return ESR;
4914   }
4915   llvm_unreachable("Invalid EvalStmtResult!");
4916 }
4917 
4918 /// Evaluate a switch statement.
4919 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4920                                      const SwitchStmt *SS) {
4921   BlockScopeRAII Scope(Info);
4922 
4923   // Evaluate the switch condition.
4924   APSInt Value;
4925   {
4926     if (const Stmt *Init = SS->getInit()) {
4927       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4928       if (ESR != ESR_Succeeded) {
4929         if (ESR != ESR_Failed && !Scope.destroy())
4930           ESR = ESR_Failed;
4931         return ESR;
4932       }
4933     }
4934 
4935     FullExpressionRAII CondScope(Info);
4936     if (SS->getConditionVariable() &&
4937         !EvaluateDecl(Info, SS->getConditionVariable()))
4938       return ESR_Failed;
4939     if (!EvaluateInteger(SS->getCond(), Value, Info))
4940       return ESR_Failed;
4941     if (!CondScope.destroy())
4942       return ESR_Failed;
4943   }
4944 
4945   // Find the switch case corresponding to the value of the condition.
4946   // FIXME: Cache this lookup.
4947   const SwitchCase *Found = nullptr;
4948   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
4949        SC = SC->getNextSwitchCase()) {
4950     if (isa<DefaultStmt>(SC)) {
4951       Found = SC;
4952       continue;
4953     }
4954 
4955     const CaseStmt *CS = cast<CaseStmt>(SC);
4956     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
4957     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
4958                               : LHS;
4959     if (LHS <= Value && Value <= RHS) {
4960       Found = SC;
4961       break;
4962     }
4963   }
4964 
4965   if (!Found)
4966     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4967 
4968   // Search the switch body for the switch case and evaluate it from there.
4969   EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
4970   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4971     return ESR_Failed;
4972 
4973   switch (ESR) {
4974   case ESR_Break:
4975     return ESR_Succeeded;
4976   case ESR_Succeeded:
4977   case ESR_Continue:
4978   case ESR_Failed:
4979   case ESR_Returned:
4980     return ESR;
4981   case ESR_CaseNotFound:
4982     // This can only happen if the switch case is nested within a statement
4983     // expression. We have no intention of supporting that.
4984     Info.FFDiag(Found->getBeginLoc(),
4985                 diag::note_constexpr_stmt_expr_unsupported);
4986     return ESR_Failed;
4987   }
4988   llvm_unreachable("Invalid EvalStmtResult!");
4989 }
4990 
4991 // Evaluate a statement.
4992 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4993                                    const Stmt *S, const SwitchCase *Case) {
4994   if (!Info.nextStep(S))
4995     return ESR_Failed;
4996 
4997   // If we're hunting down a 'case' or 'default' label, recurse through
4998   // substatements until we hit the label.
4999   if (Case) {
5000     switch (S->getStmtClass()) {
5001     case Stmt::CompoundStmtClass:
5002       // FIXME: Precompute which substatement of a compound statement we
5003       // would jump to, and go straight there rather than performing a
5004       // linear scan each time.
5005     case Stmt::LabelStmtClass:
5006     case Stmt::AttributedStmtClass:
5007     case Stmt::DoStmtClass:
5008       break;
5009 
5010     case Stmt::CaseStmtClass:
5011     case Stmt::DefaultStmtClass:
5012       if (Case == S)
5013         Case = nullptr;
5014       break;
5015 
5016     case Stmt::IfStmtClass: {
5017       // FIXME: Precompute which side of an 'if' we would jump to, and go
5018       // straight there rather than scanning both sides.
5019       const IfStmt *IS = cast<IfStmt>(S);
5020 
5021       // Wrap the evaluation in a block scope, in case it's a DeclStmt
5022       // preceded by our switch label.
5023       BlockScopeRAII Scope(Info);
5024 
5025       // Step into the init statement in case it brings an (uninitialized)
5026       // variable into scope.
5027       if (const Stmt *Init = IS->getInit()) {
5028         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5029         if (ESR != ESR_CaseNotFound) {
5030           assert(ESR != ESR_Succeeded);
5031           return ESR;
5032         }
5033       }
5034 
5035       // Condition variable must be initialized if it exists.
5036       // FIXME: We can skip evaluating the body if there's a condition
5037       // variable, as there can't be any case labels within it.
5038       // (The same is true for 'for' statements.)
5039 
5040       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5041       if (ESR == ESR_Failed)
5042         return ESR;
5043       if (ESR != ESR_CaseNotFound)
5044         return Scope.destroy() ? ESR : ESR_Failed;
5045       if (!IS->getElse())
5046         return ESR_CaseNotFound;
5047 
5048       ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5049       if (ESR == ESR_Failed)
5050         return ESR;
5051       if (ESR != ESR_CaseNotFound)
5052         return Scope.destroy() ? ESR : ESR_Failed;
5053       return ESR_CaseNotFound;
5054     }
5055 
5056     case Stmt::WhileStmtClass: {
5057       EvalStmtResult ESR =
5058           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5059       if (ESR != ESR_Continue)
5060         return ESR;
5061       break;
5062     }
5063 
5064     case Stmt::ForStmtClass: {
5065       const ForStmt *FS = cast<ForStmt>(S);
5066       BlockScopeRAII Scope(Info);
5067 
5068       // Step into the init statement in case it brings an (uninitialized)
5069       // variable into scope.
5070       if (const Stmt *Init = FS->getInit()) {
5071         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5072         if (ESR != ESR_CaseNotFound) {
5073           assert(ESR != ESR_Succeeded);
5074           return ESR;
5075         }
5076       }
5077 
5078       EvalStmtResult ESR =
5079           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5080       if (ESR != ESR_Continue)
5081         return ESR;
5082       if (const auto *Inc = FS->getInc()) {
5083         if (Inc->isValueDependent()) {
5084           if (!EvaluateDependentExpr(Inc, Info))
5085             return ESR_Failed;
5086         } else {
5087           FullExpressionRAII IncScope(Info);
5088           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5089             return ESR_Failed;
5090         }
5091       }
5092       break;
5093     }
5094 
5095     case Stmt::DeclStmtClass: {
5096       // Start the lifetime of any uninitialized variables we encounter. They
5097       // might be used by the selected branch of the switch.
5098       const DeclStmt *DS = cast<DeclStmt>(S);
5099       for (const auto *D : DS->decls()) {
5100         if (const auto *VD = dyn_cast<VarDecl>(D)) {
5101           if (VD->hasLocalStorage() && !VD->getInit())
5102             if (!EvaluateVarDecl(Info, VD))
5103               return ESR_Failed;
5104           // FIXME: If the variable has initialization that can't be jumped
5105           // over, bail out of any immediately-surrounding compound-statement
5106           // too. There can't be any case labels here.
5107         }
5108       }
5109       return ESR_CaseNotFound;
5110     }
5111 
5112     default:
5113       return ESR_CaseNotFound;
5114     }
5115   }
5116 
5117   switch (S->getStmtClass()) {
5118   default:
5119     if (const Expr *E = dyn_cast<Expr>(S)) {
5120       if (E->isValueDependent()) {
5121         if (!EvaluateDependentExpr(E, Info))
5122           return ESR_Failed;
5123       } else {
5124         // Don't bother evaluating beyond an expression-statement which couldn't
5125         // be evaluated.
5126         // FIXME: Do we need the FullExpressionRAII object here?
5127         // VisitExprWithCleanups should create one when necessary.
5128         FullExpressionRAII Scope(Info);
5129         if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5130           return ESR_Failed;
5131       }
5132       return ESR_Succeeded;
5133     }
5134 
5135     Info.FFDiag(S->getBeginLoc());
5136     return ESR_Failed;
5137 
5138   case Stmt::NullStmtClass:
5139     return ESR_Succeeded;
5140 
5141   case Stmt::DeclStmtClass: {
5142     const DeclStmt *DS = cast<DeclStmt>(S);
5143     for (const auto *D : DS->decls()) {
5144       // Each declaration initialization is its own full-expression.
5145       FullExpressionRAII Scope(Info);
5146       if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5147         return ESR_Failed;
5148       if (!Scope.destroy())
5149         return ESR_Failed;
5150     }
5151     return ESR_Succeeded;
5152   }
5153 
5154   case Stmt::ReturnStmtClass: {
5155     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5156     FullExpressionRAII Scope(Info);
5157     if (RetExpr && RetExpr->isValueDependent()) {
5158       EvaluateDependentExpr(RetExpr, Info);
5159       // We know we returned, but we don't know what the value is.
5160       return ESR_Failed;
5161     }
5162     if (RetExpr &&
5163         !(Result.Slot
5164               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5165               : Evaluate(Result.Value, Info, RetExpr)))
5166       return ESR_Failed;
5167     return Scope.destroy() ? ESR_Returned : ESR_Failed;
5168   }
5169 
5170   case Stmt::CompoundStmtClass: {
5171     BlockScopeRAII Scope(Info);
5172 
5173     const CompoundStmt *CS = cast<CompoundStmt>(S);
5174     for (const auto *BI : CS->body()) {
5175       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5176       if (ESR == ESR_Succeeded)
5177         Case = nullptr;
5178       else if (ESR != ESR_CaseNotFound) {
5179         if (ESR != ESR_Failed && !Scope.destroy())
5180           return ESR_Failed;
5181         return ESR;
5182       }
5183     }
5184     if (Case)
5185       return ESR_CaseNotFound;
5186     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5187   }
5188 
5189   case Stmt::IfStmtClass: {
5190     const IfStmt *IS = cast<IfStmt>(S);
5191 
5192     // Evaluate the condition, as either a var decl or as an expression.
5193     BlockScopeRAII Scope(Info);
5194     if (const Stmt *Init = IS->getInit()) {
5195       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5196       if (ESR != ESR_Succeeded) {
5197         if (ESR != ESR_Failed && !Scope.destroy())
5198           return ESR_Failed;
5199         return ESR;
5200       }
5201     }
5202     bool Cond;
5203     if (IS->isConsteval())
5204       Cond = IS->isNonNegatedConsteval();
5205     else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(),
5206                            Cond))
5207       return ESR_Failed;
5208 
5209     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5210       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5211       if (ESR != ESR_Succeeded) {
5212         if (ESR != ESR_Failed && !Scope.destroy())
5213           return ESR_Failed;
5214         return ESR;
5215       }
5216     }
5217     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5218   }
5219 
5220   case Stmt::WhileStmtClass: {
5221     const WhileStmt *WS = cast<WhileStmt>(S);
5222     while (true) {
5223       BlockScopeRAII Scope(Info);
5224       bool Continue;
5225       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5226                         Continue))
5227         return ESR_Failed;
5228       if (!Continue)
5229         break;
5230 
5231       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5232       if (ESR != ESR_Continue) {
5233         if (ESR != ESR_Failed && !Scope.destroy())
5234           return ESR_Failed;
5235         return ESR;
5236       }
5237       if (!Scope.destroy())
5238         return ESR_Failed;
5239     }
5240     return ESR_Succeeded;
5241   }
5242 
5243   case Stmt::DoStmtClass: {
5244     const DoStmt *DS = cast<DoStmt>(S);
5245     bool Continue;
5246     do {
5247       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5248       if (ESR != ESR_Continue)
5249         return ESR;
5250       Case = nullptr;
5251 
5252       if (DS->getCond()->isValueDependent()) {
5253         EvaluateDependentExpr(DS->getCond(), Info);
5254         // Bailout as we don't know whether to keep going or terminate the loop.
5255         return ESR_Failed;
5256       }
5257       FullExpressionRAII CondScope(Info);
5258       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5259           !CondScope.destroy())
5260         return ESR_Failed;
5261     } while (Continue);
5262     return ESR_Succeeded;
5263   }
5264 
5265   case Stmt::ForStmtClass: {
5266     const ForStmt *FS = cast<ForStmt>(S);
5267     BlockScopeRAII ForScope(Info);
5268     if (FS->getInit()) {
5269       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5270       if (ESR != ESR_Succeeded) {
5271         if (ESR != ESR_Failed && !ForScope.destroy())
5272           return ESR_Failed;
5273         return ESR;
5274       }
5275     }
5276     while (true) {
5277       BlockScopeRAII IterScope(Info);
5278       bool Continue = true;
5279       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5280                                          FS->getCond(), Continue))
5281         return ESR_Failed;
5282       if (!Continue)
5283         break;
5284 
5285       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5286       if (ESR != ESR_Continue) {
5287         if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5288           return ESR_Failed;
5289         return ESR;
5290       }
5291 
5292       if (const auto *Inc = FS->getInc()) {
5293         if (Inc->isValueDependent()) {
5294           if (!EvaluateDependentExpr(Inc, Info))
5295             return ESR_Failed;
5296         } else {
5297           FullExpressionRAII IncScope(Info);
5298           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5299             return ESR_Failed;
5300         }
5301       }
5302 
5303       if (!IterScope.destroy())
5304         return ESR_Failed;
5305     }
5306     return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5307   }
5308 
5309   case Stmt::CXXForRangeStmtClass: {
5310     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5311     BlockScopeRAII Scope(Info);
5312 
5313     // Evaluate the init-statement if present.
5314     if (FS->getInit()) {
5315       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5316       if (ESR != ESR_Succeeded) {
5317         if (ESR != ESR_Failed && !Scope.destroy())
5318           return ESR_Failed;
5319         return ESR;
5320       }
5321     }
5322 
5323     // Initialize the __range variable.
5324     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5325     if (ESR != ESR_Succeeded) {
5326       if (ESR != ESR_Failed && !Scope.destroy())
5327         return ESR_Failed;
5328       return ESR;
5329     }
5330 
5331     // In error-recovery cases it's possible to get here even if we failed to
5332     // synthesize the __begin and __end variables.
5333     if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5334       return ESR_Failed;
5335 
5336     // Create the __begin and __end iterators.
5337     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5338     if (ESR != ESR_Succeeded) {
5339       if (ESR != ESR_Failed && !Scope.destroy())
5340         return ESR_Failed;
5341       return ESR;
5342     }
5343     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5344     if (ESR != ESR_Succeeded) {
5345       if (ESR != ESR_Failed && !Scope.destroy())
5346         return ESR_Failed;
5347       return ESR;
5348     }
5349 
5350     while (true) {
5351       // Condition: __begin != __end.
5352       {
5353         if (FS->getCond()->isValueDependent()) {
5354           EvaluateDependentExpr(FS->getCond(), Info);
5355           // We don't know whether to keep going or terminate the loop.
5356           return ESR_Failed;
5357         }
5358         bool Continue = true;
5359         FullExpressionRAII CondExpr(Info);
5360         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5361           return ESR_Failed;
5362         if (!Continue)
5363           break;
5364       }
5365 
5366       // User's variable declaration, initialized by *__begin.
5367       BlockScopeRAII InnerScope(Info);
5368       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5369       if (ESR != ESR_Succeeded) {
5370         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5371           return ESR_Failed;
5372         return ESR;
5373       }
5374 
5375       // Loop body.
5376       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5377       if (ESR != ESR_Continue) {
5378         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5379           return ESR_Failed;
5380         return ESR;
5381       }
5382       if (FS->getInc()->isValueDependent()) {
5383         if (!EvaluateDependentExpr(FS->getInc(), Info))
5384           return ESR_Failed;
5385       } else {
5386         // Increment: ++__begin
5387         if (!EvaluateIgnoredValue(Info, FS->getInc()))
5388           return ESR_Failed;
5389       }
5390 
5391       if (!InnerScope.destroy())
5392         return ESR_Failed;
5393     }
5394 
5395     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5396   }
5397 
5398   case Stmt::SwitchStmtClass:
5399     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5400 
5401   case Stmt::ContinueStmtClass:
5402     return ESR_Continue;
5403 
5404   case Stmt::BreakStmtClass:
5405     return ESR_Break;
5406 
5407   case Stmt::LabelStmtClass:
5408     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5409 
5410   case Stmt::AttributedStmtClass:
5411     // As a general principle, C++11 attributes can be ignored without
5412     // any semantic impact.
5413     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5414                         Case);
5415 
5416   case Stmt::CaseStmtClass:
5417   case Stmt::DefaultStmtClass:
5418     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5419   case Stmt::CXXTryStmtClass:
5420     // Evaluate try blocks by evaluating all sub statements.
5421     return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5422   }
5423 }
5424 
5425 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5426 /// default constructor. If so, we'll fold it whether or not it's marked as
5427 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5428 /// so we need special handling.
5429 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5430                                            const CXXConstructorDecl *CD,
5431                                            bool IsValueInitialization) {
5432   if (!CD->isTrivial() || !CD->isDefaultConstructor())
5433     return false;
5434 
5435   // Value-initialization does not call a trivial default constructor, so such a
5436   // call is a core constant expression whether or not the constructor is
5437   // constexpr.
5438   if (!CD->isConstexpr() && !IsValueInitialization) {
5439     if (Info.getLangOpts().CPlusPlus11) {
5440       // FIXME: If DiagDecl is an implicitly-declared special member function,
5441       // we should be much more explicit about why it's not constexpr.
5442       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5443         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5444       Info.Note(CD->getLocation(), diag::note_declared_at);
5445     } else {
5446       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5447     }
5448   }
5449   return true;
5450 }
5451 
5452 /// CheckConstexprFunction - Check that a function can be called in a constant
5453 /// expression.
5454 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5455                                    const FunctionDecl *Declaration,
5456                                    const FunctionDecl *Definition,
5457                                    const Stmt *Body) {
5458   // Potential constant expressions can contain calls to declared, but not yet
5459   // defined, constexpr functions.
5460   if (Info.checkingPotentialConstantExpression() && !Definition &&
5461       Declaration->isConstexpr())
5462     return false;
5463 
5464   // Bail out if the function declaration itself is invalid.  We will
5465   // have produced a relevant diagnostic while parsing it, so just
5466   // note the problematic sub-expression.
5467   if (Declaration->isInvalidDecl()) {
5468     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5469     return false;
5470   }
5471 
5472   // DR1872: An instantiated virtual constexpr function can't be called in a
5473   // constant expression (prior to C++20). We can still constant-fold such a
5474   // call.
5475   if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5476       cast<CXXMethodDecl>(Declaration)->isVirtual())
5477     Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5478 
5479   if (Definition && Definition->isInvalidDecl()) {
5480     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5481     return false;
5482   }
5483 
5484   // Can we evaluate this function call?
5485   if (Definition && Definition->isConstexpr() && Body)
5486     return true;
5487 
5488   if (Info.getLangOpts().CPlusPlus11) {
5489     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5490 
5491     // If this function is not constexpr because it is an inherited
5492     // non-constexpr constructor, diagnose that directly.
5493     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5494     if (CD && CD->isInheritingConstructor()) {
5495       auto *Inherited = CD->getInheritedConstructor().getConstructor();
5496       if (!Inherited->isConstexpr())
5497         DiagDecl = CD = Inherited;
5498     }
5499 
5500     // FIXME: If DiagDecl is an implicitly-declared special member function
5501     // or an inheriting constructor, we should be much more explicit about why
5502     // it's not constexpr.
5503     if (CD && CD->isInheritingConstructor())
5504       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5505         << CD->getInheritedConstructor().getConstructor()->getParent();
5506     else
5507       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5508         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5509     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5510   } else {
5511     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5512   }
5513   return false;
5514 }
5515 
5516 namespace {
5517 struct CheckDynamicTypeHandler {
5518   AccessKinds AccessKind;
5519   typedef bool result_type;
5520   bool failed() { return false; }
5521   bool found(APValue &Subobj, QualType SubobjType) { return true; }
5522   bool found(APSInt &Value, QualType SubobjType) { return true; }
5523   bool found(APFloat &Value, QualType SubobjType) { return true; }
5524 };
5525 } // end anonymous namespace
5526 
5527 /// Check that we can access the notional vptr of an object / determine its
5528 /// dynamic type.
5529 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5530                              AccessKinds AK, bool Polymorphic) {
5531   if (This.Designator.Invalid)
5532     return false;
5533 
5534   CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5535 
5536   if (!Obj)
5537     return false;
5538 
5539   if (!Obj.Value) {
5540     // The object is not usable in constant expressions, so we can't inspect
5541     // its value to see if it's in-lifetime or what the active union members
5542     // are. We can still check for a one-past-the-end lvalue.
5543     if (This.Designator.isOnePastTheEnd() ||
5544         This.Designator.isMostDerivedAnUnsizedArray()) {
5545       Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5546                          ? diag::note_constexpr_access_past_end
5547                          : diag::note_constexpr_access_unsized_array)
5548           << AK;
5549       return false;
5550     } else if (Polymorphic) {
5551       // Conservatively refuse to perform a polymorphic operation if we would
5552       // not be able to read a notional 'vptr' value.
5553       APValue Val;
5554       This.moveInto(Val);
5555       QualType StarThisType =
5556           Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5557       Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5558           << AK << Val.getAsString(Info.Ctx, StarThisType);
5559       return false;
5560     }
5561     return true;
5562   }
5563 
5564   CheckDynamicTypeHandler Handler{AK};
5565   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5566 }
5567 
5568 /// Check that the pointee of the 'this' pointer in a member function call is
5569 /// either within its lifetime or in its period of construction or destruction.
5570 static bool
5571 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5572                                      const LValue &This,
5573                                      const CXXMethodDecl *NamedMember) {
5574   return checkDynamicType(
5575       Info, E, This,
5576       isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5577 }
5578 
5579 struct DynamicType {
5580   /// The dynamic class type of the object.
5581   const CXXRecordDecl *Type;
5582   /// The corresponding path length in the lvalue.
5583   unsigned PathLength;
5584 };
5585 
5586 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5587                                              unsigned PathLength) {
5588   assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5589       Designator.Entries.size() && "invalid path length");
5590   return (PathLength == Designator.MostDerivedPathLength)
5591              ? Designator.MostDerivedType->getAsCXXRecordDecl()
5592              : getAsBaseClass(Designator.Entries[PathLength - 1]);
5593 }
5594 
5595 /// Determine the dynamic type of an object.
5596 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
5597                                                 LValue &This, AccessKinds AK) {
5598   // If we don't have an lvalue denoting an object of class type, there is no
5599   // meaningful dynamic type. (We consider objects of non-class type to have no
5600   // dynamic type.)
5601   if (!checkDynamicType(Info, E, This, AK, true))
5602     return None;
5603 
5604   // Refuse to compute a dynamic type in the presence of virtual bases. This
5605   // shouldn't happen other than in constant-folding situations, since literal
5606   // types can't have virtual bases.
5607   //
5608   // Note that consumers of DynamicType assume that the type has no virtual
5609   // bases, and will need modifications if this restriction is relaxed.
5610   const CXXRecordDecl *Class =
5611       This.Designator.MostDerivedType->getAsCXXRecordDecl();
5612   if (!Class || Class->getNumVBases()) {
5613     Info.FFDiag(E);
5614     return None;
5615   }
5616 
5617   // FIXME: For very deep class hierarchies, it might be beneficial to use a
5618   // binary search here instead. But the overwhelmingly common case is that
5619   // we're not in the middle of a constructor, so it probably doesn't matter
5620   // in practice.
5621   ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5622   for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5623        PathLength <= Path.size(); ++PathLength) {
5624     switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5625                                       Path.slice(0, PathLength))) {
5626     case ConstructionPhase::Bases:
5627     case ConstructionPhase::DestroyingBases:
5628       // We're constructing or destroying a base class. This is not the dynamic
5629       // type.
5630       break;
5631 
5632     case ConstructionPhase::None:
5633     case ConstructionPhase::AfterBases:
5634     case ConstructionPhase::AfterFields:
5635     case ConstructionPhase::Destroying:
5636       // We've finished constructing the base classes and not yet started
5637       // destroying them again, so this is the dynamic type.
5638       return DynamicType{getBaseClassType(This.Designator, PathLength),
5639                          PathLength};
5640     }
5641   }
5642 
5643   // CWG issue 1517: we're constructing a base class of the object described by
5644   // 'This', so that object has not yet begun its period of construction and
5645   // any polymorphic operation on it results in undefined behavior.
5646   Info.FFDiag(E);
5647   return None;
5648 }
5649 
5650 /// Perform virtual dispatch.
5651 static const CXXMethodDecl *HandleVirtualDispatch(
5652     EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5653     llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5654   Optional<DynamicType> DynType = ComputeDynamicType(
5655       Info, E, This,
5656       isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5657   if (!DynType)
5658     return nullptr;
5659 
5660   // Find the final overrider. It must be declared in one of the classes on the
5661   // path from the dynamic type to the static type.
5662   // FIXME: If we ever allow literal types to have virtual base classes, that
5663   // won't be true.
5664   const CXXMethodDecl *Callee = Found;
5665   unsigned PathLength = DynType->PathLength;
5666   for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5667     const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5668     const CXXMethodDecl *Overrider =
5669         Found->getCorrespondingMethodDeclaredInClass(Class, false);
5670     if (Overrider) {
5671       Callee = Overrider;
5672       break;
5673     }
5674   }
5675 
5676   // C++2a [class.abstract]p6:
5677   //   the effect of making a virtual call to a pure virtual function [...] is
5678   //   undefined
5679   if (Callee->isPure()) {
5680     Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5681     Info.Note(Callee->getLocation(), diag::note_declared_at);
5682     return nullptr;
5683   }
5684 
5685   // If necessary, walk the rest of the path to determine the sequence of
5686   // covariant adjustment steps to apply.
5687   if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5688                                        Found->getReturnType())) {
5689     CovariantAdjustmentPath.push_back(Callee->getReturnType());
5690     for (unsigned CovariantPathLength = PathLength + 1;
5691          CovariantPathLength != This.Designator.Entries.size();
5692          ++CovariantPathLength) {
5693       const CXXRecordDecl *NextClass =
5694           getBaseClassType(This.Designator, CovariantPathLength);
5695       const CXXMethodDecl *Next =
5696           Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5697       if (Next && !Info.Ctx.hasSameUnqualifiedType(
5698                       Next->getReturnType(), CovariantAdjustmentPath.back()))
5699         CovariantAdjustmentPath.push_back(Next->getReturnType());
5700     }
5701     if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5702                                          CovariantAdjustmentPath.back()))
5703       CovariantAdjustmentPath.push_back(Found->getReturnType());
5704   }
5705 
5706   // Perform 'this' adjustment.
5707   if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5708     return nullptr;
5709 
5710   return Callee;
5711 }
5712 
5713 /// Perform the adjustment from a value returned by a virtual function to
5714 /// a value of the statically expected type, which may be a pointer or
5715 /// reference to a base class of the returned type.
5716 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5717                                             APValue &Result,
5718                                             ArrayRef<QualType> Path) {
5719   assert(Result.isLValue() &&
5720          "unexpected kind of APValue for covariant return");
5721   if (Result.isNullPointer())
5722     return true;
5723 
5724   LValue LVal;
5725   LVal.setFrom(Info.Ctx, Result);
5726 
5727   const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5728   for (unsigned I = 1; I != Path.size(); ++I) {
5729     const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5730     assert(OldClass && NewClass && "unexpected kind of covariant return");
5731     if (OldClass != NewClass &&
5732         !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5733       return false;
5734     OldClass = NewClass;
5735   }
5736 
5737   LVal.moveInto(Result);
5738   return true;
5739 }
5740 
5741 /// Determine whether \p Base, which is known to be a direct base class of
5742 /// \p Derived, is a public base class.
5743 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5744                               const CXXRecordDecl *Base) {
5745   for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5746     auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5747     if (BaseClass && declaresSameEntity(BaseClass, Base))
5748       return BaseSpec.getAccessSpecifier() == AS_public;
5749   }
5750   llvm_unreachable("Base is not a direct base of Derived");
5751 }
5752 
5753 /// Apply the given dynamic cast operation on the provided lvalue.
5754 ///
5755 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5756 /// to find a suitable target subobject.
5757 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5758                               LValue &Ptr) {
5759   // We can't do anything with a non-symbolic pointer value.
5760   SubobjectDesignator &D = Ptr.Designator;
5761   if (D.Invalid)
5762     return false;
5763 
5764   // C++ [expr.dynamic.cast]p6:
5765   //   If v is a null pointer value, the result is a null pointer value.
5766   if (Ptr.isNullPointer() && !E->isGLValue())
5767     return true;
5768 
5769   // For all the other cases, we need the pointer to point to an object within
5770   // its lifetime / period of construction / destruction, and we need to know
5771   // its dynamic type.
5772   Optional<DynamicType> DynType =
5773       ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5774   if (!DynType)
5775     return false;
5776 
5777   // C++ [expr.dynamic.cast]p7:
5778   //   If T is "pointer to cv void", then the result is a pointer to the most
5779   //   derived object
5780   if (E->getType()->isVoidPointerType())
5781     return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5782 
5783   const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5784   assert(C && "dynamic_cast target is not void pointer nor class");
5785   CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5786 
5787   auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5788     // C++ [expr.dynamic.cast]p9:
5789     if (!E->isGLValue()) {
5790       //   The value of a failed cast to pointer type is the null pointer value
5791       //   of the required result type.
5792       Ptr.setNull(Info.Ctx, E->getType());
5793       return true;
5794     }
5795 
5796     //   A failed cast to reference type throws [...] std::bad_cast.
5797     unsigned DiagKind;
5798     if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5799                    DynType->Type->isDerivedFrom(C)))
5800       DiagKind = 0;
5801     else if (!Paths || Paths->begin() == Paths->end())
5802       DiagKind = 1;
5803     else if (Paths->isAmbiguous(CQT))
5804       DiagKind = 2;
5805     else {
5806       assert(Paths->front().Access != AS_public && "why did the cast fail?");
5807       DiagKind = 3;
5808     }
5809     Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5810         << DiagKind << Ptr.Designator.getType(Info.Ctx)
5811         << Info.Ctx.getRecordType(DynType->Type)
5812         << E->getType().getUnqualifiedType();
5813     return false;
5814   };
5815 
5816   // Runtime check, phase 1:
5817   //   Walk from the base subobject towards the derived object looking for the
5818   //   target type.
5819   for (int PathLength = Ptr.Designator.Entries.size();
5820        PathLength >= (int)DynType->PathLength; --PathLength) {
5821     const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5822     if (declaresSameEntity(Class, C))
5823       return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5824     // We can only walk across public inheritance edges.
5825     if (PathLength > (int)DynType->PathLength &&
5826         !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5827                            Class))
5828       return RuntimeCheckFailed(nullptr);
5829   }
5830 
5831   // Runtime check, phase 2:
5832   //   Search the dynamic type for an unambiguous public base of type C.
5833   CXXBasePaths Paths(/*FindAmbiguities=*/true,
5834                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
5835   if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5836       Paths.front().Access == AS_public) {
5837     // Downcast to the dynamic type...
5838     if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5839       return false;
5840     // ... then upcast to the chosen base class subobject.
5841     for (CXXBasePathElement &Elem : Paths.front())
5842       if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5843         return false;
5844     return true;
5845   }
5846 
5847   // Otherwise, the runtime check fails.
5848   return RuntimeCheckFailed(&Paths);
5849 }
5850 
5851 namespace {
5852 struct StartLifetimeOfUnionMemberHandler {
5853   EvalInfo &Info;
5854   const Expr *LHSExpr;
5855   const FieldDecl *Field;
5856   bool DuringInit;
5857   bool Failed = false;
5858   static const AccessKinds AccessKind = AK_Assign;
5859 
5860   typedef bool result_type;
5861   bool failed() { return Failed; }
5862   bool found(APValue &Subobj, QualType SubobjType) {
5863     // We are supposed to perform no initialization but begin the lifetime of
5864     // the object. We interpret that as meaning to do what default
5865     // initialization of the object would do if all constructors involved were
5866     // trivial:
5867     //  * All base, non-variant member, and array element subobjects' lifetimes
5868     //    begin
5869     //  * No variant members' lifetimes begin
5870     //  * All scalar subobjects whose lifetimes begin have indeterminate values
5871     assert(SubobjType->isUnionType());
5872     if (declaresSameEntity(Subobj.getUnionField(), Field)) {
5873       // This union member is already active. If it's also in-lifetime, there's
5874       // nothing to do.
5875       if (Subobj.getUnionValue().hasValue())
5876         return true;
5877     } else if (DuringInit) {
5878       // We're currently in the process of initializing a different union
5879       // member.  If we carried on, that initialization would attempt to
5880       // store to an inactive union member, resulting in undefined behavior.
5881       Info.FFDiag(LHSExpr,
5882                   diag::note_constexpr_union_member_change_during_init);
5883       return false;
5884     }
5885     APValue Result;
5886     Failed = !getDefaultInitValue(Field->getType(), Result);
5887     Subobj.setUnion(Field, Result);
5888     return true;
5889   }
5890   bool found(APSInt &Value, QualType SubobjType) {
5891     llvm_unreachable("wrong value kind for union object");
5892   }
5893   bool found(APFloat &Value, QualType SubobjType) {
5894     llvm_unreachable("wrong value kind for union object");
5895   }
5896 };
5897 } // end anonymous namespace
5898 
5899 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5900 
5901 /// Handle a builtin simple-assignment or a call to a trivial assignment
5902 /// operator whose left-hand side might involve a union member access. If it
5903 /// does, implicitly start the lifetime of any accessed union elements per
5904 /// C++20 [class.union]5.
5905 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5906                                           const LValue &LHS) {
5907   if (LHS.InvalidBase || LHS.Designator.Invalid)
5908     return false;
5909 
5910   llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5911   // C++ [class.union]p5:
5912   //   define the set S(E) of subexpressions of E as follows:
5913   unsigned PathLength = LHS.Designator.Entries.size();
5914   for (const Expr *E = LHSExpr; E != nullptr;) {
5915     //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
5916     if (auto *ME = dyn_cast<MemberExpr>(E)) {
5917       auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5918       // Note that we can't implicitly start the lifetime of a reference,
5919       // so we don't need to proceed any further if we reach one.
5920       if (!FD || FD->getType()->isReferenceType())
5921         break;
5922 
5923       //    ... and also contains A.B if B names a union member ...
5924       if (FD->getParent()->isUnion()) {
5925         //    ... of a non-class, non-array type, or of a class type with a
5926         //    trivial default constructor that is not deleted, or an array of
5927         //    such types.
5928         auto *RD =
5929             FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5930         if (!RD || RD->hasTrivialDefaultConstructor())
5931           UnionPathLengths.push_back({PathLength - 1, FD});
5932       }
5933 
5934       E = ME->getBase();
5935       --PathLength;
5936       assert(declaresSameEntity(FD,
5937                                 LHS.Designator.Entries[PathLength]
5938                                     .getAsBaseOrMember().getPointer()));
5939 
5940       //   -- If E is of the form A[B] and is interpreted as a built-in array
5941       //      subscripting operator, S(E) is [S(the array operand, if any)].
5942     } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
5943       // Step over an ArrayToPointerDecay implicit cast.
5944       auto *Base = ASE->getBase()->IgnoreImplicit();
5945       if (!Base->getType()->isArrayType())
5946         break;
5947 
5948       E = Base;
5949       --PathLength;
5950 
5951     } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5952       // Step over a derived-to-base conversion.
5953       E = ICE->getSubExpr();
5954       if (ICE->getCastKind() == CK_NoOp)
5955         continue;
5956       if (ICE->getCastKind() != CK_DerivedToBase &&
5957           ICE->getCastKind() != CK_UncheckedDerivedToBase)
5958         break;
5959       // Walk path backwards as we walk up from the base to the derived class.
5960       for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
5961         --PathLength;
5962         (void)Elt;
5963         assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
5964                                   LHS.Designator.Entries[PathLength]
5965                                       .getAsBaseOrMember().getPointer()));
5966       }
5967 
5968     //   -- Otherwise, S(E) is empty.
5969     } else {
5970       break;
5971     }
5972   }
5973 
5974   // Common case: no unions' lifetimes are started.
5975   if (UnionPathLengths.empty())
5976     return true;
5977 
5978   //   if modification of X [would access an inactive union member], an object
5979   //   of the type of X is implicitly created
5980   CompleteObject Obj =
5981       findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
5982   if (!Obj)
5983     return false;
5984   for (std::pair<unsigned, const FieldDecl *> LengthAndField :
5985            llvm::reverse(UnionPathLengths)) {
5986     // Form a designator for the union object.
5987     SubobjectDesignator D = LHS.Designator;
5988     D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
5989 
5990     bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
5991                       ConstructionPhase::AfterBases;
5992     StartLifetimeOfUnionMemberHandler StartLifetime{
5993         Info, LHSExpr, LengthAndField.second, DuringInit};
5994     if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
5995       return false;
5996   }
5997 
5998   return true;
5999 }
6000 
6001 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6002                             CallRef Call, EvalInfo &Info,
6003                             bool NonNull = false) {
6004   LValue LV;
6005   // Create the parameter slot and register its destruction. For a vararg
6006   // argument, create a temporary.
6007   // FIXME: For calling conventions that destroy parameters in the callee,
6008   // should we consider performing destruction when the function returns
6009   // instead?
6010   APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
6011                    : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
6012                                                        ScopeKind::Call, LV);
6013   if (!EvaluateInPlace(V, Info, LV, Arg))
6014     return false;
6015 
6016   // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6017   // undefined behavior, so is non-constant.
6018   if (NonNull && V.isLValue() && V.isNullPointer()) {
6019     Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6020     return false;
6021   }
6022 
6023   return true;
6024 }
6025 
6026 /// Evaluate the arguments to a function call.
6027 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6028                          EvalInfo &Info, const FunctionDecl *Callee,
6029                          bool RightToLeft = false) {
6030   bool Success = true;
6031   llvm::SmallBitVector ForbiddenNullArgs;
6032   if (Callee->hasAttr<NonNullAttr>()) {
6033     ForbiddenNullArgs.resize(Args.size());
6034     for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6035       if (!Attr->args_size()) {
6036         ForbiddenNullArgs.set();
6037         break;
6038       } else
6039         for (auto Idx : Attr->args()) {
6040           unsigned ASTIdx = Idx.getASTIndex();
6041           if (ASTIdx >= Args.size())
6042             continue;
6043           ForbiddenNullArgs[ASTIdx] = 1;
6044         }
6045     }
6046   }
6047   for (unsigned I = 0; I < Args.size(); I++) {
6048     unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6049     const ParmVarDecl *PVD =
6050         Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6051     bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6052     if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6053       // If we're checking for a potential constant expression, evaluate all
6054       // initializers even if some of them fail.
6055       if (!Info.noteFailure())
6056         return false;
6057       Success = false;
6058     }
6059   }
6060   return Success;
6061 }
6062 
6063 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6064 /// constructor or assignment operator.
6065 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6066                               const Expr *E, APValue &Result,
6067                               bool CopyObjectRepresentation) {
6068   // Find the reference argument.
6069   CallStackFrame *Frame = Info.CurrentCall;
6070   APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6071   if (!RefValue) {
6072     Info.FFDiag(E);
6073     return false;
6074   }
6075 
6076   // Copy out the contents of the RHS object.
6077   LValue RefLValue;
6078   RefLValue.setFrom(Info.Ctx, *RefValue);
6079   return handleLValueToRValueConversion(
6080       Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6081       CopyObjectRepresentation);
6082 }
6083 
6084 /// Evaluate a function call.
6085 static bool HandleFunctionCall(SourceLocation CallLoc,
6086                                const FunctionDecl *Callee, const LValue *This,
6087                                ArrayRef<const Expr *> Args, CallRef Call,
6088                                const Stmt *Body, EvalInfo &Info,
6089                                APValue &Result, const LValue *ResultSlot) {
6090   if (!Info.CheckCallLimit(CallLoc))
6091     return false;
6092 
6093   CallStackFrame Frame(Info, CallLoc, Callee, This, Call);
6094 
6095   // For a trivial copy or move assignment, perform an APValue copy. This is
6096   // essential for unions, where the operations performed by the assignment
6097   // operator cannot be represented as statements.
6098   //
6099   // Skip this for non-union classes with no fields; in that case, the defaulted
6100   // copy/move does not actually read the object.
6101   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6102   if (MD && MD->isDefaulted() &&
6103       (MD->getParent()->isUnion() ||
6104        (MD->isTrivial() &&
6105         isReadByLvalueToRvalueConversion(MD->getParent())))) {
6106     assert(This &&
6107            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6108     APValue RHSValue;
6109     if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6110                            MD->getParent()->isUnion()))
6111       return false;
6112     if (Info.getLangOpts().CPlusPlus20 && MD->isTrivial() &&
6113         !HandleUnionActiveMemberChange(Info, Args[0], *This))
6114       return false;
6115     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6116                           RHSValue))
6117       return false;
6118     This->moveInto(Result);
6119     return true;
6120   } else if (MD && isLambdaCallOperator(MD)) {
6121     // We're in a lambda; determine the lambda capture field maps unless we're
6122     // just constexpr checking a lambda's call operator. constexpr checking is
6123     // done before the captures have been added to the closure object (unless
6124     // we're inferring constexpr-ness), so we don't have access to them in this
6125     // case. But since we don't need the captures to constexpr check, we can
6126     // just ignore them.
6127     if (!Info.checkingPotentialConstantExpression())
6128       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6129                                         Frame.LambdaThisCaptureField);
6130   }
6131 
6132   StmtResult Ret = {Result, ResultSlot};
6133   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6134   if (ESR == ESR_Succeeded) {
6135     if (Callee->getReturnType()->isVoidType())
6136       return true;
6137     Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6138   }
6139   return ESR == ESR_Returned;
6140 }
6141 
6142 /// Evaluate a constructor call.
6143 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6144                                   CallRef Call,
6145                                   const CXXConstructorDecl *Definition,
6146                                   EvalInfo &Info, APValue &Result) {
6147   SourceLocation CallLoc = E->getExprLoc();
6148   if (!Info.CheckCallLimit(CallLoc))
6149     return false;
6150 
6151   const CXXRecordDecl *RD = Definition->getParent();
6152   if (RD->getNumVBases()) {
6153     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6154     return false;
6155   }
6156 
6157   EvalInfo::EvaluatingConstructorRAII EvalObj(
6158       Info,
6159       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6160       RD->getNumBases());
6161   CallStackFrame Frame(Info, CallLoc, Definition, &This, Call);
6162 
6163   // FIXME: Creating an APValue just to hold a nonexistent return value is
6164   // wasteful.
6165   APValue RetVal;
6166   StmtResult Ret = {RetVal, nullptr};
6167 
6168   // If it's a delegating constructor, delegate.
6169   if (Definition->isDelegatingConstructor()) {
6170     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6171     if ((*I)->getInit()->isValueDependent()) {
6172       if (!EvaluateDependentExpr((*I)->getInit(), Info))
6173         return false;
6174     } else {
6175       FullExpressionRAII InitScope(Info);
6176       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6177           !InitScope.destroy())
6178         return false;
6179     }
6180     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6181   }
6182 
6183   // For a trivial copy or move constructor, perform an APValue copy. This is
6184   // essential for unions (or classes with anonymous union members), where the
6185   // operations performed by the constructor cannot be represented by
6186   // ctor-initializers.
6187   //
6188   // Skip this for empty non-union classes; we should not perform an
6189   // lvalue-to-rvalue conversion on them because their copy constructor does not
6190   // actually read them.
6191   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6192       (Definition->getParent()->isUnion() ||
6193        (Definition->isTrivial() &&
6194         isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6195     return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6196                              Definition->getParent()->isUnion());
6197   }
6198 
6199   // Reserve space for the struct members.
6200   if (!Result.hasValue()) {
6201     if (!RD->isUnion())
6202       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6203                        std::distance(RD->field_begin(), RD->field_end()));
6204     else
6205       // A union starts with no active member.
6206       Result = APValue((const FieldDecl*)nullptr);
6207   }
6208 
6209   if (RD->isInvalidDecl()) return false;
6210   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6211 
6212   // A scope for temporaries lifetime-extended by reference members.
6213   BlockScopeRAII LifetimeExtendedScope(Info);
6214 
6215   bool Success = true;
6216   unsigned BasesSeen = 0;
6217 #ifndef NDEBUG
6218   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6219 #endif
6220   CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6221   auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6222     // We might be initializing the same field again if this is an indirect
6223     // field initialization.
6224     if (FieldIt == RD->field_end() ||
6225         FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6226       assert(Indirect && "fields out of order?");
6227       return;
6228     }
6229 
6230     // Default-initialize any fields with no explicit initializer.
6231     for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6232       assert(FieldIt != RD->field_end() && "missing field?");
6233       if (!FieldIt->isUnnamedBitfield())
6234         Success &= getDefaultInitValue(
6235             FieldIt->getType(),
6236             Result.getStructField(FieldIt->getFieldIndex()));
6237     }
6238     ++FieldIt;
6239   };
6240   for (const auto *I : Definition->inits()) {
6241     LValue Subobject = This;
6242     LValue SubobjectParent = This;
6243     APValue *Value = &Result;
6244 
6245     // Determine the subobject to initialize.
6246     FieldDecl *FD = nullptr;
6247     if (I->isBaseInitializer()) {
6248       QualType BaseType(I->getBaseClass(), 0);
6249 #ifndef NDEBUG
6250       // Non-virtual base classes are initialized in the order in the class
6251       // definition. We have already checked for virtual base classes.
6252       assert(!BaseIt->isVirtual() && "virtual base for literal type");
6253       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
6254              "base class initializers not in expected order");
6255       ++BaseIt;
6256 #endif
6257       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6258                                   BaseType->getAsCXXRecordDecl(), &Layout))
6259         return false;
6260       Value = &Result.getStructBase(BasesSeen++);
6261     } else if ((FD = I->getMember())) {
6262       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6263         return false;
6264       if (RD->isUnion()) {
6265         Result = APValue(FD);
6266         Value = &Result.getUnionValue();
6267       } else {
6268         SkipToField(FD, false);
6269         Value = &Result.getStructField(FD->getFieldIndex());
6270       }
6271     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6272       // Walk the indirect field decl's chain to find the object to initialize,
6273       // and make sure we've initialized every step along it.
6274       auto IndirectFieldChain = IFD->chain();
6275       for (auto *C : IndirectFieldChain) {
6276         FD = cast<FieldDecl>(C);
6277         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6278         // Switch the union field if it differs. This happens if we had
6279         // preceding zero-initialization, and we're now initializing a union
6280         // subobject other than the first.
6281         // FIXME: In this case, the values of the other subobjects are
6282         // specified, since zero-initialization sets all padding bits to zero.
6283         if (!Value->hasValue() ||
6284             (Value->isUnion() && Value->getUnionField() != FD)) {
6285           if (CD->isUnion())
6286             *Value = APValue(FD);
6287           else
6288             // FIXME: This immediately starts the lifetime of all members of
6289             // an anonymous struct. It would be preferable to strictly start
6290             // member lifetime in initialization order.
6291             Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6292         }
6293         // Store Subobject as its parent before updating it for the last element
6294         // in the chain.
6295         if (C == IndirectFieldChain.back())
6296           SubobjectParent = Subobject;
6297         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6298           return false;
6299         if (CD->isUnion())
6300           Value = &Value->getUnionValue();
6301         else {
6302           if (C == IndirectFieldChain.front() && !RD->isUnion())
6303             SkipToField(FD, true);
6304           Value = &Value->getStructField(FD->getFieldIndex());
6305         }
6306       }
6307     } else {
6308       llvm_unreachable("unknown base initializer kind");
6309     }
6310 
6311     // Need to override This for implicit field initializers as in this case
6312     // This refers to innermost anonymous struct/union containing initializer,
6313     // not to currently constructed class.
6314     const Expr *Init = I->getInit();
6315     if (Init->isValueDependent()) {
6316       if (!EvaluateDependentExpr(Init, Info))
6317         return false;
6318     } else {
6319       ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6320                                     isa<CXXDefaultInitExpr>(Init));
6321       FullExpressionRAII InitScope(Info);
6322       if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6323           (FD && FD->isBitField() &&
6324            !truncateBitfieldValue(Info, Init, *Value, FD))) {
6325         // If we're checking for a potential constant expression, evaluate all
6326         // initializers even if some of them fail.
6327         if (!Info.noteFailure())
6328           return false;
6329         Success = false;
6330       }
6331     }
6332 
6333     // This is the point at which the dynamic type of the object becomes this
6334     // class type.
6335     if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6336       EvalObj.finishedConstructingBases();
6337   }
6338 
6339   // Default-initialize any remaining fields.
6340   if (!RD->isUnion()) {
6341     for (; FieldIt != RD->field_end(); ++FieldIt) {
6342       if (!FieldIt->isUnnamedBitfield())
6343         Success &= getDefaultInitValue(
6344             FieldIt->getType(),
6345             Result.getStructField(FieldIt->getFieldIndex()));
6346     }
6347   }
6348 
6349   EvalObj.finishedConstructingFields();
6350 
6351   return Success &&
6352          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6353          LifetimeExtendedScope.destroy();
6354 }
6355 
6356 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6357                                   ArrayRef<const Expr*> Args,
6358                                   const CXXConstructorDecl *Definition,
6359                                   EvalInfo &Info, APValue &Result) {
6360   CallScopeRAII CallScope(Info);
6361   CallRef Call = Info.CurrentCall->createCall(Definition);
6362   if (!EvaluateArgs(Args, Call, Info, Definition))
6363     return false;
6364 
6365   return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6366          CallScope.destroy();
6367 }
6368 
6369 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
6370                                   const LValue &This, APValue &Value,
6371                                   QualType T) {
6372   // Objects can only be destroyed while they're within their lifetimes.
6373   // FIXME: We have no representation for whether an object of type nullptr_t
6374   // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6375   // as indeterminate instead?
6376   if (Value.isAbsent() && !T->isNullPtrType()) {
6377     APValue Printable;
6378     This.moveInto(Printable);
6379     Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
6380       << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6381     return false;
6382   }
6383 
6384   // Invent an expression for location purposes.
6385   // FIXME: We shouldn't need to do this.
6386   OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_PRValue);
6387 
6388   // For arrays, destroy elements right-to-left.
6389   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6390     uint64_t Size = CAT->getSize().getZExtValue();
6391     QualType ElemT = CAT->getElementType();
6392 
6393     LValue ElemLV = This;
6394     ElemLV.addArray(Info, &LocE, CAT);
6395     if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6396       return false;
6397 
6398     // Ensure that we have actual array elements available to destroy; the
6399     // destructors might mutate the value, so we can't run them on the array
6400     // filler.
6401     if (Size && Size > Value.getArrayInitializedElts())
6402       expandArray(Value, Value.getArraySize() - 1);
6403 
6404     for (; Size != 0; --Size) {
6405       APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6406       if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6407           !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
6408         return false;
6409     }
6410 
6411     // End the lifetime of this array now.
6412     Value = APValue();
6413     return true;
6414   }
6415 
6416   const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6417   if (!RD) {
6418     if (T.isDestructedType()) {
6419       Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
6420       return false;
6421     }
6422 
6423     Value = APValue();
6424     return true;
6425   }
6426 
6427   if (RD->getNumVBases()) {
6428     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6429     return false;
6430   }
6431 
6432   const CXXDestructorDecl *DD = RD->getDestructor();
6433   if (!DD && !RD->hasTrivialDestructor()) {
6434     Info.FFDiag(CallLoc);
6435     return false;
6436   }
6437 
6438   if (!DD || DD->isTrivial() ||
6439       (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6440     // A trivial destructor just ends the lifetime of the object. Check for
6441     // this case before checking for a body, because we might not bother
6442     // building a body for a trivial destructor. Note that it doesn't matter
6443     // whether the destructor is constexpr in this case; all trivial
6444     // destructors are constexpr.
6445     //
6446     // If an anonymous union would be destroyed, some enclosing destructor must
6447     // have been explicitly defined, and the anonymous union destruction should
6448     // have no effect.
6449     Value = APValue();
6450     return true;
6451   }
6452 
6453   if (!Info.CheckCallLimit(CallLoc))
6454     return false;
6455 
6456   const FunctionDecl *Definition = nullptr;
6457   const Stmt *Body = DD->getBody(Definition);
6458 
6459   if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
6460     return false;
6461 
6462   CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef());
6463 
6464   // We're now in the period of destruction of this object.
6465   unsigned BasesLeft = RD->getNumBases();
6466   EvalInfo::EvaluatingDestructorRAII EvalObj(
6467       Info,
6468       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6469   if (!EvalObj.DidInsert) {
6470     // C++2a [class.dtor]p19:
6471     //   the behavior is undefined if the destructor is invoked for an object
6472     //   whose lifetime has ended
6473     // (Note that formally the lifetime ends when the period of destruction
6474     // begins, even though certain uses of the object remain valid until the
6475     // period of destruction ends.)
6476     Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
6477     return false;
6478   }
6479 
6480   // FIXME: Creating an APValue just to hold a nonexistent return value is
6481   // wasteful.
6482   APValue RetVal;
6483   StmtResult Ret = {RetVal, nullptr};
6484   if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6485     return false;
6486 
6487   // A union destructor does not implicitly destroy its members.
6488   if (RD->isUnion())
6489     return true;
6490 
6491   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6492 
6493   // We don't have a good way to iterate fields in reverse, so collect all the
6494   // fields first and then walk them backwards.
6495   SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
6496   for (const FieldDecl *FD : llvm::reverse(Fields)) {
6497     if (FD->isUnnamedBitfield())
6498       continue;
6499 
6500     LValue Subobject = This;
6501     if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6502       return false;
6503 
6504     APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6505     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6506                                FD->getType()))
6507       return false;
6508   }
6509 
6510   if (BasesLeft != 0)
6511     EvalObj.startedDestroyingBases();
6512 
6513   // Destroy base classes in reverse order.
6514   for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6515     --BasesLeft;
6516 
6517     QualType BaseType = Base.getType();
6518     LValue Subobject = This;
6519     if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6520                                 BaseType->getAsCXXRecordDecl(), &Layout))
6521       return false;
6522 
6523     APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6524     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6525                                BaseType))
6526       return false;
6527   }
6528   assert(BasesLeft == 0 && "NumBases was wrong?");
6529 
6530   // The period of destruction ends now. The object is gone.
6531   Value = APValue();
6532   return true;
6533 }
6534 
6535 namespace {
6536 struct DestroyObjectHandler {
6537   EvalInfo &Info;
6538   const Expr *E;
6539   const LValue &This;
6540   const AccessKinds AccessKind;
6541 
6542   typedef bool result_type;
6543   bool failed() { return false; }
6544   bool found(APValue &Subobj, QualType SubobjType) {
6545     return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
6546                                  SubobjType);
6547   }
6548   bool found(APSInt &Value, QualType SubobjType) {
6549     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6550     return false;
6551   }
6552   bool found(APFloat &Value, QualType SubobjType) {
6553     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6554     return false;
6555   }
6556 };
6557 }
6558 
6559 /// Perform a destructor or pseudo-destructor call on the given object, which
6560 /// might in general not be a complete object.
6561 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6562                               const LValue &This, QualType ThisType) {
6563   CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6564   DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6565   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6566 }
6567 
6568 /// Destroy and end the lifetime of the given complete object.
6569 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6570                               APValue::LValueBase LVBase, APValue &Value,
6571                               QualType T) {
6572   // If we've had an unmodeled side-effect, we can't rely on mutable state
6573   // (such as the object we're about to destroy) being correct.
6574   if (Info.EvalStatus.HasSideEffects)
6575     return false;
6576 
6577   LValue LV;
6578   LV.set({LVBase});
6579   return HandleDestructionImpl(Info, Loc, LV, Value, T);
6580 }
6581 
6582 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
6583 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6584                                   LValue &Result) {
6585   if (Info.checkingPotentialConstantExpression() ||
6586       Info.SpeculativeEvaluationDepth)
6587     return false;
6588 
6589   // This is permitted only within a call to std::allocator<T>::allocate.
6590   auto Caller = Info.getStdAllocatorCaller("allocate");
6591   if (!Caller) {
6592     Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6593                                      ? diag::note_constexpr_new_untyped
6594                                      : diag::note_constexpr_new);
6595     return false;
6596   }
6597 
6598   QualType ElemType = Caller.ElemType;
6599   if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6600     Info.FFDiag(E->getExprLoc(),
6601                 diag::note_constexpr_new_not_complete_object_type)
6602         << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6603     return false;
6604   }
6605 
6606   APSInt ByteSize;
6607   if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6608     return false;
6609   bool IsNothrow = false;
6610   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6611     EvaluateIgnoredValue(Info, E->getArg(I));
6612     IsNothrow |= E->getType()->isNothrowT();
6613   }
6614 
6615   CharUnits ElemSize;
6616   if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6617     return false;
6618   APInt Size, Remainder;
6619   APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6620   APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6621   if (Remainder != 0) {
6622     // This likely indicates a bug in the implementation of 'std::allocator'.
6623     Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6624         << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6625     return false;
6626   }
6627 
6628   if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6629     if (IsNothrow) {
6630       Result.setNull(Info.Ctx, E->getType());
6631       return true;
6632     }
6633 
6634     Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6635     return false;
6636   }
6637 
6638   QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6639                                                      ArrayType::Normal, 0);
6640   APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6641   *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6642   Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6643   return true;
6644 }
6645 
6646 static bool hasVirtualDestructor(QualType T) {
6647   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6648     if (CXXDestructorDecl *DD = RD->getDestructor())
6649       return DD->isVirtual();
6650   return false;
6651 }
6652 
6653 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6654   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6655     if (CXXDestructorDecl *DD = RD->getDestructor())
6656       return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6657   return nullptr;
6658 }
6659 
6660 /// Check that the given object is a suitable pointer to a heap allocation that
6661 /// still exists and is of the right kind for the purpose of a deletion.
6662 ///
6663 /// On success, returns the heap allocation to deallocate. On failure, produces
6664 /// a diagnostic and returns None.
6665 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6666                                             const LValue &Pointer,
6667                                             DynAlloc::Kind DeallocKind) {
6668   auto PointerAsString = [&] {
6669     return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6670   };
6671 
6672   DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6673   if (!DA) {
6674     Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6675         << PointerAsString();
6676     if (Pointer.Base)
6677       NoteLValueLocation(Info, Pointer.Base);
6678     return None;
6679   }
6680 
6681   Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6682   if (!Alloc) {
6683     Info.FFDiag(E, diag::note_constexpr_double_delete);
6684     return None;
6685   }
6686 
6687   QualType AllocType = Pointer.Base.getDynamicAllocType();
6688   if (DeallocKind != (*Alloc)->getKind()) {
6689     Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6690         << DeallocKind << (*Alloc)->getKind() << AllocType;
6691     NoteLValueLocation(Info, Pointer.Base);
6692     return None;
6693   }
6694 
6695   bool Subobject = false;
6696   if (DeallocKind == DynAlloc::New) {
6697     Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6698                 Pointer.Designator.isOnePastTheEnd();
6699   } else {
6700     Subobject = Pointer.Designator.Entries.size() != 1 ||
6701                 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6702   }
6703   if (Subobject) {
6704     Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6705         << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6706     return None;
6707   }
6708 
6709   return Alloc;
6710 }
6711 
6712 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
6713 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6714   if (Info.checkingPotentialConstantExpression() ||
6715       Info.SpeculativeEvaluationDepth)
6716     return false;
6717 
6718   // This is permitted only within a call to std::allocator<T>::deallocate.
6719   if (!Info.getStdAllocatorCaller("deallocate")) {
6720     Info.FFDiag(E->getExprLoc());
6721     return true;
6722   }
6723 
6724   LValue Pointer;
6725   if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6726     return false;
6727   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6728     EvaluateIgnoredValue(Info, E->getArg(I));
6729 
6730   if (Pointer.Designator.Invalid)
6731     return false;
6732 
6733   // Deleting a null pointer would have no effect, but it's not permitted by
6734   // std::allocator<T>::deallocate's contract.
6735   if (Pointer.isNullPointer()) {
6736     Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6737     return true;
6738   }
6739 
6740   if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6741     return false;
6742 
6743   Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6744   return true;
6745 }
6746 
6747 //===----------------------------------------------------------------------===//
6748 // Generic Evaluation
6749 //===----------------------------------------------------------------------===//
6750 namespace {
6751 
6752 class BitCastBuffer {
6753   // FIXME: We're going to need bit-level granularity when we support
6754   // bit-fields.
6755   // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6756   // we don't support a host or target where that is the case. Still, we should
6757   // use a more generic type in case we ever do.
6758   SmallVector<Optional<unsigned char>, 32> Bytes;
6759 
6760   static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6761                 "Need at least 8 bit unsigned char");
6762 
6763   bool TargetIsLittleEndian;
6764 
6765 public:
6766   BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6767       : Bytes(Width.getQuantity()),
6768         TargetIsLittleEndian(TargetIsLittleEndian) {}
6769 
6770   LLVM_NODISCARD
6771   bool readObject(CharUnits Offset, CharUnits Width,
6772                   SmallVectorImpl<unsigned char> &Output) const {
6773     for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6774       // If a byte of an integer is uninitialized, then the whole integer is
6775       // uninitialized.
6776       if (!Bytes[I.getQuantity()])
6777         return false;
6778       Output.push_back(*Bytes[I.getQuantity()]);
6779     }
6780     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6781       std::reverse(Output.begin(), Output.end());
6782     return true;
6783   }
6784 
6785   void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6786     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6787       std::reverse(Input.begin(), Input.end());
6788 
6789     size_t Index = 0;
6790     for (unsigned char Byte : Input) {
6791       assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6792       Bytes[Offset.getQuantity() + Index] = Byte;
6793       ++Index;
6794     }
6795   }
6796 
6797   size_t size() { return Bytes.size(); }
6798 };
6799 
6800 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6801 /// target would represent the value at runtime.
6802 class APValueToBufferConverter {
6803   EvalInfo &Info;
6804   BitCastBuffer Buffer;
6805   const CastExpr *BCE;
6806 
6807   APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6808                            const CastExpr *BCE)
6809       : Info(Info),
6810         Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6811         BCE(BCE) {}
6812 
6813   bool visit(const APValue &Val, QualType Ty) {
6814     return visit(Val, Ty, CharUnits::fromQuantity(0));
6815   }
6816 
6817   // Write out Val with type Ty into Buffer starting at Offset.
6818   bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6819     assert((size_t)Offset.getQuantity() <= Buffer.size());
6820 
6821     // As a special case, nullptr_t has an indeterminate value.
6822     if (Ty->isNullPtrType())
6823       return true;
6824 
6825     // Dig through Src to find the byte at SrcOffset.
6826     switch (Val.getKind()) {
6827     case APValue::Indeterminate:
6828     case APValue::None:
6829       return true;
6830 
6831     case APValue::Int:
6832       return visitInt(Val.getInt(), Ty, Offset);
6833     case APValue::Float:
6834       return visitFloat(Val.getFloat(), Ty, Offset);
6835     case APValue::Array:
6836       return visitArray(Val, Ty, Offset);
6837     case APValue::Struct:
6838       return visitRecord(Val, Ty, Offset);
6839 
6840     case APValue::ComplexInt:
6841     case APValue::ComplexFloat:
6842     case APValue::Vector:
6843     case APValue::FixedPoint:
6844       // FIXME: We should support these.
6845 
6846     case APValue::Union:
6847     case APValue::MemberPointer:
6848     case APValue::AddrLabelDiff: {
6849       Info.FFDiag(BCE->getBeginLoc(),
6850                   diag::note_constexpr_bit_cast_unsupported_type)
6851           << Ty;
6852       return false;
6853     }
6854 
6855     case APValue::LValue:
6856       llvm_unreachable("LValue subobject in bit_cast?");
6857     }
6858     llvm_unreachable("Unhandled APValue::ValueKind");
6859   }
6860 
6861   bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6862     const RecordDecl *RD = Ty->getAsRecordDecl();
6863     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6864 
6865     // Visit the base classes.
6866     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6867       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6868         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6869         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6870 
6871         if (!visitRecord(Val.getStructBase(I), BS.getType(),
6872                          Layout.getBaseClassOffset(BaseDecl) + Offset))
6873           return false;
6874       }
6875     }
6876 
6877     // Visit the fields.
6878     unsigned FieldIdx = 0;
6879     for (FieldDecl *FD : RD->fields()) {
6880       if (FD->isBitField()) {
6881         Info.FFDiag(BCE->getBeginLoc(),
6882                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6883         return false;
6884       }
6885 
6886       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6887 
6888       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
6889              "only bit-fields can have sub-char alignment");
6890       CharUnits FieldOffset =
6891           Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6892       QualType FieldTy = FD->getType();
6893       if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6894         return false;
6895       ++FieldIdx;
6896     }
6897 
6898     return true;
6899   }
6900 
6901   bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6902     const auto *CAT =
6903         dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6904     if (!CAT)
6905       return false;
6906 
6907     CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6908     unsigned NumInitializedElts = Val.getArrayInitializedElts();
6909     unsigned ArraySize = Val.getArraySize();
6910     // First, initialize the initialized elements.
6911     for (unsigned I = 0; I != NumInitializedElts; ++I) {
6912       const APValue &SubObj = Val.getArrayInitializedElt(I);
6913       if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6914         return false;
6915     }
6916 
6917     // Next, initialize the rest of the array using the filler.
6918     if (Val.hasArrayFiller()) {
6919       const APValue &Filler = Val.getArrayFiller();
6920       for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6921         if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6922           return false;
6923       }
6924     }
6925 
6926     return true;
6927   }
6928 
6929   bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
6930     APSInt AdjustedVal = Val;
6931     unsigned Width = AdjustedVal.getBitWidth();
6932     if (Ty->isBooleanType()) {
6933       Width = Info.Ctx.getTypeSize(Ty);
6934       AdjustedVal = AdjustedVal.extend(Width);
6935     }
6936 
6937     SmallVector<unsigned char, 8> Bytes(Width / 8);
6938     llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
6939     Buffer.writeObject(Offset, Bytes);
6940     return true;
6941   }
6942 
6943   bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
6944     APSInt AsInt(Val.bitcastToAPInt());
6945     return visitInt(AsInt, Ty, Offset);
6946   }
6947 
6948 public:
6949   static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
6950                                          const CastExpr *BCE) {
6951     CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
6952     APValueToBufferConverter Converter(Info, DstSize, BCE);
6953     if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
6954       return None;
6955     return Converter.Buffer;
6956   }
6957 };
6958 
6959 /// Write an BitCastBuffer into an APValue.
6960 class BufferToAPValueConverter {
6961   EvalInfo &Info;
6962   const BitCastBuffer &Buffer;
6963   const CastExpr *BCE;
6964 
6965   BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
6966                            const CastExpr *BCE)
6967       : Info(Info), Buffer(Buffer), BCE(BCE) {}
6968 
6969   // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
6970   // with an invalid type, so anything left is a deficiency on our part (FIXME).
6971   // Ideally this will be unreachable.
6972   llvm::NoneType unsupportedType(QualType Ty) {
6973     Info.FFDiag(BCE->getBeginLoc(),
6974                 diag::note_constexpr_bit_cast_unsupported_type)
6975         << Ty;
6976     return None;
6977   }
6978 
6979   llvm::NoneType unrepresentableValue(QualType Ty, const APSInt &Val) {
6980     Info.FFDiag(BCE->getBeginLoc(),
6981                 diag::note_constexpr_bit_cast_unrepresentable_value)
6982         << Ty << toString(Val, /*Radix=*/10);
6983     return None;
6984   }
6985 
6986   Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
6987                           const EnumType *EnumSugar = nullptr) {
6988     if (T->isNullPtrType()) {
6989       uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
6990       return APValue((Expr *)nullptr,
6991                      /*Offset=*/CharUnits::fromQuantity(NullValue),
6992                      APValue::NoLValuePath{}, /*IsNullPtr=*/true);
6993     }
6994 
6995     CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
6996 
6997     // Work around floating point types that contain unused padding bytes. This
6998     // is really just `long double` on x86, which is the only fundamental type
6999     // with padding bytes.
7000     if (T->isRealFloatingType()) {
7001       const llvm::fltSemantics &Semantics =
7002           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7003       unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
7004       assert(NumBits % 8 == 0);
7005       CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
7006       if (NumBytes != SizeOf)
7007         SizeOf = NumBytes;
7008     }
7009 
7010     SmallVector<uint8_t, 8> Bytes;
7011     if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
7012       // If this is std::byte or unsigned char, then its okay to store an
7013       // indeterminate value.
7014       bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7015       bool IsUChar =
7016           !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7017                          T->isSpecificBuiltinType(BuiltinType::Char_U));
7018       if (!IsStdByte && !IsUChar) {
7019         QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7020         Info.FFDiag(BCE->getExprLoc(),
7021                     diag::note_constexpr_bit_cast_indet_dest)
7022             << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7023         return None;
7024       }
7025 
7026       return APValue::IndeterminateValue();
7027     }
7028 
7029     APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7030     llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7031 
7032     if (T->isIntegralOrEnumerationType()) {
7033       Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7034 
7035       unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7036       if (IntWidth != Val.getBitWidth()) {
7037         APSInt Truncated = Val.trunc(IntWidth);
7038         if (Truncated.extend(Val.getBitWidth()) != Val)
7039           return unrepresentableValue(QualType(T, 0), Val);
7040         Val = Truncated;
7041       }
7042 
7043       return APValue(Val);
7044     }
7045 
7046     if (T->isRealFloatingType()) {
7047       const llvm::fltSemantics &Semantics =
7048           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7049       return APValue(APFloat(Semantics, Val));
7050     }
7051 
7052     return unsupportedType(QualType(T, 0));
7053   }
7054 
7055   Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7056     const RecordDecl *RD = RTy->getAsRecordDecl();
7057     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7058 
7059     unsigned NumBases = 0;
7060     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7061       NumBases = CXXRD->getNumBases();
7062 
7063     APValue ResultVal(APValue::UninitStruct(), NumBases,
7064                       std::distance(RD->field_begin(), RD->field_end()));
7065 
7066     // Visit the base classes.
7067     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7068       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7069         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7070         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7071         if (BaseDecl->isEmpty() ||
7072             Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7073           continue;
7074 
7075         Optional<APValue> SubObj = visitType(
7076             BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7077         if (!SubObj)
7078           return None;
7079         ResultVal.getStructBase(I) = *SubObj;
7080       }
7081     }
7082 
7083     // Visit the fields.
7084     unsigned FieldIdx = 0;
7085     for (FieldDecl *FD : RD->fields()) {
7086       // FIXME: We don't currently support bit-fields. A lot of the logic for
7087       // this is in CodeGen, so we need to factor it around.
7088       if (FD->isBitField()) {
7089         Info.FFDiag(BCE->getBeginLoc(),
7090                     diag::note_constexpr_bit_cast_unsupported_bitfield);
7091         return None;
7092       }
7093 
7094       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7095       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7096 
7097       CharUnits FieldOffset =
7098           CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7099           Offset;
7100       QualType FieldTy = FD->getType();
7101       Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7102       if (!SubObj)
7103         return None;
7104       ResultVal.getStructField(FieldIdx) = *SubObj;
7105       ++FieldIdx;
7106     }
7107 
7108     return ResultVal;
7109   }
7110 
7111   Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7112     QualType RepresentationType = Ty->getDecl()->getIntegerType();
7113     assert(!RepresentationType.isNull() &&
7114            "enum forward decl should be caught by Sema");
7115     const auto *AsBuiltin =
7116         RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7117     // Recurse into the underlying type. Treat std::byte transparently as
7118     // unsigned char.
7119     return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7120   }
7121 
7122   Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7123     size_t Size = Ty->getSize().getLimitedValue();
7124     CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7125 
7126     APValue ArrayValue(APValue::UninitArray(), Size, Size);
7127     for (size_t I = 0; I != Size; ++I) {
7128       Optional<APValue> ElementValue =
7129           visitType(Ty->getElementType(), Offset + I * ElementWidth);
7130       if (!ElementValue)
7131         return None;
7132       ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7133     }
7134 
7135     return ArrayValue;
7136   }
7137 
7138   Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7139     return unsupportedType(QualType(Ty, 0));
7140   }
7141 
7142   Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7143     QualType Can = Ty.getCanonicalType();
7144 
7145     switch (Can->getTypeClass()) {
7146 #define TYPE(Class, Base)                                                      \
7147   case Type::Class:                                                            \
7148     return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7149 #define ABSTRACT_TYPE(Class, Base)
7150 #define NON_CANONICAL_TYPE(Class, Base)                                        \
7151   case Type::Class:                                                            \
7152     llvm_unreachable("non-canonical type should be impossible!");
7153 #define DEPENDENT_TYPE(Class, Base)                                            \
7154   case Type::Class:                                                            \
7155     llvm_unreachable(                                                          \
7156         "dependent types aren't supported in the constant evaluator!");
7157 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
7158   case Type::Class:                                                            \
7159     llvm_unreachable("either dependent or not canonical!");
7160 #include "clang/AST/TypeNodes.inc"
7161     }
7162     llvm_unreachable("Unhandled Type::TypeClass");
7163   }
7164 
7165 public:
7166   // Pull out a full value of type DstType.
7167   static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7168                                    const CastExpr *BCE) {
7169     BufferToAPValueConverter Converter(Info, Buffer, BCE);
7170     return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7171   }
7172 };
7173 
7174 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7175                                                  QualType Ty, EvalInfo *Info,
7176                                                  const ASTContext &Ctx,
7177                                                  bool CheckingDest) {
7178   Ty = Ty.getCanonicalType();
7179 
7180   auto diag = [&](int Reason) {
7181     if (Info)
7182       Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7183           << CheckingDest << (Reason == 4) << Reason;
7184     return false;
7185   };
7186   auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7187     if (Info)
7188       Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7189           << NoteTy << Construct << Ty;
7190     return false;
7191   };
7192 
7193   if (Ty->isUnionType())
7194     return diag(0);
7195   if (Ty->isPointerType())
7196     return diag(1);
7197   if (Ty->isMemberPointerType())
7198     return diag(2);
7199   if (Ty.isVolatileQualified())
7200     return diag(3);
7201 
7202   if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7203     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7204       for (CXXBaseSpecifier &BS : CXXRD->bases())
7205         if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7206                                                   CheckingDest))
7207           return note(1, BS.getType(), BS.getBeginLoc());
7208     }
7209     for (FieldDecl *FD : Record->fields()) {
7210       if (FD->getType()->isReferenceType())
7211         return diag(4);
7212       if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7213                                                 CheckingDest))
7214         return note(0, FD->getType(), FD->getBeginLoc());
7215     }
7216   }
7217 
7218   if (Ty->isArrayType() &&
7219       !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7220                                             Info, Ctx, CheckingDest))
7221     return false;
7222 
7223   return true;
7224 }
7225 
7226 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7227                                              const ASTContext &Ctx,
7228                                              const CastExpr *BCE) {
7229   bool DestOK = checkBitCastConstexprEligibilityType(
7230       BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7231   bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7232                                 BCE->getBeginLoc(),
7233                                 BCE->getSubExpr()->getType(), Info, Ctx, false);
7234   return SourceOK;
7235 }
7236 
7237 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7238                                         APValue &SourceValue,
7239                                         const CastExpr *BCE) {
7240   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7241          "no host or target supports non 8-bit chars");
7242   assert(SourceValue.isLValue() &&
7243          "LValueToRValueBitcast requires an lvalue operand!");
7244 
7245   if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7246     return false;
7247 
7248   LValue SourceLValue;
7249   APValue SourceRValue;
7250   SourceLValue.setFrom(Info.Ctx, SourceValue);
7251   if (!handleLValueToRValueConversion(
7252           Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7253           SourceRValue, /*WantObjectRepresentation=*/true))
7254     return false;
7255 
7256   // Read out SourceValue into a char buffer.
7257   Optional<BitCastBuffer> Buffer =
7258       APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7259   if (!Buffer)
7260     return false;
7261 
7262   // Write out the buffer into a new APValue.
7263   Optional<APValue> MaybeDestValue =
7264       BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7265   if (!MaybeDestValue)
7266     return false;
7267 
7268   DestValue = std::move(*MaybeDestValue);
7269   return true;
7270 }
7271 
7272 template <class Derived>
7273 class ExprEvaluatorBase
7274   : public ConstStmtVisitor<Derived, bool> {
7275 private:
7276   Derived &getDerived() { return static_cast<Derived&>(*this); }
7277   bool DerivedSuccess(const APValue &V, const Expr *E) {
7278     return getDerived().Success(V, E);
7279   }
7280   bool DerivedZeroInitialization(const Expr *E) {
7281     return getDerived().ZeroInitialization(E);
7282   }
7283 
7284   // Check whether a conditional operator with a non-constant condition is a
7285   // potential constant expression. If neither arm is a potential constant
7286   // expression, then the conditional operator is not either.
7287   template<typename ConditionalOperator>
7288   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7289     assert(Info.checkingPotentialConstantExpression());
7290 
7291     // Speculatively evaluate both arms.
7292     SmallVector<PartialDiagnosticAt, 8> Diag;
7293     {
7294       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7295       StmtVisitorTy::Visit(E->getFalseExpr());
7296       if (Diag.empty())
7297         return;
7298     }
7299 
7300     {
7301       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7302       Diag.clear();
7303       StmtVisitorTy::Visit(E->getTrueExpr());
7304       if (Diag.empty())
7305         return;
7306     }
7307 
7308     Error(E, diag::note_constexpr_conditional_never_const);
7309   }
7310 
7311 
7312   template<typename ConditionalOperator>
7313   bool HandleConditionalOperator(const ConditionalOperator *E) {
7314     bool BoolResult;
7315     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7316       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7317         CheckPotentialConstantConditional(E);
7318         return false;
7319       }
7320       if (Info.noteFailure()) {
7321         StmtVisitorTy::Visit(E->getTrueExpr());
7322         StmtVisitorTy::Visit(E->getFalseExpr());
7323       }
7324       return false;
7325     }
7326 
7327     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7328     return StmtVisitorTy::Visit(EvalExpr);
7329   }
7330 
7331 protected:
7332   EvalInfo &Info;
7333   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7334   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7335 
7336   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7337     return Info.CCEDiag(E, D);
7338   }
7339 
7340   bool ZeroInitialization(const Expr *E) { return Error(E); }
7341 
7342 public:
7343   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7344 
7345   EvalInfo &getEvalInfo() { return Info; }
7346 
7347   /// Report an evaluation error. This should only be called when an error is
7348   /// first discovered. When propagating an error, just return false.
7349   bool Error(const Expr *E, diag::kind D) {
7350     Info.FFDiag(E, D);
7351     return false;
7352   }
7353   bool Error(const Expr *E) {
7354     return Error(E, diag::note_invalid_subexpr_in_const_expr);
7355   }
7356 
7357   bool VisitStmt(const Stmt *) {
7358     llvm_unreachable("Expression evaluator should not be called on stmts");
7359   }
7360   bool VisitExpr(const Expr *E) {
7361     return Error(E);
7362   }
7363 
7364   bool VisitConstantExpr(const ConstantExpr *E) {
7365     if (E->hasAPValueResult())
7366       return DerivedSuccess(E->getAPValueResult(), E);
7367 
7368     return StmtVisitorTy::Visit(E->getSubExpr());
7369   }
7370 
7371   bool VisitParenExpr(const ParenExpr *E)
7372     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7373   bool VisitUnaryExtension(const UnaryOperator *E)
7374     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7375   bool VisitUnaryPlus(const UnaryOperator *E)
7376     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7377   bool VisitChooseExpr(const ChooseExpr *E)
7378     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
7379   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7380     { return StmtVisitorTy::Visit(E->getResultExpr()); }
7381   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7382     { return StmtVisitorTy::Visit(E->getReplacement()); }
7383   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7384     TempVersionRAII RAII(*Info.CurrentCall);
7385     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7386     return StmtVisitorTy::Visit(E->getExpr());
7387   }
7388   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7389     TempVersionRAII RAII(*Info.CurrentCall);
7390     // The initializer may not have been parsed yet, or might be erroneous.
7391     if (!E->getExpr())
7392       return Error(E);
7393     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7394     return StmtVisitorTy::Visit(E->getExpr());
7395   }
7396 
7397   bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7398     FullExpressionRAII Scope(Info);
7399     return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7400   }
7401 
7402   // Temporaries are registered when created, so we don't care about
7403   // CXXBindTemporaryExpr.
7404   bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7405     return StmtVisitorTy::Visit(E->getSubExpr());
7406   }
7407 
7408   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7409     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7410     return static_cast<Derived*>(this)->VisitCastExpr(E);
7411   }
7412   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7413     if (!Info.Ctx.getLangOpts().CPlusPlus20)
7414       CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7415     return static_cast<Derived*>(this)->VisitCastExpr(E);
7416   }
7417   bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7418     return static_cast<Derived*>(this)->VisitCastExpr(E);
7419   }
7420 
7421   bool VisitBinaryOperator(const BinaryOperator *E) {
7422     switch (E->getOpcode()) {
7423     default:
7424       return Error(E);
7425 
7426     case BO_Comma:
7427       VisitIgnoredValue(E->getLHS());
7428       return StmtVisitorTy::Visit(E->getRHS());
7429 
7430     case BO_PtrMemD:
7431     case BO_PtrMemI: {
7432       LValue Obj;
7433       if (!HandleMemberPointerAccess(Info, E, Obj))
7434         return false;
7435       APValue Result;
7436       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7437         return false;
7438       return DerivedSuccess(Result, E);
7439     }
7440     }
7441   }
7442 
7443   bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7444     return StmtVisitorTy::Visit(E->getSemanticForm());
7445   }
7446 
7447   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7448     // Evaluate and cache the common expression. We treat it as a temporary,
7449     // even though it's not quite the same thing.
7450     LValue CommonLV;
7451     if (!Evaluate(Info.CurrentCall->createTemporary(
7452                       E->getOpaqueValue(),
7453                       getStorageType(Info.Ctx, E->getOpaqueValue()),
7454                       ScopeKind::FullExpression, CommonLV),
7455                   Info, E->getCommon()))
7456       return false;
7457 
7458     return HandleConditionalOperator(E);
7459   }
7460 
7461   bool VisitConditionalOperator(const ConditionalOperator *E) {
7462     bool IsBcpCall = false;
7463     // If the condition (ignoring parens) is a __builtin_constant_p call,
7464     // the result is a constant expression if it can be folded without
7465     // side-effects. This is an important GNU extension. See GCC PR38377
7466     // for discussion.
7467     if (const CallExpr *CallCE =
7468           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7469       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7470         IsBcpCall = true;
7471 
7472     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7473     // constant expression; we can't check whether it's potentially foldable.
7474     // FIXME: We should instead treat __builtin_constant_p as non-constant if
7475     // it would return 'false' in this mode.
7476     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7477       return false;
7478 
7479     FoldConstant Fold(Info, IsBcpCall);
7480     if (!HandleConditionalOperator(E)) {
7481       Fold.keepDiagnostics();
7482       return false;
7483     }
7484 
7485     return true;
7486   }
7487 
7488   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7489     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
7490       return DerivedSuccess(*Value, E);
7491 
7492     const Expr *Source = E->getSourceExpr();
7493     if (!Source)
7494       return Error(E);
7495     if (Source == E) {
7496       assert(0 && "OpaqueValueExpr recursively refers to itself");
7497       return Error(E);
7498     }
7499     return StmtVisitorTy::Visit(Source);
7500   }
7501 
7502   bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7503     for (const Expr *SemE : E->semantics()) {
7504       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7505         // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7506         // result expression: there could be two different LValues that would
7507         // refer to the same object in that case, and we can't model that.
7508         if (SemE == E->getResultExpr())
7509           return Error(E);
7510 
7511         // Unique OVEs get evaluated if and when we encounter them when
7512         // emitting the rest of the semantic form, rather than eagerly.
7513         if (OVE->isUnique())
7514           continue;
7515 
7516         LValue LV;
7517         if (!Evaluate(Info.CurrentCall->createTemporary(
7518                           OVE, getStorageType(Info.Ctx, OVE),
7519                           ScopeKind::FullExpression, LV),
7520                       Info, OVE->getSourceExpr()))
7521           return false;
7522       } else if (SemE == E->getResultExpr()) {
7523         if (!StmtVisitorTy::Visit(SemE))
7524           return false;
7525       } else {
7526         if (!EvaluateIgnoredValue(Info, SemE))
7527           return false;
7528       }
7529     }
7530     return true;
7531   }
7532 
7533   bool VisitCallExpr(const CallExpr *E) {
7534     APValue Result;
7535     if (!handleCallExpr(E, Result, nullptr))
7536       return false;
7537     return DerivedSuccess(Result, E);
7538   }
7539 
7540   bool handleCallExpr(const CallExpr *E, APValue &Result,
7541                      const LValue *ResultSlot) {
7542     CallScopeRAII CallScope(Info);
7543 
7544     const Expr *Callee = E->getCallee()->IgnoreParens();
7545     QualType CalleeType = Callee->getType();
7546 
7547     const FunctionDecl *FD = nullptr;
7548     LValue *This = nullptr, ThisVal;
7549     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
7550     bool HasQualifier = false;
7551 
7552     CallRef Call;
7553 
7554     // Extract function decl and 'this' pointer from the callee.
7555     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7556       const CXXMethodDecl *Member = nullptr;
7557       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7558         // Explicit bound member calls, such as x.f() or p->g();
7559         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7560           return false;
7561         Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7562         if (!Member)
7563           return Error(Callee);
7564         This = &ThisVal;
7565         HasQualifier = ME->hasQualifier();
7566       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7567         // Indirect bound member calls ('.*' or '->*').
7568         const ValueDecl *D =
7569             HandleMemberPointerAccess(Info, BE, ThisVal, false);
7570         if (!D)
7571           return false;
7572         Member = dyn_cast<CXXMethodDecl>(D);
7573         if (!Member)
7574           return Error(Callee);
7575         This = &ThisVal;
7576       } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7577         if (!Info.getLangOpts().CPlusPlus20)
7578           Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7579         return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7580                HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7581       } else
7582         return Error(Callee);
7583       FD = Member;
7584     } else if (CalleeType->isFunctionPointerType()) {
7585       LValue CalleeLV;
7586       if (!EvaluatePointer(Callee, CalleeLV, Info))
7587         return false;
7588 
7589       if (!CalleeLV.getLValueOffset().isZero())
7590         return Error(Callee);
7591       FD = dyn_cast_or_null<FunctionDecl>(
7592           CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7593       if (!FD)
7594         return Error(Callee);
7595       // Don't call function pointers which have been cast to some other type.
7596       // Per DR (no number yet), the caller and callee can differ in noexcept.
7597       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7598         CalleeType->getPointeeType(), FD->getType())) {
7599         return Error(E);
7600       }
7601 
7602       // For an (overloaded) assignment expression, evaluate the RHS before the
7603       // LHS.
7604       auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7605       if (OCE && OCE->isAssignmentOp()) {
7606         assert(Args.size() == 2 && "wrong number of arguments in assignment");
7607         Call = Info.CurrentCall->createCall(FD);
7608         if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
7609                           Info, FD, /*RightToLeft=*/true))
7610           return false;
7611       }
7612 
7613       // Overloaded operator calls to member functions are represented as normal
7614       // calls with '*this' as the first argument.
7615       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7616       if (MD && !MD->isStatic()) {
7617         // FIXME: When selecting an implicit conversion for an overloaded
7618         // operator delete, we sometimes try to evaluate calls to conversion
7619         // operators without a 'this' parameter!
7620         if (Args.empty())
7621           return Error(E);
7622 
7623         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7624           return false;
7625         This = &ThisVal;
7626         Args = Args.slice(1);
7627       } else if (MD && MD->isLambdaStaticInvoker()) {
7628         // Map the static invoker for the lambda back to the call operator.
7629         // Conveniently, we don't have to slice out the 'this' argument (as is
7630         // being done for the non-static case), since a static member function
7631         // doesn't have an implicit argument passed in.
7632         const CXXRecordDecl *ClosureClass = MD->getParent();
7633         assert(
7634             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7635             "Number of captures must be zero for conversion to function-ptr");
7636 
7637         const CXXMethodDecl *LambdaCallOp =
7638             ClosureClass->getLambdaCallOperator();
7639 
7640         // Set 'FD', the function that will be called below, to the call
7641         // operator.  If the closure object represents a generic lambda, find
7642         // the corresponding specialization of the call operator.
7643 
7644         if (ClosureClass->isGenericLambda()) {
7645           assert(MD->isFunctionTemplateSpecialization() &&
7646                  "A generic lambda's static-invoker function must be a "
7647                  "template specialization");
7648           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7649           FunctionTemplateDecl *CallOpTemplate =
7650               LambdaCallOp->getDescribedFunctionTemplate();
7651           void *InsertPos = nullptr;
7652           FunctionDecl *CorrespondingCallOpSpecialization =
7653               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7654           assert(CorrespondingCallOpSpecialization &&
7655                  "We must always have a function call operator specialization "
7656                  "that corresponds to our static invoker specialization");
7657           FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7658         } else
7659           FD = LambdaCallOp;
7660       } else if (FD->isReplaceableGlobalAllocationFunction()) {
7661         if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7662             FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7663           LValue Ptr;
7664           if (!HandleOperatorNewCall(Info, E, Ptr))
7665             return false;
7666           Ptr.moveInto(Result);
7667           return CallScope.destroy();
7668         } else {
7669           return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
7670         }
7671       }
7672     } else
7673       return Error(E);
7674 
7675     // Evaluate the arguments now if we've not already done so.
7676     if (!Call) {
7677       Call = Info.CurrentCall->createCall(FD);
7678       if (!EvaluateArgs(Args, Call, Info, FD))
7679         return false;
7680     }
7681 
7682     SmallVector<QualType, 4> CovariantAdjustmentPath;
7683     if (This) {
7684       auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7685       if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
7686         // Perform virtual dispatch, if necessary.
7687         FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
7688                                    CovariantAdjustmentPath);
7689         if (!FD)
7690           return false;
7691       } else {
7692         // Check that the 'this' pointer points to an object of the right type.
7693         // FIXME: If this is an assignment operator call, we may need to change
7694         // the active union member before we check this.
7695         if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7696           return false;
7697       }
7698     }
7699 
7700     // Destructor calls are different enough that they have their own codepath.
7701     if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7702       assert(This && "no 'this' pointer for destructor call");
7703       return HandleDestruction(Info, E, *This,
7704                                Info.Ctx.getRecordType(DD->getParent())) &&
7705              CallScope.destroy();
7706     }
7707 
7708     const FunctionDecl *Definition = nullptr;
7709     Stmt *Body = FD->getBody(Definition);
7710 
7711     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7712         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call,
7713                             Body, Info, Result, ResultSlot))
7714       return false;
7715 
7716     if (!CovariantAdjustmentPath.empty() &&
7717         !HandleCovariantReturnAdjustment(Info, E, Result,
7718                                          CovariantAdjustmentPath))
7719       return false;
7720 
7721     return CallScope.destroy();
7722   }
7723 
7724   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7725     return StmtVisitorTy::Visit(E->getInitializer());
7726   }
7727   bool VisitInitListExpr(const InitListExpr *E) {
7728     if (E->getNumInits() == 0)
7729       return DerivedZeroInitialization(E);
7730     if (E->getNumInits() == 1)
7731       return StmtVisitorTy::Visit(E->getInit(0));
7732     return Error(E);
7733   }
7734   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7735     return DerivedZeroInitialization(E);
7736   }
7737   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7738     return DerivedZeroInitialization(E);
7739   }
7740   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7741     return DerivedZeroInitialization(E);
7742   }
7743 
7744   /// A member expression where the object is a prvalue is itself a prvalue.
7745   bool VisitMemberExpr(const MemberExpr *E) {
7746     assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7747            "missing temporary materialization conversion");
7748     assert(!E->isArrow() && "missing call to bound member function?");
7749 
7750     APValue Val;
7751     if (!Evaluate(Val, Info, E->getBase()))
7752       return false;
7753 
7754     QualType BaseTy = E->getBase()->getType();
7755 
7756     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7757     if (!FD) return Error(E);
7758     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7759     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7760            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7761 
7762     // Note: there is no lvalue base here. But this case should only ever
7763     // happen in C or in C++98, where we cannot be evaluating a constexpr
7764     // constructor, which is the only case the base matters.
7765     CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7766     SubobjectDesignator Designator(BaseTy);
7767     Designator.addDeclUnchecked(FD);
7768 
7769     APValue Result;
7770     return extractSubobject(Info, E, Obj, Designator, Result) &&
7771            DerivedSuccess(Result, E);
7772   }
7773 
7774   bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7775     APValue Val;
7776     if (!Evaluate(Val, Info, E->getBase()))
7777       return false;
7778 
7779     if (Val.isVector()) {
7780       SmallVector<uint32_t, 4> Indices;
7781       E->getEncodedElementAccess(Indices);
7782       if (Indices.size() == 1) {
7783         // Return scalar.
7784         return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7785       } else {
7786         // Construct new APValue vector.
7787         SmallVector<APValue, 4> Elts;
7788         for (unsigned I = 0; I < Indices.size(); ++I) {
7789           Elts.push_back(Val.getVectorElt(Indices[I]));
7790         }
7791         APValue VecResult(Elts.data(), Indices.size());
7792         return DerivedSuccess(VecResult, E);
7793       }
7794     }
7795 
7796     return false;
7797   }
7798 
7799   bool VisitCastExpr(const CastExpr *E) {
7800     switch (E->getCastKind()) {
7801     default:
7802       break;
7803 
7804     case CK_AtomicToNonAtomic: {
7805       APValue AtomicVal;
7806       // This does not need to be done in place even for class/array types:
7807       // atomic-to-non-atomic conversion implies copying the object
7808       // representation.
7809       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7810         return false;
7811       return DerivedSuccess(AtomicVal, E);
7812     }
7813 
7814     case CK_NoOp:
7815     case CK_UserDefinedConversion:
7816       return StmtVisitorTy::Visit(E->getSubExpr());
7817 
7818     case CK_LValueToRValue: {
7819       LValue LVal;
7820       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7821         return false;
7822       APValue RVal;
7823       // Note, we use the subexpression's type in order to retain cv-qualifiers.
7824       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7825                                           LVal, RVal))
7826         return false;
7827       return DerivedSuccess(RVal, E);
7828     }
7829     case CK_LValueToRValueBitCast: {
7830       APValue DestValue, SourceValue;
7831       if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7832         return false;
7833       if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7834         return false;
7835       return DerivedSuccess(DestValue, E);
7836     }
7837 
7838     case CK_AddressSpaceConversion: {
7839       APValue Value;
7840       if (!Evaluate(Value, Info, E->getSubExpr()))
7841         return false;
7842       return DerivedSuccess(Value, E);
7843     }
7844     }
7845 
7846     return Error(E);
7847   }
7848 
7849   bool VisitUnaryPostInc(const UnaryOperator *UO) {
7850     return VisitUnaryPostIncDec(UO);
7851   }
7852   bool VisitUnaryPostDec(const UnaryOperator *UO) {
7853     return VisitUnaryPostIncDec(UO);
7854   }
7855   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7856     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7857       return Error(UO);
7858 
7859     LValue LVal;
7860     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7861       return false;
7862     APValue RVal;
7863     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7864                       UO->isIncrementOp(), &RVal))
7865       return false;
7866     return DerivedSuccess(RVal, UO);
7867   }
7868 
7869   bool VisitStmtExpr(const StmtExpr *E) {
7870     // We will have checked the full-expressions inside the statement expression
7871     // when they were completed, and don't need to check them again now.
7872     llvm::SaveAndRestore<bool> NotCheckingForUB(
7873         Info.CheckingForUndefinedBehavior, false);
7874 
7875     const CompoundStmt *CS = E->getSubStmt();
7876     if (CS->body_empty())
7877       return true;
7878 
7879     BlockScopeRAII Scope(Info);
7880     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7881                                            BE = CS->body_end();
7882          /**/; ++BI) {
7883       if (BI + 1 == BE) {
7884         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7885         if (!FinalExpr) {
7886           Info.FFDiag((*BI)->getBeginLoc(),
7887                       diag::note_constexpr_stmt_expr_unsupported);
7888           return false;
7889         }
7890         return this->Visit(FinalExpr) && Scope.destroy();
7891       }
7892 
7893       APValue ReturnValue;
7894       StmtResult Result = { ReturnValue, nullptr };
7895       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7896       if (ESR != ESR_Succeeded) {
7897         // FIXME: If the statement-expression terminated due to 'return',
7898         // 'break', or 'continue', it would be nice to propagate that to
7899         // the outer statement evaluation rather than bailing out.
7900         if (ESR != ESR_Failed)
7901           Info.FFDiag((*BI)->getBeginLoc(),
7902                       diag::note_constexpr_stmt_expr_unsupported);
7903         return false;
7904       }
7905     }
7906 
7907     llvm_unreachable("Return from function from the loop above.");
7908   }
7909 
7910   /// Visit a value which is evaluated, but whose value is ignored.
7911   void VisitIgnoredValue(const Expr *E) {
7912     EvaluateIgnoredValue(Info, E);
7913   }
7914 
7915   /// Potentially visit a MemberExpr's base expression.
7916   void VisitIgnoredBaseExpression(const Expr *E) {
7917     // While MSVC doesn't evaluate the base expression, it does diagnose the
7918     // presence of side-effecting behavior.
7919     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
7920       return;
7921     VisitIgnoredValue(E);
7922   }
7923 };
7924 
7925 } // namespace
7926 
7927 //===----------------------------------------------------------------------===//
7928 // Common base class for lvalue and temporary evaluation.
7929 //===----------------------------------------------------------------------===//
7930 namespace {
7931 template<class Derived>
7932 class LValueExprEvaluatorBase
7933   : public ExprEvaluatorBase<Derived> {
7934 protected:
7935   LValue &Result;
7936   bool InvalidBaseOK;
7937   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
7938   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
7939 
7940   bool Success(APValue::LValueBase B) {
7941     Result.set(B);
7942     return true;
7943   }
7944 
7945   bool evaluatePointer(const Expr *E, LValue &Result) {
7946     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
7947   }
7948 
7949 public:
7950   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
7951       : ExprEvaluatorBaseTy(Info), Result(Result),
7952         InvalidBaseOK(InvalidBaseOK) {}
7953 
7954   bool Success(const APValue &V, const Expr *E) {
7955     Result.setFrom(this->Info.Ctx, V);
7956     return true;
7957   }
7958 
7959   bool VisitMemberExpr(const MemberExpr *E) {
7960     // Handle non-static data members.
7961     QualType BaseTy;
7962     bool EvalOK;
7963     if (E->isArrow()) {
7964       EvalOK = evaluatePointer(E->getBase(), Result);
7965       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
7966     } else if (E->getBase()->isPRValue()) {
7967       assert(E->getBase()->getType()->isRecordType());
7968       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
7969       BaseTy = E->getBase()->getType();
7970     } else {
7971       EvalOK = this->Visit(E->getBase());
7972       BaseTy = E->getBase()->getType();
7973     }
7974     if (!EvalOK) {
7975       if (!InvalidBaseOK)
7976         return false;
7977       Result.setInvalid(E);
7978       return true;
7979     }
7980 
7981     const ValueDecl *MD = E->getMemberDecl();
7982     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
7983       assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7984              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7985       (void)BaseTy;
7986       if (!HandleLValueMember(this->Info, E, Result, FD))
7987         return false;
7988     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
7989       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
7990         return false;
7991     } else
7992       return this->Error(E);
7993 
7994     if (MD->getType()->isReferenceType()) {
7995       APValue RefValue;
7996       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
7997                                           RefValue))
7998         return false;
7999       return Success(RefValue, E);
8000     }
8001     return true;
8002   }
8003 
8004   bool VisitBinaryOperator(const BinaryOperator *E) {
8005     switch (E->getOpcode()) {
8006     default:
8007       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8008 
8009     case BO_PtrMemD:
8010     case BO_PtrMemI:
8011       return HandleMemberPointerAccess(this->Info, E, Result);
8012     }
8013   }
8014 
8015   bool VisitCastExpr(const CastExpr *E) {
8016     switch (E->getCastKind()) {
8017     default:
8018       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8019 
8020     case CK_DerivedToBase:
8021     case CK_UncheckedDerivedToBase:
8022       if (!this->Visit(E->getSubExpr()))
8023         return false;
8024 
8025       // Now figure out the necessary offset to add to the base LV to get from
8026       // the derived class to the base class.
8027       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8028                                   Result);
8029     }
8030   }
8031 };
8032 }
8033 
8034 //===----------------------------------------------------------------------===//
8035 // LValue Evaluation
8036 //
8037 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8038 // function designators (in C), decl references to void objects (in C), and
8039 // temporaries (if building with -Wno-address-of-temporary).
8040 //
8041 // LValue evaluation produces values comprising a base expression of one of the
8042 // following types:
8043 // - Declarations
8044 //  * VarDecl
8045 //  * FunctionDecl
8046 // - Literals
8047 //  * CompoundLiteralExpr in C (and in global scope in C++)
8048 //  * StringLiteral
8049 //  * PredefinedExpr
8050 //  * ObjCStringLiteralExpr
8051 //  * ObjCEncodeExpr
8052 //  * AddrLabelExpr
8053 //  * BlockExpr
8054 //  * CallExpr for a MakeStringConstant builtin
8055 // - typeid(T) expressions, as TypeInfoLValues
8056 // - Locals and temporaries
8057 //  * MaterializeTemporaryExpr
8058 //  * Any Expr, with a CallIndex indicating the function in which the temporary
8059 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
8060 //    from the AST (FIXME).
8061 //  * A MaterializeTemporaryExpr that has static storage duration, with no
8062 //    CallIndex, for a lifetime-extended temporary.
8063 //  * The ConstantExpr that is currently being evaluated during evaluation of an
8064 //    immediate invocation.
8065 // plus an offset in bytes.
8066 //===----------------------------------------------------------------------===//
8067 namespace {
8068 class LValueExprEvaluator
8069   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8070 public:
8071   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8072     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8073 
8074   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8075   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8076 
8077   bool VisitDeclRefExpr(const DeclRefExpr *E);
8078   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8079   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8080   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8081   bool VisitMemberExpr(const MemberExpr *E);
8082   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
8083   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8084   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8085   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8086   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8087   bool VisitUnaryDeref(const UnaryOperator *E);
8088   bool VisitUnaryReal(const UnaryOperator *E);
8089   bool VisitUnaryImag(const UnaryOperator *E);
8090   bool VisitUnaryPreInc(const UnaryOperator *UO) {
8091     return VisitUnaryPreIncDec(UO);
8092   }
8093   bool VisitUnaryPreDec(const UnaryOperator *UO) {
8094     return VisitUnaryPreIncDec(UO);
8095   }
8096   bool VisitBinAssign(const BinaryOperator *BO);
8097   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8098 
8099   bool VisitCastExpr(const CastExpr *E) {
8100     switch (E->getCastKind()) {
8101     default:
8102       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8103 
8104     case CK_LValueBitCast:
8105       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8106       if (!Visit(E->getSubExpr()))
8107         return false;
8108       Result.Designator.setInvalid();
8109       return true;
8110 
8111     case CK_BaseToDerived:
8112       if (!Visit(E->getSubExpr()))
8113         return false;
8114       return HandleBaseToDerivedCast(Info, E, Result);
8115 
8116     case CK_Dynamic:
8117       if (!Visit(E->getSubExpr()))
8118         return false;
8119       return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8120     }
8121   }
8122 };
8123 } // end anonymous namespace
8124 
8125 /// Evaluate an expression as an lvalue. This can be legitimately called on
8126 /// expressions which are not glvalues, in three cases:
8127 ///  * function designators in C, and
8128 ///  * "extern void" objects
8129 ///  * @selector() expressions in Objective-C
8130 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8131                            bool InvalidBaseOK) {
8132   assert(!E->isValueDependent());
8133   assert(E->isGLValue() || E->getType()->isFunctionType() ||
8134          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
8135   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8136 }
8137 
8138 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8139   const NamedDecl *D = E->getDecl();
8140   if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl>(D))
8141     return Success(cast<ValueDecl>(D));
8142   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8143     return VisitVarDecl(E, VD);
8144   if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8145     return Visit(BD->getBinding());
8146   return Error(E);
8147 }
8148 
8149 
8150 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8151 
8152   // If we are within a lambda's call operator, check whether the 'VD' referred
8153   // to within 'E' actually represents a lambda-capture that maps to a
8154   // data-member/field within the closure object, and if so, evaluate to the
8155   // field or what the field refers to.
8156   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8157       isa<DeclRefExpr>(E) &&
8158       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8159     // We don't always have a complete capture-map when checking or inferring if
8160     // the function call operator meets the requirements of a constexpr function
8161     // - but we don't need to evaluate the captures to determine constexprness
8162     // (dcl.constexpr C++17).
8163     if (Info.checkingPotentialConstantExpression())
8164       return false;
8165 
8166     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8167       // Start with 'Result' referring to the complete closure object...
8168       Result = *Info.CurrentCall->This;
8169       // ... then update it to refer to the field of the closure object
8170       // that represents the capture.
8171       if (!HandleLValueMember(Info, E, Result, FD))
8172         return false;
8173       // And if the field is of reference type, update 'Result' to refer to what
8174       // the field refers to.
8175       if (FD->getType()->isReferenceType()) {
8176         APValue RVal;
8177         if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8178                                             RVal))
8179           return false;
8180         Result.setFrom(Info.Ctx, RVal);
8181       }
8182       return true;
8183     }
8184   }
8185 
8186   CallStackFrame *Frame = nullptr;
8187   unsigned Version = 0;
8188   if (VD->hasLocalStorage()) {
8189     // Only if a local variable was declared in the function currently being
8190     // evaluated, do we expect to be able to find its value in the current
8191     // frame. (Otherwise it was likely declared in an enclosing context and
8192     // could either have a valid evaluatable value (for e.g. a constexpr
8193     // variable) or be ill-formed (and trigger an appropriate evaluation
8194     // diagnostic)).
8195     CallStackFrame *CurrFrame = Info.CurrentCall;
8196     if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8197       // Function parameters are stored in some caller's frame. (Usually the
8198       // immediate caller, but for an inherited constructor they may be more
8199       // distant.)
8200       if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8201         if (CurrFrame->Arguments) {
8202           VD = CurrFrame->Arguments.getOrigParam(PVD);
8203           Frame =
8204               Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8205           Version = CurrFrame->Arguments.Version;
8206         }
8207       } else {
8208         Frame = CurrFrame;
8209         Version = CurrFrame->getCurrentTemporaryVersion(VD);
8210       }
8211     }
8212   }
8213 
8214   if (!VD->getType()->isReferenceType()) {
8215     if (Frame) {
8216       Result.set({VD, Frame->Index, Version});
8217       return true;
8218     }
8219     return Success(VD);
8220   }
8221 
8222   if (!Info.getLangOpts().CPlusPlus11) {
8223     Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8224         << VD << VD->getType();
8225     Info.Note(VD->getLocation(), diag::note_declared_at);
8226   }
8227 
8228   APValue *V;
8229   if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8230     return false;
8231   if (!V->hasValue()) {
8232     // FIXME: Is it possible for V to be indeterminate here? If so, we should
8233     // adjust the diagnostic to say that.
8234     if (!Info.checkingPotentialConstantExpression())
8235       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8236     return false;
8237   }
8238   return Success(*V, E);
8239 }
8240 
8241 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8242     const MaterializeTemporaryExpr *E) {
8243   // Walk through the expression to find the materialized temporary itself.
8244   SmallVector<const Expr *, 2> CommaLHSs;
8245   SmallVector<SubobjectAdjustment, 2> Adjustments;
8246   const Expr *Inner =
8247       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8248 
8249   // If we passed any comma operators, evaluate their LHSs.
8250   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
8251     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
8252       return false;
8253 
8254   // A materialized temporary with static storage duration can appear within the
8255   // result of a constant expression evaluation, so we need to preserve its
8256   // value for use outside this evaluation.
8257   APValue *Value;
8258   if (E->getStorageDuration() == SD_Static) {
8259     // FIXME: What about SD_Thread?
8260     Value = E->getOrCreateValue(true);
8261     *Value = APValue();
8262     Result.set(E);
8263   } else {
8264     Value = &Info.CurrentCall->createTemporary(
8265         E, E->getType(),
8266         E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8267                                                      : ScopeKind::Block,
8268         Result);
8269   }
8270 
8271   QualType Type = Inner->getType();
8272 
8273   // Materialize the temporary itself.
8274   if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8275     *Value = APValue();
8276     return false;
8277   }
8278 
8279   // Adjust our lvalue to refer to the desired subobject.
8280   for (unsigned I = Adjustments.size(); I != 0; /**/) {
8281     --I;
8282     switch (Adjustments[I].Kind) {
8283     case SubobjectAdjustment::DerivedToBaseAdjustment:
8284       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8285                                 Type, Result))
8286         return false;
8287       Type = Adjustments[I].DerivedToBase.BasePath->getType();
8288       break;
8289 
8290     case SubobjectAdjustment::FieldAdjustment:
8291       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8292         return false;
8293       Type = Adjustments[I].Field->getType();
8294       break;
8295 
8296     case SubobjectAdjustment::MemberPointerAdjustment:
8297       if (!HandleMemberPointerAccess(this->Info, Type, Result,
8298                                      Adjustments[I].Ptr.RHS))
8299         return false;
8300       Type = Adjustments[I].Ptr.MPT->getPointeeType();
8301       break;
8302     }
8303   }
8304 
8305   return true;
8306 }
8307 
8308 bool
8309 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8310   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8311          "lvalue compound literal in c++?");
8312   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8313   // only see this when folding in C, so there's no standard to follow here.
8314   return Success(E);
8315 }
8316 
8317 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8318   TypeInfoLValue TypeInfo;
8319 
8320   if (!E->isPotentiallyEvaluated()) {
8321     if (E->isTypeOperand())
8322       TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8323     else
8324       TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8325   } else {
8326     if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8327       Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8328         << E->getExprOperand()->getType()
8329         << E->getExprOperand()->getSourceRange();
8330     }
8331 
8332     if (!Visit(E->getExprOperand()))
8333       return false;
8334 
8335     Optional<DynamicType> DynType =
8336         ComputeDynamicType(Info, E, Result, AK_TypeId);
8337     if (!DynType)
8338       return false;
8339 
8340     TypeInfo =
8341         TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8342   }
8343 
8344   return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8345 }
8346 
8347 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8348   return Success(E->getGuidDecl());
8349 }
8350 
8351 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8352   // Handle static data members.
8353   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8354     VisitIgnoredBaseExpression(E->getBase());
8355     return VisitVarDecl(E, VD);
8356   }
8357 
8358   // Handle static member functions.
8359   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8360     if (MD->isStatic()) {
8361       VisitIgnoredBaseExpression(E->getBase());
8362       return Success(MD);
8363     }
8364   }
8365 
8366   // Handle non-static data members.
8367   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8368 }
8369 
8370 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8371   // FIXME: Deal with vectors as array subscript bases.
8372   if (E->getBase()->getType()->isVectorType())
8373     return Error(E);
8374 
8375   APSInt Index;
8376   bool Success = true;
8377 
8378   // C++17's rules require us to evaluate the LHS first, regardless of which
8379   // side is the base.
8380   for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8381     if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8382                                 : !EvaluateInteger(SubExpr, Index, Info)) {
8383       if (!Info.noteFailure())
8384         return false;
8385       Success = false;
8386     }
8387   }
8388 
8389   return Success &&
8390          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8391 }
8392 
8393 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8394   return evaluatePointer(E->getSubExpr(), Result);
8395 }
8396 
8397 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8398   if (!Visit(E->getSubExpr()))
8399     return false;
8400   // __real is a no-op on scalar lvalues.
8401   if (E->getSubExpr()->getType()->isAnyComplexType())
8402     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8403   return true;
8404 }
8405 
8406 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8407   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8408          "lvalue __imag__ on scalar?");
8409   if (!Visit(E->getSubExpr()))
8410     return false;
8411   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8412   return true;
8413 }
8414 
8415 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8416   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8417     return Error(UO);
8418 
8419   if (!this->Visit(UO->getSubExpr()))
8420     return false;
8421 
8422   return handleIncDec(
8423       this->Info, UO, Result, UO->getSubExpr()->getType(),
8424       UO->isIncrementOp(), nullptr);
8425 }
8426 
8427 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8428     const CompoundAssignOperator *CAO) {
8429   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8430     return Error(CAO);
8431 
8432   bool Success = true;
8433 
8434   // C++17 onwards require that we evaluate the RHS first.
8435   APValue RHS;
8436   if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8437     if (!Info.noteFailure())
8438       return false;
8439     Success = false;
8440   }
8441 
8442   // The overall lvalue result is the result of evaluating the LHS.
8443   if (!this->Visit(CAO->getLHS()) || !Success)
8444     return false;
8445 
8446   return handleCompoundAssignment(
8447       this->Info, CAO,
8448       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8449       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8450 }
8451 
8452 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8453   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8454     return Error(E);
8455 
8456   bool Success = true;
8457 
8458   // C++17 onwards require that we evaluate the RHS first.
8459   APValue NewVal;
8460   if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8461     if (!Info.noteFailure())
8462       return false;
8463     Success = false;
8464   }
8465 
8466   if (!this->Visit(E->getLHS()) || !Success)
8467     return false;
8468 
8469   if (Info.getLangOpts().CPlusPlus20 &&
8470       !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8471     return false;
8472 
8473   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8474                           NewVal);
8475 }
8476 
8477 //===----------------------------------------------------------------------===//
8478 // Pointer Evaluation
8479 //===----------------------------------------------------------------------===//
8480 
8481 /// Attempts to compute the number of bytes available at the pointer
8482 /// returned by a function with the alloc_size attribute. Returns true if we
8483 /// were successful. Places an unsigned number into `Result`.
8484 ///
8485 /// This expects the given CallExpr to be a call to a function with an
8486 /// alloc_size attribute.
8487 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8488                                             const CallExpr *Call,
8489                                             llvm::APInt &Result) {
8490   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8491 
8492   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8493   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8494   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8495   if (Call->getNumArgs() <= SizeArgNo)
8496     return false;
8497 
8498   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8499     Expr::EvalResult ExprResult;
8500     if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8501       return false;
8502     Into = ExprResult.Val.getInt();
8503     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8504       return false;
8505     Into = Into.zextOrSelf(BitsInSizeT);
8506     return true;
8507   };
8508 
8509   APSInt SizeOfElem;
8510   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8511     return false;
8512 
8513   if (!AllocSize->getNumElemsParam().isValid()) {
8514     Result = std::move(SizeOfElem);
8515     return true;
8516   }
8517 
8518   APSInt NumberOfElems;
8519   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8520   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8521     return false;
8522 
8523   bool Overflow;
8524   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8525   if (Overflow)
8526     return false;
8527 
8528   Result = std::move(BytesAvailable);
8529   return true;
8530 }
8531 
8532 /// Convenience function. LVal's base must be a call to an alloc_size
8533 /// function.
8534 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8535                                             const LValue &LVal,
8536                                             llvm::APInt &Result) {
8537   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8538          "Can't get the size of a non alloc_size function");
8539   const auto *Base = LVal.getLValueBase().get<const Expr *>();
8540   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8541   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8542 }
8543 
8544 /// Attempts to evaluate the given LValueBase as the result of a call to
8545 /// a function with the alloc_size attribute. If it was possible to do so, this
8546 /// function will return true, make Result's Base point to said function call,
8547 /// and mark Result's Base as invalid.
8548 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8549                                       LValue &Result) {
8550   if (Base.isNull())
8551     return false;
8552 
8553   // Because we do no form of static analysis, we only support const variables.
8554   //
8555   // Additionally, we can't support parameters, nor can we support static
8556   // variables (in the latter case, use-before-assign isn't UB; in the former,
8557   // we have no clue what they'll be assigned to).
8558   const auto *VD =
8559       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8560   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8561     return false;
8562 
8563   const Expr *Init = VD->getAnyInitializer();
8564   if (!Init)
8565     return false;
8566 
8567   const Expr *E = Init->IgnoreParens();
8568   if (!tryUnwrapAllocSizeCall(E))
8569     return false;
8570 
8571   // Store E instead of E unwrapped so that the type of the LValue's base is
8572   // what the user wanted.
8573   Result.setInvalid(E);
8574 
8575   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8576   Result.addUnsizedArray(Info, E, Pointee);
8577   return true;
8578 }
8579 
8580 namespace {
8581 class PointerExprEvaluator
8582   : public ExprEvaluatorBase<PointerExprEvaluator> {
8583   LValue &Result;
8584   bool InvalidBaseOK;
8585 
8586   bool Success(const Expr *E) {
8587     Result.set(E);
8588     return true;
8589   }
8590 
8591   bool evaluateLValue(const Expr *E, LValue &Result) {
8592     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8593   }
8594 
8595   bool evaluatePointer(const Expr *E, LValue &Result) {
8596     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8597   }
8598 
8599   bool visitNonBuiltinCallExpr(const CallExpr *E);
8600 public:
8601 
8602   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8603       : ExprEvaluatorBaseTy(info), Result(Result),
8604         InvalidBaseOK(InvalidBaseOK) {}
8605 
8606   bool Success(const APValue &V, const Expr *E) {
8607     Result.setFrom(Info.Ctx, V);
8608     return true;
8609   }
8610   bool ZeroInitialization(const Expr *E) {
8611     Result.setNull(Info.Ctx, E->getType());
8612     return true;
8613   }
8614 
8615   bool VisitBinaryOperator(const BinaryOperator *E);
8616   bool VisitCastExpr(const CastExpr* E);
8617   bool VisitUnaryAddrOf(const UnaryOperator *E);
8618   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8619       { return Success(E); }
8620   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8621     if (E->isExpressibleAsConstantInitializer())
8622       return Success(E);
8623     if (Info.noteFailure())
8624       EvaluateIgnoredValue(Info, E->getSubExpr());
8625     return Error(E);
8626   }
8627   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8628       { return Success(E); }
8629   bool VisitCallExpr(const CallExpr *E);
8630   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
8631   bool VisitBlockExpr(const BlockExpr *E) {
8632     if (!E->getBlockDecl()->hasCaptures())
8633       return Success(E);
8634     return Error(E);
8635   }
8636   bool VisitCXXThisExpr(const CXXThisExpr *E) {
8637     // Can't look at 'this' when checking a potential constant expression.
8638     if (Info.checkingPotentialConstantExpression())
8639       return false;
8640     if (!Info.CurrentCall->This) {
8641       if (Info.getLangOpts().CPlusPlus11)
8642         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8643       else
8644         Info.FFDiag(E);
8645       return false;
8646     }
8647     Result = *Info.CurrentCall->This;
8648     // If we are inside a lambda's call operator, the 'this' expression refers
8649     // to the enclosing '*this' object (either by value or reference) which is
8650     // either copied into the closure object's field that represents the '*this'
8651     // or refers to '*this'.
8652     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8653       // Ensure we actually have captured 'this'. (an error will have
8654       // been previously reported if not).
8655       if (!Info.CurrentCall->LambdaThisCaptureField)
8656         return false;
8657 
8658       // Update 'Result' to refer to the data member/field of the closure object
8659       // that represents the '*this' capture.
8660       if (!HandleLValueMember(Info, E, Result,
8661                              Info.CurrentCall->LambdaThisCaptureField))
8662         return false;
8663       // If we captured '*this' by reference, replace the field with its referent.
8664       if (Info.CurrentCall->LambdaThisCaptureField->getType()
8665               ->isPointerType()) {
8666         APValue RVal;
8667         if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
8668                                             RVal))
8669           return false;
8670 
8671         Result.setFrom(Info.Ctx, RVal);
8672       }
8673     }
8674     return true;
8675   }
8676 
8677   bool VisitCXXNewExpr(const CXXNewExpr *E);
8678 
8679   bool VisitSourceLocExpr(const SourceLocExpr *E) {
8680     assert(E->isStringType() && "SourceLocExpr isn't a pointer type?");
8681     APValue LValResult = E->EvaluateInContext(
8682         Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
8683     Result.setFrom(Info.Ctx, LValResult);
8684     return true;
8685   }
8686 
8687   bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
8688     std::string ResultStr = E->ComputeName(Info.Ctx);
8689 
8690     QualType CharTy = Info.Ctx.CharTy.withConst();
8691     APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()),
8692                ResultStr.size() + 1);
8693     QualType ArrayTy = Info.Ctx.getConstantArrayType(CharTy, Size, nullptr,
8694                                                      ArrayType::Normal, 0);
8695 
8696     StringLiteral *SL =
8697         StringLiteral::Create(Info.Ctx, ResultStr, StringLiteral::Ascii,
8698                               /*Pascal*/ false, ArrayTy, E->getLocation());
8699 
8700     evaluateLValue(SL, Result);
8701     Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy));
8702     return true;
8703   }
8704 
8705   // FIXME: Missing: @protocol, @selector
8706 };
8707 } // end anonymous namespace
8708 
8709 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
8710                             bool InvalidBaseOK) {
8711   assert(!E->isValueDependent());
8712   assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
8713   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8714 }
8715 
8716 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8717   if (E->getOpcode() != BO_Add &&
8718       E->getOpcode() != BO_Sub)
8719     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8720 
8721   const Expr *PExp = E->getLHS();
8722   const Expr *IExp = E->getRHS();
8723   if (IExp->getType()->isPointerType())
8724     std::swap(PExp, IExp);
8725 
8726   bool EvalPtrOK = evaluatePointer(PExp, Result);
8727   if (!EvalPtrOK && !Info.noteFailure())
8728     return false;
8729 
8730   llvm::APSInt Offset;
8731   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
8732     return false;
8733 
8734   if (E->getOpcode() == BO_Sub)
8735     negateAsSigned(Offset);
8736 
8737   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
8738   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
8739 }
8740 
8741 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8742   return evaluateLValue(E->getSubExpr(), Result);
8743 }
8744 
8745 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8746   const Expr *SubExpr = E->getSubExpr();
8747 
8748   switch (E->getCastKind()) {
8749   default:
8750     break;
8751   case CK_BitCast:
8752   case CK_CPointerToObjCPointerCast:
8753   case CK_BlockPointerToObjCPointerCast:
8754   case CK_AnyPointerToBlockPointerCast:
8755   case CK_AddressSpaceConversion:
8756     if (!Visit(SubExpr))
8757       return false;
8758     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8759     // permitted in constant expressions in C++11. Bitcasts from cv void* are
8760     // also static_casts, but we disallow them as a resolution to DR1312.
8761     if (!E->getType()->isVoidPointerType()) {
8762       if (!Result.InvalidBase && !Result.Designator.Invalid &&
8763           !Result.IsNullPtr &&
8764           Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8765                                           E->getType()->getPointeeType()) &&
8766           Info.getStdAllocatorCaller("allocate")) {
8767         // Inside a call to std::allocator::allocate and friends, we permit
8768         // casting from void* back to cv1 T* for a pointer that points to a
8769         // cv2 T.
8770       } else {
8771         Result.Designator.setInvalid();
8772         if (SubExpr->getType()->isVoidPointerType())
8773           CCEDiag(E, diag::note_constexpr_invalid_cast)
8774             << 3 << SubExpr->getType();
8775         else
8776           CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8777       }
8778     }
8779     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8780       ZeroInitialization(E);
8781     return true;
8782 
8783   case CK_DerivedToBase:
8784   case CK_UncheckedDerivedToBase:
8785     if (!evaluatePointer(E->getSubExpr(), Result))
8786       return false;
8787     if (!Result.Base && Result.Offset.isZero())
8788       return true;
8789 
8790     // Now figure out the necessary offset to add to the base LV to get from
8791     // the derived class to the base class.
8792     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8793                                   castAs<PointerType>()->getPointeeType(),
8794                                 Result);
8795 
8796   case CK_BaseToDerived:
8797     if (!Visit(E->getSubExpr()))
8798       return false;
8799     if (!Result.Base && Result.Offset.isZero())
8800       return true;
8801     return HandleBaseToDerivedCast(Info, E, Result);
8802 
8803   case CK_Dynamic:
8804     if (!Visit(E->getSubExpr()))
8805       return false;
8806     return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8807 
8808   case CK_NullToPointer:
8809     VisitIgnoredValue(E->getSubExpr());
8810     return ZeroInitialization(E);
8811 
8812   case CK_IntegralToPointer: {
8813     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8814 
8815     APValue Value;
8816     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
8817       break;
8818 
8819     if (Value.isInt()) {
8820       unsigned Size = Info.Ctx.getTypeSize(E->getType());
8821       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8822       Result.Base = (Expr*)nullptr;
8823       Result.InvalidBase = false;
8824       Result.Offset = CharUnits::fromQuantity(N);
8825       Result.Designator.setInvalid();
8826       Result.IsNullPtr = false;
8827       return true;
8828     } else {
8829       // Cast is of an lvalue, no need to change value.
8830       Result.setFrom(Info.Ctx, Value);
8831       return true;
8832     }
8833   }
8834 
8835   case CK_ArrayToPointerDecay: {
8836     if (SubExpr->isGLValue()) {
8837       if (!evaluateLValue(SubExpr, Result))
8838         return false;
8839     } else {
8840       APValue &Value = Info.CurrentCall->createTemporary(
8841           SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
8842       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8843         return false;
8844     }
8845     // The result is a pointer to the first element of the array.
8846     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8847     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8848       Result.addArray(Info, E, CAT);
8849     else
8850       Result.addUnsizedArray(Info, E, AT->getElementType());
8851     return true;
8852   }
8853 
8854   case CK_FunctionToPointerDecay:
8855     return evaluateLValue(SubExpr, Result);
8856 
8857   case CK_LValueToRValue: {
8858     LValue LVal;
8859     if (!evaluateLValue(E->getSubExpr(), LVal))
8860       return false;
8861 
8862     APValue RVal;
8863     // Note, we use the subexpression's type in order to retain cv-qualifiers.
8864     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8865                                         LVal, RVal))
8866       return InvalidBaseOK &&
8867              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
8868     return Success(RVal, E);
8869   }
8870   }
8871 
8872   return ExprEvaluatorBaseTy::VisitCastExpr(E);
8873 }
8874 
8875 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
8876                                 UnaryExprOrTypeTrait ExprKind) {
8877   // C++ [expr.alignof]p3:
8878   //     When alignof is applied to a reference type, the result is the
8879   //     alignment of the referenced type.
8880   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
8881     T = Ref->getPointeeType();
8882 
8883   if (T.getQualifiers().hasUnaligned())
8884     return CharUnits::One();
8885 
8886   const bool AlignOfReturnsPreferred =
8887       Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
8888 
8889   // __alignof is defined to return the preferred alignment.
8890   // Before 8, clang returned the preferred alignment for alignof and _Alignof
8891   // as well.
8892   if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
8893     return Info.Ctx.toCharUnitsFromBits(
8894       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
8895   // alignof and _Alignof are defined to return the ABI alignment.
8896   else if (ExprKind == UETT_AlignOf)
8897     return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
8898   else
8899     llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
8900 }
8901 
8902 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
8903                                 UnaryExprOrTypeTrait ExprKind) {
8904   E = E->IgnoreParens();
8905 
8906   // The kinds of expressions that we have special-case logic here for
8907   // should be kept up to date with the special checks for those
8908   // expressions in Sema.
8909 
8910   // alignof decl is always accepted, even if it doesn't make sense: we default
8911   // to 1 in those cases.
8912   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8913     return Info.Ctx.getDeclAlign(DRE->getDecl(),
8914                                  /*RefAsPointee*/true);
8915 
8916   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
8917     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
8918                                  /*RefAsPointee*/true);
8919 
8920   return GetAlignOfType(Info, E->getType(), ExprKind);
8921 }
8922 
8923 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
8924   if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
8925     return Info.Ctx.getDeclAlign(VD);
8926   if (const auto *E = Value.Base.dyn_cast<const Expr *>())
8927     return GetAlignOfExpr(Info, E, UETT_AlignOf);
8928   return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
8929 }
8930 
8931 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
8932 /// __builtin_is_aligned and __builtin_assume_aligned.
8933 static bool getAlignmentArgument(const Expr *E, QualType ForType,
8934                                  EvalInfo &Info, APSInt &Alignment) {
8935   if (!EvaluateInteger(E, Alignment, Info))
8936     return false;
8937   if (Alignment < 0 || !Alignment.isPowerOf2()) {
8938     Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
8939     return false;
8940   }
8941   unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
8942   APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
8943   if (APSInt::compareValues(Alignment, MaxValue) > 0) {
8944     Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
8945         << MaxValue << ForType << Alignment;
8946     return false;
8947   }
8948   // Ensure both alignment and source value have the same bit width so that we
8949   // don't assert when computing the resulting value.
8950   APSInt ExtAlignment =
8951       APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
8952   assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
8953          "Alignment should not be changed by ext/trunc");
8954   Alignment = ExtAlignment;
8955   assert(Alignment.getBitWidth() == SrcWidth);
8956   return true;
8957 }
8958 
8959 // To be clear: this happily visits unsupported builtins. Better name welcomed.
8960 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
8961   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
8962     return true;
8963 
8964   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
8965     return false;
8966 
8967   Result.setInvalid(E);
8968   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
8969   Result.addUnsizedArray(Info, E, PointeeTy);
8970   return true;
8971 }
8972 
8973 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
8974   if (IsConstantCall(E))
8975     return Success(E);
8976 
8977   if (unsigned BuiltinOp = E->getBuiltinCallee())
8978     return VisitBuiltinCallExpr(E, BuiltinOp);
8979 
8980   return visitNonBuiltinCallExpr(E);
8981 }
8982 
8983 // Determine if T is a character type for which we guarantee that
8984 // sizeof(T) == 1.
8985 static bool isOneByteCharacterType(QualType T) {
8986   return T->isCharType() || T->isChar8Type();
8987 }
8988 
8989 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
8990                                                 unsigned BuiltinOp) {
8991   switch (BuiltinOp) {
8992   case Builtin::BI__builtin_addressof:
8993     return evaluateLValue(E->getArg(0), Result);
8994   case Builtin::BI__builtin_assume_aligned: {
8995     // We need to be very careful here because: if the pointer does not have the
8996     // asserted alignment, then the behavior is undefined, and undefined
8997     // behavior is non-constant.
8998     if (!evaluatePointer(E->getArg(0), Result))
8999       return false;
9000 
9001     LValue OffsetResult(Result);
9002     APSInt Alignment;
9003     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9004                               Alignment))
9005       return false;
9006     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
9007 
9008     if (E->getNumArgs() > 2) {
9009       APSInt Offset;
9010       if (!EvaluateInteger(E->getArg(2), Offset, Info))
9011         return false;
9012 
9013       int64_t AdditionalOffset = -Offset.getZExtValue();
9014       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
9015     }
9016 
9017     // If there is a base object, then it must have the correct alignment.
9018     if (OffsetResult.Base) {
9019       CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
9020 
9021       if (BaseAlignment < Align) {
9022         Result.Designator.setInvalid();
9023         // FIXME: Add support to Diagnostic for long / long long.
9024         CCEDiag(E->getArg(0),
9025                 diag::note_constexpr_baa_insufficient_alignment) << 0
9026           << (unsigned)BaseAlignment.getQuantity()
9027           << (unsigned)Align.getQuantity();
9028         return false;
9029       }
9030     }
9031 
9032     // The offset must also have the correct alignment.
9033     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9034       Result.Designator.setInvalid();
9035 
9036       (OffsetResult.Base
9037            ? CCEDiag(E->getArg(0),
9038                      diag::note_constexpr_baa_insufficient_alignment) << 1
9039            : CCEDiag(E->getArg(0),
9040                      diag::note_constexpr_baa_value_insufficient_alignment))
9041         << (int)OffsetResult.Offset.getQuantity()
9042         << (unsigned)Align.getQuantity();
9043       return false;
9044     }
9045 
9046     return true;
9047   }
9048   case Builtin::BI__builtin_align_up:
9049   case Builtin::BI__builtin_align_down: {
9050     if (!evaluatePointer(E->getArg(0), Result))
9051       return false;
9052     APSInt Alignment;
9053     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9054                               Alignment))
9055       return false;
9056     CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9057     CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9058     // For align_up/align_down, we can return the same value if the alignment
9059     // is known to be greater or equal to the requested value.
9060     if (PtrAlign.getQuantity() >= Alignment)
9061       return true;
9062 
9063     // The alignment could be greater than the minimum at run-time, so we cannot
9064     // infer much about the resulting pointer value. One case is possible:
9065     // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9066     // can infer the correct index if the requested alignment is smaller than
9067     // the base alignment so we can perform the computation on the offset.
9068     if (BaseAlignment.getQuantity() >= Alignment) {
9069       assert(Alignment.getBitWidth() <= 64 &&
9070              "Cannot handle > 64-bit address-space");
9071       uint64_t Alignment64 = Alignment.getZExtValue();
9072       CharUnits NewOffset = CharUnits::fromQuantity(
9073           BuiltinOp == Builtin::BI__builtin_align_down
9074               ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9075               : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9076       Result.adjustOffset(NewOffset - Result.Offset);
9077       // TODO: diagnose out-of-bounds values/only allow for arrays?
9078       return true;
9079     }
9080     // Otherwise, we cannot constant-evaluate the result.
9081     Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9082         << Alignment;
9083     return false;
9084   }
9085   case Builtin::BI__builtin_operator_new:
9086     return HandleOperatorNewCall(Info, E, Result);
9087   case Builtin::BI__builtin_launder:
9088     return evaluatePointer(E->getArg(0), Result);
9089   case Builtin::BIstrchr:
9090   case Builtin::BIwcschr:
9091   case Builtin::BImemchr:
9092   case Builtin::BIwmemchr:
9093     if (Info.getLangOpts().CPlusPlus11)
9094       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9095         << /*isConstexpr*/0 << /*isConstructor*/0
9096         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9097     else
9098       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9099     LLVM_FALLTHROUGH;
9100   case Builtin::BI__builtin_strchr:
9101   case Builtin::BI__builtin_wcschr:
9102   case Builtin::BI__builtin_memchr:
9103   case Builtin::BI__builtin_char_memchr:
9104   case Builtin::BI__builtin_wmemchr: {
9105     if (!Visit(E->getArg(0)))
9106       return false;
9107     APSInt Desired;
9108     if (!EvaluateInteger(E->getArg(1), Desired, Info))
9109       return false;
9110     uint64_t MaxLength = uint64_t(-1);
9111     if (BuiltinOp != Builtin::BIstrchr &&
9112         BuiltinOp != Builtin::BIwcschr &&
9113         BuiltinOp != Builtin::BI__builtin_strchr &&
9114         BuiltinOp != Builtin::BI__builtin_wcschr) {
9115       APSInt N;
9116       if (!EvaluateInteger(E->getArg(2), N, Info))
9117         return false;
9118       MaxLength = N.getExtValue();
9119     }
9120     // We cannot find the value if there are no candidates to match against.
9121     if (MaxLength == 0u)
9122       return ZeroInitialization(E);
9123     if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9124         Result.Designator.Invalid)
9125       return false;
9126     QualType CharTy = Result.Designator.getType(Info.Ctx);
9127     bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9128                      BuiltinOp == Builtin::BI__builtin_memchr;
9129     assert(IsRawByte ||
9130            Info.Ctx.hasSameUnqualifiedType(
9131                CharTy, E->getArg(0)->getType()->getPointeeType()));
9132     // Pointers to const void may point to objects of incomplete type.
9133     if (IsRawByte && CharTy->isIncompleteType()) {
9134       Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9135       return false;
9136     }
9137     // Give up on byte-oriented matching against multibyte elements.
9138     // FIXME: We can compare the bytes in the correct order.
9139     if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9140       Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9141           << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
9142           << CharTy;
9143       return false;
9144     }
9145     // Figure out what value we're actually looking for (after converting to
9146     // the corresponding unsigned type if necessary).
9147     uint64_t DesiredVal;
9148     bool StopAtNull = false;
9149     switch (BuiltinOp) {
9150     case Builtin::BIstrchr:
9151     case Builtin::BI__builtin_strchr:
9152       // strchr compares directly to the passed integer, and therefore
9153       // always fails if given an int that is not a char.
9154       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9155                                                   E->getArg(1)->getType(),
9156                                                   Desired),
9157                                Desired))
9158         return ZeroInitialization(E);
9159       StopAtNull = true;
9160       LLVM_FALLTHROUGH;
9161     case Builtin::BImemchr:
9162     case Builtin::BI__builtin_memchr:
9163     case Builtin::BI__builtin_char_memchr:
9164       // memchr compares by converting both sides to unsigned char. That's also
9165       // correct for strchr if we get this far (to cope with plain char being
9166       // unsigned in the strchr case).
9167       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9168       break;
9169 
9170     case Builtin::BIwcschr:
9171     case Builtin::BI__builtin_wcschr:
9172       StopAtNull = true;
9173       LLVM_FALLTHROUGH;
9174     case Builtin::BIwmemchr:
9175     case Builtin::BI__builtin_wmemchr:
9176       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9177       DesiredVal = Desired.getZExtValue();
9178       break;
9179     }
9180 
9181     for (; MaxLength; --MaxLength) {
9182       APValue Char;
9183       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9184           !Char.isInt())
9185         return false;
9186       if (Char.getInt().getZExtValue() == DesiredVal)
9187         return true;
9188       if (StopAtNull && !Char.getInt())
9189         break;
9190       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9191         return false;
9192     }
9193     // Not found: return nullptr.
9194     return ZeroInitialization(E);
9195   }
9196 
9197   case Builtin::BImemcpy:
9198   case Builtin::BImemmove:
9199   case Builtin::BIwmemcpy:
9200   case Builtin::BIwmemmove:
9201     if (Info.getLangOpts().CPlusPlus11)
9202       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9203         << /*isConstexpr*/0 << /*isConstructor*/0
9204         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9205     else
9206       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9207     LLVM_FALLTHROUGH;
9208   case Builtin::BI__builtin_memcpy:
9209   case Builtin::BI__builtin_memmove:
9210   case Builtin::BI__builtin_wmemcpy:
9211   case Builtin::BI__builtin_wmemmove: {
9212     bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9213                  BuiltinOp == Builtin::BIwmemmove ||
9214                  BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9215                  BuiltinOp == Builtin::BI__builtin_wmemmove;
9216     bool Move = BuiltinOp == Builtin::BImemmove ||
9217                 BuiltinOp == Builtin::BIwmemmove ||
9218                 BuiltinOp == Builtin::BI__builtin_memmove ||
9219                 BuiltinOp == Builtin::BI__builtin_wmemmove;
9220 
9221     // The result of mem* is the first argument.
9222     if (!Visit(E->getArg(0)))
9223       return false;
9224     LValue Dest = Result;
9225 
9226     LValue Src;
9227     if (!EvaluatePointer(E->getArg(1), Src, Info))
9228       return false;
9229 
9230     APSInt N;
9231     if (!EvaluateInteger(E->getArg(2), N, Info))
9232       return false;
9233     assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9234 
9235     // If the size is zero, we treat this as always being a valid no-op.
9236     // (Even if one of the src and dest pointers is null.)
9237     if (!N)
9238       return true;
9239 
9240     // Otherwise, if either of the operands is null, we can't proceed. Don't
9241     // try to determine the type of the copied objects, because there aren't
9242     // any.
9243     if (!Src.Base || !Dest.Base) {
9244       APValue Val;
9245       (!Src.Base ? Src : Dest).moveInto(Val);
9246       Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9247           << Move << WChar << !!Src.Base
9248           << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9249       return false;
9250     }
9251     if (Src.Designator.Invalid || Dest.Designator.Invalid)
9252       return false;
9253 
9254     // We require that Src and Dest are both pointers to arrays of
9255     // trivially-copyable type. (For the wide version, the designator will be
9256     // invalid if the designated object is not a wchar_t.)
9257     QualType T = Dest.Designator.getType(Info.Ctx);
9258     QualType SrcT = Src.Designator.getType(Info.Ctx);
9259     if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9260       // FIXME: Consider using our bit_cast implementation to support this.
9261       Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9262       return false;
9263     }
9264     if (T->isIncompleteType()) {
9265       Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9266       return false;
9267     }
9268     if (!T.isTriviallyCopyableType(Info.Ctx)) {
9269       Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9270       return false;
9271     }
9272 
9273     // Figure out how many T's we're copying.
9274     uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9275     if (!WChar) {
9276       uint64_t Remainder;
9277       llvm::APInt OrigN = N;
9278       llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9279       if (Remainder) {
9280         Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9281             << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9282             << (unsigned)TSize;
9283         return false;
9284       }
9285     }
9286 
9287     // Check that the copying will remain within the arrays, just so that we
9288     // can give a more meaningful diagnostic. This implicitly also checks that
9289     // N fits into 64 bits.
9290     uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9291     uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9292     if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9293       Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9294           << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9295           << toString(N, 10, /*Signed*/false);
9296       return false;
9297     }
9298     uint64_t NElems = N.getZExtValue();
9299     uint64_t NBytes = NElems * TSize;
9300 
9301     // Check for overlap.
9302     int Direction = 1;
9303     if (HasSameBase(Src, Dest)) {
9304       uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9305       uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9306       if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9307         // Dest is inside the source region.
9308         if (!Move) {
9309           Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9310           return false;
9311         }
9312         // For memmove and friends, copy backwards.
9313         if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9314             !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9315           return false;
9316         Direction = -1;
9317       } else if (!Move && SrcOffset >= DestOffset &&
9318                  SrcOffset - DestOffset < NBytes) {
9319         // Src is inside the destination region for memcpy: invalid.
9320         Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9321         return false;
9322       }
9323     }
9324 
9325     while (true) {
9326       APValue Val;
9327       // FIXME: Set WantObjectRepresentation to true if we're copying a
9328       // char-like type?
9329       if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9330           !handleAssignment(Info, E, Dest, T, Val))
9331         return false;
9332       // Do not iterate past the last element; if we're copying backwards, that
9333       // might take us off the start of the array.
9334       if (--NElems == 0)
9335         return true;
9336       if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9337           !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9338         return false;
9339     }
9340   }
9341 
9342   default:
9343     break;
9344   }
9345 
9346   return visitNonBuiltinCallExpr(E);
9347 }
9348 
9349 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9350                                      APValue &Result, const InitListExpr *ILE,
9351                                      QualType AllocType);
9352 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9353                                           APValue &Result,
9354                                           const CXXConstructExpr *CCE,
9355                                           QualType AllocType);
9356 
9357 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9358   if (!Info.getLangOpts().CPlusPlus20)
9359     Info.CCEDiag(E, diag::note_constexpr_new);
9360 
9361   // We cannot speculatively evaluate a delete expression.
9362   if (Info.SpeculativeEvaluationDepth)
9363     return false;
9364 
9365   FunctionDecl *OperatorNew = E->getOperatorNew();
9366 
9367   bool IsNothrow = false;
9368   bool IsPlacement = false;
9369   if (OperatorNew->isReservedGlobalPlacementOperator() &&
9370       Info.CurrentCall->isStdFunction() && !E->isArray()) {
9371     // FIXME Support array placement new.
9372     assert(E->getNumPlacementArgs() == 1);
9373     if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9374       return false;
9375     if (Result.Designator.Invalid)
9376       return false;
9377     IsPlacement = true;
9378   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9379     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9380         << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9381     return false;
9382   } else if (E->getNumPlacementArgs()) {
9383     // The only new-placement list we support is of the form (std::nothrow).
9384     //
9385     // FIXME: There is no restriction on this, but it's not clear that any
9386     // other form makes any sense. We get here for cases such as:
9387     //
9388     //   new (std::align_val_t{N}) X(int)
9389     //
9390     // (which should presumably be valid only if N is a multiple of
9391     // alignof(int), and in any case can't be deallocated unless N is
9392     // alignof(X) and X has new-extended alignment).
9393     if (E->getNumPlacementArgs() != 1 ||
9394         !E->getPlacementArg(0)->getType()->isNothrowT())
9395       return Error(E, diag::note_constexpr_new_placement);
9396 
9397     LValue Nothrow;
9398     if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9399       return false;
9400     IsNothrow = true;
9401   }
9402 
9403   const Expr *Init = E->getInitializer();
9404   const InitListExpr *ResizedArrayILE = nullptr;
9405   const CXXConstructExpr *ResizedArrayCCE = nullptr;
9406   bool ValueInit = false;
9407 
9408   QualType AllocType = E->getAllocatedType();
9409   if (Optional<const Expr*> ArraySize = E->getArraySize()) {
9410     const Expr *Stripped = *ArraySize;
9411     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9412          Stripped = ICE->getSubExpr())
9413       if (ICE->getCastKind() != CK_NoOp &&
9414           ICE->getCastKind() != CK_IntegralCast)
9415         break;
9416 
9417     llvm::APSInt ArrayBound;
9418     if (!EvaluateInteger(Stripped, ArrayBound, Info))
9419       return false;
9420 
9421     // C++ [expr.new]p9:
9422     //   The expression is erroneous if:
9423     //   -- [...] its value before converting to size_t [or] applying the
9424     //      second standard conversion sequence is less than zero
9425     if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9426       if (IsNothrow)
9427         return ZeroInitialization(E);
9428 
9429       Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9430           << ArrayBound << (*ArraySize)->getSourceRange();
9431       return false;
9432     }
9433 
9434     //   -- its value is such that the size of the allocated object would
9435     //      exceed the implementation-defined limit
9436     if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
9437                                                 ArrayBound) >
9438         ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
9439       if (IsNothrow)
9440         return ZeroInitialization(E);
9441 
9442       Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
9443         << ArrayBound << (*ArraySize)->getSourceRange();
9444       return false;
9445     }
9446 
9447     //   -- the new-initializer is a braced-init-list and the number of
9448     //      array elements for which initializers are provided [...]
9449     //      exceeds the number of elements to initialize
9450     if (!Init) {
9451       // No initialization is performed.
9452     } else if (isa<CXXScalarValueInitExpr>(Init) ||
9453                isa<ImplicitValueInitExpr>(Init)) {
9454       ValueInit = true;
9455     } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9456       ResizedArrayCCE = CCE;
9457     } else {
9458       auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9459       assert(CAT && "unexpected type for array initializer");
9460 
9461       unsigned Bits =
9462           std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9463       llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
9464       llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
9465       if (InitBound.ugt(AllocBound)) {
9466         if (IsNothrow)
9467           return ZeroInitialization(E);
9468 
9469         Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9470             << toString(AllocBound, 10, /*Signed=*/false)
9471             << toString(InitBound, 10, /*Signed=*/false)
9472             << (*ArraySize)->getSourceRange();
9473         return false;
9474       }
9475 
9476       // If the sizes differ, we must have an initializer list, and we need
9477       // special handling for this case when we initialize.
9478       if (InitBound != AllocBound)
9479         ResizedArrayILE = cast<InitListExpr>(Init);
9480     }
9481 
9482     AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9483                                               ArrayType::Normal, 0);
9484   } else {
9485     assert(!AllocType->isArrayType() &&
9486            "array allocation with non-array new");
9487   }
9488 
9489   APValue *Val;
9490   if (IsPlacement) {
9491     AccessKinds AK = AK_Construct;
9492     struct FindObjectHandler {
9493       EvalInfo &Info;
9494       const Expr *E;
9495       QualType AllocType;
9496       const AccessKinds AccessKind;
9497       APValue *Value;
9498 
9499       typedef bool result_type;
9500       bool failed() { return false; }
9501       bool found(APValue &Subobj, QualType SubobjType) {
9502         // FIXME: Reject the cases where [basic.life]p8 would not permit the
9503         // old name of the object to be used to name the new object.
9504         if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9505           Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9506             SubobjType << AllocType;
9507           return false;
9508         }
9509         Value = &Subobj;
9510         return true;
9511       }
9512       bool found(APSInt &Value, QualType SubobjType) {
9513         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9514         return false;
9515       }
9516       bool found(APFloat &Value, QualType SubobjType) {
9517         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9518         return false;
9519       }
9520     } Handler = {Info, E, AllocType, AK, nullptr};
9521 
9522     CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9523     if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9524       return false;
9525 
9526     Val = Handler.Value;
9527 
9528     // [basic.life]p1:
9529     //   The lifetime of an object o of type T ends when [...] the storage
9530     //   which the object occupies is [...] reused by an object that is not
9531     //   nested within o (6.6.2).
9532     *Val = APValue();
9533   } else {
9534     // Perform the allocation and obtain a pointer to the resulting object.
9535     Val = Info.createHeapAlloc(E, AllocType, Result);
9536     if (!Val)
9537       return false;
9538   }
9539 
9540   if (ValueInit) {
9541     ImplicitValueInitExpr VIE(AllocType);
9542     if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9543       return false;
9544   } else if (ResizedArrayILE) {
9545     if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9546                                   AllocType))
9547       return false;
9548   } else if (ResizedArrayCCE) {
9549     if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9550                                        AllocType))
9551       return false;
9552   } else if (Init) {
9553     if (!EvaluateInPlace(*Val, Info, Result, Init))
9554       return false;
9555   } else if (!getDefaultInitValue(AllocType, *Val)) {
9556     return false;
9557   }
9558 
9559   // Array new returns a pointer to the first element, not a pointer to the
9560   // array.
9561   if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9562     Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9563 
9564   return true;
9565 }
9566 //===----------------------------------------------------------------------===//
9567 // Member Pointer Evaluation
9568 //===----------------------------------------------------------------------===//
9569 
9570 namespace {
9571 class MemberPointerExprEvaluator
9572   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9573   MemberPtr &Result;
9574 
9575   bool Success(const ValueDecl *D) {
9576     Result = MemberPtr(D);
9577     return true;
9578   }
9579 public:
9580 
9581   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9582     : ExprEvaluatorBaseTy(Info), Result(Result) {}
9583 
9584   bool Success(const APValue &V, const Expr *E) {
9585     Result.setFrom(V);
9586     return true;
9587   }
9588   bool ZeroInitialization(const Expr *E) {
9589     return Success((const ValueDecl*)nullptr);
9590   }
9591 
9592   bool VisitCastExpr(const CastExpr *E);
9593   bool VisitUnaryAddrOf(const UnaryOperator *E);
9594 };
9595 } // end anonymous namespace
9596 
9597 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9598                                   EvalInfo &Info) {
9599   assert(!E->isValueDependent());
9600   assert(E->isPRValue() && E->getType()->isMemberPointerType());
9601   return MemberPointerExprEvaluator(Info, Result).Visit(E);
9602 }
9603 
9604 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9605   switch (E->getCastKind()) {
9606   default:
9607     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9608 
9609   case CK_NullToMemberPointer:
9610     VisitIgnoredValue(E->getSubExpr());
9611     return ZeroInitialization(E);
9612 
9613   case CK_BaseToDerivedMemberPointer: {
9614     if (!Visit(E->getSubExpr()))
9615       return false;
9616     if (E->path_empty())
9617       return true;
9618     // Base-to-derived member pointer casts store the path in derived-to-base
9619     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9620     // the wrong end of the derived->base arc, so stagger the path by one class.
9621     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
9622     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
9623          PathI != PathE; ++PathI) {
9624       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9625       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
9626       if (!Result.castToDerived(Derived))
9627         return Error(E);
9628     }
9629     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
9630     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
9631       return Error(E);
9632     return true;
9633   }
9634 
9635   case CK_DerivedToBaseMemberPointer:
9636     if (!Visit(E->getSubExpr()))
9637       return false;
9638     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9639          PathE = E->path_end(); PathI != PathE; ++PathI) {
9640       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9641       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9642       if (!Result.castToBase(Base))
9643         return Error(E);
9644     }
9645     return true;
9646   }
9647 }
9648 
9649 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9650   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9651   // member can be formed.
9652   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
9653 }
9654 
9655 //===----------------------------------------------------------------------===//
9656 // Record Evaluation
9657 //===----------------------------------------------------------------------===//
9658 
9659 namespace {
9660   class RecordExprEvaluator
9661   : public ExprEvaluatorBase<RecordExprEvaluator> {
9662     const LValue &This;
9663     APValue &Result;
9664   public:
9665 
9666     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
9667       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
9668 
9669     bool Success(const APValue &V, const Expr *E) {
9670       Result = V;
9671       return true;
9672     }
9673     bool ZeroInitialization(const Expr *E) {
9674       return ZeroInitialization(E, E->getType());
9675     }
9676     bool ZeroInitialization(const Expr *E, QualType T);
9677 
9678     bool VisitCallExpr(const CallExpr *E) {
9679       return handleCallExpr(E, Result, &This);
9680     }
9681     bool VisitCastExpr(const CastExpr *E);
9682     bool VisitInitListExpr(const InitListExpr *E);
9683     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9684       return VisitCXXConstructExpr(E, E->getType());
9685     }
9686     bool VisitLambdaExpr(const LambdaExpr *E);
9687     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
9688     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
9689     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
9690     bool VisitBinCmp(const BinaryOperator *E);
9691   };
9692 }
9693 
9694 /// Perform zero-initialization on an object of non-union class type.
9695 /// C++11 [dcl.init]p5:
9696 ///  To zero-initialize an object or reference of type T means:
9697 ///    [...]
9698 ///    -- if T is a (possibly cv-qualified) non-union class type,
9699 ///       each non-static data member and each base-class subobject is
9700 ///       zero-initialized
9701 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
9702                                           const RecordDecl *RD,
9703                                           const LValue &This, APValue &Result) {
9704   assert(!RD->isUnion() && "Expected non-union class type");
9705   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
9706   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
9707                    std::distance(RD->field_begin(), RD->field_end()));
9708 
9709   if (RD->isInvalidDecl()) return false;
9710   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9711 
9712   if (CD) {
9713     unsigned Index = 0;
9714     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
9715            End = CD->bases_end(); I != End; ++I, ++Index) {
9716       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
9717       LValue Subobject = This;
9718       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
9719         return false;
9720       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
9721                                          Result.getStructBase(Index)))
9722         return false;
9723     }
9724   }
9725 
9726   for (const auto *I : RD->fields()) {
9727     // -- if T is a reference type, no initialization is performed.
9728     if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
9729       continue;
9730 
9731     LValue Subobject = This;
9732     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
9733       return false;
9734 
9735     ImplicitValueInitExpr VIE(I->getType());
9736     if (!EvaluateInPlace(
9737           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
9738       return false;
9739   }
9740 
9741   return true;
9742 }
9743 
9744 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
9745   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
9746   if (RD->isInvalidDecl()) return false;
9747   if (RD->isUnion()) {
9748     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9749     // object's first non-static named data member is zero-initialized
9750     RecordDecl::field_iterator I = RD->field_begin();
9751     while (I != RD->field_end() && (*I)->isUnnamedBitfield())
9752       ++I;
9753     if (I == RD->field_end()) {
9754       Result = APValue((const FieldDecl*)nullptr);
9755       return true;
9756     }
9757 
9758     LValue Subobject = This;
9759     if (!HandleLValueMember(Info, E, Subobject, *I))
9760       return false;
9761     Result = APValue(*I);
9762     ImplicitValueInitExpr VIE(I->getType());
9763     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
9764   }
9765 
9766   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
9767     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
9768     return false;
9769   }
9770 
9771   return HandleClassZeroInitialization(Info, E, RD, This, Result);
9772 }
9773 
9774 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
9775   switch (E->getCastKind()) {
9776   default:
9777     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9778 
9779   case CK_ConstructorConversion:
9780     return Visit(E->getSubExpr());
9781 
9782   case CK_DerivedToBase:
9783   case CK_UncheckedDerivedToBase: {
9784     APValue DerivedObject;
9785     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9786       return false;
9787     if (!DerivedObject.isStruct())
9788       return Error(E->getSubExpr());
9789 
9790     // Derived-to-base rvalue conversion: just slice off the derived part.
9791     APValue *Value = &DerivedObject;
9792     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9793     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9794          PathE = E->path_end(); PathI != PathE; ++PathI) {
9795       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
9796       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9797       Value = &Value->getStructBase(getBaseIndex(RD, Base));
9798       RD = Base;
9799     }
9800     Result = *Value;
9801     return true;
9802   }
9803   }
9804 }
9805 
9806 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9807   if (E->isTransparent())
9808     return Visit(E->getInit(0));
9809 
9810   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
9811   if (RD->isInvalidDecl()) return false;
9812   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9813   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
9814 
9815   EvalInfo::EvaluatingConstructorRAII EvalObj(
9816       Info,
9817       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
9818       CXXRD && CXXRD->getNumBases());
9819 
9820   if (RD->isUnion()) {
9821     const FieldDecl *Field = E->getInitializedFieldInUnion();
9822     Result = APValue(Field);
9823     if (!Field)
9824       return true;
9825 
9826     // If the initializer list for a union does not contain any elements, the
9827     // first element of the union is value-initialized.
9828     // FIXME: The element should be initialized from an initializer list.
9829     //        Is this difference ever observable for initializer lists which
9830     //        we don't build?
9831     ImplicitValueInitExpr VIE(Field->getType());
9832     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
9833 
9834     LValue Subobject = This;
9835     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
9836       return false;
9837 
9838     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9839     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9840                                   isa<CXXDefaultInitExpr>(InitExpr));
9841 
9842     if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
9843       if (Field->isBitField())
9844         return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
9845                                      Field);
9846       return true;
9847     }
9848 
9849     return false;
9850   }
9851 
9852   if (!Result.hasValue())
9853     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
9854                      std::distance(RD->field_begin(), RD->field_end()));
9855   unsigned ElementNo = 0;
9856   bool Success = true;
9857 
9858   // Initialize base classes.
9859   if (CXXRD && CXXRD->getNumBases()) {
9860     for (const auto &Base : CXXRD->bases()) {
9861       assert(ElementNo < E->getNumInits() && "missing init for base class");
9862       const Expr *Init = E->getInit(ElementNo);
9863 
9864       LValue Subobject = This;
9865       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
9866         return false;
9867 
9868       APValue &FieldVal = Result.getStructBase(ElementNo);
9869       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
9870         if (!Info.noteFailure())
9871           return false;
9872         Success = false;
9873       }
9874       ++ElementNo;
9875     }
9876 
9877     EvalObj.finishedConstructingBases();
9878   }
9879 
9880   // Initialize members.
9881   for (const auto *Field : RD->fields()) {
9882     // Anonymous bit-fields are not considered members of the class for
9883     // purposes of aggregate initialization.
9884     if (Field->isUnnamedBitfield())
9885       continue;
9886 
9887     LValue Subobject = This;
9888 
9889     bool HaveInit = ElementNo < E->getNumInits();
9890 
9891     // FIXME: Diagnostics here should point to the end of the initializer
9892     // list, not the start.
9893     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
9894                             Subobject, Field, &Layout))
9895       return false;
9896 
9897     // Perform an implicit value-initialization for members beyond the end of
9898     // the initializer list.
9899     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
9900     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
9901 
9902     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9903     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9904                                   isa<CXXDefaultInitExpr>(Init));
9905 
9906     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9907     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
9908         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
9909                                                        FieldVal, Field))) {
9910       if (!Info.noteFailure())
9911         return false;
9912       Success = false;
9913     }
9914   }
9915 
9916   EvalObj.finishedConstructingFields();
9917 
9918   return Success;
9919 }
9920 
9921 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
9922                                                 QualType T) {
9923   // Note that E's type is not necessarily the type of our class here; we might
9924   // be initializing an array element instead.
9925   const CXXConstructorDecl *FD = E->getConstructor();
9926   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
9927 
9928   bool ZeroInit = E->requiresZeroInitialization();
9929   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
9930     // If we've already performed zero-initialization, we're already done.
9931     if (Result.hasValue())
9932       return true;
9933 
9934     if (ZeroInit)
9935       return ZeroInitialization(E, T);
9936 
9937     return getDefaultInitValue(T, Result);
9938   }
9939 
9940   const FunctionDecl *Definition = nullptr;
9941   auto Body = FD->getBody(Definition);
9942 
9943   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9944     return false;
9945 
9946   // Avoid materializing a temporary for an elidable copy/move constructor.
9947   if (E->isElidable() && !ZeroInit) {
9948     // FIXME: This only handles the simplest case, where the source object
9949     //        is passed directly as the first argument to the constructor.
9950     //        This should also handle stepping though implicit casts and
9951     //        and conversion sequences which involve two steps, with a
9952     //        conversion operator followed by a converting constructor.
9953     const Expr *SrcObj = E->getArg(0);
9954     assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
9955     assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
9956     if (const MaterializeTemporaryExpr *ME =
9957             dyn_cast<MaterializeTemporaryExpr>(SrcObj))
9958       return Visit(ME->getSubExpr());
9959   }
9960 
9961   if (ZeroInit && !ZeroInitialization(E, T))
9962     return false;
9963 
9964   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
9965   return HandleConstructorCall(E, This, Args,
9966                                cast<CXXConstructorDecl>(Definition), Info,
9967                                Result);
9968 }
9969 
9970 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
9971     const CXXInheritedCtorInitExpr *E) {
9972   if (!Info.CurrentCall) {
9973     assert(Info.checkingPotentialConstantExpression());
9974     return false;
9975   }
9976 
9977   const CXXConstructorDecl *FD = E->getConstructor();
9978   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
9979     return false;
9980 
9981   const FunctionDecl *Definition = nullptr;
9982   auto Body = FD->getBody(Definition);
9983 
9984   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9985     return false;
9986 
9987   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
9988                                cast<CXXConstructorDecl>(Definition), Info,
9989                                Result);
9990 }
9991 
9992 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
9993     const CXXStdInitializerListExpr *E) {
9994   const ConstantArrayType *ArrayType =
9995       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
9996 
9997   LValue Array;
9998   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
9999     return false;
10000 
10001   // Get a pointer to the first element of the array.
10002   Array.addArray(Info, E, ArrayType);
10003 
10004   auto InvalidType = [&] {
10005     Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
10006       << E->getType();
10007     return false;
10008   };
10009 
10010   // FIXME: Perform the checks on the field types in SemaInit.
10011   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10012   RecordDecl::field_iterator Field = Record->field_begin();
10013   if (Field == Record->field_end())
10014     return InvalidType();
10015 
10016   // Start pointer.
10017   if (!Field->getType()->isPointerType() ||
10018       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10019                             ArrayType->getElementType()))
10020     return InvalidType();
10021 
10022   // FIXME: What if the initializer_list type has base classes, etc?
10023   Result = APValue(APValue::UninitStruct(), 0, 2);
10024   Array.moveInto(Result.getStructField(0));
10025 
10026   if (++Field == Record->field_end())
10027     return InvalidType();
10028 
10029   if (Field->getType()->isPointerType() &&
10030       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10031                            ArrayType->getElementType())) {
10032     // End pointer.
10033     if (!HandleLValueArrayAdjustment(Info, E, Array,
10034                                      ArrayType->getElementType(),
10035                                      ArrayType->getSize().getZExtValue()))
10036       return false;
10037     Array.moveInto(Result.getStructField(1));
10038   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
10039     // Length.
10040     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
10041   else
10042     return InvalidType();
10043 
10044   if (++Field != Record->field_end())
10045     return InvalidType();
10046 
10047   return true;
10048 }
10049 
10050 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10051   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10052   if (ClosureClass->isInvalidDecl())
10053     return false;
10054 
10055   const size_t NumFields =
10056       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10057 
10058   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10059                                             E->capture_init_end()) &&
10060          "The number of lambda capture initializers should equal the number of "
10061          "fields within the closure type");
10062 
10063   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10064   // Iterate through all the lambda's closure object's fields and initialize
10065   // them.
10066   auto *CaptureInitIt = E->capture_init_begin();
10067   const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
10068   bool Success = true;
10069   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10070   for (const auto *Field : ClosureClass->fields()) {
10071     assert(CaptureInitIt != E->capture_init_end());
10072     // Get the initializer for this field
10073     Expr *const CurFieldInit = *CaptureInitIt++;
10074 
10075     // If there is no initializer, either this is a VLA or an error has
10076     // occurred.
10077     if (!CurFieldInit)
10078       return Error(E);
10079 
10080     LValue Subobject = This;
10081 
10082     if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10083       return false;
10084 
10085     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10086     if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10087       if (!Info.keepEvaluatingAfterFailure())
10088         return false;
10089       Success = false;
10090     }
10091     ++CaptureIt;
10092   }
10093   return Success;
10094 }
10095 
10096 static bool EvaluateRecord(const Expr *E, const LValue &This,
10097                            APValue &Result, EvalInfo &Info) {
10098   assert(!E->isValueDependent());
10099   assert(E->isPRValue() && E->getType()->isRecordType() &&
10100          "can't evaluate expression as a record rvalue");
10101   return RecordExprEvaluator(Info, This, Result).Visit(E);
10102 }
10103 
10104 //===----------------------------------------------------------------------===//
10105 // Temporary Evaluation
10106 //
10107 // Temporaries are represented in the AST as rvalues, but generally behave like
10108 // lvalues. The full-object of which the temporary is a subobject is implicitly
10109 // materialized so that a reference can bind to it.
10110 //===----------------------------------------------------------------------===//
10111 namespace {
10112 class TemporaryExprEvaluator
10113   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10114 public:
10115   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10116     LValueExprEvaluatorBaseTy(Info, Result, false) {}
10117 
10118   /// Visit an expression which constructs the value of this temporary.
10119   bool VisitConstructExpr(const Expr *E) {
10120     APValue &Value = Info.CurrentCall->createTemporary(
10121         E, E->getType(), ScopeKind::FullExpression, Result);
10122     return EvaluateInPlace(Value, Info, Result, E);
10123   }
10124 
10125   bool VisitCastExpr(const CastExpr *E) {
10126     switch (E->getCastKind()) {
10127     default:
10128       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10129 
10130     case CK_ConstructorConversion:
10131       return VisitConstructExpr(E->getSubExpr());
10132     }
10133   }
10134   bool VisitInitListExpr(const InitListExpr *E) {
10135     return VisitConstructExpr(E);
10136   }
10137   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10138     return VisitConstructExpr(E);
10139   }
10140   bool VisitCallExpr(const CallExpr *E) {
10141     return VisitConstructExpr(E);
10142   }
10143   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10144     return VisitConstructExpr(E);
10145   }
10146   bool VisitLambdaExpr(const LambdaExpr *E) {
10147     return VisitConstructExpr(E);
10148   }
10149 };
10150 } // end anonymous namespace
10151 
10152 /// Evaluate an expression of record type as a temporary.
10153 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10154   assert(!E->isValueDependent());
10155   assert(E->isPRValue() && E->getType()->isRecordType());
10156   return TemporaryExprEvaluator(Info, Result).Visit(E);
10157 }
10158 
10159 //===----------------------------------------------------------------------===//
10160 // Vector Evaluation
10161 //===----------------------------------------------------------------------===//
10162 
10163 namespace {
10164   class VectorExprEvaluator
10165   : public ExprEvaluatorBase<VectorExprEvaluator> {
10166     APValue &Result;
10167   public:
10168 
10169     VectorExprEvaluator(EvalInfo &info, APValue &Result)
10170       : ExprEvaluatorBaseTy(info), Result(Result) {}
10171 
10172     bool Success(ArrayRef<APValue> V, const Expr *E) {
10173       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10174       // FIXME: remove this APValue copy.
10175       Result = APValue(V.data(), V.size());
10176       return true;
10177     }
10178     bool Success(const APValue &V, const Expr *E) {
10179       assert(V.isVector());
10180       Result = V;
10181       return true;
10182     }
10183     bool ZeroInitialization(const Expr *E);
10184 
10185     bool VisitUnaryReal(const UnaryOperator *E)
10186       { return Visit(E->getSubExpr()); }
10187     bool VisitCastExpr(const CastExpr* E);
10188     bool VisitInitListExpr(const InitListExpr *E);
10189     bool VisitUnaryImag(const UnaryOperator *E);
10190     bool VisitBinaryOperator(const BinaryOperator *E);
10191     bool VisitUnaryOperator(const UnaryOperator *E);
10192     // FIXME: Missing: conditional operator (for GNU
10193     //                 conditional select), shufflevector, ExtVectorElementExpr
10194   };
10195 } // end anonymous namespace
10196 
10197 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10198   assert(E->isPRValue() && E->getType()->isVectorType() &&
10199          "not a vector prvalue");
10200   return VectorExprEvaluator(Info, Result).Visit(E);
10201 }
10202 
10203 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10204   const VectorType *VTy = E->getType()->castAs<VectorType>();
10205   unsigned NElts = VTy->getNumElements();
10206 
10207   const Expr *SE = E->getSubExpr();
10208   QualType SETy = SE->getType();
10209 
10210   switch (E->getCastKind()) {
10211   case CK_VectorSplat: {
10212     APValue Val = APValue();
10213     if (SETy->isIntegerType()) {
10214       APSInt IntResult;
10215       if (!EvaluateInteger(SE, IntResult, Info))
10216         return false;
10217       Val = APValue(std::move(IntResult));
10218     } else if (SETy->isRealFloatingType()) {
10219       APFloat FloatResult(0.0);
10220       if (!EvaluateFloat(SE, FloatResult, Info))
10221         return false;
10222       Val = APValue(std::move(FloatResult));
10223     } else {
10224       return Error(E);
10225     }
10226 
10227     // Splat and create vector APValue.
10228     SmallVector<APValue, 4> Elts(NElts, Val);
10229     return Success(Elts, E);
10230   }
10231   case CK_BitCast: {
10232     // Evaluate the operand into an APInt we can extract from.
10233     llvm::APInt SValInt;
10234     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
10235       return false;
10236     // Extract the elements
10237     QualType EltTy = VTy->getElementType();
10238     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
10239     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
10240     SmallVector<APValue, 4> Elts;
10241     if (EltTy->isRealFloatingType()) {
10242       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
10243       unsigned FloatEltSize = EltSize;
10244       if (&Sem == &APFloat::x87DoubleExtended())
10245         FloatEltSize = 80;
10246       for (unsigned i = 0; i < NElts; i++) {
10247         llvm::APInt Elt;
10248         if (BigEndian)
10249           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
10250         else
10251           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
10252         Elts.push_back(APValue(APFloat(Sem, Elt)));
10253       }
10254     } else if (EltTy->isIntegerType()) {
10255       for (unsigned i = 0; i < NElts; i++) {
10256         llvm::APInt Elt;
10257         if (BigEndian)
10258           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
10259         else
10260           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
10261         Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType())));
10262       }
10263     } else {
10264       return Error(E);
10265     }
10266     return Success(Elts, E);
10267   }
10268   default:
10269     return ExprEvaluatorBaseTy::VisitCastExpr(E);
10270   }
10271 }
10272 
10273 bool
10274 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10275   const VectorType *VT = E->getType()->castAs<VectorType>();
10276   unsigned NumInits = E->getNumInits();
10277   unsigned NumElements = VT->getNumElements();
10278 
10279   QualType EltTy = VT->getElementType();
10280   SmallVector<APValue, 4> Elements;
10281 
10282   // The number of initializers can be less than the number of
10283   // vector elements. For OpenCL, this can be due to nested vector
10284   // initialization. For GCC compatibility, missing trailing elements
10285   // should be initialized with zeroes.
10286   unsigned CountInits = 0, CountElts = 0;
10287   while (CountElts < NumElements) {
10288     // Handle nested vector initialization.
10289     if (CountInits < NumInits
10290         && E->getInit(CountInits)->getType()->isVectorType()) {
10291       APValue v;
10292       if (!EvaluateVector(E->getInit(CountInits), v, Info))
10293         return Error(E);
10294       unsigned vlen = v.getVectorLength();
10295       for (unsigned j = 0; j < vlen; j++)
10296         Elements.push_back(v.getVectorElt(j));
10297       CountElts += vlen;
10298     } else if (EltTy->isIntegerType()) {
10299       llvm::APSInt sInt(32);
10300       if (CountInits < NumInits) {
10301         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10302           return false;
10303       } else // trailing integer zero.
10304         sInt = Info.Ctx.MakeIntValue(0, EltTy);
10305       Elements.push_back(APValue(sInt));
10306       CountElts++;
10307     } else {
10308       llvm::APFloat f(0.0);
10309       if (CountInits < NumInits) {
10310         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10311           return false;
10312       } else // trailing float zero.
10313         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10314       Elements.push_back(APValue(f));
10315       CountElts++;
10316     }
10317     CountInits++;
10318   }
10319   return Success(Elements, E);
10320 }
10321 
10322 bool
10323 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10324   const auto *VT = E->getType()->castAs<VectorType>();
10325   QualType EltTy = VT->getElementType();
10326   APValue ZeroElement;
10327   if (EltTy->isIntegerType())
10328     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10329   else
10330     ZeroElement =
10331         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10332 
10333   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10334   return Success(Elements, E);
10335 }
10336 
10337 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10338   VisitIgnoredValue(E->getSubExpr());
10339   return ZeroInitialization(E);
10340 }
10341 
10342 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10343   BinaryOperatorKind Op = E->getOpcode();
10344   assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10345          "Operation not supported on vector types");
10346 
10347   if (Op == BO_Comma)
10348     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10349 
10350   Expr *LHS = E->getLHS();
10351   Expr *RHS = E->getRHS();
10352 
10353   assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10354          "Must both be vector types");
10355   // Checking JUST the types are the same would be fine, except shifts don't
10356   // need to have their types be the same (since you always shift by an int).
10357   assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10358              E->getType()->castAs<VectorType>()->getNumElements() &&
10359          RHS->getType()->castAs<VectorType>()->getNumElements() ==
10360              E->getType()->castAs<VectorType>()->getNumElements() &&
10361          "All operands must be the same size.");
10362 
10363   APValue LHSValue;
10364   APValue RHSValue;
10365   bool LHSOK = Evaluate(LHSValue, Info, LHS);
10366   if (!LHSOK && !Info.noteFailure())
10367     return false;
10368   if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10369     return false;
10370 
10371   if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10372     return false;
10373 
10374   return Success(LHSValue, E);
10375 }
10376 
10377 static llvm::Optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10378                                                          QualType ResultTy,
10379                                                          UnaryOperatorKind Op,
10380                                                          APValue Elt) {
10381   switch (Op) {
10382   case UO_Plus:
10383     // Nothing to do here.
10384     return Elt;
10385   case UO_Minus:
10386     if (Elt.getKind() == APValue::Int) {
10387       Elt.getInt().negate();
10388     } else {
10389       assert(Elt.getKind() == APValue::Float &&
10390              "Vector can only be int or float type");
10391       Elt.getFloat().changeSign();
10392     }
10393     return Elt;
10394   case UO_Not:
10395     // This is only valid for integral types anyway, so we don't have to handle
10396     // float here.
10397     assert(Elt.getKind() == APValue::Int &&
10398            "Vector operator ~ can only be int");
10399     Elt.getInt().flipAllBits();
10400     return Elt;
10401   case UO_LNot: {
10402     if (Elt.getKind() == APValue::Int) {
10403       Elt.getInt() = !Elt.getInt();
10404       // operator ! on vectors returns -1 for 'truth', so negate it.
10405       Elt.getInt().negate();
10406       return Elt;
10407     }
10408     assert(Elt.getKind() == APValue::Float &&
10409            "Vector can only be int or float type");
10410     // Float types result in an int of the same size, but -1 for true, or 0 for
10411     // false.
10412     APSInt EltResult{Ctx.getIntWidth(ResultTy),
10413                      ResultTy->isUnsignedIntegerType()};
10414     if (Elt.getFloat().isZero())
10415       EltResult.setAllBits();
10416     else
10417       EltResult.clearAllBits();
10418 
10419     return APValue{EltResult};
10420   }
10421   default:
10422     // FIXME: Implement the rest of the unary operators.
10423     return llvm::None;
10424   }
10425 }
10426 
10427 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10428   Expr *SubExpr = E->getSubExpr();
10429   const auto *VD = SubExpr->getType()->castAs<VectorType>();
10430   // This result element type differs in the case of negating a floating point
10431   // vector, since the result type is the a vector of the equivilant sized
10432   // integer.
10433   const QualType ResultEltTy = VD->getElementType();
10434   UnaryOperatorKind Op = E->getOpcode();
10435 
10436   APValue SubExprValue;
10437   if (!Evaluate(SubExprValue, Info, SubExpr))
10438     return false;
10439 
10440   assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
10441          "Vector length doesn't match type?");
10442 
10443   SmallVector<APValue, 4> ResultElements;
10444   for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10445     llvm::Optional<APValue> Elt = handleVectorUnaryOperator(
10446         Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum));
10447     if (!Elt)
10448       return false;
10449     ResultElements.push_back(*Elt);
10450   }
10451   return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10452 }
10453 
10454 //===----------------------------------------------------------------------===//
10455 // Array Evaluation
10456 //===----------------------------------------------------------------------===//
10457 
10458 namespace {
10459   class ArrayExprEvaluator
10460   : public ExprEvaluatorBase<ArrayExprEvaluator> {
10461     const LValue &This;
10462     APValue &Result;
10463   public:
10464 
10465     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10466       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10467 
10468     bool Success(const APValue &V, const Expr *E) {
10469       assert(V.isArray() && "expected array");
10470       Result = V;
10471       return true;
10472     }
10473 
10474     bool ZeroInitialization(const Expr *E) {
10475       const ConstantArrayType *CAT =
10476           Info.Ctx.getAsConstantArrayType(E->getType());
10477       if (!CAT) {
10478         if (E->getType()->isIncompleteArrayType()) {
10479           // We can be asked to zero-initialize a flexible array member; this
10480           // is represented as an ImplicitValueInitExpr of incomplete array
10481           // type. In this case, the array has zero elements.
10482           Result = APValue(APValue::UninitArray(), 0, 0);
10483           return true;
10484         }
10485         // FIXME: We could handle VLAs here.
10486         return Error(E);
10487       }
10488 
10489       Result = APValue(APValue::UninitArray(), 0,
10490                        CAT->getSize().getZExtValue());
10491       if (!Result.hasArrayFiller())
10492         return true;
10493 
10494       // Zero-initialize all elements.
10495       LValue Subobject = This;
10496       Subobject.addArray(Info, E, CAT);
10497       ImplicitValueInitExpr VIE(CAT->getElementType());
10498       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10499     }
10500 
10501     bool VisitCallExpr(const CallExpr *E) {
10502       return handleCallExpr(E, Result, &This);
10503     }
10504     bool VisitInitListExpr(const InitListExpr *E,
10505                            QualType AllocType = QualType());
10506     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10507     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10508     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10509                                const LValue &Subobject,
10510                                APValue *Value, QualType Type);
10511     bool VisitStringLiteral(const StringLiteral *E,
10512                             QualType AllocType = QualType()) {
10513       expandStringLiteral(Info, E, Result, AllocType);
10514       return true;
10515     }
10516   };
10517 } // end anonymous namespace
10518 
10519 static bool EvaluateArray(const Expr *E, const LValue &This,
10520                           APValue &Result, EvalInfo &Info) {
10521   assert(!E->isValueDependent());
10522   assert(E->isPRValue() && E->getType()->isArrayType() &&
10523          "not an array prvalue");
10524   return ArrayExprEvaluator(Info, This, Result).Visit(E);
10525 }
10526 
10527 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10528                                      APValue &Result, const InitListExpr *ILE,
10529                                      QualType AllocType) {
10530   assert(!ILE->isValueDependent());
10531   assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
10532          "not an array prvalue");
10533   return ArrayExprEvaluator(Info, This, Result)
10534       .VisitInitListExpr(ILE, AllocType);
10535 }
10536 
10537 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10538                                           APValue &Result,
10539                                           const CXXConstructExpr *CCE,
10540                                           QualType AllocType) {
10541   assert(!CCE->isValueDependent());
10542   assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
10543          "not an array prvalue");
10544   return ArrayExprEvaluator(Info, This, Result)
10545       .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
10546 }
10547 
10548 // Return true iff the given array filler may depend on the element index.
10549 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10550   // For now, just allow non-class value-initialization and initialization
10551   // lists comprised of them.
10552   if (isa<ImplicitValueInitExpr>(FillerExpr))
10553     return false;
10554   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10555     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10556       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10557         return true;
10558     }
10559     return false;
10560   }
10561   return true;
10562 }
10563 
10564 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10565                                            QualType AllocType) {
10566   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10567       AllocType.isNull() ? E->getType() : AllocType);
10568   if (!CAT)
10569     return Error(E);
10570 
10571   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10572   // an appropriately-typed string literal enclosed in braces.
10573   if (E->isStringLiteralInit()) {
10574     auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts());
10575     // FIXME: Support ObjCEncodeExpr here once we support it in
10576     // ArrayExprEvaluator generally.
10577     if (!SL)
10578       return Error(E);
10579     return VisitStringLiteral(SL, AllocType);
10580   }
10581   // Any other transparent list init will need proper handling of the
10582   // AllocType; we can't just recurse to the inner initializer.
10583   assert(!E->isTransparent() &&
10584          "transparent array list initialization is not string literal init?");
10585 
10586   bool Success = true;
10587 
10588   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
10589          "zero-initialized array shouldn't have any initialized elts");
10590   APValue Filler;
10591   if (Result.isArray() && Result.hasArrayFiller())
10592     Filler = Result.getArrayFiller();
10593 
10594   unsigned NumEltsToInit = E->getNumInits();
10595   unsigned NumElts = CAT->getSize().getZExtValue();
10596   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
10597 
10598   // If the initializer might depend on the array index, run it for each
10599   // array element.
10600   if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
10601     NumEltsToInit = NumElts;
10602 
10603   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
10604                           << NumEltsToInit << ".\n");
10605 
10606   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
10607 
10608   // If the array was previously zero-initialized, preserve the
10609   // zero-initialized values.
10610   if (Filler.hasValue()) {
10611     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
10612       Result.getArrayInitializedElt(I) = Filler;
10613     if (Result.hasArrayFiller())
10614       Result.getArrayFiller() = Filler;
10615   }
10616 
10617   LValue Subobject = This;
10618   Subobject.addArray(Info, E, CAT);
10619   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
10620     const Expr *Init =
10621         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
10622     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10623                          Info, Subobject, Init) ||
10624         !HandleLValueArrayAdjustment(Info, Init, Subobject,
10625                                      CAT->getElementType(), 1)) {
10626       if (!Info.noteFailure())
10627         return false;
10628       Success = false;
10629     }
10630   }
10631 
10632   if (!Result.hasArrayFiller())
10633     return Success;
10634 
10635   // If we get here, we have a trivial filler, which we can just evaluate
10636   // once and splat over the rest of the array elements.
10637   assert(FillerExpr && "no array filler for incomplete init list");
10638   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
10639                          FillerExpr) && Success;
10640 }
10641 
10642 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
10643   LValue CommonLV;
10644   if (E->getCommonExpr() &&
10645       !Evaluate(Info.CurrentCall->createTemporary(
10646                     E->getCommonExpr(),
10647                     getStorageType(Info.Ctx, E->getCommonExpr()),
10648                     ScopeKind::FullExpression, CommonLV),
10649                 Info, E->getCommonExpr()->getSourceExpr()))
10650     return false;
10651 
10652   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
10653 
10654   uint64_t Elements = CAT->getSize().getZExtValue();
10655   Result = APValue(APValue::UninitArray(), Elements, Elements);
10656 
10657   LValue Subobject = This;
10658   Subobject.addArray(Info, E, CAT);
10659 
10660   bool Success = true;
10661   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
10662     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10663                          Info, Subobject, E->getSubExpr()) ||
10664         !HandleLValueArrayAdjustment(Info, E, Subobject,
10665                                      CAT->getElementType(), 1)) {
10666       if (!Info.noteFailure())
10667         return false;
10668       Success = false;
10669     }
10670   }
10671 
10672   return Success;
10673 }
10674 
10675 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
10676   return VisitCXXConstructExpr(E, This, &Result, E->getType());
10677 }
10678 
10679 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10680                                                const LValue &Subobject,
10681                                                APValue *Value,
10682                                                QualType Type) {
10683   bool HadZeroInit = Value->hasValue();
10684 
10685   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
10686     unsigned N = CAT->getSize().getZExtValue();
10687 
10688     // Preserve the array filler if we had prior zero-initialization.
10689     APValue Filler =
10690       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
10691                                              : APValue();
10692 
10693     *Value = APValue(APValue::UninitArray(), N, N);
10694 
10695     if (HadZeroInit)
10696       for (unsigned I = 0; I != N; ++I)
10697         Value->getArrayInitializedElt(I) = Filler;
10698 
10699     // Initialize the elements.
10700     LValue ArrayElt = Subobject;
10701     ArrayElt.addArray(Info, E, CAT);
10702     for (unsigned I = 0; I != N; ++I)
10703       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
10704                                  CAT->getElementType()) ||
10705           !HandleLValueArrayAdjustment(Info, E, ArrayElt, CAT->getElementType(),
10706                                        1))
10707         return false;
10708 
10709     return true;
10710   }
10711 
10712   if (!Type->isRecordType())
10713     return Error(E);
10714 
10715   return RecordExprEvaluator(Info, Subobject, *Value)
10716              .VisitCXXConstructExpr(E, Type);
10717 }
10718 
10719 //===----------------------------------------------------------------------===//
10720 // Integer Evaluation
10721 //
10722 // As a GNU extension, we support casting pointers to sufficiently-wide integer
10723 // types and back in constant folding. Integer values are thus represented
10724 // either as an integer-valued APValue, or as an lvalue-valued APValue.
10725 //===----------------------------------------------------------------------===//
10726 
10727 namespace {
10728 class IntExprEvaluator
10729         : public ExprEvaluatorBase<IntExprEvaluator> {
10730   APValue &Result;
10731 public:
10732   IntExprEvaluator(EvalInfo &info, APValue &result)
10733       : ExprEvaluatorBaseTy(info), Result(result) {}
10734 
10735   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
10736     assert(E->getType()->isIntegralOrEnumerationType() &&
10737            "Invalid evaluation result.");
10738     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
10739            "Invalid evaluation result.");
10740     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10741            "Invalid evaluation result.");
10742     Result = APValue(SI);
10743     return true;
10744   }
10745   bool Success(const llvm::APSInt &SI, const Expr *E) {
10746     return Success(SI, E, Result);
10747   }
10748 
10749   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
10750     assert(E->getType()->isIntegralOrEnumerationType() &&
10751            "Invalid evaluation result.");
10752     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10753            "Invalid evaluation result.");
10754     Result = APValue(APSInt(I));
10755     Result.getInt().setIsUnsigned(
10756                             E->getType()->isUnsignedIntegerOrEnumerationType());
10757     return true;
10758   }
10759   bool Success(const llvm::APInt &I, const Expr *E) {
10760     return Success(I, E, Result);
10761   }
10762 
10763   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
10764     assert(E->getType()->isIntegralOrEnumerationType() &&
10765            "Invalid evaluation result.");
10766     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
10767     return true;
10768   }
10769   bool Success(uint64_t Value, const Expr *E) {
10770     return Success(Value, E, Result);
10771   }
10772 
10773   bool Success(CharUnits Size, const Expr *E) {
10774     return Success(Size.getQuantity(), E);
10775   }
10776 
10777   bool Success(const APValue &V, const Expr *E) {
10778     if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
10779       Result = V;
10780       return true;
10781     }
10782     return Success(V.getInt(), E);
10783   }
10784 
10785   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
10786 
10787   //===--------------------------------------------------------------------===//
10788   //                            Visitor Methods
10789   //===--------------------------------------------------------------------===//
10790 
10791   bool VisitIntegerLiteral(const IntegerLiteral *E) {
10792     return Success(E->getValue(), E);
10793   }
10794   bool VisitCharacterLiteral(const CharacterLiteral *E) {
10795     return Success(E->getValue(), E);
10796   }
10797 
10798   bool CheckReferencedDecl(const Expr *E, const Decl *D);
10799   bool VisitDeclRefExpr(const DeclRefExpr *E) {
10800     if (CheckReferencedDecl(E, E->getDecl()))
10801       return true;
10802 
10803     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
10804   }
10805   bool VisitMemberExpr(const MemberExpr *E) {
10806     if (CheckReferencedDecl(E, E->getMemberDecl())) {
10807       VisitIgnoredBaseExpression(E->getBase());
10808       return true;
10809     }
10810 
10811     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
10812   }
10813 
10814   bool VisitCallExpr(const CallExpr *E);
10815   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
10816   bool VisitBinaryOperator(const BinaryOperator *E);
10817   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
10818   bool VisitUnaryOperator(const UnaryOperator *E);
10819 
10820   bool VisitCastExpr(const CastExpr* E);
10821   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
10822 
10823   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
10824     return Success(E->getValue(), E);
10825   }
10826 
10827   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
10828     return Success(E->getValue(), E);
10829   }
10830 
10831   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
10832     if (Info.ArrayInitIndex == uint64_t(-1)) {
10833       // We were asked to evaluate this subexpression independent of the
10834       // enclosing ArrayInitLoopExpr. We can't do that.
10835       Info.FFDiag(E);
10836       return false;
10837     }
10838     return Success(Info.ArrayInitIndex, E);
10839   }
10840 
10841   // Note, GNU defines __null as an integer, not a pointer.
10842   bool VisitGNUNullExpr(const GNUNullExpr *E) {
10843     return ZeroInitialization(E);
10844   }
10845 
10846   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
10847     return Success(E->getValue(), E);
10848   }
10849 
10850   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
10851     return Success(E->getValue(), E);
10852   }
10853 
10854   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
10855     return Success(E->getValue(), E);
10856   }
10857 
10858   bool VisitUnaryReal(const UnaryOperator *E);
10859   bool VisitUnaryImag(const UnaryOperator *E);
10860 
10861   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
10862   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
10863   bool VisitSourceLocExpr(const SourceLocExpr *E);
10864   bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
10865   bool VisitRequiresExpr(const RequiresExpr *E);
10866   // FIXME: Missing: array subscript of vector, member of vector
10867 };
10868 
10869 class FixedPointExprEvaluator
10870     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
10871   APValue &Result;
10872 
10873  public:
10874   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
10875       : ExprEvaluatorBaseTy(info), Result(result) {}
10876 
10877   bool Success(const llvm::APInt &I, const Expr *E) {
10878     return Success(
10879         APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10880   }
10881 
10882   bool Success(uint64_t Value, const Expr *E) {
10883     return Success(
10884         APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10885   }
10886 
10887   bool Success(const APValue &V, const Expr *E) {
10888     return Success(V.getFixedPoint(), E);
10889   }
10890 
10891   bool Success(const APFixedPoint &V, const Expr *E) {
10892     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
10893     assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10894            "Invalid evaluation result.");
10895     Result = APValue(V);
10896     return true;
10897   }
10898 
10899   //===--------------------------------------------------------------------===//
10900   //                            Visitor Methods
10901   //===--------------------------------------------------------------------===//
10902 
10903   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
10904     return Success(E->getValue(), E);
10905   }
10906 
10907   bool VisitCastExpr(const CastExpr *E);
10908   bool VisitUnaryOperator(const UnaryOperator *E);
10909   bool VisitBinaryOperator(const BinaryOperator *E);
10910 };
10911 } // end anonymous namespace
10912 
10913 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
10914 /// produce either the integer value or a pointer.
10915 ///
10916 /// GCC has a heinous extension which folds casts between pointer types and
10917 /// pointer-sized integral types. We support this by allowing the evaluation of
10918 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
10919 /// Some simple arithmetic on such values is supported (they are treated much
10920 /// like char*).
10921 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
10922                                     EvalInfo &Info) {
10923   assert(!E->isValueDependent());
10924   assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
10925   return IntExprEvaluator(Info, Result).Visit(E);
10926 }
10927 
10928 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
10929   assert(!E->isValueDependent());
10930   APValue Val;
10931   if (!EvaluateIntegerOrLValue(E, Val, Info))
10932     return false;
10933   if (!Val.isInt()) {
10934     // FIXME: It would be better to produce the diagnostic for casting
10935     //        a pointer to an integer.
10936     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
10937     return false;
10938   }
10939   Result = Val.getInt();
10940   return true;
10941 }
10942 
10943 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
10944   APValue Evaluated = E->EvaluateInContext(
10945       Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
10946   return Success(Evaluated, E);
10947 }
10948 
10949 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
10950                                EvalInfo &Info) {
10951   assert(!E->isValueDependent());
10952   if (E->getType()->isFixedPointType()) {
10953     APValue Val;
10954     if (!FixedPointExprEvaluator(Info, Val).Visit(E))
10955       return false;
10956     if (!Val.isFixedPoint())
10957       return false;
10958 
10959     Result = Val.getFixedPoint();
10960     return true;
10961   }
10962   return false;
10963 }
10964 
10965 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
10966                                         EvalInfo &Info) {
10967   assert(!E->isValueDependent());
10968   if (E->getType()->isIntegerType()) {
10969     auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
10970     APSInt Val;
10971     if (!EvaluateInteger(E, Val, Info))
10972       return false;
10973     Result = APFixedPoint(Val, FXSema);
10974     return true;
10975   } else if (E->getType()->isFixedPointType()) {
10976     return EvaluateFixedPoint(E, Result, Info);
10977   }
10978   return false;
10979 }
10980 
10981 /// Check whether the given declaration can be directly converted to an integral
10982 /// rvalue. If not, no diagnostic is produced; there are other things we can
10983 /// try.
10984 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
10985   // Enums are integer constant exprs.
10986   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
10987     // Check for signedness/width mismatches between E type and ECD value.
10988     bool SameSign = (ECD->getInitVal().isSigned()
10989                      == E->getType()->isSignedIntegerOrEnumerationType());
10990     bool SameWidth = (ECD->getInitVal().getBitWidth()
10991                       == Info.Ctx.getIntWidth(E->getType()));
10992     if (SameSign && SameWidth)
10993       return Success(ECD->getInitVal(), E);
10994     else {
10995       // Get rid of mismatch (otherwise Success assertions will fail)
10996       // by computing a new value matching the type of E.
10997       llvm::APSInt Val = ECD->getInitVal();
10998       if (!SameSign)
10999         Val.setIsSigned(!ECD->getInitVal().isSigned());
11000       if (!SameWidth)
11001         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
11002       return Success(Val, E);
11003     }
11004   }
11005   return false;
11006 }
11007 
11008 /// Values returned by __builtin_classify_type, chosen to match the values
11009 /// produced by GCC's builtin.
11010 enum class GCCTypeClass {
11011   None = -1,
11012   Void = 0,
11013   Integer = 1,
11014   // GCC reserves 2 for character types, but instead classifies them as
11015   // integers.
11016   Enum = 3,
11017   Bool = 4,
11018   Pointer = 5,
11019   // GCC reserves 6 for references, but appears to never use it (because
11020   // expressions never have reference type, presumably).
11021   PointerToDataMember = 7,
11022   RealFloat = 8,
11023   Complex = 9,
11024   // GCC reserves 10 for functions, but does not use it since GCC version 6 due
11025   // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
11026   // GCC claims to reserve 11 for pointers to member functions, but *actually*
11027   // uses 12 for that purpose, same as for a class or struct. Maybe it
11028   // internally implements a pointer to member as a struct?  Who knows.
11029   PointerToMemberFunction = 12, // Not a bug, see above.
11030   ClassOrStruct = 12,
11031   Union = 13,
11032   // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
11033   // decay to pointer. (Prior to version 6 it was only used in C++ mode).
11034   // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
11035   // literals.
11036 };
11037 
11038 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11039 /// as GCC.
11040 static GCCTypeClass
11041 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
11042   assert(!T->isDependentType() && "unexpected dependent type");
11043 
11044   QualType CanTy = T.getCanonicalType();
11045   const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
11046 
11047   switch (CanTy->getTypeClass()) {
11048 #define TYPE(ID, BASE)
11049 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11050 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11051 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11052 #include "clang/AST/TypeNodes.inc"
11053   case Type::Auto:
11054   case Type::DeducedTemplateSpecialization:
11055       llvm_unreachable("unexpected non-canonical or dependent type");
11056 
11057   case Type::Builtin:
11058     switch (BT->getKind()) {
11059 #define BUILTIN_TYPE(ID, SINGLETON_ID)
11060 #define SIGNED_TYPE(ID, SINGLETON_ID) \
11061     case BuiltinType::ID: return GCCTypeClass::Integer;
11062 #define FLOATING_TYPE(ID, SINGLETON_ID) \
11063     case BuiltinType::ID: return GCCTypeClass::RealFloat;
11064 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11065     case BuiltinType::ID: break;
11066 #include "clang/AST/BuiltinTypes.def"
11067     case BuiltinType::Void:
11068       return GCCTypeClass::Void;
11069 
11070     case BuiltinType::Bool:
11071       return GCCTypeClass::Bool;
11072 
11073     case BuiltinType::Char_U:
11074     case BuiltinType::UChar:
11075     case BuiltinType::WChar_U:
11076     case BuiltinType::Char8:
11077     case BuiltinType::Char16:
11078     case BuiltinType::Char32:
11079     case BuiltinType::UShort:
11080     case BuiltinType::UInt:
11081     case BuiltinType::ULong:
11082     case BuiltinType::ULongLong:
11083     case BuiltinType::UInt128:
11084       return GCCTypeClass::Integer;
11085 
11086     case BuiltinType::UShortAccum:
11087     case BuiltinType::UAccum:
11088     case BuiltinType::ULongAccum:
11089     case BuiltinType::UShortFract:
11090     case BuiltinType::UFract:
11091     case BuiltinType::ULongFract:
11092     case BuiltinType::SatUShortAccum:
11093     case BuiltinType::SatUAccum:
11094     case BuiltinType::SatULongAccum:
11095     case BuiltinType::SatUShortFract:
11096     case BuiltinType::SatUFract:
11097     case BuiltinType::SatULongFract:
11098       return GCCTypeClass::None;
11099 
11100     case BuiltinType::NullPtr:
11101 
11102     case BuiltinType::ObjCId:
11103     case BuiltinType::ObjCClass:
11104     case BuiltinType::ObjCSel:
11105 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11106     case BuiltinType::Id:
11107 #include "clang/Basic/OpenCLImageTypes.def"
11108 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11109     case BuiltinType::Id:
11110 #include "clang/Basic/OpenCLExtensionTypes.def"
11111     case BuiltinType::OCLSampler:
11112     case BuiltinType::OCLEvent:
11113     case BuiltinType::OCLClkEvent:
11114     case BuiltinType::OCLQueue:
11115     case BuiltinType::OCLReserveID:
11116 #define SVE_TYPE(Name, Id, SingletonId) \
11117     case BuiltinType::Id:
11118 #include "clang/Basic/AArch64SVEACLETypes.def"
11119 #define PPC_VECTOR_TYPE(Name, Id, Size) \
11120     case BuiltinType::Id:
11121 #include "clang/Basic/PPCTypes.def"
11122 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11123 #include "clang/Basic/RISCVVTypes.def"
11124       return GCCTypeClass::None;
11125 
11126     case BuiltinType::Dependent:
11127       llvm_unreachable("unexpected dependent type");
11128     };
11129     llvm_unreachable("unexpected placeholder type");
11130 
11131   case Type::Enum:
11132     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11133 
11134   case Type::Pointer:
11135   case Type::ConstantArray:
11136   case Type::VariableArray:
11137   case Type::IncompleteArray:
11138   case Type::FunctionNoProto:
11139   case Type::FunctionProto:
11140     return GCCTypeClass::Pointer;
11141 
11142   case Type::MemberPointer:
11143     return CanTy->isMemberDataPointerType()
11144                ? GCCTypeClass::PointerToDataMember
11145                : GCCTypeClass::PointerToMemberFunction;
11146 
11147   case Type::Complex:
11148     return GCCTypeClass::Complex;
11149 
11150   case Type::Record:
11151     return CanTy->isUnionType() ? GCCTypeClass::Union
11152                                 : GCCTypeClass::ClassOrStruct;
11153 
11154   case Type::Atomic:
11155     // GCC classifies _Atomic T the same as T.
11156     return EvaluateBuiltinClassifyType(
11157         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11158 
11159   case Type::BlockPointer:
11160   case Type::Vector:
11161   case Type::ExtVector:
11162   case Type::ConstantMatrix:
11163   case Type::ObjCObject:
11164   case Type::ObjCInterface:
11165   case Type::ObjCObjectPointer:
11166   case Type::Pipe:
11167   case Type::BitInt:
11168     // GCC classifies vectors as None. We follow its lead and classify all
11169     // other types that don't fit into the regular classification the same way.
11170     return GCCTypeClass::None;
11171 
11172   case Type::LValueReference:
11173   case Type::RValueReference:
11174     llvm_unreachable("invalid type for expression");
11175   }
11176 
11177   llvm_unreachable("unexpected type class");
11178 }
11179 
11180 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11181 /// as GCC.
11182 static GCCTypeClass
11183 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11184   // If no argument was supplied, default to None. This isn't
11185   // ideal, however it is what gcc does.
11186   if (E->getNumArgs() == 0)
11187     return GCCTypeClass::None;
11188 
11189   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11190   // being an ICE, but still folds it to a constant using the type of the first
11191   // argument.
11192   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11193 }
11194 
11195 /// EvaluateBuiltinConstantPForLValue - Determine the result of
11196 /// __builtin_constant_p when applied to the given pointer.
11197 ///
11198 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
11199 /// or it points to the first character of a string literal.
11200 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11201   APValue::LValueBase Base = LV.getLValueBase();
11202   if (Base.isNull()) {
11203     // A null base is acceptable.
11204     return true;
11205   } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11206     if (!isa<StringLiteral>(E))
11207       return false;
11208     return LV.getLValueOffset().isZero();
11209   } else if (Base.is<TypeInfoLValue>()) {
11210     // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11211     // evaluate to true.
11212     return true;
11213   } else {
11214     // Any other base is not constant enough for GCC.
11215     return false;
11216   }
11217 }
11218 
11219 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11220 /// GCC as we can manage.
11221 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11222   // This evaluation is not permitted to have side-effects, so evaluate it in
11223   // a speculative evaluation context.
11224   SpeculativeEvaluationRAII SpeculativeEval(Info);
11225 
11226   // Constant-folding is always enabled for the operand of __builtin_constant_p
11227   // (even when the enclosing evaluation context otherwise requires a strict
11228   // language-specific constant expression).
11229   FoldConstant Fold(Info, true);
11230 
11231   QualType ArgType = Arg->getType();
11232 
11233   // __builtin_constant_p always has one operand. The rules which gcc follows
11234   // are not precisely documented, but are as follows:
11235   //
11236   //  - If the operand is of integral, floating, complex or enumeration type,
11237   //    and can be folded to a known value of that type, it returns 1.
11238   //  - If the operand can be folded to a pointer to the first character
11239   //    of a string literal (or such a pointer cast to an integral type)
11240   //    or to a null pointer or an integer cast to a pointer, it returns 1.
11241   //
11242   // Otherwise, it returns 0.
11243   //
11244   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11245   // its support for this did not work prior to GCC 9 and is not yet well
11246   // understood.
11247   if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11248       ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11249       ArgType->isNullPtrType()) {
11250     APValue V;
11251     if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
11252       Fold.keepDiagnostics();
11253       return false;
11254     }
11255 
11256     // For a pointer (possibly cast to integer), there are special rules.
11257     if (V.getKind() == APValue::LValue)
11258       return EvaluateBuiltinConstantPForLValue(V);
11259 
11260     // Otherwise, any constant value is good enough.
11261     return V.hasValue();
11262   }
11263 
11264   // Anything else isn't considered to be sufficiently constant.
11265   return false;
11266 }
11267 
11268 /// Retrieves the "underlying object type" of the given expression,
11269 /// as used by __builtin_object_size.
11270 static QualType getObjectType(APValue::LValueBase B) {
11271   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11272     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
11273       return VD->getType();
11274   } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11275     if (isa<CompoundLiteralExpr>(E))
11276       return E->getType();
11277   } else if (B.is<TypeInfoLValue>()) {
11278     return B.getTypeInfoType();
11279   } else if (B.is<DynamicAllocLValue>()) {
11280     return B.getDynamicAllocType();
11281   }
11282 
11283   return QualType();
11284 }
11285 
11286 /// A more selective version of E->IgnoreParenCasts for
11287 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11288 /// to change the type of E.
11289 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11290 ///
11291 /// Always returns an RValue with a pointer representation.
11292 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11293   assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
11294 
11295   auto *NoParens = E->IgnoreParens();
11296   auto *Cast = dyn_cast<CastExpr>(NoParens);
11297   if (Cast == nullptr)
11298     return NoParens;
11299 
11300   // We only conservatively allow a few kinds of casts, because this code is
11301   // inherently a simple solution that seeks to support the common case.
11302   auto CastKind = Cast->getCastKind();
11303   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11304       CastKind != CK_AddressSpaceConversion)
11305     return NoParens;
11306 
11307   auto *SubExpr = Cast->getSubExpr();
11308   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
11309     return NoParens;
11310   return ignorePointerCastsAndParens(SubExpr);
11311 }
11312 
11313 /// Checks to see if the given LValue's Designator is at the end of the LValue's
11314 /// record layout. e.g.
11315 ///   struct { struct { int a, b; } fst, snd; } obj;
11316 ///   obj.fst   // no
11317 ///   obj.snd   // yes
11318 ///   obj.fst.a // no
11319 ///   obj.fst.b // no
11320 ///   obj.snd.a // no
11321 ///   obj.snd.b // yes
11322 ///
11323 /// Please note: this function is specialized for how __builtin_object_size
11324 /// views "objects".
11325 ///
11326 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
11327 /// correct result, it will always return true.
11328 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11329   assert(!LVal.Designator.Invalid);
11330 
11331   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11332     const RecordDecl *Parent = FD->getParent();
11333     Invalid = Parent->isInvalidDecl();
11334     if (Invalid || Parent->isUnion())
11335       return true;
11336     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
11337     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11338   };
11339 
11340   auto &Base = LVal.getLValueBase();
11341   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
11342     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
11343       bool Invalid;
11344       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11345         return Invalid;
11346     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
11347       for (auto *FD : IFD->chain()) {
11348         bool Invalid;
11349         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
11350           return Invalid;
11351       }
11352     }
11353   }
11354 
11355   unsigned I = 0;
11356   QualType BaseType = getType(Base);
11357   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11358     // If we don't know the array bound, conservatively assume we're looking at
11359     // the final array element.
11360     ++I;
11361     if (BaseType->isIncompleteArrayType())
11362       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
11363     else
11364       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11365   }
11366 
11367   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11368     const auto &Entry = LVal.Designator.Entries[I];
11369     if (BaseType->isArrayType()) {
11370       // Because __builtin_object_size treats arrays as objects, we can ignore
11371       // the index iff this is the last array in the Designator.
11372       if (I + 1 == E)
11373         return true;
11374       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
11375       uint64_t Index = Entry.getAsArrayIndex();
11376       if (Index + 1 != CAT->getSize())
11377         return false;
11378       BaseType = CAT->getElementType();
11379     } else if (BaseType->isAnyComplexType()) {
11380       const auto *CT = BaseType->castAs<ComplexType>();
11381       uint64_t Index = Entry.getAsArrayIndex();
11382       if (Index != 1)
11383         return false;
11384       BaseType = CT->getElementType();
11385     } else if (auto *FD = getAsField(Entry)) {
11386       bool Invalid;
11387       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11388         return Invalid;
11389       BaseType = FD->getType();
11390     } else {
11391       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11392       return false;
11393     }
11394   }
11395   return true;
11396 }
11397 
11398 /// Tests to see if the LValue has a user-specified designator (that isn't
11399 /// necessarily valid). Note that this always returns 'true' if the LValue has
11400 /// an unsized array as its first designator entry, because there's currently no
11401 /// way to tell if the user typed *foo or foo[0].
11402 static bool refersToCompleteObject(const LValue &LVal) {
11403   if (LVal.Designator.Invalid)
11404     return false;
11405 
11406   if (!LVal.Designator.Entries.empty())
11407     return LVal.Designator.isMostDerivedAnUnsizedArray();
11408 
11409   if (!LVal.InvalidBase)
11410     return true;
11411 
11412   // If `E` is a MemberExpr, then the first part of the designator is hiding in
11413   // the LValueBase.
11414   const auto *E = LVal.Base.dyn_cast<const Expr *>();
11415   return !E || !isa<MemberExpr>(E);
11416 }
11417 
11418 /// Attempts to detect a user writing into a piece of memory that's impossible
11419 /// to figure out the size of by just using types.
11420 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11421   const SubobjectDesignator &Designator = LVal.Designator;
11422   // Notes:
11423   // - Users can only write off of the end when we have an invalid base. Invalid
11424   //   bases imply we don't know where the memory came from.
11425   // - We used to be a bit more aggressive here; we'd only be conservative if
11426   //   the array at the end was flexible, or if it had 0 or 1 elements. This
11427   //   broke some common standard library extensions (PR30346), but was
11428   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
11429   //   with some sort of list. OTOH, it seems that GCC is always
11430   //   conservative with the last element in structs (if it's an array), so our
11431   //   current behavior is more compatible than an explicit list approach would
11432   //   be.
11433   return LVal.InvalidBase &&
11434          Designator.Entries.size() == Designator.MostDerivedPathLength &&
11435          Designator.MostDerivedIsArrayElement &&
11436          isDesignatorAtObjectEnd(Ctx, LVal);
11437 }
11438 
11439 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11440 /// Fails if the conversion would cause loss of precision.
11441 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11442                                             CharUnits &Result) {
11443   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11444   if (Int.ugt(CharUnitsMax))
11445     return false;
11446   Result = CharUnits::fromQuantity(Int.getZExtValue());
11447   return true;
11448 }
11449 
11450 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11451 /// determine how many bytes exist from the beginning of the object to either
11452 /// the end of the current subobject, or the end of the object itself, depending
11453 /// on what the LValue looks like + the value of Type.
11454 ///
11455 /// If this returns false, the value of Result is undefined.
11456 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
11457                                unsigned Type, const LValue &LVal,
11458                                CharUnits &EndOffset) {
11459   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
11460 
11461   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
11462     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
11463       return false;
11464     return HandleSizeof(Info, ExprLoc, Ty, Result);
11465   };
11466 
11467   // We want to evaluate the size of the entire object. This is a valid fallback
11468   // for when Type=1 and the designator is invalid, because we're asked for an
11469   // upper-bound.
11470   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
11471     // Type=3 wants a lower bound, so we can't fall back to this.
11472     if (Type == 3 && !DetermineForCompleteObject)
11473       return false;
11474 
11475     llvm::APInt APEndOffset;
11476     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11477         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11478       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11479 
11480     if (LVal.InvalidBase)
11481       return false;
11482 
11483     QualType BaseTy = getObjectType(LVal.getLValueBase());
11484     return CheckedHandleSizeof(BaseTy, EndOffset);
11485   }
11486 
11487   // We want to evaluate the size of a subobject.
11488   const SubobjectDesignator &Designator = LVal.Designator;
11489 
11490   // The following is a moderately common idiom in C:
11491   //
11492   // struct Foo { int a; char c[1]; };
11493   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
11494   // strcpy(&F->c[0], Bar);
11495   //
11496   // In order to not break too much legacy code, we need to support it.
11497   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
11498     // If we can resolve this to an alloc_size call, we can hand that back,
11499     // because we know for certain how many bytes there are to write to.
11500     llvm::APInt APEndOffset;
11501     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11502         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11503       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11504 
11505     // If we cannot determine the size of the initial allocation, then we can't
11506     // given an accurate upper-bound. However, we are still able to give
11507     // conservative lower-bounds for Type=3.
11508     if (Type == 1)
11509       return false;
11510   }
11511 
11512   CharUnits BytesPerElem;
11513   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
11514     return false;
11515 
11516   // According to the GCC documentation, we want the size of the subobject
11517   // denoted by the pointer. But that's not quite right -- what we actually
11518   // want is the size of the immediately-enclosing array, if there is one.
11519   int64_t ElemsRemaining;
11520   if (Designator.MostDerivedIsArrayElement &&
11521       Designator.Entries.size() == Designator.MostDerivedPathLength) {
11522     uint64_t ArraySize = Designator.getMostDerivedArraySize();
11523     uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
11524     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
11525   } else {
11526     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
11527   }
11528 
11529   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
11530   return true;
11531 }
11532 
11533 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
11534 /// returns true and stores the result in @p Size.
11535 ///
11536 /// If @p WasError is non-null, this will report whether the failure to evaluate
11537 /// is to be treated as an Error in IntExprEvaluator.
11538 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
11539                                          EvalInfo &Info, uint64_t &Size) {
11540   // Determine the denoted object.
11541   LValue LVal;
11542   {
11543     // The operand of __builtin_object_size is never evaluated for side-effects.
11544     // If there are any, but we can determine the pointed-to object anyway, then
11545     // ignore the side-effects.
11546     SpeculativeEvaluationRAII SpeculativeEval(Info);
11547     IgnoreSideEffectsRAII Fold(Info);
11548 
11549     if (E->isGLValue()) {
11550       // It's possible for us to be given GLValues if we're called via
11551       // Expr::tryEvaluateObjectSize.
11552       APValue RVal;
11553       if (!EvaluateAsRValue(Info, E, RVal))
11554         return false;
11555       LVal.setFrom(Info.Ctx, RVal);
11556     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
11557                                 /*InvalidBaseOK=*/true))
11558       return false;
11559   }
11560 
11561   // If we point to before the start of the object, there are no accessible
11562   // bytes.
11563   if (LVal.getLValueOffset().isNegative()) {
11564     Size = 0;
11565     return true;
11566   }
11567 
11568   CharUnits EndOffset;
11569   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
11570     return false;
11571 
11572   // If we've fallen outside of the end offset, just pretend there's nothing to
11573   // write to/read from.
11574   if (EndOffset <= LVal.getLValueOffset())
11575     Size = 0;
11576   else
11577     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
11578   return true;
11579 }
11580 
11581 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
11582   if (unsigned BuiltinOp = E->getBuiltinCallee())
11583     return VisitBuiltinCallExpr(E, BuiltinOp);
11584 
11585   return ExprEvaluatorBaseTy::VisitCallExpr(E);
11586 }
11587 
11588 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
11589                                      APValue &Val, APSInt &Alignment) {
11590   QualType SrcTy = E->getArg(0)->getType();
11591   if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
11592     return false;
11593   // Even though we are evaluating integer expressions we could get a pointer
11594   // argument for the __builtin_is_aligned() case.
11595   if (SrcTy->isPointerType()) {
11596     LValue Ptr;
11597     if (!EvaluatePointer(E->getArg(0), Ptr, Info))
11598       return false;
11599     Ptr.moveInto(Val);
11600   } else if (!SrcTy->isIntegralOrEnumerationType()) {
11601     Info.FFDiag(E->getArg(0));
11602     return false;
11603   } else {
11604     APSInt SrcInt;
11605     if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
11606       return false;
11607     assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
11608            "Bit widths must be the same");
11609     Val = APValue(SrcInt);
11610   }
11611   assert(Val.hasValue());
11612   return true;
11613 }
11614 
11615 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
11616                                             unsigned BuiltinOp) {
11617   switch (BuiltinOp) {
11618   default:
11619     return ExprEvaluatorBaseTy::VisitCallExpr(E);
11620 
11621   case Builtin::BI__builtin_dynamic_object_size:
11622   case Builtin::BI__builtin_object_size: {
11623     // The type was checked when we built the expression.
11624     unsigned Type =
11625         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11626     assert(Type <= 3 && "unexpected type");
11627 
11628     uint64_t Size;
11629     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
11630       return Success(Size, E);
11631 
11632     if (E->getArg(0)->HasSideEffects(Info.Ctx))
11633       return Success((Type & 2) ? 0 : -1, E);
11634 
11635     // Expression had no side effects, but we couldn't statically determine the
11636     // size of the referenced object.
11637     switch (Info.EvalMode) {
11638     case EvalInfo::EM_ConstantExpression:
11639     case EvalInfo::EM_ConstantFold:
11640     case EvalInfo::EM_IgnoreSideEffects:
11641       // Leave it to IR generation.
11642       return Error(E);
11643     case EvalInfo::EM_ConstantExpressionUnevaluated:
11644       // Reduce it to a constant now.
11645       return Success((Type & 2) ? 0 : -1, E);
11646     }
11647 
11648     llvm_unreachable("unexpected EvalMode");
11649   }
11650 
11651   case Builtin::BI__builtin_os_log_format_buffer_size: {
11652     analyze_os_log::OSLogBufferLayout Layout;
11653     analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
11654     return Success(Layout.size().getQuantity(), E);
11655   }
11656 
11657   case Builtin::BI__builtin_is_aligned: {
11658     APValue Src;
11659     APSInt Alignment;
11660     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11661       return false;
11662     if (Src.isLValue()) {
11663       // If we evaluated a pointer, check the minimum known alignment.
11664       LValue Ptr;
11665       Ptr.setFrom(Info.Ctx, Src);
11666       CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
11667       CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
11668       // We can return true if the known alignment at the computed offset is
11669       // greater than the requested alignment.
11670       assert(PtrAlign.isPowerOfTwo());
11671       assert(Alignment.isPowerOf2());
11672       if (PtrAlign.getQuantity() >= Alignment)
11673         return Success(1, E);
11674       // If the alignment is not known to be sufficient, some cases could still
11675       // be aligned at run time. However, if the requested alignment is less or
11676       // equal to the base alignment and the offset is not aligned, we know that
11677       // the run-time value can never be aligned.
11678       if (BaseAlignment.getQuantity() >= Alignment &&
11679           PtrAlign.getQuantity() < Alignment)
11680         return Success(0, E);
11681       // Otherwise we can't infer whether the value is sufficiently aligned.
11682       // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
11683       //  in cases where we can't fully evaluate the pointer.
11684       Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
11685           << Alignment;
11686       return false;
11687     }
11688     assert(Src.isInt());
11689     return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
11690   }
11691   case Builtin::BI__builtin_align_up: {
11692     APValue Src;
11693     APSInt Alignment;
11694     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11695       return false;
11696     if (!Src.isInt())
11697       return Error(E);
11698     APSInt AlignedVal =
11699         APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
11700                Src.getInt().isUnsigned());
11701     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11702     return Success(AlignedVal, E);
11703   }
11704   case Builtin::BI__builtin_align_down: {
11705     APValue Src;
11706     APSInt Alignment;
11707     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11708       return false;
11709     if (!Src.isInt())
11710       return Error(E);
11711     APSInt AlignedVal =
11712         APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
11713     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11714     return Success(AlignedVal, E);
11715   }
11716 
11717   case Builtin::BI__builtin_bitreverse8:
11718   case Builtin::BI__builtin_bitreverse16:
11719   case Builtin::BI__builtin_bitreverse32:
11720   case Builtin::BI__builtin_bitreverse64: {
11721     APSInt Val;
11722     if (!EvaluateInteger(E->getArg(0), Val, Info))
11723       return false;
11724 
11725     return Success(Val.reverseBits(), E);
11726   }
11727 
11728   case Builtin::BI__builtin_bswap16:
11729   case Builtin::BI__builtin_bswap32:
11730   case Builtin::BI__builtin_bswap64: {
11731     APSInt Val;
11732     if (!EvaluateInteger(E->getArg(0), Val, Info))
11733       return false;
11734 
11735     return Success(Val.byteSwap(), E);
11736   }
11737 
11738   case Builtin::BI__builtin_classify_type:
11739     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
11740 
11741   case Builtin::BI__builtin_clrsb:
11742   case Builtin::BI__builtin_clrsbl:
11743   case Builtin::BI__builtin_clrsbll: {
11744     APSInt Val;
11745     if (!EvaluateInteger(E->getArg(0), Val, Info))
11746       return false;
11747 
11748     return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
11749   }
11750 
11751   case Builtin::BI__builtin_clz:
11752   case Builtin::BI__builtin_clzl:
11753   case Builtin::BI__builtin_clzll:
11754   case Builtin::BI__builtin_clzs: {
11755     APSInt Val;
11756     if (!EvaluateInteger(E->getArg(0), Val, Info))
11757       return false;
11758     if (!Val)
11759       return Error(E);
11760 
11761     return Success(Val.countLeadingZeros(), E);
11762   }
11763 
11764   case Builtin::BI__builtin_constant_p: {
11765     const Expr *Arg = E->getArg(0);
11766     if (EvaluateBuiltinConstantP(Info, Arg))
11767       return Success(true, E);
11768     if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
11769       // Outside a constant context, eagerly evaluate to false in the presence
11770       // of side-effects in order to avoid -Wunsequenced false-positives in
11771       // a branch on __builtin_constant_p(expr).
11772       return Success(false, E);
11773     }
11774     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11775     return false;
11776   }
11777 
11778   case Builtin::BI__builtin_is_constant_evaluated: {
11779     const auto *Callee = Info.CurrentCall->getCallee();
11780     if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
11781         (Info.CallStackDepth == 1 ||
11782          (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
11783           Callee->getIdentifier() &&
11784           Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
11785       // FIXME: Find a better way to avoid duplicated diagnostics.
11786       if (Info.EvalStatus.Diag)
11787         Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
11788                                                : Info.CurrentCall->CallLoc,
11789                     diag::warn_is_constant_evaluated_always_true_constexpr)
11790             << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
11791                                          : "std::is_constant_evaluated");
11792     }
11793 
11794     return Success(Info.InConstantContext, E);
11795   }
11796 
11797   case Builtin::BI__builtin_ctz:
11798   case Builtin::BI__builtin_ctzl:
11799   case Builtin::BI__builtin_ctzll:
11800   case Builtin::BI__builtin_ctzs: {
11801     APSInt Val;
11802     if (!EvaluateInteger(E->getArg(0), Val, Info))
11803       return false;
11804     if (!Val)
11805       return Error(E);
11806 
11807     return Success(Val.countTrailingZeros(), E);
11808   }
11809 
11810   case Builtin::BI__builtin_eh_return_data_regno: {
11811     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11812     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
11813     return Success(Operand, E);
11814   }
11815 
11816   case Builtin::BI__builtin_expect:
11817   case Builtin::BI__builtin_expect_with_probability:
11818     return Visit(E->getArg(0));
11819 
11820   case Builtin::BI__builtin_ffs:
11821   case Builtin::BI__builtin_ffsl:
11822   case Builtin::BI__builtin_ffsll: {
11823     APSInt Val;
11824     if (!EvaluateInteger(E->getArg(0), Val, Info))
11825       return false;
11826 
11827     unsigned N = Val.countTrailingZeros();
11828     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
11829   }
11830 
11831   case Builtin::BI__builtin_fpclassify: {
11832     APFloat Val(0.0);
11833     if (!EvaluateFloat(E->getArg(5), Val, Info))
11834       return false;
11835     unsigned Arg;
11836     switch (Val.getCategory()) {
11837     case APFloat::fcNaN: Arg = 0; break;
11838     case APFloat::fcInfinity: Arg = 1; break;
11839     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
11840     case APFloat::fcZero: Arg = 4; break;
11841     }
11842     return Visit(E->getArg(Arg));
11843   }
11844 
11845   case Builtin::BI__builtin_isinf_sign: {
11846     APFloat Val(0.0);
11847     return EvaluateFloat(E->getArg(0), Val, Info) &&
11848            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
11849   }
11850 
11851   case Builtin::BI__builtin_isinf: {
11852     APFloat Val(0.0);
11853     return EvaluateFloat(E->getArg(0), Val, Info) &&
11854            Success(Val.isInfinity() ? 1 : 0, E);
11855   }
11856 
11857   case Builtin::BI__builtin_isfinite: {
11858     APFloat Val(0.0);
11859     return EvaluateFloat(E->getArg(0), Val, Info) &&
11860            Success(Val.isFinite() ? 1 : 0, E);
11861   }
11862 
11863   case Builtin::BI__builtin_isnan: {
11864     APFloat Val(0.0);
11865     return EvaluateFloat(E->getArg(0), Val, Info) &&
11866            Success(Val.isNaN() ? 1 : 0, E);
11867   }
11868 
11869   case Builtin::BI__builtin_isnormal: {
11870     APFloat Val(0.0);
11871     return EvaluateFloat(E->getArg(0), Val, Info) &&
11872            Success(Val.isNormal() ? 1 : 0, E);
11873   }
11874 
11875   case Builtin::BI__builtin_parity:
11876   case Builtin::BI__builtin_parityl:
11877   case Builtin::BI__builtin_parityll: {
11878     APSInt Val;
11879     if (!EvaluateInteger(E->getArg(0), Val, Info))
11880       return false;
11881 
11882     return Success(Val.countPopulation() % 2, E);
11883   }
11884 
11885   case Builtin::BI__builtin_popcount:
11886   case Builtin::BI__builtin_popcountl:
11887   case Builtin::BI__builtin_popcountll: {
11888     APSInt Val;
11889     if (!EvaluateInteger(E->getArg(0), Val, Info))
11890       return false;
11891 
11892     return Success(Val.countPopulation(), E);
11893   }
11894 
11895   case Builtin::BI__builtin_rotateleft8:
11896   case Builtin::BI__builtin_rotateleft16:
11897   case Builtin::BI__builtin_rotateleft32:
11898   case Builtin::BI__builtin_rotateleft64:
11899   case Builtin::BI_rotl8: // Microsoft variants of rotate right
11900   case Builtin::BI_rotl16:
11901   case Builtin::BI_rotl:
11902   case Builtin::BI_lrotl:
11903   case Builtin::BI_rotl64: {
11904     APSInt Val, Amt;
11905     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
11906         !EvaluateInteger(E->getArg(1), Amt, Info))
11907       return false;
11908 
11909     return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
11910   }
11911 
11912   case Builtin::BI__builtin_rotateright8:
11913   case Builtin::BI__builtin_rotateright16:
11914   case Builtin::BI__builtin_rotateright32:
11915   case Builtin::BI__builtin_rotateright64:
11916   case Builtin::BI_rotr8: // Microsoft variants of rotate right
11917   case Builtin::BI_rotr16:
11918   case Builtin::BI_rotr:
11919   case Builtin::BI_lrotr:
11920   case Builtin::BI_rotr64: {
11921     APSInt Val, Amt;
11922     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
11923         !EvaluateInteger(E->getArg(1), Amt, Info))
11924       return false;
11925 
11926     return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
11927   }
11928 
11929   case Builtin::BIstrlen:
11930   case Builtin::BIwcslen:
11931     // A call to strlen is not a constant expression.
11932     if (Info.getLangOpts().CPlusPlus11)
11933       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
11934         << /*isConstexpr*/0 << /*isConstructor*/0
11935         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
11936     else
11937       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
11938     LLVM_FALLTHROUGH;
11939   case Builtin::BI__builtin_strlen:
11940   case Builtin::BI__builtin_wcslen: {
11941     // As an extension, we support __builtin_strlen() as a constant expression,
11942     // and support folding strlen() to a constant.
11943     uint64_t StrLen;
11944     if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info))
11945       return Success(StrLen, E);
11946     return false;
11947   }
11948 
11949   case Builtin::BIstrcmp:
11950   case Builtin::BIwcscmp:
11951   case Builtin::BIstrncmp:
11952   case Builtin::BIwcsncmp:
11953   case Builtin::BImemcmp:
11954   case Builtin::BIbcmp:
11955   case Builtin::BIwmemcmp:
11956     // A call to strlen is not a constant expression.
11957     if (Info.getLangOpts().CPlusPlus11)
11958       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
11959         << /*isConstexpr*/0 << /*isConstructor*/0
11960         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
11961     else
11962       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
11963     LLVM_FALLTHROUGH;
11964   case Builtin::BI__builtin_strcmp:
11965   case Builtin::BI__builtin_wcscmp:
11966   case Builtin::BI__builtin_strncmp:
11967   case Builtin::BI__builtin_wcsncmp:
11968   case Builtin::BI__builtin_memcmp:
11969   case Builtin::BI__builtin_bcmp:
11970   case Builtin::BI__builtin_wmemcmp: {
11971     LValue String1, String2;
11972     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
11973         !EvaluatePointer(E->getArg(1), String2, Info))
11974       return false;
11975 
11976     uint64_t MaxLength = uint64_t(-1);
11977     if (BuiltinOp != Builtin::BIstrcmp &&
11978         BuiltinOp != Builtin::BIwcscmp &&
11979         BuiltinOp != Builtin::BI__builtin_strcmp &&
11980         BuiltinOp != Builtin::BI__builtin_wcscmp) {
11981       APSInt N;
11982       if (!EvaluateInteger(E->getArg(2), N, Info))
11983         return false;
11984       MaxLength = N.getExtValue();
11985     }
11986 
11987     // Empty substrings compare equal by definition.
11988     if (MaxLength == 0u)
11989       return Success(0, E);
11990 
11991     if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
11992         !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
11993         String1.Designator.Invalid || String2.Designator.Invalid)
11994       return false;
11995 
11996     QualType CharTy1 = String1.Designator.getType(Info.Ctx);
11997     QualType CharTy2 = String2.Designator.getType(Info.Ctx);
11998 
11999     bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12000                      BuiltinOp == Builtin::BIbcmp ||
12001                      BuiltinOp == Builtin::BI__builtin_memcmp ||
12002                      BuiltinOp == Builtin::BI__builtin_bcmp;
12003 
12004     assert(IsRawByte ||
12005            (Info.Ctx.hasSameUnqualifiedType(
12006                 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
12007             Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
12008 
12009     // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12010     // 'char8_t', but no other types.
12011     if (IsRawByte &&
12012         !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
12013       // FIXME: Consider using our bit_cast implementation to support this.
12014       Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12015           << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
12016           << CharTy1 << CharTy2;
12017       return false;
12018     }
12019 
12020     const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12021       return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12022              handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12023              Char1.isInt() && Char2.isInt();
12024     };
12025     const auto &AdvanceElems = [&] {
12026       return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12027              HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12028     };
12029 
12030     bool StopAtNull =
12031         (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12032          BuiltinOp != Builtin::BIwmemcmp &&
12033          BuiltinOp != Builtin::BI__builtin_memcmp &&
12034          BuiltinOp != Builtin::BI__builtin_bcmp &&
12035          BuiltinOp != Builtin::BI__builtin_wmemcmp);
12036     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12037                   BuiltinOp == Builtin::BIwcsncmp ||
12038                   BuiltinOp == Builtin::BIwmemcmp ||
12039                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
12040                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12041                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
12042 
12043     for (; MaxLength; --MaxLength) {
12044       APValue Char1, Char2;
12045       if (!ReadCurElems(Char1, Char2))
12046         return false;
12047       if (Char1.getInt().ne(Char2.getInt())) {
12048         if (IsWide) // wmemcmp compares with wchar_t signedness.
12049           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12050         // memcmp always compares unsigned chars.
12051         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
12052       }
12053       if (StopAtNull && !Char1.getInt())
12054         return Success(0, E);
12055       assert(!(StopAtNull && !Char2.getInt()));
12056       if (!AdvanceElems())
12057         return false;
12058     }
12059     // We hit the strncmp / memcmp limit.
12060     return Success(0, E);
12061   }
12062 
12063   case Builtin::BI__atomic_always_lock_free:
12064   case Builtin::BI__atomic_is_lock_free:
12065   case Builtin::BI__c11_atomic_is_lock_free: {
12066     APSInt SizeVal;
12067     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
12068       return false;
12069 
12070     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12071     // of two less than or equal to the maximum inline atomic width, we know it
12072     // is lock-free.  If the size isn't a power of two, or greater than the
12073     // maximum alignment where we promote atomics, we know it is not lock-free
12074     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
12075     // the answer can only be determined at runtime; for example, 16-byte
12076     // atomics have lock-free implementations on some, but not all,
12077     // x86-64 processors.
12078 
12079     // Check power-of-two.
12080     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
12081     if (Size.isPowerOfTwo()) {
12082       // Check against inlining width.
12083       unsigned InlineWidthBits =
12084           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12085       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
12086         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12087             Size == CharUnits::One() ||
12088             E->getArg(1)->isNullPointerConstant(Info.Ctx,
12089                                                 Expr::NPC_NeverValueDependent))
12090           // OK, we will inline appropriately-aligned operations of this size,
12091           // and _Atomic(T) is appropriately-aligned.
12092           return Success(1, E);
12093 
12094         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
12095           castAs<PointerType>()->getPointeeType();
12096         if (!PointeeType->isIncompleteType() &&
12097             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
12098           // OK, we will inline operations on this object.
12099           return Success(1, E);
12100         }
12101       }
12102     }
12103 
12104     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12105         Success(0, E) : Error(E);
12106   }
12107   case Builtin::BI__builtin_add_overflow:
12108   case Builtin::BI__builtin_sub_overflow:
12109   case Builtin::BI__builtin_mul_overflow:
12110   case Builtin::BI__builtin_sadd_overflow:
12111   case Builtin::BI__builtin_uadd_overflow:
12112   case Builtin::BI__builtin_uaddl_overflow:
12113   case Builtin::BI__builtin_uaddll_overflow:
12114   case Builtin::BI__builtin_usub_overflow:
12115   case Builtin::BI__builtin_usubl_overflow:
12116   case Builtin::BI__builtin_usubll_overflow:
12117   case Builtin::BI__builtin_umul_overflow:
12118   case Builtin::BI__builtin_umull_overflow:
12119   case Builtin::BI__builtin_umulll_overflow:
12120   case Builtin::BI__builtin_saddl_overflow:
12121   case Builtin::BI__builtin_saddll_overflow:
12122   case Builtin::BI__builtin_ssub_overflow:
12123   case Builtin::BI__builtin_ssubl_overflow:
12124   case Builtin::BI__builtin_ssubll_overflow:
12125   case Builtin::BI__builtin_smul_overflow:
12126   case Builtin::BI__builtin_smull_overflow:
12127   case Builtin::BI__builtin_smulll_overflow: {
12128     LValue ResultLValue;
12129     APSInt LHS, RHS;
12130 
12131     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
12132     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
12133         !EvaluateInteger(E->getArg(1), RHS, Info) ||
12134         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
12135       return false;
12136 
12137     APSInt Result;
12138     bool DidOverflow = false;
12139 
12140     // If the types don't have to match, enlarge all 3 to the largest of them.
12141     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12142         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12143         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12144       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12145                       ResultType->isSignedIntegerOrEnumerationType();
12146       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12147                       ResultType->isSignedIntegerOrEnumerationType();
12148       uint64_t LHSSize = LHS.getBitWidth();
12149       uint64_t RHSSize = RHS.getBitWidth();
12150       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
12151       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
12152 
12153       // Add an additional bit if the signedness isn't uniformly agreed to. We
12154       // could do this ONLY if there is a signed and an unsigned that both have
12155       // MaxBits, but the code to check that is pretty nasty.  The issue will be
12156       // caught in the shrink-to-result later anyway.
12157       if (IsSigned && !AllSigned)
12158         ++MaxBits;
12159 
12160       LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
12161       RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
12162       Result = APSInt(MaxBits, !IsSigned);
12163     }
12164 
12165     // Find largest int.
12166     switch (BuiltinOp) {
12167     default:
12168       llvm_unreachable("Invalid value for BuiltinOp");
12169     case Builtin::BI__builtin_add_overflow:
12170     case Builtin::BI__builtin_sadd_overflow:
12171     case Builtin::BI__builtin_saddl_overflow:
12172     case Builtin::BI__builtin_saddll_overflow:
12173     case Builtin::BI__builtin_uadd_overflow:
12174     case Builtin::BI__builtin_uaddl_overflow:
12175     case Builtin::BI__builtin_uaddll_overflow:
12176       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
12177                               : LHS.uadd_ov(RHS, DidOverflow);
12178       break;
12179     case Builtin::BI__builtin_sub_overflow:
12180     case Builtin::BI__builtin_ssub_overflow:
12181     case Builtin::BI__builtin_ssubl_overflow:
12182     case Builtin::BI__builtin_ssubll_overflow:
12183     case Builtin::BI__builtin_usub_overflow:
12184     case Builtin::BI__builtin_usubl_overflow:
12185     case Builtin::BI__builtin_usubll_overflow:
12186       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
12187                               : LHS.usub_ov(RHS, DidOverflow);
12188       break;
12189     case Builtin::BI__builtin_mul_overflow:
12190     case Builtin::BI__builtin_smul_overflow:
12191     case Builtin::BI__builtin_smull_overflow:
12192     case Builtin::BI__builtin_smulll_overflow:
12193     case Builtin::BI__builtin_umul_overflow:
12194     case Builtin::BI__builtin_umull_overflow:
12195     case Builtin::BI__builtin_umulll_overflow:
12196       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
12197                               : LHS.umul_ov(RHS, DidOverflow);
12198       break;
12199     }
12200 
12201     // In the case where multiple sizes are allowed, truncate and see if
12202     // the values are the same.
12203     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12204         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12205         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12206       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12207       // since it will give us the behavior of a TruncOrSelf in the case where
12208       // its parameter <= its size.  We previously set Result to be at least the
12209       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12210       // will work exactly like TruncOrSelf.
12211       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
12212       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12213 
12214       if (!APSInt::isSameValue(Temp, Result))
12215         DidOverflow = true;
12216       Result = Temp;
12217     }
12218 
12219     APValue APV{Result};
12220     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12221       return false;
12222     return Success(DidOverflow, E);
12223   }
12224   }
12225 }
12226 
12227 /// Determine whether this is a pointer past the end of the complete
12228 /// object referred to by the lvalue.
12229 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12230                                             const LValue &LV) {
12231   // A null pointer can be viewed as being "past the end" but we don't
12232   // choose to look at it that way here.
12233   if (!LV.getLValueBase())
12234     return false;
12235 
12236   // If the designator is valid and refers to a subobject, we're not pointing
12237   // past the end.
12238   if (!LV.getLValueDesignator().Invalid &&
12239       !LV.getLValueDesignator().isOnePastTheEnd())
12240     return false;
12241 
12242   // A pointer to an incomplete type might be past-the-end if the type's size is
12243   // zero.  We cannot tell because the type is incomplete.
12244   QualType Ty = getType(LV.getLValueBase());
12245   if (Ty->isIncompleteType())
12246     return true;
12247 
12248   // We're a past-the-end pointer if we point to the byte after the object,
12249   // no matter what our type or path is.
12250   auto Size = Ctx.getTypeSizeInChars(Ty);
12251   return LV.getLValueOffset() == Size;
12252 }
12253 
12254 namespace {
12255 
12256 /// Data recursive integer evaluator of certain binary operators.
12257 ///
12258 /// We use a data recursive algorithm for binary operators so that we are able
12259 /// to handle extreme cases of chained binary operators without causing stack
12260 /// overflow.
12261 class DataRecursiveIntBinOpEvaluator {
12262   struct EvalResult {
12263     APValue Val;
12264     bool Failed;
12265 
12266     EvalResult() : Failed(false) { }
12267 
12268     void swap(EvalResult &RHS) {
12269       Val.swap(RHS.Val);
12270       Failed = RHS.Failed;
12271       RHS.Failed = false;
12272     }
12273   };
12274 
12275   struct Job {
12276     const Expr *E;
12277     EvalResult LHSResult; // meaningful only for binary operator expression.
12278     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12279 
12280     Job() = default;
12281     Job(Job &&) = default;
12282 
12283     void startSpeculativeEval(EvalInfo &Info) {
12284       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12285     }
12286 
12287   private:
12288     SpeculativeEvaluationRAII SpecEvalRAII;
12289   };
12290 
12291   SmallVector<Job, 16> Queue;
12292 
12293   IntExprEvaluator &IntEval;
12294   EvalInfo &Info;
12295   APValue &FinalResult;
12296 
12297 public:
12298   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12299     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12300 
12301   /// True if \param E is a binary operator that we are going to handle
12302   /// data recursively.
12303   /// We handle binary operators that are comma, logical, or that have operands
12304   /// with integral or enumeration type.
12305   static bool shouldEnqueue(const BinaryOperator *E) {
12306     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12307            (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
12308             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12309             E->getRHS()->getType()->isIntegralOrEnumerationType());
12310   }
12311 
12312   bool Traverse(const BinaryOperator *E) {
12313     enqueue(E);
12314     EvalResult PrevResult;
12315     while (!Queue.empty())
12316       process(PrevResult);
12317 
12318     if (PrevResult.Failed) return false;
12319 
12320     FinalResult.swap(PrevResult.Val);
12321     return true;
12322   }
12323 
12324 private:
12325   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12326     return IntEval.Success(Value, E, Result);
12327   }
12328   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12329     return IntEval.Success(Value, E, Result);
12330   }
12331   bool Error(const Expr *E) {
12332     return IntEval.Error(E);
12333   }
12334   bool Error(const Expr *E, diag::kind D) {
12335     return IntEval.Error(E, D);
12336   }
12337 
12338   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12339     return Info.CCEDiag(E, D);
12340   }
12341 
12342   // Returns true if visiting the RHS is necessary, false otherwise.
12343   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12344                          bool &SuppressRHSDiags);
12345 
12346   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12347                   const BinaryOperator *E, APValue &Result);
12348 
12349   void EvaluateExpr(const Expr *E, EvalResult &Result) {
12350     Result.Failed = !Evaluate(Result.Val, Info, E);
12351     if (Result.Failed)
12352       Result.Val = APValue();
12353   }
12354 
12355   void process(EvalResult &Result);
12356 
12357   void enqueue(const Expr *E) {
12358     E = E->IgnoreParens();
12359     Queue.resize(Queue.size()+1);
12360     Queue.back().E = E;
12361     Queue.back().Kind = Job::AnyExprKind;
12362   }
12363 };
12364 
12365 }
12366 
12367 bool DataRecursiveIntBinOpEvaluator::
12368        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12369                          bool &SuppressRHSDiags) {
12370   if (E->getOpcode() == BO_Comma) {
12371     // Ignore LHS but note if we could not evaluate it.
12372     if (LHSResult.Failed)
12373       return Info.noteSideEffect();
12374     return true;
12375   }
12376 
12377   if (E->isLogicalOp()) {
12378     bool LHSAsBool;
12379     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
12380       // We were able to evaluate the LHS, see if we can get away with not
12381       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12382       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12383         Success(LHSAsBool, E, LHSResult.Val);
12384         return false; // Ignore RHS
12385       }
12386     } else {
12387       LHSResult.Failed = true;
12388 
12389       // Since we weren't able to evaluate the left hand side, it
12390       // might have had side effects.
12391       if (!Info.noteSideEffect())
12392         return false;
12393 
12394       // We can't evaluate the LHS; however, sometimes the result
12395       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12396       // Don't ignore RHS and suppress diagnostics from this arm.
12397       SuppressRHSDiags = true;
12398     }
12399 
12400     return true;
12401   }
12402 
12403   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12404          E->getRHS()->getType()->isIntegralOrEnumerationType());
12405 
12406   if (LHSResult.Failed && !Info.noteFailure())
12407     return false; // Ignore RHS;
12408 
12409   return true;
12410 }
12411 
12412 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
12413                                     bool IsSub) {
12414   // Compute the new offset in the appropriate width, wrapping at 64 bits.
12415   // FIXME: When compiling for a 32-bit target, we should use 32-bit
12416   // offsets.
12417   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
12418   CharUnits &Offset = LVal.getLValueOffset();
12419   uint64_t Offset64 = Offset.getQuantity();
12420   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
12421   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
12422                                          : Offset64 + Index64);
12423 }
12424 
12425 bool DataRecursiveIntBinOpEvaluator::
12426        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12427                   const BinaryOperator *E, APValue &Result) {
12428   if (E->getOpcode() == BO_Comma) {
12429     if (RHSResult.Failed)
12430       return false;
12431     Result = RHSResult.Val;
12432     return true;
12433   }
12434 
12435   if (E->isLogicalOp()) {
12436     bool lhsResult, rhsResult;
12437     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
12438     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
12439 
12440     if (LHSIsOK) {
12441       if (RHSIsOK) {
12442         if (E->getOpcode() == BO_LOr)
12443           return Success(lhsResult || rhsResult, E, Result);
12444         else
12445           return Success(lhsResult && rhsResult, E, Result);
12446       }
12447     } else {
12448       if (RHSIsOK) {
12449         // We can't evaluate the LHS; however, sometimes the result
12450         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12451         if (rhsResult == (E->getOpcode() == BO_LOr))
12452           return Success(rhsResult, E, Result);
12453       }
12454     }
12455 
12456     return false;
12457   }
12458 
12459   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12460          E->getRHS()->getType()->isIntegralOrEnumerationType());
12461 
12462   if (LHSResult.Failed || RHSResult.Failed)
12463     return false;
12464 
12465   const APValue &LHSVal = LHSResult.Val;
12466   const APValue &RHSVal = RHSResult.Val;
12467 
12468   // Handle cases like (unsigned long)&a + 4.
12469   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
12470     Result = LHSVal;
12471     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
12472     return true;
12473   }
12474 
12475   // Handle cases like 4 + (unsigned long)&a
12476   if (E->getOpcode() == BO_Add &&
12477       RHSVal.isLValue() && LHSVal.isInt()) {
12478     Result = RHSVal;
12479     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
12480     return true;
12481   }
12482 
12483   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
12484     // Handle (intptr_t)&&A - (intptr_t)&&B.
12485     if (!LHSVal.getLValueOffset().isZero() ||
12486         !RHSVal.getLValueOffset().isZero())
12487       return false;
12488     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
12489     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
12490     if (!LHSExpr || !RHSExpr)
12491       return false;
12492     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12493     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12494     if (!LHSAddrExpr || !RHSAddrExpr)
12495       return false;
12496     // Make sure both labels come from the same function.
12497     if (LHSAddrExpr->getLabel()->getDeclContext() !=
12498         RHSAddrExpr->getLabel()->getDeclContext())
12499       return false;
12500     Result = APValue(LHSAddrExpr, RHSAddrExpr);
12501     return true;
12502   }
12503 
12504   // All the remaining cases expect both operands to be an integer
12505   if (!LHSVal.isInt() || !RHSVal.isInt())
12506     return Error(E);
12507 
12508   // Set up the width and signedness manually, in case it can't be deduced
12509   // from the operation we're performing.
12510   // FIXME: Don't do this in the cases where we can deduce it.
12511   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
12512                E->getType()->isUnsignedIntegerOrEnumerationType());
12513   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
12514                          RHSVal.getInt(), Value))
12515     return false;
12516   return Success(Value, E, Result);
12517 }
12518 
12519 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
12520   Job &job = Queue.back();
12521 
12522   switch (job.Kind) {
12523     case Job::AnyExprKind: {
12524       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
12525         if (shouldEnqueue(Bop)) {
12526           job.Kind = Job::BinOpKind;
12527           enqueue(Bop->getLHS());
12528           return;
12529         }
12530       }
12531 
12532       EvaluateExpr(job.E, Result);
12533       Queue.pop_back();
12534       return;
12535     }
12536 
12537     case Job::BinOpKind: {
12538       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12539       bool SuppressRHSDiags = false;
12540       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
12541         Queue.pop_back();
12542         return;
12543       }
12544       if (SuppressRHSDiags)
12545         job.startSpeculativeEval(Info);
12546       job.LHSResult.swap(Result);
12547       job.Kind = Job::BinOpVisitedLHSKind;
12548       enqueue(Bop->getRHS());
12549       return;
12550     }
12551 
12552     case Job::BinOpVisitedLHSKind: {
12553       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12554       EvalResult RHS;
12555       RHS.swap(Result);
12556       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
12557       Queue.pop_back();
12558       return;
12559     }
12560   }
12561 
12562   llvm_unreachable("Invalid Job::Kind!");
12563 }
12564 
12565 namespace {
12566 enum class CmpResult {
12567   Unequal,
12568   Less,
12569   Equal,
12570   Greater,
12571   Unordered,
12572 };
12573 }
12574 
12575 template <class SuccessCB, class AfterCB>
12576 static bool
12577 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
12578                                  SuccessCB &&Success, AfterCB &&DoAfter) {
12579   assert(!E->isValueDependent());
12580   assert(E->isComparisonOp() && "expected comparison operator");
12581   assert((E->getOpcode() == BO_Cmp ||
12582           E->getType()->isIntegralOrEnumerationType()) &&
12583          "unsupported binary expression evaluation");
12584   auto Error = [&](const Expr *E) {
12585     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12586     return false;
12587   };
12588 
12589   bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
12590   bool IsEquality = E->isEqualityOp();
12591 
12592   QualType LHSTy = E->getLHS()->getType();
12593   QualType RHSTy = E->getRHS()->getType();
12594 
12595   if (LHSTy->isIntegralOrEnumerationType() &&
12596       RHSTy->isIntegralOrEnumerationType()) {
12597     APSInt LHS, RHS;
12598     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
12599     if (!LHSOK && !Info.noteFailure())
12600       return false;
12601     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
12602       return false;
12603     if (LHS < RHS)
12604       return Success(CmpResult::Less, E);
12605     if (LHS > RHS)
12606       return Success(CmpResult::Greater, E);
12607     return Success(CmpResult::Equal, E);
12608   }
12609 
12610   if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
12611     APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
12612     APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
12613 
12614     bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
12615     if (!LHSOK && !Info.noteFailure())
12616       return false;
12617     if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
12618       return false;
12619     if (LHSFX < RHSFX)
12620       return Success(CmpResult::Less, E);
12621     if (LHSFX > RHSFX)
12622       return Success(CmpResult::Greater, E);
12623     return Success(CmpResult::Equal, E);
12624   }
12625 
12626   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
12627     ComplexValue LHS, RHS;
12628     bool LHSOK;
12629     if (E->isAssignmentOp()) {
12630       LValue LV;
12631       EvaluateLValue(E->getLHS(), LV, Info);
12632       LHSOK = false;
12633     } else if (LHSTy->isRealFloatingType()) {
12634       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
12635       if (LHSOK) {
12636         LHS.makeComplexFloat();
12637         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
12638       }
12639     } else {
12640       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
12641     }
12642     if (!LHSOK && !Info.noteFailure())
12643       return false;
12644 
12645     if (E->getRHS()->getType()->isRealFloatingType()) {
12646       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
12647         return false;
12648       RHS.makeComplexFloat();
12649       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
12650     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12651       return false;
12652 
12653     if (LHS.isComplexFloat()) {
12654       APFloat::cmpResult CR_r =
12655         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
12656       APFloat::cmpResult CR_i =
12657         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
12658       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
12659       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12660     } else {
12661       assert(IsEquality && "invalid complex comparison");
12662       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
12663                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
12664       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12665     }
12666   }
12667 
12668   if (LHSTy->isRealFloatingType() &&
12669       RHSTy->isRealFloatingType()) {
12670     APFloat RHS(0.0), LHS(0.0);
12671 
12672     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
12673     if (!LHSOK && !Info.noteFailure())
12674       return false;
12675 
12676     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
12677       return false;
12678 
12679     assert(E->isComparisonOp() && "Invalid binary operator!");
12680     llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
12681     if (!Info.InConstantContext &&
12682         APFloatCmpResult == APFloat::cmpUnordered &&
12683         E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
12684       // Note: Compares may raise invalid in some cases involving NaN or sNaN.
12685       Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
12686       return false;
12687     }
12688     auto GetCmpRes = [&]() {
12689       switch (APFloatCmpResult) {
12690       case APFloat::cmpEqual:
12691         return CmpResult::Equal;
12692       case APFloat::cmpLessThan:
12693         return CmpResult::Less;
12694       case APFloat::cmpGreaterThan:
12695         return CmpResult::Greater;
12696       case APFloat::cmpUnordered:
12697         return CmpResult::Unordered;
12698       }
12699       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
12700     };
12701     return Success(GetCmpRes(), E);
12702   }
12703 
12704   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
12705     LValue LHSValue, RHSValue;
12706 
12707     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12708     if (!LHSOK && !Info.noteFailure())
12709       return false;
12710 
12711     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12712       return false;
12713 
12714     // Reject differing bases from the normal codepath; we special-case
12715     // comparisons to null.
12716     if (!HasSameBase(LHSValue, RHSValue)) {
12717       // Inequalities and subtractions between unrelated pointers have
12718       // unspecified or undefined behavior.
12719       if (!IsEquality) {
12720         Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified);
12721         return false;
12722       }
12723       // A constant address may compare equal to the address of a symbol.
12724       // The one exception is that address of an object cannot compare equal
12725       // to a null pointer constant.
12726       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
12727           (!RHSValue.Base && !RHSValue.Offset.isZero()))
12728         return Error(E);
12729       // It's implementation-defined whether distinct literals will have
12730       // distinct addresses. In clang, the result of such a comparison is
12731       // unspecified, so it is not a constant expression. However, we do know
12732       // that the address of a literal will be non-null.
12733       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
12734           LHSValue.Base && RHSValue.Base)
12735         return Error(E);
12736       // We can't tell whether weak symbols will end up pointing to the same
12737       // object.
12738       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
12739         return Error(E);
12740       // We can't compare the address of the start of one object with the
12741       // past-the-end address of another object, per C++ DR1652.
12742       if ((LHSValue.Base && LHSValue.Offset.isZero() &&
12743            isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
12744           (RHSValue.Base && RHSValue.Offset.isZero() &&
12745            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
12746         return Error(E);
12747       // We can't tell whether an object is at the same address as another
12748       // zero sized object.
12749       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
12750           (LHSValue.Base && isZeroSized(RHSValue)))
12751         return Error(E);
12752       return Success(CmpResult::Unequal, E);
12753     }
12754 
12755     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12756     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12757 
12758     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12759     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12760 
12761     // C++11 [expr.rel]p3:
12762     //   Pointers to void (after pointer conversions) can be compared, with a
12763     //   result defined as follows: If both pointers represent the same
12764     //   address or are both the null pointer value, the result is true if the
12765     //   operator is <= or >= and false otherwise; otherwise the result is
12766     //   unspecified.
12767     // We interpret this as applying to pointers to *cv* void.
12768     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
12769       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
12770 
12771     // C++11 [expr.rel]p2:
12772     // - If two pointers point to non-static data members of the same object,
12773     //   or to subobjects or array elements fo such members, recursively, the
12774     //   pointer to the later declared member compares greater provided the
12775     //   two members have the same access control and provided their class is
12776     //   not a union.
12777     //   [...]
12778     // - Otherwise pointer comparisons are unspecified.
12779     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
12780       bool WasArrayIndex;
12781       unsigned Mismatch = FindDesignatorMismatch(
12782           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
12783       // At the point where the designators diverge, the comparison has a
12784       // specified value if:
12785       //  - we are comparing array indices
12786       //  - we are comparing fields of a union, or fields with the same access
12787       // Otherwise, the result is unspecified and thus the comparison is not a
12788       // constant expression.
12789       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
12790           Mismatch < RHSDesignator.Entries.size()) {
12791         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
12792         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
12793         if (!LF && !RF)
12794           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
12795         else if (!LF)
12796           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12797               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
12798               << RF->getParent() << RF;
12799         else if (!RF)
12800           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12801               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
12802               << LF->getParent() << LF;
12803         else if (!LF->getParent()->isUnion() &&
12804                  LF->getAccess() != RF->getAccess())
12805           Info.CCEDiag(E,
12806                        diag::note_constexpr_pointer_comparison_differing_access)
12807               << LF << LF->getAccess() << RF << RF->getAccess()
12808               << LF->getParent();
12809       }
12810     }
12811 
12812     // The comparison here must be unsigned, and performed with the same
12813     // width as the pointer.
12814     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
12815     uint64_t CompareLHS = LHSOffset.getQuantity();
12816     uint64_t CompareRHS = RHSOffset.getQuantity();
12817     assert(PtrSize <= 64 && "Unexpected pointer width");
12818     uint64_t Mask = ~0ULL >> (64 - PtrSize);
12819     CompareLHS &= Mask;
12820     CompareRHS &= Mask;
12821 
12822     // If there is a base and this is a relational operator, we can only
12823     // compare pointers within the object in question; otherwise, the result
12824     // depends on where the object is located in memory.
12825     if (!LHSValue.Base.isNull() && IsRelational) {
12826       QualType BaseTy = getType(LHSValue.Base);
12827       if (BaseTy->isIncompleteType())
12828         return Error(E);
12829       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
12830       uint64_t OffsetLimit = Size.getQuantity();
12831       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
12832         return Error(E);
12833     }
12834 
12835     if (CompareLHS < CompareRHS)
12836       return Success(CmpResult::Less, E);
12837     if (CompareLHS > CompareRHS)
12838       return Success(CmpResult::Greater, E);
12839     return Success(CmpResult::Equal, E);
12840   }
12841 
12842   if (LHSTy->isMemberPointerType()) {
12843     assert(IsEquality && "unexpected member pointer operation");
12844     assert(RHSTy->isMemberPointerType() && "invalid comparison");
12845 
12846     MemberPtr LHSValue, RHSValue;
12847 
12848     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
12849     if (!LHSOK && !Info.noteFailure())
12850       return false;
12851 
12852     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12853       return false;
12854 
12855     // C++11 [expr.eq]p2:
12856     //   If both operands are null, they compare equal. Otherwise if only one is
12857     //   null, they compare unequal.
12858     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
12859       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
12860       return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12861     }
12862 
12863     //   Otherwise if either is a pointer to a virtual member function, the
12864     //   result is unspecified.
12865     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
12866       if (MD->isVirtual())
12867         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12868     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
12869       if (MD->isVirtual())
12870         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12871 
12872     //   Otherwise they compare equal if and only if they would refer to the
12873     //   same member of the same most derived object or the same subobject if
12874     //   they were dereferenced with a hypothetical object of the associated
12875     //   class type.
12876     bool Equal = LHSValue == RHSValue;
12877     return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12878   }
12879 
12880   if (LHSTy->isNullPtrType()) {
12881     assert(E->isComparisonOp() && "unexpected nullptr operation");
12882     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
12883     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
12884     // are compared, the result is true of the operator is <=, >= or ==, and
12885     // false otherwise.
12886     return Success(CmpResult::Equal, E);
12887   }
12888 
12889   return DoAfter();
12890 }
12891 
12892 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
12893   if (!CheckLiteralType(Info, E))
12894     return false;
12895 
12896   auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12897     ComparisonCategoryResult CCR;
12898     switch (CR) {
12899     case CmpResult::Unequal:
12900       llvm_unreachable("should never produce Unequal for three-way comparison");
12901     case CmpResult::Less:
12902       CCR = ComparisonCategoryResult::Less;
12903       break;
12904     case CmpResult::Equal:
12905       CCR = ComparisonCategoryResult::Equal;
12906       break;
12907     case CmpResult::Greater:
12908       CCR = ComparisonCategoryResult::Greater;
12909       break;
12910     case CmpResult::Unordered:
12911       CCR = ComparisonCategoryResult::Unordered;
12912       break;
12913     }
12914     // Evaluation succeeded. Lookup the information for the comparison category
12915     // type and fetch the VarDecl for the result.
12916     const ComparisonCategoryInfo &CmpInfo =
12917         Info.Ctx.CompCategories.getInfoForType(E->getType());
12918     const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
12919     // Check and evaluate the result as a constant expression.
12920     LValue LV;
12921     LV.set(VD);
12922     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
12923       return false;
12924     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
12925                                    ConstantExprKind::Normal);
12926   };
12927   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12928     return ExprEvaluatorBaseTy::VisitBinCmp(E);
12929   });
12930 }
12931 
12932 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12933   // We don't support assignment in C. C++ assignments don't get here because
12934   // assignment is an lvalue in C++.
12935   if (E->isAssignmentOp()) {
12936     Error(E);
12937     if (!Info.noteFailure())
12938       return false;
12939   }
12940 
12941   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
12942     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
12943 
12944   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
12945           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
12946          "DataRecursiveIntBinOpEvaluator should have handled integral types");
12947 
12948   if (E->isComparisonOp()) {
12949     // Evaluate builtin binary comparisons by evaluating them as three-way
12950     // comparisons and then translating the result.
12951     auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12952       assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
12953              "should only produce Unequal for equality comparisons");
12954       bool IsEqual   = CR == CmpResult::Equal,
12955            IsLess    = CR == CmpResult::Less,
12956            IsGreater = CR == CmpResult::Greater;
12957       auto Op = E->getOpcode();
12958       switch (Op) {
12959       default:
12960         llvm_unreachable("unsupported binary operator");
12961       case BO_EQ:
12962       case BO_NE:
12963         return Success(IsEqual == (Op == BO_EQ), E);
12964       case BO_LT:
12965         return Success(IsLess, E);
12966       case BO_GT:
12967         return Success(IsGreater, E);
12968       case BO_LE:
12969         return Success(IsEqual || IsLess, E);
12970       case BO_GE:
12971         return Success(IsEqual || IsGreater, E);
12972       }
12973     };
12974     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12975       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12976     });
12977   }
12978 
12979   QualType LHSTy = E->getLHS()->getType();
12980   QualType RHSTy = E->getRHS()->getType();
12981 
12982   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
12983       E->getOpcode() == BO_Sub) {
12984     LValue LHSValue, RHSValue;
12985 
12986     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12987     if (!LHSOK && !Info.noteFailure())
12988       return false;
12989 
12990     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12991       return false;
12992 
12993     // Reject differing bases from the normal codepath; we special-case
12994     // comparisons to null.
12995     if (!HasSameBase(LHSValue, RHSValue)) {
12996       // Handle &&A - &&B.
12997       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
12998         return Error(E);
12999       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13000       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13001       if (!LHSExpr || !RHSExpr)
13002         return Error(E);
13003       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13004       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13005       if (!LHSAddrExpr || !RHSAddrExpr)
13006         return Error(E);
13007       // Make sure both labels come from the same function.
13008       if (LHSAddrExpr->getLabel()->getDeclContext() !=
13009           RHSAddrExpr->getLabel()->getDeclContext())
13010         return Error(E);
13011       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13012     }
13013     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13014     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13015 
13016     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13017     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13018 
13019     // C++11 [expr.add]p6:
13020     //   Unless both pointers point to elements of the same array object, or
13021     //   one past the last element of the array object, the behavior is
13022     //   undefined.
13023     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
13024         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
13025                                 RHSDesignator))
13026       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
13027 
13028     QualType Type = E->getLHS()->getType();
13029     QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
13030 
13031     CharUnits ElementSize;
13032     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
13033       return false;
13034 
13035     // As an extension, a type may have zero size (empty struct or union in
13036     // C, array of zero length). Pointer subtraction in such cases has
13037     // undefined behavior, so is not constant.
13038     if (ElementSize.isZero()) {
13039       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
13040           << ElementType;
13041       return false;
13042     }
13043 
13044     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
13045     // and produce incorrect results when it overflows. Such behavior
13046     // appears to be non-conforming, but is common, so perhaps we should
13047     // assume the standard intended for such cases to be undefined behavior
13048     // and check for them.
13049 
13050     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
13051     // overflow in the final conversion to ptrdiff_t.
13052     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
13053     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
13054     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
13055                     false);
13056     APSInt TrueResult = (LHS - RHS) / ElemSize;
13057     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
13058 
13059     if (Result.extend(65) != TrueResult &&
13060         !HandleOverflow(Info, E, TrueResult, E->getType()))
13061       return false;
13062     return Success(Result, E);
13063   }
13064 
13065   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13066 }
13067 
13068 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
13069 /// a result as the expression's type.
13070 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
13071                                     const UnaryExprOrTypeTraitExpr *E) {
13072   switch(E->getKind()) {
13073   case UETT_PreferredAlignOf:
13074   case UETT_AlignOf: {
13075     if (E->isArgumentType())
13076       return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
13077                      E);
13078     else
13079       return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
13080                      E);
13081   }
13082 
13083   case UETT_VecStep: {
13084     QualType Ty = E->getTypeOfArgument();
13085 
13086     if (Ty->isVectorType()) {
13087       unsigned n = Ty->castAs<VectorType>()->getNumElements();
13088 
13089       // The vec_step built-in functions that take a 3-component
13090       // vector return 4. (OpenCL 1.1 spec 6.11.12)
13091       if (n == 3)
13092         n = 4;
13093 
13094       return Success(n, E);
13095     } else
13096       return Success(1, E);
13097   }
13098 
13099   case UETT_SizeOf: {
13100     QualType SrcTy = E->getTypeOfArgument();
13101     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13102     //   the result is the size of the referenced type."
13103     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13104       SrcTy = Ref->getPointeeType();
13105 
13106     CharUnits Sizeof;
13107     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
13108       return false;
13109     return Success(Sizeof, E);
13110   }
13111   case UETT_OpenMPRequiredSimdAlign:
13112     assert(E->isArgumentType());
13113     return Success(
13114         Info.Ctx.toCharUnitsFromBits(
13115                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
13116             .getQuantity(),
13117         E);
13118   }
13119 
13120   llvm_unreachable("unknown expr/type trait");
13121 }
13122 
13123 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13124   CharUnits Result;
13125   unsigned n = OOE->getNumComponents();
13126   if (n == 0)
13127     return Error(OOE);
13128   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13129   for (unsigned i = 0; i != n; ++i) {
13130     OffsetOfNode ON = OOE->getComponent(i);
13131     switch (ON.getKind()) {
13132     case OffsetOfNode::Array: {
13133       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
13134       APSInt IdxResult;
13135       if (!EvaluateInteger(Idx, IdxResult, Info))
13136         return false;
13137       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
13138       if (!AT)
13139         return Error(OOE);
13140       CurrentType = AT->getElementType();
13141       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
13142       Result += IdxResult.getSExtValue() * ElementSize;
13143       break;
13144     }
13145 
13146     case OffsetOfNode::Field: {
13147       FieldDecl *MemberDecl = ON.getField();
13148       const RecordType *RT = CurrentType->getAs<RecordType>();
13149       if (!RT)
13150         return Error(OOE);
13151       RecordDecl *RD = RT->getDecl();
13152       if (RD->isInvalidDecl()) return false;
13153       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13154       unsigned i = MemberDecl->getFieldIndex();
13155       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13156       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
13157       CurrentType = MemberDecl->getType().getNonReferenceType();
13158       break;
13159     }
13160 
13161     case OffsetOfNode::Identifier:
13162       llvm_unreachable("dependent __builtin_offsetof");
13163 
13164     case OffsetOfNode::Base: {
13165       CXXBaseSpecifier *BaseSpec = ON.getBase();
13166       if (BaseSpec->isVirtual())
13167         return Error(OOE);
13168 
13169       // Find the layout of the class whose base we are looking into.
13170       const RecordType *RT = CurrentType->getAs<RecordType>();
13171       if (!RT)
13172         return Error(OOE);
13173       RecordDecl *RD = RT->getDecl();
13174       if (RD->isInvalidDecl()) return false;
13175       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13176 
13177       // Find the base class itself.
13178       CurrentType = BaseSpec->getType();
13179       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13180       if (!BaseRT)
13181         return Error(OOE);
13182 
13183       // Add the offset to the base.
13184       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
13185       break;
13186     }
13187     }
13188   }
13189   return Success(Result, OOE);
13190 }
13191 
13192 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13193   switch (E->getOpcode()) {
13194   default:
13195     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13196     // See C99 6.6p3.
13197     return Error(E);
13198   case UO_Extension:
13199     // FIXME: Should extension allow i-c-e extension expressions in its scope?
13200     // If so, we could clear the diagnostic ID.
13201     return Visit(E->getSubExpr());
13202   case UO_Plus:
13203     // The result is just the value.
13204     return Visit(E->getSubExpr());
13205   case UO_Minus: {
13206     if (!Visit(E->getSubExpr()))
13207       return false;
13208     if (!Result.isInt()) return Error(E);
13209     const APSInt &Value = Result.getInt();
13210     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
13211         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
13212                         E->getType()))
13213       return false;
13214     return Success(-Value, E);
13215   }
13216   case UO_Not: {
13217     if (!Visit(E->getSubExpr()))
13218       return false;
13219     if (!Result.isInt()) return Error(E);
13220     return Success(~Result.getInt(), E);
13221   }
13222   case UO_LNot: {
13223     bool bres;
13224     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13225       return false;
13226     return Success(!bres, E);
13227   }
13228   }
13229 }
13230 
13231 /// HandleCast - This is used to evaluate implicit or explicit casts where the
13232 /// result type is integer.
13233 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13234   const Expr *SubExpr = E->getSubExpr();
13235   QualType DestType = E->getType();
13236   QualType SrcType = SubExpr->getType();
13237 
13238   switch (E->getCastKind()) {
13239   case CK_BaseToDerived:
13240   case CK_DerivedToBase:
13241   case CK_UncheckedDerivedToBase:
13242   case CK_Dynamic:
13243   case CK_ToUnion:
13244   case CK_ArrayToPointerDecay:
13245   case CK_FunctionToPointerDecay:
13246   case CK_NullToPointer:
13247   case CK_NullToMemberPointer:
13248   case CK_BaseToDerivedMemberPointer:
13249   case CK_DerivedToBaseMemberPointer:
13250   case CK_ReinterpretMemberPointer:
13251   case CK_ConstructorConversion:
13252   case CK_IntegralToPointer:
13253   case CK_ToVoid:
13254   case CK_VectorSplat:
13255   case CK_IntegralToFloating:
13256   case CK_FloatingCast:
13257   case CK_CPointerToObjCPointerCast:
13258   case CK_BlockPointerToObjCPointerCast:
13259   case CK_AnyPointerToBlockPointerCast:
13260   case CK_ObjCObjectLValueCast:
13261   case CK_FloatingRealToComplex:
13262   case CK_FloatingComplexToReal:
13263   case CK_FloatingComplexCast:
13264   case CK_FloatingComplexToIntegralComplex:
13265   case CK_IntegralRealToComplex:
13266   case CK_IntegralComplexCast:
13267   case CK_IntegralComplexToFloatingComplex:
13268   case CK_BuiltinFnToFnPtr:
13269   case CK_ZeroToOCLOpaqueType:
13270   case CK_NonAtomicToAtomic:
13271   case CK_AddressSpaceConversion:
13272   case CK_IntToOCLSampler:
13273   case CK_FloatingToFixedPoint:
13274   case CK_FixedPointToFloating:
13275   case CK_FixedPointCast:
13276   case CK_IntegralToFixedPoint:
13277   case CK_MatrixCast:
13278     llvm_unreachable("invalid cast kind for integral value");
13279 
13280   case CK_BitCast:
13281   case CK_Dependent:
13282   case CK_LValueBitCast:
13283   case CK_ARCProduceObject:
13284   case CK_ARCConsumeObject:
13285   case CK_ARCReclaimReturnedObject:
13286   case CK_ARCExtendBlockObject:
13287   case CK_CopyAndAutoreleaseBlockObject:
13288     return Error(E);
13289 
13290   case CK_UserDefinedConversion:
13291   case CK_LValueToRValue:
13292   case CK_AtomicToNonAtomic:
13293   case CK_NoOp:
13294   case CK_LValueToRValueBitCast:
13295     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13296 
13297   case CK_MemberPointerToBoolean:
13298   case CK_PointerToBoolean:
13299   case CK_IntegralToBoolean:
13300   case CK_FloatingToBoolean:
13301   case CK_BooleanToSignedIntegral:
13302   case CK_FloatingComplexToBoolean:
13303   case CK_IntegralComplexToBoolean: {
13304     bool BoolResult;
13305     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
13306       return false;
13307     uint64_t IntResult = BoolResult;
13308     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13309       IntResult = (uint64_t)-1;
13310     return Success(IntResult, E);
13311   }
13312 
13313   case CK_FixedPointToIntegral: {
13314     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
13315     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13316       return false;
13317     bool Overflowed;
13318     llvm::APSInt Result = Src.convertToInt(
13319         Info.Ctx.getIntWidth(DestType),
13320         DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
13321     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13322       return false;
13323     return Success(Result, E);
13324   }
13325 
13326   case CK_FixedPointToBoolean: {
13327     // Unsigned padding does not affect this.
13328     APValue Val;
13329     if (!Evaluate(Val, Info, SubExpr))
13330       return false;
13331     return Success(Val.getFixedPoint().getBoolValue(), E);
13332   }
13333 
13334   case CK_IntegralCast: {
13335     if (!Visit(SubExpr))
13336       return false;
13337 
13338     if (!Result.isInt()) {
13339       // Allow casts of address-of-label differences if they are no-ops
13340       // or narrowing.  (The narrowing case isn't actually guaranteed to
13341       // be constant-evaluatable except in some narrow cases which are hard
13342       // to detect here.  We let it through on the assumption the user knows
13343       // what they are doing.)
13344       if (Result.isAddrLabelDiff())
13345         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
13346       // Only allow casts of lvalues if they are lossless.
13347       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
13348     }
13349 
13350     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
13351                                       Result.getInt()), E);
13352   }
13353 
13354   case CK_PointerToIntegral: {
13355     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
13356 
13357     LValue LV;
13358     if (!EvaluatePointer(SubExpr, LV, Info))
13359       return false;
13360 
13361     if (LV.getLValueBase()) {
13362       // Only allow based lvalue casts if they are lossless.
13363       // FIXME: Allow a larger integer size than the pointer size, and allow
13364       // narrowing back down to pointer width in subsequent integral casts.
13365       // FIXME: Check integer type's active bits, not its type size.
13366       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
13367         return Error(E);
13368 
13369       LV.Designator.setInvalid();
13370       LV.moveInto(Result);
13371       return true;
13372     }
13373 
13374     APSInt AsInt;
13375     APValue V;
13376     LV.moveInto(V);
13377     if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
13378       llvm_unreachable("Can't cast this!");
13379 
13380     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
13381   }
13382 
13383   case CK_IntegralComplexToReal: {
13384     ComplexValue C;
13385     if (!EvaluateComplex(SubExpr, C, Info))
13386       return false;
13387     return Success(C.getComplexIntReal(), E);
13388   }
13389 
13390   case CK_FloatingToIntegral: {
13391     APFloat F(0.0);
13392     if (!EvaluateFloat(SubExpr, F, Info))
13393       return false;
13394 
13395     APSInt Value;
13396     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
13397       return false;
13398     return Success(Value, E);
13399   }
13400   }
13401 
13402   llvm_unreachable("unknown cast resulting in integral value");
13403 }
13404 
13405 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13406   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13407     ComplexValue LV;
13408     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13409       return false;
13410     if (!LV.isComplexInt())
13411       return Error(E);
13412     return Success(LV.getComplexIntReal(), E);
13413   }
13414 
13415   return Visit(E->getSubExpr());
13416 }
13417 
13418 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13419   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
13420     ComplexValue LV;
13421     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13422       return false;
13423     if (!LV.isComplexInt())
13424       return Error(E);
13425     return Success(LV.getComplexIntImag(), E);
13426   }
13427 
13428   VisitIgnoredValue(E->getSubExpr());
13429   return Success(0, E);
13430 }
13431 
13432 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
13433   return Success(E->getPackLength(), E);
13434 }
13435 
13436 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
13437   return Success(E->getValue(), E);
13438 }
13439 
13440 bool IntExprEvaluator::VisitConceptSpecializationExpr(
13441        const ConceptSpecializationExpr *E) {
13442   return Success(E->isSatisfied(), E);
13443 }
13444 
13445 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
13446   return Success(E->isSatisfied(), E);
13447 }
13448 
13449 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13450   switch (E->getOpcode()) {
13451     default:
13452       // Invalid unary operators
13453       return Error(E);
13454     case UO_Plus:
13455       // The result is just the value.
13456       return Visit(E->getSubExpr());
13457     case UO_Minus: {
13458       if (!Visit(E->getSubExpr())) return false;
13459       if (!Result.isFixedPoint())
13460         return Error(E);
13461       bool Overflowed;
13462       APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
13463       if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
13464         return false;
13465       return Success(Negated, E);
13466     }
13467     case UO_LNot: {
13468       bool bres;
13469       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13470         return false;
13471       return Success(!bres, E);
13472     }
13473   }
13474 }
13475 
13476 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
13477   const Expr *SubExpr = E->getSubExpr();
13478   QualType DestType = E->getType();
13479   assert(DestType->isFixedPointType() &&
13480          "Expected destination type to be a fixed point type");
13481   auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
13482 
13483   switch (E->getCastKind()) {
13484   case CK_FixedPointCast: {
13485     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13486     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13487       return false;
13488     bool Overflowed;
13489     APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
13490     if (Overflowed) {
13491       if (Info.checkingForUndefinedBehavior())
13492         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13493                                          diag::warn_fixedpoint_constant_overflow)
13494           << Result.toString() << E->getType();
13495       if (!HandleOverflow(Info, E, Result, E->getType()))
13496         return false;
13497     }
13498     return Success(Result, E);
13499   }
13500   case CK_IntegralToFixedPoint: {
13501     APSInt Src;
13502     if (!EvaluateInteger(SubExpr, Src, Info))
13503       return false;
13504 
13505     bool Overflowed;
13506     APFixedPoint IntResult = APFixedPoint::getFromIntValue(
13507         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13508 
13509     if (Overflowed) {
13510       if (Info.checkingForUndefinedBehavior())
13511         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13512                                          diag::warn_fixedpoint_constant_overflow)
13513           << IntResult.toString() << E->getType();
13514       if (!HandleOverflow(Info, E, IntResult, E->getType()))
13515         return false;
13516     }
13517 
13518     return Success(IntResult, E);
13519   }
13520   case CK_FloatingToFixedPoint: {
13521     APFloat Src(0.0);
13522     if (!EvaluateFloat(SubExpr, Src, Info))
13523       return false;
13524 
13525     bool Overflowed;
13526     APFixedPoint Result = APFixedPoint::getFromFloatValue(
13527         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13528 
13529     if (Overflowed) {
13530       if (Info.checkingForUndefinedBehavior())
13531         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13532                                          diag::warn_fixedpoint_constant_overflow)
13533           << Result.toString() << E->getType();
13534       if (!HandleOverflow(Info, E, Result, E->getType()))
13535         return false;
13536     }
13537 
13538     return Success(Result, E);
13539   }
13540   case CK_NoOp:
13541   case CK_LValueToRValue:
13542     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13543   default:
13544     return Error(E);
13545   }
13546 }
13547 
13548 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13549   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13550     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13551 
13552   const Expr *LHS = E->getLHS();
13553   const Expr *RHS = E->getRHS();
13554   FixedPointSemantics ResultFXSema =
13555       Info.Ctx.getFixedPointSemantics(E->getType());
13556 
13557   APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
13558   if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
13559     return false;
13560   APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
13561   if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
13562     return false;
13563 
13564   bool OpOverflow = false, ConversionOverflow = false;
13565   APFixedPoint Result(LHSFX.getSemantics());
13566   switch (E->getOpcode()) {
13567   case BO_Add: {
13568     Result = LHSFX.add(RHSFX, &OpOverflow)
13569                   .convert(ResultFXSema, &ConversionOverflow);
13570     break;
13571   }
13572   case BO_Sub: {
13573     Result = LHSFX.sub(RHSFX, &OpOverflow)
13574                   .convert(ResultFXSema, &ConversionOverflow);
13575     break;
13576   }
13577   case BO_Mul: {
13578     Result = LHSFX.mul(RHSFX, &OpOverflow)
13579                   .convert(ResultFXSema, &ConversionOverflow);
13580     break;
13581   }
13582   case BO_Div: {
13583     if (RHSFX.getValue() == 0) {
13584       Info.FFDiag(E, diag::note_expr_divide_by_zero);
13585       return false;
13586     }
13587     Result = LHSFX.div(RHSFX, &OpOverflow)
13588                   .convert(ResultFXSema, &ConversionOverflow);
13589     break;
13590   }
13591   case BO_Shl:
13592   case BO_Shr: {
13593     FixedPointSemantics LHSSema = LHSFX.getSemantics();
13594     llvm::APSInt RHSVal = RHSFX.getValue();
13595 
13596     unsigned ShiftBW =
13597         LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
13598     unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
13599     // Embedded-C 4.1.6.2.2:
13600     //   The right operand must be nonnegative and less than the total number
13601     //   of (nonpadding) bits of the fixed-point operand ...
13602     if (RHSVal.isNegative())
13603       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
13604     else if (Amt != RHSVal)
13605       Info.CCEDiag(E, diag::note_constexpr_large_shift)
13606           << RHSVal << E->getType() << ShiftBW;
13607 
13608     if (E->getOpcode() == BO_Shl)
13609       Result = LHSFX.shl(Amt, &OpOverflow);
13610     else
13611       Result = LHSFX.shr(Amt, &OpOverflow);
13612     break;
13613   }
13614   default:
13615     return false;
13616   }
13617   if (OpOverflow || ConversionOverflow) {
13618     if (Info.checkingForUndefinedBehavior())
13619       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13620                                        diag::warn_fixedpoint_constant_overflow)
13621         << Result.toString() << E->getType();
13622     if (!HandleOverflow(Info, E, Result, E->getType()))
13623       return false;
13624   }
13625   return Success(Result, E);
13626 }
13627 
13628 //===----------------------------------------------------------------------===//
13629 // Float Evaluation
13630 //===----------------------------------------------------------------------===//
13631 
13632 namespace {
13633 class FloatExprEvaluator
13634   : public ExprEvaluatorBase<FloatExprEvaluator> {
13635   APFloat &Result;
13636 public:
13637   FloatExprEvaluator(EvalInfo &info, APFloat &result)
13638     : ExprEvaluatorBaseTy(info), Result(result) {}
13639 
13640   bool Success(const APValue &V, const Expr *e) {
13641     Result = V.getFloat();
13642     return true;
13643   }
13644 
13645   bool ZeroInitialization(const Expr *E) {
13646     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
13647     return true;
13648   }
13649 
13650   bool VisitCallExpr(const CallExpr *E);
13651 
13652   bool VisitUnaryOperator(const UnaryOperator *E);
13653   bool VisitBinaryOperator(const BinaryOperator *E);
13654   bool VisitFloatingLiteral(const FloatingLiteral *E);
13655   bool VisitCastExpr(const CastExpr *E);
13656 
13657   bool VisitUnaryReal(const UnaryOperator *E);
13658   bool VisitUnaryImag(const UnaryOperator *E);
13659 
13660   // FIXME: Missing: array subscript of vector, member of vector
13661 };
13662 } // end anonymous namespace
13663 
13664 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
13665   assert(!E->isValueDependent());
13666   assert(E->isPRValue() && E->getType()->isRealFloatingType());
13667   return FloatExprEvaluator(Info, Result).Visit(E);
13668 }
13669 
13670 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
13671                                   QualType ResultTy,
13672                                   const Expr *Arg,
13673                                   bool SNaN,
13674                                   llvm::APFloat &Result) {
13675   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
13676   if (!S) return false;
13677 
13678   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
13679 
13680   llvm::APInt fill;
13681 
13682   // Treat empty strings as if they were zero.
13683   if (S->getString().empty())
13684     fill = llvm::APInt(32, 0);
13685   else if (S->getString().getAsInteger(0, fill))
13686     return false;
13687 
13688   if (Context.getTargetInfo().isNan2008()) {
13689     if (SNaN)
13690       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13691     else
13692       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13693   } else {
13694     // Prior to IEEE 754-2008, architectures were allowed to choose whether
13695     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
13696     // a different encoding to what became a standard in 2008, and for pre-
13697     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
13698     // sNaN. This is now known as "legacy NaN" encoding.
13699     if (SNaN)
13700       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13701     else
13702       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13703   }
13704 
13705   return true;
13706 }
13707 
13708 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
13709   switch (E->getBuiltinCallee()) {
13710   default:
13711     return ExprEvaluatorBaseTy::VisitCallExpr(E);
13712 
13713   case Builtin::BI__builtin_huge_val:
13714   case Builtin::BI__builtin_huge_valf:
13715   case Builtin::BI__builtin_huge_vall:
13716   case Builtin::BI__builtin_huge_valf128:
13717   case Builtin::BI__builtin_inf:
13718   case Builtin::BI__builtin_inff:
13719   case Builtin::BI__builtin_infl:
13720   case Builtin::BI__builtin_inff128: {
13721     const llvm::fltSemantics &Sem =
13722       Info.Ctx.getFloatTypeSemantics(E->getType());
13723     Result = llvm::APFloat::getInf(Sem);
13724     return true;
13725   }
13726 
13727   case Builtin::BI__builtin_nans:
13728   case Builtin::BI__builtin_nansf:
13729   case Builtin::BI__builtin_nansl:
13730   case Builtin::BI__builtin_nansf128:
13731     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13732                                true, Result))
13733       return Error(E);
13734     return true;
13735 
13736   case Builtin::BI__builtin_nan:
13737   case Builtin::BI__builtin_nanf:
13738   case Builtin::BI__builtin_nanl:
13739   case Builtin::BI__builtin_nanf128:
13740     // If this is __builtin_nan() turn this into a nan, otherwise we
13741     // can't constant fold it.
13742     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13743                                false, Result))
13744       return Error(E);
13745     return true;
13746 
13747   case Builtin::BI__builtin_fabs:
13748   case Builtin::BI__builtin_fabsf:
13749   case Builtin::BI__builtin_fabsl:
13750   case Builtin::BI__builtin_fabsf128:
13751     // The C standard says "fabs raises no floating-point exceptions,
13752     // even if x is a signaling NaN. The returned value is independent of
13753     // the current rounding direction mode."  Therefore constant folding can
13754     // proceed without regard to the floating point settings.
13755     // Reference, WG14 N2478 F.10.4.3
13756     if (!EvaluateFloat(E->getArg(0), Result, Info))
13757       return false;
13758 
13759     if (Result.isNegative())
13760       Result.changeSign();
13761     return true;
13762 
13763   case Builtin::BI__arithmetic_fence:
13764     return EvaluateFloat(E->getArg(0), Result, Info);
13765 
13766   // FIXME: Builtin::BI__builtin_powi
13767   // FIXME: Builtin::BI__builtin_powif
13768   // FIXME: Builtin::BI__builtin_powil
13769 
13770   case Builtin::BI__builtin_copysign:
13771   case Builtin::BI__builtin_copysignf:
13772   case Builtin::BI__builtin_copysignl:
13773   case Builtin::BI__builtin_copysignf128: {
13774     APFloat RHS(0.);
13775     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
13776         !EvaluateFloat(E->getArg(1), RHS, Info))
13777       return false;
13778     Result.copySign(RHS);
13779     return true;
13780   }
13781   }
13782 }
13783 
13784 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13785   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13786     ComplexValue CV;
13787     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13788       return false;
13789     Result = CV.FloatReal;
13790     return true;
13791   }
13792 
13793   return Visit(E->getSubExpr());
13794 }
13795 
13796 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13797   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13798     ComplexValue CV;
13799     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13800       return false;
13801     Result = CV.FloatImag;
13802     return true;
13803   }
13804 
13805   VisitIgnoredValue(E->getSubExpr());
13806   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
13807   Result = llvm::APFloat::getZero(Sem);
13808   return true;
13809 }
13810 
13811 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13812   switch (E->getOpcode()) {
13813   default: return Error(E);
13814   case UO_Plus:
13815     return EvaluateFloat(E->getSubExpr(), Result, Info);
13816   case UO_Minus:
13817     // In C standard, WG14 N2478 F.3 p4
13818     // "the unary - raises no floating point exceptions,
13819     // even if the operand is signalling."
13820     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
13821       return false;
13822     Result.changeSign();
13823     return true;
13824   }
13825 }
13826 
13827 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13828   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13829     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13830 
13831   APFloat RHS(0.0);
13832   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
13833   if (!LHSOK && !Info.noteFailure())
13834     return false;
13835   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
13836          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
13837 }
13838 
13839 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
13840   Result = E->getValue();
13841   return true;
13842 }
13843 
13844 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
13845   const Expr* SubExpr = E->getSubExpr();
13846 
13847   switch (E->getCastKind()) {
13848   default:
13849     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13850 
13851   case CK_IntegralToFloating: {
13852     APSInt IntResult;
13853     const FPOptions FPO = E->getFPFeaturesInEffect(
13854                                   Info.Ctx.getLangOpts());
13855     return EvaluateInteger(SubExpr, IntResult, Info) &&
13856            HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
13857                                 IntResult, E->getType(), Result);
13858   }
13859 
13860   case CK_FixedPointToFloating: {
13861     APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13862     if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
13863       return false;
13864     Result =
13865         FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
13866     return true;
13867   }
13868 
13869   case CK_FloatingCast: {
13870     if (!Visit(SubExpr))
13871       return false;
13872     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
13873                                   Result);
13874   }
13875 
13876   case CK_FloatingComplexToReal: {
13877     ComplexValue V;
13878     if (!EvaluateComplex(SubExpr, V, Info))
13879       return false;
13880     Result = V.getComplexFloatReal();
13881     return true;
13882   }
13883   }
13884 }
13885 
13886 //===----------------------------------------------------------------------===//
13887 // Complex Evaluation (for float and integer)
13888 //===----------------------------------------------------------------------===//
13889 
13890 namespace {
13891 class ComplexExprEvaluator
13892   : public ExprEvaluatorBase<ComplexExprEvaluator> {
13893   ComplexValue &Result;
13894 
13895 public:
13896   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
13897     : ExprEvaluatorBaseTy(info), Result(Result) {}
13898 
13899   bool Success(const APValue &V, const Expr *e) {
13900     Result.setFrom(V);
13901     return true;
13902   }
13903 
13904   bool ZeroInitialization(const Expr *E);
13905 
13906   //===--------------------------------------------------------------------===//
13907   //                            Visitor Methods
13908   //===--------------------------------------------------------------------===//
13909 
13910   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
13911   bool VisitCastExpr(const CastExpr *E);
13912   bool VisitBinaryOperator(const BinaryOperator *E);
13913   bool VisitUnaryOperator(const UnaryOperator *E);
13914   bool VisitInitListExpr(const InitListExpr *E);
13915   bool VisitCallExpr(const CallExpr *E);
13916 };
13917 } // end anonymous namespace
13918 
13919 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
13920                             EvalInfo &Info) {
13921   assert(!E->isValueDependent());
13922   assert(E->isPRValue() && E->getType()->isAnyComplexType());
13923   return ComplexExprEvaluator(Info, Result).Visit(E);
13924 }
13925 
13926 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
13927   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
13928   if (ElemTy->isRealFloatingType()) {
13929     Result.makeComplexFloat();
13930     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
13931     Result.FloatReal = Zero;
13932     Result.FloatImag = Zero;
13933   } else {
13934     Result.makeComplexInt();
13935     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
13936     Result.IntReal = Zero;
13937     Result.IntImag = Zero;
13938   }
13939   return true;
13940 }
13941 
13942 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
13943   const Expr* SubExpr = E->getSubExpr();
13944 
13945   if (SubExpr->getType()->isRealFloatingType()) {
13946     Result.makeComplexFloat();
13947     APFloat &Imag = Result.FloatImag;
13948     if (!EvaluateFloat(SubExpr, Imag, Info))
13949       return false;
13950 
13951     Result.FloatReal = APFloat(Imag.getSemantics());
13952     return true;
13953   } else {
13954     assert(SubExpr->getType()->isIntegerType() &&
13955            "Unexpected imaginary literal.");
13956 
13957     Result.makeComplexInt();
13958     APSInt &Imag = Result.IntImag;
13959     if (!EvaluateInteger(SubExpr, Imag, Info))
13960       return false;
13961 
13962     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
13963     return true;
13964   }
13965 }
13966 
13967 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
13968 
13969   switch (E->getCastKind()) {
13970   case CK_BitCast:
13971   case CK_BaseToDerived:
13972   case CK_DerivedToBase:
13973   case CK_UncheckedDerivedToBase:
13974   case CK_Dynamic:
13975   case CK_ToUnion:
13976   case CK_ArrayToPointerDecay:
13977   case CK_FunctionToPointerDecay:
13978   case CK_NullToPointer:
13979   case CK_NullToMemberPointer:
13980   case CK_BaseToDerivedMemberPointer:
13981   case CK_DerivedToBaseMemberPointer:
13982   case CK_MemberPointerToBoolean:
13983   case CK_ReinterpretMemberPointer:
13984   case CK_ConstructorConversion:
13985   case CK_IntegralToPointer:
13986   case CK_PointerToIntegral:
13987   case CK_PointerToBoolean:
13988   case CK_ToVoid:
13989   case CK_VectorSplat:
13990   case CK_IntegralCast:
13991   case CK_BooleanToSignedIntegral:
13992   case CK_IntegralToBoolean:
13993   case CK_IntegralToFloating:
13994   case CK_FloatingToIntegral:
13995   case CK_FloatingToBoolean:
13996   case CK_FloatingCast:
13997   case CK_CPointerToObjCPointerCast:
13998   case CK_BlockPointerToObjCPointerCast:
13999   case CK_AnyPointerToBlockPointerCast:
14000   case CK_ObjCObjectLValueCast:
14001   case CK_FloatingComplexToReal:
14002   case CK_FloatingComplexToBoolean:
14003   case CK_IntegralComplexToReal:
14004   case CK_IntegralComplexToBoolean:
14005   case CK_ARCProduceObject:
14006   case CK_ARCConsumeObject:
14007   case CK_ARCReclaimReturnedObject:
14008   case CK_ARCExtendBlockObject:
14009   case CK_CopyAndAutoreleaseBlockObject:
14010   case CK_BuiltinFnToFnPtr:
14011   case CK_ZeroToOCLOpaqueType:
14012   case CK_NonAtomicToAtomic:
14013   case CK_AddressSpaceConversion:
14014   case CK_IntToOCLSampler:
14015   case CK_FloatingToFixedPoint:
14016   case CK_FixedPointToFloating:
14017   case CK_FixedPointCast:
14018   case CK_FixedPointToBoolean:
14019   case CK_FixedPointToIntegral:
14020   case CK_IntegralToFixedPoint:
14021   case CK_MatrixCast:
14022     llvm_unreachable("invalid cast kind for complex value");
14023 
14024   case CK_LValueToRValue:
14025   case CK_AtomicToNonAtomic:
14026   case CK_NoOp:
14027   case CK_LValueToRValueBitCast:
14028     return ExprEvaluatorBaseTy::VisitCastExpr(E);
14029 
14030   case CK_Dependent:
14031   case CK_LValueBitCast:
14032   case CK_UserDefinedConversion:
14033     return Error(E);
14034 
14035   case CK_FloatingRealToComplex: {
14036     APFloat &Real = Result.FloatReal;
14037     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
14038       return false;
14039 
14040     Result.makeComplexFloat();
14041     Result.FloatImag = APFloat(Real.getSemantics());
14042     return true;
14043   }
14044 
14045   case CK_FloatingComplexCast: {
14046     if (!Visit(E->getSubExpr()))
14047       return false;
14048 
14049     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14050     QualType From
14051       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14052 
14053     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
14054            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
14055   }
14056 
14057   case CK_FloatingComplexToIntegralComplex: {
14058     if (!Visit(E->getSubExpr()))
14059       return false;
14060 
14061     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14062     QualType From
14063       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14064     Result.makeComplexInt();
14065     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
14066                                 To, Result.IntReal) &&
14067            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
14068                                 To, Result.IntImag);
14069   }
14070 
14071   case CK_IntegralRealToComplex: {
14072     APSInt &Real = Result.IntReal;
14073     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
14074       return false;
14075 
14076     Result.makeComplexInt();
14077     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
14078     return true;
14079   }
14080 
14081   case CK_IntegralComplexCast: {
14082     if (!Visit(E->getSubExpr()))
14083       return false;
14084 
14085     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14086     QualType From
14087       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14088 
14089     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
14090     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
14091     return true;
14092   }
14093 
14094   case CK_IntegralComplexToFloatingComplex: {
14095     if (!Visit(E->getSubExpr()))
14096       return false;
14097 
14098     const FPOptions FPO = E->getFPFeaturesInEffect(
14099                                   Info.Ctx.getLangOpts());
14100     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14101     QualType From
14102       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14103     Result.makeComplexFloat();
14104     return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14105                                 To, Result.FloatReal) &&
14106            HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14107                                 To, Result.FloatImag);
14108   }
14109   }
14110 
14111   llvm_unreachable("unknown cast resulting in complex value");
14112 }
14113 
14114 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14115   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14116     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14117 
14118   // Track whether the LHS or RHS is real at the type system level. When this is
14119   // the case we can simplify our evaluation strategy.
14120   bool LHSReal = false, RHSReal = false;
14121 
14122   bool LHSOK;
14123   if (E->getLHS()->getType()->isRealFloatingType()) {
14124     LHSReal = true;
14125     APFloat &Real = Result.FloatReal;
14126     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
14127     if (LHSOK) {
14128       Result.makeComplexFloat();
14129       Result.FloatImag = APFloat(Real.getSemantics());
14130     }
14131   } else {
14132     LHSOK = Visit(E->getLHS());
14133   }
14134   if (!LHSOK && !Info.noteFailure())
14135     return false;
14136 
14137   ComplexValue RHS;
14138   if (E->getRHS()->getType()->isRealFloatingType()) {
14139     RHSReal = true;
14140     APFloat &Real = RHS.FloatReal;
14141     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
14142       return false;
14143     RHS.makeComplexFloat();
14144     RHS.FloatImag = APFloat(Real.getSemantics());
14145   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
14146     return false;
14147 
14148   assert(!(LHSReal && RHSReal) &&
14149          "Cannot have both operands of a complex operation be real.");
14150   switch (E->getOpcode()) {
14151   default: return Error(E);
14152   case BO_Add:
14153     if (Result.isComplexFloat()) {
14154       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
14155                                        APFloat::rmNearestTiesToEven);
14156       if (LHSReal)
14157         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14158       else if (!RHSReal)
14159         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
14160                                          APFloat::rmNearestTiesToEven);
14161     } else {
14162       Result.getComplexIntReal() += RHS.getComplexIntReal();
14163       Result.getComplexIntImag() += RHS.getComplexIntImag();
14164     }
14165     break;
14166   case BO_Sub:
14167     if (Result.isComplexFloat()) {
14168       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
14169                                             APFloat::rmNearestTiesToEven);
14170       if (LHSReal) {
14171         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14172         Result.getComplexFloatImag().changeSign();
14173       } else if (!RHSReal) {
14174         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
14175                                               APFloat::rmNearestTiesToEven);
14176       }
14177     } else {
14178       Result.getComplexIntReal() -= RHS.getComplexIntReal();
14179       Result.getComplexIntImag() -= RHS.getComplexIntImag();
14180     }
14181     break;
14182   case BO_Mul:
14183     if (Result.isComplexFloat()) {
14184       // This is an implementation of complex multiplication according to the
14185       // constraints laid out in C11 Annex G. The implementation uses the
14186       // following naming scheme:
14187       //   (a + ib) * (c + id)
14188       ComplexValue LHS = Result;
14189       APFloat &A = LHS.getComplexFloatReal();
14190       APFloat &B = LHS.getComplexFloatImag();
14191       APFloat &C = RHS.getComplexFloatReal();
14192       APFloat &D = RHS.getComplexFloatImag();
14193       APFloat &ResR = Result.getComplexFloatReal();
14194       APFloat &ResI = Result.getComplexFloatImag();
14195       if (LHSReal) {
14196         assert(!RHSReal && "Cannot have two real operands for a complex op!");
14197         ResR = A * C;
14198         ResI = A * D;
14199       } else if (RHSReal) {
14200         ResR = C * A;
14201         ResI = C * B;
14202       } else {
14203         // In the fully general case, we need to handle NaNs and infinities
14204         // robustly.
14205         APFloat AC = A * C;
14206         APFloat BD = B * D;
14207         APFloat AD = A * D;
14208         APFloat BC = B * C;
14209         ResR = AC - BD;
14210         ResI = AD + BC;
14211         if (ResR.isNaN() && ResI.isNaN()) {
14212           bool Recalc = false;
14213           if (A.isInfinity() || B.isInfinity()) {
14214             A = APFloat::copySign(
14215                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14216             B = APFloat::copySign(
14217                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14218             if (C.isNaN())
14219               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14220             if (D.isNaN())
14221               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14222             Recalc = true;
14223           }
14224           if (C.isInfinity() || D.isInfinity()) {
14225             C = APFloat::copySign(
14226                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14227             D = APFloat::copySign(
14228                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14229             if (A.isNaN())
14230               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14231             if (B.isNaN())
14232               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14233             Recalc = true;
14234           }
14235           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14236                           AD.isInfinity() || BC.isInfinity())) {
14237             if (A.isNaN())
14238               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14239             if (B.isNaN())
14240               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14241             if (C.isNaN())
14242               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14243             if (D.isNaN())
14244               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14245             Recalc = true;
14246           }
14247           if (Recalc) {
14248             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
14249             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
14250           }
14251         }
14252       }
14253     } else {
14254       ComplexValue LHS = Result;
14255       Result.getComplexIntReal() =
14256         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
14257          LHS.getComplexIntImag() * RHS.getComplexIntImag());
14258       Result.getComplexIntImag() =
14259         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
14260          LHS.getComplexIntImag() * RHS.getComplexIntReal());
14261     }
14262     break;
14263   case BO_Div:
14264     if (Result.isComplexFloat()) {
14265       // This is an implementation of complex division according to the
14266       // constraints laid out in C11 Annex G. The implementation uses the
14267       // following naming scheme:
14268       //   (a + ib) / (c + id)
14269       ComplexValue LHS = Result;
14270       APFloat &A = LHS.getComplexFloatReal();
14271       APFloat &B = LHS.getComplexFloatImag();
14272       APFloat &C = RHS.getComplexFloatReal();
14273       APFloat &D = RHS.getComplexFloatImag();
14274       APFloat &ResR = Result.getComplexFloatReal();
14275       APFloat &ResI = Result.getComplexFloatImag();
14276       if (RHSReal) {
14277         ResR = A / C;
14278         ResI = B / C;
14279       } else {
14280         if (LHSReal) {
14281           // No real optimizations we can do here, stub out with zero.
14282           B = APFloat::getZero(A.getSemantics());
14283         }
14284         int DenomLogB = 0;
14285         APFloat MaxCD = maxnum(abs(C), abs(D));
14286         if (MaxCD.isFinite()) {
14287           DenomLogB = ilogb(MaxCD);
14288           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
14289           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
14290         }
14291         APFloat Denom = C * C + D * D;
14292         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
14293                       APFloat::rmNearestTiesToEven);
14294         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
14295                       APFloat::rmNearestTiesToEven);
14296         if (ResR.isNaN() && ResI.isNaN()) {
14297           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
14298             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
14299             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
14300           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
14301                      D.isFinite()) {
14302             A = APFloat::copySign(
14303                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14304             B = APFloat::copySign(
14305                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14306             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
14307             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
14308           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
14309             C = APFloat::copySign(
14310                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14311             D = APFloat::copySign(
14312                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14313             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
14314             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
14315           }
14316         }
14317       }
14318     } else {
14319       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
14320         return Error(E, diag::note_expr_divide_by_zero);
14321 
14322       ComplexValue LHS = Result;
14323       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
14324         RHS.getComplexIntImag() * RHS.getComplexIntImag();
14325       Result.getComplexIntReal() =
14326         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
14327          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
14328       Result.getComplexIntImag() =
14329         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
14330          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
14331     }
14332     break;
14333   }
14334 
14335   return true;
14336 }
14337 
14338 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14339   // Get the operand value into 'Result'.
14340   if (!Visit(E->getSubExpr()))
14341     return false;
14342 
14343   switch (E->getOpcode()) {
14344   default:
14345     return Error(E);
14346   case UO_Extension:
14347     return true;
14348   case UO_Plus:
14349     // The result is always just the subexpr.
14350     return true;
14351   case UO_Minus:
14352     if (Result.isComplexFloat()) {
14353       Result.getComplexFloatReal().changeSign();
14354       Result.getComplexFloatImag().changeSign();
14355     }
14356     else {
14357       Result.getComplexIntReal() = -Result.getComplexIntReal();
14358       Result.getComplexIntImag() = -Result.getComplexIntImag();
14359     }
14360     return true;
14361   case UO_Not:
14362     if (Result.isComplexFloat())
14363       Result.getComplexFloatImag().changeSign();
14364     else
14365       Result.getComplexIntImag() = -Result.getComplexIntImag();
14366     return true;
14367   }
14368 }
14369 
14370 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
14371   if (E->getNumInits() == 2) {
14372     if (E->getType()->isComplexType()) {
14373       Result.makeComplexFloat();
14374       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
14375         return false;
14376       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
14377         return false;
14378     } else {
14379       Result.makeComplexInt();
14380       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
14381         return false;
14382       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
14383         return false;
14384     }
14385     return true;
14386   }
14387   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
14388 }
14389 
14390 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
14391   switch (E->getBuiltinCallee()) {
14392   case Builtin::BI__builtin_complex:
14393     Result.makeComplexFloat();
14394     if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
14395       return false;
14396     if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
14397       return false;
14398     return true;
14399 
14400   default:
14401     break;
14402   }
14403 
14404   return ExprEvaluatorBaseTy::VisitCallExpr(E);
14405 }
14406 
14407 //===----------------------------------------------------------------------===//
14408 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
14409 // implicit conversion.
14410 //===----------------------------------------------------------------------===//
14411 
14412 namespace {
14413 class AtomicExprEvaluator :
14414     public ExprEvaluatorBase<AtomicExprEvaluator> {
14415   const LValue *This;
14416   APValue &Result;
14417 public:
14418   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
14419       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
14420 
14421   bool Success(const APValue &V, const Expr *E) {
14422     Result = V;
14423     return true;
14424   }
14425 
14426   bool ZeroInitialization(const Expr *E) {
14427     ImplicitValueInitExpr VIE(
14428         E->getType()->castAs<AtomicType>()->getValueType());
14429     // For atomic-qualified class (and array) types in C++, initialize the
14430     // _Atomic-wrapped subobject directly, in-place.
14431     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
14432                 : Evaluate(Result, Info, &VIE);
14433   }
14434 
14435   bool VisitCastExpr(const CastExpr *E) {
14436     switch (E->getCastKind()) {
14437     default:
14438       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14439     case CK_NonAtomicToAtomic:
14440       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
14441                   : Evaluate(Result, Info, E->getSubExpr());
14442     }
14443   }
14444 };
14445 } // end anonymous namespace
14446 
14447 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
14448                            EvalInfo &Info) {
14449   assert(!E->isValueDependent());
14450   assert(E->isPRValue() && E->getType()->isAtomicType());
14451   return AtomicExprEvaluator(Info, This, Result).Visit(E);
14452 }
14453 
14454 //===----------------------------------------------------------------------===//
14455 // Void expression evaluation, primarily for a cast to void on the LHS of a
14456 // comma operator
14457 //===----------------------------------------------------------------------===//
14458 
14459 namespace {
14460 class VoidExprEvaluator
14461   : public ExprEvaluatorBase<VoidExprEvaluator> {
14462 public:
14463   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
14464 
14465   bool Success(const APValue &V, const Expr *e) { return true; }
14466 
14467   bool ZeroInitialization(const Expr *E) { return true; }
14468 
14469   bool VisitCastExpr(const CastExpr *E) {
14470     switch (E->getCastKind()) {
14471     default:
14472       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14473     case CK_ToVoid:
14474       VisitIgnoredValue(E->getSubExpr());
14475       return true;
14476     }
14477   }
14478 
14479   bool VisitCallExpr(const CallExpr *E) {
14480     switch (E->getBuiltinCallee()) {
14481     case Builtin::BI__assume:
14482     case Builtin::BI__builtin_assume:
14483       // The argument is not evaluated!
14484       return true;
14485 
14486     case Builtin::BI__builtin_operator_delete:
14487       return HandleOperatorDeleteCall(Info, E);
14488 
14489     default:
14490       break;
14491     }
14492 
14493     return ExprEvaluatorBaseTy::VisitCallExpr(E);
14494   }
14495 
14496   bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
14497 };
14498 } // end anonymous namespace
14499 
14500 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
14501   // We cannot speculatively evaluate a delete expression.
14502   if (Info.SpeculativeEvaluationDepth)
14503     return false;
14504 
14505   FunctionDecl *OperatorDelete = E->getOperatorDelete();
14506   if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
14507     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14508         << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
14509     return false;
14510   }
14511 
14512   const Expr *Arg = E->getArgument();
14513 
14514   LValue Pointer;
14515   if (!EvaluatePointer(Arg, Pointer, Info))
14516     return false;
14517   if (Pointer.Designator.Invalid)
14518     return false;
14519 
14520   // Deleting a null pointer has no effect.
14521   if (Pointer.isNullPointer()) {
14522     // This is the only case where we need to produce an extension warning:
14523     // the only other way we can succeed is if we find a dynamic allocation,
14524     // and we will have warned when we allocated it in that case.
14525     if (!Info.getLangOpts().CPlusPlus20)
14526       Info.CCEDiag(E, diag::note_constexpr_new);
14527     return true;
14528   }
14529 
14530   Optional<DynAlloc *> Alloc = CheckDeleteKind(
14531       Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
14532   if (!Alloc)
14533     return false;
14534   QualType AllocType = Pointer.Base.getDynamicAllocType();
14535 
14536   // For the non-array case, the designator must be empty if the static type
14537   // does not have a virtual destructor.
14538   if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
14539       !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
14540     Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
14541         << Arg->getType()->getPointeeType() << AllocType;
14542     return false;
14543   }
14544 
14545   // For a class type with a virtual destructor, the selected operator delete
14546   // is the one looked up when building the destructor.
14547   if (!E->isArrayForm() && !E->isGlobalDelete()) {
14548     const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
14549     if (VirtualDelete &&
14550         !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
14551       Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14552           << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
14553       return false;
14554     }
14555   }
14556 
14557   if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
14558                          (*Alloc)->Value, AllocType))
14559     return false;
14560 
14561   if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
14562     // The element was already erased. This means the destructor call also
14563     // deleted the object.
14564     // FIXME: This probably results in undefined behavior before we get this
14565     // far, and should be diagnosed elsewhere first.
14566     Info.FFDiag(E, diag::note_constexpr_double_delete);
14567     return false;
14568   }
14569 
14570   return true;
14571 }
14572 
14573 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
14574   assert(!E->isValueDependent());
14575   assert(E->isPRValue() && E->getType()->isVoidType());
14576   return VoidExprEvaluator(Info).Visit(E);
14577 }
14578 
14579 //===----------------------------------------------------------------------===//
14580 // Top level Expr::EvaluateAsRValue method.
14581 //===----------------------------------------------------------------------===//
14582 
14583 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
14584   assert(!E->isValueDependent());
14585   // In C, function designators are not lvalues, but we evaluate them as if they
14586   // are.
14587   QualType T = E->getType();
14588   if (E->isGLValue() || T->isFunctionType()) {
14589     LValue LV;
14590     if (!EvaluateLValue(E, LV, Info))
14591       return false;
14592     LV.moveInto(Result);
14593   } else if (T->isVectorType()) {
14594     if (!EvaluateVector(E, Result, Info))
14595       return false;
14596   } else if (T->isIntegralOrEnumerationType()) {
14597     if (!IntExprEvaluator(Info, Result).Visit(E))
14598       return false;
14599   } else if (T->hasPointerRepresentation()) {
14600     LValue LV;
14601     if (!EvaluatePointer(E, LV, Info))
14602       return false;
14603     LV.moveInto(Result);
14604   } else if (T->isRealFloatingType()) {
14605     llvm::APFloat F(0.0);
14606     if (!EvaluateFloat(E, F, Info))
14607       return false;
14608     Result = APValue(F);
14609   } else if (T->isAnyComplexType()) {
14610     ComplexValue C;
14611     if (!EvaluateComplex(E, C, Info))
14612       return false;
14613     C.moveInto(Result);
14614   } else if (T->isFixedPointType()) {
14615     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
14616   } else if (T->isMemberPointerType()) {
14617     MemberPtr P;
14618     if (!EvaluateMemberPointer(E, P, Info))
14619       return false;
14620     P.moveInto(Result);
14621     return true;
14622   } else if (T->isArrayType()) {
14623     LValue LV;
14624     APValue &Value =
14625         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14626     if (!EvaluateArray(E, LV, Value, Info))
14627       return false;
14628     Result = Value;
14629   } else if (T->isRecordType()) {
14630     LValue LV;
14631     APValue &Value =
14632         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14633     if (!EvaluateRecord(E, LV, Value, Info))
14634       return false;
14635     Result = Value;
14636   } else if (T->isVoidType()) {
14637     if (!Info.getLangOpts().CPlusPlus11)
14638       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
14639         << E->getType();
14640     if (!EvaluateVoid(E, Info))
14641       return false;
14642   } else if (T->isAtomicType()) {
14643     QualType Unqual = T.getAtomicUnqualifiedType();
14644     if (Unqual->isArrayType() || Unqual->isRecordType()) {
14645       LValue LV;
14646       APValue &Value = Info.CurrentCall->createTemporary(
14647           E, Unqual, ScopeKind::FullExpression, LV);
14648       if (!EvaluateAtomic(E, &LV, Value, Info))
14649         return false;
14650     } else {
14651       if (!EvaluateAtomic(E, nullptr, Result, Info))
14652         return false;
14653     }
14654   } else if (Info.getLangOpts().CPlusPlus11) {
14655     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
14656     return false;
14657   } else {
14658     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
14659     return false;
14660   }
14661 
14662   return true;
14663 }
14664 
14665 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
14666 /// cases, the in-place evaluation is essential, since later initializers for
14667 /// an object can indirectly refer to subobjects which were initialized earlier.
14668 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
14669                             const Expr *E, bool AllowNonLiteralTypes) {
14670   assert(!E->isValueDependent());
14671 
14672   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
14673     return false;
14674 
14675   if (E->isPRValue()) {
14676     // Evaluate arrays and record types in-place, so that later initializers can
14677     // refer to earlier-initialized members of the object.
14678     QualType T = E->getType();
14679     if (T->isArrayType())
14680       return EvaluateArray(E, This, Result, Info);
14681     else if (T->isRecordType())
14682       return EvaluateRecord(E, This, Result, Info);
14683     else if (T->isAtomicType()) {
14684       QualType Unqual = T.getAtomicUnqualifiedType();
14685       if (Unqual->isArrayType() || Unqual->isRecordType())
14686         return EvaluateAtomic(E, &This, Result, Info);
14687     }
14688   }
14689 
14690   // For any other type, in-place evaluation is unimportant.
14691   return Evaluate(Result, Info, E);
14692 }
14693 
14694 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
14695 /// lvalue-to-rvalue cast if it is an lvalue.
14696 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
14697   assert(!E->isValueDependent());
14698   if (Info.EnableNewConstInterp) {
14699     if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
14700       return false;
14701   } else {
14702     if (E->getType().isNull())
14703       return false;
14704 
14705     if (!CheckLiteralType(Info, E))
14706       return false;
14707 
14708     if (!::Evaluate(Result, Info, E))
14709       return false;
14710 
14711     if (E->isGLValue()) {
14712       LValue LV;
14713       LV.setFrom(Info.Ctx, Result);
14714       if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
14715         return false;
14716     }
14717   }
14718 
14719   // Check this core constant expression is a constant expression.
14720   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
14721                                  ConstantExprKind::Normal) &&
14722          CheckMemoryLeaks(Info);
14723 }
14724 
14725 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
14726                                  const ASTContext &Ctx, bool &IsConst) {
14727   // Fast-path evaluations of integer literals, since we sometimes see files
14728   // containing vast quantities of these.
14729   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
14730     Result.Val = APValue(APSInt(L->getValue(),
14731                                 L->getType()->isUnsignedIntegerType()));
14732     IsConst = true;
14733     return true;
14734   }
14735 
14736   // This case should be rare, but we need to check it before we check on
14737   // the type below.
14738   if (Exp->getType().isNull()) {
14739     IsConst = false;
14740     return true;
14741   }
14742 
14743   // FIXME: Evaluating values of large array and record types can cause
14744   // performance problems. Only do so in C++11 for now.
14745   if (Exp->isPRValue() &&
14746       (Exp->getType()->isArrayType() || Exp->getType()->isRecordType()) &&
14747       !Ctx.getLangOpts().CPlusPlus11) {
14748     IsConst = false;
14749     return true;
14750   }
14751   return false;
14752 }
14753 
14754 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
14755                                       Expr::SideEffectsKind SEK) {
14756   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
14757          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
14758 }
14759 
14760 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
14761                              const ASTContext &Ctx, EvalInfo &Info) {
14762   assert(!E->isValueDependent());
14763   bool IsConst;
14764   if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
14765     return IsConst;
14766 
14767   return EvaluateAsRValue(Info, E, Result.Val);
14768 }
14769 
14770 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
14771                           const ASTContext &Ctx,
14772                           Expr::SideEffectsKind AllowSideEffects,
14773                           EvalInfo &Info) {
14774   assert(!E->isValueDependent());
14775   if (!E->getType()->isIntegralOrEnumerationType())
14776     return false;
14777 
14778   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
14779       !ExprResult.Val.isInt() ||
14780       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14781     return false;
14782 
14783   return true;
14784 }
14785 
14786 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
14787                                  const ASTContext &Ctx,
14788                                  Expr::SideEffectsKind AllowSideEffects,
14789                                  EvalInfo &Info) {
14790   assert(!E->isValueDependent());
14791   if (!E->getType()->isFixedPointType())
14792     return false;
14793 
14794   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
14795     return false;
14796 
14797   if (!ExprResult.Val.isFixedPoint() ||
14798       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14799     return false;
14800 
14801   return true;
14802 }
14803 
14804 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
14805 /// any crazy technique (that has nothing to do with language standards) that
14806 /// we want to.  If this function returns true, it returns the folded constant
14807 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
14808 /// will be applied to the result.
14809 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
14810                             bool InConstantContext) const {
14811   assert(!isValueDependent() &&
14812          "Expression evaluator can't be called on a dependent expression.");
14813   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14814   Info.InConstantContext = InConstantContext;
14815   return ::EvaluateAsRValue(this, Result, Ctx, Info);
14816 }
14817 
14818 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
14819                                       bool InConstantContext) const {
14820   assert(!isValueDependent() &&
14821          "Expression evaluator can't be called on a dependent expression.");
14822   EvalResult Scratch;
14823   return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
14824          HandleConversionToBool(Scratch.Val, Result);
14825 }
14826 
14827 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
14828                          SideEffectsKind AllowSideEffects,
14829                          bool InConstantContext) const {
14830   assert(!isValueDependent() &&
14831          "Expression evaluator can't be called on a dependent expression.");
14832   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14833   Info.InConstantContext = InConstantContext;
14834   return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
14835 }
14836 
14837 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
14838                                 SideEffectsKind AllowSideEffects,
14839                                 bool InConstantContext) const {
14840   assert(!isValueDependent() &&
14841          "Expression evaluator can't be called on a dependent expression.");
14842   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14843   Info.InConstantContext = InConstantContext;
14844   return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
14845 }
14846 
14847 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
14848                            SideEffectsKind AllowSideEffects,
14849                            bool InConstantContext) const {
14850   assert(!isValueDependent() &&
14851          "Expression evaluator can't be called on a dependent expression.");
14852 
14853   if (!getType()->isRealFloatingType())
14854     return false;
14855 
14856   EvalResult ExprResult;
14857   if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
14858       !ExprResult.Val.isFloat() ||
14859       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14860     return false;
14861 
14862   Result = ExprResult.Val.getFloat();
14863   return true;
14864 }
14865 
14866 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
14867                             bool InConstantContext) const {
14868   assert(!isValueDependent() &&
14869          "Expression evaluator can't be called on a dependent expression.");
14870 
14871   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
14872   Info.InConstantContext = InConstantContext;
14873   LValue LV;
14874   CheckedTemporaries CheckedTemps;
14875   if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
14876       Result.HasSideEffects ||
14877       !CheckLValueConstantExpression(Info, getExprLoc(),
14878                                      Ctx.getLValueReferenceType(getType()), LV,
14879                                      ConstantExprKind::Normal, CheckedTemps))
14880     return false;
14881 
14882   LV.moveInto(Result.Val);
14883   return true;
14884 }
14885 
14886 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
14887                                 APValue DestroyedValue, QualType Type,
14888                                 SourceLocation Loc, Expr::EvalStatus &EStatus,
14889                                 bool IsConstantDestruction) {
14890   EvalInfo Info(Ctx, EStatus,
14891                 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
14892                                       : EvalInfo::EM_ConstantFold);
14893   Info.setEvaluatingDecl(Base, DestroyedValue,
14894                          EvalInfo::EvaluatingDeclKind::Dtor);
14895   Info.InConstantContext = IsConstantDestruction;
14896 
14897   LValue LVal;
14898   LVal.set(Base);
14899 
14900   if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
14901       EStatus.HasSideEffects)
14902     return false;
14903 
14904   if (!Info.discardCleanups())
14905     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14906 
14907   return true;
14908 }
14909 
14910 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
14911                                   ConstantExprKind Kind) const {
14912   assert(!isValueDependent() &&
14913          "Expression evaluator can't be called on a dependent expression.");
14914 
14915   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
14916   EvalInfo Info(Ctx, Result, EM);
14917   Info.InConstantContext = true;
14918 
14919   // The type of the object we're initializing is 'const T' for a class NTTP.
14920   QualType T = getType();
14921   if (Kind == ConstantExprKind::ClassTemplateArgument)
14922     T.addConst();
14923 
14924   // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
14925   // represent the result of the evaluation. CheckConstantExpression ensures
14926   // this doesn't escape.
14927   MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
14928   APValue::LValueBase Base(&BaseMTE);
14929 
14930   Info.setEvaluatingDecl(Base, Result.Val);
14931   LValue LVal;
14932   LVal.set(Base);
14933 
14934   if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || Result.HasSideEffects)
14935     return false;
14936 
14937   if (!Info.discardCleanups())
14938     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14939 
14940   if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
14941                                Result.Val, Kind))
14942     return false;
14943   if (!CheckMemoryLeaks(Info))
14944     return false;
14945 
14946   // If this is a class template argument, it's required to have constant
14947   // destruction too.
14948   if (Kind == ConstantExprKind::ClassTemplateArgument &&
14949       (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
14950                             true) ||
14951        Result.HasSideEffects)) {
14952     // FIXME: Prefix a note to indicate that the problem is lack of constant
14953     // destruction.
14954     return false;
14955   }
14956 
14957   return true;
14958 }
14959 
14960 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
14961                                  const VarDecl *VD,
14962                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
14963   assert(!isValueDependent() &&
14964          "Expression evaluator can't be called on a dependent expression.");
14965 
14966   // FIXME: Evaluating initializers for large array and record types can cause
14967   // performance problems. Only do so in C++11 for now.
14968   if (isPRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
14969       !Ctx.getLangOpts().CPlusPlus11)
14970     return false;
14971 
14972   Expr::EvalStatus EStatus;
14973   EStatus.Diag = &Notes;
14974 
14975   EvalInfo Info(Ctx, EStatus, VD->isConstexpr()
14976                                       ? EvalInfo::EM_ConstantExpression
14977                                       : EvalInfo::EM_ConstantFold);
14978   Info.setEvaluatingDecl(VD, Value);
14979   Info.InConstantContext = true;
14980 
14981   SourceLocation DeclLoc = VD->getLocation();
14982   QualType DeclTy = VD->getType();
14983 
14984   if (Info.EnableNewConstInterp) {
14985     auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
14986     if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
14987       return false;
14988   } else {
14989     LValue LVal;
14990     LVal.set(VD);
14991 
14992     if (!EvaluateInPlace(Value, Info, LVal, this,
14993                          /*AllowNonLiteralTypes=*/true) ||
14994         EStatus.HasSideEffects)
14995       return false;
14996 
14997     // At this point, any lifetime-extended temporaries are completely
14998     // initialized.
14999     Info.performLifetimeExtension();
15000 
15001     if (!Info.discardCleanups())
15002       llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15003   }
15004   return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
15005                                  ConstantExprKind::Normal) &&
15006          CheckMemoryLeaks(Info);
15007 }
15008 
15009 bool VarDecl::evaluateDestruction(
15010     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
15011   Expr::EvalStatus EStatus;
15012   EStatus.Diag = &Notes;
15013 
15014   // Only treat the destruction as constant destruction if we formally have
15015   // constant initialization (or are usable in a constant expression).
15016   bool IsConstantDestruction = hasConstantInitialization();
15017 
15018   // Make a copy of the value for the destructor to mutate, if we know it.
15019   // Otherwise, treat the value as default-initialized; if the destructor works
15020   // anyway, then the destruction is constant (and must be essentially empty).
15021   APValue DestroyedValue;
15022   if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
15023     DestroyedValue = *getEvaluatedValue();
15024   else if (!getDefaultInitValue(getType(), DestroyedValue))
15025     return false;
15026 
15027   if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
15028                            getType(), getLocation(), EStatus,
15029                            IsConstantDestruction) ||
15030       EStatus.HasSideEffects)
15031     return false;
15032 
15033   ensureEvaluatedStmt()->HasConstantDestruction = true;
15034   return true;
15035 }
15036 
15037 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
15038 /// constant folded, but discard the result.
15039 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
15040   assert(!isValueDependent() &&
15041          "Expression evaluator can't be called on a dependent expression.");
15042 
15043   EvalResult Result;
15044   return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
15045          !hasUnacceptableSideEffect(Result, SEK);
15046 }
15047 
15048 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
15049                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15050   assert(!isValueDependent() &&
15051          "Expression evaluator can't be called on a dependent expression.");
15052 
15053   EvalResult EVResult;
15054   EVResult.Diag = Diag;
15055   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15056   Info.InConstantContext = true;
15057 
15058   bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
15059   (void)Result;
15060   assert(Result && "Could not evaluate expression");
15061   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15062 
15063   return EVResult.Val.getInt();
15064 }
15065 
15066 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
15067     const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15068   assert(!isValueDependent() &&
15069          "Expression evaluator can't be called on a dependent expression.");
15070 
15071   EvalResult EVResult;
15072   EVResult.Diag = Diag;
15073   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15074   Info.InConstantContext = true;
15075   Info.CheckingForUndefinedBehavior = true;
15076 
15077   bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
15078   (void)Result;
15079   assert(Result && "Could not evaluate expression");
15080   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15081 
15082   return EVResult.Val.getInt();
15083 }
15084 
15085 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
15086   assert(!isValueDependent() &&
15087          "Expression evaluator can't be called on a dependent expression.");
15088 
15089   bool IsConst;
15090   EvalResult EVResult;
15091   if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
15092     EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15093     Info.CheckingForUndefinedBehavior = true;
15094     (void)::EvaluateAsRValue(Info, this, EVResult.Val);
15095   }
15096 }
15097 
15098 bool Expr::EvalResult::isGlobalLValue() const {
15099   assert(Val.isLValue());
15100   return IsGlobalLValue(Val.getLValueBase());
15101 }
15102 
15103 /// isIntegerConstantExpr - this recursive routine will test if an expression is
15104 /// an integer constant expression.
15105 
15106 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
15107 /// comma, etc
15108 
15109 // CheckICE - This function does the fundamental ICE checking: the returned
15110 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15111 // and a (possibly null) SourceLocation indicating the location of the problem.
15112 //
15113 // Note that to reduce code duplication, this helper does no evaluation
15114 // itself; the caller checks whether the expression is evaluatable, and
15115 // in the rare cases where CheckICE actually cares about the evaluated
15116 // value, it calls into Evaluate.
15117 
15118 namespace {
15119 
15120 enum ICEKind {
15121   /// This expression is an ICE.
15122   IK_ICE,
15123   /// This expression is not an ICE, but if it isn't evaluated, it's
15124   /// a legal subexpression for an ICE. This return value is used to handle
15125   /// the comma operator in C99 mode, and non-constant subexpressions.
15126   IK_ICEIfUnevaluated,
15127   /// This expression is not an ICE, and is not a legal subexpression for one.
15128   IK_NotICE
15129 };
15130 
15131 struct ICEDiag {
15132   ICEKind Kind;
15133   SourceLocation Loc;
15134 
15135   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
15136 };
15137 
15138 }
15139 
15140 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
15141 
15142 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
15143 
15144 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
15145   Expr::EvalResult EVResult;
15146   Expr::EvalStatus Status;
15147   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15148 
15149   Info.InConstantContext = true;
15150   if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
15151       !EVResult.Val.isInt())
15152     return ICEDiag(IK_NotICE, E->getBeginLoc());
15153 
15154   return NoDiag();
15155 }
15156 
15157 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
15158   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
15159   if (!E->getType()->isIntegralOrEnumerationType())
15160     return ICEDiag(IK_NotICE, E->getBeginLoc());
15161 
15162   switch (E->getStmtClass()) {
15163 #define ABSTRACT_STMT(Node)
15164 #define STMT(Node, Base) case Expr::Node##Class:
15165 #define EXPR(Node, Base)
15166 #include "clang/AST/StmtNodes.inc"
15167   case Expr::PredefinedExprClass:
15168   case Expr::FloatingLiteralClass:
15169   case Expr::ImaginaryLiteralClass:
15170   case Expr::StringLiteralClass:
15171   case Expr::ArraySubscriptExprClass:
15172   case Expr::MatrixSubscriptExprClass:
15173   case Expr::OMPArraySectionExprClass:
15174   case Expr::OMPArrayShapingExprClass:
15175   case Expr::OMPIteratorExprClass:
15176   case Expr::MemberExprClass:
15177   case Expr::CompoundAssignOperatorClass:
15178   case Expr::CompoundLiteralExprClass:
15179   case Expr::ExtVectorElementExprClass:
15180   case Expr::DesignatedInitExprClass:
15181   case Expr::ArrayInitLoopExprClass:
15182   case Expr::ArrayInitIndexExprClass:
15183   case Expr::NoInitExprClass:
15184   case Expr::DesignatedInitUpdateExprClass:
15185   case Expr::ImplicitValueInitExprClass:
15186   case Expr::ParenListExprClass:
15187   case Expr::VAArgExprClass:
15188   case Expr::AddrLabelExprClass:
15189   case Expr::StmtExprClass:
15190   case Expr::CXXMemberCallExprClass:
15191   case Expr::CUDAKernelCallExprClass:
15192   case Expr::CXXAddrspaceCastExprClass:
15193   case Expr::CXXDynamicCastExprClass:
15194   case Expr::CXXTypeidExprClass:
15195   case Expr::CXXUuidofExprClass:
15196   case Expr::MSPropertyRefExprClass:
15197   case Expr::MSPropertySubscriptExprClass:
15198   case Expr::CXXNullPtrLiteralExprClass:
15199   case Expr::UserDefinedLiteralClass:
15200   case Expr::CXXThisExprClass:
15201   case Expr::CXXThrowExprClass:
15202   case Expr::CXXNewExprClass:
15203   case Expr::CXXDeleteExprClass:
15204   case Expr::CXXPseudoDestructorExprClass:
15205   case Expr::UnresolvedLookupExprClass:
15206   case Expr::TypoExprClass:
15207   case Expr::RecoveryExprClass:
15208   case Expr::DependentScopeDeclRefExprClass:
15209   case Expr::CXXConstructExprClass:
15210   case Expr::CXXInheritedCtorInitExprClass:
15211   case Expr::CXXStdInitializerListExprClass:
15212   case Expr::CXXBindTemporaryExprClass:
15213   case Expr::ExprWithCleanupsClass:
15214   case Expr::CXXTemporaryObjectExprClass:
15215   case Expr::CXXUnresolvedConstructExprClass:
15216   case Expr::CXXDependentScopeMemberExprClass:
15217   case Expr::UnresolvedMemberExprClass:
15218   case Expr::ObjCStringLiteralClass:
15219   case Expr::ObjCBoxedExprClass:
15220   case Expr::ObjCArrayLiteralClass:
15221   case Expr::ObjCDictionaryLiteralClass:
15222   case Expr::ObjCEncodeExprClass:
15223   case Expr::ObjCMessageExprClass:
15224   case Expr::ObjCSelectorExprClass:
15225   case Expr::ObjCProtocolExprClass:
15226   case Expr::ObjCIvarRefExprClass:
15227   case Expr::ObjCPropertyRefExprClass:
15228   case Expr::ObjCSubscriptRefExprClass:
15229   case Expr::ObjCIsaExprClass:
15230   case Expr::ObjCAvailabilityCheckExprClass:
15231   case Expr::ShuffleVectorExprClass:
15232   case Expr::ConvertVectorExprClass:
15233   case Expr::BlockExprClass:
15234   case Expr::NoStmtClass:
15235   case Expr::OpaqueValueExprClass:
15236   case Expr::PackExpansionExprClass:
15237   case Expr::SubstNonTypeTemplateParmPackExprClass:
15238   case Expr::FunctionParmPackExprClass:
15239   case Expr::AsTypeExprClass:
15240   case Expr::ObjCIndirectCopyRestoreExprClass:
15241   case Expr::MaterializeTemporaryExprClass:
15242   case Expr::PseudoObjectExprClass:
15243   case Expr::AtomicExprClass:
15244   case Expr::LambdaExprClass:
15245   case Expr::CXXFoldExprClass:
15246   case Expr::CoawaitExprClass:
15247   case Expr::DependentCoawaitExprClass:
15248   case Expr::CoyieldExprClass:
15249   case Expr::SYCLUniqueStableNameExprClass:
15250     return ICEDiag(IK_NotICE, E->getBeginLoc());
15251 
15252   case Expr::InitListExprClass: {
15253     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
15254     // form "T x = { a };" is equivalent to "T x = a;".
15255     // Unless we're initializing a reference, T is a scalar as it is known to be
15256     // of integral or enumeration type.
15257     if (E->isPRValue())
15258       if (cast<InitListExpr>(E)->getNumInits() == 1)
15259         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
15260     return ICEDiag(IK_NotICE, E->getBeginLoc());
15261   }
15262 
15263   case Expr::SizeOfPackExprClass:
15264   case Expr::GNUNullExprClass:
15265   case Expr::SourceLocExprClass:
15266     return NoDiag();
15267 
15268   case Expr::SubstNonTypeTemplateParmExprClass:
15269     return
15270       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
15271 
15272   case Expr::ConstantExprClass:
15273     return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
15274 
15275   case Expr::ParenExprClass:
15276     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
15277   case Expr::GenericSelectionExprClass:
15278     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
15279   case Expr::IntegerLiteralClass:
15280   case Expr::FixedPointLiteralClass:
15281   case Expr::CharacterLiteralClass:
15282   case Expr::ObjCBoolLiteralExprClass:
15283   case Expr::CXXBoolLiteralExprClass:
15284   case Expr::CXXScalarValueInitExprClass:
15285   case Expr::TypeTraitExprClass:
15286   case Expr::ConceptSpecializationExprClass:
15287   case Expr::RequiresExprClass:
15288   case Expr::ArrayTypeTraitExprClass:
15289   case Expr::ExpressionTraitExprClass:
15290   case Expr::CXXNoexceptExprClass:
15291     return NoDiag();
15292   case Expr::CallExprClass:
15293   case Expr::CXXOperatorCallExprClass: {
15294     // C99 6.6/3 allows function calls within unevaluated subexpressions of
15295     // constant expressions, but they can never be ICEs because an ICE cannot
15296     // contain an operand of (pointer to) function type.
15297     const CallExpr *CE = cast<CallExpr>(E);
15298     if (CE->getBuiltinCallee())
15299       return CheckEvalInICE(E, Ctx);
15300     return ICEDiag(IK_NotICE, E->getBeginLoc());
15301   }
15302   case Expr::CXXRewrittenBinaryOperatorClass:
15303     return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
15304                     Ctx);
15305   case Expr::DeclRefExprClass: {
15306     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
15307     if (isa<EnumConstantDecl>(D))
15308       return NoDiag();
15309 
15310     // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
15311     // integer variables in constant expressions:
15312     //
15313     // C++ 7.1.5.1p2
15314     //   A variable of non-volatile const-qualified integral or enumeration
15315     //   type initialized by an ICE can be used in ICEs.
15316     //
15317     // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
15318     // that mode, use of reference variables should not be allowed.
15319     const VarDecl *VD = dyn_cast<VarDecl>(D);
15320     if (VD && VD->isUsableInConstantExpressions(Ctx) &&
15321         !VD->getType()->isReferenceType())
15322       return NoDiag();
15323 
15324     return ICEDiag(IK_NotICE, E->getBeginLoc());
15325   }
15326   case Expr::UnaryOperatorClass: {
15327     const UnaryOperator *Exp = cast<UnaryOperator>(E);
15328     switch (Exp->getOpcode()) {
15329     case UO_PostInc:
15330     case UO_PostDec:
15331     case UO_PreInc:
15332     case UO_PreDec:
15333     case UO_AddrOf:
15334     case UO_Deref:
15335     case UO_Coawait:
15336       // C99 6.6/3 allows increment and decrement within unevaluated
15337       // subexpressions of constant expressions, but they can never be ICEs
15338       // because an ICE cannot contain an lvalue operand.
15339       return ICEDiag(IK_NotICE, E->getBeginLoc());
15340     case UO_Extension:
15341     case UO_LNot:
15342     case UO_Plus:
15343     case UO_Minus:
15344     case UO_Not:
15345     case UO_Real:
15346     case UO_Imag:
15347       return CheckICE(Exp->getSubExpr(), Ctx);
15348     }
15349     llvm_unreachable("invalid unary operator class");
15350   }
15351   case Expr::OffsetOfExprClass: {
15352     // Note that per C99, offsetof must be an ICE. And AFAIK, using
15353     // EvaluateAsRValue matches the proposed gcc behavior for cases like
15354     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
15355     // compliance: we should warn earlier for offsetof expressions with
15356     // array subscripts that aren't ICEs, and if the array subscripts
15357     // are ICEs, the value of the offsetof must be an integer constant.
15358     return CheckEvalInICE(E, Ctx);
15359   }
15360   case Expr::UnaryExprOrTypeTraitExprClass: {
15361     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
15362     if ((Exp->getKind() ==  UETT_SizeOf) &&
15363         Exp->getTypeOfArgument()->isVariableArrayType())
15364       return ICEDiag(IK_NotICE, E->getBeginLoc());
15365     return NoDiag();
15366   }
15367   case Expr::BinaryOperatorClass: {
15368     const BinaryOperator *Exp = cast<BinaryOperator>(E);
15369     switch (Exp->getOpcode()) {
15370     case BO_PtrMemD:
15371     case BO_PtrMemI:
15372     case BO_Assign:
15373     case BO_MulAssign:
15374     case BO_DivAssign:
15375     case BO_RemAssign:
15376     case BO_AddAssign:
15377     case BO_SubAssign:
15378     case BO_ShlAssign:
15379     case BO_ShrAssign:
15380     case BO_AndAssign:
15381     case BO_XorAssign:
15382     case BO_OrAssign:
15383       // C99 6.6/3 allows assignments within unevaluated subexpressions of
15384       // constant expressions, but they can never be ICEs because an ICE cannot
15385       // contain an lvalue operand.
15386       return ICEDiag(IK_NotICE, E->getBeginLoc());
15387 
15388     case BO_Mul:
15389     case BO_Div:
15390     case BO_Rem:
15391     case BO_Add:
15392     case BO_Sub:
15393     case BO_Shl:
15394     case BO_Shr:
15395     case BO_LT:
15396     case BO_GT:
15397     case BO_LE:
15398     case BO_GE:
15399     case BO_EQ:
15400     case BO_NE:
15401     case BO_And:
15402     case BO_Xor:
15403     case BO_Or:
15404     case BO_Comma:
15405     case BO_Cmp: {
15406       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15407       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15408       if (Exp->getOpcode() == BO_Div ||
15409           Exp->getOpcode() == BO_Rem) {
15410         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
15411         // we don't evaluate one.
15412         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
15413           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
15414           if (REval == 0)
15415             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15416           if (REval.isSigned() && REval.isAllOnes()) {
15417             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
15418             if (LEval.isMinSignedValue())
15419               return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15420           }
15421         }
15422       }
15423       if (Exp->getOpcode() == BO_Comma) {
15424         if (Ctx.getLangOpts().C99) {
15425           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
15426           // if it isn't evaluated.
15427           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
15428             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15429         } else {
15430           // In both C89 and C++, commas in ICEs are illegal.
15431           return ICEDiag(IK_NotICE, E->getBeginLoc());
15432         }
15433       }
15434       return Worst(LHSResult, RHSResult);
15435     }
15436     case BO_LAnd:
15437     case BO_LOr: {
15438       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15439       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15440       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
15441         // Rare case where the RHS has a comma "side-effect"; we need
15442         // to actually check the condition to see whether the side
15443         // with the comma is evaluated.
15444         if ((Exp->getOpcode() == BO_LAnd) !=
15445             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
15446           return RHSResult;
15447         return NoDiag();
15448       }
15449 
15450       return Worst(LHSResult, RHSResult);
15451     }
15452     }
15453     llvm_unreachable("invalid binary operator kind");
15454   }
15455   case Expr::ImplicitCastExprClass:
15456   case Expr::CStyleCastExprClass:
15457   case Expr::CXXFunctionalCastExprClass:
15458   case Expr::CXXStaticCastExprClass:
15459   case Expr::CXXReinterpretCastExprClass:
15460   case Expr::CXXConstCastExprClass:
15461   case Expr::ObjCBridgedCastExprClass: {
15462     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
15463     if (isa<ExplicitCastExpr>(E)) {
15464       if (const FloatingLiteral *FL
15465             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
15466         unsigned DestWidth = Ctx.getIntWidth(E->getType());
15467         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
15468         APSInt IgnoredVal(DestWidth, !DestSigned);
15469         bool Ignored;
15470         // If the value does not fit in the destination type, the behavior is
15471         // undefined, so we are not required to treat it as a constant
15472         // expression.
15473         if (FL->getValue().convertToInteger(IgnoredVal,
15474                                             llvm::APFloat::rmTowardZero,
15475                                             &Ignored) & APFloat::opInvalidOp)
15476           return ICEDiag(IK_NotICE, E->getBeginLoc());
15477         return NoDiag();
15478       }
15479     }
15480     switch (cast<CastExpr>(E)->getCastKind()) {
15481     case CK_LValueToRValue:
15482     case CK_AtomicToNonAtomic:
15483     case CK_NonAtomicToAtomic:
15484     case CK_NoOp:
15485     case CK_IntegralToBoolean:
15486     case CK_IntegralCast:
15487       return CheckICE(SubExpr, Ctx);
15488     default:
15489       return ICEDiag(IK_NotICE, E->getBeginLoc());
15490     }
15491   }
15492   case Expr::BinaryConditionalOperatorClass: {
15493     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
15494     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
15495     if (CommonResult.Kind == IK_NotICE) return CommonResult;
15496     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15497     if (FalseResult.Kind == IK_NotICE) return FalseResult;
15498     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
15499     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
15500         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
15501     return FalseResult;
15502   }
15503   case Expr::ConditionalOperatorClass: {
15504     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
15505     // If the condition (ignoring parens) is a __builtin_constant_p call,
15506     // then only the true side is actually considered in an integer constant
15507     // expression, and it is fully evaluated.  This is an important GNU
15508     // extension.  See GCC PR38377 for discussion.
15509     if (const CallExpr *CallCE
15510         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
15511       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
15512         return CheckEvalInICE(E, Ctx);
15513     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
15514     if (CondResult.Kind == IK_NotICE)
15515       return CondResult;
15516 
15517     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
15518     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15519 
15520     if (TrueResult.Kind == IK_NotICE)
15521       return TrueResult;
15522     if (FalseResult.Kind == IK_NotICE)
15523       return FalseResult;
15524     if (CondResult.Kind == IK_ICEIfUnevaluated)
15525       return CondResult;
15526     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
15527       return NoDiag();
15528     // Rare case where the diagnostics depend on which side is evaluated
15529     // Note that if we get here, CondResult is 0, and at least one of
15530     // TrueResult and FalseResult is non-zero.
15531     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
15532       return FalseResult;
15533     return TrueResult;
15534   }
15535   case Expr::CXXDefaultArgExprClass:
15536     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
15537   case Expr::CXXDefaultInitExprClass:
15538     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
15539   case Expr::ChooseExprClass: {
15540     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
15541   }
15542   case Expr::BuiltinBitCastExprClass: {
15543     if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
15544       return ICEDiag(IK_NotICE, E->getBeginLoc());
15545     return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
15546   }
15547   }
15548 
15549   llvm_unreachable("Invalid StmtClass!");
15550 }
15551 
15552 /// Evaluate an expression as a C++11 integral constant expression.
15553 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
15554                                                     const Expr *E,
15555                                                     llvm::APSInt *Value,
15556                                                     SourceLocation *Loc) {
15557   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
15558     if (Loc) *Loc = E->getExprLoc();
15559     return false;
15560   }
15561 
15562   APValue Result;
15563   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
15564     return false;
15565 
15566   if (!Result.isInt()) {
15567     if (Loc) *Loc = E->getExprLoc();
15568     return false;
15569   }
15570 
15571   if (Value) *Value = Result.getInt();
15572   return true;
15573 }
15574 
15575 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
15576                                  SourceLocation *Loc) const {
15577   assert(!isValueDependent() &&
15578          "Expression evaluator can't be called on a dependent expression.");
15579 
15580   if (Ctx.getLangOpts().CPlusPlus11)
15581     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
15582 
15583   ICEDiag D = CheckICE(this, Ctx);
15584   if (D.Kind != IK_ICE) {
15585     if (Loc) *Loc = D.Loc;
15586     return false;
15587   }
15588   return true;
15589 }
15590 
15591 Optional<llvm::APSInt> Expr::getIntegerConstantExpr(const ASTContext &Ctx,
15592                                                     SourceLocation *Loc,
15593                                                     bool isEvaluated) const {
15594   if (isValueDependent()) {
15595     // Expression evaluator can't succeed on a dependent expression.
15596     return None;
15597   }
15598 
15599   APSInt Value;
15600 
15601   if (Ctx.getLangOpts().CPlusPlus11) {
15602     if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
15603       return Value;
15604     return None;
15605   }
15606 
15607   if (!isIntegerConstantExpr(Ctx, Loc))
15608     return None;
15609 
15610   // The only possible side-effects here are due to UB discovered in the
15611   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
15612   // required to treat the expression as an ICE, so we produce the folded
15613   // value.
15614   EvalResult ExprResult;
15615   Expr::EvalStatus Status;
15616   EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
15617   Info.InConstantContext = true;
15618 
15619   if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
15620     llvm_unreachable("ICE cannot be evaluated!");
15621 
15622   return ExprResult.Val.getInt();
15623 }
15624 
15625 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
15626   assert(!isValueDependent() &&
15627          "Expression evaluator can't be called on a dependent expression.");
15628 
15629   return CheckICE(this, Ctx).Kind == IK_ICE;
15630 }
15631 
15632 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
15633                                SourceLocation *Loc) const {
15634   assert(!isValueDependent() &&
15635          "Expression evaluator can't be called on a dependent expression.");
15636 
15637   // We support this checking in C++98 mode in order to diagnose compatibility
15638   // issues.
15639   assert(Ctx.getLangOpts().CPlusPlus);
15640 
15641   // Build evaluation settings.
15642   Expr::EvalStatus Status;
15643   SmallVector<PartialDiagnosticAt, 8> Diags;
15644   Status.Diag = &Diags;
15645   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15646 
15647   APValue Scratch;
15648   bool IsConstExpr =
15649       ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
15650       // FIXME: We don't produce a diagnostic for this, but the callers that
15651       // call us on arbitrary full-expressions should generally not care.
15652       Info.discardCleanups() && !Status.HasSideEffects;
15653 
15654   if (!Diags.empty()) {
15655     IsConstExpr = false;
15656     if (Loc) *Loc = Diags[0].first;
15657   } else if (!IsConstExpr) {
15658     // FIXME: This shouldn't happen.
15659     if (Loc) *Loc = getExprLoc();
15660   }
15661 
15662   return IsConstExpr;
15663 }
15664 
15665 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
15666                                     const FunctionDecl *Callee,
15667                                     ArrayRef<const Expr*> Args,
15668                                     const Expr *This) const {
15669   assert(!isValueDependent() &&
15670          "Expression evaluator can't be called on a dependent expression.");
15671 
15672   Expr::EvalStatus Status;
15673   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
15674   Info.InConstantContext = true;
15675 
15676   LValue ThisVal;
15677   const LValue *ThisPtr = nullptr;
15678   if (This) {
15679 #ifndef NDEBUG
15680     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
15681     assert(MD && "Don't provide `this` for non-methods.");
15682     assert(!MD->isStatic() && "Don't provide `this` for static methods.");
15683 #endif
15684     if (!This->isValueDependent() &&
15685         EvaluateObjectArgument(Info, This, ThisVal) &&
15686         !Info.EvalStatus.HasSideEffects)
15687       ThisPtr = &ThisVal;
15688 
15689     // Ignore any side-effects from a failed evaluation. This is safe because
15690     // they can't interfere with any other argument evaluation.
15691     Info.EvalStatus.HasSideEffects = false;
15692   }
15693 
15694   CallRef Call = Info.CurrentCall->createCall(Callee);
15695   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
15696        I != E; ++I) {
15697     unsigned Idx = I - Args.begin();
15698     if (Idx >= Callee->getNumParams())
15699       break;
15700     const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
15701     if ((*I)->isValueDependent() ||
15702         !EvaluateCallArg(PVD, *I, Call, Info) ||
15703         Info.EvalStatus.HasSideEffects) {
15704       // If evaluation fails, throw away the argument entirely.
15705       if (APValue *Slot = Info.getParamSlot(Call, PVD))
15706         *Slot = APValue();
15707     }
15708 
15709     // Ignore any side-effects from a failed evaluation. This is safe because
15710     // they can't interfere with any other argument evaluation.
15711     Info.EvalStatus.HasSideEffects = false;
15712   }
15713 
15714   // Parameter cleanups happen in the caller and are not part of this
15715   // evaluation.
15716   Info.discardCleanups();
15717   Info.EvalStatus.HasSideEffects = false;
15718 
15719   // Build fake call to Callee.
15720   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call);
15721   // FIXME: Missing ExprWithCleanups in enable_if conditions?
15722   FullExpressionRAII Scope(Info);
15723   return Evaluate(Value, Info, this) && Scope.destroy() &&
15724          !Info.EvalStatus.HasSideEffects;
15725 }
15726 
15727 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
15728                                    SmallVectorImpl<
15729                                      PartialDiagnosticAt> &Diags) {
15730   // FIXME: It would be useful to check constexpr function templates, but at the
15731   // moment the constant expression evaluator cannot cope with the non-rigorous
15732   // ASTs which we build for dependent expressions.
15733   if (FD->isDependentContext())
15734     return true;
15735 
15736   Expr::EvalStatus Status;
15737   Status.Diag = &Diags;
15738 
15739   EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
15740   Info.InConstantContext = true;
15741   Info.CheckingPotentialConstantExpression = true;
15742 
15743   // The constexpr VM attempts to compile all methods to bytecode here.
15744   if (Info.EnableNewConstInterp) {
15745     Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
15746     return Diags.empty();
15747   }
15748 
15749   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
15750   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
15751 
15752   // Fabricate an arbitrary expression on the stack and pretend that it
15753   // is a temporary being used as the 'this' pointer.
15754   LValue This;
15755   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
15756   This.set({&VIE, Info.CurrentCall->Index});
15757 
15758   ArrayRef<const Expr*> Args;
15759 
15760   APValue Scratch;
15761   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
15762     // Evaluate the call as a constant initializer, to allow the construction
15763     // of objects of non-literal types.
15764     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
15765     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
15766   } else {
15767     SourceLocation Loc = FD->getLocation();
15768     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
15769                        Args, CallRef(), FD->getBody(), Info, Scratch, nullptr);
15770   }
15771 
15772   return Diags.empty();
15773 }
15774 
15775 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
15776                                               const FunctionDecl *FD,
15777                                               SmallVectorImpl<
15778                                                 PartialDiagnosticAt> &Diags) {
15779   assert(!E->isValueDependent() &&
15780          "Expression evaluator can't be called on a dependent expression.");
15781 
15782   Expr::EvalStatus Status;
15783   Status.Diag = &Diags;
15784 
15785   EvalInfo Info(FD->getASTContext(), Status,
15786                 EvalInfo::EM_ConstantExpressionUnevaluated);
15787   Info.InConstantContext = true;
15788   Info.CheckingPotentialConstantExpression = true;
15789 
15790   // Fabricate a call stack frame to give the arguments a plausible cover story.
15791   CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef());
15792 
15793   APValue ResultScratch;
15794   Evaluate(ResultScratch, Info, E);
15795   return Diags.empty();
15796 }
15797 
15798 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
15799                                  unsigned Type) const {
15800   if (!getType()->isPointerType())
15801     return false;
15802 
15803   Expr::EvalStatus Status;
15804   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
15805   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
15806 }
15807 
15808 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
15809                                   EvalInfo &Info) {
15810   if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
15811     return false;
15812 
15813   LValue String;
15814 
15815   if (!EvaluatePointer(E, String, Info))
15816     return false;
15817 
15818   QualType CharTy = E->getType()->getPointeeType();
15819 
15820   // Fast path: if it's a string literal, search the string value.
15821   if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
15822           String.getLValueBase().dyn_cast<const Expr *>())) {
15823     StringRef Str = S->getBytes();
15824     int64_t Off = String.Offset.getQuantity();
15825     if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
15826         S->getCharByteWidth() == 1 &&
15827         // FIXME: Add fast-path for wchar_t too.
15828         Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
15829       Str = Str.substr(Off);
15830 
15831       StringRef::size_type Pos = Str.find(0);
15832       if (Pos != StringRef::npos)
15833         Str = Str.substr(0, Pos);
15834 
15835       Result = Str.size();
15836       return true;
15837     }
15838 
15839     // Fall through to slow path.
15840   }
15841 
15842   // Slow path: scan the bytes of the string looking for the terminating 0.
15843   for (uint64_t Strlen = 0; /**/; ++Strlen) {
15844     APValue Char;
15845     if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
15846         !Char.isInt())
15847       return false;
15848     if (!Char.getInt()) {
15849       Result = Strlen;
15850       return true;
15851     }
15852     if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
15853       return false;
15854   }
15855 }
15856 
15857 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
15858   Expr::EvalStatus Status;
15859   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
15860   return EvaluateBuiltinStrLen(this, Result, Info);
15861 }
15862