xref: /freebsd-src/contrib/llvm-project/clang/lib/AST/Expr.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/ComputeDependence.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/DependenceFlags.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/IgnoreExpr.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CharInfo.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Lexer.h"
33 #include "clang/Lex/LiteralSupport.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cstring>
39 using namespace clang;
40 
41 const Expr *Expr::getBestDynamicClassTypeExpr() const {
42   const Expr *E = this;
43   while (true) {
44     E = E->IgnoreParenBaseCasts();
45 
46     // Follow the RHS of a comma operator.
47     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
48       if (BO->getOpcode() == BO_Comma) {
49         E = BO->getRHS();
50         continue;
51       }
52     }
53 
54     // Step into initializer for materialized temporaries.
55     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
56       E = MTE->getSubExpr();
57       continue;
58     }
59 
60     break;
61   }
62 
63   return E;
64 }
65 
66 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
67   const Expr *E = getBestDynamicClassTypeExpr();
68   QualType DerivedType = E->getType();
69   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
70     DerivedType = PTy->getPointeeType();
71 
72   if (DerivedType->isDependentType())
73     return nullptr;
74 
75   const RecordType *Ty = DerivedType->castAs<RecordType>();
76   Decl *D = Ty->getDecl();
77   return cast<CXXRecordDecl>(D);
78 }
79 
80 const Expr *Expr::skipRValueSubobjectAdjustments(
81     SmallVectorImpl<const Expr *> &CommaLHSs,
82     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
83   const Expr *E = this;
84   while (true) {
85     E = E->IgnoreParens();
86 
87     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
88       if ((CE->getCastKind() == CK_DerivedToBase ||
89            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
90           E->getType()->isRecordType()) {
91         E = CE->getSubExpr();
92         auto *Derived =
93             cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
94         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
95         continue;
96       }
97 
98       if (CE->getCastKind() == CK_NoOp) {
99         E = CE->getSubExpr();
100         continue;
101       }
102     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
103       if (!ME->isArrow()) {
104         assert(ME->getBase()->getType()->isRecordType());
105         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
106           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
107             E = ME->getBase();
108             Adjustments.push_back(SubobjectAdjustment(Field));
109             continue;
110           }
111         }
112       }
113     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
114       if (BO->getOpcode() == BO_PtrMemD) {
115         assert(BO->getRHS()->isPRValue());
116         E = BO->getLHS();
117         const MemberPointerType *MPT =
118           BO->getRHS()->getType()->getAs<MemberPointerType>();
119         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
120         continue;
121       }
122       if (BO->getOpcode() == BO_Comma) {
123         CommaLHSs.push_back(BO->getLHS());
124         E = BO->getRHS();
125         continue;
126       }
127     }
128 
129     // Nothing changed.
130     break;
131   }
132   return E;
133 }
134 
135 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
136   const Expr *E = IgnoreParens();
137 
138   // If this value has _Bool type, it is obvious 0/1.
139   if (E->getType()->isBooleanType()) return true;
140   // If this is a non-scalar-integer type, we don't care enough to try.
141   if (!E->getType()->isIntegralOrEnumerationType()) return false;
142 
143   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
144     switch (UO->getOpcode()) {
145     case UO_Plus:
146       return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
147     case UO_LNot:
148       return true;
149     default:
150       return false;
151     }
152   }
153 
154   // Only look through implicit casts.  If the user writes
155   // '(int) (a && b)' treat it as an arbitrary int.
156   // FIXME: Should we look through any cast expression in !Semantic mode?
157   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
158     return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
159 
160   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
161     switch (BO->getOpcode()) {
162     default: return false;
163     case BO_LT:   // Relational operators.
164     case BO_GT:
165     case BO_LE:
166     case BO_GE:
167     case BO_EQ:   // Equality operators.
168     case BO_NE:
169     case BO_LAnd: // AND operator.
170     case BO_LOr:  // Logical OR operator.
171       return true;
172 
173     case BO_And:  // Bitwise AND operator.
174     case BO_Xor:  // Bitwise XOR operator.
175     case BO_Or:   // Bitwise OR operator.
176       // Handle things like (x==2)|(y==12).
177       return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
178              BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
179 
180     case BO_Comma:
181     case BO_Assign:
182       return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
183     }
184   }
185 
186   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
187     return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
188            CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
189 
190   if (isa<ObjCBoolLiteralExpr>(E))
191     return true;
192 
193   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
194     return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
195 
196   if (const FieldDecl *FD = E->getSourceBitField())
197     if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
198         !FD->getBitWidth()->isValueDependent() &&
199         FD->getBitWidthValue(FD->getASTContext()) == 1)
200       return true;
201 
202   return false;
203 }
204 
205 // Amusing macro metaprogramming hack: check whether a class provides
206 // a more specific implementation of getExprLoc().
207 //
208 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
209 namespace {
210   /// This implementation is used when a class provides a custom
211   /// implementation of getExprLoc.
212   template <class E, class T>
213   SourceLocation getExprLocImpl(const Expr *expr,
214                                 SourceLocation (T::*v)() const) {
215     return static_cast<const E*>(expr)->getExprLoc();
216   }
217 
218   /// This implementation is used when a class doesn't provide
219   /// a custom implementation of getExprLoc.  Overload resolution
220   /// should pick it over the implementation above because it's
221   /// more specialized according to function template partial ordering.
222   template <class E>
223   SourceLocation getExprLocImpl(const Expr *expr,
224                                 SourceLocation (Expr::*v)() const) {
225     return static_cast<const E *>(expr)->getBeginLoc();
226   }
227 }
228 
229 SourceLocation Expr::getExprLoc() const {
230   switch (getStmtClass()) {
231   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
232 #define ABSTRACT_STMT(type)
233 #define STMT(type, base) \
234   case Stmt::type##Class: break;
235 #define EXPR(type, base) \
236   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
237 #include "clang/AST/StmtNodes.inc"
238   }
239   llvm_unreachable("unknown expression kind");
240 }
241 
242 //===----------------------------------------------------------------------===//
243 // Primary Expressions.
244 //===----------------------------------------------------------------------===//
245 
246 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
247   assert((Kind == ConstantExpr::RSK_APValue ||
248           Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
249          "Invalid StorageKind Value");
250   (void)Kind;
251 }
252 
253 ConstantExpr::ResultStorageKind
254 ConstantExpr::getStorageKind(const APValue &Value) {
255   switch (Value.getKind()) {
256   case APValue::None:
257   case APValue::Indeterminate:
258     return ConstantExpr::RSK_None;
259   case APValue::Int:
260     if (!Value.getInt().needsCleanup())
261       return ConstantExpr::RSK_Int64;
262     LLVM_FALLTHROUGH;
263   default:
264     return ConstantExpr::RSK_APValue;
265   }
266 }
267 
268 ConstantExpr::ResultStorageKind
269 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
270   if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
271     return ConstantExpr::RSK_Int64;
272   return ConstantExpr::RSK_APValue;
273 }
274 
275 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind,
276                            bool IsImmediateInvocation)
277     : FullExpr(ConstantExprClass, SubExpr) {
278   ConstantExprBits.ResultKind = StorageKind;
279   ConstantExprBits.APValueKind = APValue::None;
280   ConstantExprBits.IsUnsigned = false;
281   ConstantExprBits.BitWidth = 0;
282   ConstantExprBits.HasCleanup = false;
283   ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
284 
285   if (StorageKind == ConstantExpr::RSK_APValue)
286     ::new (getTrailingObjects<APValue>()) APValue();
287 }
288 
289 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
290                                    ResultStorageKind StorageKind,
291                                    bool IsImmediateInvocation) {
292   assert(!isa<ConstantExpr>(E));
293   AssertResultStorageKind(StorageKind);
294 
295   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
296       StorageKind == ConstantExpr::RSK_APValue,
297       StorageKind == ConstantExpr::RSK_Int64);
298   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
299   return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
300 }
301 
302 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
303                                    const APValue &Result) {
304   ResultStorageKind StorageKind = getStorageKind(Result);
305   ConstantExpr *Self = Create(Context, E, StorageKind);
306   Self->SetResult(Result, Context);
307   return Self;
308 }
309 
310 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind)
311     : FullExpr(ConstantExprClass, Empty) {
312   ConstantExprBits.ResultKind = StorageKind;
313 
314   if (StorageKind == ConstantExpr::RSK_APValue)
315     ::new (getTrailingObjects<APValue>()) APValue();
316 }
317 
318 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
319                                         ResultStorageKind StorageKind) {
320   AssertResultStorageKind(StorageKind);
321 
322   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
323       StorageKind == ConstantExpr::RSK_APValue,
324       StorageKind == ConstantExpr::RSK_Int64);
325   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
326   return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
327 }
328 
329 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
330   assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
331          "Invalid storage for this value kind");
332   ConstantExprBits.APValueKind = Value.getKind();
333   switch (ConstantExprBits.ResultKind) {
334   case RSK_None:
335     return;
336   case RSK_Int64:
337     Int64Result() = *Value.getInt().getRawData();
338     ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
339     ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
340     return;
341   case RSK_APValue:
342     if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
343       ConstantExprBits.HasCleanup = true;
344       Context.addDestruction(&APValueResult());
345     }
346     APValueResult() = std::move(Value);
347     return;
348   }
349   llvm_unreachable("Invalid ResultKind Bits");
350 }
351 
352 llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
353   switch (ConstantExprBits.ResultKind) {
354   case ConstantExpr::RSK_APValue:
355     return APValueResult().getInt();
356   case ConstantExpr::RSK_Int64:
357     return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
358                         ConstantExprBits.IsUnsigned);
359   default:
360     llvm_unreachable("invalid Accessor");
361   }
362 }
363 
364 APValue ConstantExpr::getAPValueResult() const {
365 
366   switch (ConstantExprBits.ResultKind) {
367   case ConstantExpr::RSK_APValue:
368     return APValueResult();
369   case ConstantExpr::RSK_Int64:
370     return APValue(
371         llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
372                      ConstantExprBits.IsUnsigned));
373   case ConstantExpr::RSK_None:
374     if (ConstantExprBits.APValueKind == APValue::Indeterminate)
375       return APValue::IndeterminateValue();
376     return APValue();
377   }
378   llvm_unreachable("invalid ResultKind");
379 }
380 
381 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
382                          bool RefersToEnclosingVariableOrCapture, QualType T,
383                          ExprValueKind VK, SourceLocation L,
384                          const DeclarationNameLoc &LocInfo,
385                          NonOdrUseReason NOUR)
386     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
387   DeclRefExprBits.HasQualifier = false;
388   DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
389   DeclRefExprBits.HasFoundDecl = false;
390   DeclRefExprBits.HadMultipleCandidates = false;
391   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
392       RefersToEnclosingVariableOrCapture;
393   DeclRefExprBits.NonOdrUseReason = NOUR;
394   DeclRefExprBits.Loc = L;
395   setDependence(computeDependence(this, Ctx));
396 }
397 
398 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
399                          NestedNameSpecifierLoc QualifierLoc,
400                          SourceLocation TemplateKWLoc, ValueDecl *D,
401                          bool RefersToEnclosingVariableOrCapture,
402                          const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
403                          const TemplateArgumentListInfo *TemplateArgs,
404                          QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
405     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
406       DNLoc(NameInfo.getInfo()) {
407   DeclRefExprBits.Loc = NameInfo.getLoc();
408   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
409   if (QualifierLoc)
410     new (getTrailingObjects<NestedNameSpecifierLoc>())
411         NestedNameSpecifierLoc(QualifierLoc);
412   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
413   if (FoundD)
414     *getTrailingObjects<NamedDecl *>() = FoundD;
415   DeclRefExprBits.HasTemplateKWAndArgsInfo
416     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
417   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
418       RefersToEnclosingVariableOrCapture;
419   DeclRefExprBits.NonOdrUseReason = NOUR;
420   if (TemplateArgs) {
421     auto Deps = TemplateArgumentDependence::None;
422     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
423         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
424         Deps);
425     assert(!(Deps & TemplateArgumentDependence::Dependent) &&
426            "built a DeclRefExpr with dependent template args");
427   } else if (TemplateKWLoc.isValid()) {
428     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
429         TemplateKWLoc);
430   }
431   DeclRefExprBits.HadMultipleCandidates = 0;
432   setDependence(computeDependence(this, Ctx));
433 }
434 
435 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
436                                  NestedNameSpecifierLoc QualifierLoc,
437                                  SourceLocation TemplateKWLoc, ValueDecl *D,
438                                  bool RefersToEnclosingVariableOrCapture,
439                                  SourceLocation NameLoc, QualType T,
440                                  ExprValueKind VK, NamedDecl *FoundD,
441                                  const TemplateArgumentListInfo *TemplateArgs,
442                                  NonOdrUseReason NOUR) {
443   return Create(Context, QualifierLoc, TemplateKWLoc, D,
444                 RefersToEnclosingVariableOrCapture,
445                 DeclarationNameInfo(D->getDeclName(), NameLoc),
446                 T, VK, FoundD, TemplateArgs, NOUR);
447 }
448 
449 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
450                                  NestedNameSpecifierLoc QualifierLoc,
451                                  SourceLocation TemplateKWLoc, ValueDecl *D,
452                                  bool RefersToEnclosingVariableOrCapture,
453                                  const DeclarationNameInfo &NameInfo,
454                                  QualType T, ExprValueKind VK,
455                                  NamedDecl *FoundD,
456                                  const TemplateArgumentListInfo *TemplateArgs,
457                                  NonOdrUseReason NOUR) {
458   // Filter out cases where the found Decl is the same as the value refenenced.
459   if (D == FoundD)
460     FoundD = nullptr;
461 
462   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
463   std::size_t Size =
464       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
465                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
466           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
467           HasTemplateKWAndArgsInfo ? 1 : 0,
468           TemplateArgs ? TemplateArgs->size() : 0);
469 
470   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
471   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
472                                RefersToEnclosingVariableOrCapture, NameInfo,
473                                FoundD, TemplateArgs, T, VK, NOUR);
474 }
475 
476 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
477                                       bool HasQualifier,
478                                       bool HasFoundDecl,
479                                       bool HasTemplateKWAndArgsInfo,
480                                       unsigned NumTemplateArgs) {
481   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
482   std::size_t Size =
483       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
484                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
485           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
486           NumTemplateArgs);
487   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
488   return new (Mem) DeclRefExpr(EmptyShell());
489 }
490 
491 void DeclRefExpr::setDecl(ValueDecl *NewD) {
492   D = NewD;
493   if (getType()->isUndeducedType())
494     setType(NewD->getType());
495   setDependence(computeDependence(this, NewD->getASTContext()));
496 }
497 
498 SourceLocation DeclRefExpr::getBeginLoc() const {
499   if (hasQualifier())
500     return getQualifierLoc().getBeginLoc();
501   return getNameInfo().getBeginLoc();
502 }
503 SourceLocation DeclRefExpr::getEndLoc() const {
504   if (hasExplicitTemplateArgs())
505     return getRAngleLoc();
506   return getNameInfo().getEndLoc();
507 }
508 
509 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
510                                                    SourceLocation LParen,
511                                                    SourceLocation RParen,
512                                                    QualType ResultTy,
513                                                    TypeSourceInfo *TSI)
514     : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
515       OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
516   setTypeSourceInfo(TSI);
517   setDependence(computeDependence(this));
518 }
519 
520 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
521                                                    QualType ResultTy)
522     : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
523 
524 SYCLUniqueStableNameExpr *
525 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
526                                  SourceLocation LParen, SourceLocation RParen,
527                                  TypeSourceInfo *TSI) {
528   QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
529   return new (Ctx)
530       SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
531 }
532 
533 SYCLUniqueStableNameExpr *
534 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
535   QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
536   return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
537 }
538 
539 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
540   return SYCLUniqueStableNameExpr::ComputeName(Context,
541                                                getTypeSourceInfo()->getType());
542 }
543 
544 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
545                                                   QualType Ty) {
546   auto MangleCallback = [](ASTContext &Ctx,
547                            const NamedDecl *ND) -> llvm::Optional<unsigned> {
548     if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
549       return RD->getDeviceLambdaManglingNumber();
550     return llvm::None;
551   };
552 
553   std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
554       Context, Context.getDiagnostics(), MangleCallback)};
555 
556   std::string Buffer;
557   Buffer.reserve(128);
558   llvm::raw_string_ostream Out(Buffer);
559   Ctx->mangleTypeName(Ty, Out);
560 
561   return Out.str();
562 }
563 
564 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
565                                StringLiteral *SL)
566     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
567   PredefinedExprBits.Kind = IK;
568   assert((getIdentKind() == IK) &&
569          "IdentKind do not fit in PredefinedExprBitfields!");
570   bool HasFunctionName = SL != nullptr;
571   PredefinedExprBits.HasFunctionName = HasFunctionName;
572   PredefinedExprBits.Loc = L;
573   if (HasFunctionName)
574     setFunctionName(SL);
575   setDependence(computeDependence(this));
576 }
577 
578 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
579     : Expr(PredefinedExprClass, Empty) {
580   PredefinedExprBits.HasFunctionName = HasFunctionName;
581 }
582 
583 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
584                                        QualType FNTy, IdentKind IK,
585                                        StringLiteral *SL) {
586   bool HasFunctionName = SL != nullptr;
587   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
588                            alignof(PredefinedExpr));
589   return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
590 }
591 
592 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
593                                             bool HasFunctionName) {
594   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
595                            alignof(PredefinedExpr));
596   return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
597 }
598 
599 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
600   switch (IK) {
601   case Func:
602     return "__func__";
603   case Function:
604     return "__FUNCTION__";
605   case FuncDName:
606     return "__FUNCDNAME__";
607   case LFunction:
608     return "L__FUNCTION__";
609   case PrettyFunction:
610     return "__PRETTY_FUNCTION__";
611   case FuncSig:
612     return "__FUNCSIG__";
613   case LFuncSig:
614     return "L__FUNCSIG__";
615   case PrettyFunctionNoVirtual:
616     break;
617   }
618   llvm_unreachable("Unknown ident kind for PredefinedExpr");
619 }
620 
621 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
622 // expr" policy instead.
623 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
624   ASTContext &Context = CurrentDecl->getASTContext();
625 
626   if (IK == PredefinedExpr::FuncDName) {
627     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
628       std::unique_ptr<MangleContext> MC;
629       MC.reset(Context.createMangleContext());
630 
631       if (MC->shouldMangleDeclName(ND)) {
632         SmallString<256> Buffer;
633         llvm::raw_svector_ostream Out(Buffer);
634         GlobalDecl GD;
635         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
636           GD = GlobalDecl(CD, Ctor_Base);
637         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
638           GD = GlobalDecl(DD, Dtor_Base);
639         else if (ND->hasAttr<CUDAGlobalAttr>())
640           GD = GlobalDecl(cast<FunctionDecl>(ND));
641         else
642           GD = GlobalDecl(ND);
643         MC->mangleName(GD, Out);
644 
645         if (!Buffer.empty() && Buffer.front() == '\01')
646           return std::string(Buffer.substr(1));
647         return std::string(Buffer.str());
648       }
649       return std::string(ND->getIdentifier()->getName());
650     }
651     return "";
652   }
653   if (isa<BlockDecl>(CurrentDecl)) {
654     // For blocks we only emit something if it is enclosed in a function
655     // For top-level block we'd like to include the name of variable, but we
656     // don't have it at this point.
657     auto DC = CurrentDecl->getDeclContext();
658     if (DC->isFileContext())
659       return "";
660 
661     SmallString<256> Buffer;
662     llvm::raw_svector_ostream Out(Buffer);
663     if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
664       // For nested blocks, propagate up to the parent.
665       Out << ComputeName(IK, DCBlock);
666     else if (auto *DCDecl = dyn_cast<Decl>(DC))
667       Out << ComputeName(IK, DCDecl) << "_block_invoke";
668     return std::string(Out.str());
669   }
670   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
671     if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
672         IK != FuncSig && IK != LFuncSig)
673       return FD->getNameAsString();
674 
675     SmallString<256> Name;
676     llvm::raw_svector_ostream Out(Name);
677 
678     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
679       if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
680         Out << "virtual ";
681       if (MD->isStatic())
682         Out << "static ";
683     }
684 
685     PrintingPolicy Policy(Context.getLangOpts());
686     std::string Proto;
687     llvm::raw_string_ostream POut(Proto);
688 
689     const FunctionDecl *Decl = FD;
690     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
691       Decl = Pattern;
692     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
693     const FunctionProtoType *FT = nullptr;
694     if (FD->hasWrittenPrototype())
695       FT = dyn_cast<FunctionProtoType>(AFT);
696 
697     if (IK == FuncSig || IK == LFuncSig) {
698       switch (AFT->getCallConv()) {
699       case CC_C: POut << "__cdecl "; break;
700       case CC_X86StdCall: POut << "__stdcall "; break;
701       case CC_X86FastCall: POut << "__fastcall "; break;
702       case CC_X86ThisCall: POut << "__thiscall "; break;
703       case CC_X86VectorCall: POut << "__vectorcall "; break;
704       case CC_X86RegCall: POut << "__regcall "; break;
705       // Only bother printing the conventions that MSVC knows about.
706       default: break;
707       }
708     }
709 
710     FD->printQualifiedName(POut, Policy);
711 
712     POut << "(";
713     if (FT) {
714       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
715         if (i) POut << ", ";
716         POut << Decl->getParamDecl(i)->getType().stream(Policy);
717       }
718 
719       if (FT->isVariadic()) {
720         if (FD->getNumParams()) POut << ", ";
721         POut << "...";
722       } else if ((IK == FuncSig || IK == LFuncSig ||
723                   !Context.getLangOpts().CPlusPlus) &&
724                  !Decl->getNumParams()) {
725         POut << "void";
726       }
727     }
728     POut << ")";
729 
730     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
731       assert(FT && "We must have a written prototype in this case.");
732       if (FT->isConst())
733         POut << " const";
734       if (FT->isVolatile())
735         POut << " volatile";
736       RefQualifierKind Ref = MD->getRefQualifier();
737       if (Ref == RQ_LValue)
738         POut << " &";
739       else if (Ref == RQ_RValue)
740         POut << " &&";
741     }
742 
743     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
744     SpecsTy Specs;
745     const DeclContext *Ctx = FD->getDeclContext();
746     while (Ctx && isa<NamedDecl>(Ctx)) {
747       const ClassTemplateSpecializationDecl *Spec
748                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
749       if (Spec && !Spec->isExplicitSpecialization())
750         Specs.push_back(Spec);
751       Ctx = Ctx->getParent();
752     }
753 
754     std::string TemplateParams;
755     llvm::raw_string_ostream TOut(TemplateParams);
756     for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) {
757       const TemplateParameterList *Params =
758           D->getSpecializedTemplate()->getTemplateParameters();
759       const TemplateArgumentList &Args = D->getTemplateArgs();
760       assert(Params->size() == Args.size());
761       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
762         StringRef Param = Params->getParam(i)->getName();
763         if (Param.empty()) continue;
764         TOut << Param << " = ";
765         Args.get(i).print(Policy, TOut,
766                           TemplateParameterList::shouldIncludeTypeForArgument(
767                               Policy, Params, i));
768         TOut << ", ";
769       }
770     }
771 
772     FunctionTemplateSpecializationInfo *FSI
773                                           = FD->getTemplateSpecializationInfo();
774     if (FSI && !FSI->isExplicitSpecialization()) {
775       const TemplateParameterList* Params
776                                   = FSI->getTemplate()->getTemplateParameters();
777       const TemplateArgumentList* Args = FSI->TemplateArguments;
778       assert(Params->size() == Args->size());
779       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
780         StringRef Param = Params->getParam(i)->getName();
781         if (Param.empty()) continue;
782         TOut << Param << " = ";
783         Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
784         TOut << ", ";
785       }
786     }
787 
788     TOut.flush();
789     if (!TemplateParams.empty()) {
790       // remove the trailing comma and space
791       TemplateParams.resize(TemplateParams.size() - 2);
792       POut << " [" << TemplateParams << "]";
793     }
794 
795     POut.flush();
796 
797     // Print "auto" for all deduced return types. This includes C++1y return
798     // type deduction and lambdas. For trailing return types resolve the
799     // decltype expression. Otherwise print the real type when this is
800     // not a constructor or destructor.
801     if (isa<CXXMethodDecl>(FD) &&
802          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
803       Proto = "auto " + Proto;
804     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
805       FT->getReturnType()
806           ->getAs<DecltypeType>()
807           ->getUnderlyingType()
808           .getAsStringInternal(Proto, Policy);
809     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
810       AFT->getReturnType().getAsStringInternal(Proto, Policy);
811 
812     Out << Proto;
813 
814     return std::string(Name);
815   }
816   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
817     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
818       // Skip to its enclosing function or method, but not its enclosing
819       // CapturedDecl.
820       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
821         const Decl *D = Decl::castFromDeclContext(DC);
822         return ComputeName(IK, D);
823       }
824     llvm_unreachable("CapturedDecl not inside a function or method");
825   }
826   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
827     SmallString<256> Name;
828     llvm::raw_svector_ostream Out(Name);
829     Out << (MD->isInstanceMethod() ? '-' : '+');
830     Out << '[';
831 
832     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
833     // a null check to avoid a crash.
834     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
835       Out << *ID;
836 
837     if (const ObjCCategoryImplDecl *CID =
838         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
839       Out << '(' << *CID << ')';
840 
841     Out <<  ' ';
842     MD->getSelector().print(Out);
843     Out <<  ']';
844 
845     return std::string(Name);
846   }
847   if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
848     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
849     return "top level";
850   }
851   return "";
852 }
853 
854 void APNumericStorage::setIntValue(const ASTContext &C,
855                                    const llvm::APInt &Val) {
856   if (hasAllocation())
857     C.Deallocate(pVal);
858 
859   BitWidth = Val.getBitWidth();
860   unsigned NumWords = Val.getNumWords();
861   const uint64_t* Words = Val.getRawData();
862   if (NumWords > 1) {
863     pVal = new (C) uint64_t[NumWords];
864     std::copy(Words, Words + NumWords, pVal);
865   } else if (NumWords == 1)
866     VAL = Words[0];
867   else
868     VAL = 0;
869 }
870 
871 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
872                                QualType type, SourceLocation l)
873     : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
874   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
875   assert(V.getBitWidth() == C.getIntWidth(type) &&
876          "Integer type is not the correct size for constant.");
877   setValue(C, V);
878   setDependence(ExprDependence::None);
879 }
880 
881 IntegerLiteral *
882 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
883                        QualType type, SourceLocation l) {
884   return new (C) IntegerLiteral(C, V, type, l);
885 }
886 
887 IntegerLiteral *
888 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
889   return new (C) IntegerLiteral(Empty);
890 }
891 
892 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
893                                      QualType type, SourceLocation l,
894                                      unsigned Scale)
895     : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
896       Scale(Scale) {
897   assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
898   assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
899          "Fixed point type is not the correct size for constant.");
900   setValue(C, V);
901   setDependence(ExprDependence::None);
902 }
903 
904 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
905                                                        const llvm::APInt &V,
906                                                        QualType type,
907                                                        SourceLocation l,
908                                                        unsigned Scale) {
909   return new (C) FixedPointLiteral(C, V, type, l, Scale);
910 }
911 
912 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
913                                              EmptyShell Empty) {
914   return new (C) FixedPointLiteral(Empty);
915 }
916 
917 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
918   // Currently the longest decimal number that can be printed is the max for an
919   // unsigned long _Accum: 4294967295.99999999976716935634613037109375
920   // which is 43 characters.
921   SmallString<64> S;
922   FixedPointValueToString(
923       S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
924   return std::string(S.str());
925 }
926 
927 void CharacterLiteral::print(unsigned Val, CharacterKind Kind,
928                              raw_ostream &OS) {
929   switch (Kind) {
930   case CharacterLiteral::Ascii:
931     break; // no prefix.
932   case CharacterLiteral::Wide:
933     OS << 'L';
934     break;
935   case CharacterLiteral::UTF8:
936     OS << "u8";
937     break;
938   case CharacterLiteral::UTF16:
939     OS << 'u';
940     break;
941   case CharacterLiteral::UTF32:
942     OS << 'U';
943     break;
944   }
945 
946   switch (Val) {
947   case '\\':
948     OS << "'\\\\'";
949     break;
950   case '\'':
951     OS << "'\\''";
952     break;
953   case '\a':
954     // TODO: K&R: the meaning of '\\a' is different in traditional C
955     OS << "'\\a'";
956     break;
957   case '\b':
958     OS << "'\\b'";
959     break;
960   // Nonstandard escape sequence.
961   /*case '\e':
962     OS << "'\\e'";
963     break;*/
964   case '\f':
965     OS << "'\\f'";
966     break;
967   case '\n':
968     OS << "'\\n'";
969     break;
970   case '\r':
971     OS << "'\\r'";
972     break;
973   case '\t':
974     OS << "'\\t'";
975     break;
976   case '\v':
977     OS << "'\\v'";
978     break;
979   default:
980     // A character literal might be sign-extended, which
981     // would result in an invalid \U escape sequence.
982     // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
983     // are not correctly handled.
984     if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii)
985       Val &= 0xFFu;
986     if (Val < 256 && isPrintable((unsigned char)Val))
987       OS << "'" << (char)Val << "'";
988     else if (Val < 256)
989       OS << "'\\x" << llvm::format("%02x", Val) << "'";
990     else if (Val <= 0xFFFF)
991       OS << "'\\u" << llvm::format("%04x", Val) << "'";
992     else
993       OS << "'\\U" << llvm::format("%08x", Val) << "'";
994   }
995 }
996 
997 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
998                                  bool isexact, QualType Type, SourceLocation L)
999     : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1000   setSemantics(V.getSemantics());
1001   FloatingLiteralBits.IsExact = isexact;
1002   setValue(C, V);
1003   setDependence(ExprDependence::None);
1004 }
1005 
1006 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1007   : Expr(FloatingLiteralClass, Empty) {
1008   setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1009   FloatingLiteralBits.IsExact = false;
1010 }
1011 
1012 FloatingLiteral *
1013 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1014                         bool isexact, QualType Type, SourceLocation L) {
1015   return new (C) FloatingLiteral(C, V, isexact, Type, L);
1016 }
1017 
1018 FloatingLiteral *
1019 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1020   return new (C) FloatingLiteral(C, Empty);
1021 }
1022 
1023 /// getValueAsApproximateDouble - This returns the value as an inaccurate
1024 /// double.  Note that this may cause loss of precision, but is useful for
1025 /// debugging dumps, etc.
1026 double FloatingLiteral::getValueAsApproximateDouble() const {
1027   llvm::APFloat V = getValue();
1028   bool ignored;
1029   V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1030             &ignored);
1031   return V.convertToDouble();
1032 }
1033 
1034 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1035                                          StringKind SK) {
1036   unsigned CharByteWidth = 0;
1037   switch (SK) {
1038   case Ascii:
1039   case UTF8:
1040     CharByteWidth = Target.getCharWidth();
1041     break;
1042   case Wide:
1043     CharByteWidth = Target.getWCharWidth();
1044     break;
1045   case UTF16:
1046     CharByteWidth = Target.getChar16Width();
1047     break;
1048   case UTF32:
1049     CharByteWidth = Target.getChar32Width();
1050     break;
1051   }
1052   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1053   CharByteWidth /= 8;
1054   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1055          "The only supported character byte widths are 1,2 and 4!");
1056   return CharByteWidth;
1057 }
1058 
1059 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1060                              StringKind Kind, bool Pascal, QualType Ty,
1061                              const SourceLocation *Loc,
1062                              unsigned NumConcatenated)
1063     : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1064   assert(Ctx.getAsConstantArrayType(Ty) &&
1065          "StringLiteral must be of constant array type!");
1066   unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1067   unsigned ByteLength = Str.size();
1068   assert((ByteLength % CharByteWidth == 0) &&
1069          "The size of the data must be a multiple of CharByteWidth!");
1070 
1071   // Avoid the expensive division. The compiler should be able to figure it
1072   // out by itself. However as of clang 7, even with the appropriate
1073   // llvm_unreachable added just here, it is not able to do so.
1074   unsigned Length;
1075   switch (CharByteWidth) {
1076   case 1:
1077     Length = ByteLength;
1078     break;
1079   case 2:
1080     Length = ByteLength / 2;
1081     break;
1082   case 4:
1083     Length = ByteLength / 4;
1084     break;
1085   default:
1086     llvm_unreachable("Unsupported character width!");
1087   }
1088 
1089   StringLiteralBits.Kind = Kind;
1090   StringLiteralBits.CharByteWidth = CharByteWidth;
1091   StringLiteralBits.IsPascal = Pascal;
1092   StringLiteralBits.NumConcatenated = NumConcatenated;
1093   *getTrailingObjects<unsigned>() = Length;
1094 
1095   // Initialize the trailing array of SourceLocation.
1096   // This is safe since SourceLocation is POD-like.
1097   std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1098               NumConcatenated * sizeof(SourceLocation));
1099 
1100   // Initialize the trailing array of char holding the string data.
1101   std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
1102 
1103   setDependence(ExprDependence::None);
1104 }
1105 
1106 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1107                              unsigned Length, unsigned CharByteWidth)
1108     : Expr(StringLiteralClass, Empty) {
1109   StringLiteralBits.CharByteWidth = CharByteWidth;
1110   StringLiteralBits.NumConcatenated = NumConcatenated;
1111   *getTrailingObjects<unsigned>() = Length;
1112 }
1113 
1114 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1115                                      StringKind Kind, bool Pascal, QualType Ty,
1116                                      const SourceLocation *Loc,
1117                                      unsigned NumConcatenated) {
1118   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1119                                1, NumConcatenated, Str.size()),
1120                            alignof(StringLiteral));
1121   return new (Mem)
1122       StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1123 }
1124 
1125 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1126                                           unsigned NumConcatenated,
1127                                           unsigned Length,
1128                                           unsigned CharByteWidth) {
1129   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1130                                1, NumConcatenated, Length * CharByteWidth),
1131                            alignof(StringLiteral));
1132   return new (Mem)
1133       StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1134 }
1135 
1136 void StringLiteral::outputString(raw_ostream &OS) const {
1137   switch (getKind()) {
1138   case Ascii: break; // no prefix.
1139   case Wide:  OS << 'L'; break;
1140   case UTF8:  OS << "u8"; break;
1141   case UTF16: OS << 'u'; break;
1142   case UTF32: OS << 'U'; break;
1143   }
1144   OS << '"';
1145   static const char Hex[] = "0123456789ABCDEF";
1146 
1147   unsigned LastSlashX = getLength();
1148   for (unsigned I = 0, N = getLength(); I != N; ++I) {
1149     switch (uint32_t Char = getCodeUnit(I)) {
1150     default:
1151       // FIXME: Convert UTF-8 back to codepoints before rendering.
1152 
1153       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1154       // Leave invalid surrogates alone; we'll use \x for those.
1155       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1156           Char <= 0xdbff) {
1157         uint32_t Trail = getCodeUnit(I + 1);
1158         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1159           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1160           ++I;
1161         }
1162       }
1163 
1164       if (Char > 0xff) {
1165         // If this is a wide string, output characters over 0xff using \x
1166         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1167         // codepoint: use \x escapes for invalid codepoints.
1168         if (getKind() == Wide ||
1169             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1170           // FIXME: Is this the best way to print wchar_t?
1171           OS << "\\x";
1172           int Shift = 28;
1173           while ((Char >> Shift) == 0)
1174             Shift -= 4;
1175           for (/**/; Shift >= 0; Shift -= 4)
1176             OS << Hex[(Char >> Shift) & 15];
1177           LastSlashX = I;
1178           break;
1179         }
1180 
1181         if (Char > 0xffff)
1182           OS << "\\U00"
1183              << Hex[(Char >> 20) & 15]
1184              << Hex[(Char >> 16) & 15];
1185         else
1186           OS << "\\u";
1187         OS << Hex[(Char >> 12) & 15]
1188            << Hex[(Char >>  8) & 15]
1189            << Hex[(Char >>  4) & 15]
1190            << Hex[(Char >>  0) & 15];
1191         break;
1192       }
1193 
1194       // If we used \x... for the previous character, and this character is a
1195       // hexadecimal digit, prevent it being slurped as part of the \x.
1196       if (LastSlashX + 1 == I) {
1197         switch (Char) {
1198           case '0': case '1': case '2': case '3': case '4':
1199           case '5': case '6': case '7': case '8': case '9':
1200           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1201           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1202             OS << "\"\"";
1203         }
1204       }
1205 
1206       assert(Char <= 0xff &&
1207              "Characters above 0xff should already have been handled.");
1208 
1209       if (isPrintable(Char))
1210         OS << (char)Char;
1211       else  // Output anything hard as an octal escape.
1212         OS << '\\'
1213            << (char)('0' + ((Char >> 6) & 7))
1214            << (char)('0' + ((Char >> 3) & 7))
1215            << (char)('0' + ((Char >> 0) & 7));
1216       break;
1217     // Handle some common non-printable cases to make dumps prettier.
1218     case '\\': OS << "\\\\"; break;
1219     case '"': OS << "\\\""; break;
1220     case '\a': OS << "\\a"; break;
1221     case '\b': OS << "\\b"; break;
1222     case '\f': OS << "\\f"; break;
1223     case '\n': OS << "\\n"; break;
1224     case '\r': OS << "\\r"; break;
1225     case '\t': OS << "\\t"; break;
1226     case '\v': OS << "\\v"; break;
1227     }
1228   }
1229   OS << '"';
1230 }
1231 
1232 /// getLocationOfByte - Return a source location that points to the specified
1233 /// byte of this string literal.
1234 ///
1235 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1236 /// can have escape sequences in them in addition to the usual trigraph and
1237 /// escaped newline business.  This routine handles this complexity.
1238 ///
1239 /// The *StartToken sets the first token to be searched in this function and
1240 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1241 /// returning, it updates the *StartToken to the TokNo of the token being found
1242 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1243 /// string.
1244 /// Using these two parameters can reduce the time complexity from O(n^2) to
1245 /// O(n) if one wants to get the location of byte for all the tokens in a
1246 /// string.
1247 ///
1248 SourceLocation
1249 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1250                                  const LangOptions &Features,
1251                                  const TargetInfo &Target, unsigned *StartToken,
1252                                  unsigned *StartTokenByteOffset) const {
1253   assert((getKind() == StringLiteral::Ascii ||
1254           getKind() == StringLiteral::UTF8) &&
1255          "Only narrow string literals are currently supported");
1256 
1257   // Loop over all of the tokens in this string until we find the one that
1258   // contains the byte we're looking for.
1259   unsigned TokNo = 0;
1260   unsigned StringOffset = 0;
1261   if (StartToken)
1262     TokNo = *StartToken;
1263   if (StartTokenByteOffset) {
1264     StringOffset = *StartTokenByteOffset;
1265     ByteNo -= StringOffset;
1266   }
1267   while (1) {
1268     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1269     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1270 
1271     // Get the spelling of the string so that we can get the data that makes up
1272     // the string literal, not the identifier for the macro it is potentially
1273     // expanded through.
1274     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1275 
1276     // Re-lex the token to get its length and original spelling.
1277     std::pair<FileID, unsigned> LocInfo =
1278         SM.getDecomposedLoc(StrTokSpellingLoc);
1279     bool Invalid = false;
1280     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1281     if (Invalid) {
1282       if (StartTokenByteOffset != nullptr)
1283         *StartTokenByteOffset = StringOffset;
1284       if (StartToken != nullptr)
1285         *StartToken = TokNo;
1286       return StrTokSpellingLoc;
1287     }
1288 
1289     const char *StrData = Buffer.data()+LocInfo.second;
1290 
1291     // Create a lexer starting at the beginning of this token.
1292     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1293                    Buffer.begin(), StrData, Buffer.end());
1294     Token TheTok;
1295     TheLexer.LexFromRawLexer(TheTok);
1296 
1297     // Use the StringLiteralParser to compute the length of the string in bytes.
1298     StringLiteralParser SLP(TheTok, SM, Features, Target);
1299     unsigned TokNumBytes = SLP.GetStringLength();
1300 
1301     // If the byte is in this token, return the location of the byte.
1302     if (ByteNo < TokNumBytes ||
1303         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1304       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1305 
1306       // Now that we know the offset of the token in the spelling, use the
1307       // preprocessor to get the offset in the original source.
1308       if (StartTokenByteOffset != nullptr)
1309         *StartTokenByteOffset = StringOffset;
1310       if (StartToken != nullptr)
1311         *StartToken = TokNo;
1312       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1313     }
1314 
1315     // Move to the next string token.
1316     StringOffset += TokNumBytes;
1317     ++TokNo;
1318     ByteNo -= TokNumBytes;
1319   }
1320 }
1321 
1322 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1323 /// corresponds to, e.g. "sizeof" or "[pre]++".
1324 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1325   switch (Op) {
1326 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1327 #include "clang/AST/OperationKinds.def"
1328   }
1329   llvm_unreachable("Unknown unary operator");
1330 }
1331 
1332 UnaryOperatorKind
1333 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1334   switch (OO) {
1335   default: llvm_unreachable("No unary operator for overloaded function");
1336   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1337   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1338   case OO_Amp:        return UO_AddrOf;
1339   case OO_Star:       return UO_Deref;
1340   case OO_Plus:       return UO_Plus;
1341   case OO_Minus:      return UO_Minus;
1342   case OO_Tilde:      return UO_Not;
1343   case OO_Exclaim:    return UO_LNot;
1344   case OO_Coawait:    return UO_Coawait;
1345   }
1346 }
1347 
1348 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1349   switch (Opc) {
1350   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1351   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1352   case UO_AddrOf: return OO_Amp;
1353   case UO_Deref: return OO_Star;
1354   case UO_Plus: return OO_Plus;
1355   case UO_Minus: return OO_Minus;
1356   case UO_Not: return OO_Tilde;
1357   case UO_LNot: return OO_Exclaim;
1358   case UO_Coawait: return OO_Coawait;
1359   default: return OO_None;
1360   }
1361 }
1362 
1363 
1364 //===----------------------------------------------------------------------===//
1365 // Postfix Operators.
1366 //===----------------------------------------------------------------------===//
1367 
1368 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1369                    ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1370                    SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1371                    unsigned MinNumArgs, ADLCallKind UsesADL)
1372     : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1373   NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1374   unsigned NumPreArgs = PreArgs.size();
1375   CallExprBits.NumPreArgs = NumPreArgs;
1376   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1377 
1378   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1379   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1380   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1381          "OffsetToTrailingObjects overflow!");
1382 
1383   CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1384 
1385   setCallee(Fn);
1386   for (unsigned I = 0; I != NumPreArgs; ++I)
1387     setPreArg(I, PreArgs[I]);
1388   for (unsigned I = 0; I != Args.size(); ++I)
1389     setArg(I, Args[I]);
1390   for (unsigned I = Args.size(); I != NumArgs; ++I)
1391     setArg(I, nullptr);
1392 
1393   this->computeDependence();
1394 
1395   CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1396   if (hasStoredFPFeatures())
1397     setStoredFPFeatures(FPFeatures);
1398 }
1399 
1400 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1401                    bool HasFPFeatures, EmptyShell Empty)
1402     : Expr(SC, Empty), NumArgs(NumArgs) {
1403   CallExprBits.NumPreArgs = NumPreArgs;
1404   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1405 
1406   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1407   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1408   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1409          "OffsetToTrailingObjects overflow!");
1410   CallExprBits.HasFPFeatures = HasFPFeatures;
1411 }
1412 
1413 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1414                            ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1415                            SourceLocation RParenLoc,
1416                            FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1417                            ADLCallKind UsesADL) {
1418   unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1419   unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1420       /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1421   void *Mem =
1422       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1423   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1424                             RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1425 }
1426 
1427 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1428                                     ExprValueKind VK, SourceLocation RParenLoc,
1429                                     ADLCallKind UsesADL) {
1430   assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1431          "Misaligned memory in CallExpr::CreateTemporary!");
1432   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1433                             VK, RParenLoc, FPOptionsOverride(),
1434                             /*MinNumArgs=*/0, UsesADL);
1435 }
1436 
1437 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1438                                 bool HasFPFeatures, EmptyShell Empty) {
1439   unsigned SizeOfTrailingObjects =
1440       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1441   void *Mem =
1442       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1443   return new (Mem)
1444       CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1445 }
1446 
1447 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1448   switch (SC) {
1449   case CallExprClass:
1450     return sizeof(CallExpr);
1451   case CXXOperatorCallExprClass:
1452     return sizeof(CXXOperatorCallExpr);
1453   case CXXMemberCallExprClass:
1454     return sizeof(CXXMemberCallExpr);
1455   case UserDefinedLiteralClass:
1456     return sizeof(UserDefinedLiteral);
1457   case CUDAKernelCallExprClass:
1458     return sizeof(CUDAKernelCallExpr);
1459   default:
1460     llvm_unreachable("unexpected class deriving from CallExpr!");
1461   }
1462 }
1463 
1464 Decl *Expr::getReferencedDeclOfCallee() {
1465   Expr *CEE = IgnoreParenImpCasts();
1466 
1467   while (SubstNonTypeTemplateParmExpr *NTTP =
1468              dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1469     CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1470   }
1471 
1472   // If we're calling a dereference, look at the pointer instead.
1473   while (true) {
1474     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1475       if (BO->isPtrMemOp()) {
1476         CEE = BO->getRHS()->IgnoreParenImpCasts();
1477         continue;
1478       }
1479     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1480       if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1481           UO->getOpcode() == UO_Plus) {
1482         CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1483         continue;
1484       }
1485     }
1486     break;
1487   }
1488 
1489   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1490     return DRE->getDecl();
1491   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1492     return ME->getMemberDecl();
1493   if (auto *BE = dyn_cast<BlockExpr>(CEE))
1494     return BE->getBlockDecl();
1495 
1496   return nullptr;
1497 }
1498 
1499 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
1500 unsigned CallExpr::getBuiltinCallee() const {
1501   auto *FDecl =
1502       dyn_cast_or_null<FunctionDecl>(getCallee()->getReferencedDeclOfCallee());
1503   return FDecl ? FDecl->getBuiltinID() : 0;
1504 }
1505 
1506 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1507   if (unsigned BI = getBuiltinCallee())
1508     return Ctx.BuiltinInfo.isUnevaluated(BI);
1509   return false;
1510 }
1511 
1512 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1513   const Expr *Callee = getCallee();
1514   QualType CalleeType = Callee->getType();
1515   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1516     CalleeType = FnTypePtr->getPointeeType();
1517   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1518     CalleeType = BPT->getPointeeType();
1519   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1520     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1521       return Ctx.VoidTy;
1522 
1523     if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1524       return Ctx.DependentTy;
1525 
1526     // This should never be overloaded and so should never return null.
1527     CalleeType = Expr::findBoundMemberType(Callee);
1528     assert(!CalleeType.isNull());
1529   } else if (CalleeType->isDependentType() ||
1530              CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1531     return Ctx.DependentTy;
1532   }
1533 
1534   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1535   return FnType->getReturnType();
1536 }
1537 
1538 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1539   // If the return type is a struct, union, or enum that is marked nodiscard,
1540   // then return the return type attribute.
1541   if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1542     if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1543       return A;
1544 
1545   // Otherwise, see if the callee is marked nodiscard and return that attribute
1546   // instead.
1547   const Decl *D = getCalleeDecl();
1548   return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1549 }
1550 
1551 SourceLocation CallExpr::getBeginLoc() const {
1552   if (isa<CXXOperatorCallExpr>(this))
1553     return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1554 
1555   SourceLocation begin = getCallee()->getBeginLoc();
1556   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1557     begin = getArg(0)->getBeginLoc();
1558   return begin;
1559 }
1560 SourceLocation CallExpr::getEndLoc() const {
1561   if (isa<CXXOperatorCallExpr>(this))
1562     return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1563 
1564   SourceLocation end = getRParenLoc();
1565   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1566     end = getArg(getNumArgs() - 1)->getEndLoc();
1567   return end;
1568 }
1569 
1570 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1571                                    SourceLocation OperatorLoc,
1572                                    TypeSourceInfo *tsi,
1573                                    ArrayRef<OffsetOfNode> comps,
1574                                    ArrayRef<Expr*> exprs,
1575                                    SourceLocation RParenLoc) {
1576   void *Mem = C.Allocate(
1577       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1578 
1579   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1580                                 RParenLoc);
1581 }
1582 
1583 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1584                                         unsigned numComps, unsigned numExprs) {
1585   void *Mem =
1586       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1587   return new (Mem) OffsetOfExpr(numComps, numExprs);
1588 }
1589 
1590 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1591                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1592                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1593                            SourceLocation RParenLoc)
1594     : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1595       OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1596       NumComps(comps.size()), NumExprs(exprs.size()) {
1597   for (unsigned i = 0; i != comps.size(); ++i)
1598     setComponent(i, comps[i]);
1599   for (unsigned i = 0; i != exprs.size(); ++i)
1600     setIndexExpr(i, exprs[i]);
1601 
1602   setDependence(computeDependence(this));
1603 }
1604 
1605 IdentifierInfo *OffsetOfNode::getFieldName() const {
1606   assert(getKind() == Field || getKind() == Identifier);
1607   if (getKind() == Field)
1608     return getField()->getIdentifier();
1609 
1610   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1611 }
1612 
1613 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1614     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1615     SourceLocation op, SourceLocation rp)
1616     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1617       OpLoc(op), RParenLoc(rp) {
1618   assert(ExprKind <= UETT_Last && "invalid enum value!");
1619   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1620   assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1621          "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1622   UnaryExprOrTypeTraitExprBits.IsType = false;
1623   Argument.Ex = E;
1624   setDependence(computeDependence(this));
1625 }
1626 
1627 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1628                        ValueDecl *MemberDecl,
1629                        const DeclarationNameInfo &NameInfo, QualType T,
1630                        ExprValueKind VK, ExprObjectKind OK,
1631                        NonOdrUseReason NOUR)
1632     : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1633       MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1634   assert(!NameInfo.getName() ||
1635          MemberDecl->getDeclName() == NameInfo.getName());
1636   MemberExprBits.IsArrow = IsArrow;
1637   MemberExprBits.HasQualifierOrFoundDecl = false;
1638   MemberExprBits.HasTemplateKWAndArgsInfo = false;
1639   MemberExprBits.HadMultipleCandidates = false;
1640   MemberExprBits.NonOdrUseReason = NOUR;
1641   MemberExprBits.OperatorLoc = OperatorLoc;
1642   setDependence(computeDependence(this));
1643 }
1644 
1645 MemberExpr *MemberExpr::Create(
1646     const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1647     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1648     ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1649     DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1650     QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1651   bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1652                         FoundDecl.getAccess() != MemberDecl->getAccess();
1653   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1654   std::size_t Size =
1655       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1656                        TemplateArgumentLoc>(
1657           HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1658           TemplateArgs ? TemplateArgs->size() : 0);
1659 
1660   void *Mem = C.Allocate(Size, alignof(MemberExpr));
1661   MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1662                                        NameInfo, T, VK, OK, NOUR);
1663 
1664   // FIXME: remove remaining dependence computation to computeDependence().
1665   auto Deps = E->getDependence();
1666   if (HasQualOrFound) {
1667     // FIXME: Wrong. We should be looking at the member declaration we found.
1668     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
1669       Deps |= ExprDependence::TypeValueInstantiation;
1670     else if (QualifierLoc &&
1671              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1672       Deps |= ExprDependence::Instantiation;
1673 
1674     E->MemberExprBits.HasQualifierOrFoundDecl = true;
1675 
1676     MemberExprNameQualifier *NQ =
1677         E->getTrailingObjects<MemberExprNameQualifier>();
1678     NQ->QualifierLoc = QualifierLoc;
1679     NQ->FoundDecl = FoundDecl;
1680   }
1681 
1682   E->MemberExprBits.HasTemplateKWAndArgsInfo =
1683       TemplateArgs || TemplateKWLoc.isValid();
1684 
1685   if (TemplateArgs) {
1686     auto TemplateArgDeps = TemplateArgumentDependence::None;
1687     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1688         TemplateKWLoc, *TemplateArgs,
1689         E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1690     if (TemplateArgDeps & TemplateArgumentDependence::Instantiation)
1691       Deps |= ExprDependence::Instantiation;
1692   } else if (TemplateKWLoc.isValid()) {
1693     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1694         TemplateKWLoc);
1695   }
1696   E->setDependence(Deps);
1697 
1698   return E;
1699 }
1700 
1701 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1702                                     bool HasQualifier, bool HasFoundDecl,
1703                                     bool HasTemplateKWAndArgsInfo,
1704                                     unsigned NumTemplateArgs) {
1705   assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1706          "template args but no template arg info?");
1707   bool HasQualOrFound = HasQualifier || HasFoundDecl;
1708   std::size_t Size =
1709       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1710                        TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1711                                             HasTemplateKWAndArgsInfo ? 1 : 0,
1712                                             NumTemplateArgs);
1713   void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1714   return new (Mem) MemberExpr(EmptyShell());
1715 }
1716 
1717 void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1718   MemberDecl = NewD;
1719   if (getType()->isUndeducedType())
1720     setType(NewD->getType());
1721   setDependence(computeDependence(this));
1722 }
1723 
1724 SourceLocation MemberExpr::getBeginLoc() const {
1725   if (isImplicitAccess()) {
1726     if (hasQualifier())
1727       return getQualifierLoc().getBeginLoc();
1728     return MemberLoc;
1729   }
1730 
1731   // FIXME: We don't want this to happen. Rather, we should be able to
1732   // detect all kinds of implicit accesses more cleanly.
1733   SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1734   if (BaseStartLoc.isValid())
1735     return BaseStartLoc;
1736   return MemberLoc;
1737 }
1738 SourceLocation MemberExpr::getEndLoc() const {
1739   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1740   if (hasExplicitTemplateArgs())
1741     EndLoc = getRAngleLoc();
1742   else if (EndLoc.isInvalid())
1743     EndLoc = getBase()->getEndLoc();
1744   return EndLoc;
1745 }
1746 
1747 bool CastExpr::CastConsistency() const {
1748   switch (getCastKind()) {
1749   case CK_DerivedToBase:
1750   case CK_UncheckedDerivedToBase:
1751   case CK_DerivedToBaseMemberPointer:
1752   case CK_BaseToDerived:
1753   case CK_BaseToDerivedMemberPointer:
1754     assert(!path_empty() && "Cast kind should have a base path!");
1755     break;
1756 
1757   case CK_CPointerToObjCPointerCast:
1758     assert(getType()->isObjCObjectPointerType());
1759     assert(getSubExpr()->getType()->isPointerType());
1760     goto CheckNoBasePath;
1761 
1762   case CK_BlockPointerToObjCPointerCast:
1763     assert(getType()->isObjCObjectPointerType());
1764     assert(getSubExpr()->getType()->isBlockPointerType());
1765     goto CheckNoBasePath;
1766 
1767   case CK_ReinterpretMemberPointer:
1768     assert(getType()->isMemberPointerType());
1769     assert(getSubExpr()->getType()->isMemberPointerType());
1770     goto CheckNoBasePath;
1771 
1772   case CK_BitCast:
1773     // Arbitrary casts to C pointer types count as bitcasts.
1774     // Otherwise, we should only have block and ObjC pointer casts
1775     // here if they stay within the type kind.
1776     if (!getType()->isPointerType()) {
1777       assert(getType()->isObjCObjectPointerType() ==
1778              getSubExpr()->getType()->isObjCObjectPointerType());
1779       assert(getType()->isBlockPointerType() ==
1780              getSubExpr()->getType()->isBlockPointerType());
1781     }
1782     goto CheckNoBasePath;
1783 
1784   case CK_AnyPointerToBlockPointerCast:
1785     assert(getType()->isBlockPointerType());
1786     assert(getSubExpr()->getType()->isAnyPointerType() &&
1787            !getSubExpr()->getType()->isBlockPointerType());
1788     goto CheckNoBasePath;
1789 
1790   case CK_CopyAndAutoreleaseBlockObject:
1791     assert(getType()->isBlockPointerType());
1792     assert(getSubExpr()->getType()->isBlockPointerType());
1793     goto CheckNoBasePath;
1794 
1795   case CK_FunctionToPointerDecay:
1796     assert(getType()->isPointerType());
1797     assert(getSubExpr()->getType()->isFunctionType());
1798     goto CheckNoBasePath;
1799 
1800   case CK_AddressSpaceConversion: {
1801     auto Ty = getType();
1802     auto SETy = getSubExpr()->getType();
1803     assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1804     if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1805       Ty = Ty->getPointeeType();
1806       SETy = SETy->getPointeeType();
1807     }
1808     assert((Ty->isDependentType() || SETy->isDependentType()) ||
1809            (!Ty.isNull() && !SETy.isNull() &&
1810             Ty.getAddressSpace() != SETy.getAddressSpace()));
1811     goto CheckNoBasePath;
1812   }
1813   // These should not have an inheritance path.
1814   case CK_Dynamic:
1815   case CK_ToUnion:
1816   case CK_ArrayToPointerDecay:
1817   case CK_NullToMemberPointer:
1818   case CK_NullToPointer:
1819   case CK_ConstructorConversion:
1820   case CK_IntegralToPointer:
1821   case CK_PointerToIntegral:
1822   case CK_ToVoid:
1823   case CK_VectorSplat:
1824   case CK_IntegralCast:
1825   case CK_BooleanToSignedIntegral:
1826   case CK_IntegralToFloating:
1827   case CK_FloatingToIntegral:
1828   case CK_FloatingCast:
1829   case CK_ObjCObjectLValueCast:
1830   case CK_FloatingRealToComplex:
1831   case CK_FloatingComplexToReal:
1832   case CK_FloatingComplexCast:
1833   case CK_FloatingComplexToIntegralComplex:
1834   case CK_IntegralRealToComplex:
1835   case CK_IntegralComplexToReal:
1836   case CK_IntegralComplexCast:
1837   case CK_IntegralComplexToFloatingComplex:
1838   case CK_ARCProduceObject:
1839   case CK_ARCConsumeObject:
1840   case CK_ARCReclaimReturnedObject:
1841   case CK_ARCExtendBlockObject:
1842   case CK_ZeroToOCLOpaqueType:
1843   case CK_IntToOCLSampler:
1844   case CK_FloatingToFixedPoint:
1845   case CK_FixedPointToFloating:
1846   case CK_FixedPointCast:
1847   case CK_FixedPointToIntegral:
1848   case CK_IntegralToFixedPoint:
1849   case CK_MatrixCast:
1850     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1851     goto CheckNoBasePath;
1852 
1853   case CK_Dependent:
1854   case CK_LValueToRValue:
1855   case CK_NoOp:
1856   case CK_AtomicToNonAtomic:
1857   case CK_NonAtomicToAtomic:
1858   case CK_PointerToBoolean:
1859   case CK_IntegralToBoolean:
1860   case CK_FloatingToBoolean:
1861   case CK_MemberPointerToBoolean:
1862   case CK_FloatingComplexToBoolean:
1863   case CK_IntegralComplexToBoolean:
1864   case CK_LValueBitCast:            // -> bool&
1865   case CK_LValueToRValueBitCast:
1866   case CK_UserDefinedConversion:    // operator bool()
1867   case CK_BuiltinFnToFnPtr:
1868   case CK_FixedPointToBoolean:
1869   CheckNoBasePath:
1870     assert(path_empty() && "Cast kind should not have a base path!");
1871     break;
1872   }
1873   return true;
1874 }
1875 
1876 const char *CastExpr::getCastKindName(CastKind CK) {
1877   switch (CK) {
1878 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1879 #include "clang/AST/OperationKinds.def"
1880   }
1881   llvm_unreachable("Unhandled cast kind!");
1882 }
1883 
1884 namespace {
1885   const Expr *skipImplicitTemporary(const Expr *E) {
1886     // Skip through reference binding to temporary.
1887     if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1888       E = Materialize->getSubExpr();
1889 
1890     // Skip any temporary bindings; they're implicit.
1891     if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1892       E = Binder->getSubExpr();
1893 
1894     return E;
1895   }
1896 }
1897 
1898 Expr *CastExpr::getSubExprAsWritten() {
1899   const Expr *SubExpr = nullptr;
1900   const CastExpr *E = this;
1901   do {
1902     SubExpr = skipImplicitTemporary(E->getSubExpr());
1903 
1904     // Conversions by constructor and conversion functions have a
1905     // subexpression describing the call; strip it off.
1906     if (E->getCastKind() == CK_ConstructorConversion)
1907       SubExpr =
1908         skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr->IgnoreImplicit())->getArg(0));
1909     else if (E->getCastKind() == CK_UserDefinedConversion) {
1910       SubExpr = SubExpr->IgnoreImplicit();
1911       assert((isa<CXXMemberCallExpr>(SubExpr) ||
1912               isa<BlockExpr>(SubExpr)) &&
1913              "Unexpected SubExpr for CK_UserDefinedConversion.");
1914       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1915         SubExpr = MCE->getImplicitObjectArgument();
1916     }
1917 
1918     // If the subexpression we're left with is an implicit cast, look
1919     // through that, too.
1920   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1921 
1922   return const_cast<Expr*>(SubExpr);
1923 }
1924 
1925 NamedDecl *CastExpr::getConversionFunction() const {
1926   const Expr *SubExpr = nullptr;
1927 
1928   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1929     SubExpr = skipImplicitTemporary(E->getSubExpr());
1930 
1931     if (E->getCastKind() == CK_ConstructorConversion)
1932       return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1933 
1934     if (E->getCastKind() == CK_UserDefinedConversion) {
1935       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1936         return MCE->getMethodDecl();
1937     }
1938   }
1939 
1940   return nullptr;
1941 }
1942 
1943 CXXBaseSpecifier **CastExpr::path_buffer() {
1944   switch (getStmtClass()) {
1945 #define ABSTRACT_STMT(x)
1946 #define CASTEXPR(Type, Base)                                                   \
1947   case Stmt::Type##Class:                                                      \
1948     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1949 #define STMT(Type, Base)
1950 #include "clang/AST/StmtNodes.inc"
1951   default:
1952     llvm_unreachable("non-cast expressions not possible here");
1953   }
1954 }
1955 
1956 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
1957                                                         QualType opType) {
1958   auto RD = unionType->castAs<RecordType>()->getDecl();
1959   return getTargetFieldForToUnionCast(RD, opType);
1960 }
1961 
1962 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
1963                                                         QualType OpType) {
1964   auto &Ctx = RD->getASTContext();
1965   RecordDecl::field_iterator Field, FieldEnd;
1966   for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1967        Field != FieldEnd; ++Field) {
1968     if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1969         !Field->isUnnamedBitfield()) {
1970       return *Field;
1971     }
1972   }
1973   return nullptr;
1974 }
1975 
1976 FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
1977   assert(hasStoredFPFeatures());
1978   switch (getStmtClass()) {
1979   case ImplicitCastExprClass:
1980     return static_cast<ImplicitCastExpr *>(this)
1981         ->getTrailingObjects<FPOptionsOverride>();
1982   case CStyleCastExprClass:
1983     return static_cast<CStyleCastExpr *>(this)
1984         ->getTrailingObjects<FPOptionsOverride>();
1985   case CXXFunctionalCastExprClass:
1986     return static_cast<CXXFunctionalCastExpr *>(this)
1987         ->getTrailingObjects<FPOptionsOverride>();
1988   case CXXStaticCastExprClass:
1989     return static_cast<CXXStaticCastExpr *>(this)
1990         ->getTrailingObjects<FPOptionsOverride>();
1991   default:
1992     llvm_unreachable("Cast does not have FPFeatures");
1993   }
1994 }
1995 
1996 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1997                                            CastKind Kind, Expr *Operand,
1998                                            const CXXCastPath *BasePath,
1999                                            ExprValueKind VK,
2000                                            FPOptionsOverride FPO) {
2001   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2002   void *Buffer =
2003       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2004           PathSize, FPO.requiresTrailingStorage()));
2005   // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2006   // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2007   assert((Kind != CK_LValueToRValue ||
2008           !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2009          "invalid type for lvalue-to-rvalue conversion");
2010   ImplicitCastExpr *E =
2011       new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2012   if (PathSize)
2013     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2014                               E->getTrailingObjects<CXXBaseSpecifier *>());
2015   return E;
2016 }
2017 
2018 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2019                                                 unsigned PathSize,
2020                                                 bool HasFPFeatures) {
2021   void *Buffer =
2022       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2023           PathSize, HasFPFeatures));
2024   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2025 }
2026 
2027 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2028                                        ExprValueKind VK, CastKind K, Expr *Op,
2029                                        const CXXCastPath *BasePath,
2030                                        FPOptionsOverride FPO,
2031                                        TypeSourceInfo *WrittenTy,
2032                                        SourceLocation L, SourceLocation R) {
2033   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2034   void *Buffer =
2035       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2036           PathSize, FPO.requiresTrailingStorage()));
2037   CStyleCastExpr *E =
2038       new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2039   if (PathSize)
2040     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2041                               E->getTrailingObjects<CXXBaseSpecifier *>());
2042   return E;
2043 }
2044 
2045 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2046                                             unsigned PathSize,
2047                                             bool HasFPFeatures) {
2048   void *Buffer =
2049       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2050           PathSize, HasFPFeatures));
2051   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2052 }
2053 
2054 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2055 /// corresponds to, e.g. "<<=".
2056 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2057   switch (Op) {
2058 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2059 #include "clang/AST/OperationKinds.def"
2060   }
2061   llvm_unreachable("Invalid OpCode!");
2062 }
2063 
2064 BinaryOperatorKind
2065 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2066   switch (OO) {
2067   default: llvm_unreachable("Not an overloadable binary operator");
2068   case OO_Plus: return BO_Add;
2069   case OO_Minus: return BO_Sub;
2070   case OO_Star: return BO_Mul;
2071   case OO_Slash: return BO_Div;
2072   case OO_Percent: return BO_Rem;
2073   case OO_Caret: return BO_Xor;
2074   case OO_Amp: return BO_And;
2075   case OO_Pipe: return BO_Or;
2076   case OO_Equal: return BO_Assign;
2077   case OO_Spaceship: return BO_Cmp;
2078   case OO_Less: return BO_LT;
2079   case OO_Greater: return BO_GT;
2080   case OO_PlusEqual: return BO_AddAssign;
2081   case OO_MinusEqual: return BO_SubAssign;
2082   case OO_StarEqual: return BO_MulAssign;
2083   case OO_SlashEqual: return BO_DivAssign;
2084   case OO_PercentEqual: return BO_RemAssign;
2085   case OO_CaretEqual: return BO_XorAssign;
2086   case OO_AmpEqual: return BO_AndAssign;
2087   case OO_PipeEqual: return BO_OrAssign;
2088   case OO_LessLess: return BO_Shl;
2089   case OO_GreaterGreater: return BO_Shr;
2090   case OO_LessLessEqual: return BO_ShlAssign;
2091   case OO_GreaterGreaterEqual: return BO_ShrAssign;
2092   case OO_EqualEqual: return BO_EQ;
2093   case OO_ExclaimEqual: return BO_NE;
2094   case OO_LessEqual: return BO_LE;
2095   case OO_GreaterEqual: return BO_GE;
2096   case OO_AmpAmp: return BO_LAnd;
2097   case OO_PipePipe: return BO_LOr;
2098   case OO_Comma: return BO_Comma;
2099   case OO_ArrowStar: return BO_PtrMemI;
2100   }
2101 }
2102 
2103 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2104   static const OverloadedOperatorKind OverOps[] = {
2105     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2106     OO_Star, OO_Slash, OO_Percent,
2107     OO_Plus, OO_Minus,
2108     OO_LessLess, OO_GreaterGreater,
2109     OO_Spaceship,
2110     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2111     OO_EqualEqual, OO_ExclaimEqual,
2112     OO_Amp,
2113     OO_Caret,
2114     OO_Pipe,
2115     OO_AmpAmp,
2116     OO_PipePipe,
2117     OO_Equal, OO_StarEqual,
2118     OO_SlashEqual, OO_PercentEqual,
2119     OO_PlusEqual, OO_MinusEqual,
2120     OO_LessLessEqual, OO_GreaterGreaterEqual,
2121     OO_AmpEqual, OO_CaretEqual,
2122     OO_PipeEqual,
2123     OO_Comma
2124   };
2125   return OverOps[Opc];
2126 }
2127 
2128 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2129                                                       Opcode Opc,
2130                                                       Expr *LHS, Expr *RHS) {
2131   if (Opc != BO_Add)
2132     return false;
2133 
2134   // Check that we have one pointer and one integer operand.
2135   Expr *PExp;
2136   if (LHS->getType()->isPointerType()) {
2137     if (!RHS->getType()->isIntegerType())
2138       return false;
2139     PExp = LHS;
2140   } else if (RHS->getType()->isPointerType()) {
2141     if (!LHS->getType()->isIntegerType())
2142       return false;
2143     PExp = RHS;
2144   } else {
2145     return false;
2146   }
2147 
2148   // Check that the pointer is a nullptr.
2149   if (!PExp->IgnoreParenCasts()
2150           ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2151     return false;
2152 
2153   // Check that the pointee type is char-sized.
2154   const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2155   if (!PTy || !PTy->getPointeeType()->isCharType())
2156     return false;
2157 
2158   return true;
2159 }
2160 
2161 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
2162                                             SourceLocExpr::IdentKind Kind) {
2163   switch (Kind) {
2164   case SourceLocExpr::File:
2165   case SourceLocExpr::Function: {
2166     QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
2167     return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
2168   }
2169   case SourceLocExpr::Line:
2170   case SourceLocExpr::Column:
2171     return Ctx.UnsignedIntTy;
2172   }
2173   llvm_unreachable("unhandled case");
2174 }
2175 
2176 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
2177                              SourceLocation BLoc, SourceLocation RParenLoc,
2178                              DeclContext *ParentContext)
2179     : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
2180            VK_PRValue, OK_Ordinary),
2181       BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2182   SourceLocExprBits.Kind = Kind;
2183   setDependence(ExprDependence::None);
2184 }
2185 
2186 StringRef SourceLocExpr::getBuiltinStr() const {
2187   switch (getIdentKind()) {
2188   case File:
2189     return "__builtin_FILE";
2190   case Function:
2191     return "__builtin_FUNCTION";
2192   case Line:
2193     return "__builtin_LINE";
2194   case Column:
2195     return "__builtin_COLUMN";
2196   }
2197   llvm_unreachable("unexpected IdentKind!");
2198 }
2199 
2200 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2201                                          const Expr *DefaultExpr) const {
2202   SourceLocation Loc;
2203   const DeclContext *Context;
2204 
2205   std::tie(Loc,
2206            Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2207     if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2208       return {DIE->getUsedLocation(), DIE->getUsedContext()};
2209     if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2210       return {DAE->getUsedLocation(), DAE->getUsedContext()};
2211     return {this->getLocation(), this->getParentContext()};
2212   }();
2213 
2214   PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2215       Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2216 
2217   auto MakeStringLiteral = [&](StringRef Tmp) {
2218     using LValuePathEntry = APValue::LValuePathEntry;
2219     StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2220     // Decay the string to a pointer to the first character.
2221     LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2222     return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2223   };
2224 
2225   switch (getIdentKind()) {
2226   case SourceLocExpr::File: {
2227     SmallString<256> Path(PLoc.getFilename());
2228     Ctx.getLangOpts().remapPathPrefix(Path);
2229     return MakeStringLiteral(Path);
2230   }
2231   case SourceLocExpr::Function: {
2232     const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
2233     return MakeStringLiteral(
2234         CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
2235                 : std::string(""));
2236   }
2237   case SourceLocExpr::Line:
2238   case SourceLocExpr::Column: {
2239     llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2240                         /*isUnsigned=*/true);
2241     IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2242                                                    : PLoc.getColumn();
2243     return APValue(IntVal);
2244   }
2245   }
2246   llvm_unreachable("unhandled case");
2247 }
2248 
2249 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2250                            ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2251     : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2252       InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2253       RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2254   sawArrayRangeDesignator(false);
2255   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2256 
2257   setDependence(computeDependence(this));
2258 }
2259 
2260 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2261   if (NumInits > InitExprs.size())
2262     InitExprs.reserve(C, NumInits);
2263 }
2264 
2265 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2266   InitExprs.resize(C, NumInits, nullptr);
2267 }
2268 
2269 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2270   if (Init >= InitExprs.size()) {
2271     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2272     setInit(Init, expr);
2273     return nullptr;
2274   }
2275 
2276   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2277   setInit(Init, expr);
2278   return Result;
2279 }
2280 
2281 void InitListExpr::setArrayFiller(Expr *filler) {
2282   assert(!hasArrayFiller() && "Filler already set!");
2283   ArrayFillerOrUnionFieldInit = filler;
2284   // Fill out any "holes" in the array due to designated initializers.
2285   Expr **inits = getInits();
2286   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2287     if (inits[i] == nullptr)
2288       inits[i] = filler;
2289 }
2290 
2291 bool InitListExpr::isStringLiteralInit() const {
2292   if (getNumInits() != 1)
2293     return false;
2294   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2295   if (!AT || !AT->getElementType()->isIntegerType())
2296     return false;
2297   // It is possible for getInit() to return null.
2298   const Expr *Init = getInit(0);
2299   if (!Init)
2300     return false;
2301   Init = Init->IgnoreParenImpCasts();
2302   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2303 }
2304 
2305 bool InitListExpr::isTransparent() const {
2306   assert(isSemanticForm() && "syntactic form never semantically transparent");
2307 
2308   // A glvalue InitListExpr is always just sugar.
2309   if (isGLValue()) {
2310     assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2311     return true;
2312   }
2313 
2314   // Otherwise, we're sugar if and only if we have exactly one initializer that
2315   // is of the same type.
2316   if (getNumInits() != 1 || !getInit(0))
2317     return false;
2318 
2319   // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2320   // transparent struct copy.
2321   if (!getInit(0)->isPRValue() && getType()->isRecordType())
2322     return false;
2323 
2324   return getType().getCanonicalType() ==
2325          getInit(0)->getType().getCanonicalType();
2326 }
2327 
2328 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2329   assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2330 
2331   if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2332     return false;
2333   }
2334 
2335   const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2336   return Lit && Lit->getValue() == 0;
2337 }
2338 
2339 SourceLocation InitListExpr::getBeginLoc() const {
2340   if (InitListExpr *SyntacticForm = getSyntacticForm())
2341     return SyntacticForm->getBeginLoc();
2342   SourceLocation Beg = LBraceLoc;
2343   if (Beg.isInvalid()) {
2344     // Find the first non-null initializer.
2345     for (InitExprsTy::const_iterator I = InitExprs.begin(),
2346                                      E = InitExprs.end();
2347       I != E; ++I) {
2348       if (Stmt *S = *I) {
2349         Beg = S->getBeginLoc();
2350         break;
2351       }
2352     }
2353   }
2354   return Beg;
2355 }
2356 
2357 SourceLocation InitListExpr::getEndLoc() const {
2358   if (InitListExpr *SyntacticForm = getSyntacticForm())
2359     return SyntacticForm->getEndLoc();
2360   SourceLocation End = RBraceLoc;
2361   if (End.isInvalid()) {
2362     // Find the first non-null initializer from the end.
2363     for (Stmt *S : llvm::reverse(InitExprs)) {
2364       if (S) {
2365         End = S->getEndLoc();
2366         break;
2367       }
2368     }
2369   }
2370   return End;
2371 }
2372 
2373 /// getFunctionType - Return the underlying function type for this block.
2374 ///
2375 const FunctionProtoType *BlockExpr::getFunctionType() const {
2376   // The block pointer is never sugared, but the function type might be.
2377   return cast<BlockPointerType>(getType())
2378            ->getPointeeType()->castAs<FunctionProtoType>();
2379 }
2380 
2381 SourceLocation BlockExpr::getCaretLocation() const {
2382   return TheBlock->getCaretLocation();
2383 }
2384 const Stmt *BlockExpr::getBody() const {
2385   return TheBlock->getBody();
2386 }
2387 Stmt *BlockExpr::getBody() {
2388   return TheBlock->getBody();
2389 }
2390 
2391 
2392 //===----------------------------------------------------------------------===//
2393 // Generic Expression Routines
2394 //===----------------------------------------------------------------------===//
2395 
2396 bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2397   // In C++11, discarded-value expressions of a certain form are special,
2398   // according to [expr]p10:
2399   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
2400   //   expression is a glvalue of volatile-qualified type and it has
2401   //   one of the following forms:
2402   if (!isGLValue() || !getType().isVolatileQualified())
2403     return false;
2404 
2405   const Expr *E = IgnoreParens();
2406 
2407   //   - id-expression (5.1.1),
2408   if (isa<DeclRefExpr>(E))
2409     return true;
2410 
2411   //   - subscripting (5.2.1),
2412   if (isa<ArraySubscriptExpr>(E))
2413     return true;
2414 
2415   //   - class member access (5.2.5),
2416   if (isa<MemberExpr>(E))
2417     return true;
2418 
2419   //   - indirection (5.3.1),
2420   if (auto *UO = dyn_cast<UnaryOperator>(E))
2421     if (UO->getOpcode() == UO_Deref)
2422       return true;
2423 
2424   if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2425     //   - pointer-to-member operation (5.5),
2426     if (BO->isPtrMemOp())
2427       return true;
2428 
2429     //   - comma expression (5.18) where the right operand is one of the above.
2430     if (BO->getOpcode() == BO_Comma)
2431       return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2432   }
2433 
2434   //   - conditional expression (5.16) where both the second and the third
2435   //     operands are one of the above, or
2436   if (auto *CO = dyn_cast<ConditionalOperator>(E))
2437     return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2438            CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2439   // The related edge case of "*x ?: *x".
2440   if (auto *BCO =
2441           dyn_cast<BinaryConditionalOperator>(E)) {
2442     if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2443       return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2444              BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2445   }
2446 
2447   // Objective-C++ extensions to the rule.
2448   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
2449     return true;
2450 
2451   return false;
2452 }
2453 
2454 /// isUnusedResultAWarning - Return true if this immediate expression should
2455 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2456 /// with location to warn on and the source range[s] to report with the
2457 /// warning.
2458 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2459                                   SourceRange &R1, SourceRange &R2,
2460                                   ASTContext &Ctx) const {
2461   // Don't warn if the expr is type dependent. The type could end up
2462   // instantiating to void.
2463   if (isTypeDependent())
2464     return false;
2465 
2466   switch (getStmtClass()) {
2467   default:
2468     if (getType()->isVoidType())
2469       return false;
2470     WarnE = this;
2471     Loc = getExprLoc();
2472     R1 = getSourceRange();
2473     return true;
2474   case ParenExprClass:
2475     return cast<ParenExpr>(this)->getSubExpr()->
2476       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2477   case GenericSelectionExprClass:
2478     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2479       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2480   case CoawaitExprClass:
2481   case CoyieldExprClass:
2482     return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2483       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2484   case ChooseExprClass:
2485     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2486       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2487   case UnaryOperatorClass: {
2488     const UnaryOperator *UO = cast<UnaryOperator>(this);
2489 
2490     switch (UO->getOpcode()) {
2491     case UO_Plus:
2492     case UO_Minus:
2493     case UO_AddrOf:
2494     case UO_Not:
2495     case UO_LNot:
2496     case UO_Deref:
2497       break;
2498     case UO_Coawait:
2499       // This is just the 'operator co_await' call inside the guts of a
2500       // dependent co_await call.
2501     case UO_PostInc:
2502     case UO_PostDec:
2503     case UO_PreInc:
2504     case UO_PreDec:                 // ++/--
2505       return false;  // Not a warning.
2506     case UO_Real:
2507     case UO_Imag:
2508       // accessing a piece of a volatile complex is a side-effect.
2509       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2510           .isVolatileQualified())
2511         return false;
2512       break;
2513     case UO_Extension:
2514       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2515     }
2516     WarnE = this;
2517     Loc = UO->getOperatorLoc();
2518     R1 = UO->getSubExpr()->getSourceRange();
2519     return true;
2520   }
2521   case BinaryOperatorClass: {
2522     const BinaryOperator *BO = cast<BinaryOperator>(this);
2523     switch (BO->getOpcode()) {
2524       default:
2525         break;
2526       // Consider the RHS of comma for side effects. LHS was checked by
2527       // Sema::CheckCommaOperands.
2528       case BO_Comma:
2529         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2530         // lvalue-ness) of an assignment written in a macro.
2531         if (IntegerLiteral *IE =
2532               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2533           if (IE->getValue() == 0)
2534             return false;
2535         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2536       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2537       case BO_LAnd:
2538       case BO_LOr:
2539         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2540             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2541           return false;
2542         break;
2543     }
2544     if (BO->isAssignmentOp())
2545       return false;
2546     WarnE = this;
2547     Loc = BO->getOperatorLoc();
2548     R1 = BO->getLHS()->getSourceRange();
2549     R2 = BO->getRHS()->getSourceRange();
2550     return true;
2551   }
2552   case CompoundAssignOperatorClass:
2553   case VAArgExprClass:
2554   case AtomicExprClass:
2555     return false;
2556 
2557   case ConditionalOperatorClass: {
2558     // If only one of the LHS or RHS is a warning, the operator might
2559     // be being used for control flow. Only warn if both the LHS and
2560     // RHS are warnings.
2561     const auto *Exp = cast<ConditionalOperator>(this);
2562     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2563            Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2564   }
2565   case BinaryConditionalOperatorClass: {
2566     const auto *Exp = cast<BinaryConditionalOperator>(this);
2567     return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2568   }
2569 
2570   case MemberExprClass:
2571     WarnE = this;
2572     Loc = cast<MemberExpr>(this)->getMemberLoc();
2573     R1 = SourceRange(Loc, Loc);
2574     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2575     return true;
2576 
2577   case ArraySubscriptExprClass:
2578     WarnE = this;
2579     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2580     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2581     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2582     return true;
2583 
2584   case CXXOperatorCallExprClass: {
2585     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2586     // overloads as there is no reasonable way to define these such that they
2587     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2588     // warning: operators == and != are commonly typo'ed, and so warning on them
2589     // provides additional value as well. If this list is updated,
2590     // DiagnoseUnusedComparison should be as well.
2591     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2592     switch (Op->getOperator()) {
2593     default:
2594       break;
2595     case OO_EqualEqual:
2596     case OO_ExclaimEqual:
2597     case OO_Less:
2598     case OO_Greater:
2599     case OO_GreaterEqual:
2600     case OO_LessEqual:
2601       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2602           Op->getCallReturnType(Ctx)->isVoidType())
2603         break;
2604       WarnE = this;
2605       Loc = Op->getOperatorLoc();
2606       R1 = Op->getSourceRange();
2607       return true;
2608     }
2609 
2610     // Fallthrough for generic call handling.
2611     LLVM_FALLTHROUGH;
2612   }
2613   case CallExprClass:
2614   case CXXMemberCallExprClass:
2615   case UserDefinedLiteralClass: {
2616     // If this is a direct call, get the callee.
2617     const CallExpr *CE = cast<CallExpr>(this);
2618     if (const Decl *FD = CE->getCalleeDecl()) {
2619       // If the callee has attribute pure, const, or warn_unused_result, warn
2620       // about it. void foo() { strlen("bar"); } should warn.
2621       //
2622       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2623       // updated to match for QoI.
2624       if (CE->hasUnusedResultAttr(Ctx) ||
2625           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2626         WarnE = this;
2627         Loc = CE->getCallee()->getBeginLoc();
2628         R1 = CE->getCallee()->getSourceRange();
2629 
2630         if (unsigned NumArgs = CE->getNumArgs())
2631           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2632                            CE->getArg(NumArgs - 1)->getEndLoc());
2633         return true;
2634       }
2635     }
2636     return false;
2637   }
2638 
2639   // If we don't know precisely what we're looking at, let's not warn.
2640   case UnresolvedLookupExprClass:
2641   case CXXUnresolvedConstructExprClass:
2642   case RecoveryExprClass:
2643     return false;
2644 
2645   case CXXTemporaryObjectExprClass:
2646   case CXXConstructExprClass: {
2647     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2648       const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2649       if (Type->hasAttr<WarnUnusedAttr>() ||
2650           (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2651         WarnE = this;
2652         Loc = getBeginLoc();
2653         R1 = getSourceRange();
2654         return true;
2655       }
2656     }
2657 
2658     const auto *CE = cast<CXXConstructExpr>(this);
2659     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2660       const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2661       if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2662         WarnE = this;
2663         Loc = getBeginLoc();
2664         R1 = getSourceRange();
2665 
2666         if (unsigned NumArgs = CE->getNumArgs())
2667           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2668                            CE->getArg(NumArgs - 1)->getEndLoc());
2669         return true;
2670       }
2671     }
2672 
2673     return false;
2674   }
2675 
2676   case ObjCMessageExprClass: {
2677     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2678     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2679         ME->isInstanceMessage() &&
2680         !ME->getType()->isVoidType() &&
2681         ME->getMethodFamily() == OMF_init) {
2682       WarnE = this;
2683       Loc = getExprLoc();
2684       R1 = ME->getSourceRange();
2685       return true;
2686     }
2687 
2688     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2689       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2690         WarnE = this;
2691         Loc = getExprLoc();
2692         return true;
2693       }
2694 
2695     return false;
2696   }
2697 
2698   case ObjCPropertyRefExprClass:
2699     WarnE = this;
2700     Loc = getExprLoc();
2701     R1 = getSourceRange();
2702     return true;
2703 
2704   case PseudoObjectExprClass: {
2705     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2706 
2707     // Only complain about things that have the form of a getter.
2708     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2709         isa<BinaryOperator>(PO->getSyntacticForm()))
2710       return false;
2711 
2712     WarnE = this;
2713     Loc = getExprLoc();
2714     R1 = getSourceRange();
2715     return true;
2716   }
2717 
2718   case StmtExprClass: {
2719     // Statement exprs don't logically have side effects themselves, but are
2720     // sometimes used in macros in ways that give them a type that is unused.
2721     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2722     // however, if the result of the stmt expr is dead, we don't want to emit a
2723     // warning.
2724     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2725     if (!CS->body_empty()) {
2726       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2727         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2728       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2729         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2730           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2731     }
2732 
2733     if (getType()->isVoidType())
2734       return false;
2735     WarnE = this;
2736     Loc = cast<StmtExpr>(this)->getLParenLoc();
2737     R1 = getSourceRange();
2738     return true;
2739   }
2740   case CXXFunctionalCastExprClass:
2741   case CStyleCastExprClass: {
2742     // Ignore an explicit cast to void, except in C++98 if the operand is a
2743     // volatile glvalue for which we would trigger an implicit read in any
2744     // other language mode. (Such an implicit read always happens as part of
2745     // the lvalue conversion in C, and happens in C++ for expressions of all
2746     // forms where it seems likely the user intended to trigger a volatile
2747     // load.)
2748     const CastExpr *CE = cast<CastExpr>(this);
2749     const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2750     if (CE->getCastKind() == CK_ToVoid) {
2751       if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2752           SubE->isReadIfDiscardedInCPlusPlus11()) {
2753         // Suppress the "unused value" warning for idiomatic usage of
2754         // '(void)var;' used to suppress "unused variable" warnings.
2755         if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2756           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2757             if (!VD->isExternallyVisible())
2758               return false;
2759 
2760         // The lvalue-to-rvalue conversion would have no effect for an array.
2761         // It's implausible that the programmer expected this to result in a
2762         // volatile array load, so don't warn.
2763         if (SubE->getType()->isArrayType())
2764           return false;
2765 
2766         return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2767       }
2768       return false;
2769     }
2770 
2771     // If this is a cast to a constructor conversion, check the operand.
2772     // Otherwise, the result of the cast is unused.
2773     if (CE->getCastKind() == CK_ConstructorConversion)
2774       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2775     if (CE->getCastKind() == CK_Dependent)
2776       return false;
2777 
2778     WarnE = this;
2779     if (const CXXFunctionalCastExpr *CXXCE =
2780             dyn_cast<CXXFunctionalCastExpr>(this)) {
2781       Loc = CXXCE->getBeginLoc();
2782       R1 = CXXCE->getSubExpr()->getSourceRange();
2783     } else {
2784       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2785       Loc = CStyleCE->getLParenLoc();
2786       R1 = CStyleCE->getSubExpr()->getSourceRange();
2787     }
2788     return true;
2789   }
2790   case ImplicitCastExprClass: {
2791     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2792 
2793     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2794     if (ICE->getCastKind() == CK_LValueToRValue &&
2795         ICE->getSubExpr()->getType().isVolatileQualified())
2796       return false;
2797 
2798     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2799   }
2800   case CXXDefaultArgExprClass:
2801     return (cast<CXXDefaultArgExpr>(this)
2802             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2803   case CXXDefaultInitExprClass:
2804     return (cast<CXXDefaultInitExpr>(this)
2805             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2806 
2807   case CXXNewExprClass:
2808     // FIXME: In theory, there might be new expressions that don't have side
2809     // effects (e.g. a placement new with an uninitialized POD).
2810   case CXXDeleteExprClass:
2811     return false;
2812   case MaterializeTemporaryExprClass:
2813     return cast<MaterializeTemporaryExpr>(this)
2814         ->getSubExpr()
2815         ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2816   case CXXBindTemporaryExprClass:
2817     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2818                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2819   case ExprWithCleanupsClass:
2820     return cast<ExprWithCleanups>(this)->getSubExpr()
2821                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2822   }
2823 }
2824 
2825 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2826 /// returns true, if it is; false otherwise.
2827 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2828   const Expr *E = IgnoreParens();
2829   switch (E->getStmtClass()) {
2830   default:
2831     return false;
2832   case ObjCIvarRefExprClass:
2833     return true;
2834   case Expr::UnaryOperatorClass:
2835     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2836   case ImplicitCastExprClass:
2837     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2838   case MaterializeTemporaryExprClass:
2839     return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2840         Ctx);
2841   case CStyleCastExprClass:
2842     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2843   case DeclRefExprClass: {
2844     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2845 
2846     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2847       if (VD->hasGlobalStorage())
2848         return true;
2849       QualType T = VD->getType();
2850       // dereferencing to a  pointer is always a gc'able candidate,
2851       // unless it is __weak.
2852       return T->isPointerType() &&
2853              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2854     }
2855     return false;
2856   }
2857   case MemberExprClass: {
2858     const MemberExpr *M = cast<MemberExpr>(E);
2859     return M->getBase()->isOBJCGCCandidate(Ctx);
2860   }
2861   case ArraySubscriptExprClass:
2862     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2863   }
2864 }
2865 
2866 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2867   if (isTypeDependent())
2868     return false;
2869   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2870 }
2871 
2872 QualType Expr::findBoundMemberType(const Expr *expr) {
2873   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2874 
2875   // Bound member expressions are always one of these possibilities:
2876   //   x->m      x.m      x->*y      x.*y
2877   // (possibly parenthesized)
2878 
2879   expr = expr->IgnoreParens();
2880   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2881     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2882     return mem->getMemberDecl()->getType();
2883   }
2884 
2885   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2886     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2887                       ->getPointeeType();
2888     assert(type->isFunctionType());
2889     return type;
2890   }
2891 
2892   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2893   return QualType();
2894 }
2895 
2896 Expr *Expr::IgnoreImpCasts() {
2897   return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep);
2898 }
2899 
2900 Expr *Expr::IgnoreCasts() {
2901   return IgnoreExprNodes(this, IgnoreCastsSingleStep);
2902 }
2903 
2904 Expr *Expr::IgnoreImplicit() {
2905   return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
2906 }
2907 
2908 Expr *Expr::IgnoreImplicitAsWritten() {
2909   return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
2910 }
2911 
2912 Expr *Expr::IgnoreParens() {
2913   return IgnoreExprNodes(this, IgnoreParensSingleStep);
2914 }
2915 
2916 Expr *Expr::IgnoreParenImpCasts() {
2917   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2918                          IgnoreImplicitCastsExtraSingleStep);
2919 }
2920 
2921 Expr *Expr::IgnoreParenCasts() {
2922   return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
2923 }
2924 
2925 Expr *Expr::IgnoreConversionOperatorSingleStep() {
2926   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2927     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2928       return MCE->getImplicitObjectArgument();
2929   }
2930   return this;
2931 }
2932 
2933 Expr *Expr::IgnoreParenLValueCasts() {
2934   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2935                          IgnoreLValueCastsSingleStep);
2936 }
2937 
2938 Expr *Expr::IgnoreParenBaseCasts() {
2939   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2940                          IgnoreBaseCastsSingleStep);
2941 }
2942 
2943 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
2944   auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
2945     if (auto *CE = dyn_cast<CastExpr>(E)) {
2946       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2947       // ptr<->int casts of the same width. We also ignore all identity casts.
2948       Expr *SubExpr = CE->getSubExpr();
2949       bool IsIdentityCast =
2950           Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
2951       bool IsSameWidthCast = (E->getType()->isPointerType() ||
2952                               E->getType()->isIntegralType(Ctx)) &&
2953                              (SubExpr->getType()->isPointerType() ||
2954                               SubExpr->getType()->isIntegralType(Ctx)) &&
2955                              (Ctx.getTypeSize(E->getType()) ==
2956                               Ctx.getTypeSize(SubExpr->getType()));
2957 
2958       if (IsIdentityCast || IsSameWidthCast)
2959         return SubExpr;
2960     } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2961       return NTTP->getReplacement();
2962 
2963     return E;
2964   };
2965   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2966                          IgnoreNoopCastsSingleStep);
2967 }
2968 
2969 Expr *Expr::IgnoreUnlessSpelledInSource() {
2970   auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
2971     if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
2972       auto *SE = Cast->getSubExpr();
2973       if (SE->getSourceRange() == E->getSourceRange())
2974         return SE;
2975     }
2976 
2977     if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
2978       auto NumArgs = C->getNumArgs();
2979       if (NumArgs == 1 ||
2980           (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
2981         Expr *A = C->getArg(0);
2982         if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
2983           return A;
2984       }
2985     }
2986     return E;
2987   };
2988   auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
2989     if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
2990       Expr *ExprNode = C->getImplicitObjectArgument();
2991       if (ExprNode->getSourceRange() == E->getSourceRange()) {
2992         return ExprNode;
2993       }
2994       if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
2995         if (PE->getSourceRange() == C->getSourceRange()) {
2996           return cast<Expr>(PE);
2997         }
2998       }
2999       ExprNode = ExprNode->IgnoreParenImpCasts();
3000       if (ExprNode->getSourceRange() == E->getSourceRange())
3001         return ExprNode;
3002     }
3003     return E;
3004   };
3005   return IgnoreExprNodes(
3006       this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep,
3007       IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep,
3008       IgnoreImplicitMemberCallSingleStep);
3009 }
3010 
3011 bool Expr::isDefaultArgument() const {
3012   const Expr *E = this;
3013   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3014     E = M->getSubExpr();
3015 
3016   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3017     E = ICE->getSubExprAsWritten();
3018 
3019   return isa<CXXDefaultArgExpr>(E);
3020 }
3021 
3022 /// Skip over any no-op casts and any temporary-binding
3023 /// expressions.
3024 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3025   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3026     E = M->getSubExpr();
3027 
3028   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3029     if (ICE->getCastKind() == CK_NoOp)
3030       E = ICE->getSubExpr();
3031     else
3032       break;
3033   }
3034 
3035   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3036     E = BE->getSubExpr();
3037 
3038   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3039     if (ICE->getCastKind() == CK_NoOp)
3040       E = ICE->getSubExpr();
3041     else
3042       break;
3043   }
3044 
3045   return E->IgnoreParens();
3046 }
3047 
3048 /// isTemporaryObject - Determines if this expression produces a
3049 /// temporary of the given class type.
3050 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3051   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3052     return false;
3053 
3054   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
3055 
3056   // Temporaries are by definition pr-values of class type.
3057   if (!E->Classify(C).isPRValue()) {
3058     // In this context, property reference is a message call and is pr-value.
3059     if (!isa<ObjCPropertyRefExpr>(E))
3060       return false;
3061   }
3062 
3063   // Black-list a few cases which yield pr-values of class type that don't
3064   // refer to temporaries of that type:
3065 
3066   // - implicit derived-to-base conversions
3067   if (isa<ImplicitCastExpr>(E)) {
3068     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3069     case CK_DerivedToBase:
3070     case CK_UncheckedDerivedToBase:
3071       return false;
3072     default:
3073       break;
3074     }
3075   }
3076 
3077   // - member expressions (all)
3078   if (isa<MemberExpr>(E))
3079     return false;
3080 
3081   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3082     if (BO->isPtrMemOp())
3083       return false;
3084 
3085   // - opaque values (all)
3086   if (isa<OpaqueValueExpr>(E))
3087     return false;
3088 
3089   return true;
3090 }
3091 
3092 bool Expr::isImplicitCXXThis() const {
3093   const Expr *E = this;
3094 
3095   // Strip away parentheses and casts we don't care about.
3096   while (true) {
3097     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3098       E = Paren->getSubExpr();
3099       continue;
3100     }
3101 
3102     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3103       if (ICE->getCastKind() == CK_NoOp ||
3104           ICE->getCastKind() == CK_LValueToRValue ||
3105           ICE->getCastKind() == CK_DerivedToBase ||
3106           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3107         E = ICE->getSubExpr();
3108         continue;
3109       }
3110     }
3111 
3112     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3113       if (UnOp->getOpcode() == UO_Extension) {
3114         E = UnOp->getSubExpr();
3115         continue;
3116       }
3117     }
3118 
3119     if (const MaterializeTemporaryExpr *M
3120                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
3121       E = M->getSubExpr();
3122       continue;
3123     }
3124 
3125     break;
3126   }
3127 
3128   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3129     return This->isImplicit();
3130 
3131   return false;
3132 }
3133 
3134 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3135 /// in Exprs is type-dependent.
3136 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3137   for (unsigned I = 0; I < Exprs.size(); ++I)
3138     if (Exprs[I]->isTypeDependent())
3139       return true;
3140 
3141   return false;
3142 }
3143 
3144 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3145                                  const Expr **Culprit) const {
3146   assert(!isValueDependent() &&
3147          "Expression evaluator can't be called on a dependent expression.");
3148 
3149   // This function is attempting whether an expression is an initializer
3150   // which can be evaluated at compile-time. It very closely parallels
3151   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3152   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
3153   // to isEvaluatable most of the time.
3154   //
3155   // If we ever capture reference-binding directly in the AST, we can
3156   // kill the second parameter.
3157 
3158   if (IsForRef) {
3159     EvalResult Result;
3160     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3161       return true;
3162     if (Culprit)
3163       *Culprit = this;
3164     return false;
3165   }
3166 
3167   switch (getStmtClass()) {
3168   default: break;
3169   case Stmt::ExprWithCleanupsClass:
3170     return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3171         Ctx, IsForRef, Culprit);
3172   case StringLiteralClass:
3173   case ObjCEncodeExprClass:
3174     return true;
3175   case CXXTemporaryObjectExprClass:
3176   case CXXConstructExprClass: {
3177     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3178 
3179     if (CE->getConstructor()->isTrivial() &&
3180         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3181       // Trivial default constructor
3182       if (!CE->getNumArgs()) return true;
3183 
3184       // Trivial copy constructor
3185       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3186       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3187     }
3188 
3189     break;
3190   }
3191   case ConstantExprClass: {
3192     // FIXME: We should be able to return "true" here, but it can lead to extra
3193     // error messages. E.g. in Sema/array-init.c.
3194     const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3195     return Exp->isConstantInitializer(Ctx, false, Culprit);
3196   }
3197   case CompoundLiteralExprClass: {
3198     // This handles gcc's extension that allows global initializers like
3199     // "struct x {int x;} x = (struct x) {};".
3200     // FIXME: This accepts other cases it shouldn't!
3201     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3202     return Exp->isConstantInitializer(Ctx, false, Culprit);
3203   }
3204   case DesignatedInitUpdateExprClass: {
3205     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3206     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3207            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3208   }
3209   case InitListExprClass: {
3210     const InitListExpr *ILE = cast<InitListExpr>(this);
3211     assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3212     if (ILE->getType()->isArrayType()) {
3213       unsigned numInits = ILE->getNumInits();
3214       for (unsigned i = 0; i < numInits; i++) {
3215         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3216           return false;
3217       }
3218       return true;
3219     }
3220 
3221     if (ILE->getType()->isRecordType()) {
3222       unsigned ElementNo = 0;
3223       RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3224       for (const auto *Field : RD->fields()) {
3225         // If this is a union, skip all the fields that aren't being initialized.
3226         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3227           continue;
3228 
3229         // Don't emit anonymous bitfields, they just affect layout.
3230         if (Field->isUnnamedBitfield())
3231           continue;
3232 
3233         if (ElementNo < ILE->getNumInits()) {
3234           const Expr *Elt = ILE->getInit(ElementNo++);
3235           if (Field->isBitField()) {
3236             // Bitfields have to evaluate to an integer.
3237             EvalResult Result;
3238             if (!Elt->EvaluateAsInt(Result, Ctx)) {
3239               if (Culprit)
3240                 *Culprit = Elt;
3241               return false;
3242             }
3243           } else {
3244             bool RefType = Field->getType()->isReferenceType();
3245             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3246               return false;
3247           }
3248         }
3249       }
3250       return true;
3251     }
3252 
3253     break;
3254   }
3255   case ImplicitValueInitExprClass:
3256   case NoInitExprClass:
3257     return true;
3258   case ParenExprClass:
3259     return cast<ParenExpr>(this)->getSubExpr()
3260       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3261   case GenericSelectionExprClass:
3262     return cast<GenericSelectionExpr>(this)->getResultExpr()
3263       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3264   case ChooseExprClass:
3265     if (cast<ChooseExpr>(this)->isConditionDependent()) {
3266       if (Culprit)
3267         *Culprit = this;
3268       return false;
3269     }
3270     return cast<ChooseExpr>(this)->getChosenSubExpr()
3271       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3272   case UnaryOperatorClass: {
3273     const UnaryOperator* Exp = cast<UnaryOperator>(this);
3274     if (Exp->getOpcode() == UO_Extension)
3275       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3276     break;
3277   }
3278   case CXXFunctionalCastExprClass:
3279   case CXXStaticCastExprClass:
3280   case ImplicitCastExprClass:
3281   case CStyleCastExprClass:
3282   case ObjCBridgedCastExprClass:
3283   case CXXDynamicCastExprClass:
3284   case CXXReinterpretCastExprClass:
3285   case CXXAddrspaceCastExprClass:
3286   case CXXConstCastExprClass: {
3287     const CastExpr *CE = cast<CastExpr>(this);
3288 
3289     // Handle misc casts we want to ignore.
3290     if (CE->getCastKind() == CK_NoOp ||
3291         CE->getCastKind() == CK_LValueToRValue ||
3292         CE->getCastKind() == CK_ToUnion ||
3293         CE->getCastKind() == CK_ConstructorConversion ||
3294         CE->getCastKind() == CK_NonAtomicToAtomic ||
3295         CE->getCastKind() == CK_AtomicToNonAtomic ||
3296         CE->getCastKind() == CK_IntToOCLSampler)
3297       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3298 
3299     break;
3300   }
3301   case MaterializeTemporaryExprClass:
3302     return cast<MaterializeTemporaryExpr>(this)
3303         ->getSubExpr()
3304         ->isConstantInitializer(Ctx, false, Culprit);
3305 
3306   case SubstNonTypeTemplateParmExprClass:
3307     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3308       ->isConstantInitializer(Ctx, false, Culprit);
3309   case CXXDefaultArgExprClass:
3310     return cast<CXXDefaultArgExpr>(this)->getExpr()
3311       ->isConstantInitializer(Ctx, false, Culprit);
3312   case CXXDefaultInitExprClass:
3313     return cast<CXXDefaultInitExpr>(this)->getExpr()
3314       ->isConstantInitializer(Ctx, false, Culprit);
3315   }
3316   // Allow certain forms of UB in constant initializers: signed integer
3317   // overflow and floating-point division by zero. We'll give a warning on
3318   // these, but they're common enough that we have to accept them.
3319   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3320     return true;
3321   if (Culprit)
3322     *Culprit = this;
3323   return false;
3324 }
3325 
3326 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3327   const FunctionDecl* FD = getDirectCallee();
3328   if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3329               FD->getBuiltinID() != Builtin::BI__builtin_assume))
3330     return false;
3331 
3332   const Expr* Arg = getArg(0);
3333   bool ArgVal;
3334   return !Arg->isValueDependent() &&
3335          Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3336 }
3337 
3338 namespace {
3339   /// Look for any side effects within a Stmt.
3340   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3341     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3342     const bool IncludePossibleEffects;
3343     bool HasSideEffects;
3344 
3345   public:
3346     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3347       : Inherited(Context),
3348         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3349 
3350     bool hasSideEffects() const { return HasSideEffects; }
3351 
3352     void VisitDecl(const Decl *D) {
3353       if (!D)
3354         return;
3355 
3356       // We assume the caller checks subexpressions (eg, the initializer, VLA
3357       // bounds) for side-effects on our behalf.
3358       if (auto *VD = dyn_cast<VarDecl>(D)) {
3359         // Registering a destructor is a side-effect.
3360         if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3361             VD->needsDestruction(Context))
3362           HasSideEffects = true;
3363       }
3364     }
3365 
3366     void VisitDeclStmt(const DeclStmt *DS) {
3367       for (auto *D : DS->decls())
3368         VisitDecl(D);
3369       Inherited::VisitDeclStmt(DS);
3370     }
3371 
3372     void VisitExpr(const Expr *E) {
3373       if (!HasSideEffects &&
3374           E->HasSideEffects(Context, IncludePossibleEffects))
3375         HasSideEffects = true;
3376     }
3377   };
3378 }
3379 
3380 bool Expr::HasSideEffects(const ASTContext &Ctx,
3381                           bool IncludePossibleEffects) const {
3382   // In circumstances where we care about definite side effects instead of
3383   // potential side effects, we want to ignore expressions that are part of a
3384   // macro expansion as a potential side effect.
3385   if (!IncludePossibleEffects && getExprLoc().isMacroID())
3386     return false;
3387 
3388   switch (getStmtClass()) {
3389   case NoStmtClass:
3390   #define ABSTRACT_STMT(Type)
3391   #define STMT(Type, Base) case Type##Class:
3392   #define EXPR(Type, Base)
3393   #include "clang/AST/StmtNodes.inc"
3394     llvm_unreachable("unexpected Expr kind");
3395 
3396   case DependentScopeDeclRefExprClass:
3397   case CXXUnresolvedConstructExprClass:
3398   case CXXDependentScopeMemberExprClass:
3399   case UnresolvedLookupExprClass:
3400   case UnresolvedMemberExprClass:
3401   case PackExpansionExprClass:
3402   case SubstNonTypeTemplateParmPackExprClass:
3403   case FunctionParmPackExprClass:
3404   case TypoExprClass:
3405   case RecoveryExprClass:
3406   case CXXFoldExprClass:
3407     // Make a conservative assumption for dependent nodes.
3408     return IncludePossibleEffects;
3409 
3410   case DeclRefExprClass:
3411   case ObjCIvarRefExprClass:
3412   case PredefinedExprClass:
3413   case IntegerLiteralClass:
3414   case FixedPointLiteralClass:
3415   case FloatingLiteralClass:
3416   case ImaginaryLiteralClass:
3417   case StringLiteralClass:
3418   case CharacterLiteralClass:
3419   case OffsetOfExprClass:
3420   case ImplicitValueInitExprClass:
3421   case UnaryExprOrTypeTraitExprClass:
3422   case AddrLabelExprClass:
3423   case GNUNullExprClass:
3424   case ArrayInitIndexExprClass:
3425   case NoInitExprClass:
3426   case CXXBoolLiteralExprClass:
3427   case CXXNullPtrLiteralExprClass:
3428   case CXXThisExprClass:
3429   case CXXScalarValueInitExprClass:
3430   case TypeTraitExprClass:
3431   case ArrayTypeTraitExprClass:
3432   case ExpressionTraitExprClass:
3433   case CXXNoexceptExprClass:
3434   case SizeOfPackExprClass:
3435   case ObjCStringLiteralClass:
3436   case ObjCEncodeExprClass:
3437   case ObjCBoolLiteralExprClass:
3438   case ObjCAvailabilityCheckExprClass:
3439   case CXXUuidofExprClass:
3440   case OpaqueValueExprClass:
3441   case SourceLocExprClass:
3442   case ConceptSpecializationExprClass:
3443   case RequiresExprClass:
3444   case SYCLUniqueStableNameExprClass:
3445     // These never have a side-effect.
3446     return false;
3447 
3448   case ConstantExprClass:
3449     // FIXME: Move this into the "return false;" block above.
3450     return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3451         Ctx, IncludePossibleEffects);
3452 
3453   case CallExprClass:
3454   case CXXOperatorCallExprClass:
3455   case CXXMemberCallExprClass:
3456   case CUDAKernelCallExprClass:
3457   case UserDefinedLiteralClass: {
3458     // We don't know a call definitely has side effects, except for calls
3459     // to pure/const functions that definitely don't.
3460     // If the call itself is considered side-effect free, check the operands.
3461     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3462     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3463     if (IsPure || !IncludePossibleEffects)
3464       break;
3465     return true;
3466   }
3467 
3468   case BlockExprClass:
3469   case CXXBindTemporaryExprClass:
3470     if (!IncludePossibleEffects)
3471       break;
3472     return true;
3473 
3474   case MSPropertyRefExprClass:
3475   case MSPropertySubscriptExprClass:
3476   case CompoundAssignOperatorClass:
3477   case VAArgExprClass:
3478   case AtomicExprClass:
3479   case CXXThrowExprClass:
3480   case CXXNewExprClass:
3481   case CXXDeleteExprClass:
3482   case CoawaitExprClass:
3483   case DependentCoawaitExprClass:
3484   case CoyieldExprClass:
3485     // These always have a side-effect.
3486     return true;
3487 
3488   case StmtExprClass: {
3489     // StmtExprs have a side-effect if any substatement does.
3490     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3491     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3492     return Finder.hasSideEffects();
3493   }
3494 
3495   case ExprWithCleanupsClass:
3496     if (IncludePossibleEffects)
3497       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3498         return true;
3499     break;
3500 
3501   case ParenExprClass:
3502   case ArraySubscriptExprClass:
3503   case MatrixSubscriptExprClass:
3504   case OMPArraySectionExprClass:
3505   case OMPArrayShapingExprClass:
3506   case OMPIteratorExprClass:
3507   case MemberExprClass:
3508   case ConditionalOperatorClass:
3509   case BinaryConditionalOperatorClass:
3510   case CompoundLiteralExprClass:
3511   case ExtVectorElementExprClass:
3512   case DesignatedInitExprClass:
3513   case DesignatedInitUpdateExprClass:
3514   case ArrayInitLoopExprClass:
3515   case ParenListExprClass:
3516   case CXXPseudoDestructorExprClass:
3517   case CXXRewrittenBinaryOperatorClass:
3518   case CXXStdInitializerListExprClass:
3519   case SubstNonTypeTemplateParmExprClass:
3520   case MaterializeTemporaryExprClass:
3521   case ShuffleVectorExprClass:
3522   case ConvertVectorExprClass:
3523   case AsTypeExprClass:
3524     // These have a side-effect if any subexpression does.
3525     break;
3526 
3527   case UnaryOperatorClass:
3528     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3529       return true;
3530     break;
3531 
3532   case BinaryOperatorClass:
3533     if (cast<BinaryOperator>(this)->isAssignmentOp())
3534       return true;
3535     break;
3536 
3537   case InitListExprClass:
3538     // FIXME: The children for an InitListExpr doesn't include the array filler.
3539     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3540       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3541         return true;
3542     break;
3543 
3544   case GenericSelectionExprClass:
3545     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3546         HasSideEffects(Ctx, IncludePossibleEffects);
3547 
3548   case ChooseExprClass:
3549     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3550         Ctx, IncludePossibleEffects);
3551 
3552   case CXXDefaultArgExprClass:
3553     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3554         Ctx, IncludePossibleEffects);
3555 
3556   case CXXDefaultInitExprClass: {
3557     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3558     if (const Expr *E = FD->getInClassInitializer())
3559       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3560     // If we've not yet parsed the initializer, assume it has side-effects.
3561     return true;
3562   }
3563 
3564   case CXXDynamicCastExprClass: {
3565     // A dynamic_cast expression has side-effects if it can throw.
3566     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3567     if (DCE->getTypeAsWritten()->isReferenceType() &&
3568         DCE->getCastKind() == CK_Dynamic)
3569       return true;
3570     }
3571     LLVM_FALLTHROUGH;
3572   case ImplicitCastExprClass:
3573   case CStyleCastExprClass:
3574   case CXXStaticCastExprClass:
3575   case CXXReinterpretCastExprClass:
3576   case CXXConstCastExprClass:
3577   case CXXAddrspaceCastExprClass:
3578   case CXXFunctionalCastExprClass:
3579   case BuiltinBitCastExprClass: {
3580     // While volatile reads are side-effecting in both C and C++, we treat them
3581     // as having possible (not definite) side-effects. This allows idiomatic
3582     // code to behave without warning, such as sizeof(*v) for a volatile-
3583     // qualified pointer.
3584     if (!IncludePossibleEffects)
3585       break;
3586 
3587     const CastExpr *CE = cast<CastExpr>(this);
3588     if (CE->getCastKind() == CK_LValueToRValue &&
3589         CE->getSubExpr()->getType().isVolatileQualified())
3590       return true;
3591     break;
3592   }
3593 
3594   case CXXTypeidExprClass:
3595     // typeid might throw if its subexpression is potentially-evaluated, so has
3596     // side-effects in that case whether or not its subexpression does.
3597     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3598 
3599   case CXXConstructExprClass:
3600   case CXXTemporaryObjectExprClass: {
3601     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3602     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3603       return true;
3604     // A trivial constructor does not add any side-effects of its own. Just look
3605     // at its arguments.
3606     break;
3607   }
3608 
3609   case CXXInheritedCtorInitExprClass: {
3610     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3611     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3612       return true;
3613     break;
3614   }
3615 
3616   case LambdaExprClass: {
3617     const LambdaExpr *LE = cast<LambdaExpr>(this);
3618     for (Expr *E : LE->capture_inits())
3619       if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3620         return true;
3621     return false;
3622   }
3623 
3624   case PseudoObjectExprClass: {
3625     // Only look for side-effects in the semantic form, and look past
3626     // OpaqueValueExpr bindings in that form.
3627     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3628     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3629                                                     E = PO->semantics_end();
3630          I != E; ++I) {
3631       const Expr *Subexpr = *I;
3632       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3633         Subexpr = OVE->getSourceExpr();
3634       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3635         return true;
3636     }
3637     return false;
3638   }
3639 
3640   case ObjCBoxedExprClass:
3641   case ObjCArrayLiteralClass:
3642   case ObjCDictionaryLiteralClass:
3643   case ObjCSelectorExprClass:
3644   case ObjCProtocolExprClass:
3645   case ObjCIsaExprClass:
3646   case ObjCIndirectCopyRestoreExprClass:
3647   case ObjCSubscriptRefExprClass:
3648   case ObjCBridgedCastExprClass:
3649   case ObjCMessageExprClass:
3650   case ObjCPropertyRefExprClass:
3651   // FIXME: Classify these cases better.
3652     if (IncludePossibleEffects)
3653       return true;
3654     break;
3655   }
3656 
3657   // Recurse to children.
3658   for (const Stmt *SubStmt : children())
3659     if (SubStmt &&
3660         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3661       return true;
3662 
3663   return false;
3664 }
3665 
3666 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3667   if (auto Call = dyn_cast<CallExpr>(this))
3668     return Call->getFPFeaturesInEffect(LO);
3669   if (auto UO = dyn_cast<UnaryOperator>(this))
3670     return UO->getFPFeaturesInEffect(LO);
3671   if (auto BO = dyn_cast<BinaryOperator>(this))
3672     return BO->getFPFeaturesInEffect(LO);
3673   if (auto Cast = dyn_cast<CastExpr>(this))
3674     return Cast->getFPFeaturesInEffect(LO);
3675   return FPOptions::defaultWithoutTrailingStorage(LO);
3676 }
3677 
3678 namespace {
3679   /// Look for a call to a non-trivial function within an expression.
3680   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3681   {
3682     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3683 
3684     bool NonTrivial;
3685 
3686   public:
3687     explicit NonTrivialCallFinder(const ASTContext &Context)
3688       : Inherited(Context), NonTrivial(false) { }
3689 
3690     bool hasNonTrivialCall() const { return NonTrivial; }
3691 
3692     void VisitCallExpr(const CallExpr *E) {
3693       if (const CXXMethodDecl *Method
3694           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3695         if (Method->isTrivial()) {
3696           // Recurse to children of the call.
3697           Inherited::VisitStmt(E);
3698           return;
3699         }
3700       }
3701 
3702       NonTrivial = true;
3703     }
3704 
3705     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3706       if (E->getConstructor()->isTrivial()) {
3707         // Recurse to children of the call.
3708         Inherited::VisitStmt(E);
3709         return;
3710       }
3711 
3712       NonTrivial = true;
3713     }
3714 
3715     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3716       if (E->getTemporary()->getDestructor()->isTrivial()) {
3717         Inherited::VisitStmt(E);
3718         return;
3719       }
3720 
3721       NonTrivial = true;
3722     }
3723   };
3724 }
3725 
3726 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3727   NonTrivialCallFinder Finder(Ctx);
3728   Finder.Visit(this);
3729   return Finder.hasNonTrivialCall();
3730 }
3731 
3732 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3733 /// pointer constant or not, as well as the specific kind of constant detected.
3734 /// Null pointer constants can be integer constant expressions with the
3735 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3736 /// (a GNU extension).
3737 Expr::NullPointerConstantKind
3738 Expr::isNullPointerConstant(ASTContext &Ctx,
3739                             NullPointerConstantValueDependence NPC) const {
3740   if (isValueDependent() &&
3741       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3742     // Error-dependent expr should never be a null pointer.
3743     if (containsErrors())
3744       return NPCK_NotNull;
3745     switch (NPC) {
3746     case NPC_NeverValueDependent:
3747       llvm_unreachable("Unexpected value dependent expression!");
3748     case NPC_ValueDependentIsNull:
3749       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3750         return NPCK_ZeroExpression;
3751       else
3752         return NPCK_NotNull;
3753 
3754     case NPC_ValueDependentIsNotNull:
3755       return NPCK_NotNull;
3756     }
3757   }
3758 
3759   // Strip off a cast to void*, if it exists. Except in C++.
3760   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3761     if (!Ctx.getLangOpts().CPlusPlus) {
3762       // Check that it is a cast to void*.
3763       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3764         QualType Pointee = PT->getPointeeType();
3765         Qualifiers Qs = Pointee.getQualifiers();
3766         // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3767         // has non-default address space it is not treated as nullptr.
3768         // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3769         // since it cannot be assigned to a pointer to constant address space.
3770         if (Ctx.getLangOpts().OpenCL &&
3771             Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace())
3772           Qs.removeAddressSpace();
3773 
3774         if (Pointee->isVoidType() && Qs.empty() && // to void*
3775             CE->getSubExpr()->getType()->isIntegerType()) // from int
3776           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3777       }
3778     }
3779   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3780     // Ignore the ImplicitCastExpr type entirely.
3781     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3782   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3783     // Accept ((void*)0) as a null pointer constant, as many other
3784     // implementations do.
3785     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3786   } else if (const GenericSelectionExpr *GE =
3787                dyn_cast<GenericSelectionExpr>(this)) {
3788     if (GE->isResultDependent())
3789       return NPCK_NotNull;
3790     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3791   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3792     if (CE->isConditionDependent())
3793       return NPCK_NotNull;
3794     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3795   } else if (const CXXDefaultArgExpr *DefaultArg
3796                = dyn_cast<CXXDefaultArgExpr>(this)) {
3797     // See through default argument expressions.
3798     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3799   } else if (const CXXDefaultInitExpr *DefaultInit
3800                = dyn_cast<CXXDefaultInitExpr>(this)) {
3801     // See through default initializer expressions.
3802     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3803   } else if (isa<GNUNullExpr>(this)) {
3804     // The GNU __null extension is always a null pointer constant.
3805     return NPCK_GNUNull;
3806   } else if (const MaterializeTemporaryExpr *M
3807                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3808     return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3809   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3810     if (const Expr *Source = OVE->getSourceExpr())
3811       return Source->isNullPointerConstant(Ctx, NPC);
3812   }
3813 
3814   // If the expression has no type information, it cannot be a null pointer
3815   // constant.
3816   if (getType().isNull())
3817     return NPCK_NotNull;
3818 
3819   // C++11 nullptr_t is always a null pointer constant.
3820   if (getType()->isNullPtrType())
3821     return NPCK_CXX11_nullptr;
3822 
3823   if (const RecordType *UT = getType()->getAsUnionType())
3824     if (!Ctx.getLangOpts().CPlusPlus11 &&
3825         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3826       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3827         const Expr *InitExpr = CLE->getInitializer();
3828         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3829           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3830       }
3831   // This expression must be an integer type.
3832   if (!getType()->isIntegerType() ||
3833       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3834     return NPCK_NotNull;
3835 
3836   if (Ctx.getLangOpts().CPlusPlus11) {
3837     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3838     // value zero or a prvalue of type std::nullptr_t.
3839     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3840     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3841     if (Lit && !Lit->getValue())
3842       return NPCK_ZeroLiteral;
3843     if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3844       return NPCK_NotNull;
3845   } else {
3846     // If we have an integer constant expression, we need to *evaluate* it and
3847     // test for the value 0.
3848     if (!isIntegerConstantExpr(Ctx))
3849       return NPCK_NotNull;
3850   }
3851 
3852   if (EvaluateKnownConstInt(Ctx) != 0)
3853     return NPCK_NotNull;
3854 
3855   if (isa<IntegerLiteral>(this))
3856     return NPCK_ZeroLiteral;
3857   return NPCK_ZeroExpression;
3858 }
3859 
3860 /// If this expression is an l-value for an Objective C
3861 /// property, find the underlying property reference expression.
3862 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3863   const Expr *E = this;
3864   while (true) {
3865     assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
3866            "expression is not a property reference");
3867     E = E->IgnoreParenCasts();
3868     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3869       if (BO->getOpcode() == BO_Comma) {
3870         E = BO->getRHS();
3871         continue;
3872       }
3873     }
3874 
3875     break;
3876   }
3877 
3878   return cast<ObjCPropertyRefExpr>(E);
3879 }
3880 
3881 bool Expr::isObjCSelfExpr() const {
3882   const Expr *E = IgnoreParenImpCasts();
3883 
3884   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3885   if (!DRE)
3886     return false;
3887 
3888   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3889   if (!Param)
3890     return false;
3891 
3892   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3893   if (!M)
3894     return false;
3895 
3896   return M->getSelfDecl() == Param;
3897 }
3898 
3899 FieldDecl *Expr::getSourceBitField() {
3900   Expr *E = this->IgnoreParens();
3901 
3902   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3903     if (ICE->getCastKind() == CK_LValueToRValue ||
3904         (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
3905       E = ICE->getSubExpr()->IgnoreParens();
3906     else
3907       break;
3908   }
3909 
3910   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3911     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3912       if (Field->isBitField())
3913         return Field;
3914 
3915   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3916     FieldDecl *Ivar = IvarRef->getDecl();
3917     if (Ivar->isBitField())
3918       return Ivar;
3919   }
3920 
3921   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3922     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3923       if (Field->isBitField())
3924         return Field;
3925 
3926     if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3927       if (Expr *E = BD->getBinding())
3928         return E->getSourceBitField();
3929   }
3930 
3931   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3932     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3933       return BinOp->getLHS()->getSourceBitField();
3934 
3935     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3936       return BinOp->getRHS()->getSourceBitField();
3937   }
3938 
3939   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3940     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3941       return UnOp->getSubExpr()->getSourceBitField();
3942 
3943   return nullptr;
3944 }
3945 
3946 bool Expr::refersToVectorElement() const {
3947   // FIXME: Why do we not just look at the ObjectKind here?
3948   const Expr *E = this->IgnoreParens();
3949 
3950   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3951     if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
3952       E = ICE->getSubExpr()->IgnoreParens();
3953     else
3954       break;
3955   }
3956 
3957   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3958     return ASE->getBase()->getType()->isVectorType();
3959 
3960   if (isa<ExtVectorElementExpr>(E))
3961     return true;
3962 
3963   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3964     if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3965       if (auto *E = BD->getBinding())
3966         return E->refersToVectorElement();
3967 
3968   return false;
3969 }
3970 
3971 bool Expr::refersToGlobalRegisterVar() const {
3972   const Expr *E = this->IgnoreParenImpCasts();
3973 
3974   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3975     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3976       if (VD->getStorageClass() == SC_Register &&
3977           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3978         return true;
3979 
3980   return false;
3981 }
3982 
3983 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
3984   E1 = E1->IgnoreParens();
3985   E2 = E2->IgnoreParens();
3986 
3987   if (E1->getStmtClass() != E2->getStmtClass())
3988     return false;
3989 
3990   switch (E1->getStmtClass()) {
3991     default:
3992       return false;
3993     case CXXThisExprClass:
3994       return true;
3995     case DeclRefExprClass: {
3996       // DeclRefExpr without an ImplicitCastExpr can happen for integral
3997       // template parameters.
3998       const auto *DRE1 = cast<DeclRefExpr>(E1);
3999       const auto *DRE2 = cast<DeclRefExpr>(E2);
4000       return DRE1->isPRValue() && DRE2->isPRValue() &&
4001              DRE1->getDecl() == DRE2->getDecl();
4002     }
4003     case ImplicitCastExprClass: {
4004       // Peel off implicit casts.
4005       while (true) {
4006         const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4007         const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4008         if (!ICE1 || !ICE2)
4009           return false;
4010         if (ICE1->getCastKind() != ICE2->getCastKind())
4011           return false;
4012         E1 = ICE1->getSubExpr()->IgnoreParens();
4013         E2 = ICE2->getSubExpr()->IgnoreParens();
4014         // The final cast must be one of these types.
4015         if (ICE1->getCastKind() == CK_LValueToRValue ||
4016             ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4017             ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4018           break;
4019         }
4020       }
4021 
4022       const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4023       const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4024       if (DRE1 && DRE2)
4025         return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4026 
4027       const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4028       const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4029       if (Ivar1 && Ivar2) {
4030         return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4031                declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4032       }
4033 
4034       const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4035       const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4036       if (Array1 && Array2) {
4037         if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4038           return false;
4039 
4040         auto Idx1 = Array1->getIdx();
4041         auto Idx2 = Array2->getIdx();
4042         const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4043         const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4044         if (Integer1 && Integer2) {
4045           if (!llvm::APInt::isSameValue(Integer1->getValue(),
4046                                         Integer2->getValue()))
4047             return false;
4048         } else {
4049           if (!isSameComparisonOperand(Idx1, Idx2))
4050             return false;
4051         }
4052 
4053         return true;
4054       }
4055 
4056       // Walk the MemberExpr chain.
4057       while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4058         const auto *ME1 = cast<MemberExpr>(E1);
4059         const auto *ME2 = cast<MemberExpr>(E2);
4060         if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4061           return false;
4062         if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4063           if (D->isStaticDataMember())
4064             return true;
4065         E1 = ME1->getBase()->IgnoreParenImpCasts();
4066         E2 = ME2->getBase()->IgnoreParenImpCasts();
4067       }
4068 
4069       if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4070         return true;
4071 
4072       // A static member variable can end the MemberExpr chain with either
4073       // a MemberExpr or a DeclRefExpr.
4074       auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4075         if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4076           return DRE->getDecl();
4077         if (const auto *ME = dyn_cast<MemberExpr>(E))
4078           return ME->getMemberDecl();
4079         return nullptr;
4080       };
4081 
4082       const ValueDecl *VD1 = getAnyDecl(E1);
4083       const ValueDecl *VD2 = getAnyDecl(E2);
4084       return declaresSameEntity(VD1, VD2);
4085     }
4086   }
4087 }
4088 
4089 /// isArrow - Return true if the base expression is a pointer to vector,
4090 /// return false if the base expression is a vector.
4091 bool ExtVectorElementExpr::isArrow() const {
4092   return getBase()->getType()->isPointerType();
4093 }
4094 
4095 unsigned ExtVectorElementExpr::getNumElements() const {
4096   if (const VectorType *VT = getType()->getAs<VectorType>())
4097     return VT->getNumElements();
4098   return 1;
4099 }
4100 
4101 /// containsDuplicateElements - Return true if any element access is repeated.
4102 bool ExtVectorElementExpr::containsDuplicateElements() const {
4103   // FIXME: Refactor this code to an accessor on the AST node which returns the
4104   // "type" of component access, and share with code below and in Sema.
4105   StringRef Comp = Accessor->getName();
4106 
4107   // Halving swizzles do not contain duplicate elements.
4108   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4109     return false;
4110 
4111   // Advance past s-char prefix on hex swizzles.
4112   if (Comp[0] == 's' || Comp[0] == 'S')
4113     Comp = Comp.substr(1);
4114 
4115   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4116     if (Comp.substr(i + 1).contains(Comp[i]))
4117         return true;
4118 
4119   return false;
4120 }
4121 
4122 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4123 void ExtVectorElementExpr::getEncodedElementAccess(
4124     SmallVectorImpl<uint32_t> &Elts) const {
4125   StringRef Comp = Accessor->getName();
4126   bool isNumericAccessor = false;
4127   if (Comp[0] == 's' || Comp[0] == 'S') {
4128     Comp = Comp.substr(1);
4129     isNumericAccessor = true;
4130   }
4131 
4132   bool isHi =   Comp == "hi";
4133   bool isLo =   Comp == "lo";
4134   bool isEven = Comp == "even";
4135   bool isOdd  = Comp == "odd";
4136 
4137   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4138     uint64_t Index;
4139 
4140     if (isHi)
4141       Index = e + i;
4142     else if (isLo)
4143       Index = i;
4144     else if (isEven)
4145       Index = 2 * i;
4146     else if (isOdd)
4147       Index = 2 * i + 1;
4148     else
4149       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4150 
4151     Elts.push_back(Index);
4152   }
4153 }
4154 
4155 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4156                                      QualType Type, SourceLocation BLoc,
4157                                      SourceLocation RP)
4158     : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4159       BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4160   SubExprs = new (C) Stmt*[args.size()];
4161   for (unsigned i = 0; i != args.size(); i++)
4162     SubExprs[i] = args[i];
4163 
4164   setDependence(computeDependence(this));
4165 }
4166 
4167 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4168   if (SubExprs) C.Deallocate(SubExprs);
4169 
4170   this->NumExprs = Exprs.size();
4171   SubExprs = new (C) Stmt*[NumExprs];
4172   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4173 }
4174 
4175 GenericSelectionExpr::GenericSelectionExpr(
4176     const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4177     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4178     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4179     bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4180     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4181            AssocExprs[ResultIndex]->getValueKind(),
4182            AssocExprs[ResultIndex]->getObjectKind()),
4183       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4184       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4185   assert(AssocTypes.size() == AssocExprs.size() &&
4186          "Must have the same number of association expressions"
4187          " and TypeSourceInfo!");
4188   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4189 
4190   GenericSelectionExprBits.GenericLoc = GenericLoc;
4191   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4192   std::copy(AssocExprs.begin(), AssocExprs.end(),
4193             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4194   std::copy(AssocTypes.begin(), AssocTypes.end(),
4195             getTrailingObjects<TypeSourceInfo *>());
4196 
4197   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4198 }
4199 
4200 GenericSelectionExpr::GenericSelectionExpr(
4201     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4202     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4203     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4204     bool ContainsUnexpandedParameterPack)
4205     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4206            OK_Ordinary),
4207       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4208       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4209   assert(AssocTypes.size() == AssocExprs.size() &&
4210          "Must have the same number of association expressions"
4211          " and TypeSourceInfo!");
4212 
4213   GenericSelectionExprBits.GenericLoc = GenericLoc;
4214   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4215   std::copy(AssocExprs.begin(), AssocExprs.end(),
4216             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4217   std::copy(AssocTypes.begin(), AssocTypes.end(),
4218             getTrailingObjects<TypeSourceInfo *>());
4219 
4220   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4221 }
4222 
4223 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4224     : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4225 
4226 GenericSelectionExpr *GenericSelectionExpr::Create(
4227     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4228     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4229     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4230     bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4231   unsigned NumAssocs = AssocExprs.size();
4232   void *Mem = Context.Allocate(
4233       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4234       alignof(GenericSelectionExpr));
4235   return new (Mem) GenericSelectionExpr(
4236       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4237       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4238 }
4239 
4240 GenericSelectionExpr *GenericSelectionExpr::Create(
4241     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4242     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4243     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4244     bool ContainsUnexpandedParameterPack) {
4245   unsigned NumAssocs = AssocExprs.size();
4246   void *Mem = Context.Allocate(
4247       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4248       alignof(GenericSelectionExpr));
4249   return new (Mem) GenericSelectionExpr(
4250       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4251       RParenLoc, ContainsUnexpandedParameterPack);
4252 }
4253 
4254 GenericSelectionExpr *
4255 GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4256                                   unsigned NumAssocs) {
4257   void *Mem = Context.Allocate(
4258       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4259       alignof(GenericSelectionExpr));
4260   return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4261 }
4262 
4263 //===----------------------------------------------------------------------===//
4264 //  DesignatedInitExpr
4265 //===----------------------------------------------------------------------===//
4266 
4267 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4268   assert(Kind == FieldDesignator && "Only valid on a field designator");
4269   if (Field.NameOrField & 0x01)
4270     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01);
4271   return getField()->getIdentifier();
4272 }
4273 
4274 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4275                                        llvm::ArrayRef<Designator> Designators,
4276                                        SourceLocation EqualOrColonLoc,
4277                                        bool GNUSyntax,
4278                                        ArrayRef<Expr *> IndexExprs, Expr *Init)
4279     : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4280            Init->getObjectKind()),
4281       EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4282       NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4283   this->Designators = new (C) Designator[NumDesignators];
4284 
4285   // Record the initializer itself.
4286   child_iterator Child = child_begin();
4287   *Child++ = Init;
4288 
4289   // Copy the designators and their subexpressions, computing
4290   // value-dependence along the way.
4291   unsigned IndexIdx = 0;
4292   for (unsigned I = 0; I != NumDesignators; ++I) {
4293     this->Designators[I] = Designators[I];
4294     if (this->Designators[I].isArrayDesignator()) {
4295       // Copy the index expressions into permanent storage.
4296       *Child++ = IndexExprs[IndexIdx++];
4297     } else if (this->Designators[I].isArrayRangeDesignator()) {
4298       // Copy the start/end expressions into permanent storage.
4299       *Child++ = IndexExprs[IndexIdx++];
4300       *Child++ = IndexExprs[IndexIdx++];
4301     }
4302   }
4303 
4304   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4305   setDependence(computeDependence(this));
4306 }
4307 
4308 DesignatedInitExpr *
4309 DesignatedInitExpr::Create(const ASTContext &C,
4310                            llvm::ArrayRef<Designator> Designators,
4311                            ArrayRef<Expr*> IndexExprs,
4312                            SourceLocation ColonOrEqualLoc,
4313                            bool UsesColonSyntax, Expr *Init) {
4314   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4315                          alignof(DesignatedInitExpr));
4316   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4317                                       ColonOrEqualLoc, UsesColonSyntax,
4318                                       IndexExprs, Init);
4319 }
4320 
4321 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4322                                                     unsigned NumIndexExprs) {
4323   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4324                          alignof(DesignatedInitExpr));
4325   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4326 }
4327 
4328 void DesignatedInitExpr::setDesignators(const ASTContext &C,
4329                                         const Designator *Desigs,
4330                                         unsigned NumDesigs) {
4331   Designators = new (C) Designator[NumDesigs];
4332   NumDesignators = NumDesigs;
4333   for (unsigned I = 0; I != NumDesigs; ++I)
4334     Designators[I] = Desigs[I];
4335 }
4336 
4337 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4338   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4339   if (size() == 1)
4340     return DIE->getDesignator(0)->getSourceRange();
4341   return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4342                      DIE->getDesignator(size() - 1)->getEndLoc());
4343 }
4344 
4345 SourceLocation DesignatedInitExpr::getBeginLoc() const {
4346   SourceLocation StartLoc;
4347   auto *DIE = const_cast<DesignatedInitExpr *>(this);
4348   Designator &First = *DIE->getDesignator(0);
4349   if (First.isFieldDesignator())
4350     StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc;
4351   else
4352     StartLoc = First.ArrayOrRange.LBracketLoc;
4353   return StartLoc;
4354 }
4355 
4356 SourceLocation DesignatedInitExpr::getEndLoc() const {
4357   return getInit()->getEndLoc();
4358 }
4359 
4360 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4361   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
4362   return getSubExpr(D.ArrayOrRange.Index + 1);
4363 }
4364 
4365 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4366   assert(D.Kind == Designator::ArrayRangeDesignator &&
4367          "Requires array range designator");
4368   return getSubExpr(D.ArrayOrRange.Index + 1);
4369 }
4370 
4371 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4372   assert(D.Kind == Designator::ArrayRangeDesignator &&
4373          "Requires array range designator");
4374   return getSubExpr(D.ArrayOrRange.Index + 2);
4375 }
4376 
4377 /// Replaces the designator at index @p Idx with the series
4378 /// of designators in [First, Last).
4379 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4380                                           const Designator *First,
4381                                           const Designator *Last) {
4382   unsigned NumNewDesignators = Last - First;
4383   if (NumNewDesignators == 0) {
4384     std::copy_backward(Designators + Idx + 1,
4385                        Designators + NumDesignators,
4386                        Designators + Idx);
4387     --NumNewDesignators;
4388     return;
4389   }
4390   if (NumNewDesignators == 1) {
4391     Designators[Idx] = *First;
4392     return;
4393   }
4394 
4395   Designator *NewDesignators
4396     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4397   std::copy(Designators, Designators + Idx, NewDesignators);
4398   std::copy(First, Last, NewDesignators + Idx);
4399   std::copy(Designators + Idx + 1, Designators + NumDesignators,
4400             NewDesignators + Idx + NumNewDesignators);
4401   Designators = NewDesignators;
4402   NumDesignators = NumDesignators - 1 + NumNewDesignators;
4403 }
4404 
4405 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4406                                                    SourceLocation lBraceLoc,
4407                                                    Expr *baseExpr,
4408                                                    SourceLocation rBraceLoc)
4409     : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4410            OK_Ordinary) {
4411   BaseAndUpdaterExprs[0] = baseExpr;
4412 
4413   InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
4414   ILE->setType(baseExpr->getType());
4415   BaseAndUpdaterExprs[1] = ILE;
4416 
4417   // FIXME: this is wrong, set it correctly.
4418   setDependence(ExprDependence::None);
4419 }
4420 
4421 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4422   return getBase()->getBeginLoc();
4423 }
4424 
4425 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4426   return getBase()->getEndLoc();
4427 }
4428 
4429 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4430                              SourceLocation RParenLoc)
4431     : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4432       LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4433   ParenListExprBits.NumExprs = Exprs.size();
4434 
4435   for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4436     getTrailingObjects<Stmt *>()[I] = Exprs[I];
4437   setDependence(computeDependence(this));
4438 }
4439 
4440 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4441     : Expr(ParenListExprClass, Empty) {
4442   ParenListExprBits.NumExprs = NumExprs;
4443 }
4444 
4445 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4446                                      SourceLocation LParenLoc,
4447                                      ArrayRef<Expr *> Exprs,
4448                                      SourceLocation RParenLoc) {
4449   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4450                            alignof(ParenListExpr));
4451   return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4452 }
4453 
4454 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4455                                           unsigned NumExprs) {
4456   void *Mem =
4457       Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4458   return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4459 }
4460 
4461 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4462                                Opcode opc, QualType ResTy, ExprValueKind VK,
4463                                ExprObjectKind OK, SourceLocation opLoc,
4464                                FPOptionsOverride FPFeatures)
4465     : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4466   BinaryOperatorBits.Opc = opc;
4467   assert(!isCompoundAssignmentOp() &&
4468          "Use CompoundAssignOperator for compound assignments");
4469   BinaryOperatorBits.OpLoc = opLoc;
4470   SubExprs[LHS] = lhs;
4471   SubExprs[RHS] = rhs;
4472   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4473   if (hasStoredFPFeatures())
4474     setStoredFPFeatures(FPFeatures);
4475   setDependence(computeDependence(this));
4476 }
4477 
4478 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4479                                Opcode opc, QualType ResTy, ExprValueKind VK,
4480                                ExprObjectKind OK, SourceLocation opLoc,
4481                                FPOptionsOverride FPFeatures, bool dead2)
4482     : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4483   BinaryOperatorBits.Opc = opc;
4484   assert(isCompoundAssignmentOp() &&
4485          "Use CompoundAssignOperator for compound assignments");
4486   BinaryOperatorBits.OpLoc = opLoc;
4487   SubExprs[LHS] = lhs;
4488   SubExprs[RHS] = rhs;
4489   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4490   if (hasStoredFPFeatures())
4491     setStoredFPFeatures(FPFeatures);
4492   setDependence(computeDependence(this));
4493 }
4494 
4495 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4496                                             bool HasFPFeatures) {
4497   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4498   void *Mem =
4499       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4500   return new (Mem) BinaryOperator(EmptyShell());
4501 }
4502 
4503 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4504                                        Expr *rhs, Opcode opc, QualType ResTy,
4505                                        ExprValueKind VK, ExprObjectKind OK,
4506                                        SourceLocation opLoc,
4507                                        FPOptionsOverride FPFeatures) {
4508   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4509   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4510   void *Mem =
4511       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4512   return new (Mem)
4513       BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4514 }
4515 
4516 CompoundAssignOperator *
4517 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4518   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4519   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4520                          alignof(CompoundAssignOperator));
4521   return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4522 }
4523 
4524 CompoundAssignOperator *
4525 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4526                                Opcode opc, QualType ResTy, ExprValueKind VK,
4527                                ExprObjectKind OK, SourceLocation opLoc,
4528                                FPOptionsOverride FPFeatures,
4529                                QualType CompLHSType, QualType CompResultType) {
4530   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4531   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4532   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4533                          alignof(CompoundAssignOperator));
4534   return new (Mem)
4535       CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4536                              CompLHSType, CompResultType);
4537 }
4538 
4539 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4540                                           bool hasFPFeatures) {
4541   void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4542                          alignof(UnaryOperator));
4543   return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4544 }
4545 
4546 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4547                              QualType type, ExprValueKind VK, ExprObjectKind OK,
4548                              SourceLocation l, bool CanOverflow,
4549                              FPOptionsOverride FPFeatures)
4550     : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4551   UnaryOperatorBits.Opc = opc;
4552   UnaryOperatorBits.CanOverflow = CanOverflow;
4553   UnaryOperatorBits.Loc = l;
4554   UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4555   if (hasStoredFPFeatures())
4556     setStoredFPFeatures(FPFeatures);
4557   setDependence(computeDependence(this, Ctx));
4558 }
4559 
4560 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4561                                      Opcode opc, QualType type,
4562                                      ExprValueKind VK, ExprObjectKind OK,
4563                                      SourceLocation l, bool CanOverflow,
4564                                      FPOptionsOverride FPFeatures) {
4565   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4566   unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4567   void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4568   return new (Mem)
4569       UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4570 }
4571 
4572 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4573   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4574     e = ewc->getSubExpr();
4575   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4576     e = m->getSubExpr();
4577   e = cast<CXXConstructExpr>(e)->getArg(0);
4578   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4579     e = ice->getSubExpr();
4580   return cast<OpaqueValueExpr>(e);
4581 }
4582 
4583 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4584                                            EmptyShell sh,
4585                                            unsigned numSemanticExprs) {
4586   void *buffer =
4587       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4588                        alignof(PseudoObjectExpr));
4589   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4590 }
4591 
4592 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4593   : Expr(PseudoObjectExprClass, shell) {
4594   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4595 }
4596 
4597 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4598                                            ArrayRef<Expr*> semantics,
4599                                            unsigned resultIndex) {
4600   assert(syntax && "no syntactic expression!");
4601   assert(semantics.size() && "no semantic expressions!");
4602 
4603   QualType type;
4604   ExprValueKind VK;
4605   if (resultIndex == NoResult) {
4606     type = C.VoidTy;
4607     VK = VK_PRValue;
4608   } else {
4609     assert(resultIndex < semantics.size());
4610     type = semantics[resultIndex]->getType();
4611     VK = semantics[resultIndex]->getValueKind();
4612     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4613   }
4614 
4615   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4616                             alignof(PseudoObjectExpr));
4617   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4618                                       resultIndex);
4619 }
4620 
4621 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4622                                    Expr *syntax, ArrayRef<Expr *> semantics,
4623                                    unsigned resultIndex)
4624     : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4625   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4626   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4627 
4628   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4629     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4630     getSubExprsBuffer()[i] = E;
4631 
4632     if (isa<OpaqueValueExpr>(E))
4633       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4634              "opaque-value semantic expressions for pseudo-object "
4635              "operations must have sources");
4636   }
4637 
4638   setDependence(computeDependence(this));
4639 }
4640 
4641 //===----------------------------------------------------------------------===//
4642 //  Child Iterators for iterating over subexpressions/substatements
4643 //===----------------------------------------------------------------------===//
4644 
4645 // UnaryExprOrTypeTraitExpr
4646 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4647   const_child_range CCR =
4648       const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4649   return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4650 }
4651 
4652 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4653   // If this is of a type and the type is a VLA type (and not a typedef), the
4654   // size expression of the VLA needs to be treated as an executable expression.
4655   // Why isn't this weirdness documented better in StmtIterator?
4656   if (isArgumentType()) {
4657     if (const VariableArrayType *T =
4658             dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4659       return const_child_range(const_child_iterator(T), const_child_iterator());
4660     return const_child_range(const_child_iterator(), const_child_iterator());
4661   }
4662   return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4663 }
4664 
4665 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4666                        AtomicOp op, SourceLocation RP)
4667     : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4668       NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4669   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4670   for (unsigned i = 0; i != args.size(); i++)
4671     SubExprs[i] = args[i];
4672   setDependence(computeDependence(this));
4673 }
4674 
4675 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4676   switch (Op) {
4677   case AO__c11_atomic_init:
4678   case AO__opencl_atomic_init:
4679   case AO__c11_atomic_load:
4680   case AO__atomic_load_n:
4681     return 2;
4682 
4683   case AO__opencl_atomic_load:
4684   case AO__c11_atomic_store:
4685   case AO__c11_atomic_exchange:
4686   case AO__atomic_load:
4687   case AO__atomic_store:
4688   case AO__atomic_store_n:
4689   case AO__atomic_exchange_n:
4690   case AO__c11_atomic_fetch_add:
4691   case AO__c11_atomic_fetch_sub:
4692   case AO__c11_atomic_fetch_and:
4693   case AO__c11_atomic_fetch_or:
4694   case AO__c11_atomic_fetch_xor:
4695   case AO__c11_atomic_fetch_nand:
4696   case AO__c11_atomic_fetch_max:
4697   case AO__c11_atomic_fetch_min:
4698   case AO__atomic_fetch_add:
4699   case AO__atomic_fetch_sub:
4700   case AO__atomic_fetch_and:
4701   case AO__atomic_fetch_or:
4702   case AO__atomic_fetch_xor:
4703   case AO__atomic_fetch_nand:
4704   case AO__atomic_add_fetch:
4705   case AO__atomic_sub_fetch:
4706   case AO__atomic_and_fetch:
4707   case AO__atomic_or_fetch:
4708   case AO__atomic_xor_fetch:
4709   case AO__atomic_nand_fetch:
4710   case AO__atomic_min_fetch:
4711   case AO__atomic_max_fetch:
4712   case AO__atomic_fetch_min:
4713   case AO__atomic_fetch_max:
4714     return 3;
4715 
4716   case AO__opencl_atomic_store:
4717   case AO__opencl_atomic_exchange:
4718   case AO__opencl_atomic_fetch_add:
4719   case AO__opencl_atomic_fetch_sub:
4720   case AO__opencl_atomic_fetch_and:
4721   case AO__opencl_atomic_fetch_or:
4722   case AO__opencl_atomic_fetch_xor:
4723   case AO__opencl_atomic_fetch_min:
4724   case AO__opencl_atomic_fetch_max:
4725   case AO__atomic_exchange:
4726     return 4;
4727 
4728   case AO__c11_atomic_compare_exchange_strong:
4729   case AO__c11_atomic_compare_exchange_weak:
4730     return 5;
4731 
4732   case AO__opencl_atomic_compare_exchange_strong:
4733   case AO__opencl_atomic_compare_exchange_weak:
4734   case AO__atomic_compare_exchange:
4735   case AO__atomic_compare_exchange_n:
4736     return 6;
4737   }
4738   llvm_unreachable("unknown atomic op");
4739 }
4740 
4741 QualType AtomicExpr::getValueType() const {
4742   auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4743   if (auto AT = T->getAs<AtomicType>())
4744     return AT->getValueType();
4745   return T;
4746 }
4747 
4748 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4749   unsigned ArraySectionCount = 0;
4750   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4751     Base = OASE->getBase();
4752     ++ArraySectionCount;
4753   }
4754   while (auto *ASE =
4755              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4756     Base = ASE->getBase();
4757     ++ArraySectionCount;
4758   }
4759   Base = Base->IgnoreParenImpCasts();
4760   auto OriginalTy = Base->getType();
4761   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4762     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4763       OriginalTy = PVD->getOriginalType().getNonReferenceType();
4764 
4765   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4766     if (OriginalTy->isAnyPointerType())
4767       OriginalTy = OriginalTy->getPointeeType();
4768     else {
4769       assert (OriginalTy->isArrayType());
4770       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4771     }
4772   }
4773   return OriginalTy;
4774 }
4775 
4776 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
4777                            SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
4778     : Expr(RecoveryExprClass, T.getNonReferenceType(),
4779            T->isDependentType() ? VK_LValue : getValueKindForType(T),
4780            OK_Ordinary),
4781       BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
4782   assert(!T.isNull());
4783   assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; }));
4784 
4785   llvm::copy(SubExprs, getTrailingObjects<Expr *>());
4786   setDependence(computeDependence(this));
4787 }
4788 
4789 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
4790                                    SourceLocation BeginLoc,
4791                                    SourceLocation EndLoc,
4792                                    ArrayRef<Expr *> SubExprs) {
4793   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
4794                            alignof(RecoveryExpr));
4795   return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
4796 }
4797 
4798 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
4799   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
4800                            alignof(RecoveryExpr));
4801   return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
4802 }
4803 
4804 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
4805   assert(
4806       NumDims == Dims.size() &&
4807       "Preallocated number of dimensions is different from the provided one.");
4808   llvm::copy(Dims, getTrailingObjects<Expr *>());
4809 }
4810 
4811 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
4812   assert(
4813       NumDims == BR.size() &&
4814       "Preallocated number of dimensions is different from the provided one.");
4815   llvm::copy(BR, getTrailingObjects<SourceRange>());
4816 }
4817 
4818 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
4819                                          SourceLocation L, SourceLocation R,
4820                                          ArrayRef<Expr *> Dims)
4821     : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
4822       RPLoc(R), NumDims(Dims.size()) {
4823   setBase(Op);
4824   setDimensions(Dims);
4825   setDependence(computeDependence(this));
4826 }
4827 
4828 OMPArrayShapingExpr *
4829 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
4830                             SourceLocation L, SourceLocation R,
4831                             ArrayRef<Expr *> Dims,
4832                             ArrayRef<SourceRange> BracketRanges) {
4833   assert(Dims.size() == BracketRanges.size() &&
4834          "Different number of dimensions and brackets ranges.");
4835   void *Mem = Context.Allocate(
4836       totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
4837       alignof(OMPArrayShapingExpr));
4838   auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
4839   E->setBracketsRanges(BracketRanges);
4840   return E;
4841 }
4842 
4843 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
4844                                                       unsigned NumDims) {
4845   void *Mem = Context.Allocate(
4846       totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
4847       alignof(OMPArrayShapingExpr));
4848   return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
4849 }
4850 
4851 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
4852   assert(I < NumIterators &&
4853          "Idx is greater or equal the number of iterators definitions.");
4854   getTrailingObjects<Decl *>()[I] = D;
4855 }
4856 
4857 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
4858   assert(I < NumIterators &&
4859          "Idx is greater or equal the number of iterators definitions.");
4860   getTrailingObjects<
4861       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4862                         static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
4863 }
4864 
4865 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
4866                                        SourceLocation ColonLoc, Expr *End,
4867                                        SourceLocation SecondColonLoc,
4868                                        Expr *Step) {
4869   assert(I < NumIterators &&
4870          "Idx is greater or equal the number of iterators definitions.");
4871   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4872                                static_cast<int>(RangeExprOffset::Begin)] =
4873       Begin;
4874   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4875                                static_cast<int>(RangeExprOffset::End)] = End;
4876   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4877                                static_cast<int>(RangeExprOffset::Step)] = Step;
4878   getTrailingObjects<
4879       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4880                         static_cast<int>(RangeLocOffset::FirstColonLoc)] =
4881       ColonLoc;
4882   getTrailingObjects<
4883       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4884                         static_cast<int>(RangeLocOffset::SecondColonLoc)] =
4885       SecondColonLoc;
4886 }
4887 
4888 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
4889   return getTrailingObjects<Decl *>()[I];
4890 }
4891 
4892 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
4893   IteratorRange Res;
4894   Res.Begin =
4895       getTrailingObjects<Expr *>()[I * static_cast<int>(
4896                                            RangeExprOffset::Total) +
4897                                    static_cast<int>(RangeExprOffset::Begin)];
4898   Res.End =
4899       getTrailingObjects<Expr *>()[I * static_cast<int>(
4900                                            RangeExprOffset::Total) +
4901                                    static_cast<int>(RangeExprOffset::End)];
4902   Res.Step =
4903       getTrailingObjects<Expr *>()[I * static_cast<int>(
4904                                            RangeExprOffset::Total) +
4905                                    static_cast<int>(RangeExprOffset::Step)];
4906   return Res;
4907 }
4908 
4909 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
4910   return getTrailingObjects<
4911       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4912                         static_cast<int>(RangeLocOffset::AssignLoc)];
4913 }
4914 
4915 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
4916   return getTrailingObjects<
4917       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4918                         static_cast<int>(RangeLocOffset::FirstColonLoc)];
4919 }
4920 
4921 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
4922   return getTrailingObjects<
4923       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4924                         static_cast<int>(RangeLocOffset::SecondColonLoc)];
4925 }
4926 
4927 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
4928   getTrailingObjects<OMPIteratorHelperData>()[I] = D;
4929 }
4930 
4931 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
4932   return getTrailingObjects<OMPIteratorHelperData>()[I];
4933 }
4934 
4935 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
4936   return getTrailingObjects<OMPIteratorHelperData>()[I];
4937 }
4938 
4939 OMPIteratorExpr::OMPIteratorExpr(
4940     QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
4941     SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
4942     ArrayRef<OMPIteratorHelperData> Helpers)
4943     : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
4944       IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
4945       NumIterators(Data.size()) {
4946   for (unsigned I = 0, E = Data.size(); I < E; ++I) {
4947     const IteratorDefinition &D = Data[I];
4948     setIteratorDeclaration(I, D.IteratorDecl);
4949     setAssignmentLoc(I, D.AssignmentLoc);
4950     setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
4951                      D.SecondColonLoc, D.Range.Step);
4952     setHelper(I, Helpers[I]);
4953   }
4954   setDependence(computeDependence(this));
4955 }
4956 
4957 OMPIteratorExpr *
4958 OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
4959                         SourceLocation IteratorKwLoc, SourceLocation L,
4960                         SourceLocation R,
4961                         ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
4962                         ArrayRef<OMPIteratorHelperData> Helpers) {
4963   assert(Data.size() == Helpers.size() &&
4964          "Data and helpers must have the same size.");
4965   void *Mem = Context.Allocate(
4966       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
4967           Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
4968           Data.size() * static_cast<int>(RangeLocOffset::Total),
4969           Helpers.size()),
4970       alignof(OMPIteratorExpr));
4971   return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
4972 }
4973 
4974 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
4975                                               unsigned NumIterators) {
4976   void *Mem = Context.Allocate(
4977       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
4978           NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
4979           NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
4980       alignof(OMPIteratorExpr));
4981   return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
4982 }
4983