1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ComputeDependence.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/DependenceFlags.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/IgnoreExpr.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CharInfo.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/Lexer.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "clang/Lex/Preprocessor.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cstring> 40 #include <optional> 41 using namespace clang; 42 43 const Expr *Expr::getBestDynamicClassTypeExpr() const { 44 const Expr *E = this; 45 while (true) { 46 E = E->IgnoreParenBaseCasts(); 47 48 // Follow the RHS of a comma operator. 49 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 50 if (BO->getOpcode() == BO_Comma) { 51 E = BO->getRHS(); 52 continue; 53 } 54 } 55 56 // Step into initializer for materialized temporaries. 57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 58 E = MTE->getSubExpr(); 59 continue; 60 } 61 62 break; 63 } 64 65 return E; 66 } 67 68 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 69 const Expr *E = getBestDynamicClassTypeExpr(); 70 QualType DerivedType = E->getType(); 71 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 72 DerivedType = PTy->getPointeeType(); 73 74 if (DerivedType->isDependentType()) 75 return nullptr; 76 77 const RecordType *Ty = DerivedType->castAs<RecordType>(); 78 Decl *D = Ty->getDecl(); 79 return cast<CXXRecordDecl>(D); 80 } 81 82 const Expr *Expr::skipRValueSubobjectAdjustments( 83 SmallVectorImpl<const Expr *> &CommaLHSs, 84 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 85 const Expr *E = this; 86 while (true) { 87 E = E->IgnoreParens(); 88 89 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 90 if ((CE->getCastKind() == CK_DerivedToBase || 91 CE->getCastKind() == CK_UncheckedDerivedToBase) && 92 E->getType()->isRecordType()) { 93 E = CE->getSubExpr(); 94 auto *Derived = 95 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 96 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 97 continue; 98 } 99 100 if (CE->getCastKind() == CK_NoOp) { 101 E = CE->getSubExpr(); 102 continue; 103 } 104 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 105 if (!ME->isArrow()) { 106 assert(ME->getBase()->getType()->isRecordType()); 107 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 109 E = ME->getBase(); 110 Adjustments.push_back(SubobjectAdjustment(Field)); 111 continue; 112 } 113 } 114 } 115 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 116 if (BO->getOpcode() == BO_PtrMemD) { 117 assert(BO->getRHS()->isPRValue()); 118 E = BO->getLHS(); 119 const MemberPointerType *MPT = 120 BO->getRHS()->getType()->getAs<MemberPointerType>(); 121 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 122 continue; 123 } 124 if (BO->getOpcode() == BO_Comma) { 125 CommaLHSs.push_back(BO->getLHS()); 126 E = BO->getRHS(); 127 continue; 128 } 129 } 130 131 // Nothing changed. 132 break; 133 } 134 return E; 135 } 136 137 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 138 const Expr *E = IgnoreParens(); 139 140 // If this value has _Bool type, it is obvious 0/1. 141 if (E->getType()->isBooleanType()) return true; 142 // If this is a non-scalar-integer type, we don't care enough to try. 143 if (!E->getType()->isIntegralOrEnumerationType()) return false; 144 145 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 146 switch (UO->getOpcode()) { 147 case UO_Plus: 148 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 149 case UO_LNot: 150 return true; 151 default: 152 return false; 153 } 154 } 155 156 // Only look through implicit casts. If the user writes 157 // '(int) (a && b)' treat it as an arbitrary int. 158 // FIXME: Should we look through any cast expression in !Semantic mode? 159 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 160 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 161 162 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 163 switch (BO->getOpcode()) { 164 default: return false; 165 case BO_LT: // Relational operators. 166 case BO_GT: 167 case BO_LE: 168 case BO_GE: 169 case BO_EQ: // Equality operators. 170 case BO_NE: 171 case BO_LAnd: // AND operator. 172 case BO_LOr: // Logical OR operator. 173 return true; 174 175 case BO_And: // Bitwise AND operator. 176 case BO_Xor: // Bitwise XOR operator. 177 case BO_Or: // Bitwise OR operator. 178 // Handle things like (x==2)|(y==12). 179 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 180 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 181 182 case BO_Comma: 183 case BO_Assign: 184 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 185 } 186 } 187 188 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 189 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 190 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 191 192 if (isa<ObjCBoolLiteralExpr>(E)) 193 return true; 194 195 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 196 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 197 198 if (const FieldDecl *FD = E->getSourceBitField()) 199 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 200 !FD->getBitWidth()->isValueDependent() && 201 FD->getBitWidthValue(FD->getASTContext()) == 1) 202 return true; 203 204 return false; 205 } 206 207 bool Expr::isFlexibleArrayMemberLike( 208 ASTContext &Ctx, 209 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, 210 bool IgnoreTemplateOrMacroSubstitution) const { 211 const Expr *E = IgnoreParens(); 212 const Decl *D = nullptr; 213 214 if (const auto *ME = dyn_cast<MemberExpr>(E)) 215 D = ME->getMemberDecl(); 216 else if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 217 D = DRE->getDecl(); 218 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) 219 D = IRE->getDecl(); 220 221 return Decl::isFlexibleArrayMemberLike(Ctx, D, E->getType(), 222 StrictFlexArraysLevel, 223 IgnoreTemplateOrMacroSubstitution); 224 } 225 226 const ValueDecl * 227 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const { 228 Expr::EvalResult Eval; 229 230 if (EvaluateAsConstantExpr(Eval, Context)) { 231 APValue &Value = Eval.Val; 232 233 if (Value.isMemberPointer()) 234 return Value.getMemberPointerDecl(); 235 236 if (Value.isLValue() && Value.getLValueOffset().isZero()) 237 return Value.getLValueBase().dyn_cast<const ValueDecl *>(); 238 } 239 240 return nullptr; 241 } 242 243 // Amusing macro metaprogramming hack: check whether a class provides 244 // a more specific implementation of getExprLoc(). 245 // 246 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 247 namespace { 248 /// This implementation is used when a class provides a custom 249 /// implementation of getExprLoc. 250 template <class E, class T> 251 SourceLocation getExprLocImpl(const Expr *expr, 252 SourceLocation (T::*v)() const) { 253 return static_cast<const E*>(expr)->getExprLoc(); 254 } 255 256 /// This implementation is used when a class doesn't provide 257 /// a custom implementation of getExprLoc. Overload resolution 258 /// should pick it over the implementation above because it's 259 /// more specialized according to function template partial ordering. 260 template <class E> 261 SourceLocation getExprLocImpl(const Expr *expr, 262 SourceLocation (Expr::*v)() const) { 263 return static_cast<const E *>(expr)->getBeginLoc(); 264 } 265 } 266 267 SourceLocation Expr::getExprLoc() const { 268 switch (getStmtClass()) { 269 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 270 #define ABSTRACT_STMT(type) 271 #define STMT(type, base) \ 272 case Stmt::type##Class: break; 273 #define EXPR(type, base) \ 274 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 275 #include "clang/AST/StmtNodes.inc" 276 } 277 llvm_unreachable("unknown expression kind"); 278 } 279 280 //===----------------------------------------------------------------------===// 281 // Primary Expressions. 282 //===----------------------------------------------------------------------===// 283 284 static void AssertResultStorageKind(ConstantResultStorageKind Kind) { 285 assert((Kind == ConstantResultStorageKind::APValue || 286 Kind == ConstantResultStorageKind::Int64 || 287 Kind == ConstantResultStorageKind::None) && 288 "Invalid StorageKind Value"); 289 (void)Kind; 290 } 291 292 ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) { 293 switch (Value.getKind()) { 294 case APValue::None: 295 case APValue::Indeterminate: 296 return ConstantResultStorageKind::None; 297 case APValue::Int: 298 if (!Value.getInt().needsCleanup()) 299 return ConstantResultStorageKind::Int64; 300 [[fallthrough]]; 301 default: 302 return ConstantResultStorageKind::APValue; 303 } 304 } 305 306 ConstantResultStorageKind 307 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 308 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 309 return ConstantResultStorageKind::Int64; 310 return ConstantResultStorageKind::APValue; 311 } 312 313 ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind, 314 bool IsImmediateInvocation) 315 : FullExpr(ConstantExprClass, SubExpr) { 316 ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind); 317 ConstantExprBits.APValueKind = APValue::None; 318 ConstantExprBits.IsUnsigned = false; 319 ConstantExprBits.BitWidth = 0; 320 ConstantExprBits.HasCleanup = false; 321 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; 322 323 if (StorageKind == ConstantResultStorageKind::APValue) 324 ::new (getTrailingObjects<APValue>()) APValue(); 325 } 326 327 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 328 ConstantResultStorageKind StorageKind, 329 bool IsImmediateInvocation) { 330 assert(!isa<ConstantExpr>(E)); 331 AssertResultStorageKind(StorageKind); 332 333 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 334 StorageKind == ConstantResultStorageKind::APValue, 335 StorageKind == ConstantResultStorageKind::Int64); 336 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 337 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); 338 } 339 340 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 341 const APValue &Result) { 342 ConstantResultStorageKind StorageKind = getStorageKind(Result); 343 ConstantExpr *Self = Create(Context, E, StorageKind); 344 Self->SetResult(Result, Context); 345 return Self; 346 } 347 348 ConstantExpr::ConstantExpr(EmptyShell Empty, 349 ConstantResultStorageKind StorageKind) 350 : FullExpr(ConstantExprClass, Empty) { 351 ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind); 352 353 if (StorageKind == ConstantResultStorageKind::APValue) 354 ::new (getTrailingObjects<APValue>()) APValue(); 355 } 356 357 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 358 ConstantResultStorageKind StorageKind) { 359 AssertResultStorageKind(StorageKind); 360 361 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 362 StorageKind == ConstantResultStorageKind::APValue, 363 StorageKind == ConstantResultStorageKind::Int64); 364 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 365 return new (Mem) ConstantExpr(EmptyShell(), StorageKind); 366 } 367 368 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 369 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && 370 "Invalid storage for this value kind"); 371 ConstantExprBits.APValueKind = Value.getKind(); 372 switch (getResultStorageKind()) { 373 case ConstantResultStorageKind::None: 374 return; 375 case ConstantResultStorageKind::Int64: 376 Int64Result() = *Value.getInt().getRawData(); 377 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 378 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 379 return; 380 case ConstantResultStorageKind::APValue: 381 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 382 ConstantExprBits.HasCleanup = true; 383 Context.addDestruction(&APValueResult()); 384 } 385 APValueResult() = std::move(Value); 386 return; 387 } 388 llvm_unreachable("Invalid ResultKind Bits"); 389 } 390 391 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 392 switch (getResultStorageKind()) { 393 case ConstantResultStorageKind::APValue: 394 return APValueResult().getInt(); 395 case ConstantResultStorageKind::Int64: 396 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 397 ConstantExprBits.IsUnsigned); 398 default: 399 llvm_unreachable("invalid Accessor"); 400 } 401 } 402 403 APValue ConstantExpr::getAPValueResult() const { 404 405 switch (getResultStorageKind()) { 406 case ConstantResultStorageKind::APValue: 407 return APValueResult(); 408 case ConstantResultStorageKind::Int64: 409 return APValue( 410 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 411 ConstantExprBits.IsUnsigned)); 412 case ConstantResultStorageKind::None: 413 if (ConstantExprBits.APValueKind == APValue::Indeterminate) 414 return APValue::IndeterminateValue(); 415 return APValue(); 416 } 417 llvm_unreachable("invalid ResultKind"); 418 } 419 420 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 421 bool RefersToEnclosingVariableOrCapture, QualType T, 422 ExprValueKind VK, SourceLocation L, 423 const DeclarationNameLoc &LocInfo, 424 NonOdrUseReason NOUR) 425 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { 426 DeclRefExprBits.HasQualifier = false; 427 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 428 DeclRefExprBits.HasFoundDecl = false; 429 DeclRefExprBits.HadMultipleCandidates = false; 430 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 431 RefersToEnclosingVariableOrCapture; 432 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; 433 DeclRefExprBits.NonOdrUseReason = NOUR; 434 DeclRefExprBits.IsImmediateEscalating = false; 435 DeclRefExprBits.Loc = L; 436 setDependence(computeDependence(this, Ctx)); 437 } 438 439 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 440 NestedNameSpecifierLoc QualifierLoc, 441 SourceLocation TemplateKWLoc, ValueDecl *D, 442 bool RefersToEnclosingVariableOrCapture, 443 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 444 const TemplateArgumentListInfo *TemplateArgs, 445 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 446 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), 447 DNLoc(NameInfo.getInfo()) { 448 DeclRefExprBits.Loc = NameInfo.getLoc(); 449 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 450 if (QualifierLoc) 451 new (getTrailingObjects<NestedNameSpecifierLoc>()) 452 NestedNameSpecifierLoc(QualifierLoc); 453 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 454 if (FoundD) 455 *getTrailingObjects<NamedDecl *>() = FoundD; 456 DeclRefExprBits.HasTemplateKWAndArgsInfo 457 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 458 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 459 RefersToEnclosingVariableOrCapture; 460 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; 461 DeclRefExprBits.NonOdrUseReason = NOUR; 462 if (TemplateArgs) { 463 auto Deps = TemplateArgumentDependence::None; 464 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 465 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 466 Deps); 467 assert(!(Deps & TemplateArgumentDependence::Dependent) && 468 "built a DeclRefExpr with dependent template args"); 469 } else if (TemplateKWLoc.isValid()) { 470 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 471 TemplateKWLoc); 472 } 473 DeclRefExprBits.IsImmediateEscalating = false; 474 DeclRefExprBits.HadMultipleCandidates = 0; 475 setDependence(computeDependence(this, Ctx)); 476 } 477 478 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 479 NestedNameSpecifierLoc QualifierLoc, 480 SourceLocation TemplateKWLoc, ValueDecl *D, 481 bool RefersToEnclosingVariableOrCapture, 482 SourceLocation NameLoc, QualType T, 483 ExprValueKind VK, NamedDecl *FoundD, 484 const TemplateArgumentListInfo *TemplateArgs, 485 NonOdrUseReason NOUR) { 486 return Create(Context, QualifierLoc, TemplateKWLoc, D, 487 RefersToEnclosingVariableOrCapture, 488 DeclarationNameInfo(D->getDeclName(), NameLoc), 489 T, VK, FoundD, TemplateArgs, NOUR); 490 } 491 492 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 493 NestedNameSpecifierLoc QualifierLoc, 494 SourceLocation TemplateKWLoc, ValueDecl *D, 495 bool RefersToEnclosingVariableOrCapture, 496 const DeclarationNameInfo &NameInfo, 497 QualType T, ExprValueKind VK, 498 NamedDecl *FoundD, 499 const TemplateArgumentListInfo *TemplateArgs, 500 NonOdrUseReason NOUR) { 501 // Filter out cases where the found Decl is the same as the value refenenced. 502 if (D == FoundD) 503 FoundD = nullptr; 504 505 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 506 std::size_t Size = 507 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 508 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 509 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 510 HasTemplateKWAndArgsInfo ? 1 : 0, 511 TemplateArgs ? TemplateArgs->size() : 0); 512 513 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 514 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 515 RefersToEnclosingVariableOrCapture, NameInfo, 516 FoundD, TemplateArgs, T, VK, NOUR); 517 } 518 519 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 520 bool HasQualifier, 521 bool HasFoundDecl, 522 bool HasTemplateKWAndArgsInfo, 523 unsigned NumTemplateArgs) { 524 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 525 std::size_t Size = 526 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 527 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 528 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 529 NumTemplateArgs); 530 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 531 return new (Mem) DeclRefExpr(EmptyShell()); 532 } 533 534 void DeclRefExpr::setDecl(ValueDecl *NewD) { 535 D = NewD; 536 if (getType()->isUndeducedType()) 537 setType(NewD->getType()); 538 setDependence(computeDependence(this, NewD->getASTContext())); 539 } 540 541 SourceLocation DeclRefExpr::getBeginLoc() const { 542 if (hasQualifier()) 543 return getQualifierLoc().getBeginLoc(); 544 return getNameInfo().getBeginLoc(); 545 } 546 SourceLocation DeclRefExpr::getEndLoc() const { 547 if (hasExplicitTemplateArgs()) 548 return getRAngleLoc(); 549 return getNameInfo().getEndLoc(); 550 } 551 552 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, 553 SourceLocation LParen, 554 SourceLocation RParen, 555 QualType ResultTy, 556 TypeSourceInfo *TSI) 557 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), 558 OpLoc(OpLoc), LParen(LParen), RParen(RParen) { 559 setTypeSourceInfo(TSI); 560 setDependence(computeDependence(this)); 561 } 562 563 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, 564 QualType ResultTy) 565 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} 566 567 SYCLUniqueStableNameExpr * 568 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, 569 SourceLocation LParen, SourceLocation RParen, 570 TypeSourceInfo *TSI) { 571 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 572 return new (Ctx) 573 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); 574 } 575 576 SYCLUniqueStableNameExpr * 577 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { 578 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 579 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); 580 } 581 582 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { 583 return SYCLUniqueStableNameExpr::ComputeName(Context, 584 getTypeSourceInfo()->getType()); 585 } 586 587 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, 588 QualType Ty) { 589 auto MangleCallback = [](ASTContext &Ctx, 590 const NamedDecl *ND) -> std::optional<unsigned> { 591 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) 592 return RD->getDeviceLambdaManglingNumber(); 593 return std::nullopt; 594 }; 595 596 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( 597 Context, Context.getDiagnostics(), MangleCallback)}; 598 599 std::string Buffer; 600 Buffer.reserve(128); 601 llvm::raw_string_ostream Out(Buffer); 602 Ctx->mangleCanonicalTypeName(Ty, Out); 603 604 return Out.str(); 605 } 606 607 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, 608 PredefinedIdentKind IK, bool IsTransparent, 609 StringLiteral *SL) 610 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { 611 PredefinedExprBits.Kind = llvm::to_underlying(IK); 612 assert((getIdentKind() == IK) && 613 "IdentKind do not fit in PredefinedExprBitfields!"); 614 bool HasFunctionName = SL != nullptr; 615 PredefinedExprBits.HasFunctionName = HasFunctionName; 616 PredefinedExprBits.IsTransparent = IsTransparent; 617 PredefinedExprBits.Loc = L; 618 if (HasFunctionName) 619 setFunctionName(SL); 620 setDependence(computeDependence(this)); 621 } 622 623 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 624 : Expr(PredefinedExprClass, Empty) { 625 PredefinedExprBits.HasFunctionName = HasFunctionName; 626 } 627 628 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 629 QualType FNTy, PredefinedIdentKind IK, 630 bool IsTransparent, StringLiteral *SL) { 631 bool HasFunctionName = SL != nullptr; 632 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 633 alignof(PredefinedExpr)); 634 return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL); 635 } 636 637 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 638 bool HasFunctionName) { 639 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 640 alignof(PredefinedExpr)); 641 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 642 } 643 644 StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) { 645 switch (IK) { 646 case PredefinedIdentKind::Func: 647 return "__func__"; 648 case PredefinedIdentKind::Function: 649 return "__FUNCTION__"; 650 case PredefinedIdentKind::FuncDName: 651 return "__FUNCDNAME__"; 652 case PredefinedIdentKind::LFunction: 653 return "L__FUNCTION__"; 654 case PredefinedIdentKind::PrettyFunction: 655 return "__PRETTY_FUNCTION__"; 656 case PredefinedIdentKind::FuncSig: 657 return "__FUNCSIG__"; 658 case PredefinedIdentKind::LFuncSig: 659 return "L__FUNCSIG__"; 660 case PredefinedIdentKind::PrettyFunctionNoVirtual: 661 break; 662 } 663 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 664 } 665 666 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 667 // expr" policy instead. 668 std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK, 669 const Decl *CurrentDecl) { 670 ASTContext &Context = CurrentDecl->getASTContext(); 671 672 if (IK == PredefinedIdentKind::FuncDName) { 673 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 674 std::unique_ptr<MangleContext> MC; 675 MC.reset(Context.createMangleContext()); 676 677 if (MC->shouldMangleDeclName(ND)) { 678 SmallString<256> Buffer; 679 llvm::raw_svector_ostream Out(Buffer); 680 GlobalDecl GD; 681 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 682 GD = GlobalDecl(CD, Ctor_Base); 683 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 684 GD = GlobalDecl(DD, Dtor_Base); 685 else if (ND->hasAttr<CUDAGlobalAttr>()) 686 GD = GlobalDecl(cast<FunctionDecl>(ND)); 687 else 688 GD = GlobalDecl(ND); 689 MC->mangleName(GD, Out); 690 691 if (!Buffer.empty() && Buffer.front() == '\01') 692 return std::string(Buffer.substr(1)); 693 return std::string(Buffer.str()); 694 } 695 return std::string(ND->getIdentifier()->getName()); 696 } 697 return ""; 698 } 699 if (isa<BlockDecl>(CurrentDecl)) { 700 // For blocks we only emit something if it is enclosed in a function 701 // For top-level block we'd like to include the name of variable, but we 702 // don't have it at this point. 703 auto DC = CurrentDecl->getDeclContext(); 704 if (DC->isFileContext()) 705 return ""; 706 707 SmallString<256> Buffer; 708 llvm::raw_svector_ostream Out(Buffer); 709 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 710 // For nested blocks, propagate up to the parent. 711 Out << ComputeName(IK, DCBlock); 712 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 713 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 714 return std::string(Out.str()); 715 } 716 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 717 if (IK != PredefinedIdentKind::PrettyFunction && 718 IK != PredefinedIdentKind::PrettyFunctionNoVirtual && 719 IK != PredefinedIdentKind::FuncSig && 720 IK != PredefinedIdentKind::LFuncSig) 721 return FD->getNameAsString(); 722 723 SmallString<256> Name; 724 llvm::raw_svector_ostream Out(Name); 725 726 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 727 if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual) 728 Out << "virtual "; 729 if (MD->isStatic()) 730 Out << "static "; 731 } 732 733 class PrettyCallbacks final : public PrintingCallbacks { 734 public: 735 PrettyCallbacks(const LangOptions &LO) : LO(LO) {} 736 std::string remapPath(StringRef Path) const override { 737 SmallString<128> p(Path); 738 LO.remapPathPrefix(p); 739 return std::string(p); 740 } 741 742 private: 743 const LangOptions &LO; 744 }; 745 PrintingPolicy Policy(Context.getLangOpts()); 746 PrettyCallbacks PrettyCB(Context.getLangOpts()); 747 Policy.Callbacks = &PrettyCB; 748 std::string Proto; 749 llvm::raw_string_ostream POut(Proto); 750 751 const FunctionDecl *Decl = FD; 752 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 753 Decl = Pattern; 754 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 755 const FunctionProtoType *FT = nullptr; 756 if (FD->hasWrittenPrototype()) 757 FT = dyn_cast<FunctionProtoType>(AFT); 758 759 if (IK == PredefinedIdentKind::FuncSig || 760 IK == PredefinedIdentKind::LFuncSig) { 761 switch (AFT->getCallConv()) { 762 case CC_C: POut << "__cdecl "; break; 763 case CC_X86StdCall: POut << "__stdcall "; break; 764 case CC_X86FastCall: POut << "__fastcall "; break; 765 case CC_X86ThisCall: POut << "__thiscall "; break; 766 case CC_X86VectorCall: POut << "__vectorcall "; break; 767 case CC_X86RegCall: POut << "__regcall "; break; 768 // Only bother printing the conventions that MSVC knows about. 769 default: break; 770 } 771 } 772 773 FD->printQualifiedName(POut, Policy); 774 775 POut << "("; 776 if (FT) { 777 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 778 if (i) POut << ", "; 779 POut << Decl->getParamDecl(i)->getType().stream(Policy); 780 } 781 782 if (FT->isVariadic()) { 783 if (FD->getNumParams()) POut << ", "; 784 POut << "..."; 785 } else if ((IK == PredefinedIdentKind::FuncSig || 786 IK == PredefinedIdentKind::LFuncSig || 787 !Context.getLangOpts().CPlusPlus) && 788 !Decl->getNumParams()) { 789 POut << "void"; 790 } 791 } 792 POut << ")"; 793 794 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 795 assert(FT && "We must have a written prototype in this case."); 796 if (FT->isConst()) 797 POut << " const"; 798 if (FT->isVolatile()) 799 POut << " volatile"; 800 RefQualifierKind Ref = MD->getRefQualifier(); 801 if (Ref == RQ_LValue) 802 POut << " &"; 803 else if (Ref == RQ_RValue) 804 POut << " &&"; 805 } 806 807 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 808 SpecsTy Specs; 809 const DeclContext *Ctx = FD->getDeclContext(); 810 while (Ctx && isa<NamedDecl>(Ctx)) { 811 const ClassTemplateSpecializationDecl *Spec 812 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 813 if (Spec && !Spec->isExplicitSpecialization()) 814 Specs.push_back(Spec); 815 Ctx = Ctx->getParent(); 816 } 817 818 std::string TemplateParams; 819 llvm::raw_string_ostream TOut(TemplateParams); 820 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) { 821 const TemplateParameterList *Params = 822 D->getSpecializedTemplate()->getTemplateParameters(); 823 const TemplateArgumentList &Args = D->getTemplateArgs(); 824 assert(Params->size() == Args.size()); 825 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 826 StringRef Param = Params->getParam(i)->getName(); 827 if (Param.empty()) continue; 828 TOut << Param << " = "; 829 Args.get(i).print(Policy, TOut, 830 TemplateParameterList::shouldIncludeTypeForArgument( 831 Policy, Params, i)); 832 TOut << ", "; 833 } 834 } 835 836 FunctionTemplateSpecializationInfo *FSI 837 = FD->getTemplateSpecializationInfo(); 838 if (FSI && !FSI->isExplicitSpecialization()) { 839 const TemplateParameterList* Params 840 = FSI->getTemplate()->getTemplateParameters(); 841 const TemplateArgumentList* Args = FSI->TemplateArguments; 842 assert(Params->size() == Args->size()); 843 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 844 StringRef Param = Params->getParam(i)->getName(); 845 if (Param.empty()) continue; 846 TOut << Param << " = "; 847 Args->get(i).print(Policy, TOut, /*IncludeType*/ true); 848 TOut << ", "; 849 } 850 } 851 852 TOut.flush(); 853 if (!TemplateParams.empty()) { 854 // remove the trailing comma and space 855 TemplateParams.resize(TemplateParams.size() - 2); 856 POut << " [" << TemplateParams << "]"; 857 } 858 859 POut.flush(); 860 861 // Print "auto" for all deduced return types. This includes C++1y return 862 // type deduction and lambdas. For trailing return types resolve the 863 // decltype expression. Otherwise print the real type when this is 864 // not a constructor or destructor. 865 if (isa<CXXMethodDecl>(FD) && 866 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 867 Proto = "auto " + Proto; 868 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 869 FT->getReturnType() 870 ->getAs<DecltypeType>() 871 ->getUnderlyingType() 872 .getAsStringInternal(Proto, Policy); 873 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 874 AFT->getReturnType().getAsStringInternal(Proto, Policy); 875 876 Out << Proto; 877 878 return std::string(Name); 879 } 880 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 881 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 882 // Skip to its enclosing function or method, but not its enclosing 883 // CapturedDecl. 884 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 885 const Decl *D = Decl::castFromDeclContext(DC); 886 return ComputeName(IK, D); 887 } 888 llvm_unreachable("CapturedDecl not inside a function or method"); 889 } 890 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 891 SmallString<256> Name; 892 llvm::raw_svector_ostream Out(Name); 893 Out << (MD->isInstanceMethod() ? '-' : '+'); 894 Out << '['; 895 896 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 897 // a null check to avoid a crash. 898 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 899 Out << *ID; 900 901 if (const ObjCCategoryImplDecl *CID = 902 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 903 Out << '(' << *CID << ')'; 904 905 Out << ' '; 906 MD->getSelector().print(Out); 907 Out << ']'; 908 909 return std::string(Name); 910 } 911 if (isa<TranslationUnitDecl>(CurrentDecl) && 912 IK == PredefinedIdentKind::PrettyFunction) { 913 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 914 return "top level"; 915 } 916 return ""; 917 } 918 919 void APNumericStorage::setIntValue(const ASTContext &C, 920 const llvm::APInt &Val) { 921 if (hasAllocation()) 922 C.Deallocate(pVal); 923 924 BitWidth = Val.getBitWidth(); 925 unsigned NumWords = Val.getNumWords(); 926 const uint64_t* Words = Val.getRawData(); 927 if (NumWords > 1) { 928 pVal = new (C) uint64_t[NumWords]; 929 std::copy(Words, Words + NumWords, pVal); 930 } else if (NumWords == 1) 931 VAL = Words[0]; 932 else 933 VAL = 0; 934 } 935 936 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 937 QualType type, SourceLocation l) 938 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { 939 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 940 assert(V.getBitWidth() == C.getIntWidth(type) && 941 "Integer type is not the correct size for constant."); 942 setValue(C, V); 943 setDependence(ExprDependence::None); 944 } 945 946 IntegerLiteral * 947 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 948 QualType type, SourceLocation l) { 949 return new (C) IntegerLiteral(C, V, type, l); 950 } 951 952 IntegerLiteral * 953 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 954 return new (C) IntegerLiteral(Empty); 955 } 956 957 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 958 QualType type, SourceLocation l, 959 unsigned Scale) 960 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), 961 Scale(Scale) { 962 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 963 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 964 "Fixed point type is not the correct size for constant."); 965 setValue(C, V); 966 setDependence(ExprDependence::None); 967 } 968 969 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 970 const llvm::APInt &V, 971 QualType type, 972 SourceLocation l, 973 unsigned Scale) { 974 return new (C) FixedPointLiteral(C, V, type, l, Scale); 975 } 976 977 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, 978 EmptyShell Empty) { 979 return new (C) FixedPointLiteral(Empty); 980 } 981 982 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 983 // Currently the longest decimal number that can be printed is the max for an 984 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 985 // which is 43 characters. 986 SmallString<64> S; 987 FixedPointValueToString( 988 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 989 return std::string(S.str()); 990 } 991 992 void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind, 993 raw_ostream &OS) { 994 switch (Kind) { 995 case CharacterLiteralKind::Ascii: 996 break; // no prefix. 997 case CharacterLiteralKind::Wide: 998 OS << 'L'; 999 break; 1000 case CharacterLiteralKind::UTF8: 1001 OS << "u8"; 1002 break; 1003 case CharacterLiteralKind::UTF16: 1004 OS << 'u'; 1005 break; 1006 case CharacterLiteralKind::UTF32: 1007 OS << 'U'; 1008 break; 1009 } 1010 1011 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val); 1012 if (!Escaped.empty()) { 1013 OS << "'" << Escaped << "'"; 1014 } else { 1015 // A character literal might be sign-extended, which 1016 // would result in an invalid \U escape sequence. 1017 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' 1018 // are not correctly handled. 1019 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii) 1020 Val &= 0xFFu; 1021 if (Val < 256 && isPrintable((unsigned char)Val)) 1022 OS << "'" << (char)Val << "'"; 1023 else if (Val < 256) 1024 OS << "'\\x" << llvm::format("%02x", Val) << "'"; 1025 else if (Val <= 0xFFFF) 1026 OS << "'\\u" << llvm::format("%04x", Val) << "'"; 1027 else 1028 OS << "'\\U" << llvm::format("%08x", Val) << "'"; 1029 } 1030 } 1031 1032 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 1033 bool isexact, QualType Type, SourceLocation L) 1034 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { 1035 setSemantics(V.getSemantics()); 1036 FloatingLiteralBits.IsExact = isexact; 1037 setValue(C, V); 1038 setDependence(ExprDependence::None); 1039 } 1040 1041 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 1042 : Expr(FloatingLiteralClass, Empty) { 1043 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 1044 FloatingLiteralBits.IsExact = false; 1045 } 1046 1047 FloatingLiteral * 1048 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 1049 bool isexact, QualType Type, SourceLocation L) { 1050 return new (C) FloatingLiteral(C, V, isexact, Type, L); 1051 } 1052 1053 FloatingLiteral * 1054 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 1055 return new (C) FloatingLiteral(C, Empty); 1056 } 1057 1058 /// getValueAsApproximateDouble - This returns the value as an inaccurate 1059 /// double. Note that this may cause loss of precision, but is useful for 1060 /// debugging dumps, etc. 1061 double FloatingLiteral::getValueAsApproximateDouble() const { 1062 llvm::APFloat V = getValue(); 1063 bool ignored; 1064 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 1065 &ignored); 1066 return V.convertToDouble(); 1067 } 1068 1069 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 1070 StringLiteralKind SK) { 1071 unsigned CharByteWidth = 0; 1072 switch (SK) { 1073 case StringLiteralKind::Ordinary: 1074 case StringLiteralKind::UTF8: 1075 CharByteWidth = Target.getCharWidth(); 1076 break; 1077 case StringLiteralKind::Wide: 1078 CharByteWidth = Target.getWCharWidth(); 1079 break; 1080 case StringLiteralKind::UTF16: 1081 CharByteWidth = Target.getChar16Width(); 1082 break; 1083 case StringLiteralKind::UTF32: 1084 CharByteWidth = Target.getChar32Width(); 1085 break; 1086 case StringLiteralKind::Unevaluated: 1087 return sizeof(char); // Host; 1088 } 1089 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1090 CharByteWidth /= 8; 1091 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 1092 "The only supported character byte widths are 1,2 and 4!"); 1093 return CharByteWidth; 1094 } 1095 1096 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1097 StringLiteralKind Kind, bool Pascal, QualType Ty, 1098 const SourceLocation *Loc, 1099 unsigned NumConcatenated) 1100 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { 1101 1102 unsigned Length = Str.size(); 1103 1104 StringLiteralBits.Kind = llvm::to_underlying(Kind); 1105 StringLiteralBits.NumConcatenated = NumConcatenated; 1106 1107 if (Kind != StringLiteralKind::Unevaluated) { 1108 assert(Ctx.getAsConstantArrayType(Ty) && 1109 "StringLiteral must be of constant array type!"); 1110 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1111 unsigned ByteLength = Str.size(); 1112 assert((ByteLength % CharByteWidth == 0) && 1113 "The size of the data must be a multiple of CharByteWidth!"); 1114 1115 // Avoid the expensive division. The compiler should be able to figure it 1116 // out by itself. However as of clang 7, even with the appropriate 1117 // llvm_unreachable added just here, it is not able to do so. 1118 switch (CharByteWidth) { 1119 case 1: 1120 Length = ByteLength; 1121 break; 1122 case 2: 1123 Length = ByteLength / 2; 1124 break; 1125 case 4: 1126 Length = ByteLength / 4; 1127 break; 1128 default: 1129 llvm_unreachable("Unsupported character width!"); 1130 } 1131 1132 StringLiteralBits.CharByteWidth = CharByteWidth; 1133 StringLiteralBits.IsPascal = Pascal; 1134 } else { 1135 assert(!Pascal && "Can't make an unevaluated Pascal string"); 1136 StringLiteralBits.CharByteWidth = 1; 1137 StringLiteralBits.IsPascal = false; 1138 } 1139 1140 *getTrailingObjects<unsigned>() = Length; 1141 1142 // Initialize the trailing array of SourceLocation. 1143 // This is safe since SourceLocation is POD-like. 1144 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1145 NumConcatenated * sizeof(SourceLocation)); 1146 1147 // Initialize the trailing array of char holding the string data. 1148 std::memcpy(getTrailingObjects<char>(), Str.data(), Str.size()); 1149 1150 setDependence(ExprDependence::None); 1151 } 1152 1153 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1154 unsigned Length, unsigned CharByteWidth) 1155 : Expr(StringLiteralClass, Empty) { 1156 StringLiteralBits.CharByteWidth = CharByteWidth; 1157 StringLiteralBits.NumConcatenated = NumConcatenated; 1158 *getTrailingObjects<unsigned>() = Length; 1159 } 1160 1161 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1162 StringLiteralKind Kind, bool Pascal, 1163 QualType Ty, const SourceLocation *Loc, 1164 unsigned NumConcatenated) { 1165 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1166 1, NumConcatenated, Str.size()), 1167 alignof(StringLiteral)); 1168 return new (Mem) 1169 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1170 } 1171 1172 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1173 unsigned NumConcatenated, 1174 unsigned Length, 1175 unsigned CharByteWidth) { 1176 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1177 1, NumConcatenated, Length * CharByteWidth), 1178 alignof(StringLiteral)); 1179 return new (Mem) 1180 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1181 } 1182 1183 void StringLiteral::outputString(raw_ostream &OS) const { 1184 switch (getKind()) { 1185 case StringLiteralKind::Unevaluated: 1186 case StringLiteralKind::Ordinary: 1187 break; // no prefix. 1188 case StringLiteralKind::Wide: 1189 OS << 'L'; 1190 break; 1191 case StringLiteralKind::UTF8: 1192 OS << "u8"; 1193 break; 1194 case StringLiteralKind::UTF16: 1195 OS << 'u'; 1196 break; 1197 case StringLiteralKind::UTF32: 1198 OS << 'U'; 1199 break; 1200 } 1201 OS << '"'; 1202 static const char Hex[] = "0123456789ABCDEF"; 1203 1204 unsigned LastSlashX = getLength(); 1205 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1206 uint32_t Char = getCodeUnit(I); 1207 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char); 1208 if (Escaped.empty()) { 1209 // FIXME: Convert UTF-8 back to codepoints before rendering. 1210 1211 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1212 // Leave invalid surrogates alone; we'll use \x for those. 1213 if (getKind() == StringLiteralKind::UTF16 && I != N - 1 && 1214 Char >= 0xd800 && Char <= 0xdbff) { 1215 uint32_t Trail = getCodeUnit(I + 1); 1216 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1217 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1218 ++I; 1219 } 1220 } 1221 1222 if (Char > 0xff) { 1223 // If this is a wide string, output characters over 0xff using \x 1224 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1225 // codepoint: use \x escapes for invalid codepoints. 1226 if (getKind() == StringLiteralKind::Wide || 1227 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1228 // FIXME: Is this the best way to print wchar_t? 1229 OS << "\\x"; 1230 int Shift = 28; 1231 while ((Char >> Shift) == 0) 1232 Shift -= 4; 1233 for (/**/; Shift >= 0; Shift -= 4) 1234 OS << Hex[(Char >> Shift) & 15]; 1235 LastSlashX = I; 1236 continue; 1237 } 1238 1239 if (Char > 0xffff) 1240 OS << "\\U00" 1241 << Hex[(Char >> 20) & 15] 1242 << Hex[(Char >> 16) & 15]; 1243 else 1244 OS << "\\u"; 1245 OS << Hex[(Char >> 12) & 15] 1246 << Hex[(Char >> 8) & 15] 1247 << Hex[(Char >> 4) & 15] 1248 << Hex[(Char >> 0) & 15]; 1249 continue; 1250 } 1251 1252 // If we used \x... for the previous character, and this character is a 1253 // hexadecimal digit, prevent it being slurped as part of the \x. 1254 if (LastSlashX + 1 == I) { 1255 switch (Char) { 1256 case '0': case '1': case '2': case '3': case '4': 1257 case '5': case '6': case '7': case '8': case '9': 1258 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1259 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1260 OS << "\"\""; 1261 } 1262 } 1263 1264 assert(Char <= 0xff && 1265 "Characters above 0xff should already have been handled."); 1266 1267 if (isPrintable(Char)) 1268 OS << (char)Char; 1269 else // Output anything hard as an octal escape. 1270 OS << '\\' 1271 << (char)('0' + ((Char >> 6) & 7)) 1272 << (char)('0' + ((Char >> 3) & 7)) 1273 << (char)('0' + ((Char >> 0) & 7)); 1274 } else { 1275 // Handle some common non-printable cases to make dumps prettier. 1276 OS << Escaped; 1277 } 1278 } 1279 OS << '"'; 1280 } 1281 1282 /// getLocationOfByte - Return a source location that points to the specified 1283 /// byte of this string literal. 1284 /// 1285 /// Strings are amazingly complex. They can be formed from multiple tokens and 1286 /// can have escape sequences in them in addition to the usual trigraph and 1287 /// escaped newline business. This routine handles this complexity. 1288 /// 1289 /// The *StartToken sets the first token to be searched in this function and 1290 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1291 /// returning, it updates the *StartToken to the TokNo of the token being found 1292 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1293 /// string. 1294 /// Using these two parameters can reduce the time complexity from O(n^2) to 1295 /// O(n) if one wants to get the location of byte for all the tokens in a 1296 /// string. 1297 /// 1298 SourceLocation 1299 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1300 const LangOptions &Features, 1301 const TargetInfo &Target, unsigned *StartToken, 1302 unsigned *StartTokenByteOffset) const { 1303 assert((getKind() == StringLiteralKind::Ordinary || 1304 getKind() == StringLiteralKind::UTF8 || 1305 getKind() == StringLiteralKind::Unevaluated) && 1306 "Only narrow string literals are currently supported"); 1307 1308 // Loop over all of the tokens in this string until we find the one that 1309 // contains the byte we're looking for. 1310 unsigned TokNo = 0; 1311 unsigned StringOffset = 0; 1312 if (StartToken) 1313 TokNo = *StartToken; 1314 if (StartTokenByteOffset) { 1315 StringOffset = *StartTokenByteOffset; 1316 ByteNo -= StringOffset; 1317 } 1318 while (true) { 1319 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1320 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1321 1322 // Get the spelling of the string so that we can get the data that makes up 1323 // the string literal, not the identifier for the macro it is potentially 1324 // expanded through. 1325 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1326 1327 // Re-lex the token to get its length and original spelling. 1328 std::pair<FileID, unsigned> LocInfo = 1329 SM.getDecomposedLoc(StrTokSpellingLoc); 1330 bool Invalid = false; 1331 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1332 if (Invalid) { 1333 if (StartTokenByteOffset != nullptr) 1334 *StartTokenByteOffset = StringOffset; 1335 if (StartToken != nullptr) 1336 *StartToken = TokNo; 1337 return StrTokSpellingLoc; 1338 } 1339 1340 const char *StrData = Buffer.data()+LocInfo.second; 1341 1342 // Create a lexer starting at the beginning of this token. 1343 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1344 Buffer.begin(), StrData, Buffer.end()); 1345 Token TheTok; 1346 TheLexer.LexFromRawLexer(TheTok); 1347 1348 // Use the StringLiteralParser to compute the length of the string in bytes. 1349 StringLiteralParser SLP(TheTok, SM, Features, Target); 1350 unsigned TokNumBytes = SLP.GetStringLength(); 1351 1352 // If the byte is in this token, return the location of the byte. 1353 if (ByteNo < TokNumBytes || 1354 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1355 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1356 1357 // Now that we know the offset of the token in the spelling, use the 1358 // preprocessor to get the offset in the original source. 1359 if (StartTokenByteOffset != nullptr) 1360 *StartTokenByteOffset = StringOffset; 1361 if (StartToken != nullptr) 1362 *StartToken = TokNo; 1363 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1364 } 1365 1366 // Move to the next string token. 1367 StringOffset += TokNumBytes; 1368 ++TokNo; 1369 ByteNo -= TokNumBytes; 1370 } 1371 } 1372 1373 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1374 /// corresponds to, e.g. "sizeof" or "[pre]++". 1375 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1376 switch (Op) { 1377 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1378 #include "clang/AST/OperationKinds.def" 1379 } 1380 llvm_unreachable("Unknown unary operator"); 1381 } 1382 1383 UnaryOperatorKind 1384 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1385 switch (OO) { 1386 default: llvm_unreachable("No unary operator for overloaded function"); 1387 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1388 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1389 case OO_Amp: return UO_AddrOf; 1390 case OO_Star: return UO_Deref; 1391 case OO_Plus: return UO_Plus; 1392 case OO_Minus: return UO_Minus; 1393 case OO_Tilde: return UO_Not; 1394 case OO_Exclaim: return UO_LNot; 1395 case OO_Coawait: return UO_Coawait; 1396 } 1397 } 1398 1399 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1400 switch (Opc) { 1401 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1402 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1403 case UO_AddrOf: return OO_Amp; 1404 case UO_Deref: return OO_Star; 1405 case UO_Plus: return OO_Plus; 1406 case UO_Minus: return OO_Minus; 1407 case UO_Not: return OO_Tilde; 1408 case UO_LNot: return OO_Exclaim; 1409 case UO_Coawait: return OO_Coawait; 1410 default: return OO_None; 1411 } 1412 } 1413 1414 1415 //===----------------------------------------------------------------------===// 1416 // Postfix Operators. 1417 //===----------------------------------------------------------------------===// 1418 1419 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1420 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1421 SourceLocation RParenLoc, FPOptionsOverride FPFeatures, 1422 unsigned MinNumArgs, ADLCallKind UsesADL) 1423 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { 1424 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1425 unsigned NumPreArgs = PreArgs.size(); 1426 CallExprBits.NumPreArgs = NumPreArgs; 1427 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1428 1429 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1430 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1431 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1432 "OffsetToTrailingObjects overflow!"); 1433 1434 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1435 1436 setCallee(Fn); 1437 for (unsigned I = 0; I != NumPreArgs; ++I) 1438 setPreArg(I, PreArgs[I]); 1439 for (unsigned I = 0; I != Args.size(); ++I) 1440 setArg(I, Args[I]); 1441 for (unsigned I = Args.size(); I != NumArgs; ++I) 1442 setArg(I, nullptr); 1443 1444 this->computeDependence(); 1445 1446 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 1447 if (hasStoredFPFeatures()) 1448 setStoredFPFeatures(FPFeatures); 1449 } 1450 1451 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1452 bool HasFPFeatures, EmptyShell Empty) 1453 : Expr(SC, Empty), NumArgs(NumArgs) { 1454 CallExprBits.NumPreArgs = NumPreArgs; 1455 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1456 1457 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1458 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1459 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1460 "OffsetToTrailingObjects overflow!"); 1461 CallExprBits.HasFPFeatures = HasFPFeatures; 1462 } 1463 1464 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1465 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1466 SourceLocation RParenLoc, 1467 FPOptionsOverride FPFeatures, unsigned MinNumArgs, 1468 ADLCallKind UsesADL) { 1469 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1470 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( 1471 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); 1472 void *Mem = 1473 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1474 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1475 RParenLoc, FPFeatures, MinNumArgs, UsesADL); 1476 } 1477 1478 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1479 ExprValueKind VK, SourceLocation RParenLoc, 1480 ADLCallKind UsesADL) { 1481 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1482 "Misaligned memory in CallExpr::CreateTemporary!"); 1483 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1484 VK, RParenLoc, FPOptionsOverride(), 1485 /*MinNumArgs=*/0, UsesADL); 1486 } 1487 1488 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1489 bool HasFPFeatures, EmptyShell Empty) { 1490 unsigned SizeOfTrailingObjects = 1491 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); 1492 void *Mem = 1493 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1494 return new (Mem) 1495 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); 1496 } 1497 1498 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1499 switch (SC) { 1500 case CallExprClass: 1501 return sizeof(CallExpr); 1502 case CXXOperatorCallExprClass: 1503 return sizeof(CXXOperatorCallExpr); 1504 case CXXMemberCallExprClass: 1505 return sizeof(CXXMemberCallExpr); 1506 case UserDefinedLiteralClass: 1507 return sizeof(UserDefinedLiteral); 1508 case CUDAKernelCallExprClass: 1509 return sizeof(CUDAKernelCallExpr); 1510 default: 1511 llvm_unreachable("unexpected class deriving from CallExpr!"); 1512 } 1513 } 1514 1515 Decl *Expr::getReferencedDeclOfCallee() { 1516 Expr *CEE = IgnoreParenImpCasts(); 1517 1518 while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) 1519 CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); 1520 1521 // If we're calling a dereference, look at the pointer instead. 1522 while (true) { 1523 if (auto *BO = dyn_cast<BinaryOperator>(CEE)) { 1524 if (BO->isPtrMemOp()) { 1525 CEE = BO->getRHS()->IgnoreParenImpCasts(); 1526 continue; 1527 } 1528 } else if (auto *UO = dyn_cast<UnaryOperator>(CEE)) { 1529 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || 1530 UO->getOpcode() == UO_Plus) { 1531 CEE = UO->getSubExpr()->IgnoreParenImpCasts(); 1532 continue; 1533 } 1534 } 1535 break; 1536 } 1537 1538 if (auto *DRE = dyn_cast<DeclRefExpr>(CEE)) 1539 return DRE->getDecl(); 1540 if (auto *ME = dyn_cast<MemberExpr>(CEE)) 1541 return ME->getMemberDecl(); 1542 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1543 return BE->getBlockDecl(); 1544 1545 return nullptr; 1546 } 1547 1548 /// If this is a call to a builtin, return the builtin ID. If not, return 0. 1549 unsigned CallExpr::getBuiltinCallee() const { 1550 const auto *FDecl = getDirectCallee(); 1551 return FDecl ? FDecl->getBuiltinID() : 0; 1552 } 1553 1554 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1555 if (unsigned BI = getBuiltinCallee()) 1556 return Ctx.BuiltinInfo.isUnevaluated(BI); 1557 return false; 1558 } 1559 1560 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1561 const Expr *Callee = getCallee(); 1562 QualType CalleeType = Callee->getType(); 1563 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1564 CalleeType = FnTypePtr->getPointeeType(); 1565 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1566 CalleeType = BPT->getPointeeType(); 1567 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1568 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1569 return Ctx.VoidTy; 1570 1571 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens())) 1572 return Ctx.DependentTy; 1573 1574 // This should never be overloaded and so should never return null. 1575 CalleeType = Expr::findBoundMemberType(Callee); 1576 assert(!CalleeType.isNull()); 1577 } else if (CalleeType->isRecordType()) { 1578 // If the Callee is a record type, then it is a not-yet-resolved 1579 // dependent call to the call operator of that type. 1580 return Ctx.DependentTy; 1581 } else if (CalleeType->isDependentType() || 1582 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) { 1583 return Ctx.DependentTy; 1584 } 1585 1586 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1587 return FnType->getReturnType(); 1588 } 1589 1590 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1591 // If the return type is a struct, union, or enum that is marked nodiscard, 1592 // then return the return type attribute. 1593 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1594 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1595 return A; 1596 1597 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD; 1598 TD = TD->desugar()->getAs<TypedefType>()) 1599 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>()) 1600 return A; 1601 1602 // Otherwise, see if the callee is marked nodiscard and return that attribute 1603 // instead. 1604 const Decl *D = getCalleeDecl(); 1605 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1606 } 1607 1608 SourceLocation CallExpr::getBeginLoc() const { 1609 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this)) 1610 return OCE->getBeginLoc(); 1611 1612 SourceLocation begin = getCallee()->getBeginLoc(); 1613 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1614 begin = getArg(0)->getBeginLoc(); 1615 return begin; 1616 } 1617 SourceLocation CallExpr::getEndLoc() const { 1618 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this)) 1619 return OCE->getEndLoc(); 1620 1621 SourceLocation end = getRParenLoc(); 1622 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1623 end = getArg(getNumArgs() - 1)->getEndLoc(); 1624 return end; 1625 } 1626 1627 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1628 SourceLocation OperatorLoc, 1629 TypeSourceInfo *tsi, 1630 ArrayRef<OffsetOfNode> comps, 1631 ArrayRef<Expr*> exprs, 1632 SourceLocation RParenLoc) { 1633 void *Mem = C.Allocate( 1634 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1635 1636 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1637 RParenLoc); 1638 } 1639 1640 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1641 unsigned numComps, unsigned numExprs) { 1642 void *Mem = 1643 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1644 return new (Mem) OffsetOfExpr(numComps, numExprs); 1645 } 1646 1647 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1648 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1649 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, 1650 SourceLocation RParenLoc) 1651 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), 1652 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1653 NumComps(comps.size()), NumExprs(exprs.size()) { 1654 for (unsigned i = 0; i != comps.size(); ++i) 1655 setComponent(i, comps[i]); 1656 for (unsigned i = 0; i != exprs.size(); ++i) 1657 setIndexExpr(i, exprs[i]); 1658 1659 setDependence(computeDependence(this)); 1660 } 1661 1662 IdentifierInfo *OffsetOfNode::getFieldName() const { 1663 assert(getKind() == Field || getKind() == Identifier); 1664 if (getKind() == Field) 1665 return getField()->getIdentifier(); 1666 1667 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1668 } 1669 1670 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1671 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1672 SourceLocation op, SourceLocation rp) 1673 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), 1674 OpLoc(op), RParenLoc(rp) { 1675 assert(ExprKind <= UETT_Last && "invalid enum value!"); 1676 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1677 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && 1678 "UnaryExprOrTypeTraitExprBits.Kind overflow!"); 1679 UnaryExprOrTypeTraitExprBits.IsType = false; 1680 Argument.Ex = E; 1681 setDependence(computeDependence(this)); 1682 } 1683 1684 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1685 ValueDecl *MemberDecl, 1686 const DeclarationNameInfo &NameInfo, QualType T, 1687 ExprValueKind VK, ExprObjectKind OK, 1688 NonOdrUseReason NOUR) 1689 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), 1690 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { 1691 assert(!NameInfo.getName() || 1692 MemberDecl->getDeclName() == NameInfo.getName()); 1693 MemberExprBits.IsArrow = IsArrow; 1694 MemberExprBits.HasQualifierOrFoundDecl = false; 1695 MemberExprBits.HasTemplateKWAndArgsInfo = false; 1696 MemberExprBits.HadMultipleCandidates = false; 1697 MemberExprBits.NonOdrUseReason = NOUR; 1698 MemberExprBits.OperatorLoc = OperatorLoc; 1699 setDependence(computeDependence(this)); 1700 } 1701 1702 MemberExpr *MemberExpr::Create( 1703 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1704 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1705 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1706 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1707 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1708 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || 1709 FoundDecl.getAccess() != MemberDecl->getAccess(); 1710 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1711 std::size_t Size = 1712 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1713 TemplateArgumentLoc>( 1714 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, 1715 TemplateArgs ? TemplateArgs->size() : 0); 1716 1717 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1718 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, 1719 NameInfo, T, VK, OK, NOUR); 1720 1721 if (HasQualOrFound) { 1722 E->MemberExprBits.HasQualifierOrFoundDecl = true; 1723 1724 MemberExprNameQualifier *NQ = 1725 E->getTrailingObjects<MemberExprNameQualifier>(); 1726 NQ->QualifierLoc = QualifierLoc; 1727 NQ->FoundDecl = FoundDecl; 1728 } 1729 1730 E->MemberExprBits.HasTemplateKWAndArgsInfo = 1731 TemplateArgs || TemplateKWLoc.isValid(); 1732 1733 // FIXME: remove remaining dependence computation to computeDependence(). 1734 auto Deps = E->getDependence(); 1735 if (TemplateArgs) { 1736 auto TemplateArgDeps = TemplateArgumentDependence::None; 1737 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1738 TemplateKWLoc, *TemplateArgs, 1739 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps); 1740 for (const TemplateArgumentLoc &ArgLoc : TemplateArgs->arguments()) { 1741 Deps |= toExprDependence(ArgLoc.getArgument().getDependence()); 1742 } 1743 } else if (TemplateKWLoc.isValid()) { 1744 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1745 TemplateKWLoc); 1746 } 1747 E->setDependence(Deps); 1748 1749 return E; 1750 } 1751 1752 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1753 bool HasQualifier, bool HasFoundDecl, 1754 bool HasTemplateKWAndArgsInfo, 1755 unsigned NumTemplateArgs) { 1756 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1757 "template args but no template arg info?"); 1758 bool HasQualOrFound = HasQualifier || HasFoundDecl; 1759 std::size_t Size = 1760 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1761 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, 1762 HasTemplateKWAndArgsInfo ? 1 : 0, 1763 NumTemplateArgs); 1764 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1765 return new (Mem) MemberExpr(EmptyShell()); 1766 } 1767 1768 void MemberExpr::setMemberDecl(ValueDecl *NewD) { 1769 MemberDecl = NewD; 1770 if (getType()->isUndeducedType()) 1771 setType(NewD->getType()); 1772 setDependence(computeDependence(this)); 1773 } 1774 1775 SourceLocation MemberExpr::getBeginLoc() const { 1776 if (isImplicitAccess()) { 1777 if (hasQualifier()) 1778 return getQualifierLoc().getBeginLoc(); 1779 return MemberLoc; 1780 } 1781 1782 // FIXME: We don't want this to happen. Rather, we should be able to 1783 // detect all kinds of implicit accesses more cleanly. 1784 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1785 if (BaseStartLoc.isValid()) 1786 return BaseStartLoc; 1787 return MemberLoc; 1788 } 1789 SourceLocation MemberExpr::getEndLoc() const { 1790 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1791 if (hasExplicitTemplateArgs()) 1792 EndLoc = getRAngleLoc(); 1793 else if (EndLoc.isInvalid()) 1794 EndLoc = getBase()->getEndLoc(); 1795 return EndLoc; 1796 } 1797 1798 bool CastExpr::CastConsistency() const { 1799 switch (getCastKind()) { 1800 case CK_DerivedToBase: 1801 case CK_UncheckedDerivedToBase: 1802 case CK_DerivedToBaseMemberPointer: 1803 case CK_BaseToDerived: 1804 case CK_BaseToDerivedMemberPointer: 1805 assert(!path_empty() && "Cast kind should have a base path!"); 1806 break; 1807 1808 case CK_CPointerToObjCPointerCast: 1809 assert(getType()->isObjCObjectPointerType()); 1810 assert(getSubExpr()->getType()->isPointerType()); 1811 goto CheckNoBasePath; 1812 1813 case CK_BlockPointerToObjCPointerCast: 1814 assert(getType()->isObjCObjectPointerType()); 1815 assert(getSubExpr()->getType()->isBlockPointerType()); 1816 goto CheckNoBasePath; 1817 1818 case CK_ReinterpretMemberPointer: 1819 assert(getType()->isMemberPointerType()); 1820 assert(getSubExpr()->getType()->isMemberPointerType()); 1821 goto CheckNoBasePath; 1822 1823 case CK_BitCast: 1824 // Arbitrary casts to C pointer types count as bitcasts. 1825 // Otherwise, we should only have block and ObjC pointer casts 1826 // here if they stay within the type kind. 1827 if (!getType()->isPointerType()) { 1828 assert(getType()->isObjCObjectPointerType() == 1829 getSubExpr()->getType()->isObjCObjectPointerType()); 1830 assert(getType()->isBlockPointerType() == 1831 getSubExpr()->getType()->isBlockPointerType()); 1832 } 1833 goto CheckNoBasePath; 1834 1835 case CK_AnyPointerToBlockPointerCast: 1836 assert(getType()->isBlockPointerType()); 1837 assert(getSubExpr()->getType()->isAnyPointerType() && 1838 !getSubExpr()->getType()->isBlockPointerType()); 1839 goto CheckNoBasePath; 1840 1841 case CK_CopyAndAutoreleaseBlockObject: 1842 assert(getType()->isBlockPointerType()); 1843 assert(getSubExpr()->getType()->isBlockPointerType()); 1844 goto CheckNoBasePath; 1845 1846 case CK_FunctionToPointerDecay: 1847 assert(getType()->isPointerType()); 1848 assert(getSubExpr()->getType()->isFunctionType()); 1849 goto CheckNoBasePath; 1850 1851 case CK_AddressSpaceConversion: { 1852 auto Ty = getType(); 1853 auto SETy = getSubExpr()->getType(); 1854 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1855 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { 1856 Ty = Ty->getPointeeType(); 1857 SETy = SETy->getPointeeType(); 1858 } 1859 assert((Ty->isDependentType() || SETy->isDependentType()) || 1860 (!Ty.isNull() && !SETy.isNull() && 1861 Ty.getAddressSpace() != SETy.getAddressSpace())); 1862 goto CheckNoBasePath; 1863 } 1864 // These should not have an inheritance path. 1865 case CK_Dynamic: 1866 case CK_ToUnion: 1867 case CK_ArrayToPointerDecay: 1868 case CK_NullToMemberPointer: 1869 case CK_NullToPointer: 1870 case CK_ConstructorConversion: 1871 case CK_IntegralToPointer: 1872 case CK_PointerToIntegral: 1873 case CK_ToVoid: 1874 case CK_VectorSplat: 1875 case CK_IntegralCast: 1876 case CK_BooleanToSignedIntegral: 1877 case CK_IntegralToFloating: 1878 case CK_FloatingToIntegral: 1879 case CK_FloatingCast: 1880 case CK_ObjCObjectLValueCast: 1881 case CK_FloatingRealToComplex: 1882 case CK_FloatingComplexToReal: 1883 case CK_FloatingComplexCast: 1884 case CK_FloatingComplexToIntegralComplex: 1885 case CK_IntegralRealToComplex: 1886 case CK_IntegralComplexToReal: 1887 case CK_IntegralComplexCast: 1888 case CK_IntegralComplexToFloatingComplex: 1889 case CK_ARCProduceObject: 1890 case CK_ARCConsumeObject: 1891 case CK_ARCReclaimReturnedObject: 1892 case CK_ARCExtendBlockObject: 1893 case CK_ZeroToOCLOpaqueType: 1894 case CK_IntToOCLSampler: 1895 case CK_FloatingToFixedPoint: 1896 case CK_FixedPointToFloating: 1897 case CK_FixedPointCast: 1898 case CK_FixedPointToIntegral: 1899 case CK_IntegralToFixedPoint: 1900 case CK_MatrixCast: 1901 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1902 goto CheckNoBasePath; 1903 1904 case CK_Dependent: 1905 case CK_LValueToRValue: 1906 case CK_NoOp: 1907 case CK_AtomicToNonAtomic: 1908 case CK_NonAtomicToAtomic: 1909 case CK_PointerToBoolean: 1910 case CK_IntegralToBoolean: 1911 case CK_FloatingToBoolean: 1912 case CK_MemberPointerToBoolean: 1913 case CK_FloatingComplexToBoolean: 1914 case CK_IntegralComplexToBoolean: 1915 case CK_LValueBitCast: // -> bool& 1916 case CK_LValueToRValueBitCast: 1917 case CK_UserDefinedConversion: // operator bool() 1918 case CK_BuiltinFnToFnPtr: 1919 case CK_FixedPointToBoolean: 1920 CheckNoBasePath: 1921 assert(path_empty() && "Cast kind should not have a base path!"); 1922 break; 1923 } 1924 return true; 1925 } 1926 1927 const char *CastExpr::getCastKindName(CastKind CK) { 1928 switch (CK) { 1929 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1930 #include "clang/AST/OperationKinds.def" 1931 } 1932 llvm_unreachable("Unhandled cast kind!"); 1933 } 1934 1935 namespace { 1936 // Skip over implicit nodes produced as part of semantic analysis. 1937 // Designed for use with IgnoreExprNodes. 1938 static Expr *ignoreImplicitSemaNodes(Expr *E) { 1939 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1940 return Materialize->getSubExpr(); 1941 1942 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1943 return Binder->getSubExpr(); 1944 1945 if (auto *Full = dyn_cast<FullExpr>(E)) 1946 return Full->getSubExpr(); 1947 1948 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E); 1949 CPLIE && CPLIE->getInitExprs().size() == 1) 1950 return CPLIE->getInitExprs()[0]; 1951 1952 return E; 1953 } 1954 } // namespace 1955 1956 Expr *CastExpr::getSubExprAsWritten() { 1957 const Expr *SubExpr = nullptr; 1958 1959 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1960 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 1961 1962 // Conversions by constructor and conversion functions have a 1963 // subexpression describing the call; strip it off. 1964 if (E->getCastKind() == CK_ConstructorConversion) { 1965 SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0), 1966 ignoreImplicitSemaNodes); 1967 } else if (E->getCastKind() == CK_UserDefinedConversion) { 1968 assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) && 1969 "Unexpected SubExpr for CK_UserDefinedConversion."); 1970 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1971 SubExpr = MCE->getImplicitObjectArgument(); 1972 } 1973 } 1974 1975 return const_cast<Expr *>(SubExpr); 1976 } 1977 1978 NamedDecl *CastExpr::getConversionFunction() const { 1979 const Expr *SubExpr = nullptr; 1980 1981 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1982 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 1983 1984 if (E->getCastKind() == CK_ConstructorConversion) 1985 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 1986 1987 if (E->getCastKind() == CK_UserDefinedConversion) { 1988 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1989 return MCE->getMethodDecl(); 1990 } 1991 } 1992 1993 return nullptr; 1994 } 1995 1996 CXXBaseSpecifier **CastExpr::path_buffer() { 1997 switch (getStmtClass()) { 1998 #define ABSTRACT_STMT(x) 1999 #define CASTEXPR(Type, Base) \ 2000 case Stmt::Type##Class: \ 2001 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 2002 #define STMT(Type, Base) 2003 #include "clang/AST/StmtNodes.inc" 2004 default: 2005 llvm_unreachable("non-cast expressions not possible here"); 2006 } 2007 } 2008 2009 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 2010 QualType opType) { 2011 auto RD = unionType->castAs<RecordType>()->getDecl(); 2012 return getTargetFieldForToUnionCast(RD, opType); 2013 } 2014 2015 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 2016 QualType OpType) { 2017 auto &Ctx = RD->getASTContext(); 2018 RecordDecl::field_iterator Field, FieldEnd; 2019 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 2020 Field != FieldEnd; ++Field) { 2021 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 2022 !Field->isUnnamedBitfield()) { 2023 return *Field; 2024 } 2025 } 2026 return nullptr; 2027 } 2028 2029 FPOptionsOverride *CastExpr::getTrailingFPFeatures() { 2030 assert(hasStoredFPFeatures()); 2031 switch (getStmtClass()) { 2032 case ImplicitCastExprClass: 2033 return static_cast<ImplicitCastExpr *>(this) 2034 ->getTrailingObjects<FPOptionsOverride>(); 2035 case CStyleCastExprClass: 2036 return static_cast<CStyleCastExpr *>(this) 2037 ->getTrailingObjects<FPOptionsOverride>(); 2038 case CXXFunctionalCastExprClass: 2039 return static_cast<CXXFunctionalCastExpr *>(this) 2040 ->getTrailingObjects<FPOptionsOverride>(); 2041 case CXXStaticCastExprClass: 2042 return static_cast<CXXStaticCastExpr *>(this) 2043 ->getTrailingObjects<FPOptionsOverride>(); 2044 default: 2045 llvm_unreachable("Cast does not have FPFeatures"); 2046 } 2047 } 2048 2049 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 2050 CastKind Kind, Expr *Operand, 2051 const CXXCastPath *BasePath, 2052 ExprValueKind VK, 2053 FPOptionsOverride FPO) { 2054 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2055 void *Buffer = 2056 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2057 PathSize, FPO.requiresTrailingStorage())); 2058 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 2059 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 2060 assert((Kind != CK_LValueToRValue || 2061 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 2062 "invalid type for lvalue-to-rvalue conversion"); 2063 ImplicitCastExpr *E = 2064 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); 2065 if (PathSize) 2066 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2067 E->getTrailingObjects<CXXBaseSpecifier *>()); 2068 return E; 2069 } 2070 2071 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 2072 unsigned PathSize, 2073 bool HasFPFeatures) { 2074 void *Buffer = 2075 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2076 PathSize, HasFPFeatures)); 2077 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2078 } 2079 2080 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 2081 ExprValueKind VK, CastKind K, Expr *Op, 2082 const CXXCastPath *BasePath, 2083 FPOptionsOverride FPO, 2084 TypeSourceInfo *WrittenTy, 2085 SourceLocation L, SourceLocation R) { 2086 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2087 void *Buffer = 2088 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2089 PathSize, FPO.requiresTrailingStorage())); 2090 CStyleCastExpr *E = 2091 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); 2092 if (PathSize) 2093 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2094 E->getTrailingObjects<CXXBaseSpecifier *>()); 2095 return E; 2096 } 2097 2098 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 2099 unsigned PathSize, 2100 bool HasFPFeatures) { 2101 void *Buffer = 2102 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2103 PathSize, HasFPFeatures)); 2104 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2105 } 2106 2107 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 2108 /// corresponds to, e.g. "<<=". 2109 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 2110 switch (Op) { 2111 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2112 #include "clang/AST/OperationKinds.def" 2113 } 2114 llvm_unreachable("Invalid OpCode!"); 2115 } 2116 2117 BinaryOperatorKind 2118 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2119 switch (OO) { 2120 default: llvm_unreachable("Not an overloadable binary operator"); 2121 case OO_Plus: return BO_Add; 2122 case OO_Minus: return BO_Sub; 2123 case OO_Star: return BO_Mul; 2124 case OO_Slash: return BO_Div; 2125 case OO_Percent: return BO_Rem; 2126 case OO_Caret: return BO_Xor; 2127 case OO_Amp: return BO_And; 2128 case OO_Pipe: return BO_Or; 2129 case OO_Equal: return BO_Assign; 2130 case OO_Spaceship: return BO_Cmp; 2131 case OO_Less: return BO_LT; 2132 case OO_Greater: return BO_GT; 2133 case OO_PlusEqual: return BO_AddAssign; 2134 case OO_MinusEqual: return BO_SubAssign; 2135 case OO_StarEqual: return BO_MulAssign; 2136 case OO_SlashEqual: return BO_DivAssign; 2137 case OO_PercentEqual: return BO_RemAssign; 2138 case OO_CaretEqual: return BO_XorAssign; 2139 case OO_AmpEqual: return BO_AndAssign; 2140 case OO_PipeEqual: return BO_OrAssign; 2141 case OO_LessLess: return BO_Shl; 2142 case OO_GreaterGreater: return BO_Shr; 2143 case OO_LessLessEqual: return BO_ShlAssign; 2144 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2145 case OO_EqualEqual: return BO_EQ; 2146 case OO_ExclaimEqual: return BO_NE; 2147 case OO_LessEqual: return BO_LE; 2148 case OO_GreaterEqual: return BO_GE; 2149 case OO_AmpAmp: return BO_LAnd; 2150 case OO_PipePipe: return BO_LOr; 2151 case OO_Comma: return BO_Comma; 2152 case OO_ArrowStar: return BO_PtrMemI; 2153 } 2154 } 2155 2156 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2157 static const OverloadedOperatorKind OverOps[] = { 2158 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2159 OO_Star, OO_Slash, OO_Percent, 2160 OO_Plus, OO_Minus, 2161 OO_LessLess, OO_GreaterGreater, 2162 OO_Spaceship, 2163 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2164 OO_EqualEqual, OO_ExclaimEqual, 2165 OO_Amp, 2166 OO_Caret, 2167 OO_Pipe, 2168 OO_AmpAmp, 2169 OO_PipePipe, 2170 OO_Equal, OO_StarEqual, 2171 OO_SlashEqual, OO_PercentEqual, 2172 OO_PlusEqual, OO_MinusEqual, 2173 OO_LessLessEqual, OO_GreaterGreaterEqual, 2174 OO_AmpEqual, OO_CaretEqual, 2175 OO_PipeEqual, 2176 OO_Comma 2177 }; 2178 return OverOps[Opc]; 2179 } 2180 2181 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2182 Opcode Opc, 2183 const Expr *LHS, 2184 const Expr *RHS) { 2185 if (Opc != BO_Add) 2186 return false; 2187 2188 // Check that we have one pointer and one integer operand. 2189 const Expr *PExp; 2190 if (LHS->getType()->isPointerType()) { 2191 if (!RHS->getType()->isIntegerType()) 2192 return false; 2193 PExp = LHS; 2194 } else if (RHS->getType()->isPointerType()) { 2195 if (!LHS->getType()->isIntegerType()) 2196 return false; 2197 PExp = RHS; 2198 } else { 2199 return false; 2200 } 2201 2202 // Check that the pointer is a nullptr. 2203 if (!PExp->IgnoreParenCasts() 2204 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2205 return false; 2206 2207 // Check that the pointee type is char-sized. 2208 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2209 if (!PTy || !PTy->getPointeeType()->isCharType()) 2210 return false; 2211 2212 return true; 2213 } 2214 2215 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind, 2216 QualType ResultTy, SourceLocation BLoc, 2217 SourceLocation RParenLoc, 2218 DeclContext *ParentContext) 2219 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary), 2220 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2221 SourceLocExprBits.Kind = llvm::to_underlying(Kind); 2222 setDependence(ExprDependence::None); 2223 } 2224 2225 StringRef SourceLocExpr::getBuiltinStr() const { 2226 switch (getIdentKind()) { 2227 case SourceLocIdentKind::File: 2228 return "__builtin_FILE"; 2229 case SourceLocIdentKind::FileName: 2230 return "__builtin_FILE_NAME"; 2231 case SourceLocIdentKind::Function: 2232 return "__builtin_FUNCTION"; 2233 case SourceLocIdentKind::FuncSig: 2234 return "__builtin_FUNCSIG"; 2235 case SourceLocIdentKind::Line: 2236 return "__builtin_LINE"; 2237 case SourceLocIdentKind::Column: 2238 return "__builtin_COLUMN"; 2239 case SourceLocIdentKind::SourceLocStruct: 2240 return "__builtin_source_location"; 2241 } 2242 llvm_unreachable("unexpected IdentKind!"); 2243 } 2244 2245 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2246 const Expr *DefaultExpr) const { 2247 SourceLocation Loc; 2248 const DeclContext *Context; 2249 2250 if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(DefaultExpr)) { 2251 Loc = DIE->getUsedLocation(); 2252 Context = DIE->getUsedContext(); 2253 } else if (const auto *DAE = 2254 dyn_cast_if_present<CXXDefaultArgExpr>(DefaultExpr)) { 2255 Loc = DAE->getUsedLocation(); 2256 Context = DAE->getUsedContext(); 2257 } else { 2258 Loc = getLocation(); 2259 Context = getParentContext(); 2260 } 2261 2262 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2263 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2264 2265 auto MakeStringLiteral = [&](StringRef Tmp) { 2266 using LValuePathEntry = APValue::LValuePathEntry; 2267 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2268 // Decay the string to a pointer to the first character. 2269 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2270 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2271 }; 2272 2273 switch (getIdentKind()) { 2274 case SourceLocIdentKind::FileName: { 2275 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the 2276 // the last part of __builtin_FILE(). 2277 SmallString<256> FileName; 2278 clang::Preprocessor::processPathToFileName( 2279 FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo()); 2280 return MakeStringLiteral(FileName); 2281 } 2282 case SourceLocIdentKind::File: { 2283 SmallString<256> Path(PLoc.getFilename()); 2284 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2285 Ctx.getTargetInfo()); 2286 return MakeStringLiteral(Path); 2287 } 2288 case SourceLocIdentKind::Function: 2289 case SourceLocIdentKind::FuncSig: { 2290 const auto *CurDecl = dyn_cast<Decl>(Context); 2291 const auto Kind = getIdentKind() == SourceLocIdentKind::Function 2292 ? PredefinedIdentKind::Function 2293 : PredefinedIdentKind::FuncSig; 2294 return MakeStringLiteral( 2295 CurDecl ? PredefinedExpr::ComputeName(Kind, CurDecl) : std::string("")); 2296 } 2297 case SourceLocIdentKind::Line: 2298 return APValue(Ctx.MakeIntValue(PLoc.getLine(), Ctx.UnsignedIntTy)); 2299 case SourceLocIdentKind::Column: 2300 return APValue(Ctx.MakeIntValue(PLoc.getColumn(), Ctx.UnsignedIntTy)); 2301 case SourceLocIdentKind::SourceLocStruct: { 2302 // Fill in a std::source_location::__impl structure, by creating an 2303 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to 2304 // that. 2305 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl(); 2306 assert(ImplDecl); 2307 2308 // Construct an APValue for the __impl struct, and get or create a Decl 2309 // corresponding to that. Note that we've already verified that the shape of 2310 // the ImplDecl type is as expected. 2311 2312 APValue Value(APValue::UninitStruct(), 0, 4); 2313 for (const FieldDecl *F : ImplDecl->fields()) { 2314 StringRef Name = F->getName(); 2315 if (Name == "_M_file_name") { 2316 SmallString<256> Path(PLoc.getFilename()); 2317 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2318 Ctx.getTargetInfo()); 2319 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path); 2320 } else if (Name == "_M_function_name") { 2321 // Note: this emits the PrettyFunction name -- different than what 2322 // __builtin_FUNCTION() above returns! 2323 const auto *CurDecl = dyn_cast<Decl>(Context); 2324 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral( 2325 CurDecl && !isa<TranslationUnitDecl>(CurDecl) 2326 ? StringRef(PredefinedExpr::ComputeName( 2327 PredefinedIdentKind::PrettyFunction, CurDecl)) 2328 : ""); 2329 } else if (Name == "_M_line") { 2330 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType()); 2331 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2332 } else if (Name == "_M_column") { 2333 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType()); 2334 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2335 } 2336 } 2337 2338 UnnamedGlobalConstantDecl *GV = 2339 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value); 2340 2341 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{}, 2342 false); 2343 } 2344 } 2345 llvm_unreachable("unhandled case"); 2346 } 2347 2348 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2349 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) 2350 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), 2351 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), 2352 RBraceLoc(rbraceloc), AltForm(nullptr, true) { 2353 sawArrayRangeDesignator(false); 2354 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2355 2356 setDependence(computeDependence(this)); 2357 } 2358 2359 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2360 if (NumInits > InitExprs.size()) 2361 InitExprs.reserve(C, NumInits); 2362 } 2363 2364 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2365 InitExprs.resize(C, NumInits, nullptr); 2366 } 2367 2368 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2369 if (Init >= InitExprs.size()) { 2370 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2371 setInit(Init, expr); 2372 return nullptr; 2373 } 2374 2375 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2376 setInit(Init, expr); 2377 return Result; 2378 } 2379 2380 void InitListExpr::setArrayFiller(Expr *filler) { 2381 assert(!hasArrayFiller() && "Filler already set!"); 2382 ArrayFillerOrUnionFieldInit = filler; 2383 // Fill out any "holes" in the array due to designated initializers. 2384 Expr **inits = getInits(); 2385 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2386 if (inits[i] == nullptr) 2387 inits[i] = filler; 2388 } 2389 2390 bool InitListExpr::isStringLiteralInit() const { 2391 if (getNumInits() != 1) 2392 return false; 2393 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2394 if (!AT || !AT->getElementType()->isIntegerType()) 2395 return false; 2396 // It is possible for getInit() to return null. 2397 const Expr *Init = getInit(0); 2398 if (!Init) 2399 return false; 2400 Init = Init->IgnoreParenImpCasts(); 2401 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2402 } 2403 2404 bool InitListExpr::isTransparent() const { 2405 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2406 2407 // A glvalue InitListExpr is always just sugar. 2408 if (isGLValue()) { 2409 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2410 return true; 2411 } 2412 2413 // Otherwise, we're sugar if and only if we have exactly one initializer that 2414 // is of the same type. 2415 if (getNumInits() != 1 || !getInit(0)) 2416 return false; 2417 2418 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2419 // transparent struct copy. 2420 if (!getInit(0)->isPRValue() && getType()->isRecordType()) 2421 return false; 2422 2423 return getType().getCanonicalType() == 2424 getInit(0)->getType().getCanonicalType(); 2425 } 2426 2427 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2428 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2429 2430 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2431 return false; 2432 } 2433 2434 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2435 return Lit && Lit->getValue() == 0; 2436 } 2437 2438 SourceLocation InitListExpr::getBeginLoc() const { 2439 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2440 return SyntacticForm->getBeginLoc(); 2441 SourceLocation Beg = LBraceLoc; 2442 if (Beg.isInvalid()) { 2443 // Find the first non-null initializer. 2444 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2445 E = InitExprs.end(); 2446 I != E; ++I) { 2447 if (Stmt *S = *I) { 2448 Beg = S->getBeginLoc(); 2449 break; 2450 } 2451 } 2452 } 2453 return Beg; 2454 } 2455 2456 SourceLocation InitListExpr::getEndLoc() const { 2457 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2458 return SyntacticForm->getEndLoc(); 2459 SourceLocation End = RBraceLoc; 2460 if (End.isInvalid()) { 2461 // Find the first non-null initializer from the end. 2462 for (Stmt *S : llvm::reverse(InitExprs)) { 2463 if (S) { 2464 End = S->getEndLoc(); 2465 break; 2466 } 2467 } 2468 } 2469 return End; 2470 } 2471 2472 /// getFunctionType - Return the underlying function type for this block. 2473 /// 2474 const FunctionProtoType *BlockExpr::getFunctionType() const { 2475 // The block pointer is never sugared, but the function type might be. 2476 return cast<BlockPointerType>(getType()) 2477 ->getPointeeType()->castAs<FunctionProtoType>(); 2478 } 2479 2480 SourceLocation BlockExpr::getCaretLocation() const { 2481 return TheBlock->getCaretLocation(); 2482 } 2483 const Stmt *BlockExpr::getBody() const { 2484 return TheBlock->getBody(); 2485 } 2486 Stmt *BlockExpr::getBody() { 2487 return TheBlock->getBody(); 2488 } 2489 2490 2491 //===----------------------------------------------------------------------===// 2492 // Generic Expression Routines 2493 //===----------------------------------------------------------------------===// 2494 2495 bool Expr::isReadIfDiscardedInCPlusPlus11() const { 2496 // In C++11, discarded-value expressions of a certain form are special, 2497 // according to [expr]p10: 2498 // The lvalue-to-rvalue conversion (4.1) is applied only if the 2499 // expression is a glvalue of volatile-qualified type and it has 2500 // one of the following forms: 2501 if (!isGLValue() || !getType().isVolatileQualified()) 2502 return false; 2503 2504 const Expr *E = IgnoreParens(); 2505 2506 // - id-expression (5.1.1), 2507 if (isa<DeclRefExpr>(E)) 2508 return true; 2509 2510 // - subscripting (5.2.1), 2511 if (isa<ArraySubscriptExpr>(E)) 2512 return true; 2513 2514 // - class member access (5.2.5), 2515 if (isa<MemberExpr>(E)) 2516 return true; 2517 2518 // - indirection (5.3.1), 2519 if (auto *UO = dyn_cast<UnaryOperator>(E)) 2520 if (UO->getOpcode() == UO_Deref) 2521 return true; 2522 2523 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 2524 // - pointer-to-member operation (5.5), 2525 if (BO->isPtrMemOp()) 2526 return true; 2527 2528 // - comma expression (5.18) where the right operand is one of the above. 2529 if (BO->getOpcode() == BO_Comma) 2530 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); 2531 } 2532 2533 // - conditional expression (5.16) where both the second and the third 2534 // operands are one of the above, or 2535 if (auto *CO = dyn_cast<ConditionalOperator>(E)) 2536 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && 2537 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2538 // The related edge case of "*x ?: *x". 2539 if (auto *BCO = 2540 dyn_cast<BinaryConditionalOperator>(E)) { 2541 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 2542 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && 2543 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2544 } 2545 2546 // Objective-C++ extensions to the rule. 2547 if (isa<ObjCIvarRefExpr>(E)) 2548 return true; 2549 if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) { 2550 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm())) 2551 return true; 2552 } 2553 2554 return false; 2555 } 2556 2557 /// isUnusedResultAWarning - Return true if this immediate expression should 2558 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2559 /// with location to warn on and the source range[s] to report with the 2560 /// warning. 2561 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2562 SourceRange &R1, SourceRange &R2, 2563 ASTContext &Ctx) const { 2564 // Don't warn if the expr is type dependent. The type could end up 2565 // instantiating to void. 2566 if (isTypeDependent()) 2567 return false; 2568 2569 switch (getStmtClass()) { 2570 default: 2571 if (getType()->isVoidType()) 2572 return false; 2573 WarnE = this; 2574 Loc = getExprLoc(); 2575 R1 = getSourceRange(); 2576 return true; 2577 case ParenExprClass: 2578 return cast<ParenExpr>(this)->getSubExpr()-> 2579 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2580 case GenericSelectionExprClass: 2581 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2582 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2583 case CoawaitExprClass: 2584 case CoyieldExprClass: 2585 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2586 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2587 case ChooseExprClass: 2588 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2589 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2590 case UnaryOperatorClass: { 2591 const UnaryOperator *UO = cast<UnaryOperator>(this); 2592 2593 switch (UO->getOpcode()) { 2594 case UO_Plus: 2595 case UO_Minus: 2596 case UO_AddrOf: 2597 case UO_Not: 2598 case UO_LNot: 2599 case UO_Deref: 2600 break; 2601 case UO_Coawait: 2602 // This is just the 'operator co_await' call inside the guts of a 2603 // dependent co_await call. 2604 case UO_PostInc: 2605 case UO_PostDec: 2606 case UO_PreInc: 2607 case UO_PreDec: // ++/-- 2608 return false; // Not a warning. 2609 case UO_Real: 2610 case UO_Imag: 2611 // accessing a piece of a volatile complex is a side-effect. 2612 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2613 .isVolatileQualified()) 2614 return false; 2615 break; 2616 case UO_Extension: 2617 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2618 } 2619 WarnE = this; 2620 Loc = UO->getOperatorLoc(); 2621 R1 = UO->getSubExpr()->getSourceRange(); 2622 return true; 2623 } 2624 case BinaryOperatorClass: { 2625 const BinaryOperator *BO = cast<BinaryOperator>(this); 2626 switch (BO->getOpcode()) { 2627 default: 2628 break; 2629 // Consider the RHS of comma for side effects. LHS was checked by 2630 // Sema::CheckCommaOperands. 2631 case BO_Comma: 2632 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2633 // lvalue-ness) of an assignment written in a macro. 2634 if (IntegerLiteral *IE = 2635 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2636 if (IE->getValue() == 0) 2637 return false; 2638 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2639 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2640 case BO_LAnd: 2641 case BO_LOr: 2642 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2643 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2644 return false; 2645 break; 2646 } 2647 if (BO->isAssignmentOp()) 2648 return false; 2649 WarnE = this; 2650 Loc = BO->getOperatorLoc(); 2651 R1 = BO->getLHS()->getSourceRange(); 2652 R2 = BO->getRHS()->getSourceRange(); 2653 return true; 2654 } 2655 case CompoundAssignOperatorClass: 2656 case VAArgExprClass: 2657 case AtomicExprClass: 2658 return false; 2659 2660 case ConditionalOperatorClass: { 2661 // If only one of the LHS or RHS is a warning, the operator might 2662 // be being used for control flow. Only warn if both the LHS and 2663 // RHS are warnings. 2664 const auto *Exp = cast<ConditionalOperator>(this); 2665 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2666 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2667 } 2668 case BinaryConditionalOperatorClass: { 2669 const auto *Exp = cast<BinaryConditionalOperator>(this); 2670 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2671 } 2672 2673 case MemberExprClass: 2674 WarnE = this; 2675 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2676 R1 = SourceRange(Loc, Loc); 2677 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2678 return true; 2679 2680 case ArraySubscriptExprClass: 2681 WarnE = this; 2682 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2683 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2684 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2685 return true; 2686 2687 case CXXOperatorCallExprClass: { 2688 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2689 // overloads as there is no reasonable way to define these such that they 2690 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2691 // warning: operators == and != are commonly typo'ed, and so warning on them 2692 // provides additional value as well. If this list is updated, 2693 // DiagnoseUnusedComparison should be as well. 2694 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2695 switch (Op->getOperator()) { 2696 default: 2697 break; 2698 case OO_EqualEqual: 2699 case OO_ExclaimEqual: 2700 case OO_Less: 2701 case OO_Greater: 2702 case OO_GreaterEqual: 2703 case OO_LessEqual: 2704 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2705 Op->getCallReturnType(Ctx)->isVoidType()) 2706 break; 2707 WarnE = this; 2708 Loc = Op->getOperatorLoc(); 2709 R1 = Op->getSourceRange(); 2710 return true; 2711 } 2712 2713 // Fallthrough for generic call handling. 2714 [[fallthrough]]; 2715 } 2716 case CallExprClass: 2717 case CXXMemberCallExprClass: 2718 case UserDefinedLiteralClass: { 2719 // If this is a direct call, get the callee. 2720 const CallExpr *CE = cast<CallExpr>(this); 2721 if (const Decl *FD = CE->getCalleeDecl()) { 2722 // If the callee has attribute pure, const, or warn_unused_result, warn 2723 // about it. void foo() { strlen("bar"); } should warn. 2724 // 2725 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2726 // updated to match for QoI. 2727 if (CE->hasUnusedResultAttr(Ctx) || 2728 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2729 WarnE = this; 2730 Loc = CE->getCallee()->getBeginLoc(); 2731 R1 = CE->getCallee()->getSourceRange(); 2732 2733 if (unsigned NumArgs = CE->getNumArgs()) 2734 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2735 CE->getArg(NumArgs - 1)->getEndLoc()); 2736 return true; 2737 } 2738 } 2739 return false; 2740 } 2741 2742 // If we don't know precisely what we're looking at, let's not warn. 2743 case UnresolvedLookupExprClass: 2744 case CXXUnresolvedConstructExprClass: 2745 case RecoveryExprClass: 2746 return false; 2747 2748 case CXXTemporaryObjectExprClass: 2749 case CXXConstructExprClass: { 2750 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2751 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2752 if (Type->hasAttr<WarnUnusedAttr>() || 2753 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2754 WarnE = this; 2755 Loc = getBeginLoc(); 2756 R1 = getSourceRange(); 2757 return true; 2758 } 2759 } 2760 2761 const auto *CE = cast<CXXConstructExpr>(this); 2762 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2763 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2764 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2765 WarnE = this; 2766 Loc = getBeginLoc(); 2767 R1 = getSourceRange(); 2768 2769 if (unsigned NumArgs = CE->getNumArgs()) 2770 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2771 CE->getArg(NumArgs - 1)->getEndLoc()); 2772 return true; 2773 } 2774 } 2775 2776 return false; 2777 } 2778 2779 case ObjCMessageExprClass: { 2780 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2781 if (Ctx.getLangOpts().ObjCAutoRefCount && 2782 ME->isInstanceMessage() && 2783 !ME->getType()->isVoidType() && 2784 ME->getMethodFamily() == OMF_init) { 2785 WarnE = this; 2786 Loc = getExprLoc(); 2787 R1 = ME->getSourceRange(); 2788 return true; 2789 } 2790 2791 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2792 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2793 WarnE = this; 2794 Loc = getExprLoc(); 2795 return true; 2796 } 2797 2798 return false; 2799 } 2800 2801 case ObjCPropertyRefExprClass: 2802 case ObjCSubscriptRefExprClass: 2803 WarnE = this; 2804 Loc = getExprLoc(); 2805 R1 = getSourceRange(); 2806 return true; 2807 2808 case PseudoObjectExprClass: { 2809 const auto *POE = cast<PseudoObjectExpr>(this); 2810 2811 // For some syntactic forms, we should always warn. 2812 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>( 2813 POE->getSyntacticForm())) { 2814 WarnE = this; 2815 Loc = getExprLoc(); 2816 R1 = getSourceRange(); 2817 return true; 2818 } 2819 2820 // For others, we should never warn. 2821 if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm())) 2822 if (BO->isAssignmentOp()) 2823 return false; 2824 if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm())) 2825 if (UO->isIncrementDecrementOp()) 2826 return false; 2827 2828 // Otherwise, warn if the result expression would warn. 2829 const Expr *Result = POE->getResultExpr(); 2830 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2831 } 2832 2833 case StmtExprClass: { 2834 // Statement exprs don't logically have side effects themselves, but are 2835 // sometimes used in macros in ways that give them a type that is unused. 2836 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2837 // however, if the result of the stmt expr is dead, we don't want to emit a 2838 // warning. 2839 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2840 if (!CS->body_empty()) { 2841 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2842 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2843 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2844 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2845 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2846 } 2847 2848 if (getType()->isVoidType()) 2849 return false; 2850 WarnE = this; 2851 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2852 R1 = getSourceRange(); 2853 return true; 2854 } 2855 case CXXFunctionalCastExprClass: 2856 case CStyleCastExprClass: { 2857 // Ignore an explicit cast to void, except in C++98 if the operand is a 2858 // volatile glvalue for which we would trigger an implicit read in any 2859 // other language mode. (Such an implicit read always happens as part of 2860 // the lvalue conversion in C, and happens in C++ for expressions of all 2861 // forms where it seems likely the user intended to trigger a volatile 2862 // load.) 2863 const CastExpr *CE = cast<CastExpr>(this); 2864 const Expr *SubE = CE->getSubExpr()->IgnoreParens(); 2865 if (CE->getCastKind() == CK_ToVoid) { 2866 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && 2867 SubE->isReadIfDiscardedInCPlusPlus11()) { 2868 // Suppress the "unused value" warning for idiomatic usage of 2869 // '(void)var;' used to suppress "unused variable" warnings. 2870 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) 2871 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2872 if (!VD->isExternallyVisible()) 2873 return false; 2874 2875 // The lvalue-to-rvalue conversion would have no effect for an array. 2876 // It's implausible that the programmer expected this to result in a 2877 // volatile array load, so don't warn. 2878 if (SubE->getType()->isArrayType()) 2879 return false; 2880 2881 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2882 } 2883 return false; 2884 } 2885 2886 // If this is a cast to a constructor conversion, check the operand. 2887 // Otherwise, the result of the cast is unused. 2888 if (CE->getCastKind() == CK_ConstructorConversion) 2889 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2890 if (CE->getCastKind() == CK_Dependent) 2891 return false; 2892 2893 WarnE = this; 2894 if (const CXXFunctionalCastExpr *CXXCE = 2895 dyn_cast<CXXFunctionalCastExpr>(this)) { 2896 Loc = CXXCE->getBeginLoc(); 2897 R1 = CXXCE->getSubExpr()->getSourceRange(); 2898 } else { 2899 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2900 Loc = CStyleCE->getLParenLoc(); 2901 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2902 } 2903 return true; 2904 } 2905 case ImplicitCastExprClass: { 2906 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2907 2908 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2909 if (ICE->getCastKind() == CK_LValueToRValue && 2910 ICE->getSubExpr()->getType().isVolatileQualified()) 2911 return false; 2912 2913 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2914 } 2915 case CXXDefaultArgExprClass: 2916 return (cast<CXXDefaultArgExpr>(this) 2917 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2918 case CXXDefaultInitExprClass: 2919 return (cast<CXXDefaultInitExpr>(this) 2920 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2921 2922 case CXXNewExprClass: 2923 // FIXME: In theory, there might be new expressions that don't have side 2924 // effects (e.g. a placement new with an uninitialized POD). 2925 case CXXDeleteExprClass: 2926 return false; 2927 case MaterializeTemporaryExprClass: 2928 return cast<MaterializeTemporaryExpr>(this) 2929 ->getSubExpr() 2930 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2931 case CXXBindTemporaryExprClass: 2932 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2933 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2934 case ExprWithCleanupsClass: 2935 return cast<ExprWithCleanups>(this)->getSubExpr() 2936 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2937 } 2938 } 2939 2940 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2941 /// returns true, if it is; false otherwise. 2942 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2943 const Expr *E = IgnoreParens(); 2944 switch (E->getStmtClass()) { 2945 default: 2946 return false; 2947 case ObjCIvarRefExprClass: 2948 return true; 2949 case Expr::UnaryOperatorClass: 2950 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2951 case ImplicitCastExprClass: 2952 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2953 case MaterializeTemporaryExprClass: 2954 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 2955 Ctx); 2956 case CStyleCastExprClass: 2957 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2958 case DeclRefExprClass: { 2959 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2960 2961 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2962 if (VD->hasGlobalStorage()) 2963 return true; 2964 QualType T = VD->getType(); 2965 // dereferencing to a pointer is always a gc'able candidate, 2966 // unless it is __weak. 2967 return T->isPointerType() && 2968 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2969 } 2970 return false; 2971 } 2972 case MemberExprClass: { 2973 const MemberExpr *M = cast<MemberExpr>(E); 2974 return M->getBase()->isOBJCGCCandidate(Ctx); 2975 } 2976 case ArraySubscriptExprClass: 2977 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2978 } 2979 } 2980 2981 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2982 if (isTypeDependent()) 2983 return false; 2984 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2985 } 2986 2987 QualType Expr::findBoundMemberType(const Expr *expr) { 2988 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2989 2990 // Bound member expressions are always one of these possibilities: 2991 // x->m x.m x->*y x.*y 2992 // (possibly parenthesized) 2993 2994 expr = expr->IgnoreParens(); 2995 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2996 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2997 return mem->getMemberDecl()->getType(); 2998 } 2999 3000 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 3001 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 3002 ->getPointeeType(); 3003 assert(type->isFunctionType()); 3004 return type; 3005 } 3006 3007 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 3008 return QualType(); 3009 } 3010 3011 Expr *Expr::IgnoreImpCasts() { 3012 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep); 3013 } 3014 3015 Expr *Expr::IgnoreCasts() { 3016 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 3017 } 3018 3019 Expr *Expr::IgnoreImplicit() { 3020 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 3021 } 3022 3023 Expr *Expr::IgnoreImplicitAsWritten() { 3024 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 3025 } 3026 3027 Expr *Expr::IgnoreParens() { 3028 return IgnoreExprNodes(this, IgnoreParensSingleStep); 3029 } 3030 3031 Expr *Expr::IgnoreParenImpCasts() { 3032 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3033 IgnoreImplicitCastsExtraSingleStep); 3034 } 3035 3036 Expr *Expr::IgnoreParenCasts() { 3037 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 3038 } 3039 3040 Expr *Expr::IgnoreConversionOperatorSingleStep() { 3041 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 3042 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 3043 return MCE->getImplicitObjectArgument(); 3044 } 3045 return this; 3046 } 3047 3048 Expr *Expr::IgnoreParenLValueCasts() { 3049 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3050 IgnoreLValueCastsSingleStep); 3051 } 3052 3053 Expr *Expr::IgnoreParenBaseCasts() { 3054 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3055 IgnoreBaseCastsSingleStep); 3056 } 3057 3058 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 3059 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { 3060 if (auto *CE = dyn_cast<CastExpr>(E)) { 3061 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 3062 // ptr<->int casts of the same width. We also ignore all identity casts. 3063 Expr *SubExpr = CE->getSubExpr(); 3064 bool IsIdentityCast = 3065 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 3066 bool IsSameWidthCast = (E->getType()->isPointerType() || 3067 E->getType()->isIntegralType(Ctx)) && 3068 (SubExpr->getType()->isPointerType() || 3069 SubExpr->getType()->isIntegralType(Ctx)) && 3070 (Ctx.getTypeSize(E->getType()) == 3071 Ctx.getTypeSize(SubExpr->getType())); 3072 3073 if (IsIdentityCast || IsSameWidthCast) 3074 return SubExpr; 3075 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 3076 return NTTP->getReplacement(); 3077 3078 return E; 3079 }; 3080 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3081 IgnoreNoopCastsSingleStep); 3082 } 3083 3084 Expr *Expr::IgnoreUnlessSpelledInSource() { 3085 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { 3086 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) { 3087 auto *SE = Cast->getSubExpr(); 3088 if (SE->getSourceRange() == E->getSourceRange()) 3089 return SE; 3090 } 3091 3092 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 3093 auto NumArgs = C->getNumArgs(); 3094 if (NumArgs == 1 || 3095 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 3096 Expr *A = C->getArg(0); 3097 if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) 3098 return A; 3099 } 3100 } 3101 return E; 3102 }; 3103 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { 3104 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 3105 Expr *ExprNode = C->getImplicitObjectArgument(); 3106 if (ExprNode->getSourceRange() == E->getSourceRange()) { 3107 return ExprNode; 3108 } 3109 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { 3110 if (PE->getSourceRange() == C->getSourceRange()) { 3111 return cast<Expr>(PE); 3112 } 3113 } 3114 ExprNode = ExprNode->IgnoreParenImpCasts(); 3115 if (ExprNode->getSourceRange() == E->getSourceRange()) 3116 return ExprNode; 3117 } 3118 return E; 3119 }; 3120 return IgnoreExprNodes( 3121 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep, 3122 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep, 3123 IgnoreImplicitMemberCallSingleStep); 3124 } 3125 3126 bool Expr::isDefaultArgument() const { 3127 const Expr *E = this; 3128 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3129 E = M->getSubExpr(); 3130 3131 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3132 E = ICE->getSubExprAsWritten(); 3133 3134 return isa<CXXDefaultArgExpr>(E); 3135 } 3136 3137 /// Skip over any no-op casts and any temporary-binding 3138 /// expressions. 3139 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3140 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3141 E = M->getSubExpr(); 3142 3143 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3144 if (ICE->getCastKind() == CK_NoOp) 3145 E = ICE->getSubExpr(); 3146 else 3147 break; 3148 } 3149 3150 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3151 E = BE->getSubExpr(); 3152 3153 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3154 if (ICE->getCastKind() == CK_NoOp) 3155 E = ICE->getSubExpr(); 3156 else 3157 break; 3158 } 3159 3160 return E->IgnoreParens(); 3161 } 3162 3163 /// isTemporaryObject - Determines if this expression produces a 3164 /// temporary of the given class type. 3165 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3166 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3167 return false; 3168 3169 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3170 3171 // Temporaries are by definition pr-values of class type. 3172 if (!E->Classify(C).isPRValue()) { 3173 // In this context, property reference is a message call and is pr-value. 3174 if (!isa<ObjCPropertyRefExpr>(E)) 3175 return false; 3176 } 3177 3178 // Black-list a few cases which yield pr-values of class type that don't 3179 // refer to temporaries of that type: 3180 3181 // - implicit derived-to-base conversions 3182 if (isa<ImplicitCastExpr>(E)) { 3183 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3184 case CK_DerivedToBase: 3185 case CK_UncheckedDerivedToBase: 3186 return false; 3187 default: 3188 break; 3189 } 3190 } 3191 3192 // - member expressions (all) 3193 if (isa<MemberExpr>(E)) 3194 return false; 3195 3196 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3197 if (BO->isPtrMemOp()) 3198 return false; 3199 3200 // - opaque values (all) 3201 if (isa<OpaqueValueExpr>(E)) 3202 return false; 3203 3204 return true; 3205 } 3206 3207 bool Expr::isImplicitCXXThis() const { 3208 const Expr *E = this; 3209 3210 // Strip away parentheses and casts we don't care about. 3211 while (true) { 3212 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3213 E = Paren->getSubExpr(); 3214 continue; 3215 } 3216 3217 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3218 if (ICE->getCastKind() == CK_NoOp || 3219 ICE->getCastKind() == CK_LValueToRValue || 3220 ICE->getCastKind() == CK_DerivedToBase || 3221 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3222 E = ICE->getSubExpr(); 3223 continue; 3224 } 3225 } 3226 3227 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3228 if (UnOp->getOpcode() == UO_Extension) { 3229 E = UnOp->getSubExpr(); 3230 continue; 3231 } 3232 } 3233 3234 if (const MaterializeTemporaryExpr *M 3235 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3236 E = M->getSubExpr(); 3237 continue; 3238 } 3239 3240 break; 3241 } 3242 3243 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3244 return This->isImplicit(); 3245 3246 return false; 3247 } 3248 3249 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3250 /// in Exprs is type-dependent. 3251 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3252 for (unsigned I = 0; I < Exprs.size(); ++I) 3253 if (Exprs[I]->isTypeDependent()) 3254 return true; 3255 3256 return false; 3257 } 3258 3259 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3260 const Expr **Culprit) const { 3261 assert(!isValueDependent() && 3262 "Expression evaluator can't be called on a dependent expression."); 3263 3264 // This function is attempting whether an expression is an initializer 3265 // which can be evaluated at compile-time. It very closely parallels 3266 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3267 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3268 // to isEvaluatable most of the time. 3269 // 3270 // If we ever capture reference-binding directly in the AST, we can 3271 // kill the second parameter. 3272 3273 if (IsForRef) { 3274 if (auto *EWC = dyn_cast<ExprWithCleanups>(this)) 3275 return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit); 3276 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(this)) 3277 return MTE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3278 EvalResult Result; 3279 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3280 return true; 3281 if (Culprit) 3282 *Culprit = this; 3283 return false; 3284 } 3285 3286 switch (getStmtClass()) { 3287 default: break; 3288 case Stmt::ExprWithCleanupsClass: 3289 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( 3290 Ctx, IsForRef, Culprit); 3291 case StringLiteralClass: 3292 case ObjCEncodeExprClass: 3293 return true; 3294 case CXXTemporaryObjectExprClass: 3295 case CXXConstructExprClass: { 3296 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3297 3298 if (CE->getConstructor()->isTrivial() && 3299 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3300 // Trivial default constructor 3301 if (!CE->getNumArgs()) return true; 3302 3303 // Trivial copy constructor 3304 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3305 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3306 } 3307 3308 break; 3309 } 3310 case ConstantExprClass: { 3311 // FIXME: We should be able to return "true" here, but it can lead to extra 3312 // error messages. E.g. in Sema/array-init.c. 3313 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3314 return Exp->isConstantInitializer(Ctx, false, Culprit); 3315 } 3316 case CompoundLiteralExprClass: { 3317 // This handles gcc's extension that allows global initializers like 3318 // "struct x {int x;} x = (struct x) {};". 3319 // FIXME: This accepts other cases it shouldn't! 3320 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3321 return Exp->isConstantInitializer(Ctx, false, Culprit); 3322 } 3323 case DesignatedInitUpdateExprClass: { 3324 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3325 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3326 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3327 } 3328 case InitListExprClass: { 3329 const InitListExpr *ILE = cast<InitListExpr>(this); 3330 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3331 if (ILE->getType()->isArrayType()) { 3332 unsigned numInits = ILE->getNumInits(); 3333 for (unsigned i = 0; i < numInits; i++) { 3334 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3335 return false; 3336 } 3337 return true; 3338 } 3339 3340 if (ILE->getType()->isRecordType()) { 3341 unsigned ElementNo = 0; 3342 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3343 for (const auto *Field : RD->fields()) { 3344 // If this is a union, skip all the fields that aren't being initialized. 3345 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3346 continue; 3347 3348 // Don't emit anonymous bitfields, they just affect layout. 3349 if (Field->isUnnamedBitfield()) 3350 continue; 3351 3352 if (ElementNo < ILE->getNumInits()) { 3353 const Expr *Elt = ILE->getInit(ElementNo++); 3354 if (Field->isBitField()) { 3355 // Bitfields have to evaluate to an integer. 3356 EvalResult Result; 3357 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3358 if (Culprit) 3359 *Culprit = Elt; 3360 return false; 3361 } 3362 } else { 3363 bool RefType = Field->getType()->isReferenceType(); 3364 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3365 return false; 3366 } 3367 } 3368 } 3369 return true; 3370 } 3371 3372 break; 3373 } 3374 case ImplicitValueInitExprClass: 3375 case NoInitExprClass: 3376 return true; 3377 case ParenExprClass: 3378 return cast<ParenExpr>(this)->getSubExpr() 3379 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3380 case GenericSelectionExprClass: 3381 return cast<GenericSelectionExpr>(this)->getResultExpr() 3382 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3383 case ChooseExprClass: 3384 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3385 if (Culprit) 3386 *Culprit = this; 3387 return false; 3388 } 3389 return cast<ChooseExpr>(this)->getChosenSubExpr() 3390 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3391 case UnaryOperatorClass: { 3392 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3393 if (Exp->getOpcode() == UO_Extension) 3394 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3395 break; 3396 } 3397 case CXXFunctionalCastExprClass: 3398 case CXXStaticCastExprClass: 3399 case ImplicitCastExprClass: 3400 case CStyleCastExprClass: 3401 case ObjCBridgedCastExprClass: 3402 case CXXDynamicCastExprClass: 3403 case CXXReinterpretCastExprClass: 3404 case CXXAddrspaceCastExprClass: 3405 case CXXConstCastExprClass: { 3406 const CastExpr *CE = cast<CastExpr>(this); 3407 3408 // Handle misc casts we want to ignore. 3409 if (CE->getCastKind() == CK_NoOp || 3410 CE->getCastKind() == CK_LValueToRValue || 3411 CE->getCastKind() == CK_ToUnion || 3412 CE->getCastKind() == CK_ConstructorConversion || 3413 CE->getCastKind() == CK_NonAtomicToAtomic || 3414 CE->getCastKind() == CK_AtomicToNonAtomic || 3415 CE->getCastKind() == CK_NullToPointer || 3416 CE->getCastKind() == CK_IntToOCLSampler) 3417 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3418 3419 break; 3420 } 3421 case MaterializeTemporaryExprClass: 3422 return cast<MaterializeTemporaryExpr>(this) 3423 ->getSubExpr() 3424 ->isConstantInitializer(Ctx, false, Culprit); 3425 3426 case SubstNonTypeTemplateParmExprClass: 3427 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3428 ->isConstantInitializer(Ctx, false, Culprit); 3429 case CXXDefaultArgExprClass: 3430 return cast<CXXDefaultArgExpr>(this)->getExpr() 3431 ->isConstantInitializer(Ctx, false, Culprit); 3432 case CXXDefaultInitExprClass: 3433 return cast<CXXDefaultInitExpr>(this)->getExpr() 3434 ->isConstantInitializer(Ctx, false, Culprit); 3435 } 3436 // Allow certain forms of UB in constant initializers: signed integer 3437 // overflow and floating-point division by zero. We'll give a warning on 3438 // these, but they're common enough that we have to accept them. 3439 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3440 return true; 3441 if (Culprit) 3442 *Culprit = this; 3443 return false; 3444 } 3445 3446 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3447 unsigned BuiltinID = getBuiltinCallee(); 3448 if (BuiltinID != Builtin::BI__assume && 3449 BuiltinID != Builtin::BI__builtin_assume) 3450 return false; 3451 3452 const Expr* Arg = getArg(0); 3453 bool ArgVal; 3454 return !Arg->isValueDependent() && 3455 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3456 } 3457 3458 bool CallExpr::isCallToStdMove() const { 3459 return getBuiltinCallee() == Builtin::BImove; 3460 } 3461 3462 namespace { 3463 /// Look for any side effects within a Stmt. 3464 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3465 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3466 const bool IncludePossibleEffects; 3467 bool HasSideEffects; 3468 3469 public: 3470 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3471 : Inherited(Context), 3472 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3473 3474 bool hasSideEffects() const { return HasSideEffects; } 3475 3476 void VisitDecl(const Decl *D) { 3477 if (!D) 3478 return; 3479 3480 // We assume the caller checks subexpressions (eg, the initializer, VLA 3481 // bounds) for side-effects on our behalf. 3482 if (auto *VD = dyn_cast<VarDecl>(D)) { 3483 // Registering a destructor is a side-effect. 3484 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && 3485 VD->needsDestruction(Context)) 3486 HasSideEffects = true; 3487 } 3488 } 3489 3490 void VisitDeclStmt(const DeclStmt *DS) { 3491 for (auto *D : DS->decls()) 3492 VisitDecl(D); 3493 Inherited::VisitDeclStmt(DS); 3494 } 3495 3496 void VisitExpr(const Expr *E) { 3497 if (!HasSideEffects && 3498 E->HasSideEffects(Context, IncludePossibleEffects)) 3499 HasSideEffects = true; 3500 } 3501 }; 3502 } 3503 3504 bool Expr::HasSideEffects(const ASTContext &Ctx, 3505 bool IncludePossibleEffects) const { 3506 // In circumstances where we care about definite side effects instead of 3507 // potential side effects, we want to ignore expressions that are part of a 3508 // macro expansion as a potential side effect. 3509 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3510 return false; 3511 3512 switch (getStmtClass()) { 3513 case NoStmtClass: 3514 #define ABSTRACT_STMT(Type) 3515 #define STMT(Type, Base) case Type##Class: 3516 #define EXPR(Type, Base) 3517 #include "clang/AST/StmtNodes.inc" 3518 llvm_unreachable("unexpected Expr kind"); 3519 3520 case DependentScopeDeclRefExprClass: 3521 case CXXUnresolvedConstructExprClass: 3522 case CXXDependentScopeMemberExprClass: 3523 case UnresolvedLookupExprClass: 3524 case UnresolvedMemberExprClass: 3525 case PackExpansionExprClass: 3526 case SubstNonTypeTemplateParmPackExprClass: 3527 case FunctionParmPackExprClass: 3528 case TypoExprClass: 3529 case RecoveryExprClass: 3530 case CXXFoldExprClass: 3531 // Make a conservative assumption for dependent nodes. 3532 return IncludePossibleEffects; 3533 3534 case DeclRefExprClass: 3535 case ObjCIvarRefExprClass: 3536 case PredefinedExprClass: 3537 case IntegerLiteralClass: 3538 case FixedPointLiteralClass: 3539 case FloatingLiteralClass: 3540 case ImaginaryLiteralClass: 3541 case StringLiteralClass: 3542 case CharacterLiteralClass: 3543 case OffsetOfExprClass: 3544 case ImplicitValueInitExprClass: 3545 case UnaryExprOrTypeTraitExprClass: 3546 case AddrLabelExprClass: 3547 case GNUNullExprClass: 3548 case ArrayInitIndexExprClass: 3549 case NoInitExprClass: 3550 case CXXBoolLiteralExprClass: 3551 case CXXNullPtrLiteralExprClass: 3552 case CXXThisExprClass: 3553 case CXXScalarValueInitExprClass: 3554 case TypeTraitExprClass: 3555 case ArrayTypeTraitExprClass: 3556 case ExpressionTraitExprClass: 3557 case CXXNoexceptExprClass: 3558 case SizeOfPackExprClass: 3559 case ObjCStringLiteralClass: 3560 case ObjCEncodeExprClass: 3561 case ObjCBoolLiteralExprClass: 3562 case ObjCAvailabilityCheckExprClass: 3563 case CXXUuidofExprClass: 3564 case OpaqueValueExprClass: 3565 case SourceLocExprClass: 3566 case ConceptSpecializationExprClass: 3567 case RequiresExprClass: 3568 case SYCLUniqueStableNameExprClass: 3569 // These never have a side-effect. 3570 return false; 3571 3572 case ConstantExprClass: 3573 // FIXME: Move this into the "return false;" block above. 3574 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3575 Ctx, IncludePossibleEffects); 3576 3577 case CallExprClass: 3578 case CXXOperatorCallExprClass: 3579 case CXXMemberCallExprClass: 3580 case CUDAKernelCallExprClass: 3581 case UserDefinedLiteralClass: { 3582 // We don't know a call definitely has side effects, except for calls 3583 // to pure/const functions that definitely don't. 3584 // If the call itself is considered side-effect free, check the operands. 3585 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3586 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3587 if (IsPure || !IncludePossibleEffects) 3588 break; 3589 return true; 3590 } 3591 3592 case BlockExprClass: 3593 case CXXBindTemporaryExprClass: 3594 if (!IncludePossibleEffects) 3595 break; 3596 return true; 3597 3598 case MSPropertyRefExprClass: 3599 case MSPropertySubscriptExprClass: 3600 case CompoundAssignOperatorClass: 3601 case VAArgExprClass: 3602 case AtomicExprClass: 3603 case CXXThrowExprClass: 3604 case CXXNewExprClass: 3605 case CXXDeleteExprClass: 3606 case CoawaitExprClass: 3607 case DependentCoawaitExprClass: 3608 case CoyieldExprClass: 3609 // These always have a side-effect. 3610 return true; 3611 3612 case StmtExprClass: { 3613 // StmtExprs have a side-effect if any substatement does. 3614 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3615 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3616 return Finder.hasSideEffects(); 3617 } 3618 3619 case ExprWithCleanupsClass: 3620 if (IncludePossibleEffects) 3621 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3622 return true; 3623 break; 3624 3625 case ParenExprClass: 3626 case ArraySubscriptExprClass: 3627 case MatrixSubscriptExprClass: 3628 case OMPArraySectionExprClass: 3629 case OMPArrayShapingExprClass: 3630 case OMPIteratorExprClass: 3631 case MemberExprClass: 3632 case ConditionalOperatorClass: 3633 case BinaryConditionalOperatorClass: 3634 case CompoundLiteralExprClass: 3635 case ExtVectorElementExprClass: 3636 case DesignatedInitExprClass: 3637 case DesignatedInitUpdateExprClass: 3638 case ArrayInitLoopExprClass: 3639 case ParenListExprClass: 3640 case CXXPseudoDestructorExprClass: 3641 case CXXRewrittenBinaryOperatorClass: 3642 case CXXStdInitializerListExprClass: 3643 case SubstNonTypeTemplateParmExprClass: 3644 case MaterializeTemporaryExprClass: 3645 case ShuffleVectorExprClass: 3646 case ConvertVectorExprClass: 3647 case AsTypeExprClass: 3648 case CXXParenListInitExprClass: 3649 // These have a side-effect if any subexpression does. 3650 break; 3651 3652 case UnaryOperatorClass: 3653 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3654 return true; 3655 break; 3656 3657 case BinaryOperatorClass: 3658 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3659 return true; 3660 break; 3661 3662 case InitListExprClass: 3663 // FIXME: The children for an InitListExpr doesn't include the array filler. 3664 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3665 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3666 return true; 3667 break; 3668 3669 case GenericSelectionExprClass: 3670 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3671 HasSideEffects(Ctx, IncludePossibleEffects); 3672 3673 case ChooseExprClass: 3674 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3675 Ctx, IncludePossibleEffects); 3676 3677 case CXXDefaultArgExprClass: 3678 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3679 Ctx, IncludePossibleEffects); 3680 3681 case CXXDefaultInitExprClass: { 3682 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3683 if (const Expr *E = FD->getInClassInitializer()) 3684 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3685 // If we've not yet parsed the initializer, assume it has side-effects. 3686 return true; 3687 } 3688 3689 case CXXDynamicCastExprClass: { 3690 // A dynamic_cast expression has side-effects if it can throw. 3691 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3692 if (DCE->getTypeAsWritten()->isReferenceType() && 3693 DCE->getCastKind() == CK_Dynamic) 3694 return true; 3695 } 3696 [[fallthrough]]; 3697 case ImplicitCastExprClass: 3698 case CStyleCastExprClass: 3699 case CXXStaticCastExprClass: 3700 case CXXReinterpretCastExprClass: 3701 case CXXConstCastExprClass: 3702 case CXXAddrspaceCastExprClass: 3703 case CXXFunctionalCastExprClass: 3704 case BuiltinBitCastExprClass: { 3705 // While volatile reads are side-effecting in both C and C++, we treat them 3706 // as having possible (not definite) side-effects. This allows idiomatic 3707 // code to behave without warning, such as sizeof(*v) for a volatile- 3708 // qualified pointer. 3709 if (!IncludePossibleEffects) 3710 break; 3711 3712 const CastExpr *CE = cast<CastExpr>(this); 3713 if (CE->getCastKind() == CK_LValueToRValue && 3714 CE->getSubExpr()->getType().isVolatileQualified()) 3715 return true; 3716 break; 3717 } 3718 3719 case CXXTypeidExprClass: 3720 // typeid might throw if its subexpression is potentially-evaluated, so has 3721 // side-effects in that case whether or not its subexpression does. 3722 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3723 3724 case CXXConstructExprClass: 3725 case CXXTemporaryObjectExprClass: { 3726 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3727 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3728 return true; 3729 // A trivial constructor does not add any side-effects of its own. Just look 3730 // at its arguments. 3731 break; 3732 } 3733 3734 case CXXInheritedCtorInitExprClass: { 3735 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3736 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3737 return true; 3738 break; 3739 } 3740 3741 case LambdaExprClass: { 3742 const LambdaExpr *LE = cast<LambdaExpr>(this); 3743 for (Expr *E : LE->capture_inits()) 3744 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) 3745 return true; 3746 return false; 3747 } 3748 3749 case PseudoObjectExprClass: { 3750 // Only look for side-effects in the semantic form, and look past 3751 // OpaqueValueExpr bindings in that form. 3752 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3753 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3754 E = PO->semantics_end(); 3755 I != E; ++I) { 3756 const Expr *Subexpr = *I; 3757 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3758 Subexpr = OVE->getSourceExpr(); 3759 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3760 return true; 3761 } 3762 return false; 3763 } 3764 3765 case ObjCBoxedExprClass: 3766 case ObjCArrayLiteralClass: 3767 case ObjCDictionaryLiteralClass: 3768 case ObjCSelectorExprClass: 3769 case ObjCProtocolExprClass: 3770 case ObjCIsaExprClass: 3771 case ObjCIndirectCopyRestoreExprClass: 3772 case ObjCSubscriptRefExprClass: 3773 case ObjCBridgedCastExprClass: 3774 case ObjCMessageExprClass: 3775 case ObjCPropertyRefExprClass: 3776 // FIXME: Classify these cases better. 3777 if (IncludePossibleEffects) 3778 return true; 3779 break; 3780 } 3781 3782 // Recurse to children. 3783 for (const Stmt *SubStmt : children()) 3784 if (SubStmt && 3785 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3786 return true; 3787 3788 return false; 3789 } 3790 3791 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { 3792 if (auto Call = dyn_cast<CallExpr>(this)) 3793 return Call->getFPFeaturesInEffect(LO); 3794 if (auto UO = dyn_cast<UnaryOperator>(this)) 3795 return UO->getFPFeaturesInEffect(LO); 3796 if (auto BO = dyn_cast<BinaryOperator>(this)) 3797 return BO->getFPFeaturesInEffect(LO); 3798 if (auto Cast = dyn_cast<CastExpr>(this)) 3799 return Cast->getFPFeaturesInEffect(LO); 3800 return FPOptions::defaultWithoutTrailingStorage(LO); 3801 } 3802 3803 namespace { 3804 /// Look for a call to a non-trivial function within an expression. 3805 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3806 { 3807 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3808 3809 bool NonTrivial; 3810 3811 public: 3812 explicit NonTrivialCallFinder(const ASTContext &Context) 3813 : Inherited(Context), NonTrivial(false) { } 3814 3815 bool hasNonTrivialCall() const { return NonTrivial; } 3816 3817 void VisitCallExpr(const CallExpr *E) { 3818 if (const CXXMethodDecl *Method 3819 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3820 if (Method->isTrivial()) { 3821 // Recurse to children of the call. 3822 Inherited::VisitStmt(E); 3823 return; 3824 } 3825 } 3826 3827 NonTrivial = true; 3828 } 3829 3830 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3831 if (E->getConstructor()->isTrivial()) { 3832 // Recurse to children of the call. 3833 Inherited::VisitStmt(E); 3834 return; 3835 } 3836 3837 NonTrivial = true; 3838 } 3839 3840 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3841 if (E->getTemporary()->getDestructor()->isTrivial()) { 3842 Inherited::VisitStmt(E); 3843 return; 3844 } 3845 3846 NonTrivial = true; 3847 } 3848 }; 3849 } 3850 3851 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3852 NonTrivialCallFinder Finder(Ctx); 3853 Finder.Visit(this); 3854 return Finder.hasNonTrivialCall(); 3855 } 3856 3857 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3858 /// pointer constant or not, as well as the specific kind of constant detected. 3859 /// Null pointer constants can be integer constant expressions with the 3860 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3861 /// (a GNU extension). 3862 Expr::NullPointerConstantKind 3863 Expr::isNullPointerConstant(ASTContext &Ctx, 3864 NullPointerConstantValueDependence NPC) const { 3865 if (isValueDependent() && 3866 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3867 // Error-dependent expr should never be a null pointer. 3868 if (containsErrors()) 3869 return NPCK_NotNull; 3870 switch (NPC) { 3871 case NPC_NeverValueDependent: 3872 llvm_unreachable("Unexpected value dependent expression!"); 3873 case NPC_ValueDependentIsNull: 3874 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3875 return NPCK_ZeroExpression; 3876 else 3877 return NPCK_NotNull; 3878 3879 case NPC_ValueDependentIsNotNull: 3880 return NPCK_NotNull; 3881 } 3882 } 3883 3884 // Strip off a cast to void*, if it exists. Except in C++. 3885 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3886 if (!Ctx.getLangOpts().CPlusPlus) { 3887 // Check that it is a cast to void*. 3888 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3889 QualType Pointee = PT->getPointeeType(); 3890 Qualifiers Qs = Pointee.getQualifiers(); 3891 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3892 // has non-default address space it is not treated as nullptr. 3893 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3894 // since it cannot be assigned to a pointer to constant address space. 3895 if (Ctx.getLangOpts().OpenCL && 3896 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) 3897 Qs.removeAddressSpace(); 3898 3899 if (Pointee->isVoidType() && Qs.empty() && // to void* 3900 CE->getSubExpr()->getType()->isIntegerType()) // from int 3901 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3902 } 3903 } 3904 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3905 // Ignore the ImplicitCastExpr type entirely. 3906 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3907 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3908 // Accept ((void*)0) as a null pointer constant, as many other 3909 // implementations do. 3910 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3911 } else if (const GenericSelectionExpr *GE = 3912 dyn_cast<GenericSelectionExpr>(this)) { 3913 if (GE->isResultDependent()) 3914 return NPCK_NotNull; 3915 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3916 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3917 if (CE->isConditionDependent()) 3918 return NPCK_NotNull; 3919 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3920 } else if (const CXXDefaultArgExpr *DefaultArg 3921 = dyn_cast<CXXDefaultArgExpr>(this)) { 3922 // See through default argument expressions. 3923 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3924 } else if (const CXXDefaultInitExpr *DefaultInit 3925 = dyn_cast<CXXDefaultInitExpr>(this)) { 3926 // See through default initializer expressions. 3927 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3928 } else if (isa<GNUNullExpr>(this)) { 3929 // The GNU __null extension is always a null pointer constant. 3930 return NPCK_GNUNull; 3931 } else if (const MaterializeTemporaryExpr *M 3932 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3933 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3934 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3935 if (const Expr *Source = OVE->getSourceExpr()) 3936 return Source->isNullPointerConstant(Ctx, NPC); 3937 } 3938 3939 // If the expression has no type information, it cannot be a null pointer 3940 // constant. 3941 if (getType().isNull()) 3942 return NPCK_NotNull; 3943 3944 // C++11/C23 nullptr_t is always a null pointer constant. 3945 if (getType()->isNullPtrType()) 3946 return NPCK_CXX11_nullptr; 3947 3948 if (const RecordType *UT = getType()->getAsUnionType()) 3949 if (!Ctx.getLangOpts().CPlusPlus11 && 3950 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3951 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3952 const Expr *InitExpr = CLE->getInitializer(); 3953 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3954 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3955 } 3956 // This expression must be an integer type. 3957 if (!getType()->isIntegerType() || 3958 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3959 return NPCK_NotNull; 3960 3961 if (Ctx.getLangOpts().CPlusPlus11) { 3962 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3963 // value zero or a prvalue of type std::nullptr_t. 3964 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3965 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3966 if (Lit && !Lit->getValue()) 3967 return NPCK_ZeroLiteral; 3968 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3969 return NPCK_NotNull; 3970 } else { 3971 // If we have an integer constant expression, we need to *evaluate* it and 3972 // test for the value 0. 3973 if (!isIntegerConstantExpr(Ctx)) 3974 return NPCK_NotNull; 3975 } 3976 3977 if (EvaluateKnownConstInt(Ctx) != 0) 3978 return NPCK_NotNull; 3979 3980 if (isa<IntegerLiteral>(this)) 3981 return NPCK_ZeroLiteral; 3982 return NPCK_ZeroExpression; 3983 } 3984 3985 /// If this expression is an l-value for an Objective C 3986 /// property, find the underlying property reference expression. 3987 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3988 const Expr *E = this; 3989 while (true) { 3990 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && 3991 "expression is not a property reference"); 3992 E = E->IgnoreParenCasts(); 3993 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3994 if (BO->getOpcode() == BO_Comma) { 3995 E = BO->getRHS(); 3996 continue; 3997 } 3998 } 3999 4000 break; 4001 } 4002 4003 return cast<ObjCPropertyRefExpr>(E); 4004 } 4005 4006 bool Expr::isObjCSelfExpr() const { 4007 const Expr *E = IgnoreParenImpCasts(); 4008 4009 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 4010 if (!DRE) 4011 return false; 4012 4013 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 4014 if (!Param) 4015 return false; 4016 4017 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 4018 if (!M) 4019 return false; 4020 4021 return M->getSelfDecl() == Param; 4022 } 4023 4024 FieldDecl *Expr::getSourceBitField() { 4025 Expr *E = this->IgnoreParens(); 4026 4027 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 4028 if (ICE->getCastKind() == CK_LValueToRValue || 4029 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) 4030 E = ICE->getSubExpr()->IgnoreParens(); 4031 else 4032 break; 4033 } 4034 4035 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 4036 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 4037 if (Field->isBitField()) 4038 return Field; 4039 4040 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 4041 FieldDecl *Ivar = IvarRef->getDecl(); 4042 if (Ivar->isBitField()) 4043 return Ivar; 4044 } 4045 4046 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 4047 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 4048 if (Field->isBitField()) 4049 return Field; 4050 4051 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 4052 if (Expr *E = BD->getBinding()) 4053 return E->getSourceBitField(); 4054 } 4055 4056 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 4057 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 4058 return BinOp->getLHS()->getSourceBitField(); 4059 4060 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 4061 return BinOp->getRHS()->getSourceBitField(); 4062 } 4063 4064 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 4065 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 4066 return UnOp->getSubExpr()->getSourceBitField(); 4067 4068 return nullptr; 4069 } 4070 4071 bool Expr::refersToVectorElement() const { 4072 // FIXME: Why do we not just look at the ObjectKind here? 4073 const Expr *E = this->IgnoreParens(); 4074 4075 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 4076 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) 4077 E = ICE->getSubExpr()->IgnoreParens(); 4078 else 4079 break; 4080 } 4081 4082 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 4083 return ASE->getBase()->getType()->isVectorType(); 4084 4085 if (isa<ExtVectorElementExpr>(E)) 4086 return true; 4087 4088 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 4089 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 4090 if (auto *E = BD->getBinding()) 4091 return E->refersToVectorElement(); 4092 4093 return false; 4094 } 4095 4096 bool Expr::refersToGlobalRegisterVar() const { 4097 const Expr *E = this->IgnoreParenImpCasts(); 4098 4099 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 4100 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 4101 if (VD->getStorageClass() == SC_Register && 4102 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 4103 return true; 4104 4105 return false; 4106 } 4107 4108 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 4109 E1 = E1->IgnoreParens(); 4110 E2 = E2->IgnoreParens(); 4111 4112 if (E1->getStmtClass() != E2->getStmtClass()) 4113 return false; 4114 4115 switch (E1->getStmtClass()) { 4116 default: 4117 return false; 4118 case CXXThisExprClass: 4119 return true; 4120 case DeclRefExprClass: { 4121 // DeclRefExpr without an ImplicitCastExpr can happen for integral 4122 // template parameters. 4123 const auto *DRE1 = cast<DeclRefExpr>(E1); 4124 const auto *DRE2 = cast<DeclRefExpr>(E2); 4125 return DRE1->isPRValue() && DRE2->isPRValue() && 4126 DRE1->getDecl() == DRE2->getDecl(); 4127 } 4128 case ImplicitCastExprClass: { 4129 // Peel off implicit casts. 4130 while (true) { 4131 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 4132 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 4133 if (!ICE1 || !ICE2) 4134 return false; 4135 if (ICE1->getCastKind() != ICE2->getCastKind()) 4136 return false; 4137 E1 = ICE1->getSubExpr()->IgnoreParens(); 4138 E2 = ICE2->getSubExpr()->IgnoreParens(); 4139 // The final cast must be one of these types. 4140 if (ICE1->getCastKind() == CK_LValueToRValue || 4141 ICE1->getCastKind() == CK_ArrayToPointerDecay || 4142 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 4143 break; 4144 } 4145 } 4146 4147 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 4148 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 4149 if (DRE1 && DRE2) 4150 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 4151 4152 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 4153 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 4154 if (Ivar1 && Ivar2) { 4155 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 4156 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 4157 } 4158 4159 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 4160 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 4161 if (Array1 && Array2) { 4162 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 4163 return false; 4164 4165 auto Idx1 = Array1->getIdx(); 4166 auto Idx2 = Array2->getIdx(); 4167 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 4168 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 4169 if (Integer1 && Integer2) { 4170 if (!llvm::APInt::isSameValue(Integer1->getValue(), 4171 Integer2->getValue())) 4172 return false; 4173 } else { 4174 if (!isSameComparisonOperand(Idx1, Idx2)) 4175 return false; 4176 } 4177 4178 return true; 4179 } 4180 4181 // Walk the MemberExpr chain. 4182 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4183 const auto *ME1 = cast<MemberExpr>(E1); 4184 const auto *ME2 = cast<MemberExpr>(E2); 4185 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4186 return false; 4187 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4188 if (D->isStaticDataMember()) 4189 return true; 4190 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4191 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4192 } 4193 4194 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4195 return true; 4196 4197 // A static member variable can end the MemberExpr chain with either 4198 // a MemberExpr or a DeclRefExpr. 4199 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4200 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4201 return DRE->getDecl(); 4202 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4203 return ME->getMemberDecl(); 4204 return nullptr; 4205 }; 4206 4207 const ValueDecl *VD1 = getAnyDecl(E1); 4208 const ValueDecl *VD2 = getAnyDecl(E2); 4209 return declaresSameEntity(VD1, VD2); 4210 } 4211 } 4212 } 4213 4214 /// isArrow - Return true if the base expression is a pointer to vector, 4215 /// return false if the base expression is a vector. 4216 bool ExtVectorElementExpr::isArrow() const { 4217 return getBase()->getType()->isPointerType(); 4218 } 4219 4220 unsigned ExtVectorElementExpr::getNumElements() const { 4221 if (const VectorType *VT = getType()->getAs<VectorType>()) 4222 return VT->getNumElements(); 4223 return 1; 4224 } 4225 4226 /// containsDuplicateElements - Return true if any element access is repeated. 4227 bool ExtVectorElementExpr::containsDuplicateElements() const { 4228 // FIXME: Refactor this code to an accessor on the AST node which returns the 4229 // "type" of component access, and share with code below and in Sema. 4230 StringRef Comp = Accessor->getName(); 4231 4232 // Halving swizzles do not contain duplicate elements. 4233 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4234 return false; 4235 4236 // Advance past s-char prefix on hex swizzles. 4237 if (Comp[0] == 's' || Comp[0] == 'S') 4238 Comp = Comp.substr(1); 4239 4240 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4241 if (Comp.substr(i + 1).contains(Comp[i])) 4242 return true; 4243 4244 return false; 4245 } 4246 4247 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4248 void ExtVectorElementExpr::getEncodedElementAccess( 4249 SmallVectorImpl<uint32_t> &Elts) const { 4250 StringRef Comp = Accessor->getName(); 4251 bool isNumericAccessor = false; 4252 if (Comp[0] == 's' || Comp[0] == 'S') { 4253 Comp = Comp.substr(1); 4254 isNumericAccessor = true; 4255 } 4256 4257 bool isHi = Comp == "hi"; 4258 bool isLo = Comp == "lo"; 4259 bool isEven = Comp == "even"; 4260 bool isOdd = Comp == "odd"; 4261 4262 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4263 uint64_t Index; 4264 4265 if (isHi) 4266 Index = e + i; 4267 else if (isLo) 4268 Index = i; 4269 else if (isEven) 4270 Index = 2 * i; 4271 else if (isOdd) 4272 Index = 2 * i + 1; 4273 else 4274 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4275 4276 Elts.push_back(Index); 4277 } 4278 } 4279 4280 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, 4281 QualType Type, SourceLocation BLoc, 4282 SourceLocation RP) 4283 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), 4284 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { 4285 SubExprs = new (C) Stmt*[args.size()]; 4286 for (unsigned i = 0; i != args.size(); i++) 4287 SubExprs[i] = args[i]; 4288 4289 setDependence(computeDependence(this)); 4290 } 4291 4292 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4293 if (SubExprs) C.Deallocate(SubExprs); 4294 4295 this->NumExprs = Exprs.size(); 4296 SubExprs = new (C) Stmt*[NumExprs]; 4297 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4298 } 4299 4300 GenericSelectionExpr::GenericSelectionExpr( 4301 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4302 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4303 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4304 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4305 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4306 AssocExprs[ResultIndex]->getValueKind(), 4307 AssocExprs[ResultIndex]->getObjectKind()), 4308 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4309 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4310 assert(AssocTypes.size() == AssocExprs.size() && 4311 "Must have the same number of association expressions" 4312 " and TypeSourceInfo!"); 4313 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4314 4315 GenericSelectionExprBits.GenericLoc = GenericLoc; 4316 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = 4317 ControllingExpr; 4318 std::copy(AssocExprs.begin(), AssocExprs.end(), 4319 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4320 std::copy(AssocTypes.begin(), AssocTypes.end(), 4321 getTrailingObjects<TypeSourceInfo *>() + 4322 getIndexOfStartOfAssociatedTypes()); 4323 4324 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4325 } 4326 4327 GenericSelectionExpr::GenericSelectionExpr( 4328 const ASTContext &, SourceLocation GenericLoc, 4329 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4330 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4331 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, 4332 unsigned ResultIndex) 4333 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4334 AssocExprs[ResultIndex]->getValueKind(), 4335 AssocExprs[ResultIndex]->getObjectKind()), 4336 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4337 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4338 assert(AssocTypes.size() == AssocExprs.size() && 4339 "Must have the same number of association expressions" 4340 " and TypeSourceInfo!"); 4341 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4342 4343 GenericSelectionExprBits.GenericLoc = GenericLoc; 4344 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = 4345 ControllingType; 4346 std::copy(AssocExprs.begin(), AssocExprs.end(), 4347 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4348 std::copy(AssocTypes.begin(), AssocTypes.end(), 4349 getTrailingObjects<TypeSourceInfo *>() + 4350 getIndexOfStartOfAssociatedTypes()); 4351 4352 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4353 } 4354 4355 GenericSelectionExpr::GenericSelectionExpr( 4356 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4357 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4358 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4359 bool ContainsUnexpandedParameterPack) 4360 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4361 OK_Ordinary), 4362 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4363 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4364 assert(AssocTypes.size() == AssocExprs.size() && 4365 "Must have the same number of association expressions" 4366 " and TypeSourceInfo!"); 4367 4368 GenericSelectionExprBits.GenericLoc = GenericLoc; 4369 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = 4370 ControllingExpr; 4371 std::copy(AssocExprs.begin(), AssocExprs.end(), 4372 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4373 std::copy(AssocTypes.begin(), AssocTypes.end(), 4374 getTrailingObjects<TypeSourceInfo *>() + 4375 getIndexOfStartOfAssociatedTypes()); 4376 4377 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4378 } 4379 4380 GenericSelectionExpr::GenericSelectionExpr( 4381 const ASTContext &Context, SourceLocation GenericLoc, 4382 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4383 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4384 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) 4385 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4386 OK_Ordinary), 4387 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4388 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4389 assert(AssocTypes.size() == AssocExprs.size() && 4390 "Must have the same number of association expressions" 4391 " and TypeSourceInfo!"); 4392 4393 GenericSelectionExprBits.GenericLoc = GenericLoc; 4394 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = 4395 ControllingType; 4396 std::copy(AssocExprs.begin(), AssocExprs.end(), 4397 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4398 std::copy(AssocTypes.begin(), AssocTypes.end(), 4399 getTrailingObjects<TypeSourceInfo *>() + 4400 getIndexOfStartOfAssociatedTypes()); 4401 4402 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4403 } 4404 4405 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4406 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4407 4408 GenericSelectionExpr *GenericSelectionExpr::Create( 4409 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4410 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4411 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4412 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4413 unsigned NumAssocs = AssocExprs.size(); 4414 void *Mem = Context.Allocate( 4415 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4416 alignof(GenericSelectionExpr)); 4417 return new (Mem) GenericSelectionExpr( 4418 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4419 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4420 } 4421 4422 GenericSelectionExpr *GenericSelectionExpr::Create( 4423 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4424 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4425 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4426 bool ContainsUnexpandedParameterPack) { 4427 unsigned NumAssocs = AssocExprs.size(); 4428 void *Mem = Context.Allocate( 4429 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4430 alignof(GenericSelectionExpr)); 4431 return new (Mem) GenericSelectionExpr( 4432 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4433 RParenLoc, ContainsUnexpandedParameterPack); 4434 } 4435 4436 GenericSelectionExpr *GenericSelectionExpr::Create( 4437 const ASTContext &Context, SourceLocation GenericLoc, 4438 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4439 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4440 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, 4441 unsigned ResultIndex) { 4442 unsigned NumAssocs = AssocExprs.size(); 4443 void *Mem = Context.Allocate( 4444 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4445 alignof(GenericSelectionExpr)); 4446 return new (Mem) GenericSelectionExpr( 4447 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, 4448 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4449 } 4450 4451 GenericSelectionExpr *GenericSelectionExpr::Create( 4452 const ASTContext &Context, SourceLocation GenericLoc, 4453 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4454 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4455 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) { 4456 unsigned NumAssocs = AssocExprs.size(); 4457 void *Mem = Context.Allocate( 4458 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4459 alignof(GenericSelectionExpr)); 4460 return new (Mem) GenericSelectionExpr( 4461 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, 4462 RParenLoc, ContainsUnexpandedParameterPack); 4463 } 4464 4465 GenericSelectionExpr * 4466 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4467 unsigned NumAssocs) { 4468 void *Mem = Context.Allocate( 4469 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4470 alignof(GenericSelectionExpr)); 4471 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4472 } 4473 4474 //===----------------------------------------------------------------------===// 4475 // DesignatedInitExpr 4476 //===----------------------------------------------------------------------===// 4477 4478 const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4479 assert(isFieldDesignator() && "Only valid on a field designator"); 4480 if (FieldInfo.NameOrField & 0x01) 4481 return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01); 4482 return getFieldDecl()->getIdentifier(); 4483 } 4484 4485 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4486 llvm::ArrayRef<Designator> Designators, 4487 SourceLocation EqualOrColonLoc, 4488 bool GNUSyntax, 4489 ArrayRef<Expr *> IndexExprs, Expr *Init) 4490 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), 4491 Init->getObjectKind()), 4492 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4493 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4494 this->Designators = new (C) Designator[NumDesignators]; 4495 4496 // Record the initializer itself. 4497 child_iterator Child = child_begin(); 4498 *Child++ = Init; 4499 4500 // Copy the designators and their subexpressions, computing 4501 // value-dependence along the way. 4502 unsigned IndexIdx = 0; 4503 for (unsigned I = 0; I != NumDesignators; ++I) { 4504 this->Designators[I] = Designators[I]; 4505 if (this->Designators[I].isArrayDesignator()) { 4506 // Copy the index expressions into permanent storage. 4507 *Child++ = IndexExprs[IndexIdx++]; 4508 } else if (this->Designators[I].isArrayRangeDesignator()) { 4509 // Copy the start/end expressions into permanent storage. 4510 *Child++ = IndexExprs[IndexIdx++]; 4511 *Child++ = IndexExprs[IndexIdx++]; 4512 } 4513 } 4514 4515 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4516 setDependence(computeDependence(this)); 4517 } 4518 4519 DesignatedInitExpr * 4520 DesignatedInitExpr::Create(const ASTContext &C, 4521 llvm::ArrayRef<Designator> Designators, 4522 ArrayRef<Expr*> IndexExprs, 4523 SourceLocation ColonOrEqualLoc, 4524 bool UsesColonSyntax, Expr *Init) { 4525 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4526 alignof(DesignatedInitExpr)); 4527 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4528 ColonOrEqualLoc, UsesColonSyntax, 4529 IndexExprs, Init); 4530 } 4531 4532 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4533 unsigned NumIndexExprs) { 4534 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4535 alignof(DesignatedInitExpr)); 4536 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4537 } 4538 4539 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4540 const Designator *Desigs, 4541 unsigned NumDesigs) { 4542 Designators = new (C) Designator[NumDesigs]; 4543 NumDesignators = NumDesigs; 4544 for (unsigned I = 0; I != NumDesigs; ++I) 4545 Designators[I] = Desigs[I]; 4546 } 4547 4548 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4549 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4550 if (size() == 1) 4551 return DIE->getDesignator(0)->getSourceRange(); 4552 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4553 DIE->getDesignator(size() - 1)->getEndLoc()); 4554 } 4555 4556 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4557 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4558 Designator &First = *DIE->getDesignator(0); 4559 if (First.isFieldDesignator()) 4560 return GNUSyntax ? First.getFieldLoc() : First.getDotLoc(); 4561 return First.getLBracketLoc(); 4562 } 4563 4564 SourceLocation DesignatedInitExpr::getEndLoc() const { 4565 return getInit()->getEndLoc(); 4566 } 4567 4568 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4569 assert(D.isArrayDesignator() && "Requires array designator"); 4570 return getSubExpr(D.getArrayIndex() + 1); 4571 } 4572 4573 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4574 assert(D.isArrayRangeDesignator() && "Requires array range designator"); 4575 return getSubExpr(D.getArrayIndex() + 1); 4576 } 4577 4578 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4579 assert(D.isArrayRangeDesignator() && "Requires array range designator"); 4580 return getSubExpr(D.getArrayIndex() + 2); 4581 } 4582 4583 /// Replaces the designator at index @p Idx with the series 4584 /// of designators in [First, Last). 4585 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4586 const Designator *First, 4587 const Designator *Last) { 4588 unsigned NumNewDesignators = Last - First; 4589 if (NumNewDesignators == 0) { 4590 std::copy_backward(Designators + Idx + 1, 4591 Designators + NumDesignators, 4592 Designators + Idx); 4593 --NumNewDesignators; 4594 return; 4595 } 4596 if (NumNewDesignators == 1) { 4597 Designators[Idx] = *First; 4598 return; 4599 } 4600 4601 Designator *NewDesignators 4602 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4603 std::copy(Designators, Designators + Idx, NewDesignators); 4604 std::copy(First, Last, NewDesignators + Idx); 4605 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4606 NewDesignators + Idx + NumNewDesignators); 4607 Designators = NewDesignators; 4608 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4609 } 4610 4611 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4612 SourceLocation lBraceLoc, 4613 Expr *baseExpr, 4614 SourceLocation rBraceLoc) 4615 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, 4616 OK_Ordinary) { 4617 BaseAndUpdaterExprs[0] = baseExpr; 4618 4619 InitListExpr *ILE = 4620 new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc); 4621 ILE->setType(baseExpr->getType()); 4622 BaseAndUpdaterExprs[1] = ILE; 4623 4624 // FIXME: this is wrong, set it correctly. 4625 setDependence(ExprDependence::None); 4626 } 4627 4628 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4629 return getBase()->getBeginLoc(); 4630 } 4631 4632 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4633 return getBase()->getEndLoc(); 4634 } 4635 4636 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4637 SourceLocation RParenLoc) 4638 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), 4639 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4640 ParenListExprBits.NumExprs = Exprs.size(); 4641 4642 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) 4643 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4644 setDependence(computeDependence(this)); 4645 } 4646 4647 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4648 : Expr(ParenListExprClass, Empty) { 4649 ParenListExprBits.NumExprs = NumExprs; 4650 } 4651 4652 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4653 SourceLocation LParenLoc, 4654 ArrayRef<Expr *> Exprs, 4655 SourceLocation RParenLoc) { 4656 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4657 alignof(ParenListExpr)); 4658 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4659 } 4660 4661 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4662 unsigned NumExprs) { 4663 void *Mem = 4664 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4665 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4666 } 4667 4668 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4669 Opcode opc, QualType ResTy, ExprValueKind VK, 4670 ExprObjectKind OK, SourceLocation opLoc, 4671 FPOptionsOverride FPFeatures) 4672 : Expr(BinaryOperatorClass, ResTy, VK, OK) { 4673 BinaryOperatorBits.Opc = opc; 4674 assert(!isCompoundAssignmentOp() && 4675 "Use CompoundAssignOperator for compound assignments"); 4676 BinaryOperatorBits.OpLoc = opLoc; 4677 SubExprs[LHS] = lhs; 4678 SubExprs[RHS] = rhs; 4679 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4680 if (hasStoredFPFeatures()) 4681 setStoredFPFeatures(FPFeatures); 4682 setDependence(computeDependence(this)); 4683 } 4684 4685 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4686 Opcode opc, QualType ResTy, ExprValueKind VK, 4687 ExprObjectKind OK, SourceLocation opLoc, 4688 FPOptionsOverride FPFeatures, bool dead2) 4689 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { 4690 BinaryOperatorBits.Opc = opc; 4691 assert(isCompoundAssignmentOp() && 4692 "Use CompoundAssignOperator for compound assignments"); 4693 BinaryOperatorBits.OpLoc = opLoc; 4694 SubExprs[LHS] = lhs; 4695 SubExprs[RHS] = rhs; 4696 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4697 if (hasStoredFPFeatures()) 4698 setStoredFPFeatures(FPFeatures); 4699 setDependence(computeDependence(this)); 4700 } 4701 4702 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, 4703 bool HasFPFeatures) { 4704 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4705 void *Mem = 4706 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4707 return new (Mem) BinaryOperator(EmptyShell()); 4708 } 4709 4710 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, 4711 Expr *rhs, Opcode opc, QualType ResTy, 4712 ExprValueKind VK, ExprObjectKind OK, 4713 SourceLocation opLoc, 4714 FPOptionsOverride FPFeatures) { 4715 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4716 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4717 void *Mem = 4718 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4719 return new (Mem) 4720 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); 4721 } 4722 4723 CompoundAssignOperator * 4724 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { 4725 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4726 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4727 alignof(CompoundAssignOperator)); 4728 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); 4729 } 4730 4731 CompoundAssignOperator * 4732 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, 4733 Opcode opc, QualType ResTy, ExprValueKind VK, 4734 ExprObjectKind OK, SourceLocation opLoc, 4735 FPOptionsOverride FPFeatures, 4736 QualType CompLHSType, QualType CompResultType) { 4737 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4738 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4739 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4740 alignof(CompoundAssignOperator)); 4741 return new (Mem) 4742 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, 4743 CompLHSType, CompResultType); 4744 } 4745 4746 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, 4747 bool hasFPFeatures) { 4748 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), 4749 alignof(UnaryOperator)); 4750 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); 4751 } 4752 4753 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, 4754 QualType type, ExprValueKind VK, ExprObjectKind OK, 4755 SourceLocation l, bool CanOverflow, 4756 FPOptionsOverride FPFeatures) 4757 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { 4758 UnaryOperatorBits.Opc = opc; 4759 UnaryOperatorBits.CanOverflow = CanOverflow; 4760 UnaryOperatorBits.Loc = l; 4761 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4762 if (hasStoredFPFeatures()) 4763 setStoredFPFeatures(FPFeatures); 4764 setDependence(computeDependence(this, Ctx)); 4765 } 4766 4767 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, 4768 Opcode opc, QualType type, 4769 ExprValueKind VK, ExprObjectKind OK, 4770 SourceLocation l, bool CanOverflow, 4771 FPOptionsOverride FPFeatures) { 4772 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4773 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); 4774 void *Mem = C.Allocate(Size, alignof(UnaryOperator)); 4775 return new (Mem) 4776 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); 4777 } 4778 4779 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4780 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4781 e = ewc->getSubExpr(); 4782 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4783 e = m->getSubExpr(); 4784 e = cast<CXXConstructExpr>(e)->getArg(0); 4785 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4786 e = ice->getSubExpr(); 4787 return cast<OpaqueValueExpr>(e); 4788 } 4789 4790 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4791 EmptyShell sh, 4792 unsigned numSemanticExprs) { 4793 void *buffer = 4794 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4795 alignof(PseudoObjectExpr)); 4796 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4797 } 4798 4799 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4800 : Expr(PseudoObjectExprClass, shell) { 4801 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4802 } 4803 4804 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4805 ArrayRef<Expr*> semantics, 4806 unsigned resultIndex) { 4807 assert(syntax && "no syntactic expression!"); 4808 assert(semantics.size() && "no semantic expressions!"); 4809 4810 QualType type; 4811 ExprValueKind VK; 4812 if (resultIndex == NoResult) { 4813 type = C.VoidTy; 4814 VK = VK_PRValue; 4815 } else { 4816 assert(resultIndex < semantics.size()); 4817 type = semantics[resultIndex]->getType(); 4818 VK = semantics[resultIndex]->getValueKind(); 4819 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4820 } 4821 4822 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4823 alignof(PseudoObjectExpr)); 4824 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4825 resultIndex); 4826 } 4827 4828 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4829 Expr *syntax, ArrayRef<Expr *> semantics, 4830 unsigned resultIndex) 4831 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { 4832 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4833 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4834 4835 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4836 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4837 getSubExprsBuffer()[i] = E; 4838 4839 if (isa<OpaqueValueExpr>(E)) 4840 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4841 "opaque-value semantic expressions for pseudo-object " 4842 "operations must have sources"); 4843 } 4844 4845 setDependence(computeDependence(this)); 4846 } 4847 4848 //===----------------------------------------------------------------------===// 4849 // Child Iterators for iterating over subexpressions/substatements 4850 //===----------------------------------------------------------------------===// 4851 4852 // UnaryExprOrTypeTraitExpr 4853 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4854 const_child_range CCR = 4855 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4856 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4857 } 4858 4859 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4860 // If this is of a type and the type is a VLA type (and not a typedef), the 4861 // size expression of the VLA needs to be treated as an executable expression. 4862 // Why isn't this weirdness documented better in StmtIterator? 4863 if (isArgumentType()) { 4864 if (const VariableArrayType *T = 4865 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4866 return const_child_range(const_child_iterator(T), const_child_iterator()); 4867 return const_child_range(const_child_iterator(), const_child_iterator()); 4868 } 4869 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4870 } 4871 4872 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, 4873 AtomicOp op, SourceLocation RP) 4874 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), 4875 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { 4876 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4877 for (unsigned i = 0; i != args.size(); i++) 4878 SubExprs[i] = args[i]; 4879 setDependence(computeDependence(this)); 4880 } 4881 4882 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4883 switch (Op) { 4884 case AO__c11_atomic_init: 4885 case AO__opencl_atomic_init: 4886 case AO__c11_atomic_load: 4887 case AO__atomic_load_n: 4888 return 2; 4889 4890 case AO__scoped_atomic_load_n: 4891 case AO__opencl_atomic_load: 4892 case AO__hip_atomic_load: 4893 case AO__c11_atomic_store: 4894 case AO__c11_atomic_exchange: 4895 case AO__atomic_load: 4896 case AO__atomic_store: 4897 case AO__atomic_store_n: 4898 case AO__atomic_exchange_n: 4899 case AO__c11_atomic_fetch_add: 4900 case AO__c11_atomic_fetch_sub: 4901 case AO__c11_atomic_fetch_and: 4902 case AO__c11_atomic_fetch_or: 4903 case AO__c11_atomic_fetch_xor: 4904 case AO__c11_atomic_fetch_nand: 4905 case AO__c11_atomic_fetch_max: 4906 case AO__c11_atomic_fetch_min: 4907 case AO__atomic_fetch_add: 4908 case AO__atomic_fetch_sub: 4909 case AO__atomic_fetch_and: 4910 case AO__atomic_fetch_or: 4911 case AO__atomic_fetch_xor: 4912 case AO__atomic_fetch_nand: 4913 case AO__atomic_add_fetch: 4914 case AO__atomic_sub_fetch: 4915 case AO__atomic_and_fetch: 4916 case AO__atomic_or_fetch: 4917 case AO__atomic_xor_fetch: 4918 case AO__atomic_nand_fetch: 4919 case AO__atomic_min_fetch: 4920 case AO__atomic_max_fetch: 4921 case AO__atomic_fetch_min: 4922 case AO__atomic_fetch_max: 4923 return 3; 4924 4925 case AO__scoped_atomic_load: 4926 case AO__scoped_atomic_store: 4927 case AO__scoped_atomic_store_n: 4928 case AO__scoped_atomic_fetch_add: 4929 case AO__scoped_atomic_fetch_sub: 4930 case AO__scoped_atomic_fetch_and: 4931 case AO__scoped_atomic_fetch_or: 4932 case AO__scoped_atomic_fetch_xor: 4933 case AO__scoped_atomic_fetch_nand: 4934 case AO__scoped_atomic_add_fetch: 4935 case AO__scoped_atomic_sub_fetch: 4936 case AO__scoped_atomic_and_fetch: 4937 case AO__scoped_atomic_or_fetch: 4938 case AO__scoped_atomic_xor_fetch: 4939 case AO__scoped_atomic_nand_fetch: 4940 case AO__scoped_atomic_min_fetch: 4941 case AO__scoped_atomic_max_fetch: 4942 case AO__scoped_atomic_fetch_min: 4943 case AO__scoped_atomic_fetch_max: 4944 case AO__scoped_atomic_exchange_n: 4945 case AO__hip_atomic_exchange: 4946 case AO__hip_atomic_fetch_add: 4947 case AO__hip_atomic_fetch_sub: 4948 case AO__hip_atomic_fetch_and: 4949 case AO__hip_atomic_fetch_or: 4950 case AO__hip_atomic_fetch_xor: 4951 case AO__hip_atomic_fetch_min: 4952 case AO__hip_atomic_fetch_max: 4953 case AO__opencl_atomic_store: 4954 case AO__hip_atomic_store: 4955 case AO__opencl_atomic_exchange: 4956 case AO__opencl_atomic_fetch_add: 4957 case AO__opencl_atomic_fetch_sub: 4958 case AO__opencl_atomic_fetch_and: 4959 case AO__opencl_atomic_fetch_or: 4960 case AO__opencl_atomic_fetch_xor: 4961 case AO__opencl_atomic_fetch_min: 4962 case AO__opencl_atomic_fetch_max: 4963 case AO__atomic_exchange: 4964 return 4; 4965 4966 case AO__scoped_atomic_exchange: 4967 case AO__c11_atomic_compare_exchange_strong: 4968 case AO__c11_atomic_compare_exchange_weak: 4969 return 5; 4970 case AO__hip_atomic_compare_exchange_strong: 4971 case AO__opencl_atomic_compare_exchange_strong: 4972 case AO__opencl_atomic_compare_exchange_weak: 4973 case AO__hip_atomic_compare_exchange_weak: 4974 case AO__atomic_compare_exchange: 4975 case AO__atomic_compare_exchange_n: 4976 return 6; 4977 4978 case AO__scoped_atomic_compare_exchange: 4979 case AO__scoped_atomic_compare_exchange_n: 4980 return 7; 4981 } 4982 llvm_unreachable("unknown atomic op"); 4983 } 4984 4985 QualType AtomicExpr::getValueType() const { 4986 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 4987 if (auto AT = T->getAs<AtomicType>()) 4988 return AT->getValueType(); 4989 return T; 4990 } 4991 4992 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 4993 unsigned ArraySectionCount = 0; 4994 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 4995 Base = OASE->getBase(); 4996 ++ArraySectionCount; 4997 } 4998 while (auto *ASE = 4999 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 5000 Base = ASE->getBase(); 5001 ++ArraySectionCount; 5002 } 5003 Base = Base->IgnoreParenImpCasts(); 5004 auto OriginalTy = Base->getType(); 5005 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 5006 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 5007 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 5008 5009 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 5010 if (OriginalTy->isAnyPointerType()) 5011 OriginalTy = OriginalTy->getPointeeType(); 5012 else if (OriginalTy->isArrayType()) 5013 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 5014 else 5015 return {}; 5016 } 5017 return OriginalTy; 5018 } 5019 5020 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, 5021 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) 5022 : Expr(RecoveryExprClass, T.getNonReferenceType(), 5023 T->isDependentType() ? VK_LValue : getValueKindForType(T), 5024 OK_Ordinary), 5025 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { 5026 assert(!T.isNull()); 5027 assert(!llvm::is_contained(SubExprs, nullptr)); 5028 5029 llvm::copy(SubExprs, getTrailingObjects<Expr *>()); 5030 setDependence(computeDependence(this)); 5031 } 5032 5033 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, 5034 SourceLocation BeginLoc, 5035 SourceLocation EndLoc, 5036 ArrayRef<Expr *> SubExprs) { 5037 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), 5038 alignof(RecoveryExpr)); 5039 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); 5040 } 5041 5042 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { 5043 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), 5044 alignof(RecoveryExpr)); 5045 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); 5046 } 5047 5048 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { 5049 assert( 5050 NumDims == Dims.size() && 5051 "Preallocated number of dimensions is different from the provided one."); 5052 llvm::copy(Dims, getTrailingObjects<Expr *>()); 5053 } 5054 5055 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { 5056 assert( 5057 NumDims == BR.size() && 5058 "Preallocated number of dimensions is different from the provided one."); 5059 llvm::copy(BR, getTrailingObjects<SourceRange>()); 5060 } 5061 5062 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, 5063 SourceLocation L, SourceLocation R, 5064 ArrayRef<Expr *> Dims) 5065 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), 5066 RPLoc(R), NumDims(Dims.size()) { 5067 setBase(Op); 5068 setDimensions(Dims); 5069 setDependence(computeDependence(this)); 5070 } 5071 5072 OMPArrayShapingExpr * 5073 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, 5074 SourceLocation L, SourceLocation R, 5075 ArrayRef<Expr *> Dims, 5076 ArrayRef<SourceRange> BracketRanges) { 5077 assert(Dims.size() == BracketRanges.size() && 5078 "Different number of dimensions and brackets ranges."); 5079 void *Mem = Context.Allocate( 5080 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), 5081 alignof(OMPArrayShapingExpr)); 5082 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); 5083 E->setBracketsRanges(BracketRanges); 5084 return E; 5085 } 5086 5087 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, 5088 unsigned NumDims) { 5089 void *Mem = Context.Allocate( 5090 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), 5091 alignof(OMPArrayShapingExpr)); 5092 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); 5093 } 5094 5095 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { 5096 assert(I < NumIterators && 5097 "Idx is greater or equal the number of iterators definitions."); 5098 getTrailingObjects<Decl *>()[I] = D; 5099 } 5100 5101 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { 5102 assert(I < NumIterators && 5103 "Idx is greater or equal the number of iterators definitions."); 5104 getTrailingObjects< 5105 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5106 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; 5107 } 5108 5109 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, 5110 SourceLocation ColonLoc, Expr *End, 5111 SourceLocation SecondColonLoc, 5112 Expr *Step) { 5113 assert(I < NumIterators && 5114 "Idx is greater or equal the number of iterators definitions."); 5115 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5116 static_cast<int>(RangeExprOffset::Begin)] = 5117 Begin; 5118 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5119 static_cast<int>(RangeExprOffset::End)] = End; 5120 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5121 static_cast<int>(RangeExprOffset::Step)] = Step; 5122 getTrailingObjects< 5123 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5124 static_cast<int>(RangeLocOffset::FirstColonLoc)] = 5125 ColonLoc; 5126 getTrailingObjects< 5127 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5128 static_cast<int>(RangeLocOffset::SecondColonLoc)] = 5129 SecondColonLoc; 5130 } 5131 5132 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { 5133 return getTrailingObjects<Decl *>()[I]; 5134 } 5135 5136 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { 5137 IteratorRange Res; 5138 Res.Begin = 5139 getTrailingObjects<Expr *>()[I * static_cast<int>( 5140 RangeExprOffset::Total) + 5141 static_cast<int>(RangeExprOffset::Begin)]; 5142 Res.End = 5143 getTrailingObjects<Expr *>()[I * static_cast<int>( 5144 RangeExprOffset::Total) + 5145 static_cast<int>(RangeExprOffset::End)]; 5146 Res.Step = 5147 getTrailingObjects<Expr *>()[I * static_cast<int>( 5148 RangeExprOffset::Total) + 5149 static_cast<int>(RangeExprOffset::Step)]; 5150 return Res; 5151 } 5152 5153 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { 5154 return getTrailingObjects< 5155 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5156 static_cast<int>(RangeLocOffset::AssignLoc)]; 5157 } 5158 5159 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { 5160 return getTrailingObjects< 5161 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5162 static_cast<int>(RangeLocOffset::FirstColonLoc)]; 5163 } 5164 5165 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { 5166 return getTrailingObjects< 5167 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5168 static_cast<int>(RangeLocOffset::SecondColonLoc)]; 5169 } 5170 5171 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { 5172 getTrailingObjects<OMPIteratorHelperData>()[I] = D; 5173 } 5174 5175 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { 5176 return getTrailingObjects<OMPIteratorHelperData>()[I]; 5177 } 5178 5179 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { 5180 return getTrailingObjects<OMPIteratorHelperData>()[I]; 5181 } 5182 5183 OMPIteratorExpr::OMPIteratorExpr( 5184 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, 5185 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5186 ArrayRef<OMPIteratorHelperData> Helpers) 5187 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), 5188 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), 5189 NumIterators(Data.size()) { 5190 for (unsigned I = 0, E = Data.size(); I < E; ++I) { 5191 const IteratorDefinition &D = Data[I]; 5192 setIteratorDeclaration(I, D.IteratorDecl); 5193 setAssignmentLoc(I, D.AssignmentLoc); 5194 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, 5195 D.SecondColonLoc, D.Range.Step); 5196 setHelper(I, Helpers[I]); 5197 } 5198 setDependence(computeDependence(this)); 5199 } 5200 5201 OMPIteratorExpr * 5202 OMPIteratorExpr::Create(const ASTContext &Context, QualType T, 5203 SourceLocation IteratorKwLoc, SourceLocation L, 5204 SourceLocation R, 5205 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5206 ArrayRef<OMPIteratorHelperData> Helpers) { 5207 assert(Data.size() == Helpers.size() && 5208 "Data and helpers must have the same size."); 5209 void *Mem = Context.Allocate( 5210 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5211 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), 5212 Data.size() * static_cast<int>(RangeLocOffset::Total), 5213 Helpers.size()), 5214 alignof(OMPIteratorExpr)); 5215 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); 5216 } 5217 5218 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, 5219 unsigned NumIterators) { 5220 void *Mem = Context.Allocate( 5221 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5222 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), 5223 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), 5224 alignof(OMPIteratorExpr)); 5225 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); 5226 } 5227