1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ComputeDependence.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/DependenceFlags.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/IgnoreExpr.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CharInfo.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/Lexer.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "clang/Lex/Preprocessor.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cstring> 40 #include <optional> 41 using namespace clang; 42 43 const Expr *Expr::getBestDynamicClassTypeExpr() const { 44 const Expr *E = this; 45 while (true) { 46 E = E->IgnoreParenBaseCasts(); 47 48 // Follow the RHS of a comma operator. 49 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 50 if (BO->getOpcode() == BO_Comma) { 51 E = BO->getRHS(); 52 continue; 53 } 54 } 55 56 // Step into initializer for materialized temporaries. 57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 58 E = MTE->getSubExpr(); 59 continue; 60 } 61 62 break; 63 } 64 65 return E; 66 } 67 68 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 69 const Expr *E = getBestDynamicClassTypeExpr(); 70 QualType DerivedType = E->getType(); 71 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 72 DerivedType = PTy->getPointeeType(); 73 74 if (DerivedType->isDependentType()) 75 return nullptr; 76 77 const RecordType *Ty = DerivedType->castAs<RecordType>(); 78 Decl *D = Ty->getDecl(); 79 return cast<CXXRecordDecl>(D); 80 } 81 82 const Expr *Expr::skipRValueSubobjectAdjustments( 83 SmallVectorImpl<const Expr *> &CommaLHSs, 84 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 85 const Expr *E = this; 86 while (true) { 87 E = E->IgnoreParens(); 88 89 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 90 if ((CE->getCastKind() == CK_DerivedToBase || 91 CE->getCastKind() == CK_UncheckedDerivedToBase) && 92 E->getType()->isRecordType()) { 93 E = CE->getSubExpr(); 94 auto *Derived = 95 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 96 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 97 continue; 98 } 99 100 if (CE->getCastKind() == CK_NoOp) { 101 E = CE->getSubExpr(); 102 continue; 103 } 104 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 105 if (!ME->isArrow()) { 106 assert(ME->getBase()->getType()->isRecordType()); 107 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 109 E = ME->getBase(); 110 Adjustments.push_back(SubobjectAdjustment(Field)); 111 continue; 112 } 113 } 114 } 115 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 116 if (BO->getOpcode() == BO_PtrMemD) { 117 assert(BO->getRHS()->isPRValue()); 118 E = BO->getLHS(); 119 const MemberPointerType *MPT = 120 BO->getRHS()->getType()->getAs<MemberPointerType>(); 121 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 122 continue; 123 } 124 if (BO->getOpcode() == BO_Comma) { 125 CommaLHSs.push_back(BO->getLHS()); 126 E = BO->getRHS(); 127 continue; 128 } 129 } 130 131 // Nothing changed. 132 break; 133 } 134 return E; 135 } 136 137 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 138 const Expr *E = IgnoreParens(); 139 140 // If this value has _Bool type, it is obvious 0/1. 141 if (E->getType()->isBooleanType()) return true; 142 // If this is a non-scalar-integer type, we don't care enough to try. 143 if (!E->getType()->isIntegralOrEnumerationType()) return false; 144 145 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 146 switch (UO->getOpcode()) { 147 case UO_Plus: 148 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 149 case UO_LNot: 150 return true; 151 default: 152 return false; 153 } 154 } 155 156 // Only look through implicit casts. If the user writes 157 // '(int) (a && b)' treat it as an arbitrary int. 158 // FIXME: Should we look through any cast expression in !Semantic mode? 159 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 160 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 161 162 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 163 switch (BO->getOpcode()) { 164 default: return false; 165 case BO_LT: // Relational operators. 166 case BO_GT: 167 case BO_LE: 168 case BO_GE: 169 case BO_EQ: // Equality operators. 170 case BO_NE: 171 case BO_LAnd: // AND operator. 172 case BO_LOr: // Logical OR operator. 173 return true; 174 175 case BO_And: // Bitwise AND operator. 176 case BO_Xor: // Bitwise XOR operator. 177 case BO_Or: // Bitwise OR operator. 178 // Handle things like (x==2)|(y==12). 179 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 180 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 181 182 case BO_Comma: 183 case BO_Assign: 184 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 185 } 186 } 187 188 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 189 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 190 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 191 192 if (isa<ObjCBoolLiteralExpr>(E)) 193 return true; 194 195 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 196 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 197 198 if (const FieldDecl *FD = E->getSourceBitField()) 199 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 200 !FD->getBitWidth()->isValueDependent() && 201 FD->getBitWidthValue(FD->getASTContext()) == 1) 202 return true; 203 204 return false; 205 } 206 207 bool Expr::isFlexibleArrayMemberLike( 208 ASTContext &Context, 209 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, 210 bool IgnoreTemplateOrMacroSubstitution) const { 211 212 // For compatibility with existing code, we treat arrays of length 0 or 213 // 1 as flexible array members. 214 const auto *CAT = Context.getAsConstantArrayType(getType()); 215 if (CAT) { 216 llvm::APInt Size = CAT->getSize(); 217 218 using FAMKind = LangOptions::StrictFlexArraysLevelKind; 219 220 if (StrictFlexArraysLevel == FAMKind::IncompleteOnly) 221 return false; 222 223 // GCC extension, only allowed to represent a FAM. 224 if (Size == 0) 225 return true; 226 227 if (StrictFlexArraysLevel == FAMKind::ZeroOrIncomplete && Size.uge(1)) 228 return false; 229 230 if (StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete && Size.uge(2)) 231 return false; 232 } else if (!Context.getAsIncompleteArrayType(getType())) 233 return false; 234 235 const Expr *E = IgnoreParens(); 236 237 const NamedDecl *ND = nullptr; 238 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 239 ND = DRE->getDecl(); 240 else if (const auto *ME = dyn_cast<MemberExpr>(E)) 241 ND = ME->getMemberDecl(); 242 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) 243 return IRE->getDecl()->getNextIvar() == nullptr; 244 245 if (!ND) 246 return false; 247 248 // A flexible array member must be the last member in the class. 249 // FIXME: If the base type of the member expr is not FD->getParent(), 250 // this should not be treated as a flexible array member access. 251 if (const auto *FD = dyn_cast<FieldDecl>(ND)) { 252 // GCC treats an array memeber of a union as an FAM if the size is one or 253 // zero. 254 if (CAT) { 255 llvm::APInt Size = CAT->getSize(); 256 if (FD->getParent()->isUnion() && (Size.isZero() || Size.isOne())) 257 return true; 258 } 259 260 // Don't consider sizes resulting from macro expansions or template argument 261 // substitution to form C89 tail-padded arrays. 262 if (IgnoreTemplateOrMacroSubstitution) { 263 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 264 while (TInfo) { 265 TypeLoc TL = TInfo->getTypeLoc(); 266 // Look through typedefs. 267 if (TypedefTypeLoc TTL = TL.getAsAdjusted<TypedefTypeLoc>()) { 268 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 269 TInfo = TDL->getTypeSourceInfo(); 270 continue; 271 } 272 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 273 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 274 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 275 return false; 276 } 277 break; 278 } 279 } 280 281 RecordDecl::field_iterator FI( 282 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 283 return ++FI == FD->getParent()->field_end(); 284 } 285 286 return false; 287 } 288 289 const ValueDecl * 290 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const { 291 Expr::EvalResult Eval; 292 293 if (EvaluateAsConstantExpr(Eval, Context)) { 294 APValue &Value = Eval.Val; 295 296 if (Value.isMemberPointer()) 297 return Value.getMemberPointerDecl(); 298 299 if (Value.isLValue() && Value.getLValueOffset().isZero()) 300 return Value.getLValueBase().dyn_cast<const ValueDecl *>(); 301 } 302 303 return nullptr; 304 } 305 306 // Amusing macro metaprogramming hack: check whether a class provides 307 // a more specific implementation of getExprLoc(). 308 // 309 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 310 namespace { 311 /// This implementation is used when a class provides a custom 312 /// implementation of getExprLoc. 313 template <class E, class T> 314 SourceLocation getExprLocImpl(const Expr *expr, 315 SourceLocation (T::*v)() const) { 316 return static_cast<const E*>(expr)->getExprLoc(); 317 } 318 319 /// This implementation is used when a class doesn't provide 320 /// a custom implementation of getExprLoc. Overload resolution 321 /// should pick it over the implementation above because it's 322 /// more specialized according to function template partial ordering. 323 template <class E> 324 SourceLocation getExprLocImpl(const Expr *expr, 325 SourceLocation (Expr::*v)() const) { 326 return static_cast<const E *>(expr)->getBeginLoc(); 327 } 328 } 329 330 SourceLocation Expr::getExprLoc() const { 331 switch (getStmtClass()) { 332 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 333 #define ABSTRACT_STMT(type) 334 #define STMT(type, base) \ 335 case Stmt::type##Class: break; 336 #define EXPR(type, base) \ 337 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 338 #include "clang/AST/StmtNodes.inc" 339 } 340 llvm_unreachable("unknown expression kind"); 341 } 342 343 //===----------------------------------------------------------------------===// 344 // Primary Expressions. 345 //===----------------------------------------------------------------------===// 346 347 static void AssertResultStorageKind(ConstantResultStorageKind Kind) { 348 assert((Kind == ConstantResultStorageKind::APValue || 349 Kind == ConstantResultStorageKind::Int64 || 350 Kind == ConstantResultStorageKind::None) && 351 "Invalid StorageKind Value"); 352 (void)Kind; 353 } 354 355 ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) { 356 switch (Value.getKind()) { 357 case APValue::None: 358 case APValue::Indeterminate: 359 return ConstantResultStorageKind::None; 360 case APValue::Int: 361 if (!Value.getInt().needsCleanup()) 362 return ConstantResultStorageKind::Int64; 363 [[fallthrough]]; 364 default: 365 return ConstantResultStorageKind::APValue; 366 } 367 } 368 369 ConstantResultStorageKind 370 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 371 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 372 return ConstantResultStorageKind::Int64; 373 return ConstantResultStorageKind::APValue; 374 } 375 376 ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind, 377 bool IsImmediateInvocation) 378 : FullExpr(ConstantExprClass, SubExpr) { 379 ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind); 380 ConstantExprBits.APValueKind = APValue::None; 381 ConstantExprBits.IsUnsigned = false; 382 ConstantExprBits.BitWidth = 0; 383 ConstantExprBits.HasCleanup = false; 384 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; 385 386 if (StorageKind == ConstantResultStorageKind::APValue) 387 ::new (getTrailingObjects<APValue>()) APValue(); 388 } 389 390 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 391 ConstantResultStorageKind StorageKind, 392 bool IsImmediateInvocation) { 393 assert(!isa<ConstantExpr>(E)); 394 AssertResultStorageKind(StorageKind); 395 396 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 397 StorageKind == ConstantResultStorageKind::APValue, 398 StorageKind == ConstantResultStorageKind::Int64); 399 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 400 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); 401 } 402 403 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 404 const APValue &Result) { 405 ConstantResultStorageKind StorageKind = getStorageKind(Result); 406 ConstantExpr *Self = Create(Context, E, StorageKind); 407 Self->SetResult(Result, Context); 408 return Self; 409 } 410 411 ConstantExpr::ConstantExpr(EmptyShell Empty, 412 ConstantResultStorageKind StorageKind) 413 : FullExpr(ConstantExprClass, Empty) { 414 ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind); 415 416 if (StorageKind == ConstantResultStorageKind::APValue) 417 ::new (getTrailingObjects<APValue>()) APValue(); 418 } 419 420 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 421 ConstantResultStorageKind StorageKind) { 422 AssertResultStorageKind(StorageKind); 423 424 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 425 StorageKind == ConstantResultStorageKind::APValue, 426 StorageKind == ConstantResultStorageKind::Int64); 427 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 428 return new (Mem) ConstantExpr(EmptyShell(), StorageKind); 429 } 430 431 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 432 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && 433 "Invalid storage for this value kind"); 434 ConstantExprBits.APValueKind = Value.getKind(); 435 switch (getResultStorageKind()) { 436 case ConstantResultStorageKind::None: 437 return; 438 case ConstantResultStorageKind::Int64: 439 Int64Result() = *Value.getInt().getRawData(); 440 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 441 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 442 return; 443 case ConstantResultStorageKind::APValue: 444 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 445 ConstantExprBits.HasCleanup = true; 446 Context.addDestruction(&APValueResult()); 447 } 448 APValueResult() = std::move(Value); 449 return; 450 } 451 llvm_unreachable("Invalid ResultKind Bits"); 452 } 453 454 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 455 switch (getResultStorageKind()) { 456 case ConstantResultStorageKind::APValue: 457 return APValueResult().getInt(); 458 case ConstantResultStorageKind::Int64: 459 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 460 ConstantExprBits.IsUnsigned); 461 default: 462 llvm_unreachable("invalid Accessor"); 463 } 464 } 465 466 APValue ConstantExpr::getAPValueResult() const { 467 468 switch (getResultStorageKind()) { 469 case ConstantResultStorageKind::APValue: 470 return APValueResult(); 471 case ConstantResultStorageKind::Int64: 472 return APValue( 473 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 474 ConstantExprBits.IsUnsigned)); 475 case ConstantResultStorageKind::None: 476 if (ConstantExprBits.APValueKind == APValue::Indeterminate) 477 return APValue::IndeterminateValue(); 478 return APValue(); 479 } 480 llvm_unreachable("invalid ResultKind"); 481 } 482 483 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 484 bool RefersToEnclosingVariableOrCapture, QualType T, 485 ExprValueKind VK, SourceLocation L, 486 const DeclarationNameLoc &LocInfo, 487 NonOdrUseReason NOUR) 488 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { 489 DeclRefExprBits.HasQualifier = false; 490 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 491 DeclRefExprBits.HasFoundDecl = false; 492 DeclRefExprBits.HadMultipleCandidates = false; 493 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 494 RefersToEnclosingVariableOrCapture; 495 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; 496 DeclRefExprBits.NonOdrUseReason = NOUR; 497 DeclRefExprBits.IsImmediateEscalating = false; 498 DeclRefExprBits.Loc = L; 499 setDependence(computeDependence(this, Ctx)); 500 } 501 502 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 503 NestedNameSpecifierLoc QualifierLoc, 504 SourceLocation TemplateKWLoc, ValueDecl *D, 505 bool RefersToEnclosingVariableOrCapture, 506 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 507 const TemplateArgumentListInfo *TemplateArgs, 508 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 509 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), 510 DNLoc(NameInfo.getInfo()) { 511 DeclRefExprBits.Loc = NameInfo.getLoc(); 512 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 513 if (QualifierLoc) 514 new (getTrailingObjects<NestedNameSpecifierLoc>()) 515 NestedNameSpecifierLoc(QualifierLoc); 516 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 517 if (FoundD) 518 *getTrailingObjects<NamedDecl *>() = FoundD; 519 DeclRefExprBits.HasTemplateKWAndArgsInfo 520 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 521 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 522 RefersToEnclosingVariableOrCapture; 523 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; 524 DeclRefExprBits.NonOdrUseReason = NOUR; 525 if (TemplateArgs) { 526 auto Deps = TemplateArgumentDependence::None; 527 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 528 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 529 Deps); 530 assert(!(Deps & TemplateArgumentDependence::Dependent) && 531 "built a DeclRefExpr with dependent template args"); 532 } else if (TemplateKWLoc.isValid()) { 533 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 534 TemplateKWLoc); 535 } 536 DeclRefExprBits.IsImmediateEscalating = false; 537 DeclRefExprBits.HadMultipleCandidates = 0; 538 setDependence(computeDependence(this, Ctx)); 539 } 540 541 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 542 NestedNameSpecifierLoc QualifierLoc, 543 SourceLocation TemplateKWLoc, ValueDecl *D, 544 bool RefersToEnclosingVariableOrCapture, 545 SourceLocation NameLoc, QualType T, 546 ExprValueKind VK, NamedDecl *FoundD, 547 const TemplateArgumentListInfo *TemplateArgs, 548 NonOdrUseReason NOUR) { 549 return Create(Context, QualifierLoc, TemplateKWLoc, D, 550 RefersToEnclosingVariableOrCapture, 551 DeclarationNameInfo(D->getDeclName(), NameLoc), 552 T, VK, FoundD, TemplateArgs, NOUR); 553 } 554 555 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 556 NestedNameSpecifierLoc QualifierLoc, 557 SourceLocation TemplateKWLoc, ValueDecl *D, 558 bool RefersToEnclosingVariableOrCapture, 559 const DeclarationNameInfo &NameInfo, 560 QualType T, ExprValueKind VK, 561 NamedDecl *FoundD, 562 const TemplateArgumentListInfo *TemplateArgs, 563 NonOdrUseReason NOUR) { 564 // Filter out cases where the found Decl is the same as the value refenenced. 565 if (D == FoundD) 566 FoundD = nullptr; 567 568 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 569 std::size_t Size = 570 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 571 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 572 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 573 HasTemplateKWAndArgsInfo ? 1 : 0, 574 TemplateArgs ? TemplateArgs->size() : 0); 575 576 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 577 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 578 RefersToEnclosingVariableOrCapture, NameInfo, 579 FoundD, TemplateArgs, T, VK, NOUR); 580 } 581 582 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 583 bool HasQualifier, 584 bool HasFoundDecl, 585 bool HasTemplateKWAndArgsInfo, 586 unsigned NumTemplateArgs) { 587 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 588 std::size_t Size = 589 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 590 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 591 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 592 NumTemplateArgs); 593 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 594 return new (Mem) DeclRefExpr(EmptyShell()); 595 } 596 597 void DeclRefExpr::setDecl(ValueDecl *NewD) { 598 D = NewD; 599 if (getType()->isUndeducedType()) 600 setType(NewD->getType()); 601 setDependence(computeDependence(this, NewD->getASTContext())); 602 } 603 604 SourceLocation DeclRefExpr::getBeginLoc() const { 605 if (hasQualifier()) 606 return getQualifierLoc().getBeginLoc(); 607 return getNameInfo().getBeginLoc(); 608 } 609 SourceLocation DeclRefExpr::getEndLoc() const { 610 if (hasExplicitTemplateArgs()) 611 return getRAngleLoc(); 612 return getNameInfo().getEndLoc(); 613 } 614 615 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, 616 SourceLocation LParen, 617 SourceLocation RParen, 618 QualType ResultTy, 619 TypeSourceInfo *TSI) 620 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), 621 OpLoc(OpLoc), LParen(LParen), RParen(RParen) { 622 setTypeSourceInfo(TSI); 623 setDependence(computeDependence(this)); 624 } 625 626 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, 627 QualType ResultTy) 628 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} 629 630 SYCLUniqueStableNameExpr * 631 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, 632 SourceLocation LParen, SourceLocation RParen, 633 TypeSourceInfo *TSI) { 634 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 635 return new (Ctx) 636 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); 637 } 638 639 SYCLUniqueStableNameExpr * 640 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { 641 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 642 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); 643 } 644 645 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { 646 return SYCLUniqueStableNameExpr::ComputeName(Context, 647 getTypeSourceInfo()->getType()); 648 } 649 650 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, 651 QualType Ty) { 652 auto MangleCallback = [](ASTContext &Ctx, 653 const NamedDecl *ND) -> std::optional<unsigned> { 654 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) 655 return RD->getDeviceLambdaManglingNumber(); 656 return std::nullopt; 657 }; 658 659 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( 660 Context, Context.getDiagnostics(), MangleCallback)}; 661 662 std::string Buffer; 663 Buffer.reserve(128); 664 llvm::raw_string_ostream Out(Buffer); 665 Ctx->mangleCanonicalTypeName(Ty, Out); 666 667 return Out.str(); 668 } 669 670 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, 671 PredefinedIdentKind IK, bool IsTransparent, 672 StringLiteral *SL) 673 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { 674 PredefinedExprBits.Kind = llvm::to_underlying(IK); 675 assert((getIdentKind() == IK) && 676 "IdentKind do not fit in PredefinedExprBitfields!"); 677 bool HasFunctionName = SL != nullptr; 678 PredefinedExprBits.HasFunctionName = HasFunctionName; 679 PredefinedExprBits.IsTransparent = IsTransparent; 680 PredefinedExprBits.Loc = L; 681 if (HasFunctionName) 682 setFunctionName(SL); 683 setDependence(computeDependence(this)); 684 } 685 686 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 687 : Expr(PredefinedExprClass, Empty) { 688 PredefinedExprBits.HasFunctionName = HasFunctionName; 689 } 690 691 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 692 QualType FNTy, PredefinedIdentKind IK, 693 bool IsTransparent, StringLiteral *SL) { 694 bool HasFunctionName = SL != nullptr; 695 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 696 alignof(PredefinedExpr)); 697 return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL); 698 } 699 700 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 701 bool HasFunctionName) { 702 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 703 alignof(PredefinedExpr)); 704 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 705 } 706 707 StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) { 708 switch (IK) { 709 case PredefinedIdentKind::Func: 710 return "__func__"; 711 case PredefinedIdentKind::Function: 712 return "__FUNCTION__"; 713 case PredefinedIdentKind::FuncDName: 714 return "__FUNCDNAME__"; 715 case PredefinedIdentKind::LFunction: 716 return "L__FUNCTION__"; 717 case PredefinedIdentKind::PrettyFunction: 718 return "__PRETTY_FUNCTION__"; 719 case PredefinedIdentKind::FuncSig: 720 return "__FUNCSIG__"; 721 case PredefinedIdentKind::LFuncSig: 722 return "L__FUNCSIG__"; 723 case PredefinedIdentKind::PrettyFunctionNoVirtual: 724 break; 725 } 726 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 727 } 728 729 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 730 // expr" policy instead. 731 std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK, 732 const Decl *CurrentDecl) { 733 ASTContext &Context = CurrentDecl->getASTContext(); 734 735 if (IK == PredefinedIdentKind::FuncDName) { 736 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 737 std::unique_ptr<MangleContext> MC; 738 MC.reset(Context.createMangleContext()); 739 740 if (MC->shouldMangleDeclName(ND)) { 741 SmallString<256> Buffer; 742 llvm::raw_svector_ostream Out(Buffer); 743 GlobalDecl GD; 744 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 745 GD = GlobalDecl(CD, Ctor_Base); 746 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 747 GD = GlobalDecl(DD, Dtor_Base); 748 else if (ND->hasAttr<CUDAGlobalAttr>()) 749 GD = GlobalDecl(cast<FunctionDecl>(ND)); 750 else 751 GD = GlobalDecl(ND); 752 MC->mangleName(GD, Out); 753 754 if (!Buffer.empty() && Buffer.front() == '\01') 755 return std::string(Buffer.substr(1)); 756 return std::string(Buffer.str()); 757 } 758 return std::string(ND->getIdentifier()->getName()); 759 } 760 return ""; 761 } 762 if (isa<BlockDecl>(CurrentDecl)) { 763 // For blocks we only emit something if it is enclosed in a function 764 // For top-level block we'd like to include the name of variable, but we 765 // don't have it at this point. 766 auto DC = CurrentDecl->getDeclContext(); 767 if (DC->isFileContext()) 768 return ""; 769 770 SmallString<256> Buffer; 771 llvm::raw_svector_ostream Out(Buffer); 772 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 773 // For nested blocks, propagate up to the parent. 774 Out << ComputeName(IK, DCBlock); 775 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 776 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 777 return std::string(Out.str()); 778 } 779 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 780 if (IK != PredefinedIdentKind::PrettyFunction && 781 IK != PredefinedIdentKind::PrettyFunctionNoVirtual && 782 IK != PredefinedIdentKind::FuncSig && 783 IK != PredefinedIdentKind::LFuncSig) 784 return FD->getNameAsString(); 785 786 SmallString<256> Name; 787 llvm::raw_svector_ostream Out(Name); 788 789 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 790 if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual) 791 Out << "virtual "; 792 if (MD->isStatic()) 793 Out << "static "; 794 } 795 796 class PrettyCallbacks final : public PrintingCallbacks { 797 public: 798 PrettyCallbacks(const LangOptions &LO) : LO(LO) {} 799 std::string remapPath(StringRef Path) const override { 800 SmallString<128> p(Path); 801 LO.remapPathPrefix(p); 802 return std::string(p); 803 } 804 805 private: 806 const LangOptions &LO; 807 }; 808 PrintingPolicy Policy(Context.getLangOpts()); 809 PrettyCallbacks PrettyCB(Context.getLangOpts()); 810 Policy.Callbacks = &PrettyCB; 811 std::string Proto; 812 llvm::raw_string_ostream POut(Proto); 813 814 const FunctionDecl *Decl = FD; 815 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 816 Decl = Pattern; 817 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 818 const FunctionProtoType *FT = nullptr; 819 if (FD->hasWrittenPrototype()) 820 FT = dyn_cast<FunctionProtoType>(AFT); 821 822 if (IK == PredefinedIdentKind::FuncSig || 823 IK == PredefinedIdentKind::LFuncSig) { 824 switch (AFT->getCallConv()) { 825 case CC_C: POut << "__cdecl "; break; 826 case CC_X86StdCall: POut << "__stdcall "; break; 827 case CC_X86FastCall: POut << "__fastcall "; break; 828 case CC_X86ThisCall: POut << "__thiscall "; break; 829 case CC_X86VectorCall: POut << "__vectorcall "; break; 830 case CC_X86RegCall: POut << "__regcall "; break; 831 // Only bother printing the conventions that MSVC knows about. 832 default: break; 833 } 834 } 835 836 FD->printQualifiedName(POut, Policy); 837 838 POut << "("; 839 if (FT) { 840 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 841 if (i) POut << ", "; 842 POut << Decl->getParamDecl(i)->getType().stream(Policy); 843 } 844 845 if (FT->isVariadic()) { 846 if (FD->getNumParams()) POut << ", "; 847 POut << "..."; 848 } else if ((IK == PredefinedIdentKind::FuncSig || 849 IK == PredefinedIdentKind::LFuncSig || 850 !Context.getLangOpts().CPlusPlus) && 851 !Decl->getNumParams()) { 852 POut << "void"; 853 } 854 } 855 POut << ")"; 856 857 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 858 assert(FT && "We must have a written prototype in this case."); 859 if (FT->isConst()) 860 POut << " const"; 861 if (FT->isVolatile()) 862 POut << " volatile"; 863 RefQualifierKind Ref = MD->getRefQualifier(); 864 if (Ref == RQ_LValue) 865 POut << " &"; 866 else if (Ref == RQ_RValue) 867 POut << " &&"; 868 } 869 870 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 871 SpecsTy Specs; 872 const DeclContext *Ctx = FD->getDeclContext(); 873 while (Ctx && isa<NamedDecl>(Ctx)) { 874 const ClassTemplateSpecializationDecl *Spec 875 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 876 if (Spec && !Spec->isExplicitSpecialization()) 877 Specs.push_back(Spec); 878 Ctx = Ctx->getParent(); 879 } 880 881 std::string TemplateParams; 882 llvm::raw_string_ostream TOut(TemplateParams); 883 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) { 884 const TemplateParameterList *Params = 885 D->getSpecializedTemplate()->getTemplateParameters(); 886 const TemplateArgumentList &Args = D->getTemplateArgs(); 887 assert(Params->size() == Args.size()); 888 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 889 StringRef Param = Params->getParam(i)->getName(); 890 if (Param.empty()) continue; 891 TOut << Param << " = "; 892 Args.get(i).print(Policy, TOut, 893 TemplateParameterList::shouldIncludeTypeForArgument( 894 Policy, Params, i)); 895 TOut << ", "; 896 } 897 } 898 899 FunctionTemplateSpecializationInfo *FSI 900 = FD->getTemplateSpecializationInfo(); 901 if (FSI && !FSI->isExplicitSpecialization()) { 902 const TemplateParameterList* Params 903 = FSI->getTemplate()->getTemplateParameters(); 904 const TemplateArgumentList* Args = FSI->TemplateArguments; 905 assert(Params->size() == Args->size()); 906 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 907 StringRef Param = Params->getParam(i)->getName(); 908 if (Param.empty()) continue; 909 TOut << Param << " = "; 910 Args->get(i).print(Policy, TOut, /*IncludeType*/ true); 911 TOut << ", "; 912 } 913 } 914 915 TOut.flush(); 916 if (!TemplateParams.empty()) { 917 // remove the trailing comma and space 918 TemplateParams.resize(TemplateParams.size() - 2); 919 POut << " [" << TemplateParams << "]"; 920 } 921 922 POut.flush(); 923 924 // Print "auto" for all deduced return types. This includes C++1y return 925 // type deduction and lambdas. For trailing return types resolve the 926 // decltype expression. Otherwise print the real type when this is 927 // not a constructor or destructor. 928 if (isa<CXXMethodDecl>(FD) && 929 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 930 Proto = "auto " + Proto; 931 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 932 FT->getReturnType() 933 ->getAs<DecltypeType>() 934 ->getUnderlyingType() 935 .getAsStringInternal(Proto, Policy); 936 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 937 AFT->getReturnType().getAsStringInternal(Proto, Policy); 938 939 Out << Proto; 940 941 return std::string(Name); 942 } 943 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 944 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 945 // Skip to its enclosing function or method, but not its enclosing 946 // CapturedDecl. 947 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 948 const Decl *D = Decl::castFromDeclContext(DC); 949 return ComputeName(IK, D); 950 } 951 llvm_unreachable("CapturedDecl not inside a function or method"); 952 } 953 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 954 SmallString<256> Name; 955 llvm::raw_svector_ostream Out(Name); 956 Out << (MD->isInstanceMethod() ? '-' : '+'); 957 Out << '['; 958 959 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 960 // a null check to avoid a crash. 961 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 962 Out << *ID; 963 964 if (const ObjCCategoryImplDecl *CID = 965 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 966 Out << '(' << *CID << ')'; 967 968 Out << ' '; 969 MD->getSelector().print(Out); 970 Out << ']'; 971 972 return std::string(Name); 973 } 974 if (isa<TranslationUnitDecl>(CurrentDecl) && 975 IK == PredefinedIdentKind::PrettyFunction) { 976 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 977 return "top level"; 978 } 979 return ""; 980 } 981 982 void APNumericStorage::setIntValue(const ASTContext &C, 983 const llvm::APInt &Val) { 984 if (hasAllocation()) 985 C.Deallocate(pVal); 986 987 BitWidth = Val.getBitWidth(); 988 unsigned NumWords = Val.getNumWords(); 989 const uint64_t* Words = Val.getRawData(); 990 if (NumWords > 1) { 991 pVal = new (C) uint64_t[NumWords]; 992 std::copy(Words, Words + NumWords, pVal); 993 } else if (NumWords == 1) 994 VAL = Words[0]; 995 else 996 VAL = 0; 997 } 998 999 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 1000 QualType type, SourceLocation l) 1001 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { 1002 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 1003 assert(V.getBitWidth() == C.getIntWidth(type) && 1004 "Integer type is not the correct size for constant."); 1005 setValue(C, V); 1006 setDependence(ExprDependence::None); 1007 } 1008 1009 IntegerLiteral * 1010 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 1011 QualType type, SourceLocation l) { 1012 return new (C) IntegerLiteral(C, V, type, l); 1013 } 1014 1015 IntegerLiteral * 1016 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 1017 return new (C) IntegerLiteral(Empty); 1018 } 1019 1020 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 1021 QualType type, SourceLocation l, 1022 unsigned Scale) 1023 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), 1024 Scale(Scale) { 1025 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 1026 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 1027 "Fixed point type is not the correct size for constant."); 1028 setValue(C, V); 1029 setDependence(ExprDependence::None); 1030 } 1031 1032 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 1033 const llvm::APInt &V, 1034 QualType type, 1035 SourceLocation l, 1036 unsigned Scale) { 1037 return new (C) FixedPointLiteral(C, V, type, l, Scale); 1038 } 1039 1040 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, 1041 EmptyShell Empty) { 1042 return new (C) FixedPointLiteral(Empty); 1043 } 1044 1045 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 1046 // Currently the longest decimal number that can be printed is the max for an 1047 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 1048 // which is 43 characters. 1049 SmallString<64> S; 1050 FixedPointValueToString( 1051 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 1052 return std::string(S.str()); 1053 } 1054 1055 void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind, 1056 raw_ostream &OS) { 1057 switch (Kind) { 1058 case CharacterLiteralKind::Ascii: 1059 break; // no prefix. 1060 case CharacterLiteralKind::Wide: 1061 OS << 'L'; 1062 break; 1063 case CharacterLiteralKind::UTF8: 1064 OS << "u8"; 1065 break; 1066 case CharacterLiteralKind::UTF16: 1067 OS << 'u'; 1068 break; 1069 case CharacterLiteralKind::UTF32: 1070 OS << 'U'; 1071 break; 1072 } 1073 1074 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val); 1075 if (!Escaped.empty()) { 1076 OS << "'" << Escaped << "'"; 1077 } else { 1078 // A character literal might be sign-extended, which 1079 // would result in an invalid \U escape sequence. 1080 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' 1081 // are not correctly handled. 1082 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii) 1083 Val &= 0xFFu; 1084 if (Val < 256 && isPrintable((unsigned char)Val)) 1085 OS << "'" << (char)Val << "'"; 1086 else if (Val < 256) 1087 OS << "'\\x" << llvm::format("%02x", Val) << "'"; 1088 else if (Val <= 0xFFFF) 1089 OS << "'\\u" << llvm::format("%04x", Val) << "'"; 1090 else 1091 OS << "'\\U" << llvm::format("%08x", Val) << "'"; 1092 } 1093 } 1094 1095 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 1096 bool isexact, QualType Type, SourceLocation L) 1097 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { 1098 setSemantics(V.getSemantics()); 1099 FloatingLiteralBits.IsExact = isexact; 1100 setValue(C, V); 1101 setDependence(ExprDependence::None); 1102 } 1103 1104 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 1105 : Expr(FloatingLiteralClass, Empty) { 1106 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 1107 FloatingLiteralBits.IsExact = false; 1108 } 1109 1110 FloatingLiteral * 1111 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 1112 bool isexact, QualType Type, SourceLocation L) { 1113 return new (C) FloatingLiteral(C, V, isexact, Type, L); 1114 } 1115 1116 FloatingLiteral * 1117 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 1118 return new (C) FloatingLiteral(C, Empty); 1119 } 1120 1121 /// getValueAsApproximateDouble - This returns the value as an inaccurate 1122 /// double. Note that this may cause loss of precision, but is useful for 1123 /// debugging dumps, etc. 1124 double FloatingLiteral::getValueAsApproximateDouble() const { 1125 llvm::APFloat V = getValue(); 1126 bool ignored; 1127 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 1128 &ignored); 1129 return V.convertToDouble(); 1130 } 1131 1132 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 1133 StringLiteralKind SK) { 1134 unsigned CharByteWidth = 0; 1135 switch (SK) { 1136 case StringLiteralKind::Ordinary: 1137 case StringLiteralKind::UTF8: 1138 CharByteWidth = Target.getCharWidth(); 1139 break; 1140 case StringLiteralKind::Wide: 1141 CharByteWidth = Target.getWCharWidth(); 1142 break; 1143 case StringLiteralKind::UTF16: 1144 CharByteWidth = Target.getChar16Width(); 1145 break; 1146 case StringLiteralKind::UTF32: 1147 CharByteWidth = Target.getChar32Width(); 1148 break; 1149 case StringLiteralKind::Unevaluated: 1150 return sizeof(char); // Host; 1151 } 1152 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1153 CharByteWidth /= 8; 1154 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 1155 "The only supported character byte widths are 1,2 and 4!"); 1156 return CharByteWidth; 1157 } 1158 1159 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1160 StringLiteralKind Kind, bool Pascal, QualType Ty, 1161 const SourceLocation *Loc, 1162 unsigned NumConcatenated) 1163 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { 1164 1165 unsigned Length = Str.size(); 1166 1167 StringLiteralBits.Kind = llvm::to_underlying(Kind); 1168 StringLiteralBits.NumConcatenated = NumConcatenated; 1169 1170 if (Kind != StringLiteralKind::Unevaluated) { 1171 assert(Ctx.getAsConstantArrayType(Ty) && 1172 "StringLiteral must be of constant array type!"); 1173 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1174 unsigned ByteLength = Str.size(); 1175 assert((ByteLength % CharByteWidth == 0) && 1176 "The size of the data must be a multiple of CharByteWidth!"); 1177 1178 // Avoid the expensive division. The compiler should be able to figure it 1179 // out by itself. However as of clang 7, even with the appropriate 1180 // llvm_unreachable added just here, it is not able to do so. 1181 switch (CharByteWidth) { 1182 case 1: 1183 Length = ByteLength; 1184 break; 1185 case 2: 1186 Length = ByteLength / 2; 1187 break; 1188 case 4: 1189 Length = ByteLength / 4; 1190 break; 1191 default: 1192 llvm_unreachable("Unsupported character width!"); 1193 } 1194 1195 StringLiteralBits.CharByteWidth = CharByteWidth; 1196 StringLiteralBits.IsPascal = Pascal; 1197 } else { 1198 assert(!Pascal && "Can't make an unevaluated Pascal string"); 1199 StringLiteralBits.CharByteWidth = 1; 1200 StringLiteralBits.IsPascal = false; 1201 } 1202 1203 *getTrailingObjects<unsigned>() = Length; 1204 1205 // Initialize the trailing array of SourceLocation. 1206 // This is safe since SourceLocation is POD-like. 1207 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1208 NumConcatenated * sizeof(SourceLocation)); 1209 1210 // Initialize the trailing array of char holding the string data. 1211 std::memcpy(getTrailingObjects<char>(), Str.data(), Str.size()); 1212 1213 setDependence(ExprDependence::None); 1214 } 1215 1216 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1217 unsigned Length, unsigned CharByteWidth) 1218 : Expr(StringLiteralClass, Empty) { 1219 StringLiteralBits.CharByteWidth = CharByteWidth; 1220 StringLiteralBits.NumConcatenated = NumConcatenated; 1221 *getTrailingObjects<unsigned>() = Length; 1222 } 1223 1224 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1225 StringLiteralKind Kind, bool Pascal, 1226 QualType Ty, const SourceLocation *Loc, 1227 unsigned NumConcatenated) { 1228 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1229 1, NumConcatenated, Str.size()), 1230 alignof(StringLiteral)); 1231 return new (Mem) 1232 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1233 } 1234 1235 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1236 unsigned NumConcatenated, 1237 unsigned Length, 1238 unsigned CharByteWidth) { 1239 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1240 1, NumConcatenated, Length * CharByteWidth), 1241 alignof(StringLiteral)); 1242 return new (Mem) 1243 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1244 } 1245 1246 void StringLiteral::outputString(raw_ostream &OS) const { 1247 switch (getKind()) { 1248 case StringLiteralKind::Unevaluated: 1249 case StringLiteralKind::Ordinary: 1250 break; // no prefix. 1251 case StringLiteralKind::Wide: 1252 OS << 'L'; 1253 break; 1254 case StringLiteralKind::UTF8: 1255 OS << "u8"; 1256 break; 1257 case StringLiteralKind::UTF16: 1258 OS << 'u'; 1259 break; 1260 case StringLiteralKind::UTF32: 1261 OS << 'U'; 1262 break; 1263 } 1264 OS << '"'; 1265 static const char Hex[] = "0123456789ABCDEF"; 1266 1267 unsigned LastSlashX = getLength(); 1268 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1269 uint32_t Char = getCodeUnit(I); 1270 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char); 1271 if (Escaped.empty()) { 1272 // FIXME: Convert UTF-8 back to codepoints before rendering. 1273 1274 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1275 // Leave invalid surrogates alone; we'll use \x for those. 1276 if (getKind() == StringLiteralKind::UTF16 && I != N - 1 && 1277 Char >= 0xd800 && Char <= 0xdbff) { 1278 uint32_t Trail = getCodeUnit(I + 1); 1279 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1280 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1281 ++I; 1282 } 1283 } 1284 1285 if (Char > 0xff) { 1286 // If this is a wide string, output characters over 0xff using \x 1287 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1288 // codepoint: use \x escapes for invalid codepoints. 1289 if (getKind() == StringLiteralKind::Wide || 1290 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1291 // FIXME: Is this the best way to print wchar_t? 1292 OS << "\\x"; 1293 int Shift = 28; 1294 while ((Char >> Shift) == 0) 1295 Shift -= 4; 1296 for (/**/; Shift >= 0; Shift -= 4) 1297 OS << Hex[(Char >> Shift) & 15]; 1298 LastSlashX = I; 1299 continue; 1300 } 1301 1302 if (Char > 0xffff) 1303 OS << "\\U00" 1304 << Hex[(Char >> 20) & 15] 1305 << Hex[(Char >> 16) & 15]; 1306 else 1307 OS << "\\u"; 1308 OS << Hex[(Char >> 12) & 15] 1309 << Hex[(Char >> 8) & 15] 1310 << Hex[(Char >> 4) & 15] 1311 << Hex[(Char >> 0) & 15]; 1312 continue; 1313 } 1314 1315 // If we used \x... for the previous character, and this character is a 1316 // hexadecimal digit, prevent it being slurped as part of the \x. 1317 if (LastSlashX + 1 == I) { 1318 switch (Char) { 1319 case '0': case '1': case '2': case '3': case '4': 1320 case '5': case '6': case '7': case '8': case '9': 1321 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1322 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1323 OS << "\"\""; 1324 } 1325 } 1326 1327 assert(Char <= 0xff && 1328 "Characters above 0xff should already have been handled."); 1329 1330 if (isPrintable(Char)) 1331 OS << (char)Char; 1332 else // Output anything hard as an octal escape. 1333 OS << '\\' 1334 << (char)('0' + ((Char >> 6) & 7)) 1335 << (char)('0' + ((Char >> 3) & 7)) 1336 << (char)('0' + ((Char >> 0) & 7)); 1337 } else { 1338 // Handle some common non-printable cases to make dumps prettier. 1339 OS << Escaped; 1340 } 1341 } 1342 OS << '"'; 1343 } 1344 1345 /// getLocationOfByte - Return a source location that points to the specified 1346 /// byte of this string literal. 1347 /// 1348 /// Strings are amazingly complex. They can be formed from multiple tokens and 1349 /// can have escape sequences in them in addition to the usual trigraph and 1350 /// escaped newline business. This routine handles this complexity. 1351 /// 1352 /// The *StartToken sets the first token to be searched in this function and 1353 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1354 /// returning, it updates the *StartToken to the TokNo of the token being found 1355 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1356 /// string. 1357 /// Using these two parameters can reduce the time complexity from O(n^2) to 1358 /// O(n) if one wants to get the location of byte for all the tokens in a 1359 /// string. 1360 /// 1361 SourceLocation 1362 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1363 const LangOptions &Features, 1364 const TargetInfo &Target, unsigned *StartToken, 1365 unsigned *StartTokenByteOffset) const { 1366 assert((getKind() == StringLiteralKind::Ordinary || 1367 getKind() == StringLiteralKind::UTF8 || 1368 getKind() == StringLiteralKind::Unevaluated) && 1369 "Only narrow string literals are currently supported"); 1370 1371 // Loop over all of the tokens in this string until we find the one that 1372 // contains the byte we're looking for. 1373 unsigned TokNo = 0; 1374 unsigned StringOffset = 0; 1375 if (StartToken) 1376 TokNo = *StartToken; 1377 if (StartTokenByteOffset) { 1378 StringOffset = *StartTokenByteOffset; 1379 ByteNo -= StringOffset; 1380 } 1381 while (true) { 1382 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1383 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1384 1385 // Get the spelling of the string so that we can get the data that makes up 1386 // the string literal, not the identifier for the macro it is potentially 1387 // expanded through. 1388 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1389 1390 // Re-lex the token to get its length and original spelling. 1391 std::pair<FileID, unsigned> LocInfo = 1392 SM.getDecomposedLoc(StrTokSpellingLoc); 1393 bool Invalid = false; 1394 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1395 if (Invalid) { 1396 if (StartTokenByteOffset != nullptr) 1397 *StartTokenByteOffset = StringOffset; 1398 if (StartToken != nullptr) 1399 *StartToken = TokNo; 1400 return StrTokSpellingLoc; 1401 } 1402 1403 const char *StrData = Buffer.data()+LocInfo.second; 1404 1405 // Create a lexer starting at the beginning of this token. 1406 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1407 Buffer.begin(), StrData, Buffer.end()); 1408 Token TheTok; 1409 TheLexer.LexFromRawLexer(TheTok); 1410 1411 // Use the StringLiteralParser to compute the length of the string in bytes. 1412 StringLiteralParser SLP(TheTok, SM, Features, Target); 1413 unsigned TokNumBytes = SLP.GetStringLength(); 1414 1415 // If the byte is in this token, return the location of the byte. 1416 if (ByteNo < TokNumBytes || 1417 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1418 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1419 1420 // Now that we know the offset of the token in the spelling, use the 1421 // preprocessor to get the offset in the original source. 1422 if (StartTokenByteOffset != nullptr) 1423 *StartTokenByteOffset = StringOffset; 1424 if (StartToken != nullptr) 1425 *StartToken = TokNo; 1426 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1427 } 1428 1429 // Move to the next string token. 1430 StringOffset += TokNumBytes; 1431 ++TokNo; 1432 ByteNo -= TokNumBytes; 1433 } 1434 } 1435 1436 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1437 /// corresponds to, e.g. "sizeof" or "[pre]++". 1438 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1439 switch (Op) { 1440 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1441 #include "clang/AST/OperationKinds.def" 1442 } 1443 llvm_unreachable("Unknown unary operator"); 1444 } 1445 1446 UnaryOperatorKind 1447 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1448 switch (OO) { 1449 default: llvm_unreachable("No unary operator for overloaded function"); 1450 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1451 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1452 case OO_Amp: return UO_AddrOf; 1453 case OO_Star: return UO_Deref; 1454 case OO_Plus: return UO_Plus; 1455 case OO_Minus: return UO_Minus; 1456 case OO_Tilde: return UO_Not; 1457 case OO_Exclaim: return UO_LNot; 1458 case OO_Coawait: return UO_Coawait; 1459 } 1460 } 1461 1462 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1463 switch (Opc) { 1464 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1465 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1466 case UO_AddrOf: return OO_Amp; 1467 case UO_Deref: return OO_Star; 1468 case UO_Plus: return OO_Plus; 1469 case UO_Minus: return OO_Minus; 1470 case UO_Not: return OO_Tilde; 1471 case UO_LNot: return OO_Exclaim; 1472 case UO_Coawait: return OO_Coawait; 1473 default: return OO_None; 1474 } 1475 } 1476 1477 1478 //===----------------------------------------------------------------------===// 1479 // Postfix Operators. 1480 //===----------------------------------------------------------------------===// 1481 1482 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1483 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1484 SourceLocation RParenLoc, FPOptionsOverride FPFeatures, 1485 unsigned MinNumArgs, ADLCallKind UsesADL) 1486 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { 1487 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1488 unsigned NumPreArgs = PreArgs.size(); 1489 CallExprBits.NumPreArgs = NumPreArgs; 1490 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1491 1492 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1493 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1494 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1495 "OffsetToTrailingObjects overflow!"); 1496 1497 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1498 1499 setCallee(Fn); 1500 for (unsigned I = 0; I != NumPreArgs; ++I) 1501 setPreArg(I, PreArgs[I]); 1502 for (unsigned I = 0; I != Args.size(); ++I) 1503 setArg(I, Args[I]); 1504 for (unsigned I = Args.size(); I != NumArgs; ++I) 1505 setArg(I, nullptr); 1506 1507 this->computeDependence(); 1508 1509 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 1510 if (hasStoredFPFeatures()) 1511 setStoredFPFeatures(FPFeatures); 1512 } 1513 1514 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1515 bool HasFPFeatures, EmptyShell Empty) 1516 : Expr(SC, Empty), NumArgs(NumArgs) { 1517 CallExprBits.NumPreArgs = NumPreArgs; 1518 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1519 1520 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1521 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1522 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1523 "OffsetToTrailingObjects overflow!"); 1524 CallExprBits.HasFPFeatures = HasFPFeatures; 1525 } 1526 1527 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1528 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1529 SourceLocation RParenLoc, 1530 FPOptionsOverride FPFeatures, unsigned MinNumArgs, 1531 ADLCallKind UsesADL) { 1532 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1533 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( 1534 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); 1535 void *Mem = 1536 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1537 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1538 RParenLoc, FPFeatures, MinNumArgs, UsesADL); 1539 } 1540 1541 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1542 ExprValueKind VK, SourceLocation RParenLoc, 1543 ADLCallKind UsesADL) { 1544 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1545 "Misaligned memory in CallExpr::CreateTemporary!"); 1546 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1547 VK, RParenLoc, FPOptionsOverride(), 1548 /*MinNumArgs=*/0, UsesADL); 1549 } 1550 1551 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1552 bool HasFPFeatures, EmptyShell Empty) { 1553 unsigned SizeOfTrailingObjects = 1554 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); 1555 void *Mem = 1556 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1557 return new (Mem) 1558 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); 1559 } 1560 1561 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1562 switch (SC) { 1563 case CallExprClass: 1564 return sizeof(CallExpr); 1565 case CXXOperatorCallExprClass: 1566 return sizeof(CXXOperatorCallExpr); 1567 case CXXMemberCallExprClass: 1568 return sizeof(CXXMemberCallExpr); 1569 case UserDefinedLiteralClass: 1570 return sizeof(UserDefinedLiteral); 1571 case CUDAKernelCallExprClass: 1572 return sizeof(CUDAKernelCallExpr); 1573 default: 1574 llvm_unreachable("unexpected class deriving from CallExpr!"); 1575 } 1576 } 1577 1578 Decl *Expr::getReferencedDeclOfCallee() { 1579 Expr *CEE = IgnoreParenImpCasts(); 1580 1581 while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) 1582 CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); 1583 1584 // If we're calling a dereference, look at the pointer instead. 1585 while (true) { 1586 if (auto *BO = dyn_cast<BinaryOperator>(CEE)) { 1587 if (BO->isPtrMemOp()) { 1588 CEE = BO->getRHS()->IgnoreParenImpCasts(); 1589 continue; 1590 } 1591 } else if (auto *UO = dyn_cast<UnaryOperator>(CEE)) { 1592 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || 1593 UO->getOpcode() == UO_Plus) { 1594 CEE = UO->getSubExpr()->IgnoreParenImpCasts(); 1595 continue; 1596 } 1597 } 1598 break; 1599 } 1600 1601 if (auto *DRE = dyn_cast<DeclRefExpr>(CEE)) 1602 return DRE->getDecl(); 1603 if (auto *ME = dyn_cast<MemberExpr>(CEE)) 1604 return ME->getMemberDecl(); 1605 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1606 return BE->getBlockDecl(); 1607 1608 return nullptr; 1609 } 1610 1611 /// If this is a call to a builtin, return the builtin ID. If not, return 0. 1612 unsigned CallExpr::getBuiltinCallee() const { 1613 const auto *FDecl = getDirectCallee(); 1614 return FDecl ? FDecl->getBuiltinID() : 0; 1615 } 1616 1617 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1618 if (unsigned BI = getBuiltinCallee()) 1619 return Ctx.BuiltinInfo.isUnevaluated(BI); 1620 return false; 1621 } 1622 1623 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1624 const Expr *Callee = getCallee(); 1625 QualType CalleeType = Callee->getType(); 1626 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1627 CalleeType = FnTypePtr->getPointeeType(); 1628 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1629 CalleeType = BPT->getPointeeType(); 1630 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1631 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1632 return Ctx.VoidTy; 1633 1634 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens())) 1635 return Ctx.DependentTy; 1636 1637 // This should never be overloaded and so should never return null. 1638 CalleeType = Expr::findBoundMemberType(Callee); 1639 assert(!CalleeType.isNull()); 1640 } else if (CalleeType->isRecordType()) { 1641 // If the Callee is a record type, then it is a not-yet-resolved 1642 // dependent call to the call operator of that type. 1643 return Ctx.DependentTy; 1644 } else if (CalleeType->isDependentType() || 1645 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) { 1646 return Ctx.DependentTy; 1647 } 1648 1649 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1650 return FnType->getReturnType(); 1651 } 1652 1653 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1654 // If the return type is a struct, union, or enum that is marked nodiscard, 1655 // then return the return type attribute. 1656 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1657 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1658 return A; 1659 1660 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD; 1661 TD = TD->desugar()->getAs<TypedefType>()) 1662 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>()) 1663 return A; 1664 1665 // Otherwise, see if the callee is marked nodiscard and return that attribute 1666 // instead. 1667 const Decl *D = getCalleeDecl(); 1668 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1669 } 1670 1671 SourceLocation CallExpr::getBeginLoc() const { 1672 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this)) 1673 return OCE->getBeginLoc(); 1674 1675 SourceLocation begin = getCallee()->getBeginLoc(); 1676 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1677 begin = getArg(0)->getBeginLoc(); 1678 return begin; 1679 } 1680 SourceLocation CallExpr::getEndLoc() const { 1681 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this)) 1682 return OCE->getEndLoc(); 1683 1684 SourceLocation end = getRParenLoc(); 1685 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1686 end = getArg(getNumArgs() - 1)->getEndLoc(); 1687 return end; 1688 } 1689 1690 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1691 SourceLocation OperatorLoc, 1692 TypeSourceInfo *tsi, 1693 ArrayRef<OffsetOfNode> comps, 1694 ArrayRef<Expr*> exprs, 1695 SourceLocation RParenLoc) { 1696 void *Mem = C.Allocate( 1697 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1698 1699 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1700 RParenLoc); 1701 } 1702 1703 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1704 unsigned numComps, unsigned numExprs) { 1705 void *Mem = 1706 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1707 return new (Mem) OffsetOfExpr(numComps, numExprs); 1708 } 1709 1710 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1711 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1712 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, 1713 SourceLocation RParenLoc) 1714 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), 1715 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1716 NumComps(comps.size()), NumExprs(exprs.size()) { 1717 for (unsigned i = 0; i != comps.size(); ++i) 1718 setComponent(i, comps[i]); 1719 for (unsigned i = 0; i != exprs.size(); ++i) 1720 setIndexExpr(i, exprs[i]); 1721 1722 setDependence(computeDependence(this)); 1723 } 1724 1725 IdentifierInfo *OffsetOfNode::getFieldName() const { 1726 assert(getKind() == Field || getKind() == Identifier); 1727 if (getKind() == Field) 1728 return getField()->getIdentifier(); 1729 1730 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1731 } 1732 1733 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1734 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1735 SourceLocation op, SourceLocation rp) 1736 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), 1737 OpLoc(op), RParenLoc(rp) { 1738 assert(ExprKind <= UETT_Last && "invalid enum value!"); 1739 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1740 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && 1741 "UnaryExprOrTypeTraitExprBits.Kind overflow!"); 1742 UnaryExprOrTypeTraitExprBits.IsType = false; 1743 Argument.Ex = E; 1744 setDependence(computeDependence(this)); 1745 } 1746 1747 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1748 ValueDecl *MemberDecl, 1749 const DeclarationNameInfo &NameInfo, QualType T, 1750 ExprValueKind VK, ExprObjectKind OK, 1751 NonOdrUseReason NOUR) 1752 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), 1753 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { 1754 assert(!NameInfo.getName() || 1755 MemberDecl->getDeclName() == NameInfo.getName()); 1756 MemberExprBits.IsArrow = IsArrow; 1757 MemberExprBits.HasQualifierOrFoundDecl = false; 1758 MemberExprBits.HasTemplateKWAndArgsInfo = false; 1759 MemberExprBits.HadMultipleCandidates = false; 1760 MemberExprBits.NonOdrUseReason = NOUR; 1761 MemberExprBits.OperatorLoc = OperatorLoc; 1762 setDependence(computeDependence(this)); 1763 } 1764 1765 MemberExpr *MemberExpr::Create( 1766 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1767 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1768 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1769 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1770 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1771 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || 1772 FoundDecl.getAccess() != MemberDecl->getAccess(); 1773 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1774 std::size_t Size = 1775 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1776 TemplateArgumentLoc>( 1777 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, 1778 TemplateArgs ? TemplateArgs->size() : 0); 1779 1780 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1781 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, 1782 NameInfo, T, VK, OK, NOUR); 1783 1784 if (HasQualOrFound) { 1785 E->MemberExprBits.HasQualifierOrFoundDecl = true; 1786 1787 MemberExprNameQualifier *NQ = 1788 E->getTrailingObjects<MemberExprNameQualifier>(); 1789 NQ->QualifierLoc = QualifierLoc; 1790 NQ->FoundDecl = FoundDecl; 1791 } 1792 1793 E->MemberExprBits.HasTemplateKWAndArgsInfo = 1794 TemplateArgs || TemplateKWLoc.isValid(); 1795 1796 // FIXME: remove remaining dependence computation to computeDependence(). 1797 auto Deps = E->getDependence(); 1798 if (TemplateArgs) { 1799 auto TemplateArgDeps = TemplateArgumentDependence::None; 1800 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1801 TemplateKWLoc, *TemplateArgs, 1802 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps); 1803 for (const TemplateArgumentLoc &ArgLoc : TemplateArgs->arguments()) { 1804 Deps |= toExprDependence(ArgLoc.getArgument().getDependence()); 1805 } 1806 } else if (TemplateKWLoc.isValid()) { 1807 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1808 TemplateKWLoc); 1809 } 1810 E->setDependence(Deps); 1811 1812 return E; 1813 } 1814 1815 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1816 bool HasQualifier, bool HasFoundDecl, 1817 bool HasTemplateKWAndArgsInfo, 1818 unsigned NumTemplateArgs) { 1819 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1820 "template args but no template arg info?"); 1821 bool HasQualOrFound = HasQualifier || HasFoundDecl; 1822 std::size_t Size = 1823 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1824 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, 1825 HasTemplateKWAndArgsInfo ? 1 : 0, 1826 NumTemplateArgs); 1827 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1828 return new (Mem) MemberExpr(EmptyShell()); 1829 } 1830 1831 void MemberExpr::setMemberDecl(ValueDecl *NewD) { 1832 MemberDecl = NewD; 1833 if (getType()->isUndeducedType()) 1834 setType(NewD->getType()); 1835 setDependence(computeDependence(this)); 1836 } 1837 1838 SourceLocation MemberExpr::getBeginLoc() const { 1839 if (isImplicitAccess()) { 1840 if (hasQualifier()) 1841 return getQualifierLoc().getBeginLoc(); 1842 return MemberLoc; 1843 } 1844 1845 // FIXME: We don't want this to happen. Rather, we should be able to 1846 // detect all kinds of implicit accesses more cleanly. 1847 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1848 if (BaseStartLoc.isValid()) 1849 return BaseStartLoc; 1850 return MemberLoc; 1851 } 1852 SourceLocation MemberExpr::getEndLoc() const { 1853 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1854 if (hasExplicitTemplateArgs()) 1855 EndLoc = getRAngleLoc(); 1856 else if (EndLoc.isInvalid()) 1857 EndLoc = getBase()->getEndLoc(); 1858 return EndLoc; 1859 } 1860 1861 bool CastExpr::CastConsistency() const { 1862 switch (getCastKind()) { 1863 case CK_DerivedToBase: 1864 case CK_UncheckedDerivedToBase: 1865 case CK_DerivedToBaseMemberPointer: 1866 case CK_BaseToDerived: 1867 case CK_BaseToDerivedMemberPointer: 1868 assert(!path_empty() && "Cast kind should have a base path!"); 1869 break; 1870 1871 case CK_CPointerToObjCPointerCast: 1872 assert(getType()->isObjCObjectPointerType()); 1873 assert(getSubExpr()->getType()->isPointerType()); 1874 goto CheckNoBasePath; 1875 1876 case CK_BlockPointerToObjCPointerCast: 1877 assert(getType()->isObjCObjectPointerType()); 1878 assert(getSubExpr()->getType()->isBlockPointerType()); 1879 goto CheckNoBasePath; 1880 1881 case CK_ReinterpretMemberPointer: 1882 assert(getType()->isMemberPointerType()); 1883 assert(getSubExpr()->getType()->isMemberPointerType()); 1884 goto CheckNoBasePath; 1885 1886 case CK_BitCast: 1887 // Arbitrary casts to C pointer types count as bitcasts. 1888 // Otherwise, we should only have block and ObjC pointer casts 1889 // here if they stay within the type kind. 1890 if (!getType()->isPointerType()) { 1891 assert(getType()->isObjCObjectPointerType() == 1892 getSubExpr()->getType()->isObjCObjectPointerType()); 1893 assert(getType()->isBlockPointerType() == 1894 getSubExpr()->getType()->isBlockPointerType()); 1895 } 1896 goto CheckNoBasePath; 1897 1898 case CK_AnyPointerToBlockPointerCast: 1899 assert(getType()->isBlockPointerType()); 1900 assert(getSubExpr()->getType()->isAnyPointerType() && 1901 !getSubExpr()->getType()->isBlockPointerType()); 1902 goto CheckNoBasePath; 1903 1904 case CK_CopyAndAutoreleaseBlockObject: 1905 assert(getType()->isBlockPointerType()); 1906 assert(getSubExpr()->getType()->isBlockPointerType()); 1907 goto CheckNoBasePath; 1908 1909 case CK_FunctionToPointerDecay: 1910 assert(getType()->isPointerType()); 1911 assert(getSubExpr()->getType()->isFunctionType()); 1912 goto CheckNoBasePath; 1913 1914 case CK_AddressSpaceConversion: { 1915 auto Ty = getType(); 1916 auto SETy = getSubExpr()->getType(); 1917 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1918 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { 1919 Ty = Ty->getPointeeType(); 1920 SETy = SETy->getPointeeType(); 1921 } 1922 assert((Ty->isDependentType() || SETy->isDependentType()) || 1923 (!Ty.isNull() && !SETy.isNull() && 1924 Ty.getAddressSpace() != SETy.getAddressSpace())); 1925 goto CheckNoBasePath; 1926 } 1927 // These should not have an inheritance path. 1928 case CK_Dynamic: 1929 case CK_ToUnion: 1930 case CK_ArrayToPointerDecay: 1931 case CK_NullToMemberPointer: 1932 case CK_NullToPointer: 1933 case CK_ConstructorConversion: 1934 case CK_IntegralToPointer: 1935 case CK_PointerToIntegral: 1936 case CK_ToVoid: 1937 case CK_VectorSplat: 1938 case CK_IntegralCast: 1939 case CK_BooleanToSignedIntegral: 1940 case CK_IntegralToFloating: 1941 case CK_FloatingToIntegral: 1942 case CK_FloatingCast: 1943 case CK_ObjCObjectLValueCast: 1944 case CK_FloatingRealToComplex: 1945 case CK_FloatingComplexToReal: 1946 case CK_FloatingComplexCast: 1947 case CK_FloatingComplexToIntegralComplex: 1948 case CK_IntegralRealToComplex: 1949 case CK_IntegralComplexToReal: 1950 case CK_IntegralComplexCast: 1951 case CK_IntegralComplexToFloatingComplex: 1952 case CK_ARCProduceObject: 1953 case CK_ARCConsumeObject: 1954 case CK_ARCReclaimReturnedObject: 1955 case CK_ARCExtendBlockObject: 1956 case CK_ZeroToOCLOpaqueType: 1957 case CK_IntToOCLSampler: 1958 case CK_FloatingToFixedPoint: 1959 case CK_FixedPointToFloating: 1960 case CK_FixedPointCast: 1961 case CK_FixedPointToIntegral: 1962 case CK_IntegralToFixedPoint: 1963 case CK_MatrixCast: 1964 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1965 goto CheckNoBasePath; 1966 1967 case CK_Dependent: 1968 case CK_LValueToRValue: 1969 case CK_NoOp: 1970 case CK_AtomicToNonAtomic: 1971 case CK_NonAtomicToAtomic: 1972 case CK_PointerToBoolean: 1973 case CK_IntegralToBoolean: 1974 case CK_FloatingToBoolean: 1975 case CK_MemberPointerToBoolean: 1976 case CK_FloatingComplexToBoolean: 1977 case CK_IntegralComplexToBoolean: 1978 case CK_LValueBitCast: // -> bool& 1979 case CK_LValueToRValueBitCast: 1980 case CK_UserDefinedConversion: // operator bool() 1981 case CK_BuiltinFnToFnPtr: 1982 case CK_FixedPointToBoolean: 1983 CheckNoBasePath: 1984 assert(path_empty() && "Cast kind should not have a base path!"); 1985 break; 1986 } 1987 return true; 1988 } 1989 1990 const char *CastExpr::getCastKindName(CastKind CK) { 1991 switch (CK) { 1992 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1993 #include "clang/AST/OperationKinds.def" 1994 } 1995 llvm_unreachable("Unhandled cast kind!"); 1996 } 1997 1998 namespace { 1999 // Skip over implicit nodes produced as part of semantic analysis. 2000 // Designed for use with IgnoreExprNodes. 2001 static Expr *ignoreImplicitSemaNodes(Expr *E) { 2002 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 2003 return Materialize->getSubExpr(); 2004 2005 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 2006 return Binder->getSubExpr(); 2007 2008 if (auto *Full = dyn_cast<FullExpr>(E)) 2009 return Full->getSubExpr(); 2010 2011 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E); 2012 CPLIE && CPLIE->getInitExprs().size() == 1) 2013 return CPLIE->getInitExprs()[0]; 2014 2015 return E; 2016 } 2017 } // namespace 2018 2019 Expr *CastExpr::getSubExprAsWritten() { 2020 const Expr *SubExpr = nullptr; 2021 2022 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 2023 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 2024 2025 // Conversions by constructor and conversion functions have a 2026 // subexpression describing the call; strip it off. 2027 if (E->getCastKind() == CK_ConstructorConversion) { 2028 SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0), 2029 ignoreImplicitSemaNodes); 2030 } else if (E->getCastKind() == CK_UserDefinedConversion) { 2031 assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) && 2032 "Unexpected SubExpr for CK_UserDefinedConversion."); 2033 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 2034 SubExpr = MCE->getImplicitObjectArgument(); 2035 } 2036 } 2037 2038 return const_cast<Expr *>(SubExpr); 2039 } 2040 2041 NamedDecl *CastExpr::getConversionFunction() const { 2042 const Expr *SubExpr = nullptr; 2043 2044 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 2045 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 2046 2047 if (E->getCastKind() == CK_ConstructorConversion) 2048 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 2049 2050 if (E->getCastKind() == CK_UserDefinedConversion) { 2051 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 2052 return MCE->getMethodDecl(); 2053 } 2054 } 2055 2056 return nullptr; 2057 } 2058 2059 CXXBaseSpecifier **CastExpr::path_buffer() { 2060 switch (getStmtClass()) { 2061 #define ABSTRACT_STMT(x) 2062 #define CASTEXPR(Type, Base) \ 2063 case Stmt::Type##Class: \ 2064 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 2065 #define STMT(Type, Base) 2066 #include "clang/AST/StmtNodes.inc" 2067 default: 2068 llvm_unreachable("non-cast expressions not possible here"); 2069 } 2070 } 2071 2072 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 2073 QualType opType) { 2074 auto RD = unionType->castAs<RecordType>()->getDecl(); 2075 return getTargetFieldForToUnionCast(RD, opType); 2076 } 2077 2078 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 2079 QualType OpType) { 2080 auto &Ctx = RD->getASTContext(); 2081 RecordDecl::field_iterator Field, FieldEnd; 2082 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 2083 Field != FieldEnd; ++Field) { 2084 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 2085 !Field->isUnnamedBitfield()) { 2086 return *Field; 2087 } 2088 } 2089 return nullptr; 2090 } 2091 2092 FPOptionsOverride *CastExpr::getTrailingFPFeatures() { 2093 assert(hasStoredFPFeatures()); 2094 switch (getStmtClass()) { 2095 case ImplicitCastExprClass: 2096 return static_cast<ImplicitCastExpr *>(this) 2097 ->getTrailingObjects<FPOptionsOverride>(); 2098 case CStyleCastExprClass: 2099 return static_cast<CStyleCastExpr *>(this) 2100 ->getTrailingObjects<FPOptionsOverride>(); 2101 case CXXFunctionalCastExprClass: 2102 return static_cast<CXXFunctionalCastExpr *>(this) 2103 ->getTrailingObjects<FPOptionsOverride>(); 2104 case CXXStaticCastExprClass: 2105 return static_cast<CXXStaticCastExpr *>(this) 2106 ->getTrailingObjects<FPOptionsOverride>(); 2107 default: 2108 llvm_unreachable("Cast does not have FPFeatures"); 2109 } 2110 } 2111 2112 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 2113 CastKind Kind, Expr *Operand, 2114 const CXXCastPath *BasePath, 2115 ExprValueKind VK, 2116 FPOptionsOverride FPO) { 2117 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2118 void *Buffer = 2119 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2120 PathSize, FPO.requiresTrailingStorage())); 2121 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 2122 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 2123 assert((Kind != CK_LValueToRValue || 2124 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 2125 "invalid type for lvalue-to-rvalue conversion"); 2126 ImplicitCastExpr *E = 2127 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); 2128 if (PathSize) 2129 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2130 E->getTrailingObjects<CXXBaseSpecifier *>()); 2131 return E; 2132 } 2133 2134 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 2135 unsigned PathSize, 2136 bool HasFPFeatures) { 2137 void *Buffer = 2138 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2139 PathSize, HasFPFeatures)); 2140 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2141 } 2142 2143 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 2144 ExprValueKind VK, CastKind K, Expr *Op, 2145 const CXXCastPath *BasePath, 2146 FPOptionsOverride FPO, 2147 TypeSourceInfo *WrittenTy, 2148 SourceLocation L, SourceLocation R) { 2149 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2150 void *Buffer = 2151 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2152 PathSize, FPO.requiresTrailingStorage())); 2153 CStyleCastExpr *E = 2154 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); 2155 if (PathSize) 2156 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2157 E->getTrailingObjects<CXXBaseSpecifier *>()); 2158 return E; 2159 } 2160 2161 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 2162 unsigned PathSize, 2163 bool HasFPFeatures) { 2164 void *Buffer = 2165 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2166 PathSize, HasFPFeatures)); 2167 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2168 } 2169 2170 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 2171 /// corresponds to, e.g. "<<=". 2172 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 2173 switch (Op) { 2174 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2175 #include "clang/AST/OperationKinds.def" 2176 } 2177 llvm_unreachable("Invalid OpCode!"); 2178 } 2179 2180 BinaryOperatorKind 2181 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2182 switch (OO) { 2183 default: llvm_unreachable("Not an overloadable binary operator"); 2184 case OO_Plus: return BO_Add; 2185 case OO_Minus: return BO_Sub; 2186 case OO_Star: return BO_Mul; 2187 case OO_Slash: return BO_Div; 2188 case OO_Percent: return BO_Rem; 2189 case OO_Caret: return BO_Xor; 2190 case OO_Amp: return BO_And; 2191 case OO_Pipe: return BO_Or; 2192 case OO_Equal: return BO_Assign; 2193 case OO_Spaceship: return BO_Cmp; 2194 case OO_Less: return BO_LT; 2195 case OO_Greater: return BO_GT; 2196 case OO_PlusEqual: return BO_AddAssign; 2197 case OO_MinusEqual: return BO_SubAssign; 2198 case OO_StarEqual: return BO_MulAssign; 2199 case OO_SlashEqual: return BO_DivAssign; 2200 case OO_PercentEqual: return BO_RemAssign; 2201 case OO_CaretEqual: return BO_XorAssign; 2202 case OO_AmpEqual: return BO_AndAssign; 2203 case OO_PipeEqual: return BO_OrAssign; 2204 case OO_LessLess: return BO_Shl; 2205 case OO_GreaterGreater: return BO_Shr; 2206 case OO_LessLessEqual: return BO_ShlAssign; 2207 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2208 case OO_EqualEqual: return BO_EQ; 2209 case OO_ExclaimEqual: return BO_NE; 2210 case OO_LessEqual: return BO_LE; 2211 case OO_GreaterEqual: return BO_GE; 2212 case OO_AmpAmp: return BO_LAnd; 2213 case OO_PipePipe: return BO_LOr; 2214 case OO_Comma: return BO_Comma; 2215 case OO_ArrowStar: return BO_PtrMemI; 2216 } 2217 } 2218 2219 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2220 static const OverloadedOperatorKind OverOps[] = { 2221 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2222 OO_Star, OO_Slash, OO_Percent, 2223 OO_Plus, OO_Minus, 2224 OO_LessLess, OO_GreaterGreater, 2225 OO_Spaceship, 2226 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2227 OO_EqualEqual, OO_ExclaimEqual, 2228 OO_Amp, 2229 OO_Caret, 2230 OO_Pipe, 2231 OO_AmpAmp, 2232 OO_PipePipe, 2233 OO_Equal, OO_StarEqual, 2234 OO_SlashEqual, OO_PercentEqual, 2235 OO_PlusEqual, OO_MinusEqual, 2236 OO_LessLessEqual, OO_GreaterGreaterEqual, 2237 OO_AmpEqual, OO_CaretEqual, 2238 OO_PipeEqual, 2239 OO_Comma 2240 }; 2241 return OverOps[Opc]; 2242 } 2243 2244 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2245 Opcode Opc, 2246 const Expr *LHS, 2247 const Expr *RHS) { 2248 if (Opc != BO_Add) 2249 return false; 2250 2251 // Check that we have one pointer and one integer operand. 2252 const Expr *PExp; 2253 if (LHS->getType()->isPointerType()) { 2254 if (!RHS->getType()->isIntegerType()) 2255 return false; 2256 PExp = LHS; 2257 } else if (RHS->getType()->isPointerType()) { 2258 if (!LHS->getType()->isIntegerType()) 2259 return false; 2260 PExp = RHS; 2261 } else { 2262 return false; 2263 } 2264 2265 // Check that the pointer is a nullptr. 2266 if (!PExp->IgnoreParenCasts() 2267 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2268 return false; 2269 2270 // Check that the pointee type is char-sized. 2271 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2272 if (!PTy || !PTy->getPointeeType()->isCharType()) 2273 return false; 2274 2275 return true; 2276 } 2277 2278 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind, 2279 QualType ResultTy, SourceLocation BLoc, 2280 SourceLocation RParenLoc, 2281 DeclContext *ParentContext) 2282 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary), 2283 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2284 SourceLocExprBits.Kind = llvm::to_underlying(Kind); 2285 setDependence(ExprDependence::None); 2286 } 2287 2288 StringRef SourceLocExpr::getBuiltinStr() const { 2289 switch (getIdentKind()) { 2290 case SourceLocIdentKind::File: 2291 return "__builtin_FILE"; 2292 case SourceLocIdentKind::FileName: 2293 return "__builtin_FILE_NAME"; 2294 case SourceLocIdentKind::Function: 2295 return "__builtin_FUNCTION"; 2296 case SourceLocIdentKind::FuncSig: 2297 return "__builtin_FUNCSIG"; 2298 case SourceLocIdentKind::Line: 2299 return "__builtin_LINE"; 2300 case SourceLocIdentKind::Column: 2301 return "__builtin_COLUMN"; 2302 case SourceLocIdentKind::SourceLocStruct: 2303 return "__builtin_source_location"; 2304 } 2305 llvm_unreachable("unexpected IdentKind!"); 2306 } 2307 2308 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2309 const Expr *DefaultExpr) const { 2310 SourceLocation Loc; 2311 const DeclContext *Context; 2312 2313 if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(DefaultExpr)) { 2314 Loc = DIE->getUsedLocation(); 2315 Context = DIE->getUsedContext(); 2316 } else if (const auto *DAE = 2317 dyn_cast_if_present<CXXDefaultArgExpr>(DefaultExpr)) { 2318 Loc = DAE->getUsedLocation(); 2319 Context = DAE->getUsedContext(); 2320 } else { 2321 Loc = getLocation(); 2322 Context = getParentContext(); 2323 } 2324 2325 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2326 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2327 2328 auto MakeStringLiteral = [&](StringRef Tmp) { 2329 using LValuePathEntry = APValue::LValuePathEntry; 2330 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2331 // Decay the string to a pointer to the first character. 2332 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2333 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2334 }; 2335 2336 switch (getIdentKind()) { 2337 case SourceLocIdentKind::FileName: { 2338 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the 2339 // the last part of __builtin_FILE(). 2340 SmallString<256> FileName; 2341 clang::Preprocessor::processPathToFileName( 2342 FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo()); 2343 return MakeStringLiteral(FileName); 2344 } 2345 case SourceLocIdentKind::File: { 2346 SmallString<256> Path(PLoc.getFilename()); 2347 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2348 Ctx.getTargetInfo()); 2349 return MakeStringLiteral(Path); 2350 } 2351 case SourceLocIdentKind::Function: 2352 case SourceLocIdentKind::FuncSig: { 2353 const auto *CurDecl = dyn_cast<Decl>(Context); 2354 const auto Kind = getIdentKind() == SourceLocIdentKind::Function 2355 ? PredefinedIdentKind::Function 2356 : PredefinedIdentKind::FuncSig; 2357 return MakeStringLiteral( 2358 CurDecl ? PredefinedExpr::ComputeName(Kind, CurDecl) : std::string("")); 2359 } 2360 case SourceLocIdentKind::Line: 2361 return APValue(Ctx.MakeIntValue(PLoc.getLine(), Ctx.UnsignedIntTy)); 2362 case SourceLocIdentKind::Column: 2363 return APValue(Ctx.MakeIntValue(PLoc.getColumn(), Ctx.UnsignedIntTy)); 2364 case SourceLocIdentKind::SourceLocStruct: { 2365 // Fill in a std::source_location::__impl structure, by creating an 2366 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to 2367 // that. 2368 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl(); 2369 assert(ImplDecl); 2370 2371 // Construct an APValue for the __impl struct, and get or create a Decl 2372 // corresponding to that. Note that we've already verified that the shape of 2373 // the ImplDecl type is as expected. 2374 2375 APValue Value(APValue::UninitStruct(), 0, 4); 2376 for (const FieldDecl *F : ImplDecl->fields()) { 2377 StringRef Name = F->getName(); 2378 if (Name == "_M_file_name") { 2379 SmallString<256> Path(PLoc.getFilename()); 2380 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2381 Ctx.getTargetInfo()); 2382 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path); 2383 } else if (Name == "_M_function_name") { 2384 // Note: this emits the PrettyFunction name -- different than what 2385 // __builtin_FUNCTION() above returns! 2386 const auto *CurDecl = dyn_cast<Decl>(Context); 2387 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral( 2388 CurDecl && !isa<TranslationUnitDecl>(CurDecl) 2389 ? StringRef(PredefinedExpr::ComputeName( 2390 PredefinedIdentKind::PrettyFunction, CurDecl)) 2391 : ""); 2392 } else if (Name == "_M_line") { 2393 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType()); 2394 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2395 } else if (Name == "_M_column") { 2396 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType()); 2397 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2398 } 2399 } 2400 2401 UnnamedGlobalConstantDecl *GV = 2402 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value); 2403 2404 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{}, 2405 false); 2406 } 2407 } 2408 llvm_unreachable("unhandled case"); 2409 } 2410 2411 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2412 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) 2413 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), 2414 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), 2415 RBraceLoc(rbraceloc), AltForm(nullptr, true) { 2416 sawArrayRangeDesignator(false); 2417 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2418 2419 setDependence(computeDependence(this)); 2420 } 2421 2422 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2423 if (NumInits > InitExprs.size()) 2424 InitExprs.reserve(C, NumInits); 2425 } 2426 2427 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2428 InitExprs.resize(C, NumInits, nullptr); 2429 } 2430 2431 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2432 if (Init >= InitExprs.size()) { 2433 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2434 setInit(Init, expr); 2435 return nullptr; 2436 } 2437 2438 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2439 setInit(Init, expr); 2440 return Result; 2441 } 2442 2443 void InitListExpr::setArrayFiller(Expr *filler) { 2444 assert(!hasArrayFiller() && "Filler already set!"); 2445 ArrayFillerOrUnionFieldInit = filler; 2446 // Fill out any "holes" in the array due to designated initializers. 2447 Expr **inits = getInits(); 2448 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2449 if (inits[i] == nullptr) 2450 inits[i] = filler; 2451 } 2452 2453 bool InitListExpr::isStringLiteralInit() const { 2454 if (getNumInits() != 1) 2455 return false; 2456 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2457 if (!AT || !AT->getElementType()->isIntegerType()) 2458 return false; 2459 // It is possible for getInit() to return null. 2460 const Expr *Init = getInit(0); 2461 if (!Init) 2462 return false; 2463 Init = Init->IgnoreParenImpCasts(); 2464 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2465 } 2466 2467 bool InitListExpr::isTransparent() const { 2468 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2469 2470 // A glvalue InitListExpr is always just sugar. 2471 if (isGLValue()) { 2472 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2473 return true; 2474 } 2475 2476 // Otherwise, we're sugar if and only if we have exactly one initializer that 2477 // is of the same type. 2478 if (getNumInits() != 1 || !getInit(0)) 2479 return false; 2480 2481 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2482 // transparent struct copy. 2483 if (!getInit(0)->isPRValue() && getType()->isRecordType()) 2484 return false; 2485 2486 return getType().getCanonicalType() == 2487 getInit(0)->getType().getCanonicalType(); 2488 } 2489 2490 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2491 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2492 2493 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2494 return false; 2495 } 2496 2497 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2498 return Lit && Lit->getValue() == 0; 2499 } 2500 2501 SourceLocation InitListExpr::getBeginLoc() const { 2502 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2503 return SyntacticForm->getBeginLoc(); 2504 SourceLocation Beg = LBraceLoc; 2505 if (Beg.isInvalid()) { 2506 // Find the first non-null initializer. 2507 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2508 E = InitExprs.end(); 2509 I != E; ++I) { 2510 if (Stmt *S = *I) { 2511 Beg = S->getBeginLoc(); 2512 break; 2513 } 2514 } 2515 } 2516 return Beg; 2517 } 2518 2519 SourceLocation InitListExpr::getEndLoc() const { 2520 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2521 return SyntacticForm->getEndLoc(); 2522 SourceLocation End = RBraceLoc; 2523 if (End.isInvalid()) { 2524 // Find the first non-null initializer from the end. 2525 for (Stmt *S : llvm::reverse(InitExprs)) { 2526 if (S) { 2527 End = S->getEndLoc(); 2528 break; 2529 } 2530 } 2531 } 2532 return End; 2533 } 2534 2535 /// getFunctionType - Return the underlying function type for this block. 2536 /// 2537 const FunctionProtoType *BlockExpr::getFunctionType() const { 2538 // The block pointer is never sugared, but the function type might be. 2539 return cast<BlockPointerType>(getType()) 2540 ->getPointeeType()->castAs<FunctionProtoType>(); 2541 } 2542 2543 SourceLocation BlockExpr::getCaretLocation() const { 2544 return TheBlock->getCaretLocation(); 2545 } 2546 const Stmt *BlockExpr::getBody() const { 2547 return TheBlock->getBody(); 2548 } 2549 Stmt *BlockExpr::getBody() { 2550 return TheBlock->getBody(); 2551 } 2552 2553 2554 //===----------------------------------------------------------------------===// 2555 // Generic Expression Routines 2556 //===----------------------------------------------------------------------===// 2557 2558 bool Expr::isReadIfDiscardedInCPlusPlus11() const { 2559 // In C++11, discarded-value expressions of a certain form are special, 2560 // according to [expr]p10: 2561 // The lvalue-to-rvalue conversion (4.1) is applied only if the 2562 // expression is a glvalue of volatile-qualified type and it has 2563 // one of the following forms: 2564 if (!isGLValue() || !getType().isVolatileQualified()) 2565 return false; 2566 2567 const Expr *E = IgnoreParens(); 2568 2569 // - id-expression (5.1.1), 2570 if (isa<DeclRefExpr>(E)) 2571 return true; 2572 2573 // - subscripting (5.2.1), 2574 if (isa<ArraySubscriptExpr>(E)) 2575 return true; 2576 2577 // - class member access (5.2.5), 2578 if (isa<MemberExpr>(E)) 2579 return true; 2580 2581 // - indirection (5.3.1), 2582 if (auto *UO = dyn_cast<UnaryOperator>(E)) 2583 if (UO->getOpcode() == UO_Deref) 2584 return true; 2585 2586 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 2587 // - pointer-to-member operation (5.5), 2588 if (BO->isPtrMemOp()) 2589 return true; 2590 2591 // - comma expression (5.18) where the right operand is one of the above. 2592 if (BO->getOpcode() == BO_Comma) 2593 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); 2594 } 2595 2596 // - conditional expression (5.16) where both the second and the third 2597 // operands are one of the above, or 2598 if (auto *CO = dyn_cast<ConditionalOperator>(E)) 2599 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && 2600 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2601 // The related edge case of "*x ?: *x". 2602 if (auto *BCO = 2603 dyn_cast<BinaryConditionalOperator>(E)) { 2604 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 2605 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && 2606 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2607 } 2608 2609 // Objective-C++ extensions to the rule. 2610 if (isa<ObjCIvarRefExpr>(E)) 2611 return true; 2612 if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) { 2613 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm())) 2614 return true; 2615 } 2616 2617 return false; 2618 } 2619 2620 /// isUnusedResultAWarning - Return true if this immediate expression should 2621 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2622 /// with location to warn on and the source range[s] to report with the 2623 /// warning. 2624 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2625 SourceRange &R1, SourceRange &R2, 2626 ASTContext &Ctx) const { 2627 // Don't warn if the expr is type dependent. The type could end up 2628 // instantiating to void. 2629 if (isTypeDependent()) 2630 return false; 2631 2632 switch (getStmtClass()) { 2633 default: 2634 if (getType()->isVoidType()) 2635 return false; 2636 WarnE = this; 2637 Loc = getExprLoc(); 2638 R1 = getSourceRange(); 2639 return true; 2640 case ParenExprClass: 2641 return cast<ParenExpr>(this)->getSubExpr()-> 2642 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2643 case GenericSelectionExprClass: 2644 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2645 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2646 case CoawaitExprClass: 2647 case CoyieldExprClass: 2648 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2649 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2650 case ChooseExprClass: 2651 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2652 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2653 case UnaryOperatorClass: { 2654 const UnaryOperator *UO = cast<UnaryOperator>(this); 2655 2656 switch (UO->getOpcode()) { 2657 case UO_Plus: 2658 case UO_Minus: 2659 case UO_AddrOf: 2660 case UO_Not: 2661 case UO_LNot: 2662 case UO_Deref: 2663 break; 2664 case UO_Coawait: 2665 // This is just the 'operator co_await' call inside the guts of a 2666 // dependent co_await call. 2667 case UO_PostInc: 2668 case UO_PostDec: 2669 case UO_PreInc: 2670 case UO_PreDec: // ++/-- 2671 return false; // Not a warning. 2672 case UO_Real: 2673 case UO_Imag: 2674 // accessing a piece of a volatile complex is a side-effect. 2675 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2676 .isVolatileQualified()) 2677 return false; 2678 break; 2679 case UO_Extension: 2680 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2681 } 2682 WarnE = this; 2683 Loc = UO->getOperatorLoc(); 2684 R1 = UO->getSubExpr()->getSourceRange(); 2685 return true; 2686 } 2687 case BinaryOperatorClass: { 2688 const BinaryOperator *BO = cast<BinaryOperator>(this); 2689 switch (BO->getOpcode()) { 2690 default: 2691 break; 2692 // Consider the RHS of comma for side effects. LHS was checked by 2693 // Sema::CheckCommaOperands. 2694 case BO_Comma: 2695 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2696 // lvalue-ness) of an assignment written in a macro. 2697 if (IntegerLiteral *IE = 2698 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2699 if (IE->getValue() == 0) 2700 return false; 2701 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2702 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2703 case BO_LAnd: 2704 case BO_LOr: 2705 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2706 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2707 return false; 2708 break; 2709 } 2710 if (BO->isAssignmentOp()) 2711 return false; 2712 WarnE = this; 2713 Loc = BO->getOperatorLoc(); 2714 R1 = BO->getLHS()->getSourceRange(); 2715 R2 = BO->getRHS()->getSourceRange(); 2716 return true; 2717 } 2718 case CompoundAssignOperatorClass: 2719 case VAArgExprClass: 2720 case AtomicExprClass: 2721 return false; 2722 2723 case ConditionalOperatorClass: { 2724 // If only one of the LHS or RHS is a warning, the operator might 2725 // be being used for control flow. Only warn if both the LHS and 2726 // RHS are warnings. 2727 const auto *Exp = cast<ConditionalOperator>(this); 2728 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2729 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2730 } 2731 case BinaryConditionalOperatorClass: { 2732 const auto *Exp = cast<BinaryConditionalOperator>(this); 2733 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2734 } 2735 2736 case MemberExprClass: 2737 WarnE = this; 2738 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2739 R1 = SourceRange(Loc, Loc); 2740 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2741 return true; 2742 2743 case ArraySubscriptExprClass: 2744 WarnE = this; 2745 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2746 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2747 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2748 return true; 2749 2750 case CXXOperatorCallExprClass: { 2751 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2752 // overloads as there is no reasonable way to define these such that they 2753 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2754 // warning: operators == and != are commonly typo'ed, and so warning on them 2755 // provides additional value as well. If this list is updated, 2756 // DiagnoseUnusedComparison should be as well. 2757 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2758 switch (Op->getOperator()) { 2759 default: 2760 break; 2761 case OO_EqualEqual: 2762 case OO_ExclaimEqual: 2763 case OO_Less: 2764 case OO_Greater: 2765 case OO_GreaterEqual: 2766 case OO_LessEqual: 2767 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2768 Op->getCallReturnType(Ctx)->isVoidType()) 2769 break; 2770 WarnE = this; 2771 Loc = Op->getOperatorLoc(); 2772 R1 = Op->getSourceRange(); 2773 return true; 2774 } 2775 2776 // Fallthrough for generic call handling. 2777 [[fallthrough]]; 2778 } 2779 case CallExprClass: 2780 case CXXMemberCallExprClass: 2781 case UserDefinedLiteralClass: { 2782 // If this is a direct call, get the callee. 2783 const CallExpr *CE = cast<CallExpr>(this); 2784 if (const Decl *FD = CE->getCalleeDecl()) { 2785 // If the callee has attribute pure, const, or warn_unused_result, warn 2786 // about it. void foo() { strlen("bar"); } should warn. 2787 // 2788 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2789 // updated to match for QoI. 2790 if (CE->hasUnusedResultAttr(Ctx) || 2791 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2792 WarnE = this; 2793 Loc = CE->getCallee()->getBeginLoc(); 2794 R1 = CE->getCallee()->getSourceRange(); 2795 2796 if (unsigned NumArgs = CE->getNumArgs()) 2797 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2798 CE->getArg(NumArgs - 1)->getEndLoc()); 2799 return true; 2800 } 2801 } 2802 return false; 2803 } 2804 2805 // If we don't know precisely what we're looking at, let's not warn. 2806 case UnresolvedLookupExprClass: 2807 case CXXUnresolvedConstructExprClass: 2808 case RecoveryExprClass: 2809 return false; 2810 2811 case CXXTemporaryObjectExprClass: 2812 case CXXConstructExprClass: { 2813 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2814 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2815 if (Type->hasAttr<WarnUnusedAttr>() || 2816 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2817 WarnE = this; 2818 Loc = getBeginLoc(); 2819 R1 = getSourceRange(); 2820 return true; 2821 } 2822 } 2823 2824 const auto *CE = cast<CXXConstructExpr>(this); 2825 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2826 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2827 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2828 WarnE = this; 2829 Loc = getBeginLoc(); 2830 R1 = getSourceRange(); 2831 2832 if (unsigned NumArgs = CE->getNumArgs()) 2833 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2834 CE->getArg(NumArgs - 1)->getEndLoc()); 2835 return true; 2836 } 2837 } 2838 2839 return false; 2840 } 2841 2842 case ObjCMessageExprClass: { 2843 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2844 if (Ctx.getLangOpts().ObjCAutoRefCount && 2845 ME->isInstanceMessage() && 2846 !ME->getType()->isVoidType() && 2847 ME->getMethodFamily() == OMF_init) { 2848 WarnE = this; 2849 Loc = getExprLoc(); 2850 R1 = ME->getSourceRange(); 2851 return true; 2852 } 2853 2854 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2855 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2856 WarnE = this; 2857 Loc = getExprLoc(); 2858 return true; 2859 } 2860 2861 return false; 2862 } 2863 2864 case ObjCPropertyRefExprClass: 2865 case ObjCSubscriptRefExprClass: 2866 WarnE = this; 2867 Loc = getExprLoc(); 2868 R1 = getSourceRange(); 2869 return true; 2870 2871 case PseudoObjectExprClass: { 2872 const auto *POE = cast<PseudoObjectExpr>(this); 2873 2874 // For some syntactic forms, we should always warn. 2875 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>( 2876 POE->getSyntacticForm())) { 2877 WarnE = this; 2878 Loc = getExprLoc(); 2879 R1 = getSourceRange(); 2880 return true; 2881 } 2882 2883 // For others, we should never warn. 2884 if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm())) 2885 if (BO->isAssignmentOp()) 2886 return false; 2887 if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm())) 2888 if (UO->isIncrementDecrementOp()) 2889 return false; 2890 2891 // Otherwise, warn if the result expression would warn. 2892 const Expr *Result = POE->getResultExpr(); 2893 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2894 } 2895 2896 case StmtExprClass: { 2897 // Statement exprs don't logically have side effects themselves, but are 2898 // sometimes used in macros in ways that give them a type that is unused. 2899 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2900 // however, if the result of the stmt expr is dead, we don't want to emit a 2901 // warning. 2902 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2903 if (!CS->body_empty()) { 2904 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2905 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2906 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2907 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2908 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2909 } 2910 2911 if (getType()->isVoidType()) 2912 return false; 2913 WarnE = this; 2914 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2915 R1 = getSourceRange(); 2916 return true; 2917 } 2918 case CXXFunctionalCastExprClass: 2919 case CStyleCastExprClass: { 2920 // Ignore an explicit cast to void, except in C++98 if the operand is a 2921 // volatile glvalue for which we would trigger an implicit read in any 2922 // other language mode. (Such an implicit read always happens as part of 2923 // the lvalue conversion in C, and happens in C++ for expressions of all 2924 // forms where it seems likely the user intended to trigger a volatile 2925 // load.) 2926 const CastExpr *CE = cast<CastExpr>(this); 2927 const Expr *SubE = CE->getSubExpr()->IgnoreParens(); 2928 if (CE->getCastKind() == CK_ToVoid) { 2929 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && 2930 SubE->isReadIfDiscardedInCPlusPlus11()) { 2931 // Suppress the "unused value" warning for idiomatic usage of 2932 // '(void)var;' used to suppress "unused variable" warnings. 2933 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) 2934 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2935 if (!VD->isExternallyVisible()) 2936 return false; 2937 2938 // The lvalue-to-rvalue conversion would have no effect for an array. 2939 // It's implausible that the programmer expected this to result in a 2940 // volatile array load, so don't warn. 2941 if (SubE->getType()->isArrayType()) 2942 return false; 2943 2944 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2945 } 2946 return false; 2947 } 2948 2949 // If this is a cast to a constructor conversion, check the operand. 2950 // Otherwise, the result of the cast is unused. 2951 if (CE->getCastKind() == CK_ConstructorConversion) 2952 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2953 if (CE->getCastKind() == CK_Dependent) 2954 return false; 2955 2956 WarnE = this; 2957 if (const CXXFunctionalCastExpr *CXXCE = 2958 dyn_cast<CXXFunctionalCastExpr>(this)) { 2959 Loc = CXXCE->getBeginLoc(); 2960 R1 = CXXCE->getSubExpr()->getSourceRange(); 2961 } else { 2962 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2963 Loc = CStyleCE->getLParenLoc(); 2964 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2965 } 2966 return true; 2967 } 2968 case ImplicitCastExprClass: { 2969 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2970 2971 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2972 if (ICE->getCastKind() == CK_LValueToRValue && 2973 ICE->getSubExpr()->getType().isVolatileQualified()) 2974 return false; 2975 2976 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2977 } 2978 case CXXDefaultArgExprClass: 2979 return (cast<CXXDefaultArgExpr>(this) 2980 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2981 case CXXDefaultInitExprClass: 2982 return (cast<CXXDefaultInitExpr>(this) 2983 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2984 2985 case CXXNewExprClass: 2986 // FIXME: In theory, there might be new expressions that don't have side 2987 // effects (e.g. a placement new with an uninitialized POD). 2988 case CXXDeleteExprClass: 2989 return false; 2990 case MaterializeTemporaryExprClass: 2991 return cast<MaterializeTemporaryExpr>(this) 2992 ->getSubExpr() 2993 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2994 case CXXBindTemporaryExprClass: 2995 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2996 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2997 case ExprWithCleanupsClass: 2998 return cast<ExprWithCleanups>(this)->getSubExpr() 2999 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 3000 } 3001 } 3002 3003 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 3004 /// returns true, if it is; false otherwise. 3005 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 3006 const Expr *E = IgnoreParens(); 3007 switch (E->getStmtClass()) { 3008 default: 3009 return false; 3010 case ObjCIvarRefExprClass: 3011 return true; 3012 case Expr::UnaryOperatorClass: 3013 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 3014 case ImplicitCastExprClass: 3015 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 3016 case MaterializeTemporaryExprClass: 3017 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 3018 Ctx); 3019 case CStyleCastExprClass: 3020 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 3021 case DeclRefExprClass: { 3022 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 3023 3024 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 3025 if (VD->hasGlobalStorage()) 3026 return true; 3027 QualType T = VD->getType(); 3028 // dereferencing to a pointer is always a gc'able candidate, 3029 // unless it is __weak. 3030 return T->isPointerType() && 3031 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 3032 } 3033 return false; 3034 } 3035 case MemberExprClass: { 3036 const MemberExpr *M = cast<MemberExpr>(E); 3037 return M->getBase()->isOBJCGCCandidate(Ctx); 3038 } 3039 case ArraySubscriptExprClass: 3040 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 3041 } 3042 } 3043 3044 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 3045 if (isTypeDependent()) 3046 return false; 3047 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 3048 } 3049 3050 QualType Expr::findBoundMemberType(const Expr *expr) { 3051 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 3052 3053 // Bound member expressions are always one of these possibilities: 3054 // x->m x.m x->*y x.*y 3055 // (possibly parenthesized) 3056 3057 expr = expr->IgnoreParens(); 3058 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 3059 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 3060 return mem->getMemberDecl()->getType(); 3061 } 3062 3063 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 3064 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 3065 ->getPointeeType(); 3066 assert(type->isFunctionType()); 3067 return type; 3068 } 3069 3070 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 3071 return QualType(); 3072 } 3073 3074 Expr *Expr::IgnoreImpCasts() { 3075 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep); 3076 } 3077 3078 Expr *Expr::IgnoreCasts() { 3079 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 3080 } 3081 3082 Expr *Expr::IgnoreImplicit() { 3083 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 3084 } 3085 3086 Expr *Expr::IgnoreImplicitAsWritten() { 3087 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 3088 } 3089 3090 Expr *Expr::IgnoreParens() { 3091 return IgnoreExprNodes(this, IgnoreParensSingleStep); 3092 } 3093 3094 Expr *Expr::IgnoreParenImpCasts() { 3095 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3096 IgnoreImplicitCastsExtraSingleStep); 3097 } 3098 3099 Expr *Expr::IgnoreParenCasts() { 3100 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 3101 } 3102 3103 Expr *Expr::IgnoreConversionOperatorSingleStep() { 3104 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 3105 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 3106 return MCE->getImplicitObjectArgument(); 3107 } 3108 return this; 3109 } 3110 3111 Expr *Expr::IgnoreParenLValueCasts() { 3112 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3113 IgnoreLValueCastsSingleStep); 3114 } 3115 3116 Expr *Expr::IgnoreParenBaseCasts() { 3117 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3118 IgnoreBaseCastsSingleStep); 3119 } 3120 3121 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 3122 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { 3123 if (auto *CE = dyn_cast<CastExpr>(E)) { 3124 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 3125 // ptr<->int casts of the same width. We also ignore all identity casts. 3126 Expr *SubExpr = CE->getSubExpr(); 3127 bool IsIdentityCast = 3128 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 3129 bool IsSameWidthCast = (E->getType()->isPointerType() || 3130 E->getType()->isIntegralType(Ctx)) && 3131 (SubExpr->getType()->isPointerType() || 3132 SubExpr->getType()->isIntegralType(Ctx)) && 3133 (Ctx.getTypeSize(E->getType()) == 3134 Ctx.getTypeSize(SubExpr->getType())); 3135 3136 if (IsIdentityCast || IsSameWidthCast) 3137 return SubExpr; 3138 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 3139 return NTTP->getReplacement(); 3140 3141 return E; 3142 }; 3143 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3144 IgnoreNoopCastsSingleStep); 3145 } 3146 3147 Expr *Expr::IgnoreUnlessSpelledInSource() { 3148 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { 3149 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) { 3150 auto *SE = Cast->getSubExpr(); 3151 if (SE->getSourceRange() == E->getSourceRange()) 3152 return SE; 3153 } 3154 3155 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 3156 auto NumArgs = C->getNumArgs(); 3157 if (NumArgs == 1 || 3158 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 3159 Expr *A = C->getArg(0); 3160 if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) 3161 return A; 3162 } 3163 } 3164 return E; 3165 }; 3166 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { 3167 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 3168 Expr *ExprNode = C->getImplicitObjectArgument(); 3169 if (ExprNode->getSourceRange() == E->getSourceRange()) { 3170 return ExprNode; 3171 } 3172 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { 3173 if (PE->getSourceRange() == C->getSourceRange()) { 3174 return cast<Expr>(PE); 3175 } 3176 } 3177 ExprNode = ExprNode->IgnoreParenImpCasts(); 3178 if (ExprNode->getSourceRange() == E->getSourceRange()) 3179 return ExprNode; 3180 } 3181 return E; 3182 }; 3183 return IgnoreExprNodes( 3184 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep, 3185 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep, 3186 IgnoreImplicitMemberCallSingleStep); 3187 } 3188 3189 bool Expr::isDefaultArgument() const { 3190 const Expr *E = this; 3191 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3192 E = M->getSubExpr(); 3193 3194 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3195 E = ICE->getSubExprAsWritten(); 3196 3197 return isa<CXXDefaultArgExpr>(E); 3198 } 3199 3200 /// Skip over any no-op casts and any temporary-binding 3201 /// expressions. 3202 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3203 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3204 E = M->getSubExpr(); 3205 3206 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3207 if (ICE->getCastKind() == CK_NoOp) 3208 E = ICE->getSubExpr(); 3209 else 3210 break; 3211 } 3212 3213 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3214 E = BE->getSubExpr(); 3215 3216 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3217 if (ICE->getCastKind() == CK_NoOp) 3218 E = ICE->getSubExpr(); 3219 else 3220 break; 3221 } 3222 3223 return E->IgnoreParens(); 3224 } 3225 3226 /// isTemporaryObject - Determines if this expression produces a 3227 /// temporary of the given class type. 3228 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3229 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3230 return false; 3231 3232 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3233 3234 // Temporaries are by definition pr-values of class type. 3235 if (!E->Classify(C).isPRValue()) { 3236 // In this context, property reference is a message call and is pr-value. 3237 if (!isa<ObjCPropertyRefExpr>(E)) 3238 return false; 3239 } 3240 3241 // Black-list a few cases which yield pr-values of class type that don't 3242 // refer to temporaries of that type: 3243 3244 // - implicit derived-to-base conversions 3245 if (isa<ImplicitCastExpr>(E)) { 3246 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3247 case CK_DerivedToBase: 3248 case CK_UncheckedDerivedToBase: 3249 return false; 3250 default: 3251 break; 3252 } 3253 } 3254 3255 // - member expressions (all) 3256 if (isa<MemberExpr>(E)) 3257 return false; 3258 3259 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3260 if (BO->isPtrMemOp()) 3261 return false; 3262 3263 // - opaque values (all) 3264 if (isa<OpaqueValueExpr>(E)) 3265 return false; 3266 3267 return true; 3268 } 3269 3270 bool Expr::isImplicitCXXThis() const { 3271 const Expr *E = this; 3272 3273 // Strip away parentheses and casts we don't care about. 3274 while (true) { 3275 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3276 E = Paren->getSubExpr(); 3277 continue; 3278 } 3279 3280 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3281 if (ICE->getCastKind() == CK_NoOp || 3282 ICE->getCastKind() == CK_LValueToRValue || 3283 ICE->getCastKind() == CK_DerivedToBase || 3284 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3285 E = ICE->getSubExpr(); 3286 continue; 3287 } 3288 } 3289 3290 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3291 if (UnOp->getOpcode() == UO_Extension) { 3292 E = UnOp->getSubExpr(); 3293 continue; 3294 } 3295 } 3296 3297 if (const MaterializeTemporaryExpr *M 3298 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3299 E = M->getSubExpr(); 3300 continue; 3301 } 3302 3303 break; 3304 } 3305 3306 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3307 return This->isImplicit(); 3308 3309 return false; 3310 } 3311 3312 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3313 /// in Exprs is type-dependent. 3314 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3315 for (unsigned I = 0; I < Exprs.size(); ++I) 3316 if (Exprs[I]->isTypeDependent()) 3317 return true; 3318 3319 return false; 3320 } 3321 3322 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3323 const Expr **Culprit) const { 3324 assert(!isValueDependent() && 3325 "Expression evaluator can't be called on a dependent expression."); 3326 3327 // This function is attempting whether an expression is an initializer 3328 // which can be evaluated at compile-time. It very closely parallels 3329 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3330 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3331 // to isEvaluatable most of the time. 3332 // 3333 // If we ever capture reference-binding directly in the AST, we can 3334 // kill the second parameter. 3335 3336 if (IsForRef) { 3337 if (auto *EWC = dyn_cast<ExprWithCleanups>(this)) 3338 return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit); 3339 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(this)) 3340 return MTE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3341 EvalResult Result; 3342 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3343 return true; 3344 if (Culprit) 3345 *Culprit = this; 3346 return false; 3347 } 3348 3349 switch (getStmtClass()) { 3350 default: break; 3351 case Stmt::ExprWithCleanupsClass: 3352 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( 3353 Ctx, IsForRef, Culprit); 3354 case StringLiteralClass: 3355 case ObjCEncodeExprClass: 3356 return true; 3357 case CXXTemporaryObjectExprClass: 3358 case CXXConstructExprClass: { 3359 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3360 3361 if (CE->getConstructor()->isTrivial() && 3362 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3363 // Trivial default constructor 3364 if (!CE->getNumArgs()) return true; 3365 3366 // Trivial copy constructor 3367 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3368 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3369 } 3370 3371 break; 3372 } 3373 case ConstantExprClass: { 3374 // FIXME: We should be able to return "true" here, but it can lead to extra 3375 // error messages. E.g. in Sema/array-init.c. 3376 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3377 return Exp->isConstantInitializer(Ctx, false, Culprit); 3378 } 3379 case CompoundLiteralExprClass: { 3380 // This handles gcc's extension that allows global initializers like 3381 // "struct x {int x;} x = (struct x) {};". 3382 // FIXME: This accepts other cases it shouldn't! 3383 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3384 return Exp->isConstantInitializer(Ctx, false, Culprit); 3385 } 3386 case DesignatedInitUpdateExprClass: { 3387 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3388 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3389 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3390 } 3391 case InitListExprClass: { 3392 const InitListExpr *ILE = cast<InitListExpr>(this); 3393 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3394 if (ILE->getType()->isArrayType()) { 3395 unsigned numInits = ILE->getNumInits(); 3396 for (unsigned i = 0; i < numInits; i++) { 3397 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3398 return false; 3399 } 3400 return true; 3401 } 3402 3403 if (ILE->getType()->isRecordType()) { 3404 unsigned ElementNo = 0; 3405 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3406 for (const auto *Field : RD->fields()) { 3407 // If this is a union, skip all the fields that aren't being initialized. 3408 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3409 continue; 3410 3411 // Don't emit anonymous bitfields, they just affect layout. 3412 if (Field->isUnnamedBitfield()) 3413 continue; 3414 3415 if (ElementNo < ILE->getNumInits()) { 3416 const Expr *Elt = ILE->getInit(ElementNo++); 3417 if (Field->isBitField()) { 3418 // Bitfields have to evaluate to an integer. 3419 EvalResult Result; 3420 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3421 if (Culprit) 3422 *Culprit = Elt; 3423 return false; 3424 } 3425 } else { 3426 bool RefType = Field->getType()->isReferenceType(); 3427 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3428 return false; 3429 } 3430 } 3431 } 3432 return true; 3433 } 3434 3435 break; 3436 } 3437 case ImplicitValueInitExprClass: 3438 case NoInitExprClass: 3439 return true; 3440 case ParenExprClass: 3441 return cast<ParenExpr>(this)->getSubExpr() 3442 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3443 case GenericSelectionExprClass: 3444 return cast<GenericSelectionExpr>(this)->getResultExpr() 3445 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3446 case ChooseExprClass: 3447 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3448 if (Culprit) 3449 *Culprit = this; 3450 return false; 3451 } 3452 return cast<ChooseExpr>(this)->getChosenSubExpr() 3453 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3454 case UnaryOperatorClass: { 3455 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3456 if (Exp->getOpcode() == UO_Extension) 3457 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3458 break; 3459 } 3460 case CXXFunctionalCastExprClass: 3461 case CXXStaticCastExprClass: 3462 case ImplicitCastExprClass: 3463 case CStyleCastExprClass: 3464 case ObjCBridgedCastExprClass: 3465 case CXXDynamicCastExprClass: 3466 case CXXReinterpretCastExprClass: 3467 case CXXAddrspaceCastExprClass: 3468 case CXXConstCastExprClass: { 3469 const CastExpr *CE = cast<CastExpr>(this); 3470 3471 // Handle misc casts we want to ignore. 3472 if (CE->getCastKind() == CK_NoOp || 3473 CE->getCastKind() == CK_LValueToRValue || 3474 CE->getCastKind() == CK_ToUnion || 3475 CE->getCastKind() == CK_ConstructorConversion || 3476 CE->getCastKind() == CK_NonAtomicToAtomic || 3477 CE->getCastKind() == CK_AtomicToNonAtomic || 3478 CE->getCastKind() == CK_NullToPointer || 3479 CE->getCastKind() == CK_IntToOCLSampler) 3480 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3481 3482 break; 3483 } 3484 case MaterializeTemporaryExprClass: 3485 return cast<MaterializeTemporaryExpr>(this) 3486 ->getSubExpr() 3487 ->isConstantInitializer(Ctx, false, Culprit); 3488 3489 case SubstNonTypeTemplateParmExprClass: 3490 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3491 ->isConstantInitializer(Ctx, false, Culprit); 3492 case CXXDefaultArgExprClass: 3493 return cast<CXXDefaultArgExpr>(this)->getExpr() 3494 ->isConstantInitializer(Ctx, false, Culprit); 3495 case CXXDefaultInitExprClass: 3496 return cast<CXXDefaultInitExpr>(this)->getExpr() 3497 ->isConstantInitializer(Ctx, false, Culprit); 3498 } 3499 // Allow certain forms of UB in constant initializers: signed integer 3500 // overflow and floating-point division by zero. We'll give a warning on 3501 // these, but they're common enough that we have to accept them. 3502 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3503 return true; 3504 if (Culprit) 3505 *Culprit = this; 3506 return false; 3507 } 3508 3509 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3510 unsigned BuiltinID = getBuiltinCallee(); 3511 if (BuiltinID != Builtin::BI__assume && 3512 BuiltinID != Builtin::BI__builtin_assume) 3513 return false; 3514 3515 const Expr* Arg = getArg(0); 3516 bool ArgVal; 3517 return !Arg->isValueDependent() && 3518 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3519 } 3520 3521 bool CallExpr::isCallToStdMove() const { 3522 return getBuiltinCallee() == Builtin::BImove; 3523 } 3524 3525 namespace { 3526 /// Look for any side effects within a Stmt. 3527 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3528 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3529 const bool IncludePossibleEffects; 3530 bool HasSideEffects; 3531 3532 public: 3533 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3534 : Inherited(Context), 3535 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3536 3537 bool hasSideEffects() const { return HasSideEffects; } 3538 3539 void VisitDecl(const Decl *D) { 3540 if (!D) 3541 return; 3542 3543 // We assume the caller checks subexpressions (eg, the initializer, VLA 3544 // bounds) for side-effects on our behalf. 3545 if (auto *VD = dyn_cast<VarDecl>(D)) { 3546 // Registering a destructor is a side-effect. 3547 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && 3548 VD->needsDestruction(Context)) 3549 HasSideEffects = true; 3550 } 3551 } 3552 3553 void VisitDeclStmt(const DeclStmt *DS) { 3554 for (auto *D : DS->decls()) 3555 VisitDecl(D); 3556 Inherited::VisitDeclStmt(DS); 3557 } 3558 3559 void VisitExpr(const Expr *E) { 3560 if (!HasSideEffects && 3561 E->HasSideEffects(Context, IncludePossibleEffects)) 3562 HasSideEffects = true; 3563 } 3564 }; 3565 } 3566 3567 bool Expr::HasSideEffects(const ASTContext &Ctx, 3568 bool IncludePossibleEffects) const { 3569 // In circumstances where we care about definite side effects instead of 3570 // potential side effects, we want to ignore expressions that are part of a 3571 // macro expansion as a potential side effect. 3572 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3573 return false; 3574 3575 switch (getStmtClass()) { 3576 case NoStmtClass: 3577 #define ABSTRACT_STMT(Type) 3578 #define STMT(Type, Base) case Type##Class: 3579 #define EXPR(Type, Base) 3580 #include "clang/AST/StmtNodes.inc" 3581 llvm_unreachable("unexpected Expr kind"); 3582 3583 case DependentScopeDeclRefExprClass: 3584 case CXXUnresolvedConstructExprClass: 3585 case CXXDependentScopeMemberExprClass: 3586 case UnresolvedLookupExprClass: 3587 case UnresolvedMemberExprClass: 3588 case PackExpansionExprClass: 3589 case SubstNonTypeTemplateParmPackExprClass: 3590 case FunctionParmPackExprClass: 3591 case TypoExprClass: 3592 case RecoveryExprClass: 3593 case CXXFoldExprClass: 3594 // Make a conservative assumption for dependent nodes. 3595 return IncludePossibleEffects; 3596 3597 case DeclRefExprClass: 3598 case ObjCIvarRefExprClass: 3599 case PredefinedExprClass: 3600 case IntegerLiteralClass: 3601 case FixedPointLiteralClass: 3602 case FloatingLiteralClass: 3603 case ImaginaryLiteralClass: 3604 case StringLiteralClass: 3605 case CharacterLiteralClass: 3606 case OffsetOfExprClass: 3607 case ImplicitValueInitExprClass: 3608 case UnaryExprOrTypeTraitExprClass: 3609 case AddrLabelExprClass: 3610 case GNUNullExprClass: 3611 case ArrayInitIndexExprClass: 3612 case NoInitExprClass: 3613 case CXXBoolLiteralExprClass: 3614 case CXXNullPtrLiteralExprClass: 3615 case CXXThisExprClass: 3616 case CXXScalarValueInitExprClass: 3617 case TypeTraitExprClass: 3618 case ArrayTypeTraitExprClass: 3619 case ExpressionTraitExprClass: 3620 case CXXNoexceptExprClass: 3621 case SizeOfPackExprClass: 3622 case ObjCStringLiteralClass: 3623 case ObjCEncodeExprClass: 3624 case ObjCBoolLiteralExprClass: 3625 case ObjCAvailabilityCheckExprClass: 3626 case CXXUuidofExprClass: 3627 case OpaqueValueExprClass: 3628 case SourceLocExprClass: 3629 case ConceptSpecializationExprClass: 3630 case RequiresExprClass: 3631 case SYCLUniqueStableNameExprClass: 3632 // These never have a side-effect. 3633 return false; 3634 3635 case ConstantExprClass: 3636 // FIXME: Move this into the "return false;" block above. 3637 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3638 Ctx, IncludePossibleEffects); 3639 3640 case CallExprClass: 3641 case CXXOperatorCallExprClass: 3642 case CXXMemberCallExprClass: 3643 case CUDAKernelCallExprClass: 3644 case UserDefinedLiteralClass: { 3645 // We don't know a call definitely has side effects, except for calls 3646 // to pure/const functions that definitely don't. 3647 // If the call itself is considered side-effect free, check the operands. 3648 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3649 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3650 if (IsPure || !IncludePossibleEffects) 3651 break; 3652 return true; 3653 } 3654 3655 case BlockExprClass: 3656 case CXXBindTemporaryExprClass: 3657 if (!IncludePossibleEffects) 3658 break; 3659 return true; 3660 3661 case MSPropertyRefExprClass: 3662 case MSPropertySubscriptExprClass: 3663 case CompoundAssignOperatorClass: 3664 case VAArgExprClass: 3665 case AtomicExprClass: 3666 case CXXThrowExprClass: 3667 case CXXNewExprClass: 3668 case CXXDeleteExprClass: 3669 case CoawaitExprClass: 3670 case DependentCoawaitExprClass: 3671 case CoyieldExprClass: 3672 // These always have a side-effect. 3673 return true; 3674 3675 case StmtExprClass: { 3676 // StmtExprs have a side-effect if any substatement does. 3677 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3678 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3679 return Finder.hasSideEffects(); 3680 } 3681 3682 case ExprWithCleanupsClass: 3683 if (IncludePossibleEffects) 3684 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3685 return true; 3686 break; 3687 3688 case ParenExprClass: 3689 case ArraySubscriptExprClass: 3690 case MatrixSubscriptExprClass: 3691 case OMPArraySectionExprClass: 3692 case OMPArrayShapingExprClass: 3693 case OMPIteratorExprClass: 3694 case MemberExprClass: 3695 case ConditionalOperatorClass: 3696 case BinaryConditionalOperatorClass: 3697 case CompoundLiteralExprClass: 3698 case ExtVectorElementExprClass: 3699 case DesignatedInitExprClass: 3700 case DesignatedInitUpdateExprClass: 3701 case ArrayInitLoopExprClass: 3702 case ParenListExprClass: 3703 case CXXPseudoDestructorExprClass: 3704 case CXXRewrittenBinaryOperatorClass: 3705 case CXXStdInitializerListExprClass: 3706 case SubstNonTypeTemplateParmExprClass: 3707 case MaterializeTemporaryExprClass: 3708 case ShuffleVectorExprClass: 3709 case ConvertVectorExprClass: 3710 case AsTypeExprClass: 3711 case CXXParenListInitExprClass: 3712 // These have a side-effect if any subexpression does. 3713 break; 3714 3715 case UnaryOperatorClass: 3716 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3717 return true; 3718 break; 3719 3720 case BinaryOperatorClass: 3721 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3722 return true; 3723 break; 3724 3725 case InitListExprClass: 3726 // FIXME: The children for an InitListExpr doesn't include the array filler. 3727 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3728 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3729 return true; 3730 break; 3731 3732 case GenericSelectionExprClass: 3733 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3734 HasSideEffects(Ctx, IncludePossibleEffects); 3735 3736 case ChooseExprClass: 3737 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3738 Ctx, IncludePossibleEffects); 3739 3740 case CXXDefaultArgExprClass: 3741 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3742 Ctx, IncludePossibleEffects); 3743 3744 case CXXDefaultInitExprClass: { 3745 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3746 if (const Expr *E = FD->getInClassInitializer()) 3747 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3748 // If we've not yet parsed the initializer, assume it has side-effects. 3749 return true; 3750 } 3751 3752 case CXXDynamicCastExprClass: { 3753 // A dynamic_cast expression has side-effects if it can throw. 3754 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3755 if (DCE->getTypeAsWritten()->isReferenceType() && 3756 DCE->getCastKind() == CK_Dynamic) 3757 return true; 3758 } 3759 [[fallthrough]]; 3760 case ImplicitCastExprClass: 3761 case CStyleCastExprClass: 3762 case CXXStaticCastExprClass: 3763 case CXXReinterpretCastExprClass: 3764 case CXXConstCastExprClass: 3765 case CXXAddrspaceCastExprClass: 3766 case CXXFunctionalCastExprClass: 3767 case BuiltinBitCastExprClass: { 3768 // While volatile reads are side-effecting in both C and C++, we treat them 3769 // as having possible (not definite) side-effects. This allows idiomatic 3770 // code to behave without warning, such as sizeof(*v) for a volatile- 3771 // qualified pointer. 3772 if (!IncludePossibleEffects) 3773 break; 3774 3775 const CastExpr *CE = cast<CastExpr>(this); 3776 if (CE->getCastKind() == CK_LValueToRValue && 3777 CE->getSubExpr()->getType().isVolatileQualified()) 3778 return true; 3779 break; 3780 } 3781 3782 case CXXTypeidExprClass: 3783 // typeid might throw if its subexpression is potentially-evaluated, so has 3784 // side-effects in that case whether or not its subexpression does. 3785 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3786 3787 case CXXConstructExprClass: 3788 case CXXTemporaryObjectExprClass: { 3789 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3790 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3791 return true; 3792 // A trivial constructor does not add any side-effects of its own. Just look 3793 // at its arguments. 3794 break; 3795 } 3796 3797 case CXXInheritedCtorInitExprClass: { 3798 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3799 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3800 return true; 3801 break; 3802 } 3803 3804 case LambdaExprClass: { 3805 const LambdaExpr *LE = cast<LambdaExpr>(this); 3806 for (Expr *E : LE->capture_inits()) 3807 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) 3808 return true; 3809 return false; 3810 } 3811 3812 case PseudoObjectExprClass: { 3813 // Only look for side-effects in the semantic form, and look past 3814 // OpaqueValueExpr bindings in that form. 3815 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3816 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3817 E = PO->semantics_end(); 3818 I != E; ++I) { 3819 const Expr *Subexpr = *I; 3820 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3821 Subexpr = OVE->getSourceExpr(); 3822 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3823 return true; 3824 } 3825 return false; 3826 } 3827 3828 case ObjCBoxedExprClass: 3829 case ObjCArrayLiteralClass: 3830 case ObjCDictionaryLiteralClass: 3831 case ObjCSelectorExprClass: 3832 case ObjCProtocolExprClass: 3833 case ObjCIsaExprClass: 3834 case ObjCIndirectCopyRestoreExprClass: 3835 case ObjCSubscriptRefExprClass: 3836 case ObjCBridgedCastExprClass: 3837 case ObjCMessageExprClass: 3838 case ObjCPropertyRefExprClass: 3839 // FIXME: Classify these cases better. 3840 if (IncludePossibleEffects) 3841 return true; 3842 break; 3843 } 3844 3845 // Recurse to children. 3846 for (const Stmt *SubStmt : children()) 3847 if (SubStmt && 3848 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3849 return true; 3850 3851 return false; 3852 } 3853 3854 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { 3855 if (auto Call = dyn_cast<CallExpr>(this)) 3856 return Call->getFPFeaturesInEffect(LO); 3857 if (auto UO = dyn_cast<UnaryOperator>(this)) 3858 return UO->getFPFeaturesInEffect(LO); 3859 if (auto BO = dyn_cast<BinaryOperator>(this)) 3860 return BO->getFPFeaturesInEffect(LO); 3861 if (auto Cast = dyn_cast<CastExpr>(this)) 3862 return Cast->getFPFeaturesInEffect(LO); 3863 return FPOptions::defaultWithoutTrailingStorage(LO); 3864 } 3865 3866 namespace { 3867 /// Look for a call to a non-trivial function within an expression. 3868 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3869 { 3870 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3871 3872 bool NonTrivial; 3873 3874 public: 3875 explicit NonTrivialCallFinder(const ASTContext &Context) 3876 : Inherited(Context), NonTrivial(false) { } 3877 3878 bool hasNonTrivialCall() const { return NonTrivial; } 3879 3880 void VisitCallExpr(const CallExpr *E) { 3881 if (const CXXMethodDecl *Method 3882 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3883 if (Method->isTrivial()) { 3884 // Recurse to children of the call. 3885 Inherited::VisitStmt(E); 3886 return; 3887 } 3888 } 3889 3890 NonTrivial = true; 3891 } 3892 3893 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3894 if (E->getConstructor()->isTrivial()) { 3895 // Recurse to children of the call. 3896 Inherited::VisitStmt(E); 3897 return; 3898 } 3899 3900 NonTrivial = true; 3901 } 3902 3903 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3904 if (E->getTemporary()->getDestructor()->isTrivial()) { 3905 Inherited::VisitStmt(E); 3906 return; 3907 } 3908 3909 NonTrivial = true; 3910 } 3911 }; 3912 } 3913 3914 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3915 NonTrivialCallFinder Finder(Ctx); 3916 Finder.Visit(this); 3917 return Finder.hasNonTrivialCall(); 3918 } 3919 3920 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3921 /// pointer constant or not, as well as the specific kind of constant detected. 3922 /// Null pointer constants can be integer constant expressions with the 3923 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3924 /// (a GNU extension). 3925 Expr::NullPointerConstantKind 3926 Expr::isNullPointerConstant(ASTContext &Ctx, 3927 NullPointerConstantValueDependence NPC) const { 3928 if (isValueDependent() && 3929 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3930 // Error-dependent expr should never be a null pointer. 3931 if (containsErrors()) 3932 return NPCK_NotNull; 3933 switch (NPC) { 3934 case NPC_NeverValueDependent: 3935 llvm_unreachable("Unexpected value dependent expression!"); 3936 case NPC_ValueDependentIsNull: 3937 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3938 return NPCK_ZeroExpression; 3939 else 3940 return NPCK_NotNull; 3941 3942 case NPC_ValueDependentIsNotNull: 3943 return NPCK_NotNull; 3944 } 3945 } 3946 3947 // Strip off a cast to void*, if it exists. Except in C++. 3948 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3949 if (!Ctx.getLangOpts().CPlusPlus) { 3950 // Check that it is a cast to void*. 3951 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3952 QualType Pointee = PT->getPointeeType(); 3953 Qualifiers Qs = Pointee.getQualifiers(); 3954 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3955 // has non-default address space it is not treated as nullptr. 3956 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3957 // since it cannot be assigned to a pointer to constant address space. 3958 if (Ctx.getLangOpts().OpenCL && 3959 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) 3960 Qs.removeAddressSpace(); 3961 3962 if (Pointee->isVoidType() && Qs.empty() && // to void* 3963 CE->getSubExpr()->getType()->isIntegerType()) // from int 3964 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3965 } 3966 } 3967 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3968 // Ignore the ImplicitCastExpr type entirely. 3969 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3970 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3971 // Accept ((void*)0) as a null pointer constant, as many other 3972 // implementations do. 3973 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3974 } else if (const GenericSelectionExpr *GE = 3975 dyn_cast<GenericSelectionExpr>(this)) { 3976 if (GE->isResultDependent()) 3977 return NPCK_NotNull; 3978 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3979 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3980 if (CE->isConditionDependent()) 3981 return NPCK_NotNull; 3982 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3983 } else if (const CXXDefaultArgExpr *DefaultArg 3984 = dyn_cast<CXXDefaultArgExpr>(this)) { 3985 // See through default argument expressions. 3986 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3987 } else if (const CXXDefaultInitExpr *DefaultInit 3988 = dyn_cast<CXXDefaultInitExpr>(this)) { 3989 // See through default initializer expressions. 3990 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3991 } else if (isa<GNUNullExpr>(this)) { 3992 // The GNU __null extension is always a null pointer constant. 3993 return NPCK_GNUNull; 3994 } else if (const MaterializeTemporaryExpr *M 3995 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3996 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3997 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3998 if (const Expr *Source = OVE->getSourceExpr()) 3999 return Source->isNullPointerConstant(Ctx, NPC); 4000 } 4001 4002 // If the expression has no type information, it cannot be a null pointer 4003 // constant. 4004 if (getType().isNull()) 4005 return NPCK_NotNull; 4006 4007 // C++11/C23 nullptr_t is always a null pointer constant. 4008 if (getType()->isNullPtrType()) 4009 return NPCK_CXX11_nullptr; 4010 4011 if (const RecordType *UT = getType()->getAsUnionType()) 4012 if (!Ctx.getLangOpts().CPlusPlus11 && 4013 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 4014 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 4015 const Expr *InitExpr = CLE->getInitializer(); 4016 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 4017 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 4018 } 4019 // This expression must be an integer type. 4020 if (!getType()->isIntegerType() || 4021 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 4022 return NPCK_NotNull; 4023 4024 if (Ctx.getLangOpts().CPlusPlus11) { 4025 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 4026 // value zero or a prvalue of type std::nullptr_t. 4027 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 4028 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 4029 if (Lit && !Lit->getValue()) 4030 return NPCK_ZeroLiteral; 4031 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 4032 return NPCK_NotNull; 4033 } else { 4034 // If we have an integer constant expression, we need to *evaluate* it and 4035 // test for the value 0. 4036 if (!isIntegerConstantExpr(Ctx)) 4037 return NPCK_NotNull; 4038 } 4039 4040 if (EvaluateKnownConstInt(Ctx) != 0) 4041 return NPCK_NotNull; 4042 4043 if (isa<IntegerLiteral>(this)) 4044 return NPCK_ZeroLiteral; 4045 return NPCK_ZeroExpression; 4046 } 4047 4048 /// If this expression is an l-value for an Objective C 4049 /// property, find the underlying property reference expression. 4050 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 4051 const Expr *E = this; 4052 while (true) { 4053 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && 4054 "expression is not a property reference"); 4055 E = E->IgnoreParenCasts(); 4056 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 4057 if (BO->getOpcode() == BO_Comma) { 4058 E = BO->getRHS(); 4059 continue; 4060 } 4061 } 4062 4063 break; 4064 } 4065 4066 return cast<ObjCPropertyRefExpr>(E); 4067 } 4068 4069 bool Expr::isObjCSelfExpr() const { 4070 const Expr *E = IgnoreParenImpCasts(); 4071 4072 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 4073 if (!DRE) 4074 return false; 4075 4076 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 4077 if (!Param) 4078 return false; 4079 4080 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 4081 if (!M) 4082 return false; 4083 4084 return M->getSelfDecl() == Param; 4085 } 4086 4087 FieldDecl *Expr::getSourceBitField() { 4088 Expr *E = this->IgnoreParens(); 4089 4090 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 4091 if (ICE->getCastKind() == CK_LValueToRValue || 4092 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) 4093 E = ICE->getSubExpr()->IgnoreParens(); 4094 else 4095 break; 4096 } 4097 4098 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 4099 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 4100 if (Field->isBitField()) 4101 return Field; 4102 4103 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 4104 FieldDecl *Ivar = IvarRef->getDecl(); 4105 if (Ivar->isBitField()) 4106 return Ivar; 4107 } 4108 4109 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 4110 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 4111 if (Field->isBitField()) 4112 return Field; 4113 4114 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 4115 if (Expr *E = BD->getBinding()) 4116 return E->getSourceBitField(); 4117 } 4118 4119 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 4120 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 4121 return BinOp->getLHS()->getSourceBitField(); 4122 4123 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 4124 return BinOp->getRHS()->getSourceBitField(); 4125 } 4126 4127 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 4128 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 4129 return UnOp->getSubExpr()->getSourceBitField(); 4130 4131 return nullptr; 4132 } 4133 4134 bool Expr::refersToVectorElement() const { 4135 // FIXME: Why do we not just look at the ObjectKind here? 4136 const Expr *E = this->IgnoreParens(); 4137 4138 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 4139 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) 4140 E = ICE->getSubExpr()->IgnoreParens(); 4141 else 4142 break; 4143 } 4144 4145 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 4146 return ASE->getBase()->getType()->isVectorType(); 4147 4148 if (isa<ExtVectorElementExpr>(E)) 4149 return true; 4150 4151 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 4152 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 4153 if (auto *E = BD->getBinding()) 4154 return E->refersToVectorElement(); 4155 4156 return false; 4157 } 4158 4159 bool Expr::refersToGlobalRegisterVar() const { 4160 const Expr *E = this->IgnoreParenImpCasts(); 4161 4162 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 4163 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 4164 if (VD->getStorageClass() == SC_Register && 4165 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 4166 return true; 4167 4168 return false; 4169 } 4170 4171 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 4172 E1 = E1->IgnoreParens(); 4173 E2 = E2->IgnoreParens(); 4174 4175 if (E1->getStmtClass() != E2->getStmtClass()) 4176 return false; 4177 4178 switch (E1->getStmtClass()) { 4179 default: 4180 return false; 4181 case CXXThisExprClass: 4182 return true; 4183 case DeclRefExprClass: { 4184 // DeclRefExpr without an ImplicitCastExpr can happen for integral 4185 // template parameters. 4186 const auto *DRE1 = cast<DeclRefExpr>(E1); 4187 const auto *DRE2 = cast<DeclRefExpr>(E2); 4188 return DRE1->isPRValue() && DRE2->isPRValue() && 4189 DRE1->getDecl() == DRE2->getDecl(); 4190 } 4191 case ImplicitCastExprClass: { 4192 // Peel off implicit casts. 4193 while (true) { 4194 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 4195 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 4196 if (!ICE1 || !ICE2) 4197 return false; 4198 if (ICE1->getCastKind() != ICE2->getCastKind()) 4199 return false; 4200 E1 = ICE1->getSubExpr()->IgnoreParens(); 4201 E2 = ICE2->getSubExpr()->IgnoreParens(); 4202 // The final cast must be one of these types. 4203 if (ICE1->getCastKind() == CK_LValueToRValue || 4204 ICE1->getCastKind() == CK_ArrayToPointerDecay || 4205 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 4206 break; 4207 } 4208 } 4209 4210 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 4211 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 4212 if (DRE1 && DRE2) 4213 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 4214 4215 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 4216 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 4217 if (Ivar1 && Ivar2) { 4218 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 4219 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 4220 } 4221 4222 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 4223 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 4224 if (Array1 && Array2) { 4225 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 4226 return false; 4227 4228 auto Idx1 = Array1->getIdx(); 4229 auto Idx2 = Array2->getIdx(); 4230 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 4231 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 4232 if (Integer1 && Integer2) { 4233 if (!llvm::APInt::isSameValue(Integer1->getValue(), 4234 Integer2->getValue())) 4235 return false; 4236 } else { 4237 if (!isSameComparisonOperand(Idx1, Idx2)) 4238 return false; 4239 } 4240 4241 return true; 4242 } 4243 4244 // Walk the MemberExpr chain. 4245 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4246 const auto *ME1 = cast<MemberExpr>(E1); 4247 const auto *ME2 = cast<MemberExpr>(E2); 4248 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4249 return false; 4250 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4251 if (D->isStaticDataMember()) 4252 return true; 4253 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4254 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4255 } 4256 4257 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4258 return true; 4259 4260 // A static member variable can end the MemberExpr chain with either 4261 // a MemberExpr or a DeclRefExpr. 4262 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4263 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4264 return DRE->getDecl(); 4265 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4266 return ME->getMemberDecl(); 4267 return nullptr; 4268 }; 4269 4270 const ValueDecl *VD1 = getAnyDecl(E1); 4271 const ValueDecl *VD2 = getAnyDecl(E2); 4272 return declaresSameEntity(VD1, VD2); 4273 } 4274 } 4275 } 4276 4277 /// isArrow - Return true if the base expression is a pointer to vector, 4278 /// return false if the base expression is a vector. 4279 bool ExtVectorElementExpr::isArrow() const { 4280 return getBase()->getType()->isPointerType(); 4281 } 4282 4283 unsigned ExtVectorElementExpr::getNumElements() const { 4284 if (const VectorType *VT = getType()->getAs<VectorType>()) 4285 return VT->getNumElements(); 4286 return 1; 4287 } 4288 4289 /// containsDuplicateElements - Return true if any element access is repeated. 4290 bool ExtVectorElementExpr::containsDuplicateElements() const { 4291 // FIXME: Refactor this code to an accessor on the AST node which returns the 4292 // "type" of component access, and share with code below and in Sema. 4293 StringRef Comp = Accessor->getName(); 4294 4295 // Halving swizzles do not contain duplicate elements. 4296 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4297 return false; 4298 4299 // Advance past s-char prefix on hex swizzles. 4300 if (Comp[0] == 's' || Comp[0] == 'S') 4301 Comp = Comp.substr(1); 4302 4303 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4304 if (Comp.substr(i + 1).contains(Comp[i])) 4305 return true; 4306 4307 return false; 4308 } 4309 4310 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4311 void ExtVectorElementExpr::getEncodedElementAccess( 4312 SmallVectorImpl<uint32_t> &Elts) const { 4313 StringRef Comp = Accessor->getName(); 4314 bool isNumericAccessor = false; 4315 if (Comp[0] == 's' || Comp[0] == 'S') { 4316 Comp = Comp.substr(1); 4317 isNumericAccessor = true; 4318 } 4319 4320 bool isHi = Comp == "hi"; 4321 bool isLo = Comp == "lo"; 4322 bool isEven = Comp == "even"; 4323 bool isOdd = Comp == "odd"; 4324 4325 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4326 uint64_t Index; 4327 4328 if (isHi) 4329 Index = e + i; 4330 else if (isLo) 4331 Index = i; 4332 else if (isEven) 4333 Index = 2 * i; 4334 else if (isOdd) 4335 Index = 2 * i + 1; 4336 else 4337 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4338 4339 Elts.push_back(Index); 4340 } 4341 } 4342 4343 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, 4344 QualType Type, SourceLocation BLoc, 4345 SourceLocation RP) 4346 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), 4347 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { 4348 SubExprs = new (C) Stmt*[args.size()]; 4349 for (unsigned i = 0; i != args.size(); i++) 4350 SubExprs[i] = args[i]; 4351 4352 setDependence(computeDependence(this)); 4353 } 4354 4355 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4356 if (SubExprs) C.Deallocate(SubExprs); 4357 4358 this->NumExprs = Exprs.size(); 4359 SubExprs = new (C) Stmt*[NumExprs]; 4360 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4361 } 4362 4363 GenericSelectionExpr::GenericSelectionExpr( 4364 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4365 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4366 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4367 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4368 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4369 AssocExprs[ResultIndex]->getValueKind(), 4370 AssocExprs[ResultIndex]->getObjectKind()), 4371 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4372 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4373 assert(AssocTypes.size() == AssocExprs.size() && 4374 "Must have the same number of association expressions" 4375 " and TypeSourceInfo!"); 4376 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4377 4378 GenericSelectionExprBits.GenericLoc = GenericLoc; 4379 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = 4380 ControllingExpr; 4381 std::copy(AssocExprs.begin(), AssocExprs.end(), 4382 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4383 std::copy(AssocTypes.begin(), AssocTypes.end(), 4384 getTrailingObjects<TypeSourceInfo *>() + 4385 getIndexOfStartOfAssociatedTypes()); 4386 4387 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4388 } 4389 4390 GenericSelectionExpr::GenericSelectionExpr( 4391 const ASTContext &, SourceLocation GenericLoc, 4392 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4393 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4394 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, 4395 unsigned ResultIndex) 4396 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4397 AssocExprs[ResultIndex]->getValueKind(), 4398 AssocExprs[ResultIndex]->getObjectKind()), 4399 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4400 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4401 assert(AssocTypes.size() == AssocExprs.size() && 4402 "Must have the same number of association expressions" 4403 " and TypeSourceInfo!"); 4404 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4405 4406 GenericSelectionExprBits.GenericLoc = GenericLoc; 4407 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = 4408 ControllingType; 4409 std::copy(AssocExprs.begin(), AssocExprs.end(), 4410 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4411 std::copy(AssocTypes.begin(), AssocTypes.end(), 4412 getTrailingObjects<TypeSourceInfo *>() + 4413 getIndexOfStartOfAssociatedTypes()); 4414 4415 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4416 } 4417 4418 GenericSelectionExpr::GenericSelectionExpr( 4419 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4420 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4421 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4422 bool ContainsUnexpandedParameterPack) 4423 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4424 OK_Ordinary), 4425 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4426 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4427 assert(AssocTypes.size() == AssocExprs.size() && 4428 "Must have the same number of association expressions" 4429 " and TypeSourceInfo!"); 4430 4431 GenericSelectionExprBits.GenericLoc = GenericLoc; 4432 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = 4433 ControllingExpr; 4434 std::copy(AssocExprs.begin(), AssocExprs.end(), 4435 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4436 std::copy(AssocTypes.begin(), AssocTypes.end(), 4437 getTrailingObjects<TypeSourceInfo *>() + 4438 getIndexOfStartOfAssociatedTypes()); 4439 4440 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4441 } 4442 4443 GenericSelectionExpr::GenericSelectionExpr( 4444 const ASTContext &Context, SourceLocation GenericLoc, 4445 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4446 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4447 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) 4448 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4449 OK_Ordinary), 4450 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4451 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4452 assert(AssocTypes.size() == AssocExprs.size() && 4453 "Must have the same number of association expressions" 4454 " and TypeSourceInfo!"); 4455 4456 GenericSelectionExprBits.GenericLoc = GenericLoc; 4457 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = 4458 ControllingType; 4459 std::copy(AssocExprs.begin(), AssocExprs.end(), 4460 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4461 std::copy(AssocTypes.begin(), AssocTypes.end(), 4462 getTrailingObjects<TypeSourceInfo *>() + 4463 getIndexOfStartOfAssociatedTypes()); 4464 4465 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4466 } 4467 4468 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4469 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4470 4471 GenericSelectionExpr *GenericSelectionExpr::Create( 4472 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4473 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4474 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4475 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4476 unsigned NumAssocs = AssocExprs.size(); 4477 void *Mem = Context.Allocate( 4478 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4479 alignof(GenericSelectionExpr)); 4480 return new (Mem) GenericSelectionExpr( 4481 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4482 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4483 } 4484 4485 GenericSelectionExpr *GenericSelectionExpr::Create( 4486 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4487 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4488 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4489 bool ContainsUnexpandedParameterPack) { 4490 unsigned NumAssocs = AssocExprs.size(); 4491 void *Mem = Context.Allocate( 4492 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4493 alignof(GenericSelectionExpr)); 4494 return new (Mem) GenericSelectionExpr( 4495 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4496 RParenLoc, ContainsUnexpandedParameterPack); 4497 } 4498 4499 GenericSelectionExpr *GenericSelectionExpr::Create( 4500 const ASTContext &Context, SourceLocation GenericLoc, 4501 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4502 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4503 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, 4504 unsigned ResultIndex) { 4505 unsigned NumAssocs = AssocExprs.size(); 4506 void *Mem = Context.Allocate( 4507 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4508 alignof(GenericSelectionExpr)); 4509 return new (Mem) GenericSelectionExpr( 4510 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, 4511 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4512 } 4513 4514 GenericSelectionExpr *GenericSelectionExpr::Create( 4515 const ASTContext &Context, SourceLocation GenericLoc, 4516 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4517 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4518 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) { 4519 unsigned NumAssocs = AssocExprs.size(); 4520 void *Mem = Context.Allocate( 4521 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4522 alignof(GenericSelectionExpr)); 4523 return new (Mem) GenericSelectionExpr( 4524 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, 4525 RParenLoc, ContainsUnexpandedParameterPack); 4526 } 4527 4528 GenericSelectionExpr * 4529 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4530 unsigned NumAssocs) { 4531 void *Mem = Context.Allocate( 4532 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4533 alignof(GenericSelectionExpr)); 4534 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4535 } 4536 4537 //===----------------------------------------------------------------------===// 4538 // DesignatedInitExpr 4539 //===----------------------------------------------------------------------===// 4540 4541 const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4542 assert(isFieldDesignator() && "Only valid on a field designator"); 4543 if (FieldInfo.NameOrField & 0x01) 4544 return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01); 4545 return getFieldDecl()->getIdentifier(); 4546 } 4547 4548 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4549 llvm::ArrayRef<Designator> Designators, 4550 SourceLocation EqualOrColonLoc, 4551 bool GNUSyntax, 4552 ArrayRef<Expr *> IndexExprs, Expr *Init) 4553 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), 4554 Init->getObjectKind()), 4555 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4556 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4557 this->Designators = new (C) Designator[NumDesignators]; 4558 4559 // Record the initializer itself. 4560 child_iterator Child = child_begin(); 4561 *Child++ = Init; 4562 4563 // Copy the designators and their subexpressions, computing 4564 // value-dependence along the way. 4565 unsigned IndexIdx = 0; 4566 for (unsigned I = 0; I != NumDesignators; ++I) { 4567 this->Designators[I] = Designators[I]; 4568 if (this->Designators[I].isArrayDesignator()) { 4569 // Copy the index expressions into permanent storage. 4570 *Child++ = IndexExprs[IndexIdx++]; 4571 } else if (this->Designators[I].isArrayRangeDesignator()) { 4572 // Copy the start/end expressions into permanent storage. 4573 *Child++ = IndexExprs[IndexIdx++]; 4574 *Child++ = IndexExprs[IndexIdx++]; 4575 } 4576 } 4577 4578 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4579 setDependence(computeDependence(this)); 4580 } 4581 4582 DesignatedInitExpr * 4583 DesignatedInitExpr::Create(const ASTContext &C, 4584 llvm::ArrayRef<Designator> Designators, 4585 ArrayRef<Expr*> IndexExprs, 4586 SourceLocation ColonOrEqualLoc, 4587 bool UsesColonSyntax, Expr *Init) { 4588 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4589 alignof(DesignatedInitExpr)); 4590 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4591 ColonOrEqualLoc, UsesColonSyntax, 4592 IndexExprs, Init); 4593 } 4594 4595 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4596 unsigned NumIndexExprs) { 4597 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4598 alignof(DesignatedInitExpr)); 4599 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4600 } 4601 4602 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4603 const Designator *Desigs, 4604 unsigned NumDesigs) { 4605 Designators = new (C) Designator[NumDesigs]; 4606 NumDesignators = NumDesigs; 4607 for (unsigned I = 0; I != NumDesigs; ++I) 4608 Designators[I] = Desigs[I]; 4609 } 4610 4611 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4612 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4613 if (size() == 1) 4614 return DIE->getDesignator(0)->getSourceRange(); 4615 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4616 DIE->getDesignator(size() - 1)->getEndLoc()); 4617 } 4618 4619 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4620 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4621 Designator &First = *DIE->getDesignator(0); 4622 if (First.isFieldDesignator()) 4623 return GNUSyntax ? First.getFieldLoc() : First.getDotLoc(); 4624 return First.getLBracketLoc(); 4625 } 4626 4627 SourceLocation DesignatedInitExpr::getEndLoc() const { 4628 return getInit()->getEndLoc(); 4629 } 4630 4631 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4632 assert(D.isArrayDesignator() && "Requires array designator"); 4633 return getSubExpr(D.getArrayIndex() + 1); 4634 } 4635 4636 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4637 assert(D.isArrayRangeDesignator() && "Requires array range designator"); 4638 return getSubExpr(D.getArrayIndex() + 1); 4639 } 4640 4641 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4642 assert(D.isArrayRangeDesignator() && "Requires array range designator"); 4643 return getSubExpr(D.getArrayIndex() + 2); 4644 } 4645 4646 /// Replaces the designator at index @p Idx with the series 4647 /// of designators in [First, Last). 4648 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4649 const Designator *First, 4650 const Designator *Last) { 4651 unsigned NumNewDesignators = Last - First; 4652 if (NumNewDesignators == 0) { 4653 std::copy_backward(Designators + Idx + 1, 4654 Designators + NumDesignators, 4655 Designators + Idx); 4656 --NumNewDesignators; 4657 return; 4658 } 4659 if (NumNewDesignators == 1) { 4660 Designators[Idx] = *First; 4661 return; 4662 } 4663 4664 Designator *NewDesignators 4665 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4666 std::copy(Designators, Designators + Idx, NewDesignators); 4667 std::copy(First, Last, NewDesignators + Idx); 4668 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4669 NewDesignators + Idx + NumNewDesignators); 4670 Designators = NewDesignators; 4671 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4672 } 4673 4674 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4675 SourceLocation lBraceLoc, 4676 Expr *baseExpr, 4677 SourceLocation rBraceLoc) 4678 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, 4679 OK_Ordinary) { 4680 BaseAndUpdaterExprs[0] = baseExpr; 4681 4682 InitListExpr *ILE = 4683 new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc); 4684 ILE->setType(baseExpr->getType()); 4685 BaseAndUpdaterExprs[1] = ILE; 4686 4687 // FIXME: this is wrong, set it correctly. 4688 setDependence(ExprDependence::None); 4689 } 4690 4691 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4692 return getBase()->getBeginLoc(); 4693 } 4694 4695 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4696 return getBase()->getEndLoc(); 4697 } 4698 4699 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4700 SourceLocation RParenLoc) 4701 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), 4702 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4703 ParenListExprBits.NumExprs = Exprs.size(); 4704 4705 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) 4706 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4707 setDependence(computeDependence(this)); 4708 } 4709 4710 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4711 : Expr(ParenListExprClass, Empty) { 4712 ParenListExprBits.NumExprs = NumExprs; 4713 } 4714 4715 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4716 SourceLocation LParenLoc, 4717 ArrayRef<Expr *> Exprs, 4718 SourceLocation RParenLoc) { 4719 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4720 alignof(ParenListExpr)); 4721 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4722 } 4723 4724 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4725 unsigned NumExprs) { 4726 void *Mem = 4727 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4728 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4729 } 4730 4731 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4732 Opcode opc, QualType ResTy, ExprValueKind VK, 4733 ExprObjectKind OK, SourceLocation opLoc, 4734 FPOptionsOverride FPFeatures) 4735 : Expr(BinaryOperatorClass, ResTy, VK, OK) { 4736 BinaryOperatorBits.Opc = opc; 4737 assert(!isCompoundAssignmentOp() && 4738 "Use CompoundAssignOperator for compound assignments"); 4739 BinaryOperatorBits.OpLoc = opLoc; 4740 SubExprs[LHS] = lhs; 4741 SubExprs[RHS] = rhs; 4742 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4743 if (hasStoredFPFeatures()) 4744 setStoredFPFeatures(FPFeatures); 4745 setDependence(computeDependence(this)); 4746 } 4747 4748 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4749 Opcode opc, QualType ResTy, ExprValueKind VK, 4750 ExprObjectKind OK, SourceLocation opLoc, 4751 FPOptionsOverride FPFeatures, bool dead2) 4752 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { 4753 BinaryOperatorBits.Opc = opc; 4754 assert(isCompoundAssignmentOp() && 4755 "Use CompoundAssignOperator for compound assignments"); 4756 BinaryOperatorBits.OpLoc = opLoc; 4757 SubExprs[LHS] = lhs; 4758 SubExprs[RHS] = rhs; 4759 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4760 if (hasStoredFPFeatures()) 4761 setStoredFPFeatures(FPFeatures); 4762 setDependence(computeDependence(this)); 4763 } 4764 4765 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, 4766 bool HasFPFeatures) { 4767 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4768 void *Mem = 4769 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4770 return new (Mem) BinaryOperator(EmptyShell()); 4771 } 4772 4773 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, 4774 Expr *rhs, Opcode opc, QualType ResTy, 4775 ExprValueKind VK, ExprObjectKind OK, 4776 SourceLocation opLoc, 4777 FPOptionsOverride FPFeatures) { 4778 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4779 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4780 void *Mem = 4781 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4782 return new (Mem) 4783 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); 4784 } 4785 4786 CompoundAssignOperator * 4787 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { 4788 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4789 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4790 alignof(CompoundAssignOperator)); 4791 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); 4792 } 4793 4794 CompoundAssignOperator * 4795 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, 4796 Opcode opc, QualType ResTy, ExprValueKind VK, 4797 ExprObjectKind OK, SourceLocation opLoc, 4798 FPOptionsOverride FPFeatures, 4799 QualType CompLHSType, QualType CompResultType) { 4800 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4801 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4802 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4803 alignof(CompoundAssignOperator)); 4804 return new (Mem) 4805 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, 4806 CompLHSType, CompResultType); 4807 } 4808 4809 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, 4810 bool hasFPFeatures) { 4811 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), 4812 alignof(UnaryOperator)); 4813 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); 4814 } 4815 4816 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, 4817 QualType type, ExprValueKind VK, ExprObjectKind OK, 4818 SourceLocation l, bool CanOverflow, 4819 FPOptionsOverride FPFeatures) 4820 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { 4821 UnaryOperatorBits.Opc = opc; 4822 UnaryOperatorBits.CanOverflow = CanOverflow; 4823 UnaryOperatorBits.Loc = l; 4824 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4825 if (hasStoredFPFeatures()) 4826 setStoredFPFeatures(FPFeatures); 4827 setDependence(computeDependence(this, Ctx)); 4828 } 4829 4830 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, 4831 Opcode opc, QualType type, 4832 ExprValueKind VK, ExprObjectKind OK, 4833 SourceLocation l, bool CanOverflow, 4834 FPOptionsOverride FPFeatures) { 4835 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4836 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); 4837 void *Mem = C.Allocate(Size, alignof(UnaryOperator)); 4838 return new (Mem) 4839 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); 4840 } 4841 4842 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4843 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4844 e = ewc->getSubExpr(); 4845 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4846 e = m->getSubExpr(); 4847 e = cast<CXXConstructExpr>(e)->getArg(0); 4848 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4849 e = ice->getSubExpr(); 4850 return cast<OpaqueValueExpr>(e); 4851 } 4852 4853 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4854 EmptyShell sh, 4855 unsigned numSemanticExprs) { 4856 void *buffer = 4857 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4858 alignof(PseudoObjectExpr)); 4859 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4860 } 4861 4862 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4863 : Expr(PseudoObjectExprClass, shell) { 4864 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4865 } 4866 4867 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4868 ArrayRef<Expr*> semantics, 4869 unsigned resultIndex) { 4870 assert(syntax && "no syntactic expression!"); 4871 assert(semantics.size() && "no semantic expressions!"); 4872 4873 QualType type; 4874 ExprValueKind VK; 4875 if (resultIndex == NoResult) { 4876 type = C.VoidTy; 4877 VK = VK_PRValue; 4878 } else { 4879 assert(resultIndex < semantics.size()); 4880 type = semantics[resultIndex]->getType(); 4881 VK = semantics[resultIndex]->getValueKind(); 4882 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4883 } 4884 4885 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4886 alignof(PseudoObjectExpr)); 4887 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4888 resultIndex); 4889 } 4890 4891 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4892 Expr *syntax, ArrayRef<Expr *> semantics, 4893 unsigned resultIndex) 4894 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { 4895 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4896 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4897 4898 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4899 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4900 getSubExprsBuffer()[i] = E; 4901 4902 if (isa<OpaqueValueExpr>(E)) 4903 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4904 "opaque-value semantic expressions for pseudo-object " 4905 "operations must have sources"); 4906 } 4907 4908 setDependence(computeDependence(this)); 4909 } 4910 4911 //===----------------------------------------------------------------------===// 4912 // Child Iterators for iterating over subexpressions/substatements 4913 //===----------------------------------------------------------------------===// 4914 4915 // UnaryExprOrTypeTraitExpr 4916 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4917 const_child_range CCR = 4918 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4919 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4920 } 4921 4922 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4923 // If this is of a type and the type is a VLA type (and not a typedef), the 4924 // size expression of the VLA needs to be treated as an executable expression. 4925 // Why isn't this weirdness documented better in StmtIterator? 4926 if (isArgumentType()) { 4927 if (const VariableArrayType *T = 4928 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4929 return const_child_range(const_child_iterator(T), const_child_iterator()); 4930 return const_child_range(const_child_iterator(), const_child_iterator()); 4931 } 4932 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4933 } 4934 4935 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, 4936 AtomicOp op, SourceLocation RP) 4937 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), 4938 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { 4939 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4940 for (unsigned i = 0; i != args.size(); i++) 4941 SubExprs[i] = args[i]; 4942 setDependence(computeDependence(this)); 4943 } 4944 4945 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4946 switch (Op) { 4947 case AO__c11_atomic_init: 4948 case AO__opencl_atomic_init: 4949 case AO__c11_atomic_load: 4950 case AO__atomic_load_n: 4951 return 2; 4952 4953 case AO__scoped_atomic_load_n: 4954 case AO__opencl_atomic_load: 4955 case AO__hip_atomic_load: 4956 case AO__c11_atomic_store: 4957 case AO__c11_atomic_exchange: 4958 case AO__atomic_load: 4959 case AO__atomic_store: 4960 case AO__atomic_store_n: 4961 case AO__atomic_exchange_n: 4962 case AO__c11_atomic_fetch_add: 4963 case AO__c11_atomic_fetch_sub: 4964 case AO__c11_atomic_fetch_and: 4965 case AO__c11_atomic_fetch_or: 4966 case AO__c11_atomic_fetch_xor: 4967 case AO__c11_atomic_fetch_nand: 4968 case AO__c11_atomic_fetch_max: 4969 case AO__c11_atomic_fetch_min: 4970 case AO__atomic_fetch_add: 4971 case AO__atomic_fetch_sub: 4972 case AO__atomic_fetch_and: 4973 case AO__atomic_fetch_or: 4974 case AO__atomic_fetch_xor: 4975 case AO__atomic_fetch_nand: 4976 case AO__atomic_add_fetch: 4977 case AO__atomic_sub_fetch: 4978 case AO__atomic_and_fetch: 4979 case AO__atomic_or_fetch: 4980 case AO__atomic_xor_fetch: 4981 case AO__atomic_nand_fetch: 4982 case AO__atomic_min_fetch: 4983 case AO__atomic_max_fetch: 4984 case AO__atomic_fetch_min: 4985 case AO__atomic_fetch_max: 4986 return 3; 4987 4988 case AO__scoped_atomic_load: 4989 case AO__scoped_atomic_store: 4990 case AO__scoped_atomic_store_n: 4991 case AO__scoped_atomic_fetch_add: 4992 case AO__scoped_atomic_fetch_sub: 4993 case AO__scoped_atomic_fetch_and: 4994 case AO__scoped_atomic_fetch_or: 4995 case AO__scoped_atomic_fetch_xor: 4996 case AO__scoped_atomic_fetch_nand: 4997 case AO__scoped_atomic_add_fetch: 4998 case AO__scoped_atomic_sub_fetch: 4999 case AO__scoped_atomic_and_fetch: 5000 case AO__scoped_atomic_or_fetch: 5001 case AO__scoped_atomic_xor_fetch: 5002 case AO__scoped_atomic_nand_fetch: 5003 case AO__scoped_atomic_min_fetch: 5004 case AO__scoped_atomic_max_fetch: 5005 case AO__scoped_atomic_fetch_min: 5006 case AO__scoped_atomic_fetch_max: 5007 case AO__scoped_atomic_exchange_n: 5008 case AO__hip_atomic_exchange: 5009 case AO__hip_atomic_fetch_add: 5010 case AO__hip_atomic_fetch_sub: 5011 case AO__hip_atomic_fetch_and: 5012 case AO__hip_atomic_fetch_or: 5013 case AO__hip_atomic_fetch_xor: 5014 case AO__hip_atomic_fetch_min: 5015 case AO__hip_atomic_fetch_max: 5016 case AO__opencl_atomic_store: 5017 case AO__hip_atomic_store: 5018 case AO__opencl_atomic_exchange: 5019 case AO__opencl_atomic_fetch_add: 5020 case AO__opencl_atomic_fetch_sub: 5021 case AO__opencl_atomic_fetch_and: 5022 case AO__opencl_atomic_fetch_or: 5023 case AO__opencl_atomic_fetch_xor: 5024 case AO__opencl_atomic_fetch_min: 5025 case AO__opencl_atomic_fetch_max: 5026 case AO__atomic_exchange: 5027 return 4; 5028 5029 case AO__scoped_atomic_exchange: 5030 case AO__c11_atomic_compare_exchange_strong: 5031 case AO__c11_atomic_compare_exchange_weak: 5032 return 5; 5033 case AO__hip_atomic_compare_exchange_strong: 5034 case AO__opencl_atomic_compare_exchange_strong: 5035 case AO__opencl_atomic_compare_exchange_weak: 5036 case AO__hip_atomic_compare_exchange_weak: 5037 case AO__atomic_compare_exchange: 5038 case AO__atomic_compare_exchange_n: 5039 return 6; 5040 5041 case AO__scoped_atomic_compare_exchange: 5042 case AO__scoped_atomic_compare_exchange_n: 5043 return 7; 5044 } 5045 llvm_unreachable("unknown atomic op"); 5046 } 5047 5048 QualType AtomicExpr::getValueType() const { 5049 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 5050 if (auto AT = T->getAs<AtomicType>()) 5051 return AT->getValueType(); 5052 return T; 5053 } 5054 5055 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 5056 unsigned ArraySectionCount = 0; 5057 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 5058 Base = OASE->getBase(); 5059 ++ArraySectionCount; 5060 } 5061 while (auto *ASE = 5062 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 5063 Base = ASE->getBase(); 5064 ++ArraySectionCount; 5065 } 5066 Base = Base->IgnoreParenImpCasts(); 5067 auto OriginalTy = Base->getType(); 5068 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 5069 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 5070 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 5071 5072 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 5073 if (OriginalTy->isAnyPointerType()) 5074 OriginalTy = OriginalTy->getPointeeType(); 5075 else if (OriginalTy->isArrayType()) 5076 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 5077 else 5078 return {}; 5079 } 5080 return OriginalTy; 5081 } 5082 5083 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, 5084 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) 5085 : Expr(RecoveryExprClass, T.getNonReferenceType(), 5086 T->isDependentType() ? VK_LValue : getValueKindForType(T), 5087 OK_Ordinary), 5088 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { 5089 assert(!T.isNull()); 5090 assert(!llvm::is_contained(SubExprs, nullptr)); 5091 5092 llvm::copy(SubExprs, getTrailingObjects<Expr *>()); 5093 setDependence(computeDependence(this)); 5094 } 5095 5096 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, 5097 SourceLocation BeginLoc, 5098 SourceLocation EndLoc, 5099 ArrayRef<Expr *> SubExprs) { 5100 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), 5101 alignof(RecoveryExpr)); 5102 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); 5103 } 5104 5105 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { 5106 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), 5107 alignof(RecoveryExpr)); 5108 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); 5109 } 5110 5111 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { 5112 assert( 5113 NumDims == Dims.size() && 5114 "Preallocated number of dimensions is different from the provided one."); 5115 llvm::copy(Dims, getTrailingObjects<Expr *>()); 5116 } 5117 5118 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { 5119 assert( 5120 NumDims == BR.size() && 5121 "Preallocated number of dimensions is different from the provided one."); 5122 llvm::copy(BR, getTrailingObjects<SourceRange>()); 5123 } 5124 5125 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, 5126 SourceLocation L, SourceLocation R, 5127 ArrayRef<Expr *> Dims) 5128 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), 5129 RPLoc(R), NumDims(Dims.size()) { 5130 setBase(Op); 5131 setDimensions(Dims); 5132 setDependence(computeDependence(this)); 5133 } 5134 5135 OMPArrayShapingExpr * 5136 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, 5137 SourceLocation L, SourceLocation R, 5138 ArrayRef<Expr *> Dims, 5139 ArrayRef<SourceRange> BracketRanges) { 5140 assert(Dims.size() == BracketRanges.size() && 5141 "Different number of dimensions and brackets ranges."); 5142 void *Mem = Context.Allocate( 5143 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), 5144 alignof(OMPArrayShapingExpr)); 5145 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); 5146 E->setBracketsRanges(BracketRanges); 5147 return E; 5148 } 5149 5150 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, 5151 unsigned NumDims) { 5152 void *Mem = Context.Allocate( 5153 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), 5154 alignof(OMPArrayShapingExpr)); 5155 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); 5156 } 5157 5158 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { 5159 assert(I < NumIterators && 5160 "Idx is greater or equal the number of iterators definitions."); 5161 getTrailingObjects<Decl *>()[I] = D; 5162 } 5163 5164 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { 5165 assert(I < NumIterators && 5166 "Idx is greater or equal the number of iterators definitions."); 5167 getTrailingObjects< 5168 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5169 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; 5170 } 5171 5172 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, 5173 SourceLocation ColonLoc, Expr *End, 5174 SourceLocation SecondColonLoc, 5175 Expr *Step) { 5176 assert(I < NumIterators && 5177 "Idx is greater or equal the number of iterators definitions."); 5178 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5179 static_cast<int>(RangeExprOffset::Begin)] = 5180 Begin; 5181 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5182 static_cast<int>(RangeExprOffset::End)] = End; 5183 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5184 static_cast<int>(RangeExprOffset::Step)] = Step; 5185 getTrailingObjects< 5186 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5187 static_cast<int>(RangeLocOffset::FirstColonLoc)] = 5188 ColonLoc; 5189 getTrailingObjects< 5190 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5191 static_cast<int>(RangeLocOffset::SecondColonLoc)] = 5192 SecondColonLoc; 5193 } 5194 5195 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { 5196 return getTrailingObjects<Decl *>()[I]; 5197 } 5198 5199 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { 5200 IteratorRange Res; 5201 Res.Begin = 5202 getTrailingObjects<Expr *>()[I * static_cast<int>( 5203 RangeExprOffset::Total) + 5204 static_cast<int>(RangeExprOffset::Begin)]; 5205 Res.End = 5206 getTrailingObjects<Expr *>()[I * static_cast<int>( 5207 RangeExprOffset::Total) + 5208 static_cast<int>(RangeExprOffset::End)]; 5209 Res.Step = 5210 getTrailingObjects<Expr *>()[I * static_cast<int>( 5211 RangeExprOffset::Total) + 5212 static_cast<int>(RangeExprOffset::Step)]; 5213 return Res; 5214 } 5215 5216 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { 5217 return getTrailingObjects< 5218 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5219 static_cast<int>(RangeLocOffset::AssignLoc)]; 5220 } 5221 5222 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { 5223 return getTrailingObjects< 5224 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5225 static_cast<int>(RangeLocOffset::FirstColonLoc)]; 5226 } 5227 5228 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { 5229 return getTrailingObjects< 5230 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5231 static_cast<int>(RangeLocOffset::SecondColonLoc)]; 5232 } 5233 5234 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { 5235 getTrailingObjects<OMPIteratorHelperData>()[I] = D; 5236 } 5237 5238 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { 5239 return getTrailingObjects<OMPIteratorHelperData>()[I]; 5240 } 5241 5242 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { 5243 return getTrailingObjects<OMPIteratorHelperData>()[I]; 5244 } 5245 5246 OMPIteratorExpr::OMPIteratorExpr( 5247 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, 5248 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5249 ArrayRef<OMPIteratorHelperData> Helpers) 5250 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), 5251 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), 5252 NumIterators(Data.size()) { 5253 for (unsigned I = 0, E = Data.size(); I < E; ++I) { 5254 const IteratorDefinition &D = Data[I]; 5255 setIteratorDeclaration(I, D.IteratorDecl); 5256 setAssignmentLoc(I, D.AssignmentLoc); 5257 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, 5258 D.SecondColonLoc, D.Range.Step); 5259 setHelper(I, Helpers[I]); 5260 } 5261 setDependence(computeDependence(this)); 5262 } 5263 5264 OMPIteratorExpr * 5265 OMPIteratorExpr::Create(const ASTContext &Context, QualType T, 5266 SourceLocation IteratorKwLoc, SourceLocation L, 5267 SourceLocation R, 5268 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5269 ArrayRef<OMPIteratorHelperData> Helpers) { 5270 assert(Data.size() == Helpers.size() && 5271 "Data and helpers must have the same size."); 5272 void *Mem = Context.Allocate( 5273 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5274 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), 5275 Data.size() * static_cast<int>(RangeLocOffset::Total), 5276 Helpers.size()), 5277 alignof(OMPIteratorExpr)); 5278 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); 5279 } 5280 5281 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, 5282 unsigned NumIterators) { 5283 void *Mem = Context.Allocate( 5284 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5285 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), 5286 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), 5287 alignof(OMPIteratorExpr)); 5288 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); 5289 } 5290