xref: /freebsd-src/contrib/llvm-project/clang/lib/AST/DeclCXX.cpp (revision 46c59ea9b61755455ff6bf9f3e7b834e1af634ea)
1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the C++ related Decl classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTUnresolvedSet.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/LambdaCapture.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/ODRHash.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "clang/Basic/OperatorKinds.h"
36 #include "clang/Basic/PartialDiagnostic.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstddef>
50 #include <cstdint>
51 
52 using namespace clang;
53 
54 //===----------------------------------------------------------------------===//
55 // Decl Allocation/Deallocation Method Implementations
56 //===----------------------------------------------------------------------===//
57 
58 void AccessSpecDecl::anchor() {}
59 
60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
61   return new (C, ID) AccessSpecDecl(EmptyShell());
62 }
63 
64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
65   ExternalASTSource *Source = C.getExternalSource();
66   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
67   assert(Source && "getFromExternalSource with no external source");
68 
69   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
70     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
71         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
72   Impl.Decls.setLazy(false);
73 }
74 
75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
76     : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
77       Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
78       Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
79       HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
80       HasPrivateFields(false), HasProtectedFields(false),
81       HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
82       HasOnlyCMembers(true), HasInitMethod(false), HasInClassInitializer(false),
83       HasUninitializedReferenceMember(false), HasUninitializedFields(false),
84       HasInheritedConstructor(false), HasInheritedDefaultConstructor(false),
85       HasInheritedAssignment(false),
86       NeedOverloadResolutionForCopyConstructor(false),
87       NeedOverloadResolutionForMoveConstructor(false),
88       NeedOverloadResolutionForCopyAssignment(false),
89       NeedOverloadResolutionForMoveAssignment(false),
90       NeedOverloadResolutionForDestructor(false),
91       DefaultedCopyConstructorIsDeleted(false),
92       DefaultedMoveConstructorIsDeleted(false),
93       DefaultedCopyAssignmentIsDeleted(false),
94       DefaultedMoveAssignmentIsDeleted(false),
95       DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
96       HasTrivialSpecialMembersForCall(SMF_All),
97       DeclaredNonTrivialSpecialMembers(0),
98       DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
99       HasConstexprNonCopyMoveConstructor(false),
100       HasDefaultedDefaultConstructor(false),
101       DefaultedDefaultConstructorIsConstexpr(true),
102       HasConstexprDefaultConstructor(false),
103       DefaultedDestructorIsConstexpr(true),
104       HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true),
105       UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
106       ImplicitCopyConstructorCanHaveConstParamForVBase(true),
107       ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
108       ImplicitCopyAssignmentHasConstParam(true),
109       HasDeclaredCopyConstructorWithConstParam(false),
110       HasDeclaredCopyAssignmentWithConstParam(false),
111       IsAnyDestructorNoReturn(false), IsLambda(false),
112       IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
113       HasODRHash(false), Definition(D) {}
114 
115 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
116   return Bases.get(Definition->getASTContext().getExternalSource());
117 }
118 
119 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
120   return VBases.get(Definition->getASTContext().getExternalSource());
121 }
122 
123 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
124                              DeclContext *DC, SourceLocation StartLoc,
125                              SourceLocation IdLoc, IdentifierInfo *Id,
126                              CXXRecordDecl *PrevDecl)
127     : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
128       DefinitionData(PrevDecl ? PrevDecl->DefinitionData
129                               : nullptr) {}
130 
131 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
132                                      DeclContext *DC, SourceLocation StartLoc,
133                                      SourceLocation IdLoc, IdentifierInfo *Id,
134                                      CXXRecordDecl *PrevDecl,
135                                      bool DelayTypeCreation) {
136   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
137                                       PrevDecl);
138   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
139 
140   // FIXME: DelayTypeCreation seems like such a hack
141   if (!DelayTypeCreation)
142     C.getTypeDeclType(R, PrevDecl);
143   return R;
144 }
145 
146 CXXRecordDecl *
147 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
148                             TypeSourceInfo *Info, SourceLocation Loc,
149                             unsigned DependencyKind, bool IsGeneric,
150                             LambdaCaptureDefault CaptureDefault) {
151   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TagTypeKind::Class, C, DC, Loc,
152                                       Loc, nullptr, nullptr);
153   R->setBeingDefined(true);
154   R->DefinitionData = new (C) struct LambdaDefinitionData(
155       R, Info, DependencyKind, IsGeneric, CaptureDefault);
156   R->setMayHaveOutOfDateDef(false);
157   R->setImplicit(true);
158 
159   C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
160   return R;
161 }
162 
163 CXXRecordDecl *
164 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
165   auto *R = new (C, ID)
166       CXXRecordDecl(CXXRecord, TagTypeKind::Struct, C, nullptr,
167                     SourceLocation(), SourceLocation(), nullptr, nullptr);
168   R->setMayHaveOutOfDateDef(false);
169   return R;
170 }
171 
172 /// Determine whether a class has a repeated base class. This is intended for
173 /// use when determining if a class is standard-layout, so makes no attempt to
174 /// handle virtual bases.
175 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
176   llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
177   SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
178   while (!WorkList.empty()) {
179     const CXXRecordDecl *RD = WorkList.pop_back_val();
180     if (RD->getTypeForDecl()->isDependentType())
181       continue;
182     for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
183       if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
184         if (!SeenBaseTypes.insert(B).second)
185           return true;
186         WorkList.push_back(B);
187       }
188     }
189   }
190   return false;
191 }
192 
193 void
194 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
195                         unsigned NumBases) {
196   ASTContext &C = getASTContext();
197 
198   if (!data().Bases.isOffset() && data().NumBases > 0)
199     C.Deallocate(data().getBases());
200 
201   if (NumBases) {
202     if (!C.getLangOpts().CPlusPlus17) {
203       // C++ [dcl.init.aggr]p1:
204       //   An aggregate is [...] a class with [...] no base classes [...].
205       data().Aggregate = false;
206     }
207 
208     // C++ [class]p4:
209     //   A POD-struct is an aggregate class...
210     data().PlainOldData = false;
211   }
212 
213   // The set of seen virtual base types.
214   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
215 
216   // The virtual bases of this class.
217   SmallVector<const CXXBaseSpecifier *, 8> VBases;
218 
219   data().Bases = new(C) CXXBaseSpecifier [NumBases];
220   data().NumBases = NumBases;
221   for (unsigned i = 0; i < NumBases; ++i) {
222     data().getBases()[i] = *Bases[i];
223     // Keep track of inherited vbases for this base class.
224     const CXXBaseSpecifier *Base = Bases[i];
225     QualType BaseType = Base->getType();
226     // Skip dependent types; we can't do any checking on them now.
227     if (BaseType->isDependentType())
228       continue;
229     auto *BaseClassDecl =
230         cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
231 
232     // C++2a [class]p7:
233     //   A standard-layout class is a class that:
234     //    [...]
235     //    -- has all non-static data members and bit-fields in the class and
236     //       its base classes first declared in the same class
237     if (BaseClassDecl->data().HasBasesWithFields ||
238         !BaseClassDecl->field_empty()) {
239       if (data().HasBasesWithFields)
240         // Two bases have members or bit-fields: not standard-layout.
241         data().IsStandardLayout = false;
242       data().HasBasesWithFields = true;
243     }
244 
245     // C++11 [class]p7:
246     //   A standard-layout class is a class that:
247     //     -- [...] has [...] at most one base class with non-static data
248     //        members
249     if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
250         BaseClassDecl->hasDirectFields()) {
251       if (data().HasBasesWithNonStaticDataMembers)
252         data().IsCXX11StandardLayout = false;
253       data().HasBasesWithNonStaticDataMembers = true;
254     }
255 
256     if (!BaseClassDecl->isEmpty()) {
257       // C++14 [meta.unary.prop]p4:
258       //   T is a class type [...] with [...] no base class B for which
259       //   is_empty<B>::value is false.
260       data().Empty = false;
261     }
262 
263     // C++1z [dcl.init.agg]p1:
264     //   An aggregate is a class with [...] no private or protected base classes
265     if (Base->getAccessSpecifier() != AS_public) {
266       data().Aggregate = false;
267 
268       // C++20 [temp.param]p7:
269       //   A structural type is [...] a literal class type with [...] all base
270       //   classes [...] public
271       data().StructuralIfLiteral = false;
272     }
273 
274     // C++ [class.virtual]p1:
275     //   A class that declares or inherits a virtual function is called a
276     //   polymorphic class.
277     if (BaseClassDecl->isPolymorphic()) {
278       data().Polymorphic = true;
279 
280       //   An aggregate is a class with [...] no virtual functions.
281       data().Aggregate = false;
282     }
283 
284     // C++0x [class]p7:
285     //   A standard-layout class is a class that: [...]
286     //    -- has no non-standard-layout base classes
287     if (!BaseClassDecl->isStandardLayout())
288       data().IsStandardLayout = false;
289     if (!BaseClassDecl->isCXX11StandardLayout())
290       data().IsCXX11StandardLayout = false;
291 
292     // Record if this base is the first non-literal field or base.
293     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
294       data().HasNonLiteralTypeFieldsOrBases = true;
295 
296     // Now go through all virtual bases of this base and add them.
297     for (const auto &VBase : BaseClassDecl->vbases()) {
298       // Add this base if it's not already in the list.
299       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
300         VBases.push_back(&VBase);
301 
302         // C++11 [class.copy]p8:
303         //   The implicitly-declared copy constructor for a class X will have
304         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
305         //   has a copy constructor whose first parameter is of type
306         //   'const B&' or 'const volatile B&' [...]
307         if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
308           if (!VBaseDecl->hasCopyConstructorWithConstParam())
309             data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
310 
311         // C++1z [dcl.init.agg]p1:
312         //   An aggregate is a class with [...] no virtual base classes
313         data().Aggregate = false;
314       }
315     }
316 
317     if (Base->isVirtual()) {
318       // Add this base if it's not already in the list.
319       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
320         VBases.push_back(Base);
321 
322       // C++14 [meta.unary.prop] is_empty:
323       //   T is a class type, but not a union type, with ... no virtual base
324       //   classes
325       data().Empty = false;
326 
327       // C++1z [dcl.init.agg]p1:
328       //   An aggregate is a class with [...] no virtual base classes
329       data().Aggregate = false;
330 
331       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
332       //   A [default constructor, copy/move constructor, or copy/move assignment
333       //   operator for a class X] is trivial [...] if:
334       //    -- class X has [...] no virtual base classes
335       data().HasTrivialSpecialMembers &= SMF_Destructor;
336       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
337 
338       // C++0x [class]p7:
339       //   A standard-layout class is a class that: [...]
340       //    -- has [...] no virtual base classes
341       data().IsStandardLayout = false;
342       data().IsCXX11StandardLayout = false;
343 
344       // C++20 [dcl.constexpr]p3:
345       //   In the definition of a constexpr function [...]
346       //    -- if the function is a constructor or destructor,
347       //       its class shall not have any virtual base classes
348       data().DefaultedDefaultConstructorIsConstexpr = false;
349       data().DefaultedDestructorIsConstexpr = false;
350 
351       // C++1z [class.copy]p8:
352       //   The implicitly-declared copy constructor for a class X will have
353       //   the form 'X::X(const X&)' if each potentially constructed subobject
354       //   has a copy constructor whose first parameter is of type
355       //   'const B&' or 'const volatile B&' [...]
356       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
357         data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
358     } else {
359       // C++ [class.ctor]p5:
360       //   A default constructor is trivial [...] if:
361       //    -- all the direct base classes of its class have trivial default
362       //       constructors.
363       if (!BaseClassDecl->hasTrivialDefaultConstructor())
364         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
365 
366       // C++0x [class.copy]p13:
367       //   A copy/move constructor for class X is trivial if [...]
368       //    [...]
369       //    -- the constructor selected to copy/move each direct base class
370       //       subobject is trivial, and
371       if (!BaseClassDecl->hasTrivialCopyConstructor())
372         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
373 
374       if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
375         data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
376 
377       // If the base class doesn't have a simple move constructor, we'll eagerly
378       // declare it and perform overload resolution to determine which function
379       // it actually calls. If it does have a simple move constructor, this
380       // check is correct.
381       if (!BaseClassDecl->hasTrivialMoveConstructor())
382         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
383 
384       if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
385         data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
386 
387       // C++0x [class.copy]p27:
388       //   A copy/move assignment operator for class X is trivial if [...]
389       //    [...]
390       //    -- the assignment operator selected to copy/move each direct base
391       //       class subobject is trivial, and
392       if (!BaseClassDecl->hasTrivialCopyAssignment())
393         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
394       // If the base class doesn't have a simple move assignment, we'll eagerly
395       // declare it and perform overload resolution to determine which function
396       // it actually calls. If it does have a simple move assignment, this
397       // check is correct.
398       if (!BaseClassDecl->hasTrivialMoveAssignment())
399         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
400 
401       // C++11 [class.ctor]p6:
402       //   If that user-written default constructor would satisfy the
403       //   requirements of a constexpr constructor, the implicitly-defined
404       //   default constructor is constexpr.
405       if (!BaseClassDecl->hasConstexprDefaultConstructor())
406         data().DefaultedDefaultConstructorIsConstexpr = false;
407 
408       // C++1z [class.copy]p8:
409       //   The implicitly-declared copy constructor for a class X will have
410       //   the form 'X::X(const X&)' if each potentially constructed subobject
411       //   has a copy constructor whose first parameter is of type
412       //   'const B&' or 'const volatile B&' [...]
413       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
414         data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
415     }
416 
417     // C++ [class.ctor]p3:
418     //   A destructor is trivial if all the direct base classes of its class
419     //   have trivial destructors.
420     if (!BaseClassDecl->hasTrivialDestructor())
421       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
422 
423     if (!BaseClassDecl->hasTrivialDestructorForCall())
424       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
425 
426     if (!BaseClassDecl->hasIrrelevantDestructor())
427       data().HasIrrelevantDestructor = false;
428 
429     if (BaseClassDecl->isAnyDestructorNoReturn())
430       data().IsAnyDestructorNoReturn = true;
431 
432     // C++11 [class.copy]p18:
433     //   The implicitly-declared copy assignment operator for a class X will
434     //   have the form 'X& X::operator=(const X&)' if each direct base class B
435     //   of X has a copy assignment operator whose parameter is of type 'const
436     //   B&', 'const volatile B&', or 'B' [...]
437     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
438       data().ImplicitCopyAssignmentHasConstParam = false;
439 
440     // A class has an Objective-C object member if... or any of its bases
441     // has an Objective-C object member.
442     if (BaseClassDecl->hasObjectMember())
443       setHasObjectMember(true);
444 
445     if (BaseClassDecl->hasVolatileMember())
446       setHasVolatileMember(true);
447 
448     if (BaseClassDecl->getArgPassingRestrictions() ==
449         RecordArgPassingKind::CanNeverPassInRegs)
450       setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs);
451 
452     // Keep track of the presence of mutable fields.
453     if (BaseClassDecl->hasMutableFields())
454       data().HasMutableFields = true;
455 
456     if (BaseClassDecl->hasUninitializedReferenceMember())
457       data().HasUninitializedReferenceMember = true;
458 
459     if (!BaseClassDecl->allowConstDefaultInit())
460       data().HasUninitializedFields = true;
461 
462     addedClassSubobject(BaseClassDecl);
463   }
464 
465   // C++2a [class]p7:
466   //   A class S is a standard-layout class if it:
467   //     -- has at most one base class subobject of any given type
468   //
469   // Note that we only need to check this for classes with more than one base
470   // class. If there's only one base class, and it's standard layout, then
471   // we know there are no repeated base classes.
472   if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
473     data().IsStandardLayout = false;
474 
475   if (VBases.empty()) {
476     data().IsParsingBaseSpecifiers = false;
477     return;
478   }
479 
480   // Create base specifier for any direct or indirect virtual bases.
481   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
482   data().NumVBases = VBases.size();
483   for (int I = 0, E = VBases.size(); I != E; ++I) {
484     QualType Type = VBases[I]->getType();
485     if (!Type->isDependentType())
486       addedClassSubobject(Type->getAsCXXRecordDecl());
487     data().getVBases()[I] = *VBases[I];
488   }
489 
490   data().IsParsingBaseSpecifiers = false;
491 }
492 
493 unsigned CXXRecordDecl::getODRHash() const {
494   assert(hasDefinition() && "ODRHash only for records with definitions");
495 
496   // Previously calculated hash is stored in DefinitionData.
497   if (DefinitionData->HasODRHash)
498     return DefinitionData->ODRHash;
499 
500   // Only calculate hash on first call of getODRHash per record.
501   ODRHash Hash;
502   Hash.AddCXXRecordDecl(getDefinition());
503   DefinitionData->HasODRHash = true;
504   DefinitionData->ODRHash = Hash.CalculateHash();
505 
506   return DefinitionData->ODRHash;
507 }
508 
509 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
510   // C++11 [class.copy]p11:
511   //   A defaulted copy/move constructor for a class X is defined as
512   //   deleted if X has:
513   //    -- a direct or virtual base class B that cannot be copied/moved [...]
514   //    -- a non-static data member of class type M (or array thereof)
515   //       that cannot be copied or moved [...]
516   if (!Subobj->hasSimpleCopyConstructor())
517     data().NeedOverloadResolutionForCopyConstructor = true;
518   if (!Subobj->hasSimpleMoveConstructor())
519     data().NeedOverloadResolutionForMoveConstructor = true;
520 
521   // C++11 [class.copy]p23:
522   //   A defaulted copy/move assignment operator for a class X is defined as
523   //   deleted if X has:
524   //    -- a direct or virtual base class B that cannot be copied/moved [...]
525   //    -- a non-static data member of class type M (or array thereof)
526   //        that cannot be copied or moved [...]
527   if (!Subobj->hasSimpleCopyAssignment())
528     data().NeedOverloadResolutionForCopyAssignment = true;
529   if (!Subobj->hasSimpleMoveAssignment())
530     data().NeedOverloadResolutionForMoveAssignment = true;
531 
532   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
533   //   A defaulted [ctor or dtor] for a class X is defined as
534   //   deleted if X has:
535   //    -- any direct or virtual base class [...] has a type with a destructor
536   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
537   //    -- any non-static data member has a type with a destructor
538   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
539   if (!Subobj->hasSimpleDestructor()) {
540     data().NeedOverloadResolutionForCopyConstructor = true;
541     data().NeedOverloadResolutionForMoveConstructor = true;
542     data().NeedOverloadResolutionForDestructor = true;
543   }
544 
545   // C++2a [dcl.constexpr]p4:
546   //   The definition of a constexpr destructor [shall] satisfy the
547   //   following requirement:
548   //   -- for every subobject of class type or (possibly multi-dimensional)
549   //      array thereof, that class type shall have a constexpr destructor
550   if (!Subobj->hasConstexprDestructor())
551     data().DefaultedDestructorIsConstexpr = false;
552 
553   // C++20 [temp.param]p7:
554   //   A structural type is [...] a literal class type [for which] the types
555   //   of all base classes and non-static data members are structural types or
556   //   (possibly multi-dimensional) array thereof
557   if (!Subobj->data().StructuralIfLiteral)
558     data().StructuralIfLiteral = false;
559 }
560 
561 bool CXXRecordDecl::hasConstexprDestructor() const {
562   auto *Dtor = getDestructor();
563   return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr();
564 }
565 
566 bool CXXRecordDecl::hasAnyDependentBases() const {
567   if (!isDependentContext())
568     return false;
569 
570   return !forallBases([](const CXXRecordDecl *) { return true; });
571 }
572 
573 bool CXXRecordDecl::isTriviallyCopyable() const {
574   // C++0x [class]p5:
575   //   A trivially copyable class is a class that:
576   //   -- has no non-trivial copy constructors,
577   if (hasNonTrivialCopyConstructor()) return false;
578   //   -- has no non-trivial move constructors,
579   if (hasNonTrivialMoveConstructor()) return false;
580   //   -- has no non-trivial copy assignment operators,
581   if (hasNonTrivialCopyAssignment()) return false;
582   //   -- has no non-trivial move assignment operators, and
583   if (hasNonTrivialMoveAssignment()) return false;
584   //   -- has a trivial destructor.
585   if (!hasTrivialDestructor()) return false;
586 
587   return true;
588 }
589 
590 bool CXXRecordDecl::isTriviallyCopyConstructible() const {
591 
592   //   A trivially copy constructible class is a class that:
593   //   -- has no non-trivial copy constructors,
594   if (hasNonTrivialCopyConstructor())
595     return false;
596   //   -- has a trivial destructor.
597   if (!hasTrivialDestructor())
598     return false;
599 
600   return true;
601 }
602 
603 void CXXRecordDecl::markedVirtualFunctionPure() {
604   // C++ [class.abstract]p2:
605   //   A class is abstract if it has at least one pure virtual function.
606   data().Abstract = true;
607 }
608 
609 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
610     ASTContext &Ctx, const CXXRecordDecl *XFirst) {
611   if (!getNumBases())
612     return false;
613 
614   llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
615   llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
616   SmallVector<const CXXRecordDecl*, 8> WorkList;
617 
618   // Visit a type that we have determined is an element of M(S).
619   auto Visit = [&](const CXXRecordDecl *RD) -> bool {
620     RD = RD->getCanonicalDecl();
621 
622     // C++2a [class]p8:
623     //   A class S is a standard-layout class if it [...] has no element of the
624     //   set M(S) of types as a base class.
625     //
626     // If we find a subobject of an empty type, it might also be a base class,
627     // so we'll need to walk the base classes to check.
628     if (!RD->data().HasBasesWithFields) {
629       // Walk the bases the first time, stopping if we find the type. Build a
630       // set of them so we don't need to walk them again.
631       if (Bases.empty()) {
632         bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
633           Base = Base->getCanonicalDecl();
634           if (RD == Base)
635             return false;
636           Bases.insert(Base);
637           return true;
638         });
639         if (RDIsBase)
640           return true;
641       } else {
642         if (Bases.count(RD))
643           return true;
644       }
645     }
646 
647     if (M.insert(RD).second)
648       WorkList.push_back(RD);
649     return false;
650   };
651 
652   if (Visit(XFirst))
653     return true;
654 
655   while (!WorkList.empty()) {
656     const CXXRecordDecl *X = WorkList.pop_back_val();
657 
658     // FIXME: We don't check the bases of X. That matches the standard, but
659     // that sure looks like a wording bug.
660 
661     //   -- If X is a non-union class type with a non-static data member
662     //      [recurse to each field] that is either of zero size or is the
663     //      first non-static data member of X
664     //   -- If X is a union type, [recurse to union members]
665     bool IsFirstField = true;
666     for (auto *FD : X->fields()) {
667       // FIXME: Should we really care about the type of the first non-static
668       // data member of a non-union if there are preceding unnamed bit-fields?
669       if (FD->isUnnamedBitfield())
670         continue;
671 
672       if (!IsFirstField && !FD->isZeroSize(Ctx))
673         continue;
674 
675       //   -- If X is n array type, [visit the element type]
676       QualType T = Ctx.getBaseElementType(FD->getType());
677       if (auto *RD = T->getAsCXXRecordDecl())
678         if (Visit(RD))
679           return true;
680 
681       if (!X->isUnion())
682         IsFirstField = false;
683     }
684   }
685 
686   return false;
687 }
688 
689 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
690   assert(isLambda() && "not a lambda");
691 
692   // C++2a [expr.prim.lambda.capture]p11:
693   //   The closure type associated with a lambda-expression has no default
694   //   constructor if the lambda-expression has a lambda-capture and a
695   //   defaulted default constructor otherwise. It has a deleted copy
696   //   assignment operator if the lambda-expression has a lambda-capture and
697   //   defaulted copy and move assignment operators otherwise.
698   //
699   // C++17 [expr.prim.lambda]p21:
700   //   The closure type associated with a lambda-expression has no default
701   //   constructor and a deleted copy assignment operator.
702   if (!isCapturelessLambda())
703     return false;
704   return getASTContext().getLangOpts().CPlusPlus20;
705 }
706 
707 void CXXRecordDecl::addedMember(Decl *D) {
708   if (!D->isImplicit() && !isa<FieldDecl>(D) && !isa<IndirectFieldDecl>(D) &&
709       (!isa<TagDecl>(D) ||
710        cast<TagDecl>(D)->getTagKind() == TagTypeKind::Class ||
711        cast<TagDecl>(D)->getTagKind() == TagTypeKind::Interface))
712     data().HasOnlyCMembers = false;
713 
714   // Ignore friends and invalid declarations.
715   if (D->getFriendObjectKind() || D->isInvalidDecl())
716     return;
717 
718   auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
719   if (FunTmpl)
720     D = FunTmpl->getTemplatedDecl();
721 
722   // FIXME: Pass NamedDecl* to addedMember?
723   Decl *DUnderlying = D;
724   if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
725     DUnderlying = ND->getUnderlyingDecl();
726     if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
727       DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
728   }
729 
730   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
731     if (Method->isVirtual()) {
732       // C++ [dcl.init.aggr]p1:
733       //   An aggregate is an array or a class with [...] no virtual functions.
734       data().Aggregate = false;
735 
736       // C++ [class]p4:
737       //   A POD-struct is an aggregate class...
738       data().PlainOldData = false;
739 
740       // C++14 [meta.unary.prop]p4:
741       //   T is a class type [...] with [...] no virtual member functions...
742       data().Empty = false;
743 
744       // C++ [class.virtual]p1:
745       //   A class that declares or inherits a virtual function is called a
746       //   polymorphic class.
747       data().Polymorphic = true;
748 
749       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
750       //   A [default constructor, copy/move constructor, or copy/move
751       //   assignment operator for a class X] is trivial [...] if:
752       //    -- class X has no virtual functions [...]
753       data().HasTrivialSpecialMembers &= SMF_Destructor;
754       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
755 
756       // C++0x [class]p7:
757       //   A standard-layout class is a class that: [...]
758       //    -- has no virtual functions
759       data().IsStandardLayout = false;
760       data().IsCXX11StandardLayout = false;
761     }
762   }
763 
764   // Notify the listener if an implicit member was added after the definition
765   // was completed.
766   if (!isBeingDefined() && D->isImplicit())
767     if (ASTMutationListener *L = getASTMutationListener())
768       L->AddedCXXImplicitMember(data().Definition, D);
769 
770   // The kind of special member this declaration is, if any.
771   unsigned SMKind = 0;
772 
773   // Handle constructors.
774   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
775     if (Constructor->isInheritingConstructor()) {
776       // Ignore constructor shadow declarations. They are lazily created and
777       // so shouldn't affect any properties of the class.
778     } else {
779       if (!Constructor->isImplicit()) {
780         // Note that we have a user-declared constructor.
781         data().UserDeclaredConstructor = true;
782 
783         const TargetInfo &TI = getASTContext().getTargetInfo();
784         if ((!Constructor->isDeleted() && !Constructor->isDefaulted()) ||
785             !TI.areDefaultedSMFStillPOD(getLangOpts())) {
786           // C++ [class]p4:
787           //   A POD-struct is an aggregate class [...]
788           // Since the POD bit is meant to be C++03 POD-ness, clear it even if
789           // the type is technically an aggregate in C++0x since it wouldn't be
790           // in 03.
791           data().PlainOldData = false;
792         }
793       }
794 
795       if (Constructor->isDefaultConstructor()) {
796         SMKind |= SMF_DefaultConstructor;
797 
798         if (Constructor->isUserProvided())
799           data().UserProvidedDefaultConstructor = true;
800         if (Constructor->isConstexpr())
801           data().HasConstexprDefaultConstructor = true;
802         if (Constructor->isDefaulted())
803           data().HasDefaultedDefaultConstructor = true;
804       }
805 
806       if (!FunTmpl) {
807         unsigned Quals;
808         if (Constructor->isCopyConstructor(Quals)) {
809           SMKind |= SMF_CopyConstructor;
810 
811           if (Quals & Qualifiers::Const)
812             data().HasDeclaredCopyConstructorWithConstParam = true;
813         } else if (Constructor->isMoveConstructor())
814           SMKind |= SMF_MoveConstructor;
815       }
816 
817       // C++11 [dcl.init.aggr]p1: DR1518
818       //   An aggregate is an array or a class with no user-provided [or]
819       //   explicit [...] constructors
820       // C++20 [dcl.init.aggr]p1:
821       //   An aggregate is an array or a class with no user-declared [...]
822       //   constructors
823       if (getASTContext().getLangOpts().CPlusPlus20
824               ? !Constructor->isImplicit()
825               : (Constructor->isUserProvided() || Constructor->isExplicit()))
826         data().Aggregate = false;
827     }
828   }
829 
830   // Handle constructors, including those inherited from base classes.
831   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
832     // Record if we see any constexpr constructors which are neither copy
833     // nor move constructors.
834     // C++1z [basic.types]p10:
835     //   [...] has at least one constexpr constructor or constructor template
836     //   (possibly inherited from a base class) that is not a copy or move
837     //   constructor [...]
838     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
839       data().HasConstexprNonCopyMoveConstructor = true;
840     if (!isa<CXXConstructorDecl>(D) && Constructor->isDefaultConstructor())
841       data().HasInheritedDefaultConstructor = true;
842   }
843 
844   // Handle member functions.
845   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
846     if (isa<CXXDestructorDecl>(D))
847       SMKind |= SMF_Destructor;
848 
849     if (Method->isCopyAssignmentOperator()) {
850       SMKind |= SMF_CopyAssignment;
851 
852       const auto *ParamTy =
853           Method->getNonObjectParameter(0)->getType()->getAs<ReferenceType>();
854       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
855         data().HasDeclaredCopyAssignmentWithConstParam = true;
856     }
857 
858     if (Method->isMoveAssignmentOperator())
859       SMKind |= SMF_MoveAssignment;
860 
861     // Keep the list of conversion functions up-to-date.
862     if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
863       // FIXME: We use the 'unsafe' accessor for the access specifier here,
864       // because Sema may not have set it yet. That's really just a misdesign
865       // in Sema. However, LLDB *will* have set the access specifier correctly,
866       // and adds declarations after the class is technically completed,
867       // so completeDefinition()'s overriding of the access specifiers doesn't
868       // work.
869       AccessSpecifier AS = Conversion->getAccessUnsafe();
870 
871       if (Conversion->getPrimaryTemplate()) {
872         // We don't record specializations.
873       } else {
874         ASTContext &Ctx = getASTContext();
875         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
876         NamedDecl *Primary =
877             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
878         if (Primary->getPreviousDecl())
879           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
880                               Primary, AS);
881         else
882           Conversions.addDecl(Ctx, Primary, AS);
883       }
884     }
885 
886     if (SMKind) {
887       // If this is the first declaration of a special member, we no longer have
888       // an implicit trivial special member.
889       data().HasTrivialSpecialMembers &=
890           data().DeclaredSpecialMembers | ~SMKind;
891       data().HasTrivialSpecialMembersForCall &=
892           data().DeclaredSpecialMembers | ~SMKind;
893 
894       // Note when we have declared a declared special member, and suppress the
895       // implicit declaration of this special member.
896       data().DeclaredSpecialMembers |= SMKind;
897       if (!Method->isImplicit()) {
898         data().UserDeclaredSpecialMembers |= SMKind;
899 
900         const TargetInfo &TI = getASTContext().getTargetInfo();
901         if ((!Method->isDeleted() && !Method->isDefaulted() &&
902              SMKind != SMF_MoveAssignment) ||
903             !TI.areDefaultedSMFStillPOD(getLangOpts())) {
904           // C++03 [class]p4:
905           //   A POD-struct is an aggregate class that has [...] no user-defined
906           //   copy assignment operator and no user-defined destructor.
907           //
908           // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
909           // aggregates could not have any constructors, clear it even for an
910           // explicitly defaulted or deleted constructor.
911           // type is technically an aggregate in C++0x since it wouldn't be in
912           // 03.
913           //
914           // Also, a user-declared move assignment operator makes a class
915           // non-POD. This is an extension in C++03.
916           data().PlainOldData = false;
917         }
918       }
919       // When instantiating a class, we delay updating the destructor and
920       // triviality properties of the class until selecting a destructor and
921       // computing the eligibility of its special member functions. This is
922       // because there might be function constraints that we need to evaluate
923       // and compare later in the instantiation.
924       if (!Method->isIneligibleOrNotSelected()) {
925         addedEligibleSpecialMemberFunction(Method, SMKind);
926       }
927     }
928 
929     return;
930   }
931 
932   // Handle non-static data members.
933   if (const auto *Field = dyn_cast<FieldDecl>(D)) {
934     ASTContext &Context = getASTContext();
935 
936     // C++2a [class]p7:
937     //   A standard-layout class is a class that:
938     //    [...]
939     //    -- has all non-static data members and bit-fields in the class and
940     //       its base classes first declared in the same class
941     if (data().HasBasesWithFields)
942       data().IsStandardLayout = false;
943 
944     // C++ [class.bit]p2:
945     //   A declaration for a bit-field that omits the identifier declares an
946     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
947     //   initialized.
948     if (Field->isUnnamedBitfield()) {
949       // C++ [meta.unary.prop]p4: [LWG2358]
950       //   T is a class type [...] with [...] no unnamed bit-fields of non-zero
951       //   length
952       if (data().Empty && !Field->isZeroLengthBitField(Context) &&
953           Context.getLangOpts().getClangABICompat() >
954               LangOptions::ClangABI::Ver6)
955         data().Empty = false;
956       return;
957     }
958 
959     // C++11 [class]p7:
960     //   A standard-layout class is a class that:
961     //    -- either has no non-static data members in the most derived class
962     //       [...] or has no base classes with non-static data members
963     if (data().HasBasesWithNonStaticDataMembers)
964       data().IsCXX11StandardLayout = false;
965 
966     // C++ [dcl.init.aggr]p1:
967     //   An aggregate is an array or a class (clause 9) with [...] no
968     //   private or protected non-static data members (clause 11).
969     //
970     // A POD must be an aggregate.
971     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
972       data().Aggregate = false;
973       data().PlainOldData = false;
974 
975       // C++20 [temp.param]p7:
976       //   A structural type is [...] a literal class type [for which] all
977       //   non-static data members are public
978       data().StructuralIfLiteral = false;
979     }
980 
981     // Track whether this is the first field. We use this when checking
982     // whether the class is standard-layout below.
983     bool IsFirstField = !data().HasPrivateFields &&
984                         !data().HasProtectedFields && !data().HasPublicFields;
985 
986     // C++0x [class]p7:
987     //   A standard-layout class is a class that:
988     //    [...]
989     //    -- has the same access control for all non-static data members,
990     switch (D->getAccess()) {
991     case AS_private:    data().HasPrivateFields = true;   break;
992     case AS_protected:  data().HasProtectedFields = true; break;
993     case AS_public:     data().HasPublicFields = true;    break;
994     case AS_none:       llvm_unreachable("Invalid access specifier");
995     };
996     if ((data().HasPrivateFields + data().HasProtectedFields +
997          data().HasPublicFields) > 1) {
998       data().IsStandardLayout = false;
999       data().IsCXX11StandardLayout = false;
1000     }
1001 
1002     // Keep track of the presence of mutable fields.
1003     if (Field->isMutable()) {
1004       data().HasMutableFields = true;
1005 
1006       // C++20 [temp.param]p7:
1007       //   A structural type is [...] a literal class type [for which] all
1008       //   non-static data members are public
1009       data().StructuralIfLiteral = false;
1010     }
1011 
1012     // C++11 [class.union]p8, DR1460:
1013     //   If X is a union, a non-static data member of X that is not an anonymous
1014     //   union is a variant member of X.
1015     if (isUnion() && !Field->isAnonymousStructOrUnion())
1016       data().HasVariantMembers = true;
1017 
1018     // C++0x [class]p9:
1019     //   A POD struct is a class that is both a trivial class and a
1020     //   standard-layout class, and has no non-static data members of type
1021     //   non-POD struct, non-POD union (or array of such types).
1022     //
1023     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
1024     // that does not explicitly have no lifetime makes the class a non-POD.
1025     QualType T = Context.getBaseElementType(Field->getType());
1026     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
1027       if (T.hasNonTrivialObjCLifetime()) {
1028         // Objective-C Automatic Reference Counting:
1029         //   If a class has a non-static data member of Objective-C pointer
1030         //   type (or array thereof), it is a non-POD type and its
1031         //   default constructor (if any), copy constructor, move constructor,
1032         //   copy assignment operator, move assignment operator, and destructor are
1033         //   non-trivial.
1034         setHasObjectMember(true);
1035         struct DefinitionData &Data = data();
1036         Data.PlainOldData = false;
1037         Data.HasTrivialSpecialMembers = 0;
1038 
1039         // __strong or __weak fields do not make special functions non-trivial
1040         // for the purpose of calls.
1041         Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
1042         if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
1043           data().HasTrivialSpecialMembersForCall = 0;
1044 
1045         // Structs with __weak fields should never be passed directly.
1046         if (LT == Qualifiers::OCL_Weak)
1047           setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs);
1048 
1049         Data.HasIrrelevantDestructor = false;
1050 
1051         if (isUnion()) {
1052           data().DefaultedCopyConstructorIsDeleted = true;
1053           data().DefaultedMoveConstructorIsDeleted = true;
1054           data().DefaultedCopyAssignmentIsDeleted = true;
1055           data().DefaultedMoveAssignmentIsDeleted = true;
1056           data().DefaultedDestructorIsDeleted = true;
1057           data().NeedOverloadResolutionForCopyConstructor = true;
1058           data().NeedOverloadResolutionForMoveConstructor = true;
1059           data().NeedOverloadResolutionForCopyAssignment = true;
1060           data().NeedOverloadResolutionForMoveAssignment = true;
1061           data().NeedOverloadResolutionForDestructor = true;
1062         }
1063       } else if (!Context.getLangOpts().ObjCAutoRefCount) {
1064         setHasObjectMember(true);
1065       }
1066     } else if (!T.isCXX98PODType(Context))
1067       data().PlainOldData = false;
1068 
1069     if (T->isReferenceType()) {
1070       if (!Field->hasInClassInitializer())
1071         data().HasUninitializedReferenceMember = true;
1072 
1073       // C++0x [class]p7:
1074       //   A standard-layout class is a class that:
1075       //    -- has no non-static data members of type [...] reference,
1076       data().IsStandardLayout = false;
1077       data().IsCXX11StandardLayout = false;
1078 
1079       // C++1z [class.copy.ctor]p10:
1080       //   A defaulted copy constructor for a class X is defined as deleted if X has:
1081       //    -- a non-static data member of rvalue reference type
1082       if (T->isRValueReferenceType())
1083         data().DefaultedCopyConstructorIsDeleted = true;
1084     }
1085 
1086     if (!Field->hasInClassInitializer() && !Field->isMutable()) {
1087       if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
1088         if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
1089           data().HasUninitializedFields = true;
1090       } else {
1091         data().HasUninitializedFields = true;
1092       }
1093     }
1094 
1095     // Record if this field is the first non-literal or volatile field or base.
1096     if (!T->isLiteralType(Context) || T.isVolatileQualified())
1097       data().HasNonLiteralTypeFieldsOrBases = true;
1098 
1099     if (Field->hasInClassInitializer() ||
1100         (Field->isAnonymousStructOrUnion() &&
1101          Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
1102       data().HasInClassInitializer = true;
1103 
1104       // C++11 [class]p5:
1105       //   A default constructor is trivial if [...] no non-static data member
1106       //   of its class has a brace-or-equal-initializer.
1107       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1108 
1109       // C++11 [dcl.init.aggr]p1:
1110       //   An aggregate is a [...] class with [...] no
1111       //   brace-or-equal-initializers for non-static data members.
1112       //
1113       // This rule was removed in C++14.
1114       if (!getASTContext().getLangOpts().CPlusPlus14)
1115         data().Aggregate = false;
1116 
1117       // C++11 [class]p10:
1118       //   A POD struct is [...] a trivial class.
1119       data().PlainOldData = false;
1120     }
1121 
1122     // C++11 [class.copy]p23:
1123     //   A defaulted copy/move assignment operator for a class X is defined
1124     //   as deleted if X has:
1125     //    -- a non-static data member of reference type
1126     if (T->isReferenceType()) {
1127       data().DefaultedCopyAssignmentIsDeleted = true;
1128       data().DefaultedMoveAssignmentIsDeleted = true;
1129     }
1130 
1131     // Bitfields of length 0 are also zero-sized, but we already bailed out for
1132     // those because they are always unnamed.
1133     bool IsZeroSize = Field->isZeroSize(Context);
1134 
1135     if (const auto *RecordTy = T->getAs<RecordType>()) {
1136       auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
1137       if (FieldRec->getDefinition()) {
1138         addedClassSubobject(FieldRec);
1139 
1140         // We may need to perform overload resolution to determine whether a
1141         // field can be moved if it's const or volatile qualified.
1142         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
1143           // We need to care about 'const' for the copy constructor because an
1144           // implicit copy constructor might be declared with a non-const
1145           // parameter.
1146           data().NeedOverloadResolutionForCopyConstructor = true;
1147           data().NeedOverloadResolutionForMoveConstructor = true;
1148           data().NeedOverloadResolutionForCopyAssignment = true;
1149           data().NeedOverloadResolutionForMoveAssignment = true;
1150         }
1151 
1152         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
1153         //   A defaulted [special member] for a class X is defined as
1154         //   deleted if:
1155         //    -- X is a union-like class that has a variant member with a
1156         //       non-trivial [corresponding special member]
1157         if (isUnion()) {
1158           if (FieldRec->hasNonTrivialCopyConstructor())
1159             data().DefaultedCopyConstructorIsDeleted = true;
1160           if (FieldRec->hasNonTrivialMoveConstructor())
1161             data().DefaultedMoveConstructorIsDeleted = true;
1162           if (FieldRec->hasNonTrivialCopyAssignment())
1163             data().DefaultedCopyAssignmentIsDeleted = true;
1164           if (FieldRec->hasNonTrivialMoveAssignment())
1165             data().DefaultedMoveAssignmentIsDeleted = true;
1166           if (FieldRec->hasNonTrivialDestructor())
1167             data().DefaultedDestructorIsDeleted = true;
1168         }
1169 
1170         // For an anonymous union member, our overload resolution will perform
1171         // overload resolution for its members.
1172         if (Field->isAnonymousStructOrUnion()) {
1173           data().NeedOverloadResolutionForCopyConstructor |=
1174               FieldRec->data().NeedOverloadResolutionForCopyConstructor;
1175           data().NeedOverloadResolutionForMoveConstructor |=
1176               FieldRec->data().NeedOverloadResolutionForMoveConstructor;
1177           data().NeedOverloadResolutionForCopyAssignment |=
1178               FieldRec->data().NeedOverloadResolutionForCopyAssignment;
1179           data().NeedOverloadResolutionForMoveAssignment |=
1180               FieldRec->data().NeedOverloadResolutionForMoveAssignment;
1181           data().NeedOverloadResolutionForDestructor |=
1182               FieldRec->data().NeedOverloadResolutionForDestructor;
1183         }
1184 
1185         // C++0x [class.ctor]p5:
1186         //   A default constructor is trivial [...] if:
1187         //    -- for all the non-static data members of its class that are of
1188         //       class type (or array thereof), each such class has a trivial
1189         //       default constructor.
1190         if (!FieldRec->hasTrivialDefaultConstructor())
1191           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1192 
1193         // C++0x [class.copy]p13:
1194         //   A copy/move constructor for class X is trivial if [...]
1195         //    [...]
1196         //    -- for each non-static data member of X that is of class type (or
1197         //       an array thereof), the constructor selected to copy/move that
1198         //       member is trivial;
1199         if (!FieldRec->hasTrivialCopyConstructor())
1200           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
1201 
1202         if (!FieldRec->hasTrivialCopyConstructorForCall())
1203           data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
1204 
1205         // If the field doesn't have a simple move constructor, we'll eagerly
1206         // declare the move constructor for this class and we'll decide whether
1207         // it's trivial then.
1208         if (!FieldRec->hasTrivialMoveConstructor())
1209           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
1210 
1211         if (!FieldRec->hasTrivialMoveConstructorForCall())
1212           data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
1213 
1214         // C++0x [class.copy]p27:
1215         //   A copy/move assignment operator for class X is trivial if [...]
1216         //    [...]
1217         //    -- for each non-static data member of X that is of class type (or
1218         //       an array thereof), the assignment operator selected to
1219         //       copy/move that member is trivial;
1220         if (!FieldRec->hasTrivialCopyAssignment())
1221           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
1222         // If the field doesn't have a simple move assignment, we'll eagerly
1223         // declare the move assignment for this class and we'll decide whether
1224         // it's trivial then.
1225         if (!FieldRec->hasTrivialMoveAssignment())
1226           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
1227 
1228         if (!FieldRec->hasTrivialDestructor())
1229           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1230         if (!FieldRec->hasTrivialDestructorForCall())
1231           data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1232         if (!FieldRec->hasIrrelevantDestructor())
1233           data().HasIrrelevantDestructor = false;
1234         if (FieldRec->isAnyDestructorNoReturn())
1235           data().IsAnyDestructorNoReturn = true;
1236         if (FieldRec->hasObjectMember())
1237           setHasObjectMember(true);
1238         if (FieldRec->hasVolatileMember())
1239           setHasVolatileMember(true);
1240         if (FieldRec->getArgPassingRestrictions() ==
1241             RecordArgPassingKind::CanNeverPassInRegs)
1242           setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs);
1243 
1244         // C++0x [class]p7:
1245         //   A standard-layout class is a class that:
1246         //    -- has no non-static data members of type non-standard-layout
1247         //       class (or array of such types) [...]
1248         if (!FieldRec->isStandardLayout())
1249           data().IsStandardLayout = false;
1250         if (!FieldRec->isCXX11StandardLayout())
1251           data().IsCXX11StandardLayout = false;
1252 
1253         // C++2a [class]p7:
1254         //   A standard-layout class is a class that:
1255         //    [...]
1256         //    -- has no element of the set M(S) of types as a base class.
1257         if (data().IsStandardLayout &&
1258             (isUnion() || IsFirstField || IsZeroSize) &&
1259             hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
1260           data().IsStandardLayout = false;
1261 
1262         // C++11 [class]p7:
1263         //   A standard-layout class is a class that:
1264         //    -- has no base classes of the same type as the first non-static
1265         //       data member
1266         if (data().IsCXX11StandardLayout && IsFirstField) {
1267           // FIXME: We should check all base classes here, not just direct
1268           // base classes.
1269           for (const auto &BI : bases()) {
1270             if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
1271               data().IsCXX11StandardLayout = false;
1272               break;
1273             }
1274           }
1275         }
1276 
1277         // Keep track of the presence of mutable fields.
1278         if (FieldRec->hasMutableFields())
1279           data().HasMutableFields = true;
1280 
1281         if (Field->isMutable()) {
1282           // Our copy constructor/assignment might call something other than
1283           // the subobject's copy constructor/assignment if it's mutable and of
1284           // class type.
1285           data().NeedOverloadResolutionForCopyConstructor = true;
1286           data().NeedOverloadResolutionForCopyAssignment = true;
1287         }
1288 
1289         // C++11 [class.copy]p13:
1290         //   If the implicitly-defined constructor would satisfy the
1291         //   requirements of a constexpr constructor, the implicitly-defined
1292         //   constructor is constexpr.
1293         // C++11 [dcl.constexpr]p4:
1294         //    -- every constructor involved in initializing non-static data
1295         //       members [...] shall be a constexpr constructor
1296         if (!Field->hasInClassInitializer() &&
1297             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
1298           // The standard requires any in-class initializer to be a constant
1299           // expression. We consider this to be a defect.
1300           data().DefaultedDefaultConstructorIsConstexpr = false;
1301 
1302         // C++11 [class.copy]p8:
1303         //   The implicitly-declared copy constructor for a class X will have
1304         //   the form 'X::X(const X&)' if each potentially constructed subobject
1305         //   of a class type M (or array thereof) has a copy constructor whose
1306         //   first parameter is of type 'const M&' or 'const volatile M&'.
1307         if (!FieldRec->hasCopyConstructorWithConstParam())
1308           data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
1309 
1310         // C++11 [class.copy]p18:
1311         //   The implicitly-declared copy assignment oeprator for a class X will
1312         //   have the form 'X& X::operator=(const X&)' if [...] for all the
1313         //   non-static data members of X that are of a class type M (or array
1314         //   thereof), each such class type has a copy assignment operator whose
1315         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
1316         if (!FieldRec->hasCopyAssignmentWithConstParam())
1317           data().ImplicitCopyAssignmentHasConstParam = false;
1318 
1319         if (FieldRec->hasUninitializedReferenceMember() &&
1320             !Field->hasInClassInitializer())
1321           data().HasUninitializedReferenceMember = true;
1322 
1323         // C++11 [class.union]p8, DR1460:
1324         //   a non-static data member of an anonymous union that is a member of
1325         //   X is also a variant member of X.
1326         if (FieldRec->hasVariantMembers() &&
1327             Field->isAnonymousStructOrUnion())
1328           data().HasVariantMembers = true;
1329       }
1330     } else {
1331       // Base element type of field is a non-class type.
1332       if (!T->isLiteralType(Context) ||
1333           (!Field->hasInClassInitializer() && !isUnion() &&
1334            !Context.getLangOpts().CPlusPlus20))
1335         data().DefaultedDefaultConstructorIsConstexpr = false;
1336 
1337       // C++11 [class.copy]p23:
1338       //   A defaulted copy/move assignment operator for a class X is defined
1339       //   as deleted if X has:
1340       //    -- a non-static data member of const non-class type (or array
1341       //       thereof)
1342       if (T.isConstQualified()) {
1343         data().DefaultedCopyAssignmentIsDeleted = true;
1344         data().DefaultedMoveAssignmentIsDeleted = true;
1345       }
1346 
1347       // C++20 [temp.param]p7:
1348       //   A structural type is [...] a literal class type [for which] the
1349       //   types of all non-static data members are structural types or
1350       //   (possibly multidimensional) array thereof
1351       // We deal with class types elsewhere.
1352       if (!T->isStructuralType())
1353         data().StructuralIfLiteral = false;
1354     }
1355 
1356     // C++14 [meta.unary.prop]p4:
1357     //   T is a class type [...] with [...] no non-static data members other
1358     //   than subobjects of zero size
1359     if (data().Empty && !IsZeroSize)
1360       data().Empty = false;
1361   }
1362 
1363   // Handle using declarations of conversion functions.
1364   if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
1365     if (Shadow->getDeclName().getNameKind()
1366           == DeclarationName::CXXConversionFunctionName) {
1367       ASTContext &Ctx = getASTContext();
1368       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
1369     }
1370   }
1371 
1372   if (const auto *Using = dyn_cast<UsingDecl>(D)) {
1373     if (Using->getDeclName().getNameKind() ==
1374         DeclarationName::CXXConstructorName) {
1375       data().HasInheritedConstructor = true;
1376       // C++1z [dcl.init.aggr]p1:
1377       //  An aggregate is [...] a class [...] with no inherited constructors
1378       data().Aggregate = false;
1379     }
1380 
1381     if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
1382       data().HasInheritedAssignment = true;
1383   }
1384 }
1385 
1386 void CXXRecordDecl::addedSelectedDestructor(CXXDestructorDecl *DD) {
1387   DD->setIneligibleOrNotSelected(false);
1388   addedEligibleSpecialMemberFunction(DD, SMF_Destructor);
1389 }
1390 
1391 void CXXRecordDecl::addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD,
1392                                                        unsigned SMKind) {
1393   // FIXME: We shouldn't change DeclaredNonTrivialSpecialMembers if `MD` is
1394   // a function template, but this needs CWG attention before we break ABI.
1395   // See https://github.com/llvm/llvm-project/issues/59206
1396 
1397   if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1398     if (DD->isUserProvided())
1399       data().HasIrrelevantDestructor = false;
1400     // If the destructor is explicitly defaulted and not trivial or not public
1401     // or if the destructor is deleted, we clear HasIrrelevantDestructor in
1402     // finishedDefaultedOrDeletedMember.
1403 
1404     // C++11 [class.dtor]p5:
1405     //   A destructor is trivial if [...] the destructor is not virtual.
1406     if (DD->isVirtual()) {
1407       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1408       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1409     }
1410 
1411     if (DD->isNoReturn())
1412       data().IsAnyDestructorNoReturn = true;
1413   }
1414 
1415   if (!MD->isImplicit() && !MD->isUserProvided()) {
1416     // This method is user-declared but not user-provided. We can't work
1417     // out whether it's trivial yet (not until we get to the end of the
1418     // class). We'll handle this method in
1419     // finishedDefaultedOrDeletedMember.
1420   } else if (MD->isTrivial()) {
1421     data().HasTrivialSpecialMembers |= SMKind;
1422     data().HasTrivialSpecialMembersForCall |= SMKind;
1423   } else if (MD->isTrivialForCall()) {
1424     data().HasTrivialSpecialMembersForCall |= SMKind;
1425     data().DeclaredNonTrivialSpecialMembers |= SMKind;
1426   } else {
1427     data().DeclaredNonTrivialSpecialMembers |= SMKind;
1428     // If this is a user-provided function, do not set
1429     // DeclaredNonTrivialSpecialMembersForCall here since we don't know
1430     // yet whether the method would be considered non-trivial for the
1431     // purpose of calls (attribute "trivial_abi" can be dropped from the
1432     // class later, which can change the special method's triviality).
1433     if (!MD->isUserProvided())
1434       data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1435   }
1436 }
1437 
1438 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
1439   assert(!D->isImplicit() && !D->isUserProvided());
1440 
1441   // The kind of special member this declaration is, if any.
1442   unsigned SMKind = 0;
1443 
1444   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1445     if (Constructor->isDefaultConstructor()) {
1446       SMKind |= SMF_DefaultConstructor;
1447       if (Constructor->isConstexpr())
1448         data().HasConstexprDefaultConstructor = true;
1449     }
1450     if (Constructor->isCopyConstructor())
1451       SMKind |= SMF_CopyConstructor;
1452     else if (Constructor->isMoveConstructor())
1453       SMKind |= SMF_MoveConstructor;
1454     else if (Constructor->isConstexpr())
1455       // We may now know that the constructor is constexpr.
1456       data().HasConstexprNonCopyMoveConstructor = true;
1457   } else if (isa<CXXDestructorDecl>(D)) {
1458     SMKind |= SMF_Destructor;
1459     if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1460       data().HasIrrelevantDestructor = false;
1461   } else if (D->isCopyAssignmentOperator())
1462     SMKind |= SMF_CopyAssignment;
1463   else if (D->isMoveAssignmentOperator())
1464     SMKind |= SMF_MoveAssignment;
1465 
1466   // Update which trivial / non-trivial special members we have.
1467   // addedMember will have skipped this step for this member.
1468   if (!D->isIneligibleOrNotSelected()) {
1469     if (D->isTrivial())
1470       data().HasTrivialSpecialMembers |= SMKind;
1471     else
1472       data().DeclaredNonTrivialSpecialMembers |= SMKind;
1473   }
1474 }
1475 
1476 void CXXRecordDecl::LambdaDefinitionData::AddCaptureList(ASTContext &Ctx,
1477                                                          Capture *CaptureList) {
1478   Captures.push_back(CaptureList);
1479   if (Captures.size() == 2) {
1480     // The TinyPtrVector member now needs destruction.
1481     Ctx.addDestruction(&Captures);
1482   }
1483 }
1484 
1485 void CXXRecordDecl::setCaptures(ASTContext &Context,
1486                                 ArrayRef<LambdaCapture> Captures) {
1487   CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData();
1488 
1489   // Copy captures.
1490   Data.NumCaptures = Captures.size();
1491   Data.NumExplicitCaptures = 0;
1492   auto *ToCapture = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) *
1493                                                       Captures.size());
1494   Data.AddCaptureList(Context, ToCapture);
1495   for (unsigned I = 0, N = Captures.size(); I != N; ++I) {
1496     if (Captures[I].isExplicit())
1497       ++Data.NumExplicitCaptures;
1498 
1499     new (ToCapture) LambdaCapture(Captures[I]);
1500     ToCapture++;
1501   }
1502 
1503   if (!lambdaIsDefaultConstructibleAndAssignable())
1504     Data.DefaultedCopyAssignmentIsDeleted = true;
1505 }
1506 
1507 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
1508   unsigned SMKind = 0;
1509 
1510   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1511     if (Constructor->isCopyConstructor())
1512       SMKind = SMF_CopyConstructor;
1513     else if (Constructor->isMoveConstructor())
1514       SMKind = SMF_MoveConstructor;
1515   } else if (isa<CXXDestructorDecl>(D))
1516     SMKind = SMF_Destructor;
1517 
1518   if (D->isTrivialForCall())
1519     data().HasTrivialSpecialMembersForCall |= SMKind;
1520   else
1521     data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1522 }
1523 
1524 bool CXXRecordDecl::isCLike() const {
1525   if (getTagKind() == TagTypeKind::Class ||
1526       getTagKind() == TagTypeKind::Interface ||
1527       !TemplateOrInstantiation.isNull())
1528     return false;
1529   if (!hasDefinition())
1530     return true;
1531 
1532   return isPOD() && data().HasOnlyCMembers;
1533 }
1534 
1535 bool CXXRecordDecl::isGenericLambda() const {
1536   if (!isLambda()) return false;
1537   return getLambdaData().IsGenericLambda;
1538 }
1539 
1540 #ifndef NDEBUG
1541 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
1542   for (auto *D : R)
1543     if (!declaresSameEntity(D, R.front()))
1544       return false;
1545   return true;
1546 }
1547 #endif
1548 
1549 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) {
1550   if (!RD.isLambda()) return nullptr;
1551   DeclarationName Name =
1552     RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1553   DeclContext::lookup_result Calls = RD.lookup(Name);
1554 
1555   assert(!Calls.empty() && "Missing lambda call operator!");
1556   assert(allLookupResultsAreTheSame(Calls) &&
1557          "More than one lambda call operator!");
1558   return Calls.front();
1559 }
1560 
1561 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const {
1562   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1563   return  dyn_cast_or_null<FunctionTemplateDecl>(CallOp);
1564 }
1565 
1566 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const {
1567   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1568 
1569   if (CallOp == nullptr)
1570     return nullptr;
1571 
1572   if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
1573     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1574 
1575   return cast<CXXMethodDecl>(CallOp);
1576 }
1577 
1578 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1579   CXXMethodDecl *CallOp = getLambdaCallOperator();
1580   CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv();
1581   return getLambdaStaticInvoker(CC);
1582 }
1583 
1584 static DeclContext::lookup_result
1585 getLambdaStaticInvokers(const CXXRecordDecl &RD) {
1586   assert(RD.isLambda() && "Must be a lambda");
1587   DeclarationName Name =
1588       &RD.getASTContext().Idents.get(getLambdaStaticInvokerName());
1589   return RD.lookup(Name);
1590 }
1591 
1592 static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) {
1593   if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND))
1594     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1595   return cast<CXXMethodDecl>(ND);
1596 }
1597 
1598 CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const {
1599   if (!isLambda())
1600     return nullptr;
1601   DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this);
1602 
1603   for (NamedDecl *ND : Invoker) {
1604     const auto *FTy =
1605         cast<ValueDecl>(ND->getAsFunction())->getType()->castAs<FunctionType>();
1606     if (FTy->getCallConv() == CC)
1607       return getInvokerAsMethod(ND);
1608   }
1609 
1610   return nullptr;
1611 }
1612 
1613 void CXXRecordDecl::getCaptureFields(
1614     llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures,
1615     FieldDecl *&ThisCapture) const {
1616   Captures.clear();
1617   ThisCapture = nullptr;
1618 
1619   LambdaDefinitionData &Lambda = getLambdaData();
1620   for (const LambdaCapture *List : Lambda.Captures) {
1621     RecordDecl::field_iterator Field = field_begin();
1622     for (const LambdaCapture *C = List, *CEnd = C + Lambda.NumCaptures;
1623          C != CEnd; ++C, ++Field) {
1624       if (C->capturesThis())
1625         ThisCapture = *Field;
1626       else if (C->capturesVariable())
1627         Captures[C->getCapturedVar()] = *Field;
1628     }
1629     assert(Field == field_end());
1630   }
1631 }
1632 
1633 TemplateParameterList *
1634 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1635   if (!isGenericLambda()) return nullptr;
1636   CXXMethodDecl *CallOp = getLambdaCallOperator();
1637   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1638     return Tmpl->getTemplateParameters();
1639   return nullptr;
1640 }
1641 
1642 ArrayRef<NamedDecl *>
1643 CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
1644   TemplateParameterList *List = getGenericLambdaTemplateParameterList();
1645   if (!List)
1646     return {};
1647 
1648   assert(std::is_partitioned(List->begin(), List->end(),
1649                              [](const NamedDecl *D) { return !D->isImplicit(); })
1650          && "Explicit template params should be ordered before implicit ones");
1651 
1652   const auto ExplicitEnd = llvm::partition_point(
1653       *List, [](const NamedDecl *D) { return !D->isImplicit(); });
1654   return llvm::ArrayRef(List->begin(), ExplicitEnd);
1655 }
1656 
1657 Decl *CXXRecordDecl::getLambdaContextDecl() const {
1658   assert(isLambda() && "Not a lambda closure type!");
1659   ExternalASTSource *Source = getParentASTContext().getExternalSource();
1660   return getLambdaData().ContextDecl.get(Source);
1661 }
1662 
1663 void CXXRecordDecl::setLambdaNumbering(LambdaNumbering Numbering) {
1664   assert(isLambda() && "Not a lambda closure type!");
1665   getLambdaData().ManglingNumber = Numbering.ManglingNumber;
1666   if (Numbering.DeviceManglingNumber)
1667     getASTContext().DeviceLambdaManglingNumbers[this] =
1668         Numbering.DeviceManglingNumber;
1669   getLambdaData().IndexInContext = Numbering.IndexInContext;
1670   getLambdaData().ContextDecl = Numbering.ContextDecl;
1671   getLambdaData().HasKnownInternalLinkage = Numbering.HasKnownInternalLinkage;
1672 }
1673 
1674 unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const {
1675   assert(isLambda() && "Not a lambda closure type!");
1676   return getASTContext().DeviceLambdaManglingNumbers.lookup(this);
1677 }
1678 
1679 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1680   QualType T =
1681       cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1682           ->getConversionType();
1683   return Context.getCanonicalType(T);
1684 }
1685 
1686 /// Collect the visible conversions of a base class.
1687 ///
1688 /// \param Record a base class of the class we're considering
1689 /// \param InVirtual whether this base class is a virtual base (or a base
1690 ///   of a virtual base)
1691 /// \param Access the access along the inheritance path to this base
1692 /// \param ParentHiddenTypes the conversions provided by the inheritors
1693 ///   of this base
1694 /// \param Output the set to which to add conversions from non-virtual bases
1695 /// \param VOutput the set to which to add conversions from virtual bases
1696 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1697 ///   virtual base along some inheritance path
1698 static void CollectVisibleConversions(
1699     ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual,
1700     AccessSpecifier Access,
1701     const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1702     ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput,
1703     llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) {
1704   // The set of types which have conversions in this class or its
1705   // subclasses.  As an optimization, we don't copy the derived set
1706   // unless it might change.
1707   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1708   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1709 
1710   // Collect the direct conversions and figure out which conversions
1711   // will be hidden in the subclasses.
1712   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1713   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1714   if (ConvI != ConvE) {
1715     HiddenTypesBuffer = ParentHiddenTypes;
1716     HiddenTypes = &HiddenTypesBuffer;
1717 
1718     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1719       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1720       bool Hidden = ParentHiddenTypes.count(ConvType);
1721       if (!Hidden)
1722         HiddenTypesBuffer.insert(ConvType);
1723 
1724       // If this conversion is hidden and we're in a virtual base,
1725       // remember that it's hidden along some inheritance path.
1726       if (Hidden && InVirtual)
1727         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1728 
1729       // If this conversion isn't hidden, add it to the appropriate output.
1730       else if (!Hidden) {
1731         AccessSpecifier IAccess
1732           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1733 
1734         if (InVirtual)
1735           VOutput.addDecl(I.getDecl(), IAccess);
1736         else
1737           Output.addDecl(Context, I.getDecl(), IAccess);
1738       }
1739     }
1740   }
1741 
1742   // Collect information recursively from any base classes.
1743   for (const auto &I : Record->bases()) {
1744     const auto *RT = I.getType()->getAs<RecordType>();
1745     if (!RT) continue;
1746 
1747     AccessSpecifier BaseAccess
1748       = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1749     bool BaseInVirtual = InVirtual || I.isVirtual();
1750 
1751     auto *Base = cast<CXXRecordDecl>(RT->getDecl());
1752     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1753                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1754   }
1755 }
1756 
1757 /// Collect the visible conversions of a class.
1758 ///
1759 /// This would be extremely straightforward if it weren't for virtual
1760 /// bases.  It might be worth special-casing that, really.
1761 static void CollectVisibleConversions(ASTContext &Context,
1762                                       const CXXRecordDecl *Record,
1763                                       ASTUnresolvedSet &Output) {
1764   // The collection of all conversions in virtual bases that we've
1765   // found.  These will be added to the output as long as they don't
1766   // appear in the hidden-conversions set.
1767   UnresolvedSet<8> VBaseCs;
1768 
1769   // The set of conversions in virtual bases that we've determined to
1770   // be hidden.
1771   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1772 
1773   // The set of types hidden by classes derived from this one.
1774   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1775 
1776   // Go ahead and collect the direct conversions and add them to the
1777   // hidden-types set.
1778   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1779   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1780   Output.append(Context, ConvI, ConvE);
1781   for (; ConvI != ConvE; ++ConvI)
1782     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1783 
1784   // Recursively collect conversions from base classes.
1785   for (const auto &I : Record->bases()) {
1786     const auto *RT = I.getType()->getAs<RecordType>();
1787     if (!RT) continue;
1788 
1789     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1790                               I.isVirtual(), I.getAccessSpecifier(),
1791                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1792   }
1793 
1794   // Add any unhidden conversions provided by virtual bases.
1795   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1796          I != E; ++I) {
1797     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1798       Output.addDecl(Context, I.getDecl(), I.getAccess());
1799   }
1800 }
1801 
1802 /// getVisibleConversionFunctions - get all conversion functions visible
1803 /// in current class; including conversion function templates.
1804 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
1805 CXXRecordDecl::getVisibleConversionFunctions() const {
1806   ASTContext &Ctx = getASTContext();
1807 
1808   ASTUnresolvedSet *Set;
1809   if (bases_begin() == bases_end()) {
1810     // If root class, all conversions are visible.
1811     Set = &data().Conversions.get(Ctx);
1812   } else {
1813     Set = &data().VisibleConversions.get(Ctx);
1814     // If visible conversion list is not evaluated, evaluate it.
1815     if (!data().ComputedVisibleConversions) {
1816       CollectVisibleConversions(Ctx, this, *Set);
1817       data().ComputedVisibleConversions = true;
1818     }
1819   }
1820   return llvm::make_range(Set->begin(), Set->end());
1821 }
1822 
1823 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1824   // This operation is O(N) but extremely rare.  Sema only uses it to
1825   // remove UsingShadowDecls in a class that were followed by a direct
1826   // declaration, e.g.:
1827   //   class A : B {
1828   //     using B::operator int;
1829   //     operator int();
1830   //   };
1831   // This is uncommon by itself and even more uncommon in conjunction
1832   // with sufficiently large numbers of directly-declared conversions
1833   // that asymptotic behavior matters.
1834 
1835   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1836   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1837     if (Convs[I].getDecl() == ConvDecl) {
1838       Convs.erase(I);
1839       assert(!llvm::is_contained(Convs, ConvDecl) &&
1840              "conversion was found multiple times in unresolved set");
1841       return;
1842     }
1843   }
1844 
1845   llvm_unreachable("conversion not found in set!");
1846 }
1847 
1848 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1849   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1850     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1851 
1852   return nullptr;
1853 }
1854 
1855 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1856   return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1857 }
1858 
1859 void
1860 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1861                                              TemplateSpecializationKind TSK) {
1862   assert(TemplateOrInstantiation.isNull() &&
1863          "Previous template or instantiation?");
1864   assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1865   TemplateOrInstantiation
1866     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1867 }
1868 
1869 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1870   return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1871 }
1872 
1873 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1874   TemplateOrInstantiation = Template;
1875 }
1876 
1877 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1878   if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
1879     return Spec->getSpecializationKind();
1880 
1881   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1882     return MSInfo->getTemplateSpecializationKind();
1883 
1884   return TSK_Undeclared;
1885 }
1886 
1887 void
1888 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1889   if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1890     Spec->setSpecializationKind(TSK);
1891     return;
1892   }
1893 
1894   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1895     MSInfo->setTemplateSpecializationKind(TSK);
1896     return;
1897   }
1898 
1899   llvm_unreachable("Not a class template or member class specialization");
1900 }
1901 
1902 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1903   auto GetDefinitionOrSelf =
1904       [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
1905     if (auto *Def = D->getDefinition())
1906       return Def;
1907     return D;
1908   };
1909 
1910   // If it's a class template specialization, find the template or partial
1911   // specialization from which it was instantiated.
1912   if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1913     auto From = TD->getInstantiatedFrom();
1914     if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1915       while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1916         if (NewCTD->isMemberSpecialization())
1917           break;
1918         CTD = NewCTD;
1919       }
1920       return GetDefinitionOrSelf(CTD->getTemplatedDecl());
1921     }
1922     if (auto *CTPSD =
1923             From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1924       while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1925         if (NewCTPSD->isMemberSpecialization())
1926           break;
1927         CTPSD = NewCTPSD;
1928       }
1929       return GetDefinitionOrSelf(CTPSD);
1930     }
1931   }
1932 
1933   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1934     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1935       const CXXRecordDecl *RD = this;
1936       while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1937         RD = NewRD;
1938       return GetDefinitionOrSelf(RD);
1939     }
1940   }
1941 
1942   assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1943          "couldn't find pattern for class template instantiation");
1944   return nullptr;
1945 }
1946 
1947 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1948   ASTContext &Context = getASTContext();
1949   QualType ClassType = Context.getTypeDeclType(this);
1950 
1951   DeclarationName Name
1952     = Context.DeclarationNames.getCXXDestructorName(
1953                                           Context.getCanonicalType(ClassType));
1954 
1955   DeclContext::lookup_result R = lookup(Name);
1956 
1957   // If a destructor was marked as not selected, we skip it. We don't always
1958   // have a selected destructor: dependent types, unnamed structs.
1959   for (auto *Decl : R) {
1960     auto* DD = dyn_cast<CXXDestructorDecl>(Decl);
1961     if (DD && !DD->isIneligibleOrNotSelected())
1962       return DD;
1963   }
1964   return nullptr;
1965 }
1966 
1967 static bool isDeclContextInNamespace(const DeclContext *DC) {
1968   while (!DC->isTranslationUnit()) {
1969     if (DC->isNamespace())
1970       return true;
1971     DC = DC->getParent();
1972   }
1973   return false;
1974 }
1975 
1976 bool CXXRecordDecl::isInterfaceLike() const {
1977   assert(hasDefinition() && "checking for interface-like without a definition");
1978   // All __interfaces are inheritently interface-like.
1979   if (isInterface())
1980     return true;
1981 
1982   // Interface-like types cannot have a user declared constructor, destructor,
1983   // friends, VBases, conversion functions, or fields.  Additionally, lambdas
1984   // cannot be interface types.
1985   if (isLambda() || hasUserDeclaredConstructor() ||
1986       hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
1987       getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
1988     return false;
1989 
1990   // No interface-like type can have a method with a definition.
1991   for (const auto *const Method : methods())
1992     if (Method->isDefined() && !Method->isImplicit())
1993       return false;
1994 
1995   // Check "Special" types.
1996   const auto *Uuid = getAttr<UuidAttr>();
1997   // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
1998   // extern C++ block directly in the TU.  These are only valid if in one
1999   // of these two situations.
2000   if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
2001       !isDeclContextInNamespace(getDeclContext()) &&
2002       ((getName() == "IUnknown" &&
2003         Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
2004        (getName() == "IDispatch" &&
2005         Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
2006     if (getNumBases() > 0)
2007       return false;
2008     return true;
2009   }
2010 
2011   // FIXME: Any access specifiers is supposed to make this no longer interface
2012   // like.
2013 
2014   // If this isn't a 'special' type, it must have a single interface-like base.
2015   if (getNumBases() != 1)
2016     return false;
2017 
2018   const auto BaseSpec = *bases_begin();
2019   if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
2020     return false;
2021   const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
2022   if (Base->isInterface() || !Base->isInterfaceLike())
2023     return false;
2024   return true;
2025 }
2026 
2027 void CXXRecordDecl::completeDefinition() {
2028   completeDefinition(nullptr);
2029 }
2030 
2031 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
2032   RecordDecl::completeDefinition();
2033 
2034   // If the class may be abstract (but hasn't been marked as such), check for
2035   // any pure final overriders.
2036   if (mayBeAbstract()) {
2037     CXXFinalOverriderMap MyFinalOverriders;
2038     if (!FinalOverriders) {
2039       getFinalOverriders(MyFinalOverriders);
2040       FinalOverriders = &MyFinalOverriders;
2041     }
2042 
2043     bool Done = false;
2044     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
2045                                      MEnd = FinalOverriders->end();
2046          M != MEnd && !Done; ++M) {
2047       for (OverridingMethods::iterator SO = M->second.begin(),
2048                                     SOEnd = M->second.end();
2049            SO != SOEnd && !Done; ++SO) {
2050         assert(SO->second.size() > 0 &&
2051                "All virtual functions have overriding virtual functions");
2052 
2053         // C++ [class.abstract]p4:
2054         //   A class is abstract if it contains or inherits at least one
2055         //   pure virtual function for which the final overrider is pure
2056         //   virtual.
2057         if (SO->second.front().Method->isPure()) {
2058           data().Abstract = true;
2059           Done = true;
2060           break;
2061         }
2062       }
2063     }
2064   }
2065 
2066   // Set access bits correctly on the directly-declared conversions.
2067   for (conversion_iterator I = conversion_begin(), E = conversion_end();
2068        I != E; ++I)
2069     I.setAccess((*I)->getAccess());
2070 }
2071 
2072 bool CXXRecordDecl::mayBeAbstract() const {
2073   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
2074       isDependentContext())
2075     return false;
2076 
2077   for (const auto &B : bases()) {
2078     const auto *BaseDecl =
2079         cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
2080     if (BaseDecl->isAbstract())
2081       return true;
2082   }
2083 
2084   return false;
2085 }
2086 
2087 bool CXXRecordDecl::isEffectivelyFinal() const {
2088   auto *Def = getDefinition();
2089   if (!Def)
2090     return false;
2091   if (Def->hasAttr<FinalAttr>())
2092     return true;
2093   if (const auto *Dtor = Def->getDestructor())
2094     if (Dtor->hasAttr<FinalAttr>())
2095       return true;
2096   return false;
2097 }
2098 
2099 void CXXDeductionGuideDecl::anchor() {}
2100 
2101 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const {
2102   if ((getKind() != Other.getKind() ||
2103        getKind() == ExplicitSpecKind::Unresolved)) {
2104     if (getKind() == ExplicitSpecKind::Unresolved &&
2105         Other.getKind() == ExplicitSpecKind::Unresolved) {
2106       ODRHash SelfHash, OtherHash;
2107       SelfHash.AddStmt(getExpr());
2108       OtherHash.AddStmt(Other.getExpr());
2109       return SelfHash.CalculateHash() == OtherHash.CalculateHash();
2110     } else
2111       return false;
2112   }
2113   return true;
2114 }
2115 
2116 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) {
2117   switch (Function->getDeclKind()) {
2118   case Decl::Kind::CXXConstructor:
2119     return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier();
2120   case Decl::Kind::CXXConversion:
2121     return cast<CXXConversionDecl>(Function)->getExplicitSpecifier();
2122   case Decl::Kind::CXXDeductionGuide:
2123     return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier();
2124   default:
2125     return {};
2126   }
2127 }
2128 
2129 CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create(
2130     ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2131     ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
2132     TypeSourceInfo *TInfo, SourceLocation EndLocation, CXXConstructorDecl *Ctor,
2133     DeductionCandidate Kind) {
2134   return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T,
2135                                            TInfo, EndLocation, Ctor, Kind);
2136 }
2137 
2138 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
2139                                                                  unsigned ID) {
2140   return new (C, ID) CXXDeductionGuideDecl(
2141       C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
2142       QualType(), nullptr, SourceLocation(), nullptr,
2143       DeductionCandidate::Normal);
2144 }
2145 
2146 RequiresExprBodyDecl *RequiresExprBodyDecl::Create(
2147     ASTContext &C, DeclContext *DC, SourceLocation StartLoc) {
2148   return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc);
2149 }
2150 
2151 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C,
2152                                                                unsigned ID) {
2153   return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation());
2154 }
2155 
2156 void CXXMethodDecl::anchor() {}
2157 
2158 bool CXXMethodDecl::isStatic() const {
2159   const CXXMethodDecl *MD = getCanonicalDecl();
2160 
2161   if (MD->getStorageClass() == SC_Static)
2162     return true;
2163 
2164   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
2165   return isStaticOverloadedOperator(OOK);
2166 }
2167 
2168 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
2169                                  const CXXMethodDecl *BaseMD) {
2170   for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
2171     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
2172       return true;
2173     if (recursivelyOverrides(MD, BaseMD))
2174       return true;
2175   }
2176   return false;
2177 }
2178 
2179 CXXMethodDecl *
2180 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2181                                                      bool MayBeBase) {
2182   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
2183     return this;
2184 
2185   // Lookup doesn't work for destructors, so handle them separately.
2186   if (isa<CXXDestructorDecl>(this)) {
2187     CXXMethodDecl *MD = RD->getDestructor();
2188     if (MD) {
2189       if (recursivelyOverrides(MD, this))
2190         return MD;
2191       if (MayBeBase && recursivelyOverrides(this, MD))
2192         return MD;
2193     }
2194     return nullptr;
2195   }
2196 
2197   for (auto *ND : RD->lookup(getDeclName())) {
2198     auto *MD = dyn_cast<CXXMethodDecl>(ND);
2199     if (!MD)
2200       continue;
2201     if (recursivelyOverrides(MD, this))
2202       return MD;
2203     if (MayBeBase && recursivelyOverrides(this, MD))
2204       return MD;
2205   }
2206 
2207   return nullptr;
2208 }
2209 
2210 CXXMethodDecl *
2211 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2212                                              bool MayBeBase) {
2213   if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase))
2214     return MD;
2215 
2216   llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders;
2217   auto AddFinalOverrider = [&](CXXMethodDecl *D) {
2218     // If this function is overridden by a candidate final overrider, it is not
2219     // a final overrider.
2220     for (CXXMethodDecl *OtherD : FinalOverriders) {
2221       if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D))
2222         return;
2223     }
2224 
2225     // Other candidate final overriders might be overridden by this function.
2226     llvm::erase_if(FinalOverriders, [&](CXXMethodDecl *OtherD) {
2227       return recursivelyOverrides(D, OtherD);
2228     });
2229 
2230     FinalOverriders.push_back(D);
2231   };
2232 
2233   for (const auto &I : RD->bases()) {
2234     const RecordType *RT = I.getType()->getAs<RecordType>();
2235     if (!RT)
2236       continue;
2237     const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
2238     if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base))
2239       AddFinalOverrider(D);
2240   }
2241 
2242   return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr;
2243 }
2244 
2245 CXXMethodDecl *
2246 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2247                       const DeclarationNameInfo &NameInfo, QualType T,
2248                       TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
2249                       bool isInline, ConstexprSpecKind ConstexprKind,
2250                       SourceLocation EndLocation,
2251                       Expr *TrailingRequiresClause) {
2252   return new (C, RD) CXXMethodDecl(
2253       CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
2254       isInline, ConstexprKind, EndLocation, TrailingRequiresClause);
2255 }
2256 
2257 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2258   return new (C, ID) CXXMethodDecl(
2259       CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(),
2260       QualType(), nullptr, SC_None, false, false,
2261       ConstexprSpecKind::Unspecified, SourceLocation(), nullptr);
2262 }
2263 
2264 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
2265                                                      bool IsAppleKext) {
2266   assert(isVirtual() && "this method is expected to be virtual");
2267 
2268   // When building with -fapple-kext, all calls must go through the vtable since
2269   // the kernel linker can do runtime patching of vtables.
2270   if (IsAppleKext)
2271     return nullptr;
2272 
2273   // If the member function is marked 'final', we know that it can't be
2274   // overridden and can therefore devirtualize it unless it's pure virtual.
2275   if (hasAttr<FinalAttr>())
2276     return isPure() ? nullptr : this;
2277 
2278   // If Base is unknown, we cannot devirtualize.
2279   if (!Base)
2280     return nullptr;
2281 
2282   // If the base expression (after skipping derived-to-base conversions) is a
2283   // class prvalue, then we can devirtualize.
2284   Base = Base->getBestDynamicClassTypeExpr();
2285   if (Base->isPRValue() && Base->getType()->isRecordType())
2286     return this;
2287 
2288   // If we don't even know what we would call, we can't devirtualize.
2289   const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2290   if (!BestDynamicDecl)
2291     return nullptr;
2292 
2293   // There may be a method corresponding to MD in a derived class.
2294   CXXMethodDecl *DevirtualizedMethod =
2295       getCorrespondingMethodInClass(BestDynamicDecl);
2296 
2297   // If there final overrider in the dynamic type is ambiguous, we can't
2298   // devirtualize this call.
2299   if (!DevirtualizedMethod)
2300     return nullptr;
2301 
2302   // If that method is pure virtual, we can't devirtualize. If this code is
2303   // reached, the result would be UB, not a direct call to the derived class
2304   // function, and we can't assume the derived class function is defined.
2305   if (DevirtualizedMethod->isPure())
2306     return nullptr;
2307 
2308   // If that method is marked final, we can devirtualize it.
2309   if (DevirtualizedMethod->hasAttr<FinalAttr>())
2310     return DevirtualizedMethod;
2311 
2312   // Similarly, if the class itself or its destructor is marked 'final',
2313   // the class can't be derived from and we can therefore devirtualize the
2314   // member function call.
2315   if (BestDynamicDecl->isEffectivelyFinal())
2316     return DevirtualizedMethod;
2317 
2318   if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
2319     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2320       if (VD->getType()->isRecordType())
2321         // This is a record decl. We know the type and can devirtualize it.
2322         return DevirtualizedMethod;
2323 
2324     return nullptr;
2325   }
2326 
2327   // We can devirtualize calls on an object accessed by a class member access
2328   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2329   // a derived class object constructed in the same location.
2330   if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
2331     const ValueDecl *VD = ME->getMemberDecl();
2332     return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
2333   }
2334 
2335   // Likewise for calls on an object accessed by a (non-reference) pointer to
2336   // member access.
2337   if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2338     if (BO->isPtrMemOp()) {
2339       auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2340       if (MPT->getPointeeType()->isRecordType())
2341         return DevirtualizedMethod;
2342     }
2343   }
2344 
2345   // We can't devirtualize the call.
2346   return nullptr;
2347 }
2348 
2349 bool CXXMethodDecl::isUsualDeallocationFunction(
2350     SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
2351   assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
2352   if (getOverloadedOperator() != OO_Delete &&
2353       getOverloadedOperator() != OO_Array_Delete)
2354     return false;
2355 
2356   // C++ [basic.stc.dynamic.deallocation]p2:
2357   //   A template instance is never a usual deallocation function,
2358   //   regardless of its signature.
2359   if (getPrimaryTemplate())
2360     return false;
2361 
2362   // C++ [basic.stc.dynamic.deallocation]p2:
2363   //   If a class T has a member deallocation function named operator delete
2364   //   with exactly one parameter, then that function is a usual (non-placement)
2365   //   deallocation function. [...]
2366   if (getNumParams() == 1)
2367     return true;
2368   unsigned UsualParams = 1;
2369 
2370   // C++ P0722:
2371   //   A destroying operator delete is a usual deallocation function if
2372   //   removing the std::destroying_delete_t parameter and changing the
2373   //   first parameter type from T* to void* results in the signature of
2374   //   a usual deallocation function.
2375   if (isDestroyingOperatorDelete())
2376     ++UsualParams;
2377 
2378   // C++ <=14 [basic.stc.dynamic.deallocation]p2:
2379   //   [...] If class T does not declare such an operator delete but does
2380   //   declare a member deallocation function named operator delete with
2381   //   exactly two parameters, the second of which has type std::size_t (18.1),
2382   //   then this function is a usual deallocation function.
2383   //
2384   // C++17 says a usual deallocation function is one with the signature
2385   //   (void* [, size_t] [, std::align_val_t] [, ...])
2386   // and all such functions are usual deallocation functions. It's not clear
2387   // that allowing varargs functions was intentional.
2388   ASTContext &Context = getASTContext();
2389   if (UsualParams < getNumParams() &&
2390       Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
2391                                      Context.getSizeType()))
2392     ++UsualParams;
2393 
2394   if (UsualParams < getNumParams() &&
2395       getParamDecl(UsualParams)->getType()->isAlignValT())
2396     ++UsualParams;
2397 
2398   if (UsualParams != getNumParams())
2399     return false;
2400 
2401   // In C++17 onwards, all potential usual deallocation functions are actual
2402   // usual deallocation functions. Honor this behavior when post-C++14
2403   // deallocation functions are offered as extensions too.
2404   // FIXME(EricWF): Destroying Delete should be a language option. How do we
2405   // handle when destroying delete is used prior to C++17?
2406   if (Context.getLangOpts().CPlusPlus17 ||
2407       Context.getLangOpts().AlignedAllocation ||
2408       isDestroyingOperatorDelete())
2409     return true;
2410 
2411   // This function is a usual deallocation function if there are no
2412   // single-parameter deallocation functions of the same kind.
2413   DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
2414   bool Result = true;
2415   for (const auto *D : R) {
2416     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2417       if (FD->getNumParams() == 1) {
2418         PreventedBy.push_back(FD);
2419         Result = false;
2420       }
2421     }
2422   }
2423   return Result;
2424 }
2425 
2426 bool CXXMethodDecl::isExplicitObjectMemberFunction() const {
2427   // C++2b [dcl.fct]p6:
2428   // An explicit object member function is a non-static member
2429   // function with an explicit object parameter
2430   return !isStatic() && hasCXXExplicitFunctionObjectParameter();
2431 }
2432 
2433 bool CXXMethodDecl::isImplicitObjectMemberFunction() const {
2434   return !isStatic() && !hasCXXExplicitFunctionObjectParameter();
2435 }
2436 
2437 bool CXXMethodDecl::isCopyAssignmentOperator() const {
2438   // C++0x [class.copy]p17:
2439   //  A user-declared copy assignment operator X::operator= is a non-static
2440   //  non-template member function of class X with exactly one parameter of
2441   //  type X, X&, const X&, volatile X& or const volatile X&.
2442   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
2443       /*non-static*/ isStatic() ||
2444 
2445       /*non-template*/ getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2446       getNumExplicitParams() != 1)
2447     return false;
2448 
2449   QualType ParamType = getNonObjectParameter(0)->getType();
2450   if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
2451     ParamType = Ref->getPointeeType();
2452 
2453   ASTContext &Context = getASTContext();
2454   QualType ClassType
2455     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2456   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2457 }
2458 
2459 bool CXXMethodDecl::isMoveAssignmentOperator() const {
2460   // C++0x [class.copy]p19:
2461   //  A user-declared move assignment operator X::operator= is a non-static
2462   //  non-template member function of class X with exactly one parameter of type
2463   //  X&&, const X&&, volatile X&&, or const volatile X&&.
2464   if (getOverloadedOperator() != OO_Equal || isStatic() ||
2465       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2466       getNumExplicitParams() != 1)
2467     return false;
2468 
2469   QualType ParamType = getNonObjectParameter(0)->getType();
2470   if (!ParamType->isRValueReferenceType())
2471     return false;
2472   ParamType = ParamType->getPointeeType();
2473 
2474   ASTContext &Context = getASTContext();
2475   QualType ClassType
2476     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2477   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2478 }
2479 
2480 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
2481   assert(MD->isCanonicalDecl() && "Method is not canonical!");
2482   assert(!MD->getParent()->isDependentContext() &&
2483          "Can't add an overridden method to a class template!");
2484   assert(MD->isVirtual() && "Method is not virtual!");
2485 
2486   getASTContext().addOverriddenMethod(this, MD);
2487 }
2488 
2489 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
2490   if (isa<CXXConstructorDecl>(this)) return nullptr;
2491   return getASTContext().overridden_methods_begin(this);
2492 }
2493 
2494 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
2495   if (isa<CXXConstructorDecl>(this)) return nullptr;
2496   return getASTContext().overridden_methods_end(this);
2497 }
2498 
2499 unsigned CXXMethodDecl::size_overridden_methods() const {
2500   if (isa<CXXConstructorDecl>(this)) return 0;
2501   return getASTContext().overridden_methods_size(this);
2502 }
2503 
2504 CXXMethodDecl::overridden_method_range
2505 CXXMethodDecl::overridden_methods() const {
2506   if (isa<CXXConstructorDecl>(this))
2507     return overridden_method_range(nullptr, nullptr);
2508   return getASTContext().overridden_methods(this);
2509 }
2510 
2511 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT,
2512                                   const CXXRecordDecl *Decl) {
2513   QualType ClassTy = C.getTypeDeclType(Decl);
2514   return C.getQualifiedType(ClassTy, FPT->getMethodQuals());
2515 }
2516 
2517 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
2518                                     const CXXRecordDecl *Decl) {
2519   ASTContext &C = Decl->getASTContext();
2520   QualType ObjectTy = ::getThisObjectType(C, FPT, Decl);
2521   return C.getLangOpts().HLSL ? C.getLValueReferenceType(ObjectTy)
2522                               : C.getPointerType(ObjectTy);
2523 }
2524 
2525 QualType CXXMethodDecl::getThisType() const {
2526   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
2527   // If the member function is declared const, the type of this is const X*,
2528   // if the member function is declared volatile, the type of this is
2529   // volatile X*, and if the member function is declared const volatile,
2530   // the type of this is const volatile X*.
2531   assert(isInstance() && "No 'this' for static methods!");
2532   return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(),
2533                                     getParent());
2534 }
2535 
2536 QualType CXXMethodDecl::getFunctionObjectParameterReferenceType() const {
2537   if (isExplicitObjectMemberFunction())
2538     return parameters()[0]->getType();
2539 
2540   ASTContext &C = getParentASTContext();
2541   const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
2542   QualType Type = ::getThisObjectType(C, FPT, getParent());
2543   RefQualifierKind RK = FPT->getRefQualifier();
2544   if (RK == RefQualifierKind::RQ_RValue)
2545     return C.getRValueReferenceType(Type);
2546   return C.getLValueReferenceType(Type);
2547 }
2548 
2549 bool CXXMethodDecl::hasInlineBody() const {
2550   // If this function is a template instantiation, look at the template from
2551   // which it was instantiated.
2552   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
2553   if (!CheckFn)
2554     CheckFn = this;
2555 
2556   const FunctionDecl *fn;
2557   return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
2558          (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
2559 }
2560 
2561 bool CXXMethodDecl::isLambdaStaticInvoker() const {
2562   const CXXRecordDecl *P = getParent();
2563   return P->isLambda() && getDeclName().isIdentifier() &&
2564          getName() == getLambdaStaticInvokerName();
2565 }
2566 
2567 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2568                                        TypeSourceInfo *TInfo, bool IsVirtual,
2569                                        SourceLocation L, Expr *Init,
2570                                        SourceLocation R,
2571                                        SourceLocation EllipsisLoc)
2572     : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc),
2573       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
2574       IsWritten(false), SourceOrder(0) {}
2575 
2576 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2577                                        SourceLocation MemberLoc,
2578                                        SourceLocation L, Expr *Init,
2579                                        SourceLocation R)
2580     : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2581       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2582       IsWritten(false), SourceOrder(0) {}
2583 
2584 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2585                                        IndirectFieldDecl *Member,
2586                                        SourceLocation MemberLoc,
2587                                        SourceLocation L, Expr *Init,
2588                                        SourceLocation R)
2589     : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2590       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2591       IsWritten(false), SourceOrder(0) {}
2592 
2593 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2594                                        TypeSourceInfo *TInfo,
2595                                        SourceLocation L, Expr *Init,
2596                                        SourceLocation R)
2597     : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
2598       IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2599 
2600 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
2601   return Context.getAllocator()
2602                 .identifyKnownAlignedObject<CXXCtorInitializer>(this);
2603 }
2604 
2605 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
2606   if (isBaseInitializer())
2607     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
2608   else
2609     return {};
2610 }
2611 
2612 const Type *CXXCtorInitializer::getBaseClass() const {
2613   if (isBaseInitializer())
2614     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
2615   else
2616     return nullptr;
2617 }
2618 
2619 SourceLocation CXXCtorInitializer::getSourceLocation() const {
2620   if (isInClassMemberInitializer())
2621     return getAnyMember()->getLocation();
2622 
2623   if (isAnyMemberInitializer())
2624     return getMemberLocation();
2625 
2626   if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
2627     return TSInfo->getTypeLoc().getBeginLoc();
2628 
2629   return {};
2630 }
2631 
2632 SourceRange CXXCtorInitializer::getSourceRange() const {
2633   if (isInClassMemberInitializer()) {
2634     FieldDecl *D = getAnyMember();
2635     if (Expr *I = D->getInClassInitializer())
2636       return I->getSourceRange();
2637     return {};
2638   }
2639 
2640   return SourceRange(getSourceLocation(), getRParenLoc());
2641 }
2642 
2643 CXXConstructorDecl::CXXConstructorDecl(
2644     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2645     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2646     ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2647     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2648     InheritedConstructor Inherited, Expr *TrailingRequiresClause)
2649     : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
2650                     SC_None, UsesFPIntrin, isInline, ConstexprKind,
2651                     SourceLocation(), TrailingRequiresClause) {
2652   setNumCtorInitializers(0);
2653   setInheritingConstructor(static_cast<bool>(Inherited));
2654   setImplicit(isImplicitlyDeclared);
2655   CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0;
2656   if (Inherited)
2657     *getTrailingObjects<InheritedConstructor>() = Inherited;
2658   setExplicitSpecifier(ES);
2659 }
2660 
2661 void CXXConstructorDecl::anchor() {}
2662 
2663 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
2664                                                            unsigned ID,
2665                                                            uint64_t AllocKind) {
2666   bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit);
2667   bool isInheritingConstructor =
2668       static_cast<bool>(AllocKind & TAKInheritsConstructor);
2669   unsigned Extra =
2670       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2671           isInheritingConstructor, hasTrailingExplicit);
2672   auto *Result = new (C, ID, Extra) CXXConstructorDecl(
2673       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2674       ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified,
2675       InheritedConstructor(), nullptr);
2676   Result->setInheritingConstructor(isInheritingConstructor);
2677   Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier =
2678       hasTrailingExplicit;
2679   Result->setExplicitSpecifier(ExplicitSpecifier());
2680   return Result;
2681 }
2682 
2683 CXXConstructorDecl *CXXConstructorDecl::Create(
2684     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2685     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2686     ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2687     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2688     InheritedConstructor Inherited, Expr *TrailingRequiresClause) {
2689   assert(NameInfo.getName().getNameKind()
2690          == DeclarationName::CXXConstructorName &&
2691          "Name must refer to a constructor");
2692   unsigned Extra =
2693       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2694           Inherited ? 1 : 0, ES.getExpr() ? 1 : 0);
2695   return new (C, RD, Extra) CXXConstructorDecl(
2696       C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline,
2697       isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause);
2698 }
2699 
2700 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
2701   return CtorInitializers.get(getASTContext().getExternalSource());
2702 }
2703 
2704 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
2705   assert(isDelegatingConstructor() && "Not a delegating constructor!");
2706   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
2707   if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
2708     return Construct->getConstructor();
2709 
2710   return nullptr;
2711 }
2712 
2713 bool CXXConstructorDecl::isDefaultConstructor() const {
2714   // C++ [class.default.ctor]p1:
2715   //   A default constructor for a class X is a constructor of class X for
2716   //   which each parameter that is not a function parameter pack has a default
2717   //   argument (including the case of a constructor with no parameters)
2718   return getMinRequiredArguments() == 0;
2719 }
2720 
2721 bool
2722 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
2723   return isCopyOrMoveConstructor(TypeQuals) &&
2724          getParamDecl(0)->getType()->isLValueReferenceType();
2725 }
2726 
2727 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
2728   return isCopyOrMoveConstructor(TypeQuals) &&
2729          getParamDecl(0)->getType()->isRValueReferenceType();
2730 }
2731 
2732 /// Determine whether this is a copy or move constructor.
2733 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
2734   // C++ [class.copy]p2:
2735   //   A non-template constructor for class X is a copy constructor
2736   //   if its first parameter is of type X&, const X&, volatile X& or
2737   //   const volatile X&, and either there are no other parameters
2738   //   or else all other parameters have default arguments (8.3.6).
2739   // C++0x [class.copy]p3:
2740   //   A non-template constructor for class X is a move constructor if its
2741   //   first parameter is of type X&&, const X&&, volatile X&&, or
2742   //   const volatile X&&, and either there are no other parameters or else
2743   //   all other parameters have default arguments.
2744   if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr ||
2745       getDescribedFunctionTemplate() != nullptr)
2746     return false;
2747 
2748   const ParmVarDecl *Param = getParamDecl(0);
2749 
2750   // Do we have a reference type?
2751   const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
2752   if (!ParamRefType)
2753     return false;
2754 
2755   // Is it a reference to our class type?
2756   ASTContext &Context = getASTContext();
2757 
2758   CanQualType PointeeType
2759     = Context.getCanonicalType(ParamRefType->getPointeeType());
2760   CanQualType ClassTy
2761     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2762   if (PointeeType.getUnqualifiedType() != ClassTy)
2763     return false;
2764 
2765   // FIXME: other qualifiers?
2766 
2767   // We have a copy or move constructor.
2768   TypeQuals = PointeeType.getCVRQualifiers();
2769   return true;
2770 }
2771 
2772 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
2773   // C++ [class.conv.ctor]p1:
2774   //   A constructor declared without the function-specifier explicit
2775   //   that can be called with a single parameter specifies a
2776   //   conversion from the type of its first parameter to the type of
2777   //   its class. Such a constructor is called a converting
2778   //   constructor.
2779   if (isExplicit() && !AllowExplicit)
2780     return false;
2781 
2782   // FIXME: This has nothing to do with the definition of converting
2783   // constructor, but is convenient for how we use this function in overload
2784   // resolution.
2785   return getNumParams() == 0
2786              ? getType()->castAs<FunctionProtoType>()->isVariadic()
2787              : getMinRequiredArguments() <= 1;
2788 }
2789 
2790 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2791   if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr)
2792     return false;
2793 
2794   const ParmVarDecl *Param = getParamDecl(0);
2795 
2796   ASTContext &Context = getASTContext();
2797   CanQualType ParamType = Context.getCanonicalType(Param->getType());
2798 
2799   // Is it the same as our class type?
2800   CanQualType ClassTy
2801     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2802   if (ParamType.getUnqualifiedType() != ClassTy)
2803     return false;
2804 
2805   return true;
2806 }
2807 
2808 void CXXDestructorDecl::anchor() {}
2809 
2810 CXXDestructorDecl *
2811 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2812   return new (C, ID) CXXDestructorDecl(
2813       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2814       false, false, false, ConstexprSpecKind::Unspecified, nullptr);
2815 }
2816 
2817 CXXDestructorDecl *CXXDestructorDecl::Create(
2818     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2819     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2820     bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2821     ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) {
2822   assert(NameInfo.getName().getNameKind()
2823          == DeclarationName::CXXDestructorName &&
2824          "Name must refer to a destructor");
2825   return new (C, RD) CXXDestructorDecl(
2826       C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline,
2827       isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause);
2828 }
2829 
2830 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
2831   auto *First = cast<CXXDestructorDecl>(getFirstDecl());
2832   if (OD && !First->OperatorDelete) {
2833     First->OperatorDelete = OD;
2834     First->OperatorDeleteThisArg = ThisArg;
2835     if (auto *L = getASTMutationListener())
2836       L->ResolvedOperatorDelete(First, OD, ThisArg);
2837   }
2838 }
2839 
2840 void CXXConversionDecl::anchor() {}
2841 
2842 CXXConversionDecl *
2843 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2844   return new (C, ID) CXXConversionDecl(
2845       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2846       false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
2847       SourceLocation(), nullptr);
2848 }
2849 
2850 CXXConversionDecl *CXXConversionDecl::Create(
2851     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2852     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2853     bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2854     ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2855     Expr *TrailingRequiresClause) {
2856   assert(NameInfo.getName().getNameKind()
2857          == DeclarationName::CXXConversionFunctionName &&
2858          "Name must refer to a conversion function");
2859   return new (C, RD) CXXConversionDecl(
2860       C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES,
2861       ConstexprKind, EndLocation, TrailingRequiresClause);
2862 }
2863 
2864 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2865   return isImplicit() && getParent()->isLambda() &&
2866          getConversionType()->isBlockPointerType();
2867 }
2868 
2869 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2870                                  SourceLocation LangLoc,
2871                                  LinkageSpecLanguageIDs lang, bool HasBraces)
2872     : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2873       ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
2874   setLanguage(lang);
2875   LinkageSpecDeclBits.HasBraces = HasBraces;
2876 }
2877 
2878 void LinkageSpecDecl::anchor() {}
2879 
2880 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, DeclContext *DC,
2881                                          SourceLocation ExternLoc,
2882                                          SourceLocation LangLoc,
2883                                          LinkageSpecLanguageIDs Lang,
2884                                          bool HasBraces) {
2885   return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2886 }
2887 
2888 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2889                                                      unsigned ID) {
2890   return new (C, ID)
2891       LinkageSpecDecl(nullptr, SourceLocation(), SourceLocation(),
2892                       LinkageSpecLanguageIDs::C, false);
2893 }
2894 
2895 void UsingDirectiveDecl::anchor() {}
2896 
2897 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2898                                                SourceLocation L,
2899                                                SourceLocation NamespaceLoc,
2900                                            NestedNameSpecifierLoc QualifierLoc,
2901                                                SourceLocation IdentLoc,
2902                                                NamedDecl *Used,
2903                                                DeclContext *CommonAncestor) {
2904   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2905     Used = NS->getOriginalNamespace();
2906   return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2907                                         IdentLoc, Used, CommonAncestor);
2908 }
2909 
2910 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2911                                                            unsigned ID) {
2912   return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2913                                         SourceLocation(),
2914                                         NestedNameSpecifierLoc(),
2915                                         SourceLocation(), nullptr, nullptr);
2916 }
2917 
2918 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2919   if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2920     return NA->getNamespace();
2921   return cast_or_null<NamespaceDecl>(NominatedNamespace);
2922 }
2923 
2924 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2925                              SourceLocation StartLoc, SourceLocation IdLoc,
2926                              IdentifierInfo *Id, NamespaceDecl *PrevDecl,
2927                              bool Nested)
2928     : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2929       redeclarable_base(C), LocStart(StartLoc) {
2930   unsigned Flags = 0;
2931   if (Inline)
2932     Flags |= F_Inline;
2933   if (Nested)
2934     Flags |= F_Nested;
2935   AnonOrFirstNamespaceAndFlags = {nullptr, Flags};
2936   setPreviousDecl(PrevDecl);
2937 
2938   if (PrevDecl)
2939     AnonOrFirstNamespaceAndFlags.setPointer(PrevDecl->getOriginalNamespace());
2940 }
2941 
2942 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2943                                      bool Inline, SourceLocation StartLoc,
2944                                      SourceLocation IdLoc, IdentifierInfo *Id,
2945                                      NamespaceDecl *PrevDecl, bool Nested) {
2946   return new (C, DC)
2947       NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, PrevDecl, Nested);
2948 }
2949 
2950 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2951   return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2952                                    SourceLocation(), nullptr, nullptr, false);
2953 }
2954 
2955 NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2956   if (isFirstDecl())
2957     return this;
2958 
2959   return AnonOrFirstNamespaceAndFlags.getPointer();
2960 }
2961 
2962 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2963   if (isFirstDecl())
2964     return this;
2965 
2966   return AnonOrFirstNamespaceAndFlags.getPointer();
2967 }
2968 
2969 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2970 
2971 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2972   return getNextRedeclaration();
2973 }
2974 
2975 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2976   return getPreviousDecl();
2977 }
2978 
2979 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2980   return getMostRecentDecl();
2981 }
2982 
2983 void NamespaceAliasDecl::anchor() {}
2984 
2985 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2986   return getNextRedeclaration();
2987 }
2988 
2989 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2990   return getPreviousDecl();
2991 }
2992 
2993 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2994   return getMostRecentDecl();
2995 }
2996 
2997 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2998                                                SourceLocation UsingLoc,
2999                                                SourceLocation AliasLoc,
3000                                                IdentifierInfo *Alias,
3001                                            NestedNameSpecifierLoc QualifierLoc,
3002                                                SourceLocation IdentLoc,
3003                                                NamedDecl *Namespace) {
3004   // FIXME: Preserve the aliased namespace as written.
3005   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
3006     Namespace = NS->getOriginalNamespace();
3007   return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
3008                                         QualifierLoc, IdentLoc, Namespace);
3009 }
3010 
3011 NamespaceAliasDecl *
3012 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3013   return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
3014                                         SourceLocation(), nullptr,
3015                                         NestedNameSpecifierLoc(),
3016                                         SourceLocation(), nullptr);
3017 }
3018 
3019 void LifetimeExtendedTemporaryDecl::anchor() {}
3020 
3021 /// Retrieve the storage duration for the materialized temporary.
3022 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const {
3023   const ValueDecl *ExtendingDecl = getExtendingDecl();
3024   if (!ExtendingDecl)
3025     return SD_FullExpression;
3026   // FIXME: This is not necessarily correct for a temporary materialized
3027   // within a default initializer.
3028   if (isa<FieldDecl>(ExtendingDecl))
3029     return SD_Automatic;
3030   // FIXME: This only works because storage class specifiers are not allowed
3031   // on decomposition declarations.
3032   if (isa<BindingDecl>(ExtendingDecl))
3033     return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic
3034                                                                  : SD_Static;
3035   return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
3036 }
3037 
3038 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const {
3039   assert(getStorageDuration() == SD_Static &&
3040          "don't need to cache the computed value for this temporary");
3041   if (MayCreate && !Value) {
3042     Value = (new (getASTContext()) APValue);
3043     getASTContext().addDestruction(Value);
3044   }
3045   assert(Value && "may not be null");
3046   return Value;
3047 }
3048 
3049 void UsingShadowDecl::anchor() {}
3050 
3051 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
3052                                  SourceLocation Loc, DeclarationName Name,
3053                                  BaseUsingDecl *Introducer, NamedDecl *Target)
3054     : NamedDecl(K, DC, Loc, Name), redeclarable_base(C),
3055       UsingOrNextShadow(Introducer) {
3056   if (Target) {
3057     assert(!isa<UsingShadowDecl>(Target));
3058     setTargetDecl(Target);
3059   }
3060   setImplicit();
3061 }
3062 
3063 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
3064     : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
3065       redeclarable_base(C) {}
3066 
3067 UsingShadowDecl *
3068 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3069   return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
3070 }
3071 
3072 BaseUsingDecl *UsingShadowDecl::getIntroducer() const {
3073   const UsingShadowDecl *Shadow = this;
3074   while (const auto *NextShadow =
3075              dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
3076     Shadow = NextShadow;
3077   return cast<BaseUsingDecl>(Shadow->UsingOrNextShadow);
3078 }
3079 
3080 void ConstructorUsingShadowDecl::anchor() {}
3081 
3082 ConstructorUsingShadowDecl *
3083 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
3084                                    SourceLocation Loc, UsingDecl *Using,
3085                                    NamedDecl *Target, bool IsVirtual) {
3086   return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
3087                                                 IsVirtual);
3088 }
3089 
3090 ConstructorUsingShadowDecl *
3091 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3092   return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
3093 }
3094 
3095 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
3096   return getIntroducer()->getQualifier()->getAsRecordDecl();
3097 }
3098 
3099 void BaseUsingDecl::anchor() {}
3100 
3101 void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) {
3102   assert(!llvm::is_contained(shadows(), S) && "declaration already in set");
3103   assert(S->getIntroducer() == this);
3104 
3105   if (FirstUsingShadow.getPointer())
3106     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
3107   FirstUsingShadow.setPointer(S);
3108 }
3109 
3110 void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) {
3111   assert(llvm::is_contained(shadows(), S) && "declaration not in set");
3112   assert(S->getIntroducer() == this);
3113 
3114   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
3115 
3116   if (FirstUsingShadow.getPointer() == S) {
3117     FirstUsingShadow.setPointer(
3118       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
3119     S->UsingOrNextShadow = this;
3120     return;
3121   }
3122 
3123   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
3124   while (Prev->UsingOrNextShadow != S)
3125     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
3126   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
3127   S->UsingOrNextShadow = this;
3128 }
3129 
3130 void UsingDecl::anchor() {}
3131 
3132 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
3133                              NestedNameSpecifierLoc QualifierLoc,
3134                              const DeclarationNameInfo &NameInfo,
3135                              bool HasTypename) {
3136   return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
3137 }
3138 
3139 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3140   return new (C, ID) UsingDecl(nullptr, SourceLocation(),
3141                                NestedNameSpecifierLoc(), DeclarationNameInfo(),
3142                                false);
3143 }
3144 
3145 SourceRange UsingDecl::getSourceRange() const {
3146   SourceLocation Begin = isAccessDeclaration()
3147     ? getQualifierLoc().getBeginLoc() : UsingLocation;
3148   return SourceRange(Begin, getNameInfo().getEndLoc());
3149 }
3150 
3151 void UsingEnumDecl::anchor() {}
3152 
3153 UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC,
3154                                      SourceLocation UL,
3155                                      SourceLocation EL,
3156                                      SourceLocation NL,
3157                                      TypeSourceInfo *EnumType) {
3158   assert(isa<EnumDecl>(EnumType->getType()->getAsTagDecl()));
3159   return new (C, DC)
3160       UsingEnumDecl(DC, EnumType->getType()->getAsTagDecl()->getDeclName(), UL, EL, NL, EnumType);
3161 }
3162 
3163 UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3164   return new (C, ID)
3165       UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(),
3166                     SourceLocation(), SourceLocation(), nullptr);
3167 }
3168 
3169 SourceRange UsingEnumDecl::getSourceRange() const {
3170   return SourceRange(UsingLocation, EnumType->getTypeLoc().getEndLoc());
3171 }
3172 
3173 void UsingPackDecl::anchor() {}
3174 
3175 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
3176                                      NamedDecl *InstantiatedFrom,
3177                                      ArrayRef<NamedDecl *> UsingDecls) {
3178   size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
3179   return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
3180 }
3181 
3182 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3183                                                  unsigned NumExpansions) {
3184   size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
3185   auto *Result =
3186       new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, std::nullopt);
3187   Result->NumExpansions = NumExpansions;
3188   auto *Trail = Result->getTrailingObjects<NamedDecl *>();
3189   for (unsigned I = 0; I != NumExpansions; ++I)
3190     new (Trail + I) NamedDecl*(nullptr);
3191   return Result;
3192 }
3193 
3194 void UnresolvedUsingValueDecl::anchor() {}
3195 
3196 UnresolvedUsingValueDecl *
3197 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
3198                                  SourceLocation UsingLoc,
3199                                  NestedNameSpecifierLoc QualifierLoc,
3200                                  const DeclarationNameInfo &NameInfo,
3201                                  SourceLocation EllipsisLoc) {
3202   return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
3203                                               QualifierLoc, NameInfo,
3204                                               EllipsisLoc);
3205 }
3206 
3207 UnresolvedUsingValueDecl *
3208 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3209   return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
3210                                               SourceLocation(),
3211                                               NestedNameSpecifierLoc(),
3212                                               DeclarationNameInfo(),
3213                                               SourceLocation());
3214 }
3215 
3216 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
3217   SourceLocation Begin = isAccessDeclaration()
3218     ? getQualifierLoc().getBeginLoc() : UsingLocation;
3219   return SourceRange(Begin, getNameInfo().getEndLoc());
3220 }
3221 
3222 void UnresolvedUsingTypenameDecl::anchor() {}
3223 
3224 UnresolvedUsingTypenameDecl *
3225 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
3226                                     SourceLocation UsingLoc,
3227                                     SourceLocation TypenameLoc,
3228                                     NestedNameSpecifierLoc QualifierLoc,
3229                                     SourceLocation TargetNameLoc,
3230                                     DeclarationName TargetName,
3231                                     SourceLocation EllipsisLoc) {
3232   return new (C, DC) UnresolvedUsingTypenameDecl(
3233       DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
3234       TargetName.getAsIdentifierInfo(), EllipsisLoc);
3235 }
3236 
3237 UnresolvedUsingTypenameDecl *
3238 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3239   return new (C, ID) UnresolvedUsingTypenameDecl(
3240       nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
3241       SourceLocation(), nullptr, SourceLocation());
3242 }
3243 
3244 UnresolvedUsingIfExistsDecl *
3245 UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC,
3246                                     SourceLocation Loc, DeclarationName Name) {
3247   return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name);
3248 }
3249 
3250 UnresolvedUsingIfExistsDecl *
3251 UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, unsigned ID) {
3252   return new (Ctx, ID)
3253       UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName());
3254 }
3255 
3256 UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC,
3257                                                          SourceLocation Loc,
3258                                                          DeclarationName Name)
3259     : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {}
3260 
3261 void UnresolvedUsingIfExistsDecl::anchor() {}
3262 
3263 void StaticAssertDecl::anchor() {}
3264 
3265 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
3266                                            SourceLocation StaticAssertLoc,
3267                                            Expr *AssertExpr, Expr *Message,
3268                                            SourceLocation RParenLoc,
3269                                            bool Failed) {
3270   return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
3271                                       RParenLoc, Failed);
3272 }
3273 
3274 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
3275                                                        unsigned ID) {
3276   return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
3277                                       nullptr, SourceLocation(), false);
3278 }
3279 
3280 VarDecl *ValueDecl::getPotentiallyDecomposedVarDecl() {
3281   assert((isa<VarDecl, BindingDecl>(this)) &&
3282          "expected a VarDecl or a BindingDecl");
3283   if (auto *Var = llvm::dyn_cast<VarDecl>(this))
3284     return Var;
3285   if (auto *BD = llvm::dyn_cast<BindingDecl>(this))
3286     return llvm::dyn_cast<VarDecl>(BD->getDecomposedDecl());
3287   return nullptr;
3288 }
3289 
3290 void BindingDecl::anchor() {}
3291 
3292 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
3293                                  SourceLocation IdLoc, IdentifierInfo *Id) {
3294   return new (C, DC) BindingDecl(DC, IdLoc, Id);
3295 }
3296 
3297 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3298   return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
3299 }
3300 
3301 VarDecl *BindingDecl::getHoldingVar() const {
3302   Expr *B = getBinding();
3303   if (!B)
3304     return nullptr;
3305   auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
3306   if (!DRE)
3307     return nullptr;
3308 
3309   auto *VD = cast<VarDecl>(DRE->getDecl());
3310   assert(VD->isImplicit() && "holding var for binding decl not implicit");
3311   return VD;
3312 }
3313 
3314 void DecompositionDecl::anchor() {}
3315 
3316 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
3317                                              SourceLocation StartLoc,
3318                                              SourceLocation LSquareLoc,
3319                                              QualType T, TypeSourceInfo *TInfo,
3320                                              StorageClass SC,
3321                                              ArrayRef<BindingDecl *> Bindings) {
3322   size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
3323   return new (C, DC, Extra)
3324       DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
3325 }
3326 
3327 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
3328                                                          unsigned ID,
3329                                                          unsigned NumBindings) {
3330   size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
3331   auto *Result = new (C, ID, Extra)
3332       DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
3333                         QualType(), nullptr, StorageClass(), std::nullopt);
3334   // Set up and clean out the bindings array.
3335   Result->NumBindings = NumBindings;
3336   auto *Trail = Result->getTrailingObjects<BindingDecl *>();
3337   for (unsigned I = 0; I != NumBindings; ++I)
3338     new (Trail + I) BindingDecl*(nullptr);
3339   return Result;
3340 }
3341 
3342 void DecompositionDecl::printName(llvm::raw_ostream &OS,
3343                                   const PrintingPolicy &Policy) const {
3344   OS << '[';
3345   bool Comma = false;
3346   for (const auto *B : bindings()) {
3347     if (Comma)
3348       OS << ", ";
3349     B->printName(OS, Policy);
3350     Comma = true;
3351   }
3352   OS << ']';
3353 }
3354 
3355 void MSPropertyDecl::anchor() {}
3356 
3357 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
3358                                        SourceLocation L, DeclarationName N,
3359                                        QualType T, TypeSourceInfo *TInfo,
3360                                        SourceLocation StartL,
3361                                        IdentifierInfo *Getter,
3362                                        IdentifierInfo *Setter) {
3363   return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
3364 }
3365 
3366 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3367                                                    unsigned ID) {
3368   return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
3369                                     DeclarationName(), QualType(), nullptr,
3370                                     SourceLocation(), nullptr, nullptr);
3371 }
3372 
3373 void MSGuidDecl::anchor() {}
3374 
3375 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P)
3376     : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T),
3377       PartVal(P) {}
3378 
3379 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) {
3380   DeclContext *DC = C.getTranslationUnitDecl();
3381   return new (C, DC) MSGuidDecl(DC, T, P);
3382 }
3383 
3384 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3385   return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts());
3386 }
3387 
3388 void MSGuidDecl::printName(llvm::raw_ostream &OS,
3389                            const PrintingPolicy &) const {
3390   OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-",
3391                      PartVal.Part1, PartVal.Part2, PartVal.Part3);
3392   unsigned I = 0;
3393   for (uint8_t Byte : PartVal.Part4And5) {
3394     OS << llvm::format("%02" PRIx8, Byte);
3395     if (++I == 2)
3396       OS << '-';
3397   }
3398   OS << '}';
3399 }
3400 
3401 /// Determine if T is a valid 'struct _GUID' of the shape that we expect.
3402 static bool isValidStructGUID(ASTContext &Ctx, QualType T) {
3403   // FIXME: We only need to check this once, not once each time we compute a
3404   // GUID APValue.
3405   using MatcherRef = llvm::function_ref<bool(QualType)>;
3406 
3407   auto IsInt = [&Ctx](unsigned N) {
3408     return [&Ctx, N](QualType T) {
3409       return T->isUnsignedIntegerOrEnumerationType() &&
3410              Ctx.getIntWidth(T) == N;
3411     };
3412   };
3413 
3414   auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) {
3415     return [&Ctx, Elem, N](QualType T) {
3416       const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T);
3417       return CAT && CAT->getSize() == N && Elem(CAT->getElementType());
3418     };
3419   };
3420 
3421   auto IsStruct = [](std::initializer_list<MatcherRef> Fields) {
3422     return [Fields](QualType T) {
3423       const RecordDecl *RD = T->getAsRecordDecl();
3424       if (!RD || RD->isUnion())
3425         return false;
3426       RD = RD->getDefinition();
3427       if (!RD)
3428         return false;
3429       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
3430         if (CXXRD->getNumBases())
3431           return false;
3432       auto MatcherIt = Fields.begin();
3433       for (const FieldDecl *FD : RD->fields()) {
3434         if (FD->isUnnamedBitfield()) continue;
3435         if (FD->isBitField() || MatcherIt == Fields.end() ||
3436             !(*MatcherIt)(FD->getType()))
3437           return false;
3438         ++MatcherIt;
3439       }
3440       return MatcherIt == Fields.end();
3441     };
3442   };
3443 
3444   // We expect an {i32, i16, i16, [8 x i8]}.
3445   return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T);
3446 }
3447 
3448 APValue &MSGuidDecl::getAsAPValue() const {
3449   if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) {
3450     using llvm::APInt;
3451     using llvm::APSInt;
3452     APVal = APValue(APValue::UninitStruct(), 0, 4);
3453     APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true));
3454     APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true));
3455     APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true));
3456     APValue &Arr = APVal.getStructField(3) =
3457         APValue(APValue::UninitArray(), 8, 8);
3458     for (unsigned I = 0; I != 8; ++I) {
3459       Arr.getArrayInitializedElt(I) =
3460           APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true));
3461     }
3462     // Register this APValue to be destroyed if necessary. (Note that the
3463     // MSGuidDecl destructor is never run.)
3464     getASTContext().addDestruction(&APVal);
3465   }
3466 
3467   return APVal;
3468 }
3469 
3470 void UnnamedGlobalConstantDecl::anchor() {}
3471 
3472 UnnamedGlobalConstantDecl::UnnamedGlobalConstantDecl(const ASTContext &C,
3473                                                      DeclContext *DC,
3474                                                      QualType Ty,
3475                                                      const APValue &Val)
3476     : ValueDecl(Decl::UnnamedGlobalConstant, DC, SourceLocation(),
3477                 DeclarationName(), Ty),
3478       Value(Val) {
3479   // Cleanup the embedded APValue if required (note that our destructor is never
3480   // run)
3481   if (Value.needsCleanup())
3482     C.addDestruction(&Value);
3483 }
3484 
3485 UnnamedGlobalConstantDecl *
3486 UnnamedGlobalConstantDecl::Create(const ASTContext &C, QualType T,
3487                                   const APValue &Value) {
3488   DeclContext *DC = C.getTranslationUnitDecl();
3489   return new (C, DC) UnnamedGlobalConstantDecl(C, DC, T, Value);
3490 }
3491 
3492 UnnamedGlobalConstantDecl *
3493 UnnamedGlobalConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3494   return new (C, ID)
3495       UnnamedGlobalConstantDecl(C, nullptr, QualType(), APValue());
3496 }
3497 
3498 void UnnamedGlobalConstantDecl::printName(llvm::raw_ostream &OS,
3499                                           const PrintingPolicy &) const {
3500   OS << "unnamed-global-constant";
3501 }
3502 
3503 static const char *getAccessName(AccessSpecifier AS) {
3504   switch (AS) {
3505     case AS_none:
3506       llvm_unreachable("Invalid access specifier!");
3507     case AS_public:
3508       return "public";
3509     case AS_private:
3510       return "private";
3511     case AS_protected:
3512       return "protected";
3513   }
3514   llvm_unreachable("Invalid access specifier!");
3515 }
3516 
3517 const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB,
3518                                              AccessSpecifier AS) {
3519   return DB << getAccessName(AS);
3520 }
3521