xref: /freebsd-src/contrib/llvm-project/clang/lib/AST/DeclCXX.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the C++ related Decl classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTUnresolvedSet.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/LambdaCapture.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/ODRHash.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "clang/Basic/OperatorKinds.h"
36 #include "clang/Basic/PartialDiagnostic.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstddef>
50 #include <cstdint>
51 
52 using namespace clang;
53 
54 //===----------------------------------------------------------------------===//
55 // Decl Allocation/Deallocation Method Implementations
56 //===----------------------------------------------------------------------===//
57 
58 void AccessSpecDecl::anchor() {}
59 
60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
61   return new (C, ID) AccessSpecDecl(EmptyShell());
62 }
63 
64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
65   ExternalASTSource *Source = C.getExternalSource();
66   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
67   assert(Source && "getFromExternalSource with no external source");
68 
69   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
70     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
71         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
72   Impl.Decls.setLazy(false);
73 }
74 
75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
76     : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
77       Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
78       Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
79       HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
80       HasPrivateFields(false), HasProtectedFields(false),
81       HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
82       HasOnlyCMembers(true), HasInitMethod(false), HasInClassInitializer(false),
83       HasUninitializedReferenceMember(false), HasUninitializedFields(false),
84       HasInheritedConstructor(false), HasInheritedDefaultConstructor(false),
85       HasInheritedAssignment(false),
86       NeedOverloadResolutionForCopyConstructor(false),
87       NeedOverloadResolutionForMoveConstructor(false),
88       NeedOverloadResolutionForCopyAssignment(false),
89       NeedOverloadResolutionForMoveAssignment(false),
90       NeedOverloadResolutionForDestructor(false),
91       DefaultedCopyConstructorIsDeleted(false),
92       DefaultedMoveConstructorIsDeleted(false),
93       DefaultedCopyAssignmentIsDeleted(false),
94       DefaultedMoveAssignmentIsDeleted(false),
95       DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
96       HasTrivialSpecialMembersForCall(SMF_All),
97       DeclaredNonTrivialSpecialMembers(0),
98       DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
99       HasConstexprNonCopyMoveConstructor(false),
100       HasDefaultedDefaultConstructor(false),
101       DefaultedDefaultConstructorIsConstexpr(true),
102       HasConstexprDefaultConstructor(false),
103       DefaultedDestructorIsConstexpr(true),
104       HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true),
105       UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
106       ImplicitCopyConstructorCanHaveConstParamForVBase(true),
107       ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
108       ImplicitCopyAssignmentHasConstParam(true),
109       HasDeclaredCopyConstructorWithConstParam(false),
110       HasDeclaredCopyAssignmentWithConstParam(false),
111       IsAnyDestructorNoReturn(false), IsLambda(false),
112       IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
113       HasODRHash(false), Definition(D) {}
114 
115 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
116   return Bases.get(Definition->getASTContext().getExternalSource());
117 }
118 
119 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
120   return VBases.get(Definition->getASTContext().getExternalSource());
121 }
122 
123 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
124                              DeclContext *DC, SourceLocation StartLoc,
125                              SourceLocation IdLoc, IdentifierInfo *Id,
126                              CXXRecordDecl *PrevDecl)
127     : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
128       DefinitionData(PrevDecl ? PrevDecl->DefinitionData
129                               : nullptr) {}
130 
131 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
132                                      DeclContext *DC, SourceLocation StartLoc,
133                                      SourceLocation IdLoc, IdentifierInfo *Id,
134                                      CXXRecordDecl *PrevDecl,
135                                      bool DelayTypeCreation) {
136   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
137                                       PrevDecl);
138   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
139 
140   // FIXME: DelayTypeCreation seems like such a hack
141   if (!DelayTypeCreation)
142     C.getTypeDeclType(R, PrevDecl);
143   return R;
144 }
145 
146 CXXRecordDecl *
147 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
148                             TypeSourceInfo *Info, SourceLocation Loc,
149                             unsigned DependencyKind, bool IsGeneric,
150                             LambdaCaptureDefault CaptureDefault) {
151   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TagTypeKind::Class, C, DC, Loc,
152                                       Loc, nullptr, nullptr);
153   R->setBeingDefined(true);
154   R->DefinitionData = new (C) struct LambdaDefinitionData(
155       R, Info, DependencyKind, IsGeneric, CaptureDefault);
156   R->setMayHaveOutOfDateDef(false);
157   R->setImplicit(true);
158 
159   C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
160   return R;
161 }
162 
163 CXXRecordDecl *
164 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
165   auto *R = new (C, ID)
166       CXXRecordDecl(CXXRecord, TagTypeKind::Struct, C, nullptr,
167                     SourceLocation(), SourceLocation(), nullptr, nullptr);
168   R->setMayHaveOutOfDateDef(false);
169   return R;
170 }
171 
172 /// Determine whether a class has a repeated base class. This is intended for
173 /// use when determining if a class is standard-layout, so makes no attempt to
174 /// handle virtual bases.
175 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
176   llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
177   SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
178   while (!WorkList.empty()) {
179     const CXXRecordDecl *RD = WorkList.pop_back_val();
180     if (RD->getTypeForDecl()->isDependentType())
181       continue;
182     for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
183       if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
184         if (!SeenBaseTypes.insert(B).second)
185           return true;
186         WorkList.push_back(B);
187       }
188     }
189   }
190   return false;
191 }
192 
193 void
194 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
195                         unsigned NumBases) {
196   ASTContext &C = getASTContext();
197 
198   if (!data().Bases.isOffset() && data().NumBases > 0)
199     C.Deallocate(data().getBases());
200 
201   if (NumBases) {
202     if (!C.getLangOpts().CPlusPlus17) {
203       // C++ [dcl.init.aggr]p1:
204       //   An aggregate is [...] a class with [...] no base classes [...].
205       data().Aggregate = false;
206     }
207 
208     // C++ [class]p4:
209     //   A POD-struct is an aggregate class...
210     data().PlainOldData = false;
211   }
212 
213   // The set of seen virtual base types.
214   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
215 
216   // The virtual bases of this class.
217   SmallVector<const CXXBaseSpecifier *, 8> VBases;
218 
219   data().Bases = new(C) CXXBaseSpecifier [NumBases];
220   data().NumBases = NumBases;
221   for (unsigned i = 0; i < NumBases; ++i) {
222     data().getBases()[i] = *Bases[i];
223     // Keep track of inherited vbases for this base class.
224     const CXXBaseSpecifier *Base = Bases[i];
225     QualType BaseType = Base->getType();
226     // Skip dependent types; we can't do any checking on them now.
227     if (BaseType->isDependentType())
228       continue;
229     auto *BaseClassDecl =
230         cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
231 
232     // C++2a [class]p7:
233     //   A standard-layout class is a class that:
234     //    [...]
235     //    -- has all non-static data members and bit-fields in the class and
236     //       its base classes first declared in the same class
237     if (BaseClassDecl->data().HasBasesWithFields ||
238         !BaseClassDecl->field_empty()) {
239       if (data().HasBasesWithFields)
240         // Two bases have members or bit-fields: not standard-layout.
241         data().IsStandardLayout = false;
242       data().HasBasesWithFields = true;
243     }
244 
245     // C++11 [class]p7:
246     //   A standard-layout class is a class that:
247     //     -- [...] has [...] at most one base class with non-static data
248     //        members
249     if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
250         BaseClassDecl->hasDirectFields()) {
251       if (data().HasBasesWithNonStaticDataMembers)
252         data().IsCXX11StandardLayout = false;
253       data().HasBasesWithNonStaticDataMembers = true;
254     }
255 
256     if (!BaseClassDecl->isEmpty()) {
257       // C++14 [meta.unary.prop]p4:
258       //   T is a class type [...] with [...] no base class B for which
259       //   is_empty<B>::value is false.
260       data().Empty = false;
261     }
262 
263     // C++1z [dcl.init.agg]p1:
264     //   An aggregate is a class with [...] no private or protected base classes
265     if (Base->getAccessSpecifier() != AS_public) {
266       data().Aggregate = false;
267 
268       // C++20 [temp.param]p7:
269       //   A structural type is [...] a literal class type with [...] all base
270       //   classes [...] public
271       data().StructuralIfLiteral = false;
272     }
273 
274     // C++ [class.virtual]p1:
275     //   A class that declares or inherits a virtual function is called a
276     //   polymorphic class.
277     if (BaseClassDecl->isPolymorphic()) {
278       data().Polymorphic = true;
279 
280       //   An aggregate is a class with [...] no virtual functions.
281       data().Aggregate = false;
282     }
283 
284     // C++0x [class]p7:
285     //   A standard-layout class is a class that: [...]
286     //    -- has no non-standard-layout base classes
287     if (!BaseClassDecl->isStandardLayout())
288       data().IsStandardLayout = false;
289     if (!BaseClassDecl->isCXX11StandardLayout())
290       data().IsCXX11StandardLayout = false;
291 
292     // Record if this base is the first non-literal field or base.
293     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
294       data().HasNonLiteralTypeFieldsOrBases = true;
295 
296     // Now go through all virtual bases of this base and add them.
297     for (const auto &VBase : BaseClassDecl->vbases()) {
298       // Add this base if it's not already in the list.
299       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
300         VBases.push_back(&VBase);
301 
302         // C++11 [class.copy]p8:
303         //   The implicitly-declared copy constructor for a class X will have
304         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
305         //   has a copy constructor whose first parameter is of type
306         //   'const B&' or 'const volatile B&' [...]
307         if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
308           if (!VBaseDecl->hasCopyConstructorWithConstParam())
309             data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
310 
311         // C++1z [dcl.init.agg]p1:
312         //   An aggregate is a class with [...] no virtual base classes
313         data().Aggregate = false;
314       }
315     }
316 
317     if (Base->isVirtual()) {
318       // Add this base if it's not already in the list.
319       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
320         VBases.push_back(Base);
321 
322       // C++14 [meta.unary.prop] is_empty:
323       //   T is a class type, but not a union type, with ... no virtual base
324       //   classes
325       data().Empty = false;
326 
327       // C++1z [dcl.init.agg]p1:
328       //   An aggregate is a class with [...] no virtual base classes
329       data().Aggregate = false;
330 
331       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
332       //   A [default constructor, copy/move constructor, or copy/move assignment
333       //   operator for a class X] is trivial [...] if:
334       //    -- class X has [...] no virtual base classes
335       data().HasTrivialSpecialMembers &= SMF_Destructor;
336       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
337 
338       // C++0x [class]p7:
339       //   A standard-layout class is a class that: [...]
340       //    -- has [...] no virtual base classes
341       data().IsStandardLayout = false;
342       data().IsCXX11StandardLayout = false;
343 
344       // C++20 [dcl.constexpr]p3:
345       //   In the definition of a constexpr function [...]
346       //    -- if the function is a constructor or destructor,
347       //       its class shall not have any virtual base classes
348       data().DefaultedDefaultConstructorIsConstexpr = false;
349       data().DefaultedDestructorIsConstexpr = false;
350 
351       // C++1z [class.copy]p8:
352       //   The implicitly-declared copy constructor for a class X will have
353       //   the form 'X::X(const X&)' if each potentially constructed subobject
354       //   has a copy constructor whose first parameter is of type
355       //   'const B&' or 'const volatile B&' [...]
356       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
357         data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
358     } else {
359       // C++ [class.ctor]p5:
360       //   A default constructor is trivial [...] if:
361       //    -- all the direct base classes of its class have trivial default
362       //       constructors.
363       if (!BaseClassDecl->hasTrivialDefaultConstructor())
364         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
365 
366       // C++0x [class.copy]p13:
367       //   A copy/move constructor for class X is trivial if [...]
368       //    [...]
369       //    -- the constructor selected to copy/move each direct base class
370       //       subobject is trivial, and
371       if (!BaseClassDecl->hasTrivialCopyConstructor())
372         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
373 
374       if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
375         data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
376 
377       // If the base class doesn't have a simple move constructor, we'll eagerly
378       // declare it and perform overload resolution to determine which function
379       // it actually calls. If it does have a simple move constructor, this
380       // check is correct.
381       if (!BaseClassDecl->hasTrivialMoveConstructor())
382         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
383 
384       if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
385         data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
386 
387       // C++0x [class.copy]p27:
388       //   A copy/move assignment operator for class X is trivial if [...]
389       //    [...]
390       //    -- the assignment operator selected to copy/move each direct base
391       //       class subobject is trivial, and
392       if (!BaseClassDecl->hasTrivialCopyAssignment())
393         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
394       // If the base class doesn't have a simple move assignment, we'll eagerly
395       // declare it and perform overload resolution to determine which function
396       // it actually calls. If it does have a simple move assignment, this
397       // check is correct.
398       if (!BaseClassDecl->hasTrivialMoveAssignment())
399         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
400 
401       // C++11 [class.ctor]p6:
402       //   If that user-written default constructor would satisfy the
403       //   requirements of a constexpr constructor, the implicitly-defined
404       //   default constructor is constexpr.
405       if (!BaseClassDecl->hasConstexprDefaultConstructor())
406         data().DefaultedDefaultConstructorIsConstexpr = false;
407 
408       // C++1z [class.copy]p8:
409       //   The implicitly-declared copy constructor for a class X will have
410       //   the form 'X::X(const X&)' if each potentially constructed subobject
411       //   has a copy constructor whose first parameter is of type
412       //   'const B&' or 'const volatile B&' [...]
413       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
414         data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
415     }
416 
417     // C++ [class.ctor]p3:
418     //   A destructor is trivial if all the direct base classes of its class
419     //   have trivial destructors.
420     if (!BaseClassDecl->hasTrivialDestructor())
421       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
422 
423     if (!BaseClassDecl->hasTrivialDestructorForCall())
424       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
425 
426     if (!BaseClassDecl->hasIrrelevantDestructor())
427       data().HasIrrelevantDestructor = false;
428 
429     if (BaseClassDecl->isAnyDestructorNoReturn())
430       data().IsAnyDestructorNoReturn = true;
431 
432     // C++11 [class.copy]p18:
433     //   The implicitly-declared copy assignment operator for a class X will
434     //   have the form 'X& X::operator=(const X&)' if each direct base class B
435     //   of X has a copy assignment operator whose parameter is of type 'const
436     //   B&', 'const volatile B&', or 'B' [...]
437     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
438       data().ImplicitCopyAssignmentHasConstParam = false;
439 
440     // A class has an Objective-C object member if... or any of its bases
441     // has an Objective-C object member.
442     if (BaseClassDecl->hasObjectMember())
443       setHasObjectMember(true);
444 
445     if (BaseClassDecl->hasVolatileMember())
446       setHasVolatileMember(true);
447 
448     if (BaseClassDecl->getArgPassingRestrictions() ==
449         RecordArgPassingKind::CanNeverPassInRegs)
450       setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs);
451 
452     // Keep track of the presence of mutable fields.
453     if (BaseClassDecl->hasMutableFields())
454       data().HasMutableFields = true;
455 
456     if (BaseClassDecl->hasUninitializedReferenceMember())
457       data().HasUninitializedReferenceMember = true;
458 
459     if (!BaseClassDecl->allowConstDefaultInit())
460       data().HasUninitializedFields = true;
461 
462     addedClassSubobject(BaseClassDecl);
463   }
464 
465   // C++2a [class]p7:
466   //   A class S is a standard-layout class if it:
467   //     -- has at most one base class subobject of any given type
468   //
469   // Note that we only need to check this for classes with more than one base
470   // class. If there's only one base class, and it's standard layout, then
471   // we know there are no repeated base classes.
472   if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
473     data().IsStandardLayout = false;
474 
475   if (VBases.empty()) {
476     data().IsParsingBaseSpecifiers = false;
477     return;
478   }
479 
480   // Create base specifier for any direct or indirect virtual bases.
481   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
482   data().NumVBases = VBases.size();
483   for (int I = 0, E = VBases.size(); I != E; ++I) {
484     QualType Type = VBases[I]->getType();
485     if (!Type->isDependentType())
486       addedClassSubobject(Type->getAsCXXRecordDecl());
487     data().getVBases()[I] = *VBases[I];
488   }
489 
490   data().IsParsingBaseSpecifiers = false;
491 }
492 
493 unsigned CXXRecordDecl::getODRHash() const {
494   assert(hasDefinition() && "ODRHash only for records with definitions");
495 
496   // Previously calculated hash is stored in DefinitionData.
497   if (DefinitionData->HasODRHash)
498     return DefinitionData->ODRHash;
499 
500   // Only calculate hash on first call of getODRHash per record.
501   ODRHash Hash;
502   Hash.AddCXXRecordDecl(getDefinition());
503   DefinitionData->HasODRHash = true;
504   DefinitionData->ODRHash = Hash.CalculateHash();
505 
506   return DefinitionData->ODRHash;
507 }
508 
509 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
510   // C++11 [class.copy]p11:
511   //   A defaulted copy/move constructor for a class X is defined as
512   //   deleted if X has:
513   //    -- a direct or virtual base class B that cannot be copied/moved [...]
514   //    -- a non-static data member of class type M (or array thereof)
515   //       that cannot be copied or moved [...]
516   if (!Subobj->hasSimpleCopyConstructor())
517     data().NeedOverloadResolutionForCopyConstructor = true;
518   if (!Subobj->hasSimpleMoveConstructor())
519     data().NeedOverloadResolutionForMoveConstructor = true;
520 
521   // C++11 [class.copy]p23:
522   //   A defaulted copy/move assignment operator for a class X is defined as
523   //   deleted if X has:
524   //    -- a direct or virtual base class B that cannot be copied/moved [...]
525   //    -- a non-static data member of class type M (or array thereof)
526   //        that cannot be copied or moved [...]
527   if (!Subobj->hasSimpleCopyAssignment())
528     data().NeedOverloadResolutionForCopyAssignment = true;
529   if (!Subobj->hasSimpleMoveAssignment())
530     data().NeedOverloadResolutionForMoveAssignment = true;
531 
532   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
533   //   A defaulted [ctor or dtor] for a class X is defined as
534   //   deleted if X has:
535   //    -- any direct or virtual base class [...] has a type with a destructor
536   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
537   //    -- any non-static data member has a type with a destructor
538   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
539   if (!Subobj->hasSimpleDestructor()) {
540     data().NeedOverloadResolutionForCopyConstructor = true;
541     data().NeedOverloadResolutionForMoveConstructor = true;
542     data().NeedOverloadResolutionForDestructor = true;
543   }
544 
545   // C++2a [dcl.constexpr]p4:
546   //   The definition of a constexpr destructor [shall] satisfy the
547   //   following requirement:
548   //   -- for every subobject of class type or (possibly multi-dimensional)
549   //      array thereof, that class type shall have a constexpr destructor
550   if (!Subobj->hasConstexprDestructor())
551     data().DefaultedDestructorIsConstexpr = false;
552 
553   // C++20 [temp.param]p7:
554   //   A structural type is [...] a literal class type [for which] the types
555   //   of all base classes and non-static data members are structural types or
556   //   (possibly multi-dimensional) array thereof
557   if (!Subobj->data().StructuralIfLiteral)
558     data().StructuralIfLiteral = false;
559 }
560 
561 bool CXXRecordDecl::hasConstexprDestructor() const {
562   auto *Dtor = getDestructor();
563   return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr();
564 }
565 
566 bool CXXRecordDecl::hasAnyDependentBases() const {
567   if (!isDependentContext())
568     return false;
569 
570   return !forallBases([](const CXXRecordDecl *) { return true; });
571 }
572 
573 bool CXXRecordDecl::isTriviallyCopyable() const {
574   // C++0x [class]p5:
575   //   A trivially copyable class is a class that:
576   //   -- has no non-trivial copy constructors,
577   if (hasNonTrivialCopyConstructor()) return false;
578   //   -- has no non-trivial move constructors,
579   if (hasNonTrivialMoveConstructor()) return false;
580   //   -- has no non-trivial copy assignment operators,
581   if (hasNonTrivialCopyAssignment()) return false;
582   //   -- has no non-trivial move assignment operators, and
583   if (hasNonTrivialMoveAssignment()) return false;
584   //   -- has a trivial destructor.
585   if (!hasTrivialDestructor()) return false;
586 
587   return true;
588 }
589 
590 void CXXRecordDecl::markedVirtualFunctionPure() {
591   // C++ [class.abstract]p2:
592   //   A class is abstract if it has at least one pure virtual function.
593   data().Abstract = true;
594 }
595 
596 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
597     ASTContext &Ctx, const CXXRecordDecl *XFirst) {
598   if (!getNumBases())
599     return false;
600 
601   llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
602   llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
603   SmallVector<const CXXRecordDecl*, 8> WorkList;
604 
605   // Visit a type that we have determined is an element of M(S).
606   auto Visit = [&](const CXXRecordDecl *RD) -> bool {
607     RD = RD->getCanonicalDecl();
608 
609     // C++2a [class]p8:
610     //   A class S is a standard-layout class if it [...] has no element of the
611     //   set M(S) of types as a base class.
612     //
613     // If we find a subobject of an empty type, it might also be a base class,
614     // so we'll need to walk the base classes to check.
615     if (!RD->data().HasBasesWithFields) {
616       // Walk the bases the first time, stopping if we find the type. Build a
617       // set of them so we don't need to walk them again.
618       if (Bases.empty()) {
619         bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
620           Base = Base->getCanonicalDecl();
621           if (RD == Base)
622             return false;
623           Bases.insert(Base);
624           return true;
625         });
626         if (RDIsBase)
627           return true;
628       } else {
629         if (Bases.count(RD))
630           return true;
631       }
632     }
633 
634     if (M.insert(RD).second)
635       WorkList.push_back(RD);
636     return false;
637   };
638 
639   if (Visit(XFirst))
640     return true;
641 
642   while (!WorkList.empty()) {
643     const CXXRecordDecl *X = WorkList.pop_back_val();
644 
645     // FIXME: We don't check the bases of X. That matches the standard, but
646     // that sure looks like a wording bug.
647 
648     //   -- If X is a non-union class type with a non-static data member
649     //      [recurse to each field] that is either of zero size or is the
650     //      first non-static data member of X
651     //   -- If X is a union type, [recurse to union members]
652     bool IsFirstField = true;
653     for (auto *FD : X->fields()) {
654       // FIXME: Should we really care about the type of the first non-static
655       // data member of a non-union if there are preceding unnamed bit-fields?
656       if (FD->isUnnamedBitfield())
657         continue;
658 
659       if (!IsFirstField && !FD->isZeroSize(Ctx))
660         continue;
661 
662       //   -- If X is n array type, [visit the element type]
663       QualType T = Ctx.getBaseElementType(FD->getType());
664       if (auto *RD = T->getAsCXXRecordDecl())
665         if (Visit(RD))
666           return true;
667 
668       if (!X->isUnion())
669         IsFirstField = false;
670     }
671   }
672 
673   return false;
674 }
675 
676 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
677   assert(isLambda() && "not a lambda");
678 
679   // C++2a [expr.prim.lambda.capture]p11:
680   //   The closure type associated with a lambda-expression has no default
681   //   constructor if the lambda-expression has a lambda-capture and a
682   //   defaulted default constructor otherwise. It has a deleted copy
683   //   assignment operator if the lambda-expression has a lambda-capture and
684   //   defaulted copy and move assignment operators otherwise.
685   //
686   // C++17 [expr.prim.lambda]p21:
687   //   The closure type associated with a lambda-expression has no default
688   //   constructor and a deleted copy assignment operator.
689   if (!isCapturelessLambda())
690     return false;
691   return getASTContext().getLangOpts().CPlusPlus20;
692 }
693 
694 void CXXRecordDecl::addedMember(Decl *D) {
695   if (!D->isImplicit() && !isa<FieldDecl>(D) && !isa<IndirectFieldDecl>(D) &&
696       (!isa<TagDecl>(D) ||
697        cast<TagDecl>(D)->getTagKind() == TagTypeKind::Class ||
698        cast<TagDecl>(D)->getTagKind() == TagTypeKind::Interface))
699     data().HasOnlyCMembers = false;
700 
701   // Ignore friends and invalid declarations.
702   if (D->getFriendObjectKind() || D->isInvalidDecl())
703     return;
704 
705   auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
706   if (FunTmpl)
707     D = FunTmpl->getTemplatedDecl();
708 
709   // FIXME: Pass NamedDecl* to addedMember?
710   Decl *DUnderlying = D;
711   if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
712     DUnderlying = ND->getUnderlyingDecl();
713     if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
714       DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
715   }
716 
717   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
718     if (Method->isVirtual()) {
719       // C++ [dcl.init.aggr]p1:
720       //   An aggregate is an array or a class with [...] no virtual functions.
721       data().Aggregate = false;
722 
723       // C++ [class]p4:
724       //   A POD-struct is an aggregate class...
725       data().PlainOldData = false;
726 
727       // C++14 [meta.unary.prop]p4:
728       //   T is a class type [...] with [...] no virtual member functions...
729       data().Empty = false;
730 
731       // C++ [class.virtual]p1:
732       //   A class that declares or inherits a virtual function is called a
733       //   polymorphic class.
734       data().Polymorphic = true;
735 
736       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
737       //   A [default constructor, copy/move constructor, or copy/move
738       //   assignment operator for a class X] is trivial [...] if:
739       //    -- class X has no virtual functions [...]
740       data().HasTrivialSpecialMembers &= SMF_Destructor;
741       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
742 
743       // C++0x [class]p7:
744       //   A standard-layout class is a class that: [...]
745       //    -- has no virtual functions
746       data().IsStandardLayout = false;
747       data().IsCXX11StandardLayout = false;
748     }
749   }
750 
751   // Notify the listener if an implicit member was added after the definition
752   // was completed.
753   if (!isBeingDefined() && D->isImplicit())
754     if (ASTMutationListener *L = getASTMutationListener())
755       L->AddedCXXImplicitMember(data().Definition, D);
756 
757   // The kind of special member this declaration is, if any.
758   unsigned SMKind = 0;
759 
760   // Handle constructors.
761   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
762     if (Constructor->isInheritingConstructor()) {
763       // Ignore constructor shadow declarations. They are lazily created and
764       // so shouldn't affect any properties of the class.
765     } else {
766       if (!Constructor->isImplicit()) {
767         // Note that we have a user-declared constructor.
768         data().UserDeclaredConstructor = true;
769 
770         const TargetInfo &TI = getASTContext().getTargetInfo();
771         if ((!Constructor->isDeleted() && !Constructor->isDefaulted()) ||
772             !TI.areDefaultedSMFStillPOD(getLangOpts())) {
773           // C++ [class]p4:
774           //   A POD-struct is an aggregate class [...]
775           // Since the POD bit is meant to be C++03 POD-ness, clear it even if
776           // the type is technically an aggregate in C++0x since it wouldn't be
777           // in 03.
778           data().PlainOldData = false;
779         }
780       }
781 
782       if (Constructor->isDefaultConstructor()) {
783         SMKind |= SMF_DefaultConstructor;
784 
785         if (Constructor->isUserProvided())
786           data().UserProvidedDefaultConstructor = true;
787         if (Constructor->isConstexpr())
788           data().HasConstexprDefaultConstructor = true;
789         if (Constructor->isDefaulted())
790           data().HasDefaultedDefaultConstructor = true;
791       }
792 
793       if (!FunTmpl) {
794         unsigned Quals;
795         if (Constructor->isCopyConstructor(Quals)) {
796           SMKind |= SMF_CopyConstructor;
797 
798           if (Quals & Qualifiers::Const)
799             data().HasDeclaredCopyConstructorWithConstParam = true;
800         } else if (Constructor->isMoveConstructor())
801           SMKind |= SMF_MoveConstructor;
802       }
803 
804       // C++11 [dcl.init.aggr]p1: DR1518
805       //   An aggregate is an array or a class with no user-provided [or]
806       //   explicit [...] constructors
807       // C++20 [dcl.init.aggr]p1:
808       //   An aggregate is an array or a class with no user-declared [...]
809       //   constructors
810       if (getASTContext().getLangOpts().CPlusPlus20
811               ? !Constructor->isImplicit()
812               : (Constructor->isUserProvided() || Constructor->isExplicit()))
813         data().Aggregate = false;
814     }
815   }
816 
817   // Handle constructors, including those inherited from base classes.
818   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
819     // Record if we see any constexpr constructors which are neither copy
820     // nor move constructors.
821     // C++1z [basic.types]p10:
822     //   [...] has at least one constexpr constructor or constructor template
823     //   (possibly inherited from a base class) that is not a copy or move
824     //   constructor [...]
825     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
826       data().HasConstexprNonCopyMoveConstructor = true;
827     if (!isa<CXXConstructorDecl>(D) && Constructor->isDefaultConstructor())
828       data().HasInheritedDefaultConstructor = true;
829   }
830 
831   // Handle member functions.
832   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
833     if (isa<CXXDestructorDecl>(D))
834       SMKind |= SMF_Destructor;
835 
836     if (Method->isCopyAssignmentOperator()) {
837       SMKind |= SMF_CopyAssignment;
838 
839       const auto *ParamTy =
840           Method->getNonObjectParameter(0)->getType()->getAs<ReferenceType>();
841       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
842         data().HasDeclaredCopyAssignmentWithConstParam = true;
843     }
844 
845     if (Method->isMoveAssignmentOperator())
846       SMKind |= SMF_MoveAssignment;
847 
848     // Keep the list of conversion functions up-to-date.
849     if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
850       // FIXME: We use the 'unsafe' accessor for the access specifier here,
851       // because Sema may not have set it yet. That's really just a misdesign
852       // in Sema. However, LLDB *will* have set the access specifier correctly,
853       // and adds declarations after the class is technically completed,
854       // so completeDefinition()'s overriding of the access specifiers doesn't
855       // work.
856       AccessSpecifier AS = Conversion->getAccessUnsafe();
857 
858       if (Conversion->getPrimaryTemplate()) {
859         // We don't record specializations.
860       } else {
861         ASTContext &Ctx = getASTContext();
862         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
863         NamedDecl *Primary =
864             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
865         if (Primary->getPreviousDecl())
866           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
867                               Primary, AS);
868         else
869           Conversions.addDecl(Ctx, Primary, AS);
870       }
871     }
872 
873     if (SMKind) {
874       // If this is the first declaration of a special member, we no longer have
875       // an implicit trivial special member.
876       data().HasTrivialSpecialMembers &=
877           data().DeclaredSpecialMembers | ~SMKind;
878       data().HasTrivialSpecialMembersForCall &=
879           data().DeclaredSpecialMembers | ~SMKind;
880 
881       // Note when we have declared a declared special member, and suppress the
882       // implicit declaration of this special member.
883       data().DeclaredSpecialMembers |= SMKind;
884       if (!Method->isImplicit()) {
885         data().UserDeclaredSpecialMembers |= SMKind;
886 
887         const TargetInfo &TI = getASTContext().getTargetInfo();
888         if ((!Method->isDeleted() && !Method->isDefaulted() &&
889              SMKind != SMF_MoveAssignment) ||
890             !TI.areDefaultedSMFStillPOD(getLangOpts())) {
891           // C++03 [class]p4:
892           //   A POD-struct is an aggregate class that has [...] no user-defined
893           //   copy assignment operator and no user-defined destructor.
894           //
895           // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
896           // aggregates could not have any constructors, clear it even for an
897           // explicitly defaulted or deleted constructor.
898           // type is technically an aggregate in C++0x since it wouldn't be in
899           // 03.
900           //
901           // Also, a user-declared move assignment operator makes a class
902           // non-POD. This is an extension in C++03.
903           data().PlainOldData = false;
904         }
905       }
906       // When instantiating a class, we delay updating the destructor and
907       // triviality properties of the class until selecting a destructor and
908       // computing the eligibility of its special member functions. This is
909       // because there might be function constraints that we need to evaluate
910       // and compare later in the instantiation.
911       if (!Method->isIneligibleOrNotSelected()) {
912         addedEligibleSpecialMemberFunction(Method, SMKind);
913       }
914     }
915 
916     return;
917   }
918 
919   // Handle non-static data members.
920   if (const auto *Field = dyn_cast<FieldDecl>(D)) {
921     ASTContext &Context = getASTContext();
922 
923     // C++2a [class]p7:
924     //   A standard-layout class is a class that:
925     //    [...]
926     //    -- has all non-static data members and bit-fields in the class and
927     //       its base classes first declared in the same class
928     if (data().HasBasesWithFields)
929       data().IsStandardLayout = false;
930 
931     // C++ [class.bit]p2:
932     //   A declaration for a bit-field that omits the identifier declares an
933     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
934     //   initialized.
935     if (Field->isUnnamedBitfield()) {
936       // C++ [meta.unary.prop]p4: [LWG2358]
937       //   T is a class type [...] with [...] no unnamed bit-fields of non-zero
938       //   length
939       if (data().Empty && !Field->isZeroLengthBitField(Context) &&
940           Context.getLangOpts().getClangABICompat() >
941               LangOptions::ClangABI::Ver6)
942         data().Empty = false;
943       return;
944     }
945 
946     // C++11 [class]p7:
947     //   A standard-layout class is a class that:
948     //    -- either has no non-static data members in the most derived class
949     //       [...] or has no base classes with non-static data members
950     if (data().HasBasesWithNonStaticDataMembers)
951       data().IsCXX11StandardLayout = false;
952 
953     // C++ [dcl.init.aggr]p1:
954     //   An aggregate is an array or a class (clause 9) with [...] no
955     //   private or protected non-static data members (clause 11).
956     //
957     // A POD must be an aggregate.
958     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
959       data().Aggregate = false;
960       data().PlainOldData = false;
961 
962       // C++20 [temp.param]p7:
963       //   A structural type is [...] a literal class type [for which] all
964       //   non-static data members are public
965       data().StructuralIfLiteral = false;
966     }
967 
968     // Track whether this is the first field. We use this when checking
969     // whether the class is standard-layout below.
970     bool IsFirstField = !data().HasPrivateFields &&
971                         !data().HasProtectedFields && !data().HasPublicFields;
972 
973     // C++0x [class]p7:
974     //   A standard-layout class is a class that:
975     //    [...]
976     //    -- has the same access control for all non-static data members,
977     switch (D->getAccess()) {
978     case AS_private:    data().HasPrivateFields = true;   break;
979     case AS_protected:  data().HasProtectedFields = true; break;
980     case AS_public:     data().HasPublicFields = true;    break;
981     case AS_none:       llvm_unreachable("Invalid access specifier");
982     };
983     if ((data().HasPrivateFields + data().HasProtectedFields +
984          data().HasPublicFields) > 1) {
985       data().IsStandardLayout = false;
986       data().IsCXX11StandardLayout = false;
987     }
988 
989     // Keep track of the presence of mutable fields.
990     if (Field->isMutable()) {
991       data().HasMutableFields = true;
992 
993       // C++20 [temp.param]p7:
994       //   A structural type is [...] a literal class type [for which] all
995       //   non-static data members are public
996       data().StructuralIfLiteral = false;
997     }
998 
999     // C++11 [class.union]p8, DR1460:
1000     //   If X is a union, a non-static data member of X that is not an anonymous
1001     //   union is a variant member of X.
1002     if (isUnion() && !Field->isAnonymousStructOrUnion())
1003       data().HasVariantMembers = true;
1004 
1005     // C++0x [class]p9:
1006     //   A POD struct is a class that is both a trivial class and a
1007     //   standard-layout class, and has no non-static data members of type
1008     //   non-POD struct, non-POD union (or array of such types).
1009     //
1010     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
1011     // that does not explicitly have no lifetime makes the class a non-POD.
1012     QualType T = Context.getBaseElementType(Field->getType());
1013     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
1014       if (T.hasNonTrivialObjCLifetime()) {
1015         // Objective-C Automatic Reference Counting:
1016         //   If a class has a non-static data member of Objective-C pointer
1017         //   type (or array thereof), it is a non-POD type and its
1018         //   default constructor (if any), copy constructor, move constructor,
1019         //   copy assignment operator, move assignment operator, and destructor are
1020         //   non-trivial.
1021         setHasObjectMember(true);
1022         struct DefinitionData &Data = data();
1023         Data.PlainOldData = false;
1024         Data.HasTrivialSpecialMembers = 0;
1025 
1026         // __strong or __weak fields do not make special functions non-trivial
1027         // for the purpose of calls.
1028         Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
1029         if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
1030           data().HasTrivialSpecialMembersForCall = 0;
1031 
1032         // Structs with __weak fields should never be passed directly.
1033         if (LT == Qualifiers::OCL_Weak)
1034           setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs);
1035 
1036         Data.HasIrrelevantDestructor = false;
1037 
1038         if (isUnion()) {
1039           data().DefaultedCopyConstructorIsDeleted = true;
1040           data().DefaultedMoveConstructorIsDeleted = true;
1041           data().DefaultedCopyAssignmentIsDeleted = true;
1042           data().DefaultedMoveAssignmentIsDeleted = true;
1043           data().DefaultedDestructorIsDeleted = true;
1044           data().NeedOverloadResolutionForCopyConstructor = true;
1045           data().NeedOverloadResolutionForMoveConstructor = true;
1046           data().NeedOverloadResolutionForCopyAssignment = true;
1047           data().NeedOverloadResolutionForMoveAssignment = true;
1048           data().NeedOverloadResolutionForDestructor = true;
1049         }
1050       } else if (!Context.getLangOpts().ObjCAutoRefCount) {
1051         setHasObjectMember(true);
1052       }
1053     } else if (!T.isCXX98PODType(Context))
1054       data().PlainOldData = false;
1055 
1056     if (T->isReferenceType()) {
1057       if (!Field->hasInClassInitializer())
1058         data().HasUninitializedReferenceMember = true;
1059 
1060       // C++0x [class]p7:
1061       //   A standard-layout class is a class that:
1062       //    -- has no non-static data members of type [...] reference,
1063       data().IsStandardLayout = false;
1064       data().IsCXX11StandardLayout = false;
1065 
1066       // C++1z [class.copy.ctor]p10:
1067       //   A defaulted copy constructor for a class X is defined as deleted if X has:
1068       //    -- a non-static data member of rvalue reference type
1069       if (T->isRValueReferenceType())
1070         data().DefaultedCopyConstructorIsDeleted = true;
1071     }
1072 
1073     if (!Field->hasInClassInitializer() && !Field->isMutable()) {
1074       if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
1075         if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
1076           data().HasUninitializedFields = true;
1077       } else {
1078         data().HasUninitializedFields = true;
1079       }
1080     }
1081 
1082     // Record if this field is the first non-literal or volatile field or base.
1083     if (!T->isLiteralType(Context) || T.isVolatileQualified())
1084       data().HasNonLiteralTypeFieldsOrBases = true;
1085 
1086     if (Field->hasInClassInitializer() ||
1087         (Field->isAnonymousStructOrUnion() &&
1088          Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
1089       data().HasInClassInitializer = true;
1090 
1091       // C++11 [class]p5:
1092       //   A default constructor is trivial if [...] no non-static data member
1093       //   of its class has a brace-or-equal-initializer.
1094       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1095 
1096       // C++11 [dcl.init.aggr]p1:
1097       //   An aggregate is a [...] class with [...] no
1098       //   brace-or-equal-initializers for non-static data members.
1099       //
1100       // This rule was removed in C++14.
1101       if (!getASTContext().getLangOpts().CPlusPlus14)
1102         data().Aggregate = false;
1103 
1104       // C++11 [class]p10:
1105       //   A POD struct is [...] a trivial class.
1106       data().PlainOldData = false;
1107     }
1108 
1109     // C++11 [class.copy]p23:
1110     //   A defaulted copy/move assignment operator for a class X is defined
1111     //   as deleted if X has:
1112     //    -- a non-static data member of reference type
1113     if (T->isReferenceType()) {
1114       data().DefaultedCopyAssignmentIsDeleted = true;
1115       data().DefaultedMoveAssignmentIsDeleted = true;
1116     }
1117 
1118     // Bitfields of length 0 are also zero-sized, but we already bailed out for
1119     // those because they are always unnamed.
1120     bool IsZeroSize = Field->isZeroSize(Context);
1121 
1122     if (const auto *RecordTy = T->getAs<RecordType>()) {
1123       auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
1124       if (FieldRec->getDefinition()) {
1125         addedClassSubobject(FieldRec);
1126 
1127         // We may need to perform overload resolution to determine whether a
1128         // field can be moved if it's const or volatile qualified.
1129         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
1130           // We need to care about 'const' for the copy constructor because an
1131           // implicit copy constructor might be declared with a non-const
1132           // parameter.
1133           data().NeedOverloadResolutionForCopyConstructor = true;
1134           data().NeedOverloadResolutionForMoveConstructor = true;
1135           data().NeedOverloadResolutionForCopyAssignment = true;
1136           data().NeedOverloadResolutionForMoveAssignment = true;
1137         }
1138 
1139         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
1140         //   A defaulted [special member] for a class X is defined as
1141         //   deleted if:
1142         //    -- X is a union-like class that has a variant member with a
1143         //       non-trivial [corresponding special member]
1144         if (isUnion()) {
1145           if (FieldRec->hasNonTrivialCopyConstructor())
1146             data().DefaultedCopyConstructorIsDeleted = true;
1147           if (FieldRec->hasNonTrivialMoveConstructor())
1148             data().DefaultedMoveConstructorIsDeleted = true;
1149           if (FieldRec->hasNonTrivialCopyAssignment())
1150             data().DefaultedCopyAssignmentIsDeleted = true;
1151           if (FieldRec->hasNonTrivialMoveAssignment())
1152             data().DefaultedMoveAssignmentIsDeleted = true;
1153           if (FieldRec->hasNonTrivialDestructor())
1154             data().DefaultedDestructorIsDeleted = true;
1155         }
1156 
1157         // For an anonymous union member, our overload resolution will perform
1158         // overload resolution for its members.
1159         if (Field->isAnonymousStructOrUnion()) {
1160           data().NeedOverloadResolutionForCopyConstructor |=
1161               FieldRec->data().NeedOverloadResolutionForCopyConstructor;
1162           data().NeedOverloadResolutionForMoveConstructor |=
1163               FieldRec->data().NeedOverloadResolutionForMoveConstructor;
1164           data().NeedOverloadResolutionForCopyAssignment |=
1165               FieldRec->data().NeedOverloadResolutionForCopyAssignment;
1166           data().NeedOverloadResolutionForMoveAssignment |=
1167               FieldRec->data().NeedOverloadResolutionForMoveAssignment;
1168           data().NeedOverloadResolutionForDestructor |=
1169               FieldRec->data().NeedOverloadResolutionForDestructor;
1170         }
1171 
1172         // C++0x [class.ctor]p5:
1173         //   A default constructor is trivial [...] if:
1174         //    -- for all the non-static data members of its class that are of
1175         //       class type (or array thereof), each such class has a trivial
1176         //       default constructor.
1177         if (!FieldRec->hasTrivialDefaultConstructor())
1178           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1179 
1180         // C++0x [class.copy]p13:
1181         //   A copy/move constructor for class X is trivial if [...]
1182         //    [...]
1183         //    -- for each non-static data member of X that is of class type (or
1184         //       an array thereof), the constructor selected to copy/move that
1185         //       member is trivial;
1186         if (!FieldRec->hasTrivialCopyConstructor())
1187           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
1188 
1189         if (!FieldRec->hasTrivialCopyConstructorForCall())
1190           data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
1191 
1192         // If the field doesn't have a simple move constructor, we'll eagerly
1193         // declare the move constructor for this class and we'll decide whether
1194         // it's trivial then.
1195         if (!FieldRec->hasTrivialMoveConstructor())
1196           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
1197 
1198         if (!FieldRec->hasTrivialMoveConstructorForCall())
1199           data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
1200 
1201         // C++0x [class.copy]p27:
1202         //   A copy/move assignment operator for class X is trivial if [...]
1203         //    [...]
1204         //    -- for each non-static data member of X that is of class type (or
1205         //       an array thereof), the assignment operator selected to
1206         //       copy/move that member is trivial;
1207         if (!FieldRec->hasTrivialCopyAssignment())
1208           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
1209         // If the field doesn't have a simple move assignment, we'll eagerly
1210         // declare the move assignment for this class and we'll decide whether
1211         // it's trivial then.
1212         if (!FieldRec->hasTrivialMoveAssignment())
1213           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
1214 
1215         if (!FieldRec->hasTrivialDestructor())
1216           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1217         if (!FieldRec->hasTrivialDestructorForCall())
1218           data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1219         if (!FieldRec->hasIrrelevantDestructor())
1220           data().HasIrrelevantDestructor = false;
1221         if (FieldRec->isAnyDestructorNoReturn())
1222           data().IsAnyDestructorNoReturn = true;
1223         if (FieldRec->hasObjectMember())
1224           setHasObjectMember(true);
1225         if (FieldRec->hasVolatileMember())
1226           setHasVolatileMember(true);
1227         if (FieldRec->getArgPassingRestrictions() ==
1228             RecordArgPassingKind::CanNeverPassInRegs)
1229           setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs);
1230 
1231         // C++0x [class]p7:
1232         //   A standard-layout class is a class that:
1233         //    -- has no non-static data members of type non-standard-layout
1234         //       class (or array of such types) [...]
1235         if (!FieldRec->isStandardLayout())
1236           data().IsStandardLayout = false;
1237         if (!FieldRec->isCXX11StandardLayout())
1238           data().IsCXX11StandardLayout = false;
1239 
1240         // C++2a [class]p7:
1241         //   A standard-layout class is a class that:
1242         //    [...]
1243         //    -- has no element of the set M(S) of types as a base class.
1244         if (data().IsStandardLayout &&
1245             (isUnion() || IsFirstField || IsZeroSize) &&
1246             hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
1247           data().IsStandardLayout = false;
1248 
1249         // C++11 [class]p7:
1250         //   A standard-layout class is a class that:
1251         //    -- has no base classes of the same type as the first non-static
1252         //       data member
1253         if (data().IsCXX11StandardLayout && IsFirstField) {
1254           // FIXME: We should check all base classes here, not just direct
1255           // base classes.
1256           for (const auto &BI : bases()) {
1257             if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
1258               data().IsCXX11StandardLayout = false;
1259               break;
1260             }
1261           }
1262         }
1263 
1264         // Keep track of the presence of mutable fields.
1265         if (FieldRec->hasMutableFields())
1266           data().HasMutableFields = true;
1267 
1268         if (Field->isMutable()) {
1269           // Our copy constructor/assignment might call something other than
1270           // the subobject's copy constructor/assignment if it's mutable and of
1271           // class type.
1272           data().NeedOverloadResolutionForCopyConstructor = true;
1273           data().NeedOverloadResolutionForCopyAssignment = true;
1274         }
1275 
1276         // C++11 [class.copy]p13:
1277         //   If the implicitly-defined constructor would satisfy the
1278         //   requirements of a constexpr constructor, the implicitly-defined
1279         //   constructor is constexpr.
1280         // C++11 [dcl.constexpr]p4:
1281         //    -- every constructor involved in initializing non-static data
1282         //       members [...] shall be a constexpr constructor
1283         if (!Field->hasInClassInitializer() &&
1284             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
1285           // The standard requires any in-class initializer to be a constant
1286           // expression. We consider this to be a defect.
1287           data().DefaultedDefaultConstructorIsConstexpr = false;
1288 
1289         // C++11 [class.copy]p8:
1290         //   The implicitly-declared copy constructor for a class X will have
1291         //   the form 'X::X(const X&)' if each potentially constructed subobject
1292         //   of a class type M (or array thereof) has a copy constructor whose
1293         //   first parameter is of type 'const M&' or 'const volatile M&'.
1294         if (!FieldRec->hasCopyConstructorWithConstParam())
1295           data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
1296 
1297         // C++11 [class.copy]p18:
1298         //   The implicitly-declared copy assignment oeprator for a class X will
1299         //   have the form 'X& X::operator=(const X&)' if [...] for all the
1300         //   non-static data members of X that are of a class type M (or array
1301         //   thereof), each such class type has a copy assignment operator whose
1302         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
1303         if (!FieldRec->hasCopyAssignmentWithConstParam())
1304           data().ImplicitCopyAssignmentHasConstParam = false;
1305 
1306         if (FieldRec->hasUninitializedReferenceMember() &&
1307             !Field->hasInClassInitializer())
1308           data().HasUninitializedReferenceMember = true;
1309 
1310         // C++11 [class.union]p8, DR1460:
1311         //   a non-static data member of an anonymous union that is a member of
1312         //   X is also a variant member of X.
1313         if (FieldRec->hasVariantMembers() &&
1314             Field->isAnonymousStructOrUnion())
1315           data().HasVariantMembers = true;
1316       }
1317     } else {
1318       // Base element type of field is a non-class type.
1319       if (!T->isLiteralType(Context) ||
1320           (!Field->hasInClassInitializer() && !isUnion() &&
1321            !Context.getLangOpts().CPlusPlus20))
1322         data().DefaultedDefaultConstructorIsConstexpr = false;
1323 
1324       // C++11 [class.copy]p23:
1325       //   A defaulted copy/move assignment operator for a class X is defined
1326       //   as deleted if X has:
1327       //    -- a non-static data member of const non-class type (or array
1328       //       thereof)
1329       if (T.isConstQualified()) {
1330         data().DefaultedCopyAssignmentIsDeleted = true;
1331         data().DefaultedMoveAssignmentIsDeleted = true;
1332       }
1333 
1334       // C++20 [temp.param]p7:
1335       //   A structural type is [...] a literal class type [for which] the
1336       //   types of all non-static data members are structural types or
1337       //   (possibly multidimensional) array thereof
1338       // We deal with class types elsewhere.
1339       if (!T->isStructuralType())
1340         data().StructuralIfLiteral = false;
1341     }
1342 
1343     // C++14 [meta.unary.prop]p4:
1344     //   T is a class type [...] with [...] no non-static data members other
1345     //   than subobjects of zero size
1346     if (data().Empty && !IsZeroSize)
1347       data().Empty = false;
1348   }
1349 
1350   // Handle using declarations of conversion functions.
1351   if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
1352     if (Shadow->getDeclName().getNameKind()
1353           == DeclarationName::CXXConversionFunctionName) {
1354       ASTContext &Ctx = getASTContext();
1355       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
1356     }
1357   }
1358 
1359   if (const auto *Using = dyn_cast<UsingDecl>(D)) {
1360     if (Using->getDeclName().getNameKind() ==
1361         DeclarationName::CXXConstructorName) {
1362       data().HasInheritedConstructor = true;
1363       // C++1z [dcl.init.aggr]p1:
1364       //  An aggregate is [...] a class [...] with no inherited constructors
1365       data().Aggregate = false;
1366     }
1367 
1368     if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
1369       data().HasInheritedAssignment = true;
1370   }
1371 }
1372 
1373 void CXXRecordDecl::addedSelectedDestructor(CXXDestructorDecl *DD) {
1374   DD->setIneligibleOrNotSelected(false);
1375   addedEligibleSpecialMemberFunction(DD, SMF_Destructor);
1376 }
1377 
1378 void CXXRecordDecl::addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD,
1379                                                        unsigned SMKind) {
1380   // FIXME: We shouldn't change DeclaredNonTrivialSpecialMembers if `MD` is
1381   // a function template, but this needs CWG attention before we break ABI.
1382   // See https://github.com/llvm/llvm-project/issues/59206
1383 
1384   if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1385     if (DD->isUserProvided())
1386       data().HasIrrelevantDestructor = false;
1387     // If the destructor is explicitly defaulted and not trivial or not public
1388     // or if the destructor is deleted, we clear HasIrrelevantDestructor in
1389     // finishedDefaultedOrDeletedMember.
1390 
1391     // C++11 [class.dtor]p5:
1392     //   A destructor is trivial if [...] the destructor is not virtual.
1393     if (DD->isVirtual()) {
1394       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1395       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1396     }
1397 
1398     if (DD->isNoReturn())
1399       data().IsAnyDestructorNoReturn = true;
1400   }
1401 
1402   if (!MD->isImplicit() && !MD->isUserProvided()) {
1403     // This method is user-declared but not user-provided. We can't work
1404     // out whether it's trivial yet (not until we get to the end of the
1405     // class). We'll handle this method in
1406     // finishedDefaultedOrDeletedMember.
1407   } else if (MD->isTrivial()) {
1408     data().HasTrivialSpecialMembers |= SMKind;
1409     data().HasTrivialSpecialMembersForCall |= SMKind;
1410   } else if (MD->isTrivialForCall()) {
1411     data().HasTrivialSpecialMembersForCall |= SMKind;
1412     data().DeclaredNonTrivialSpecialMembers |= SMKind;
1413   } else {
1414     data().DeclaredNonTrivialSpecialMembers |= SMKind;
1415     // If this is a user-provided function, do not set
1416     // DeclaredNonTrivialSpecialMembersForCall here since we don't know
1417     // yet whether the method would be considered non-trivial for the
1418     // purpose of calls (attribute "trivial_abi" can be dropped from the
1419     // class later, which can change the special method's triviality).
1420     if (!MD->isUserProvided())
1421       data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1422   }
1423 }
1424 
1425 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
1426   assert(!D->isImplicit() && !D->isUserProvided());
1427 
1428   // The kind of special member this declaration is, if any.
1429   unsigned SMKind = 0;
1430 
1431   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1432     if (Constructor->isDefaultConstructor()) {
1433       SMKind |= SMF_DefaultConstructor;
1434       if (Constructor->isConstexpr())
1435         data().HasConstexprDefaultConstructor = true;
1436     }
1437     if (Constructor->isCopyConstructor())
1438       SMKind |= SMF_CopyConstructor;
1439     else if (Constructor->isMoveConstructor())
1440       SMKind |= SMF_MoveConstructor;
1441     else if (Constructor->isConstexpr())
1442       // We may now know that the constructor is constexpr.
1443       data().HasConstexprNonCopyMoveConstructor = true;
1444   } else if (isa<CXXDestructorDecl>(D)) {
1445     SMKind |= SMF_Destructor;
1446     if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1447       data().HasIrrelevantDestructor = false;
1448   } else if (D->isCopyAssignmentOperator())
1449     SMKind |= SMF_CopyAssignment;
1450   else if (D->isMoveAssignmentOperator())
1451     SMKind |= SMF_MoveAssignment;
1452 
1453   // Update which trivial / non-trivial special members we have.
1454   // addedMember will have skipped this step for this member.
1455   if (!D->isIneligibleOrNotSelected()) {
1456     if (D->isTrivial())
1457       data().HasTrivialSpecialMembers |= SMKind;
1458     else
1459       data().DeclaredNonTrivialSpecialMembers |= SMKind;
1460   }
1461 }
1462 
1463 void CXXRecordDecl::LambdaDefinitionData::AddCaptureList(ASTContext &Ctx,
1464                                                          Capture *CaptureList) {
1465   Captures.push_back(CaptureList);
1466   if (Captures.size() == 2) {
1467     // The TinyPtrVector member now needs destruction.
1468     Ctx.addDestruction(&Captures);
1469   }
1470 }
1471 
1472 void CXXRecordDecl::setCaptures(ASTContext &Context,
1473                                 ArrayRef<LambdaCapture> Captures) {
1474   CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData();
1475 
1476   // Copy captures.
1477   Data.NumCaptures = Captures.size();
1478   Data.NumExplicitCaptures = 0;
1479   auto *ToCapture = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) *
1480                                                       Captures.size());
1481   Data.AddCaptureList(Context, ToCapture);
1482   for (unsigned I = 0, N = Captures.size(); I != N; ++I) {
1483     if (Captures[I].isExplicit())
1484       ++Data.NumExplicitCaptures;
1485 
1486     new (ToCapture) LambdaCapture(Captures[I]);
1487     ToCapture++;
1488   }
1489 
1490   if (!lambdaIsDefaultConstructibleAndAssignable())
1491     Data.DefaultedCopyAssignmentIsDeleted = true;
1492 }
1493 
1494 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
1495   unsigned SMKind = 0;
1496 
1497   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1498     if (Constructor->isCopyConstructor())
1499       SMKind = SMF_CopyConstructor;
1500     else if (Constructor->isMoveConstructor())
1501       SMKind = SMF_MoveConstructor;
1502   } else if (isa<CXXDestructorDecl>(D))
1503     SMKind = SMF_Destructor;
1504 
1505   if (D->isTrivialForCall())
1506     data().HasTrivialSpecialMembersForCall |= SMKind;
1507   else
1508     data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1509 }
1510 
1511 bool CXXRecordDecl::isCLike() const {
1512   if (getTagKind() == TagTypeKind::Class ||
1513       getTagKind() == TagTypeKind::Interface ||
1514       !TemplateOrInstantiation.isNull())
1515     return false;
1516   if (!hasDefinition())
1517     return true;
1518 
1519   return isPOD() && data().HasOnlyCMembers;
1520 }
1521 
1522 bool CXXRecordDecl::isGenericLambda() const {
1523   if (!isLambda()) return false;
1524   return getLambdaData().IsGenericLambda;
1525 }
1526 
1527 #ifndef NDEBUG
1528 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
1529   for (auto *D : R)
1530     if (!declaresSameEntity(D, R.front()))
1531       return false;
1532   return true;
1533 }
1534 #endif
1535 
1536 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) {
1537   if (!RD.isLambda()) return nullptr;
1538   DeclarationName Name =
1539     RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1540   DeclContext::lookup_result Calls = RD.lookup(Name);
1541 
1542   assert(!Calls.empty() && "Missing lambda call operator!");
1543   assert(allLookupResultsAreTheSame(Calls) &&
1544          "More than one lambda call operator!");
1545   return Calls.front();
1546 }
1547 
1548 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const {
1549   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1550   return  dyn_cast_or_null<FunctionTemplateDecl>(CallOp);
1551 }
1552 
1553 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const {
1554   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1555 
1556   if (CallOp == nullptr)
1557     return nullptr;
1558 
1559   if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
1560     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1561 
1562   return cast<CXXMethodDecl>(CallOp);
1563 }
1564 
1565 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1566   CXXMethodDecl *CallOp = getLambdaCallOperator();
1567   CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv();
1568   return getLambdaStaticInvoker(CC);
1569 }
1570 
1571 static DeclContext::lookup_result
1572 getLambdaStaticInvokers(const CXXRecordDecl &RD) {
1573   assert(RD.isLambda() && "Must be a lambda");
1574   DeclarationName Name =
1575       &RD.getASTContext().Idents.get(getLambdaStaticInvokerName());
1576   return RD.lookup(Name);
1577 }
1578 
1579 static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) {
1580   if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND))
1581     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1582   return cast<CXXMethodDecl>(ND);
1583 }
1584 
1585 CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const {
1586   if (!isLambda())
1587     return nullptr;
1588   DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this);
1589 
1590   for (NamedDecl *ND : Invoker) {
1591     const auto *FTy =
1592         cast<ValueDecl>(ND->getAsFunction())->getType()->castAs<FunctionType>();
1593     if (FTy->getCallConv() == CC)
1594       return getInvokerAsMethod(ND);
1595   }
1596 
1597   return nullptr;
1598 }
1599 
1600 void CXXRecordDecl::getCaptureFields(
1601     llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures,
1602     FieldDecl *&ThisCapture) const {
1603   Captures.clear();
1604   ThisCapture = nullptr;
1605 
1606   LambdaDefinitionData &Lambda = getLambdaData();
1607   for (const LambdaCapture *List : Lambda.Captures) {
1608     RecordDecl::field_iterator Field = field_begin();
1609     for (const LambdaCapture *C = List, *CEnd = C + Lambda.NumCaptures;
1610          C != CEnd; ++C, ++Field) {
1611       if (C->capturesThis())
1612         ThisCapture = *Field;
1613       else if (C->capturesVariable())
1614         Captures[C->getCapturedVar()] = *Field;
1615     }
1616     assert(Field == field_end());
1617   }
1618 }
1619 
1620 TemplateParameterList *
1621 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1622   if (!isGenericLambda()) return nullptr;
1623   CXXMethodDecl *CallOp = getLambdaCallOperator();
1624   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1625     return Tmpl->getTemplateParameters();
1626   return nullptr;
1627 }
1628 
1629 ArrayRef<NamedDecl *>
1630 CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
1631   TemplateParameterList *List = getGenericLambdaTemplateParameterList();
1632   if (!List)
1633     return {};
1634 
1635   assert(std::is_partitioned(List->begin(), List->end(),
1636                              [](const NamedDecl *D) { return !D->isImplicit(); })
1637          && "Explicit template params should be ordered before implicit ones");
1638 
1639   const auto ExplicitEnd = llvm::partition_point(
1640       *List, [](const NamedDecl *D) { return !D->isImplicit(); });
1641   return llvm::ArrayRef(List->begin(), ExplicitEnd);
1642 }
1643 
1644 Decl *CXXRecordDecl::getLambdaContextDecl() const {
1645   assert(isLambda() && "Not a lambda closure type!");
1646   ExternalASTSource *Source = getParentASTContext().getExternalSource();
1647   return getLambdaData().ContextDecl.get(Source);
1648 }
1649 
1650 void CXXRecordDecl::setLambdaNumbering(LambdaNumbering Numbering) {
1651   assert(isLambda() && "Not a lambda closure type!");
1652   getLambdaData().ManglingNumber = Numbering.ManglingNumber;
1653   if (Numbering.DeviceManglingNumber)
1654     getASTContext().DeviceLambdaManglingNumbers[this] =
1655         Numbering.DeviceManglingNumber;
1656   getLambdaData().IndexInContext = Numbering.IndexInContext;
1657   getLambdaData().ContextDecl = Numbering.ContextDecl;
1658   getLambdaData().HasKnownInternalLinkage = Numbering.HasKnownInternalLinkage;
1659 }
1660 
1661 unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const {
1662   assert(isLambda() && "Not a lambda closure type!");
1663   return getASTContext().DeviceLambdaManglingNumbers.lookup(this);
1664 }
1665 
1666 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1667   QualType T =
1668       cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1669           ->getConversionType();
1670   return Context.getCanonicalType(T);
1671 }
1672 
1673 /// Collect the visible conversions of a base class.
1674 ///
1675 /// \param Record a base class of the class we're considering
1676 /// \param InVirtual whether this base class is a virtual base (or a base
1677 ///   of a virtual base)
1678 /// \param Access the access along the inheritance path to this base
1679 /// \param ParentHiddenTypes the conversions provided by the inheritors
1680 ///   of this base
1681 /// \param Output the set to which to add conversions from non-virtual bases
1682 /// \param VOutput the set to which to add conversions from virtual bases
1683 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1684 ///   virtual base along some inheritance path
1685 static void CollectVisibleConversions(
1686     ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual,
1687     AccessSpecifier Access,
1688     const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1689     ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput,
1690     llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) {
1691   // The set of types which have conversions in this class or its
1692   // subclasses.  As an optimization, we don't copy the derived set
1693   // unless it might change.
1694   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1695   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1696 
1697   // Collect the direct conversions and figure out which conversions
1698   // will be hidden in the subclasses.
1699   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1700   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1701   if (ConvI != ConvE) {
1702     HiddenTypesBuffer = ParentHiddenTypes;
1703     HiddenTypes = &HiddenTypesBuffer;
1704 
1705     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1706       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1707       bool Hidden = ParentHiddenTypes.count(ConvType);
1708       if (!Hidden)
1709         HiddenTypesBuffer.insert(ConvType);
1710 
1711       // If this conversion is hidden and we're in a virtual base,
1712       // remember that it's hidden along some inheritance path.
1713       if (Hidden && InVirtual)
1714         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1715 
1716       // If this conversion isn't hidden, add it to the appropriate output.
1717       else if (!Hidden) {
1718         AccessSpecifier IAccess
1719           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1720 
1721         if (InVirtual)
1722           VOutput.addDecl(I.getDecl(), IAccess);
1723         else
1724           Output.addDecl(Context, I.getDecl(), IAccess);
1725       }
1726     }
1727   }
1728 
1729   // Collect information recursively from any base classes.
1730   for (const auto &I : Record->bases()) {
1731     const auto *RT = I.getType()->getAs<RecordType>();
1732     if (!RT) continue;
1733 
1734     AccessSpecifier BaseAccess
1735       = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1736     bool BaseInVirtual = InVirtual || I.isVirtual();
1737 
1738     auto *Base = cast<CXXRecordDecl>(RT->getDecl());
1739     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1740                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1741   }
1742 }
1743 
1744 /// Collect the visible conversions of a class.
1745 ///
1746 /// This would be extremely straightforward if it weren't for virtual
1747 /// bases.  It might be worth special-casing that, really.
1748 static void CollectVisibleConversions(ASTContext &Context,
1749                                       const CXXRecordDecl *Record,
1750                                       ASTUnresolvedSet &Output) {
1751   // The collection of all conversions in virtual bases that we've
1752   // found.  These will be added to the output as long as they don't
1753   // appear in the hidden-conversions set.
1754   UnresolvedSet<8> VBaseCs;
1755 
1756   // The set of conversions in virtual bases that we've determined to
1757   // be hidden.
1758   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1759 
1760   // The set of types hidden by classes derived from this one.
1761   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1762 
1763   // Go ahead and collect the direct conversions and add them to the
1764   // hidden-types set.
1765   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1766   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1767   Output.append(Context, ConvI, ConvE);
1768   for (; ConvI != ConvE; ++ConvI)
1769     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1770 
1771   // Recursively collect conversions from base classes.
1772   for (const auto &I : Record->bases()) {
1773     const auto *RT = I.getType()->getAs<RecordType>();
1774     if (!RT) continue;
1775 
1776     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1777                               I.isVirtual(), I.getAccessSpecifier(),
1778                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1779   }
1780 
1781   // Add any unhidden conversions provided by virtual bases.
1782   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1783          I != E; ++I) {
1784     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1785       Output.addDecl(Context, I.getDecl(), I.getAccess());
1786   }
1787 }
1788 
1789 /// getVisibleConversionFunctions - get all conversion functions visible
1790 /// in current class; including conversion function templates.
1791 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
1792 CXXRecordDecl::getVisibleConversionFunctions() const {
1793   ASTContext &Ctx = getASTContext();
1794 
1795   ASTUnresolvedSet *Set;
1796   if (bases_begin() == bases_end()) {
1797     // If root class, all conversions are visible.
1798     Set = &data().Conversions.get(Ctx);
1799   } else {
1800     Set = &data().VisibleConversions.get(Ctx);
1801     // If visible conversion list is not evaluated, evaluate it.
1802     if (!data().ComputedVisibleConversions) {
1803       CollectVisibleConversions(Ctx, this, *Set);
1804       data().ComputedVisibleConversions = true;
1805     }
1806   }
1807   return llvm::make_range(Set->begin(), Set->end());
1808 }
1809 
1810 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1811   // This operation is O(N) but extremely rare.  Sema only uses it to
1812   // remove UsingShadowDecls in a class that were followed by a direct
1813   // declaration, e.g.:
1814   //   class A : B {
1815   //     using B::operator int;
1816   //     operator int();
1817   //   };
1818   // This is uncommon by itself and even more uncommon in conjunction
1819   // with sufficiently large numbers of directly-declared conversions
1820   // that asymptotic behavior matters.
1821 
1822   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1823   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1824     if (Convs[I].getDecl() == ConvDecl) {
1825       Convs.erase(I);
1826       assert(!llvm::is_contained(Convs, ConvDecl) &&
1827              "conversion was found multiple times in unresolved set");
1828       return;
1829     }
1830   }
1831 
1832   llvm_unreachable("conversion not found in set!");
1833 }
1834 
1835 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1836   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1837     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1838 
1839   return nullptr;
1840 }
1841 
1842 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1843   return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1844 }
1845 
1846 void
1847 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1848                                              TemplateSpecializationKind TSK) {
1849   assert(TemplateOrInstantiation.isNull() &&
1850          "Previous template or instantiation?");
1851   assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1852   TemplateOrInstantiation
1853     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1854 }
1855 
1856 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1857   return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1858 }
1859 
1860 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1861   TemplateOrInstantiation = Template;
1862 }
1863 
1864 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1865   if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
1866     return Spec->getSpecializationKind();
1867 
1868   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1869     return MSInfo->getTemplateSpecializationKind();
1870 
1871   return TSK_Undeclared;
1872 }
1873 
1874 void
1875 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1876   if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1877     Spec->setSpecializationKind(TSK);
1878     return;
1879   }
1880 
1881   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1882     MSInfo->setTemplateSpecializationKind(TSK);
1883     return;
1884   }
1885 
1886   llvm_unreachable("Not a class template or member class specialization");
1887 }
1888 
1889 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1890   auto GetDefinitionOrSelf =
1891       [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
1892     if (auto *Def = D->getDefinition())
1893       return Def;
1894     return D;
1895   };
1896 
1897   // If it's a class template specialization, find the template or partial
1898   // specialization from which it was instantiated.
1899   if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1900     auto From = TD->getInstantiatedFrom();
1901     if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1902       while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1903         if (NewCTD->isMemberSpecialization())
1904           break;
1905         CTD = NewCTD;
1906       }
1907       return GetDefinitionOrSelf(CTD->getTemplatedDecl());
1908     }
1909     if (auto *CTPSD =
1910             From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1911       while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1912         if (NewCTPSD->isMemberSpecialization())
1913           break;
1914         CTPSD = NewCTPSD;
1915       }
1916       return GetDefinitionOrSelf(CTPSD);
1917     }
1918   }
1919 
1920   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1921     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1922       const CXXRecordDecl *RD = this;
1923       while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1924         RD = NewRD;
1925       return GetDefinitionOrSelf(RD);
1926     }
1927   }
1928 
1929   assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1930          "couldn't find pattern for class template instantiation");
1931   return nullptr;
1932 }
1933 
1934 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1935   ASTContext &Context = getASTContext();
1936   QualType ClassType = Context.getTypeDeclType(this);
1937 
1938   DeclarationName Name
1939     = Context.DeclarationNames.getCXXDestructorName(
1940                                           Context.getCanonicalType(ClassType));
1941 
1942   DeclContext::lookup_result R = lookup(Name);
1943 
1944   // If a destructor was marked as not selected, we skip it. We don't always
1945   // have a selected destructor: dependent types, unnamed structs.
1946   for (auto *Decl : R) {
1947     auto* DD = dyn_cast<CXXDestructorDecl>(Decl);
1948     if (DD && !DD->isIneligibleOrNotSelected())
1949       return DD;
1950   }
1951   return nullptr;
1952 }
1953 
1954 static bool isDeclContextInNamespace(const DeclContext *DC) {
1955   while (!DC->isTranslationUnit()) {
1956     if (DC->isNamespace())
1957       return true;
1958     DC = DC->getParent();
1959   }
1960   return false;
1961 }
1962 
1963 bool CXXRecordDecl::isInterfaceLike() const {
1964   assert(hasDefinition() && "checking for interface-like without a definition");
1965   // All __interfaces are inheritently interface-like.
1966   if (isInterface())
1967     return true;
1968 
1969   // Interface-like types cannot have a user declared constructor, destructor,
1970   // friends, VBases, conversion functions, or fields.  Additionally, lambdas
1971   // cannot be interface types.
1972   if (isLambda() || hasUserDeclaredConstructor() ||
1973       hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
1974       getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
1975     return false;
1976 
1977   // No interface-like type can have a method with a definition.
1978   for (const auto *const Method : methods())
1979     if (Method->isDefined() && !Method->isImplicit())
1980       return false;
1981 
1982   // Check "Special" types.
1983   const auto *Uuid = getAttr<UuidAttr>();
1984   // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
1985   // extern C++ block directly in the TU.  These are only valid if in one
1986   // of these two situations.
1987   if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
1988       !isDeclContextInNamespace(getDeclContext()) &&
1989       ((getName() == "IUnknown" &&
1990         Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
1991        (getName() == "IDispatch" &&
1992         Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
1993     if (getNumBases() > 0)
1994       return false;
1995     return true;
1996   }
1997 
1998   // FIXME: Any access specifiers is supposed to make this no longer interface
1999   // like.
2000 
2001   // If this isn't a 'special' type, it must have a single interface-like base.
2002   if (getNumBases() != 1)
2003     return false;
2004 
2005   const auto BaseSpec = *bases_begin();
2006   if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
2007     return false;
2008   const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
2009   if (Base->isInterface() || !Base->isInterfaceLike())
2010     return false;
2011   return true;
2012 }
2013 
2014 void CXXRecordDecl::completeDefinition() {
2015   completeDefinition(nullptr);
2016 }
2017 
2018 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
2019   RecordDecl::completeDefinition();
2020 
2021   // If the class may be abstract (but hasn't been marked as such), check for
2022   // any pure final overriders.
2023   if (mayBeAbstract()) {
2024     CXXFinalOverriderMap MyFinalOverriders;
2025     if (!FinalOverriders) {
2026       getFinalOverriders(MyFinalOverriders);
2027       FinalOverriders = &MyFinalOverriders;
2028     }
2029 
2030     bool Done = false;
2031     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
2032                                      MEnd = FinalOverriders->end();
2033          M != MEnd && !Done; ++M) {
2034       for (OverridingMethods::iterator SO = M->second.begin(),
2035                                     SOEnd = M->second.end();
2036            SO != SOEnd && !Done; ++SO) {
2037         assert(SO->second.size() > 0 &&
2038                "All virtual functions have overriding virtual functions");
2039 
2040         // C++ [class.abstract]p4:
2041         //   A class is abstract if it contains or inherits at least one
2042         //   pure virtual function for which the final overrider is pure
2043         //   virtual.
2044         if (SO->second.front().Method->isPure()) {
2045           data().Abstract = true;
2046           Done = true;
2047           break;
2048         }
2049       }
2050     }
2051   }
2052 
2053   // Set access bits correctly on the directly-declared conversions.
2054   for (conversion_iterator I = conversion_begin(), E = conversion_end();
2055        I != E; ++I)
2056     I.setAccess((*I)->getAccess());
2057 }
2058 
2059 bool CXXRecordDecl::mayBeAbstract() const {
2060   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
2061       isDependentContext())
2062     return false;
2063 
2064   for (const auto &B : bases()) {
2065     const auto *BaseDecl =
2066         cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
2067     if (BaseDecl->isAbstract())
2068       return true;
2069   }
2070 
2071   return false;
2072 }
2073 
2074 bool CXXRecordDecl::isEffectivelyFinal() const {
2075   auto *Def = getDefinition();
2076   if (!Def)
2077     return false;
2078   if (Def->hasAttr<FinalAttr>())
2079     return true;
2080   if (const auto *Dtor = Def->getDestructor())
2081     if (Dtor->hasAttr<FinalAttr>())
2082       return true;
2083   return false;
2084 }
2085 
2086 void CXXDeductionGuideDecl::anchor() {}
2087 
2088 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const {
2089   if ((getKind() != Other.getKind() ||
2090        getKind() == ExplicitSpecKind::Unresolved)) {
2091     if (getKind() == ExplicitSpecKind::Unresolved &&
2092         Other.getKind() == ExplicitSpecKind::Unresolved) {
2093       ODRHash SelfHash, OtherHash;
2094       SelfHash.AddStmt(getExpr());
2095       OtherHash.AddStmt(Other.getExpr());
2096       return SelfHash.CalculateHash() == OtherHash.CalculateHash();
2097     } else
2098       return false;
2099   }
2100   return true;
2101 }
2102 
2103 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) {
2104   switch (Function->getDeclKind()) {
2105   case Decl::Kind::CXXConstructor:
2106     return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier();
2107   case Decl::Kind::CXXConversion:
2108     return cast<CXXConversionDecl>(Function)->getExplicitSpecifier();
2109   case Decl::Kind::CXXDeductionGuide:
2110     return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier();
2111   default:
2112     return {};
2113   }
2114 }
2115 
2116 CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create(
2117     ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2118     ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
2119     TypeSourceInfo *TInfo, SourceLocation EndLocation, CXXConstructorDecl *Ctor,
2120     DeductionCandidate Kind) {
2121   return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T,
2122                                            TInfo, EndLocation, Ctor, Kind);
2123 }
2124 
2125 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
2126                                                                  unsigned ID) {
2127   return new (C, ID) CXXDeductionGuideDecl(
2128       C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
2129       QualType(), nullptr, SourceLocation(), nullptr,
2130       DeductionCandidate::Normal);
2131 }
2132 
2133 RequiresExprBodyDecl *RequiresExprBodyDecl::Create(
2134     ASTContext &C, DeclContext *DC, SourceLocation StartLoc) {
2135   return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc);
2136 }
2137 
2138 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C,
2139                                                                unsigned ID) {
2140   return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation());
2141 }
2142 
2143 void CXXMethodDecl::anchor() {}
2144 
2145 bool CXXMethodDecl::isStatic() const {
2146   const CXXMethodDecl *MD = getCanonicalDecl();
2147 
2148   if (MD->getStorageClass() == SC_Static)
2149     return true;
2150 
2151   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
2152   return isStaticOverloadedOperator(OOK);
2153 }
2154 
2155 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
2156                                  const CXXMethodDecl *BaseMD) {
2157   for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
2158     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
2159       return true;
2160     if (recursivelyOverrides(MD, BaseMD))
2161       return true;
2162   }
2163   return false;
2164 }
2165 
2166 CXXMethodDecl *
2167 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2168                                                      bool MayBeBase) {
2169   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
2170     return this;
2171 
2172   // Lookup doesn't work for destructors, so handle them separately.
2173   if (isa<CXXDestructorDecl>(this)) {
2174     CXXMethodDecl *MD = RD->getDestructor();
2175     if (MD) {
2176       if (recursivelyOverrides(MD, this))
2177         return MD;
2178       if (MayBeBase && recursivelyOverrides(this, MD))
2179         return MD;
2180     }
2181     return nullptr;
2182   }
2183 
2184   for (auto *ND : RD->lookup(getDeclName())) {
2185     auto *MD = dyn_cast<CXXMethodDecl>(ND);
2186     if (!MD)
2187       continue;
2188     if (recursivelyOverrides(MD, this))
2189       return MD;
2190     if (MayBeBase && recursivelyOverrides(this, MD))
2191       return MD;
2192   }
2193 
2194   return nullptr;
2195 }
2196 
2197 CXXMethodDecl *
2198 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2199                                              bool MayBeBase) {
2200   if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase))
2201     return MD;
2202 
2203   llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders;
2204   auto AddFinalOverrider = [&](CXXMethodDecl *D) {
2205     // If this function is overridden by a candidate final overrider, it is not
2206     // a final overrider.
2207     for (CXXMethodDecl *OtherD : FinalOverriders) {
2208       if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D))
2209         return;
2210     }
2211 
2212     // Other candidate final overriders might be overridden by this function.
2213     llvm::erase_if(FinalOverriders, [&](CXXMethodDecl *OtherD) {
2214       return recursivelyOverrides(D, OtherD);
2215     });
2216 
2217     FinalOverriders.push_back(D);
2218   };
2219 
2220   for (const auto &I : RD->bases()) {
2221     const RecordType *RT = I.getType()->getAs<RecordType>();
2222     if (!RT)
2223       continue;
2224     const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
2225     if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base))
2226       AddFinalOverrider(D);
2227   }
2228 
2229   return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr;
2230 }
2231 
2232 CXXMethodDecl *
2233 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2234                       const DeclarationNameInfo &NameInfo, QualType T,
2235                       TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
2236                       bool isInline, ConstexprSpecKind ConstexprKind,
2237                       SourceLocation EndLocation,
2238                       Expr *TrailingRequiresClause) {
2239   return new (C, RD) CXXMethodDecl(
2240       CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
2241       isInline, ConstexprKind, EndLocation, TrailingRequiresClause);
2242 }
2243 
2244 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2245   return new (C, ID) CXXMethodDecl(
2246       CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(),
2247       QualType(), nullptr, SC_None, false, false,
2248       ConstexprSpecKind::Unspecified, SourceLocation(), nullptr);
2249 }
2250 
2251 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
2252                                                      bool IsAppleKext) {
2253   assert(isVirtual() && "this method is expected to be virtual");
2254 
2255   // When building with -fapple-kext, all calls must go through the vtable since
2256   // the kernel linker can do runtime patching of vtables.
2257   if (IsAppleKext)
2258     return nullptr;
2259 
2260   // If the member function is marked 'final', we know that it can't be
2261   // overridden and can therefore devirtualize it unless it's pure virtual.
2262   if (hasAttr<FinalAttr>())
2263     return isPure() ? nullptr : this;
2264 
2265   // If Base is unknown, we cannot devirtualize.
2266   if (!Base)
2267     return nullptr;
2268 
2269   // If the base expression (after skipping derived-to-base conversions) is a
2270   // class prvalue, then we can devirtualize.
2271   Base = Base->getBestDynamicClassTypeExpr();
2272   if (Base->isPRValue() && Base->getType()->isRecordType())
2273     return this;
2274 
2275   // If we don't even know what we would call, we can't devirtualize.
2276   const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2277   if (!BestDynamicDecl)
2278     return nullptr;
2279 
2280   // There may be a method corresponding to MD in a derived class.
2281   CXXMethodDecl *DevirtualizedMethod =
2282       getCorrespondingMethodInClass(BestDynamicDecl);
2283 
2284   // If there final overrider in the dynamic type is ambiguous, we can't
2285   // devirtualize this call.
2286   if (!DevirtualizedMethod)
2287     return nullptr;
2288 
2289   // If that method is pure virtual, we can't devirtualize. If this code is
2290   // reached, the result would be UB, not a direct call to the derived class
2291   // function, and we can't assume the derived class function is defined.
2292   if (DevirtualizedMethod->isPure())
2293     return nullptr;
2294 
2295   // If that method is marked final, we can devirtualize it.
2296   if (DevirtualizedMethod->hasAttr<FinalAttr>())
2297     return DevirtualizedMethod;
2298 
2299   // Similarly, if the class itself or its destructor is marked 'final',
2300   // the class can't be derived from and we can therefore devirtualize the
2301   // member function call.
2302   if (BestDynamicDecl->isEffectivelyFinal())
2303     return DevirtualizedMethod;
2304 
2305   if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
2306     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2307       if (VD->getType()->isRecordType())
2308         // This is a record decl. We know the type and can devirtualize it.
2309         return DevirtualizedMethod;
2310 
2311     return nullptr;
2312   }
2313 
2314   // We can devirtualize calls on an object accessed by a class member access
2315   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2316   // a derived class object constructed in the same location.
2317   if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
2318     const ValueDecl *VD = ME->getMemberDecl();
2319     return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
2320   }
2321 
2322   // Likewise for calls on an object accessed by a (non-reference) pointer to
2323   // member access.
2324   if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2325     if (BO->isPtrMemOp()) {
2326       auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2327       if (MPT->getPointeeType()->isRecordType())
2328         return DevirtualizedMethod;
2329     }
2330   }
2331 
2332   // We can't devirtualize the call.
2333   return nullptr;
2334 }
2335 
2336 bool CXXMethodDecl::isUsualDeallocationFunction(
2337     SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
2338   assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
2339   if (getOverloadedOperator() != OO_Delete &&
2340       getOverloadedOperator() != OO_Array_Delete)
2341     return false;
2342 
2343   // C++ [basic.stc.dynamic.deallocation]p2:
2344   //   A template instance is never a usual deallocation function,
2345   //   regardless of its signature.
2346   if (getPrimaryTemplate())
2347     return false;
2348 
2349   // C++ [basic.stc.dynamic.deallocation]p2:
2350   //   If a class T has a member deallocation function named operator delete
2351   //   with exactly one parameter, then that function is a usual (non-placement)
2352   //   deallocation function. [...]
2353   if (getNumParams() == 1)
2354     return true;
2355   unsigned UsualParams = 1;
2356 
2357   // C++ P0722:
2358   //   A destroying operator delete is a usual deallocation function if
2359   //   removing the std::destroying_delete_t parameter and changing the
2360   //   first parameter type from T* to void* results in the signature of
2361   //   a usual deallocation function.
2362   if (isDestroyingOperatorDelete())
2363     ++UsualParams;
2364 
2365   // C++ <=14 [basic.stc.dynamic.deallocation]p2:
2366   //   [...] If class T does not declare such an operator delete but does
2367   //   declare a member deallocation function named operator delete with
2368   //   exactly two parameters, the second of which has type std::size_t (18.1),
2369   //   then this function is a usual deallocation function.
2370   //
2371   // C++17 says a usual deallocation function is one with the signature
2372   //   (void* [, size_t] [, std::align_val_t] [, ...])
2373   // and all such functions are usual deallocation functions. It's not clear
2374   // that allowing varargs functions was intentional.
2375   ASTContext &Context = getASTContext();
2376   if (UsualParams < getNumParams() &&
2377       Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
2378                                      Context.getSizeType()))
2379     ++UsualParams;
2380 
2381   if (UsualParams < getNumParams() &&
2382       getParamDecl(UsualParams)->getType()->isAlignValT())
2383     ++UsualParams;
2384 
2385   if (UsualParams != getNumParams())
2386     return false;
2387 
2388   // In C++17 onwards, all potential usual deallocation functions are actual
2389   // usual deallocation functions. Honor this behavior when post-C++14
2390   // deallocation functions are offered as extensions too.
2391   // FIXME(EricWF): Destroying Delete should be a language option. How do we
2392   // handle when destroying delete is used prior to C++17?
2393   if (Context.getLangOpts().CPlusPlus17 ||
2394       Context.getLangOpts().AlignedAllocation ||
2395       isDestroyingOperatorDelete())
2396     return true;
2397 
2398   // This function is a usual deallocation function if there are no
2399   // single-parameter deallocation functions of the same kind.
2400   DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
2401   bool Result = true;
2402   for (const auto *D : R) {
2403     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2404       if (FD->getNumParams() == 1) {
2405         PreventedBy.push_back(FD);
2406         Result = false;
2407       }
2408     }
2409   }
2410   return Result;
2411 }
2412 
2413 bool CXXMethodDecl::isExplicitObjectMemberFunction() const {
2414   // C++2b [dcl.fct]p6:
2415   // An explicit object member function is a non-static member
2416   // function with an explicit object parameter
2417   return !isStatic() && hasCXXExplicitFunctionObjectParameter();
2418 }
2419 
2420 bool CXXMethodDecl::isImplicitObjectMemberFunction() const {
2421   return !isStatic() && !hasCXXExplicitFunctionObjectParameter();
2422 }
2423 
2424 bool CXXMethodDecl::isCopyAssignmentOperator() const {
2425   // C++0x [class.copy]p17:
2426   //  A user-declared copy assignment operator X::operator= is a non-static
2427   //  non-template member function of class X with exactly one parameter of
2428   //  type X, X&, const X&, volatile X& or const volatile X&.
2429   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
2430       /*non-static*/ isStatic() ||
2431 
2432       /*non-template*/ getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2433       getNumExplicitParams() != 1)
2434     return false;
2435 
2436   QualType ParamType = getNonObjectParameter(0)->getType();
2437   if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
2438     ParamType = Ref->getPointeeType();
2439 
2440   ASTContext &Context = getASTContext();
2441   QualType ClassType
2442     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2443   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2444 }
2445 
2446 bool CXXMethodDecl::isMoveAssignmentOperator() const {
2447   // C++0x [class.copy]p19:
2448   //  A user-declared move assignment operator X::operator= is a non-static
2449   //  non-template member function of class X with exactly one parameter of type
2450   //  X&&, const X&&, volatile X&&, or const volatile X&&.
2451   if (getOverloadedOperator() != OO_Equal || isStatic() ||
2452       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2453       getNumExplicitParams() != 1)
2454     return false;
2455 
2456   QualType ParamType = getNonObjectParameter(0)->getType();
2457   if (!ParamType->isRValueReferenceType())
2458     return false;
2459   ParamType = ParamType->getPointeeType();
2460 
2461   ASTContext &Context = getASTContext();
2462   QualType ClassType
2463     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2464   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2465 }
2466 
2467 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
2468   assert(MD->isCanonicalDecl() && "Method is not canonical!");
2469   assert(!MD->getParent()->isDependentContext() &&
2470          "Can't add an overridden method to a class template!");
2471   assert(MD->isVirtual() && "Method is not virtual!");
2472 
2473   getASTContext().addOverriddenMethod(this, MD);
2474 }
2475 
2476 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
2477   if (isa<CXXConstructorDecl>(this)) return nullptr;
2478   return getASTContext().overridden_methods_begin(this);
2479 }
2480 
2481 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
2482   if (isa<CXXConstructorDecl>(this)) return nullptr;
2483   return getASTContext().overridden_methods_end(this);
2484 }
2485 
2486 unsigned CXXMethodDecl::size_overridden_methods() const {
2487   if (isa<CXXConstructorDecl>(this)) return 0;
2488   return getASTContext().overridden_methods_size(this);
2489 }
2490 
2491 CXXMethodDecl::overridden_method_range
2492 CXXMethodDecl::overridden_methods() const {
2493   if (isa<CXXConstructorDecl>(this))
2494     return overridden_method_range(nullptr, nullptr);
2495   return getASTContext().overridden_methods(this);
2496 }
2497 
2498 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT,
2499                                   const CXXRecordDecl *Decl) {
2500   QualType ClassTy = C.getTypeDeclType(Decl);
2501   return C.getQualifiedType(ClassTy, FPT->getMethodQuals());
2502 }
2503 
2504 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
2505                                     const CXXRecordDecl *Decl) {
2506   ASTContext &C = Decl->getASTContext();
2507   QualType ObjectTy = ::getThisObjectType(C, FPT, Decl);
2508   return C.getLangOpts().HLSL ? C.getLValueReferenceType(ObjectTy)
2509                               : C.getPointerType(ObjectTy);
2510 }
2511 
2512 QualType CXXMethodDecl::getThisType() const {
2513   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
2514   // If the member function is declared const, the type of this is const X*,
2515   // if the member function is declared volatile, the type of this is
2516   // volatile X*, and if the member function is declared const volatile,
2517   // the type of this is const volatile X*.
2518   assert(isInstance() && "No 'this' for static methods!");
2519   return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(),
2520                                     getParent());
2521 }
2522 
2523 QualType CXXMethodDecl::getFunctionObjectParameterReferenceType() const {
2524   if (isExplicitObjectMemberFunction())
2525     return parameters()[0]->getType();
2526 
2527   ASTContext &C = getParentASTContext();
2528   const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
2529   QualType Type = ::getThisObjectType(C, FPT, getParent());
2530   RefQualifierKind RK = FPT->getRefQualifier();
2531   if (RK == RefQualifierKind::RQ_RValue)
2532     return C.getRValueReferenceType(Type);
2533   return C.getLValueReferenceType(Type);
2534 }
2535 
2536 bool CXXMethodDecl::hasInlineBody() const {
2537   // If this function is a template instantiation, look at the template from
2538   // which it was instantiated.
2539   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
2540   if (!CheckFn)
2541     CheckFn = this;
2542 
2543   const FunctionDecl *fn;
2544   return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
2545          (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
2546 }
2547 
2548 bool CXXMethodDecl::isLambdaStaticInvoker() const {
2549   const CXXRecordDecl *P = getParent();
2550   return P->isLambda() && getDeclName().isIdentifier() &&
2551          getName() == getLambdaStaticInvokerName();
2552 }
2553 
2554 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2555                                        TypeSourceInfo *TInfo, bool IsVirtual,
2556                                        SourceLocation L, Expr *Init,
2557                                        SourceLocation R,
2558                                        SourceLocation EllipsisLoc)
2559     : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc),
2560       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
2561       IsWritten(false), SourceOrder(0) {}
2562 
2563 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2564                                        SourceLocation MemberLoc,
2565                                        SourceLocation L, Expr *Init,
2566                                        SourceLocation R)
2567     : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2568       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2569       IsWritten(false), SourceOrder(0) {}
2570 
2571 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2572                                        IndirectFieldDecl *Member,
2573                                        SourceLocation MemberLoc,
2574                                        SourceLocation L, Expr *Init,
2575                                        SourceLocation R)
2576     : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2577       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2578       IsWritten(false), SourceOrder(0) {}
2579 
2580 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2581                                        TypeSourceInfo *TInfo,
2582                                        SourceLocation L, Expr *Init,
2583                                        SourceLocation R)
2584     : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
2585       IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2586 
2587 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
2588   return Context.getAllocator()
2589                 .identifyKnownAlignedObject<CXXCtorInitializer>(this);
2590 }
2591 
2592 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
2593   if (isBaseInitializer())
2594     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
2595   else
2596     return {};
2597 }
2598 
2599 const Type *CXXCtorInitializer::getBaseClass() const {
2600   if (isBaseInitializer())
2601     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
2602   else
2603     return nullptr;
2604 }
2605 
2606 SourceLocation CXXCtorInitializer::getSourceLocation() const {
2607   if (isInClassMemberInitializer())
2608     return getAnyMember()->getLocation();
2609 
2610   if (isAnyMemberInitializer())
2611     return getMemberLocation();
2612 
2613   if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
2614     return TSInfo->getTypeLoc().getBeginLoc();
2615 
2616   return {};
2617 }
2618 
2619 SourceRange CXXCtorInitializer::getSourceRange() const {
2620   if (isInClassMemberInitializer()) {
2621     FieldDecl *D = getAnyMember();
2622     if (Expr *I = D->getInClassInitializer())
2623       return I->getSourceRange();
2624     return {};
2625   }
2626 
2627   return SourceRange(getSourceLocation(), getRParenLoc());
2628 }
2629 
2630 CXXConstructorDecl::CXXConstructorDecl(
2631     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2632     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2633     ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2634     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2635     InheritedConstructor Inherited, Expr *TrailingRequiresClause)
2636     : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
2637                     SC_None, UsesFPIntrin, isInline, ConstexprKind,
2638                     SourceLocation(), TrailingRequiresClause) {
2639   setNumCtorInitializers(0);
2640   setInheritingConstructor(static_cast<bool>(Inherited));
2641   setImplicit(isImplicitlyDeclared);
2642   CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0;
2643   if (Inherited)
2644     *getTrailingObjects<InheritedConstructor>() = Inherited;
2645   setExplicitSpecifier(ES);
2646 }
2647 
2648 void CXXConstructorDecl::anchor() {}
2649 
2650 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
2651                                                            unsigned ID,
2652                                                            uint64_t AllocKind) {
2653   bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit);
2654   bool isInheritingConstructor =
2655       static_cast<bool>(AllocKind & TAKInheritsConstructor);
2656   unsigned Extra =
2657       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2658           isInheritingConstructor, hasTrailingExplicit);
2659   auto *Result = new (C, ID, Extra) CXXConstructorDecl(
2660       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2661       ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified,
2662       InheritedConstructor(), nullptr);
2663   Result->setInheritingConstructor(isInheritingConstructor);
2664   Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier =
2665       hasTrailingExplicit;
2666   Result->setExplicitSpecifier(ExplicitSpecifier());
2667   return Result;
2668 }
2669 
2670 CXXConstructorDecl *CXXConstructorDecl::Create(
2671     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2672     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2673     ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2674     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2675     InheritedConstructor Inherited, Expr *TrailingRequiresClause) {
2676   assert(NameInfo.getName().getNameKind()
2677          == DeclarationName::CXXConstructorName &&
2678          "Name must refer to a constructor");
2679   unsigned Extra =
2680       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2681           Inherited ? 1 : 0, ES.getExpr() ? 1 : 0);
2682   return new (C, RD, Extra) CXXConstructorDecl(
2683       C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline,
2684       isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause);
2685 }
2686 
2687 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
2688   return CtorInitializers.get(getASTContext().getExternalSource());
2689 }
2690 
2691 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
2692   assert(isDelegatingConstructor() && "Not a delegating constructor!");
2693   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
2694   if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
2695     return Construct->getConstructor();
2696 
2697   return nullptr;
2698 }
2699 
2700 bool CXXConstructorDecl::isDefaultConstructor() const {
2701   // C++ [class.default.ctor]p1:
2702   //   A default constructor for a class X is a constructor of class X for
2703   //   which each parameter that is not a function parameter pack has a default
2704   //   argument (including the case of a constructor with no parameters)
2705   return getMinRequiredArguments() == 0;
2706 }
2707 
2708 bool
2709 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
2710   return isCopyOrMoveConstructor(TypeQuals) &&
2711          getParamDecl(0)->getType()->isLValueReferenceType();
2712 }
2713 
2714 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
2715   return isCopyOrMoveConstructor(TypeQuals) &&
2716          getParamDecl(0)->getType()->isRValueReferenceType();
2717 }
2718 
2719 /// Determine whether this is a copy or move constructor.
2720 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
2721   // C++ [class.copy]p2:
2722   //   A non-template constructor for class X is a copy constructor
2723   //   if its first parameter is of type X&, const X&, volatile X& or
2724   //   const volatile X&, and either there are no other parameters
2725   //   or else all other parameters have default arguments (8.3.6).
2726   // C++0x [class.copy]p3:
2727   //   A non-template constructor for class X is a move constructor if its
2728   //   first parameter is of type X&&, const X&&, volatile X&&, or
2729   //   const volatile X&&, and either there are no other parameters or else
2730   //   all other parameters have default arguments.
2731   if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr ||
2732       getDescribedFunctionTemplate() != nullptr)
2733     return false;
2734 
2735   const ParmVarDecl *Param = getParamDecl(0);
2736 
2737   // Do we have a reference type?
2738   const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
2739   if (!ParamRefType)
2740     return false;
2741 
2742   // Is it a reference to our class type?
2743   ASTContext &Context = getASTContext();
2744 
2745   CanQualType PointeeType
2746     = Context.getCanonicalType(ParamRefType->getPointeeType());
2747   CanQualType ClassTy
2748     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2749   if (PointeeType.getUnqualifiedType() != ClassTy)
2750     return false;
2751 
2752   // FIXME: other qualifiers?
2753 
2754   // We have a copy or move constructor.
2755   TypeQuals = PointeeType.getCVRQualifiers();
2756   return true;
2757 }
2758 
2759 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
2760   // C++ [class.conv.ctor]p1:
2761   //   A constructor declared without the function-specifier explicit
2762   //   that can be called with a single parameter specifies a
2763   //   conversion from the type of its first parameter to the type of
2764   //   its class. Such a constructor is called a converting
2765   //   constructor.
2766   if (isExplicit() && !AllowExplicit)
2767     return false;
2768 
2769   // FIXME: This has nothing to do with the definition of converting
2770   // constructor, but is convenient for how we use this function in overload
2771   // resolution.
2772   return getNumParams() == 0
2773              ? getType()->castAs<FunctionProtoType>()->isVariadic()
2774              : getMinRequiredArguments() <= 1;
2775 }
2776 
2777 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2778   if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr)
2779     return false;
2780 
2781   const ParmVarDecl *Param = getParamDecl(0);
2782 
2783   ASTContext &Context = getASTContext();
2784   CanQualType ParamType = Context.getCanonicalType(Param->getType());
2785 
2786   // Is it the same as our class type?
2787   CanQualType ClassTy
2788     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2789   if (ParamType.getUnqualifiedType() != ClassTy)
2790     return false;
2791 
2792   return true;
2793 }
2794 
2795 void CXXDestructorDecl::anchor() {}
2796 
2797 CXXDestructorDecl *
2798 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2799   return new (C, ID) CXXDestructorDecl(
2800       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2801       false, false, false, ConstexprSpecKind::Unspecified, nullptr);
2802 }
2803 
2804 CXXDestructorDecl *CXXDestructorDecl::Create(
2805     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2806     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2807     bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2808     ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) {
2809   assert(NameInfo.getName().getNameKind()
2810          == DeclarationName::CXXDestructorName &&
2811          "Name must refer to a destructor");
2812   return new (C, RD) CXXDestructorDecl(
2813       C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline,
2814       isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause);
2815 }
2816 
2817 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
2818   auto *First = cast<CXXDestructorDecl>(getFirstDecl());
2819   if (OD && !First->OperatorDelete) {
2820     First->OperatorDelete = OD;
2821     First->OperatorDeleteThisArg = ThisArg;
2822     if (auto *L = getASTMutationListener())
2823       L->ResolvedOperatorDelete(First, OD, ThisArg);
2824   }
2825 }
2826 
2827 void CXXConversionDecl::anchor() {}
2828 
2829 CXXConversionDecl *
2830 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2831   return new (C, ID) CXXConversionDecl(
2832       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2833       false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
2834       SourceLocation(), nullptr);
2835 }
2836 
2837 CXXConversionDecl *CXXConversionDecl::Create(
2838     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2839     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2840     bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2841     ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2842     Expr *TrailingRequiresClause) {
2843   assert(NameInfo.getName().getNameKind()
2844          == DeclarationName::CXXConversionFunctionName &&
2845          "Name must refer to a conversion function");
2846   return new (C, RD) CXXConversionDecl(
2847       C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES,
2848       ConstexprKind, EndLocation, TrailingRequiresClause);
2849 }
2850 
2851 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2852   return isImplicit() && getParent()->isLambda() &&
2853          getConversionType()->isBlockPointerType();
2854 }
2855 
2856 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2857                                  SourceLocation LangLoc,
2858                                  LinkageSpecLanguageIDs lang, bool HasBraces)
2859     : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2860       ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
2861   setLanguage(lang);
2862   LinkageSpecDeclBits.HasBraces = HasBraces;
2863 }
2864 
2865 void LinkageSpecDecl::anchor() {}
2866 
2867 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, DeclContext *DC,
2868                                          SourceLocation ExternLoc,
2869                                          SourceLocation LangLoc,
2870                                          LinkageSpecLanguageIDs Lang,
2871                                          bool HasBraces) {
2872   return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2873 }
2874 
2875 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2876                                                      unsigned ID) {
2877   return new (C, ID)
2878       LinkageSpecDecl(nullptr, SourceLocation(), SourceLocation(),
2879                       LinkageSpecLanguageIDs::C, false);
2880 }
2881 
2882 void UsingDirectiveDecl::anchor() {}
2883 
2884 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2885                                                SourceLocation L,
2886                                                SourceLocation NamespaceLoc,
2887                                            NestedNameSpecifierLoc QualifierLoc,
2888                                                SourceLocation IdentLoc,
2889                                                NamedDecl *Used,
2890                                                DeclContext *CommonAncestor) {
2891   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2892     Used = NS->getOriginalNamespace();
2893   return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2894                                         IdentLoc, Used, CommonAncestor);
2895 }
2896 
2897 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2898                                                            unsigned ID) {
2899   return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2900                                         SourceLocation(),
2901                                         NestedNameSpecifierLoc(),
2902                                         SourceLocation(), nullptr, nullptr);
2903 }
2904 
2905 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2906   if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2907     return NA->getNamespace();
2908   return cast_or_null<NamespaceDecl>(NominatedNamespace);
2909 }
2910 
2911 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2912                              SourceLocation StartLoc, SourceLocation IdLoc,
2913                              IdentifierInfo *Id, NamespaceDecl *PrevDecl,
2914                              bool Nested)
2915     : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2916       redeclarable_base(C), LocStart(StartLoc) {
2917   unsigned Flags = 0;
2918   if (Inline)
2919     Flags |= F_Inline;
2920   if (Nested)
2921     Flags |= F_Nested;
2922   AnonOrFirstNamespaceAndFlags = {nullptr, Flags};
2923   setPreviousDecl(PrevDecl);
2924 
2925   if (PrevDecl)
2926     AnonOrFirstNamespaceAndFlags.setPointer(PrevDecl->getOriginalNamespace());
2927 }
2928 
2929 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2930                                      bool Inline, SourceLocation StartLoc,
2931                                      SourceLocation IdLoc, IdentifierInfo *Id,
2932                                      NamespaceDecl *PrevDecl, bool Nested) {
2933   return new (C, DC)
2934       NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, PrevDecl, Nested);
2935 }
2936 
2937 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2938   return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2939                                    SourceLocation(), nullptr, nullptr, false);
2940 }
2941 
2942 NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2943   if (isFirstDecl())
2944     return this;
2945 
2946   return AnonOrFirstNamespaceAndFlags.getPointer();
2947 }
2948 
2949 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2950   if (isFirstDecl())
2951     return this;
2952 
2953   return AnonOrFirstNamespaceAndFlags.getPointer();
2954 }
2955 
2956 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2957 
2958 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2959   return getNextRedeclaration();
2960 }
2961 
2962 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2963   return getPreviousDecl();
2964 }
2965 
2966 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2967   return getMostRecentDecl();
2968 }
2969 
2970 void NamespaceAliasDecl::anchor() {}
2971 
2972 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2973   return getNextRedeclaration();
2974 }
2975 
2976 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2977   return getPreviousDecl();
2978 }
2979 
2980 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2981   return getMostRecentDecl();
2982 }
2983 
2984 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2985                                                SourceLocation UsingLoc,
2986                                                SourceLocation AliasLoc,
2987                                                IdentifierInfo *Alias,
2988                                            NestedNameSpecifierLoc QualifierLoc,
2989                                                SourceLocation IdentLoc,
2990                                                NamedDecl *Namespace) {
2991   // FIXME: Preserve the aliased namespace as written.
2992   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2993     Namespace = NS->getOriginalNamespace();
2994   return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2995                                         QualifierLoc, IdentLoc, Namespace);
2996 }
2997 
2998 NamespaceAliasDecl *
2999 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3000   return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
3001                                         SourceLocation(), nullptr,
3002                                         NestedNameSpecifierLoc(),
3003                                         SourceLocation(), nullptr);
3004 }
3005 
3006 void LifetimeExtendedTemporaryDecl::anchor() {}
3007 
3008 /// Retrieve the storage duration for the materialized temporary.
3009 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const {
3010   const ValueDecl *ExtendingDecl = getExtendingDecl();
3011   if (!ExtendingDecl)
3012     return SD_FullExpression;
3013   // FIXME: This is not necessarily correct for a temporary materialized
3014   // within a default initializer.
3015   if (isa<FieldDecl>(ExtendingDecl))
3016     return SD_Automatic;
3017   // FIXME: This only works because storage class specifiers are not allowed
3018   // on decomposition declarations.
3019   if (isa<BindingDecl>(ExtendingDecl))
3020     return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic
3021                                                                  : SD_Static;
3022   return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
3023 }
3024 
3025 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const {
3026   assert(getStorageDuration() == SD_Static &&
3027          "don't need to cache the computed value for this temporary");
3028   if (MayCreate && !Value) {
3029     Value = (new (getASTContext()) APValue);
3030     getASTContext().addDestruction(Value);
3031   }
3032   assert(Value && "may not be null");
3033   return Value;
3034 }
3035 
3036 void UsingShadowDecl::anchor() {}
3037 
3038 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
3039                                  SourceLocation Loc, DeclarationName Name,
3040                                  BaseUsingDecl *Introducer, NamedDecl *Target)
3041     : NamedDecl(K, DC, Loc, Name), redeclarable_base(C),
3042       UsingOrNextShadow(Introducer) {
3043   if (Target) {
3044     assert(!isa<UsingShadowDecl>(Target));
3045     setTargetDecl(Target);
3046   }
3047   setImplicit();
3048 }
3049 
3050 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
3051     : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
3052       redeclarable_base(C) {}
3053 
3054 UsingShadowDecl *
3055 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3056   return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
3057 }
3058 
3059 BaseUsingDecl *UsingShadowDecl::getIntroducer() const {
3060   const UsingShadowDecl *Shadow = this;
3061   while (const auto *NextShadow =
3062              dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
3063     Shadow = NextShadow;
3064   return cast<BaseUsingDecl>(Shadow->UsingOrNextShadow);
3065 }
3066 
3067 void ConstructorUsingShadowDecl::anchor() {}
3068 
3069 ConstructorUsingShadowDecl *
3070 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
3071                                    SourceLocation Loc, UsingDecl *Using,
3072                                    NamedDecl *Target, bool IsVirtual) {
3073   return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
3074                                                 IsVirtual);
3075 }
3076 
3077 ConstructorUsingShadowDecl *
3078 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3079   return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
3080 }
3081 
3082 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
3083   return getIntroducer()->getQualifier()->getAsRecordDecl();
3084 }
3085 
3086 void BaseUsingDecl::anchor() {}
3087 
3088 void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) {
3089   assert(!llvm::is_contained(shadows(), S) && "declaration already in set");
3090   assert(S->getIntroducer() == this);
3091 
3092   if (FirstUsingShadow.getPointer())
3093     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
3094   FirstUsingShadow.setPointer(S);
3095 }
3096 
3097 void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) {
3098   assert(llvm::is_contained(shadows(), S) && "declaration not in set");
3099   assert(S->getIntroducer() == this);
3100 
3101   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
3102 
3103   if (FirstUsingShadow.getPointer() == S) {
3104     FirstUsingShadow.setPointer(
3105       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
3106     S->UsingOrNextShadow = this;
3107     return;
3108   }
3109 
3110   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
3111   while (Prev->UsingOrNextShadow != S)
3112     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
3113   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
3114   S->UsingOrNextShadow = this;
3115 }
3116 
3117 void UsingDecl::anchor() {}
3118 
3119 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
3120                              NestedNameSpecifierLoc QualifierLoc,
3121                              const DeclarationNameInfo &NameInfo,
3122                              bool HasTypename) {
3123   return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
3124 }
3125 
3126 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3127   return new (C, ID) UsingDecl(nullptr, SourceLocation(),
3128                                NestedNameSpecifierLoc(), DeclarationNameInfo(),
3129                                false);
3130 }
3131 
3132 SourceRange UsingDecl::getSourceRange() const {
3133   SourceLocation Begin = isAccessDeclaration()
3134     ? getQualifierLoc().getBeginLoc() : UsingLocation;
3135   return SourceRange(Begin, getNameInfo().getEndLoc());
3136 }
3137 
3138 void UsingEnumDecl::anchor() {}
3139 
3140 UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC,
3141                                      SourceLocation UL,
3142                                      SourceLocation EL,
3143                                      SourceLocation NL,
3144                                      TypeSourceInfo *EnumType) {
3145   assert(isa<EnumDecl>(EnumType->getType()->getAsTagDecl()));
3146   return new (C, DC)
3147       UsingEnumDecl(DC, EnumType->getType()->getAsTagDecl()->getDeclName(), UL, EL, NL, EnumType);
3148 }
3149 
3150 UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3151   return new (C, ID)
3152       UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(),
3153                     SourceLocation(), SourceLocation(), nullptr);
3154 }
3155 
3156 SourceRange UsingEnumDecl::getSourceRange() const {
3157   return SourceRange(UsingLocation, EnumType->getTypeLoc().getEndLoc());
3158 }
3159 
3160 void UsingPackDecl::anchor() {}
3161 
3162 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
3163                                      NamedDecl *InstantiatedFrom,
3164                                      ArrayRef<NamedDecl *> UsingDecls) {
3165   size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
3166   return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
3167 }
3168 
3169 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3170                                                  unsigned NumExpansions) {
3171   size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
3172   auto *Result =
3173       new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, std::nullopt);
3174   Result->NumExpansions = NumExpansions;
3175   auto *Trail = Result->getTrailingObjects<NamedDecl *>();
3176   for (unsigned I = 0; I != NumExpansions; ++I)
3177     new (Trail + I) NamedDecl*(nullptr);
3178   return Result;
3179 }
3180 
3181 void UnresolvedUsingValueDecl::anchor() {}
3182 
3183 UnresolvedUsingValueDecl *
3184 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
3185                                  SourceLocation UsingLoc,
3186                                  NestedNameSpecifierLoc QualifierLoc,
3187                                  const DeclarationNameInfo &NameInfo,
3188                                  SourceLocation EllipsisLoc) {
3189   return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
3190                                               QualifierLoc, NameInfo,
3191                                               EllipsisLoc);
3192 }
3193 
3194 UnresolvedUsingValueDecl *
3195 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3196   return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
3197                                               SourceLocation(),
3198                                               NestedNameSpecifierLoc(),
3199                                               DeclarationNameInfo(),
3200                                               SourceLocation());
3201 }
3202 
3203 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
3204   SourceLocation Begin = isAccessDeclaration()
3205     ? getQualifierLoc().getBeginLoc() : UsingLocation;
3206   return SourceRange(Begin, getNameInfo().getEndLoc());
3207 }
3208 
3209 void UnresolvedUsingTypenameDecl::anchor() {}
3210 
3211 UnresolvedUsingTypenameDecl *
3212 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
3213                                     SourceLocation UsingLoc,
3214                                     SourceLocation TypenameLoc,
3215                                     NestedNameSpecifierLoc QualifierLoc,
3216                                     SourceLocation TargetNameLoc,
3217                                     DeclarationName TargetName,
3218                                     SourceLocation EllipsisLoc) {
3219   return new (C, DC) UnresolvedUsingTypenameDecl(
3220       DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
3221       TargetName.getAsIdentifierInfo(), EllipsisLoc);
3222 }
3223 
3224 UnresolvedUsingTypenameDecl *
3225 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3226   return new (C, ID) UnresolvedUsingTypenameDecl(
3227       nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
3228       SourceLocation(), nullptr, SourceLocation());
3229 }
3230 
3231 UnresolvedUsingIfExistsDecl *
3232 UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC,
3233                                     SourceLocation Loc, DeclarationName Name) {
3234   return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name);
3235 }
3236 
3237 UnresolvedUsingIfExistsDecl *
3238 UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, unsigned ID) {
3239   return new (Ctx, ID)
3240       UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName());
3241 }
3242 
3243 UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC,
3244                                                          SourceLocation Loc,
3245                                                          DeclarationName Name)
3246     : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {}
3247 
3248 void UnresolvedUsingIfExistsDecl::anchor() {}
3249 
3250 void StaticAssertDecl::anchor() {}
3251 
3252 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
3253                                            SourceLocation StaticAssertLoc,
3254                                            Expr *AssertExpr, Expr *Message,
3255                                            SourceLocation RParenLoc,
3256                                            bool Failed) {
3257   return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
3258                                       RParenLoc, Failed);
3259 }
3260 
3261 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
3262                                                        unsigned ID) {
3263   return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
3264                                       nullptr, SourceLocation(), false);
3265 }
3266 
3267 VarDecl *ValueDecl::getPotentiallyDecomposedVarDecl() {
3268   assert((isa<VarDecl, BindingDecl>(this)) &&
3269          "expected a VarDecl or a BindingDecl");
3270   if (auto *Var = llvm::dyn_cast<VarDecl>(this))
3271     return Var;
3272   if (auto *BD = llvm::dyn_cast<BindingDecl>(this))
3273     return llvm::dyn_cast<VarDecl>(BD->getDecomposedDecl());
3274   return nullptr;
3275 }
3276 
3277 void BindingDecl::anchor() {}
3278 
3279 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
3280                                  SourceLocation IdLoc, IdentifierInfo *Id) {
3281   return new (C, DC) BindingDecl(DC, IdLoc, Id);
3282 }
3283 
3284 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3285   return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
3286 }
3287 
3288 VarDecl *BindingDecl::getHoldingVar() const {
3289   Expr *B = getBinding();
3290   if (!B)
3291     return nullptr;
3292   auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
3293   if (!DRE)
3294     return nullptr;
3295 
3296   auto *VD = cast<VarDecl>(DRE->getDecl());
3297   assert(VD->isImplicit() && "holding var for binding decl not implicit");
3298   return VD;
3299 }
3300 
3301 void DecompositionDecl::anchor() {}
3302 
3303 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
3304                                              SourceLocation StartLoc,
3305                                              SourceLocation LSquareLoc,
3306                                              QualType T, TypeSourceInfo *TInfo,
3307                                              StorageClass SC,
3308                                              ArrayRef<BindingDecl *> Bindings) {
3309   size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
3310   return new (C, DC, Extra)
3311       DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
3312 }
3313 
3314 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
3315                                                          unsigned ID,
3316                                                          unsigned NumBindings) {
3317   size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
3318   auto *Result = new (C, ID, Extra)
3319       DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
3320                         QualType(), nullptr, StorageClass(), std::nullopt);
3321   // Set up and clean out the bindings array.
3322   Result->NumBindings = NumBindings;
3323   auto *Trail = Result->getTrailingObjects<BindingDecl *>();
3324   for (unsigned I = 0; I != NumBindings; ++I)
3325     new (Trail + I) BindingDecl*(nullptr);
3326   return Result;
3327 }
3328 
3329 void DecompositionDecl::printName(llvm::raw_ostream &OS,
3330                                   const PrintingPolicy &Policy) const {
3331   OS << '[';
3332   bool Comma = false;
3333   for (const auto *B : bindings()) {
3334     if (Comma)
3335       OS << ", ";
3336     B->printName(OS, Policy);
3337     Comma = true;
3338   }
3339   OS << ']';
3340 }
3341 
3342 void MSPropertyDecl::anchor() {}
3343 
3344 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
3345                                        SourceLocation L, DeclarationName N,
3346                                        QualType T, TypeSourceInfo *TInfo,
3347                                        SourceLocation StartL,
3348                                        IdentifierInfo *Getter,
3349                                        IdentifierInfo *Setter) {
3350   return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
3351 }
3352 
3353 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3354                                                    unsigned ID) {
3355   return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
3356                                     DeclarationName(), QualType(), nullptr,
3357                                     SourceLocation(), nullptr, nullptr);
3358 }
3359 
3360 void MSGuidDecl::anchor() {}
3361 
3362 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P)
3363     : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T),
3364       PartVal(P) {}
3365 
3366 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) {
3367   DeclContext *DC = C.getTranslationUnitDecl();
3368   return new (C, DC) MSGuidDecl(DC, T, P);
3369 }
3370 
3371 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3372   return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts());
3373 }
3374 
3375 void MSGuidDecl::printName(llvm::raw_ostream &OS,
3376                            const PrintingPolicy &) const {
3377   OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-",
3378                      PartVal.Part1, PartVal.Part2, PartVal.Part3);
3379   unsigned I = 0;
3380   for (uint8_t Byte : PartVal.Part4And5) {
3381     OS << llvm::format("%02" PRIx8, Byte);
3382     if (++I == 2)
3383       OS << '-';
3384   }
3385   OS << '}';
3386 }
3387 
3388 /// Determine if T is a valid 'struct _GUID' of the shape that we expect.
3389 static bool isValidStructGUID(ASTContext &Ctx, QualType T) {
3390   // FIXME: We only need to check this once, not once each time we compute a
3391   // GUID APValue.
3392   using MatcherRef = llvm::function_ref<bool(QualType)>;
3393 
3394   auto IsInt = [&Ctx](unsigned N) {
3395     return [&Ctx, N](QualType T) {
3396       return T->isUnsignedIntegerOrEnumerationType() &&
3397              Ctx.getIntWidth(T) == N;
3398     };
3399   };
3400 
3401   auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) {
3402     return [&Ctx, Elem, N](QualType T) {
3403       const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T);
3404       return CAT && CAT->getSize() == N && Elem(CAT->getElementType());
3405     };
3406   };
3407 
3408   auto IsStruct = [](std::initializer_list<MatcherRef> Fields) {
3409     return [Fields](QualType T) {
3410       const RecordDecl *RD = T->getAsRecordDecl();
3411       if (!RD || RD->isUnion())
3412         return false;
3413       RD = RD->getDefinition();
3414       if (!RD)
3415         return false;
3416       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
3417         if (CXXRD->getNumBases())
3418           return false;
3419       auto MatcherIt = Fields.begin();
3420       for (const FieldDecl *FD : RD->fields()) {
3421         if (FD->isUnnamedBitfield()) continue;
3422         if (FD->isBitField() || MatcherIt == Fields.end() ||
3423             !(*MatcherIt)(FD->getType()))
3424           return false;
3425         ++MatcherIt;
3426       }
3427       return MatcherIt == Fields.end();
3428     };
3429   };
3430 
3431   // We expect an {i32, i16, i16, [8 x i8]}.
3432   return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T);
3433 }
3434 
3435 APValue &MSGuidDecl::getAsAPValue() const {
3436   if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) {
3437     using llvm::APInt;
3438     using llvm::APSInt;
3439     APVal = APValue(APValue::UninitStruct(), 0, 4);
3440     APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true));
3441     APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true));
3442     APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true));
3443     APValue &Arr = APVal.getStructField(3) =
3444         APValue(APValue::UninitArray(), 8, 8);
3445     for (unsigned I = 0; I != 8; ++I) {
3446       Arr.getArrayInitializedElt(I) =
3447           APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true));
3448     }
3449     // Register this APValue to be destroyed if necessary. (Note that the
3450     // MSGuidDecl destructor is never run.)
3451     getASTContext().addDestruction(&APVal);
3452   }
3453 
3454   return APVal;
3455 }
3456 
3457 void UnnamedGlobalConstantDecl::anchor() {}
3458 
3459 UnnamedGlobalConstantDecl::UnnamedGlobalConstantDecl(const ASTContext &C,
3460                                                      DeclContext *DC,
3461                                                      QualType Ty,
3462                                                      const APValue &Val)
3463     : ValueDecl(Decl::UnnamedGlobalConstant, DC, SourceLocation(),
3464                 DeclarationName(), Ty),
3465       Value(Val) {
3466   // Cleanup the embedded APValue if required (note that our destructor is never
3467   // run)
3468   if (Value.needsCleanup())
3469     C.addDestruction(&Value);
3470 }
3471 
3472 UnnamedGlobalConstantDecl *
3473 UnnamedGlobalConstantDecl::Create(const ASTContext &C, QualType T,
3474                                   const APValue &Value) {
3475   DeclContext *DC = C.getTranslationUnitDecl();
3476   return new (C, DC) UnnamedGlobalConstantDecl(C, DC, T, Value);
3477 }
3478 
3479 UnnamedGlobalConstantDecl *
3480 UnnamedGlobalConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3481   return new (C, ID)
3482       UnnamedGlobalConstantDecl(C, nullptr, QualType(), APValue());
3483 }
3484 
3485 void UnnamedGlobalConstantDecl::printName(llvm::raw_ostream &OS,
3486                                           const PrintingPolicy &) const {
3487   OS << "unnamed-global-constant";
3488 }
3489 
3490 static const char *getAccessName(AccessSpecifier AS) {
3491   switch (AS) {
3492     case AS_none:
3493       llvm_unreachable("Invalid access specifier!");
3494     case AS_public:
3495       return "public";
3496     case AS_private:
3497       return "private";
3498     case AS_protected:
3499       return "protected";
3500   }
3501   llvm_unreachable("Invalid access specifier!");
3502 }
3503 
3504 const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB,
3505                                              AccessSpecifier AS) {
3506   return DB << getAccessName(AS);
3507 }
3508