1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Decl subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Decl.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CanonicalType.h" 21 #include "clang/AST/DeclBase.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclOpenMP.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/DeclarationName.h" 27 #include "clang/AST/Expr.h" 28 #include "clang/AST/ExprCXX.h" 29 #include "clang/AST/ExternalASTSource.h" 30 #include "clang/AST/ODRHash.h" 31 #include "clang/AST/PrettyDeclStackTrace.h" 32 #include "clang/AST/PrettyPrinter.h" 33 #include "clang/AST/Redeclarable.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/IdentifierTable.h" 40 #include "clang/Basic/LLVM.h" 41 #include "clang/Basic/LangOptions.h" 42 #include "clang/Basic/Linkage.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/NoSanitizeList.h" 45 #include "clang/Basic/PartialDiagnostic.h" 46 #include "clang/Basic/Sanitizers.h" 47 #include "clang/Basic/SourceLocation.h" 48 #include "clang/Basic/SourceManager.h" 49 #include "clang/Basic/Specifiers.h" 50 #include "clang/Basic/TargetCXXABI.h" 51 #include "clang/Basic/TargetInfo.h" 52 #include "clang/Basic/Visibility.h" 53 #include "llvm/ADT/APSInt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/None.h" 56 #include "llvm/ADT/Optional.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/StringSwitch.h" 61 #include "llvm/ADT/Triple.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstring> 69 #include <memory> 70 #include <string> 71 #include <tuple> 72 #include <type_traits> 73 74 using namespace clang; 75 76 Decl *clang::getPrimaryMergedDecl(Decl *D) { 77 return D->getASTContext().getPrimaryMergedDecl(D); 78 } 79 80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { 81 SourceLocation Loc = this->Loc; 82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); 83 if (Loc.isValid()) { 84 Loc.print(OS, Context.getSourceManager()); 85 OS << ": "; 86 } 87 OS << Message; 88 89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { 90 OS << " '"; 91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); 92 OS << "'"; 93 } 94 95 OS << '\n'; 96 } 97 98 // Defined here so that it can be inlined into its direct callers. 99 bool Decl::isOutOfLine() const { 100 return !getLexicalDeclContext()->Equals(getDeclContext()); 101 } 102 103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 104 : Decl(TranslationUnit, nullptr, SourceLocation()), 105 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {} 106 107 //===----------------------------------------------------------------------===// 108 // NamedDecl Implementation 109 //===----------------------------------------------------------------------===// 110 111 // Visibility rules aren't rigorously externally specified, but here 112 // are the basic principles behind what we implement: 113 // 114 // 1. An explicit visibility attribute is generally a direct expression 115 // of the user's intent and should be honored. Only the innermost 116 // visibility attribute applies. If no visibility attribute applies, 117 // global visibility settings are considered. 118 // 119 // 2. There is one caveat to the above: on or in a template pattern, 120 // an explicit visibility attribute is just a default rule, and 121 // visibility can be decreased by the visibility of template 122 // arguments. But this, too, has an exception: an attribute on an 123 // explicit specialization or instantiation causes all the visibility 124 // restrictions of the template arguments to be ignored. 125 // 126 // 3. A variable that does not otherwise have explicit visibility can 127 // be restricted by the visibility of its type. 128 // 129 // 4. A visibility restriction is explicit if it comes from an 130 // attribute (or something like it), not a global visibility setting. 131 // When emitting a reference to an external symbol, visibility 132 // restrictions are ignored unless they are explicit. 133 // 134 // 5. When computing the visibility of a non-type, including a 135 // non-type member of a class, only non-type visibility restrictions 136 // are considered: the 'visibility' attribute, global value-visibility 137 // settings, and a few special cases like __private_extern. 138 // 139 // 6. When computing the visibility of a type, including a type member 140 // of a class, only type visibility restrictions are considered: 141 // the 'type_visibility' attribute and global type-visibility settings. 142 // However, a 'visibility' attribute counts as a 'type_visibility' 143 // attribute on any declaration that only has the former. 144 // 145 // The visibility of a "secondary" entity, like a template argument, 146 // is computed using the kind of that entity, not the kind of the 147 // primary entity for which we are computing visibility. For example, 148 // the visibility of a specialization of either of these templates: 149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 150 // template <class T, bool (&compare)(T, X)> class matcher; 151 // is restricted according to the type visibility of the argument 'T', 152 // the type visibility of 'bool(&)(T,X)', and the value visibility of 153 // the argument function 'compare'. That 'has_match' is a value 154 // and 'matcher' is a type only matters when looking for attributes 155 // and settings from the immediate context. 156 157 /// Does this computation kind permit us to consider additional 158 /// visibility settings from attributes and the like? 159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 160 return computation.IgnoreExplicitVisibility; 161 } 162 163 /// Given an LVComputationKind, return one of the same type/value sort 164 /// that records that it already has explicit visibility. 165 static LVComputationKind 166 withExplicitVisibilityAlready(LVComputationKind Kind) { 167 Kind.IgnoreExplicitVisibility = true; 168 return Kind; 169 } 170 171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 172 LVComputationKind kind) { 173 assert(!kind.IgnoreExplicitVisibility && 174 "asking for explicit visibility when we shouldn't be"); 175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); 176 } 177 178 /// Is the given declaration a "type" or a "value" for the purposes of 179 /// visibility computation? 180 static bool usesTypeVisibility(const NamedDecl *D) { 181 return isa<TypeDecl>(D) || 182 isa<ClassTemplateDecl>(D) || 183 isa<ObjCInterfaceDecl>(D); 184 } 185 186 /// Does the given declaration have member specialization information, 187 /// and if so, is it an explicit specialization? 188 template <class T> static typename 189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 190 isExplicitMemberSpecialization(const T *D) { 191 if (const MemberSpecializationInfo *member = 192 D->getMemberSpecializationInfo()) { 193 return member->isExplicitSpecialization(); 194 } 195 return false; 196 } 197 198 /// For templates, this question is easier: a member template can't be 199 /// explicitly instantiated, so there's a single bit indicating whether 200 /// or not this is an explicit member specialization. 201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 202 return D->isMemberSpecialization(); 203 } 204 205 /// Given a visibility attribute, return the explicit visibility 206 /// associated with it. 207 template <class T> 208 static Visibility getVisibilityFromAttr(const T *attr) { 209 switch (attr->getVisibility()) { 210 case T::Default: 211 return DefaultVisibility; 212 case T::Hidden: 213 return HiddenVisibility; 214 case T::Protected: 215 return ProtectedVisibility; 216 } 217 llvm_unreachable("bad visibility kind"); 218 } 219 220 /// Return the explicit visibility of the given declaration. 221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 222 NamedDecl::ExplicitVisibilityKind kind) { 223 // If we're ultimately computing the visibility of a type, look for 224 // a 'type_visibility' attribute before looking for 'visibility'. 225 if (kind == NamedDecl::VisibilityForType) { 226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 227 return getVisibilityFromAttr(A); 228 } 229 } 230 231 // If this declaration has an explicit visibility attribute, use it. 232 if (const auto *A = D->getAttr<VisibilityAttr>()) { 233 return getVisibilityFromAttr(A); 234 } 235 236 return None; 237 } 238 239 LinkageInfo LinkageComputer::getLVForType(const Type &T, 240 LVComputationKind computation) { 241 if (computation.IgnoreAllVisibility) 242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 243 return getTypeLinkageAndVisibility(&T); 244 } 245 246 /// Get the most restrictive linkage for the types in the given 247 /// template parameter list. For visibility purposes, template 248 /// parameters are part of the signature of a template. 249 LinkageInfo LinkageComputer::getLVForTemplateParameterList( 250 const TemplateParameterList *Params, LVComputationKind computation) { 251 LinkageInfo LV; 252 for (const NamedDecl *P : *Params) { 253 // Template type parameters are the most common and never 254 // contribute to visibility, pack or not. 255 if (isa<TemplateTypeParmDecl>(P)) 256 continue; 257 258 // Non-type template parameters can be restricted by the value type, e.g. 259 // template <enum X> class A { ... }; 260 // We have to be careful here, though, because we can be dealing with 261 // dependent types. 262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 263 // Handle the non-pack case first. 264 if (!NTTP->isExpandedParameterPack()) { 265 if (!NTTP->getType()->isDependentType()) { 266 LV.merge(getLVForType(*NTTP->getType(), computation)); 267 } 268 continue; 269 } 270 271 // Look at all the types in an expanded pack. 272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 273 QualType type = NTTP->getExpansionType(i); 274 if (!type->isDependentType()) 275 LV.merge(getTypeLinkageAndVisibility(type)); 276 } 277 continue; 278 } 279 280 // Template template parameters can be restricted by their 281 // template parameters, recursively. 282 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 283 284 // Handle the non-pack case first. 285 if (!TTP->isExpandedParameterPack()) { 286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 287 computation)); 288 continue; 289 } 290 291 // Look at all expansions in an expanded pack. 292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 293 i != n; ++i) { 294 LV.merge(getLVForTemplateParameterList( 295 TTP->getExpansionTemplateParameters(i), computation)); 296 } 297 } 298 299 return LV; 300 } 301 302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 303 const Decl *Ret = nullptr; 304 const DeclContext *DC = D->getDeclContext(); 305 while (DC->getDeclKind() != Decl::TranslationUnit) { 306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 307 Ret = cast<Decl>(DC); 308 DC = DC->getParent(); 309 } 310 return Ret; 311 } 312 313 /// Get the most restrictive linkage for the types and 314 /// declarations in the given template argument list. 315 /// 316 /// Note that we don't take an LVComputationKind because we always 317 /// want to honor the visibility of template arguments in the same way. 318 LinkageInfo 319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 320 LVComputationKind computation) { 321 LinkageInfo LV; 322 323 for (const TemplateArgument &Arg : Args) { 324 switch (Arg.getKind()) { 325 case TemplateArgument::Null: 326 case TemplateArgument::Integral: 327 case TemplateArgument::Expression: 328 continue; 329 330 case TemplateArgument::Type: 331 LV.merge(getLVForType(*Arg.getAsType(), computation)); 332 continue; 333 334 case TemplateArgument::Declaration: { 335 const NamedDecl *ND = Arg.getAsDecl(); 336 assert(!usesTypeVisibility(ND)); 337 LV.merge(getLVForDecl(ND, computation)); 338 continue; 339 } 340 341 case TemplateArgument::NullPtr: 342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); 343 continue; 344 345 case TemplateArgument::Template: 346 case TemplateArgument::TemplateExpansion: 347 if (TemplateDecl *Template = 348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 349 LV.merge(getLVForDecl(Template, computation)); 350 continue; 351 352 case TemplateArgument::Pack: 353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 354 continue; 355 } 356 llvm_unreachable("bad template argument kind"); 357 } 358 359 return LV; 360 } 361 362 LinkageInfo 363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 364 LVComputationKind computation) { 365 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 366 } 367 368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 369 const FunctionTemplateSpecializationInfo *specInfo) { 370 // Include visibility from the template parameters and arguments 371 // only if this is not an explicit instantiation or specialization 372 // with direct explicit visibility. (Implicit instantiations won't 373 // have a direct attribute.) 374 if (!specInfo->isExplicitInstantiationOrSpecialization()) 375 return true; 376 377 return !fn->hasAttr<VisibilityAttr>(); 378 } 379 380 /// Merge in template-related linkage and visibility for the given 381 /// function template specialization. 382 /// 383 /// We don't need a computation kind here because we can assume 384 /// LVForValue. 385 /// 386 /// \param[out] LV the computation to use for the parent 387 void LinkageComputer::mergeTemplateLV( 388 LinkageInfo &LV, const FunctionDecl *fn, 389 const FunctionTemplateSpecializationInfo *specInfo, 390 LVComputationKind computation) { 391 bool considerVisibility = 392 shouldConsiderTemplateVisibility(fn, specInfo); 393 394 // Merge information from the template parameters. 395 FunctionTemplateDecl *temp = specInfo->getTemplate(); 396 LinkageInfo tempLV = 397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 399 400 // Merge information from the template arguments. 401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 404 } 405 406 /// Does the given declaration have a direct visibility attribute 407 /// that would match the given rules? 408 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 409 LVComputationKind computation) { 410 if (computation.IgnoreAllVisibility) 411 return false; 412 413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || 414 D->hasAttr<VisibilityAttr>(); 415 } 416 417 /// Should we consider visibility associated with the template 418 /// arguments and parameters of the given class template specialization? 419 static bool shouldConsiderTemplateVisibility( 420 const ClassTemplateSpecializationDecl *spec, 421 LVComputationKind computation) { 422 // Include visibility from the template parameters and arguments 423 // only if this is not an explicit instantiation or specialization 424 // with direct explicit visibility (and note that implicit 425 // instantiations won't have a direct attribute). 426 // 427 // Furthermore, we want to ignore template parameters and arguments 428 // for an explicit specialization when computing the visibility of a 429 // member thereof with explicit visibility. 430 // 431 // This is a bit complex; let's unpack it. 432 // 433 // An explicit class specialization is an independent, top-level 434 // declaration. As such, if it or any of its members has an 435 // explicit visibility attribute, that must directly express the 436 // user's intent, and we should honor it. The same logic applies to 437 // an explicit instantiation of a member of such a thing. 438 439 // Fast path: if this is not an explicit instantiation or 440 // specialization, we always want to consider template-related 441 // visibility restrictions. 442 if (!spec->isExplicitInstantiationOrSpecialization()) 443 return true; 444 445 // This is the 'member thereof' check. 446 if (spec->isExplicitSpecialization() && 447 hasExplicitVisibilityAlready(computation)) 448 return false; 449 450 return !hasDirectVisibilityAttribute(spec, computation); 451 } 452 453 /// Merge in template-related linkage and visibility for the given 454 /// class template specialization. 455 void LinkageComputer::mergeTemplateLV( 456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, 457 LVComputationKind computation) { 458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 459 460 // Merge information from the template parameters, but ignore 461 // visibility if we're only considering template arguments. 462 463 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 464 LinkageInfo tempLV = 465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 466 LV.mergeMaybeWithVisibility(tempLV, 467 considerVisibility && !hasExplicitVisibilityAlready(computation)); 468 469 // Merge information from the template arguments. We ignore 470 // template-argument visibility if we've got an explicit 471 // instantiation with a visibility attribute. 472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 474 if (considerVisibility) 475 LV.mergeVisibility(argsLV); 476 LV.mergeExternalVisibility(argsLV); 477 } 478 479 /// Should we consider visibility associated with the template 480 /// arguments and parameters of the given variable template 481 /// specialization? As usual, follow class template specialization 482 /// logic up to initialization. 483 static bool shouldConsiderTemplateVisibility( 484 const VarTemplateSpecializationDecl *spec, 485 LVComputationKind computation) { 486 // Include visibility from the template parameters and arguments 487 // only if this is not an explicit instantiation or specialization 488 // with direct explicit visibility (and note that implicit 489 // instantiations won't have a direct attribute). 490 if (!spec->isExplicitInstantiationOrSpecialization()) 491 return true; 492 493 // An explicit variable specialization is an independent, top-level 494 // declaration. As such, if it has an explicit visibility attribute, 495 // that must directly express the user's intent, and we should honor 496 // it. 497 if (spec->isExplicitSpecialization() && 498 hasExplicitVisibilityAlready(computation)) 499 return false; 500 501 return !hasDirectVisibilityAttribute(spec, computation); 502 } 503 504 /// Merge in template-related linkage and visibility for the given 505 /// variable template specialization. As usual, follow class template 506 /// specialization logic up to initialization. 507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, 508 const VarTemplateSpecializationDecl *spec, 509 LVComputationKind computation) { 510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 511 512 // Merge information from the template parameters, but ignore 513 // visibility if we're only considering template arguments. 514 515 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 516 LinkageInfo tempLV = 517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 518 LV.mergeMaybeWithVisibility(tempLV, 519 considerVisibility && !hasExplicitVisibilityAlready(computation)); 520 521 // Merge information from the template arguments. We ignore 522 // template-argument visibility if we've got an explicit 523 // instantiation with a visibility attribute. 524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 526 if (considerVisibility) 527 LV.mergeVisibility(argsLV); 528 LV.mergeExternalVisibility(argsLV); 529 } 530 531 static bool useInlineVisibilityHidden(const NamedDecl *D) { 532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 533 const LangOptions &Opts = D->getASTContext().getLangOpts(); 534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 535 return false; 536 537 const auto *FD = dyn_cast<FunctionDecl>(D); 538 if (!FD) 539 return false; 540 541 TemplateSpecializationKind TSK = TSK_Undeclared; 542 if (FunctionTemplateSpecializationInfo *spec 543 = FD->getTemplateSpecializationInfo()) { 544 TSK = spec->getTemplateSpecializationKind(); 545 } else if (MemberSpecializationInfo *MSI = 546 FD->getMemberSpecializationInfo()) { 547 TSK = MSI->getTemplateSpecializationKind(); 548 } 549 550 const FunctionDecl *Def = nullptr; 551 // InlineVisibilityHidden only applies to definitions, and 552 // isInlined() only gives meaningful answers on definitions 553 // anyway. 554 return TSK != TSK_ExplicitInstantiationDeclaration && 555 TSK != TSK_ExplicitInstantiationDefinition && 556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 557 } 558 559 template <typename T> static bool isFirstInExternCContext(T *D) { 560 const T *First = D->getFirstDecl(); 561 return First->isInExternCContext(); 562 } 563 564 static bool isSingleLineLanguageLinkage(const Decl &D) { 565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 566 if (!SD->hasBraces()) 567 return true; 568 return false; 569 } 570 571 /// Determine whether D is declared in the purview of a named module. 572 static bool isInModulePurview(const NamedDecl *D) { 573 if (auto *M = D->getOwningModule()) 574 return M->isModulePurview(); 575 return false; 576 } 577 578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { 579 // FIXME: Handle isModulePrivate. 580 switch (D->getModuleOwnershipKind()) { 581 case Decl::ModuleOwnershipKind::Unowned: 582 case Decl::ModuleOwnershipKind::ModulePrivate: 583 return false; 584 case Decl::ModuleOwnershipKind::Visible: 585 case Decl::ModuleOwnershipKind::VisibleWhenImported: 586 return isInModulePurview(D); 587 } 588 llvm_unreachable("unexpected module ownership kind"); 589 } 590 591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { 592 // Internal linkage declarations within a module interface unit are modeled 593 // as "module-internal linkage", which means that they have internal linkage 594 // formally but can be indirectly accessed from outside the module via inline 595 // functions and templates defined within the module. 596 if (isInModulePurview(D)) 597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); 598 599 return LinkageInfo::internal(); 600 } 601 602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { 603 // C++ Modules TS [basic.link]/6.8: 604 // - A name declared at namespace scope that does not have internal linkage 605 // by the previous rules and that is introduced by a non-exported 606 // declaration has module linkage. 607 if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit( 608 cast<NamedDecl>(D->getCanonicalDecl()))) 609 return LinkageInfo(ModuleLinkage, DefaultVisibility, false); 610 611 return LinkageInfo::external(); 612 } 613 614 static StorageClass getStorageClass(const Decl *D) { 615 if (auto *TD = dyn_cast<TemplateDecl>(D)) 616 D = TD->getTemplatedDecl(); 617 if (D) { 618 if (auto *VD = dyn_cast<VarDecl>(D)) 619 return VD->getStorageClass(); 620 if (auto *FD = dyn_cast<FunctionDecl>(D)) 621 return FD->getStorageClass(); 622 } 623 return SC_None; 624 } 625 626 LinkageInfo 627 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, 628 LVComputationKind computation, 629 bool IgnoreVarTypeLinkage) { 630 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 631 "Not a name having namespace scope"); 632 ASTContext &Context = D->getASTContext(); 633 634 // C++ [basic.link]p3: 635 // A name having namespace scope (3.3.6) has internal linkage if it 636 // is the name of 637 638 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { 639 // - a variable, variable template, function, or function template 640 // that is explicitly declared static; or 641 // (This bullet corresponds to C99 6.2.2p3.) 642 return getInternalLinkageFor(D); 643 } 644 645 if (const auto *Var = dyn_cast<VarDecl>(D)) { 646 // - a non-template variable of non-volatile const-qualified type, unless 647 // - it is explicitly declared extern, or 648 // - it is inline or exported, or 649 // - it was previously declared and the prior declaration did not have 650 // internal linkage 651 // (There is no equivalent in C99.) 652 if (Context.getLangOpts().CPlusPlus && 653 Var->getType().isConstQualified() && 654 !Var->getType().isVolatileQualified() && 655 !Var->isInline() && 656 !isExportedFromModuleInterfaceUnit(Var) && 657 !isa<VarTemplateSpecializationDecl>(Var) && 658 !Var->getDescribedVarTemplate()) { 659 const VarDecl *PrevVar = Var->getPreviousDecl(); 660 if (PrevVar) 661 return getLVForDecl(PrevVar, computation); 662 663 if (Var->getStorageClass() != SC_Extern && 664 Var->getStorageClass() != SC_PrivateExtern && 665 !isSingleLineLanguageLinkage(*Var)) 666 return getInternalLinkageFor(Var); 667 } 668 669 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 670 PrevVar = PrevVar->getPreviousDecl()) { 671 if (PrevVar->getStorageClass() == SC_PrivateExtern && 672 Var->getStorageClass() == SC_None) 673 return getDeclLinkageAndVisibility(PrevVar); 674 // Explicitly declared static. 675 if (PrevVar->getStorageClass() == SC_Static) 676 return getInternalLinkageFor(Var); 677 } 678 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 679 // - a data member of an anonymous union. 680 const VarDecl *VD = IFD->getVarDecl(); 681 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 682 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); 683 } 684 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 685 686 // FIXME: This gives internal linkage to names that should have no linkage 687 // (those not covered by [basic.link]p6). 688 if (D->isInAnonymousNamespace()) { 689 const auto *Var = dyn_cast<VarDecl>(D); 690 const auto *Func = dyn_cast<FunctionDecl>(D); 691 // FIXME: The check for extern "C" here is not justified by the standard 692 // wording, but we retain it from the pre-DR1113 model to avoid breaking 693 // code. 694 // 695 // C++11 [basic.link]p4: 696 // An unnamed namespace or a namespace declared directly or indirectly 697 // within an unnamed namespace has internal linkage. 698 if ((!Var || !isFirstInExternCContext(Var)) && 699 (!Func || !isFirstInExternCContext(Func))) 700 return getInternalLinkageFor(D); 701 } 702 703 // Set up the defaults. 704 705 // C99 6.2.2p5: 706 // If the declaration of an identifier for an object has file 707 // scope and no storage-class specifier, its linkage is 708 // external. 709 LinkageInfo LV = getExternalLinkageFor(D); 710 711 if (!hasExplicitVisibilityAlready(computation)) { 712 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 713 LV.mergeVisibility(*Vis, true); 714 } else { 715 // If we're declared in a namespace with a visibility attribute, 716 // use that namespace's visibility, and it still counts as explicit. 717 for (const DeclContext *DC = D->getDeclContext(); 718 !isa<TranslationUnitDecl>(DC); 719 DC = DC->getParent()) { 720 const auto *ND = dyn_cast<NamespaceDecl>(DC); 721 if (!ND) continue; 722 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 723 LV.mergeVisibility(*Vis, true); 724 break; 725 } 726 } 727 } 728 729 // Add in global settings if the above didn't give us direct visibility. 730 if (!LV.isVisibilityExplicit()) { 731 // Use global type/value visibility as appropriate. 732 Visibility globalVisibility = 733 computation.isValueVisibility() 734 ? Context.getLangOpts().getValueVisibilityMode() 735 : Context.getLangOpts().getTypeVisibilityMode(); 736 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 737 738 // If we're paying attention to global visibility, apply 739 // -finline-visibility-hidden if this is an inline method. 740 if (useInlineVisibilityHidden(D)) 741 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 742 } 743 } 744 745 // C++ [basic.link]p4: 746 747 // A name having namespace scope that has not been given internal linkage 748 // above and that is the name of 749 // [...bullets...] 750 // has its linkage determined as follows: 751 // - if the enclosing namespace has internal linkage, the name has 752 // internal linkage; [handled above] 753 // - otherwise, if the declaration of the name is attached to a named 754 // module and is not exported, the name has module linkage; 755 // - otherwise, the name has external linkage. 756 // LV is currently set up to handle the last two bullets. 757 // 758 // The bullets are: 759 760 // - a variable; or 761 if (const auto *Var = dyn_cast<VarDecl>(D)) { 762 // GCC applies the following optimization to variables and static 763 // data members, but not to functions: 764 // 765 // Modify the variable's LV by the LV of its type unless this is 766 // C or extern "C". This follows from [basic.link]p9: 767 // A type without linkage shall not be used as the type of a 768 // variable or function with external linkage unless 769 // - the entity has C language linkage, or 770 // - the entity is declared within an unnamed namespace, or 771 // - the entity is not used or is defined in the same 772 // translation unit. 773 // and [basic.link]p10: 774 // ...the types specified by all declarations referring to a 775 // given variable or function shall be identical... 776 // C does not have an equivalent rule. 777 // 778 // Ignore this if we've got an explicit attribute; the user 779 // probably knows what they're doing. 780 // 781 // Note that we don't want to make the variable non-external 782 // because of this, but unique-external linkage suits us. 783 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && 784 !IgnoreVarTypeLinkage) { 785 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 786 if (!isExternallyVisible(TypeLV.getLinkage())) 787 return LinkageInfo::uniqueExternal(); 788 if (!LV.isVisibilityExplicit()) 789 LV.mergeVisibility(TypeLV); 790 } 791 792 if (Var->getStorageClass() == SC_PrivateExtern) 793 LV.mergeVisibility(HiddenVisibility, true); 794 795 // Note that Sema::MergeVarDecl already takes care of implementing 796 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 797 // to do it here. 798 799 // As per function and class template specializations (below), 800 // consider LV for the template and template arguments. We're at file 801 // scope, so we do not need to worry about nested specializations. 802 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 803 mergeTemplateLV(LV, spec, computation); 804 } 805 806 // - a function; or 807 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 808 // In theory, we can modify the function's LV by the LV of its 809 // type unless it has C linkage (see comment above about variables 810 // for justification). In practice, GCC doesn't do this, so it's 811 // just too painful to make work. 812 813 if (Function->getStorageClass() == SC_PrivateExtern) 814 LV.mergeVisibility(HiddenVisibility, true); 815 816 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 817 // merging storage classes and visibility attributes, so we don't have to 818 // look at previous decls in here. 819 820 // In C++, then if the type of the function uses a type with 821 // unique-external linkage, it's not legally usable from outside 822 // this translation unit. However, we should use the C linkage 823 // rules instead for extern "C" declarations. 824 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { 825 // Only look at the type-as-written. Otherwise, deducing the return type 826 // of a function could change its linkage. 827 QualType TypeAsWritten = Function->getType(); 828 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 829 TypeAsWritten = TSI->getType(); 830 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 831 return LinkageInfo::uniqueExternal(); 832 } 833 834 // Consider LV from the template and the template arguments. 835 // We're at file scope, so we do not need to worry about nested 836 // specializations. 837 if (FunctionTemplateSpecializationInfo *specInfo 838 = Function->getTemplateSpecializationInfo()) { 839 mergeTemplateLV(LV, Function, specInfo, computation); 840 } 841 842 // - a named class (Clause 9), or an unnamed class defined in a 843 // typedef declaration in which the class has the typedef name 844 // for linkage purposes (7.1.3); or 845 // - a named enumeration (7.2), or an unnamed enumeration 846 // defined in a typedef declaration in which the enumeration 847 // has the typedef name for linkage purposes (7.1.3); or 848 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 849 // Unnamed tags have no linkage. 850 if (!Tag->hasNameForLinkage()) 851 return LinkageInfo::none(); 852 853 // If this is a class template specialization, consider the 854 // linkage of the template and template arguments. We're at file 855 // scope, so we do not need to worry about nested specializations. 856 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 857 mergeTemplateLV(LV, spec, computation); 858 } 859 860 // FIXME: This is not part of the C++ standard any more. 861 // - an enumerator belonging to an enumeration with external linkage; or 862 } else if (isa<EnumConstantDecl>(D)) { 863 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 864 computation); 865 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 866 return LinkageInfo::none(); 867 LV.merge(EnumLV); 868 869 // - a template 870 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 871 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 872 LinkageInfo tempLV = 873 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 874 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 875 876 // An unnamed namespace or a namespace declared directly or indirectly 877 // within an unnamed namespace has internal linkage. All other namespaces 878 // have external linkage. 879 // 880 // We handled names in anonymous namespaces above. 881 } else if (isa<NamespaceDecl>(D)) { 882 return LV; 883 884 // By extension, we assign external linkage to Objective-C 885 // interfaces. 886 } else if (isa<ObjCInterfaceDecl>(D)) { 887 // fallout 888 889 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 890 // A typedef declaration has linkage if it gives a type a name for 891 // linkage purposes. 892 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 893 return LinkageInfo::none(); 894 895 } else if (isa<MSGuidDecl>(D)) { 896 // A GUID behaves like an inline variable with external linkage. Fall 897 // through. 898 899 // Everything not covered here has no linkage. 900 } else { 901 return LinkageInfo::none(); 902 } 903 904 // If we ended up with non-externally-visible linkage, visibility should 905 // always be default. 906 if (!isExternallyVisible(LV.getLinkage())) 907 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 908 909 // Mark the symbols as hidden when compiling for the device. 910 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice) 911 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); 912 913 return LV; 914 } 915 916 LinkageInfo 917 LinkageComputer::getLVForClassMember(const NamedDecl *D, 918 LVComputationKind computation, 919 bool IgnoreVarTypeLinkage) { 920 // Only certain class members have linkage. Note that fields don't 921 // really have linkage, but it's convenient to say they do for the 922 // purposes of calculating linkage of pointer-to-data-member 923 // template arguments. 924 // 925 // Templates also don't officially have linkage, but since we ignore 926 // the C++ standard and look at template arguments when determining 927 // linkage and visibility of a template specialization, we might hit 928 // a template template argument that way. If we do, we need to 929 // consider its linkage. 930 if (!(isa<CXXMethodDecl>(D) || 931 isa<VarDecl>(D) || 932 isa<FieldDecl>(D) || 933 isa<IndirectFieldDecl>(D) || 934 isa<TagDecl>(D) || 935 isa<TemplateDecl>(D))) 936 return LinkageInfo::none(); 937 938 LinkageInfo LV; 939 940 // If we have an explicit visibility attribute, merge that in. 941 if (!hasExplicitVisibilityAlready(computation)) { 942 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 943 LV.mergeVisibility(*Vis, true); 944 // If we're paying attention to global visibility, apply 945 // -finline-visibility-hidden if this is an inline method. 946 // 947 // Note that we do this before merging information about 948 // the class visibility. 949 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 950 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 951 } 952 953 // If this class member has an explicit visibility attribute, the only 954 // thing that can change its visibility is the template arguments, so 955 // only look for them when processing the class. 956 LVComputationKind classComputation = computation; 957 if (LV.isVisibilityExplicit()) 958 classComputation = withExplicitVisibilityAlready(computation); 959 960 LinkageInfo classLV = 961 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 962 // The member has the same linkage as the class. If that's not externally 963 // visible, we don't need to compute anything about the linkage. 964 // FIXME: If we're only computing linkage, can we bail out here? 965 if (!isExternallyVisible(classLV.getLinkage())) 966 return classLV; 967 968 969 // Otherwise, don't merge in classLV yet, because in certain cases 970 // we need to completely ignore the visibility from it. 971 972 // Specifically, if this decl exists and has an explicit attribute. 973 const NamedDecl *explicitSpecSuppressor = nullptr; 974 975 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 976 // Only look at the type-as-written. Otherwise, deducing the return type 977 // of a function could change its linkage. 978 QualType TypeAsWritten = MD->getType(); 979 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 980 TypeAsWritten = TSI->getType(); 981 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 982 return LinkageInfo::uniqueExternal(); 983 984 // If this is a method template specialization, use the linkage for 985 // the template parameters and arguments. 986 if (FunctionTemplateSpecializationInfo *spec 987 = MD->getTemplateSpecializationInfo()) { 988 mergeTemplateLV(LV, MD, spec, computation); 989 if (spec->isExplicitSpecialization()) { 990 explicitSpecSuppressor = MD; 991 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 992 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 993 } 994 } else if (isExplicitMemberSpecialization(MD)) { 995 explicitSpecSuppressor = MD; 996 } 997 998 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 999 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 1000 mergeTemplateLV(LV, spec, computation); 1001 if (spec->isExplicitSpecialization()) { 1002 explicitSpecSuppressor = spec; 1003 } else { 1004 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 1005 if (isExplicitMemberSpecialization(temp)) { 1006 explicitSpecSuppressor = temp->getTemplatedDecl(); 1007 } 1008 } 1009 } else if (isExplicitMemberSpecialization(RD)) { 1010 explicitSpecSuppressor = RD; 1011 } 1012 1013 // Static data members. 1014 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 1015 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 1016 mergeTemplateLV(LV, spec, computation); 1017 1018 // Modify the variable's linkage by its type, but ignore the 1019 // type's visibility unless it's a definition. 1020 if (!IgnoreVarTypeLinkage) { 1021 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 1022 // FIXME: If the type's linkage is not externally visible, we can 1023 // give this static data member UniqueExternalLinkage. 1024 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 1025 LV.mergeVisibility(typeLV); 1026 LV.mergeExternalVisibility(typeLV); 1027 } 1028 1029 if (isExplicitMemberSpecialization(VD)) { 1030 explicitSpecSuppressor = VD; 1031 } 1032 1033 // Template members. 1034 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 1035 bool considerVisibility = 1036 (!LV.isVisibilityExplicit() && 1037 !classLV.isVisibilityExplicit() && 1038 !hasExplicitVisibilityAlready(computation)); 1039 LinkageInfo tempLV = 1040 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 1041 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 1042 1043 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 1044 if (isExplicitMemberSpecialization(redeclTemp)) { 1045 explicitSpecSuppressor = temp->getTemplatedDecl(); 1046 } 1047 } 1048 } 1049 1050 // We should never be looking for an attribute directly on a template. 1051 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 1052 1053 // If this member is an explicit member specialization, and it has 1054 // an explicit attribute, ignore visibility from the parent. 1055 bool considerClassVisibility = true; 1056 if (explicitSpecSuppressor && 1057 // optimization: hasDVA() is true only with explicit visibility. 1058 LV.isVisibilityExplicit() && 1059 classLV.getVisibility() != DefaultVisibility && 1060 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 1061 considerClassVisibility = false; 1062 } 1063 1064 // Finally, merge in information from the class. 1065 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1066 return LV; 1067 } 1068 1069 void NamedDecl::anchor() {} 1070 1071 bool NamedDecl::isLinkageValid() const { 1072 if (!hasCachedLinkage()) 1073 return true; 1074 1075 Linkage L = LinkageComputer{} 1076 .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) 1077 .getLinkage(); 1078 return L == getCachedLinkage(); 1079 } 1080 1081 ReservedIdentifierStatus 1082 NamedDecl::isReserved(const LangOptions &LangOpts) const { 1083 const IdentifierInfo *II = getIdentifier(); 1084 1085 // This triggers at least for CXXLiteralIdentifiers, which we already checked 1086 // at lexing time. 1087 if (!II) 1088 return ReservedIdentifierStatus::NotReserved; 1089 1090 ReservedIdentifierStatus Status = II->isReserved(LangOpts); 1091 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) { 1092 // This name is only reserved at global scope. Check if this declaration 1093 // conflicts with a global scope declaration. 1094 if (isa<ParmVarDecl>(this) || isTemplateParameter()) 1095 return ReservedIdentifierStatus::NotReserved; 1096 1097 // C++ [dcl.link]/7: 1098 // Two declarations [conflict] if [...] one declares a function or 1099 // variable with C language linkage, and the other declares [...] a 1100 // variable that belongs to the global scope. 1101 // 1102 // Therefore names that are reserved at global scope are also reserved as 1103 // names of variables and functions with C language linkage. 1104 const DeclContext *DC = getDeclContext()->getRedeclContext(); 1105 if (DC->isTranslationUnit()) 1106 return Status; 1107 if (auto *VD = dyn_cast<VarDecl>(this)) 1108 if (VD->isExternC()) 1109 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1110 if (auto *FD = dyn_cast<FunctionDecl>(this)) 1111 if (FD->isExternC()) 1112 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1113 return ReservedIdentifierStatus::NotReserved; 1114 } 1115 1116 return Status; 1117 } 1118 1119 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1120 StringRef name = getName(); 1121 if (name.empty()) return SFF_None; 1122 1123 if (name.front() == 'C') 1124 if (name == "CFStringCreateWithFormat" || 1125 name == "CFStringCreateWithFormatAndArguments" || 1126 name == "CFStringAppendFormat" || 1127 name == "CFStringAppendFormatAndArguments") 1128 return SFF_CFString; 1129 return SFF_None; 1130 } 1131 1132 Linkage NamedDecl::getLinkageInternal() const { 1133 // We don't care about visibility here, so ask for the cheapest 1134 // possible visibility analysis. 1135 return LinkageComputer{} 1136 .getLVForDecl(this, LVComputationKind::forLinkageOnly()) 1137 .getLinkage(); 1138 } 1139 1140 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1141 return LinkageComputer{}.getDeclLinkageAndVisibility(this); 1142 } 1143 1144 static Optional<Visibility> 1145 getExplicitVisibilityAux(const NamedDecl *ND, 1146 NamedDecl::ExplicitVisibilityKind kind, 1147 bool IsMostRecent) { 1148 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1149 1150 // Check the declaration itself first. 1151 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1152 return V; 1153 1154 // If this is a member class of a specialization of a class template 1155 // and the corresponding decl has explicit visibility, use that. 1156 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1157 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1158 if (InstantiatedFrom) 1159 return getVisibilityOf(InstantiatedFrom, kind); 1160 } 1161 1162 // If there wasn't explicit visibility there, and this is a 1163 // specialization of a class template, check for visibility 1164 // on the pattern. 1165 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1166 // Walk all the template decl till this point to see if there are 1167 // explicit visibility attributes. 1168 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); 1169 while (TD != nullptr) { 1170 auto Vis = getVisibilityOf(TD, kind); 1171 if (Vis != None) 1172 return Vis; 1173 TD = TD->getPreviousDecl(); 1174 } 1175 return None; 1176 } 1177 1178 // Use the most recent declaration. 1179 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1180 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1181 if (MostRecent != ND) 1182 return getExplicitVisibilityAux(MostRecent, kind, true); 1183 } 1184 1185 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1186 if (Var->isStaticDataMember()) { 1187 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1188 if (InstantiatedFrom) 1189 return getVisibilityOf(InstantiatedFrom, kind); 1190 } 1191 1192 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1193 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1194 kind); 1195 1196 return None; 1197 } 1198 // Also handle function template specializations. 1199 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1200 // If the function is a specialization of a template with an 1201 // explicit visibility attribute, use that. 1202 if (FunctionTemplateSpecializationInfo *templateInfo 1203 = fn->getTemplateSpecializationInfo()) 1204 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1205 kind); 1206 1207 // If the function is a member of a specialization of a class template 1208 // and the corresponding decl has explicit visibility, use that. 1209 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1210 if (InstantiatedFrom) 1211 return getVisibilityOf(InstantiatedFrom, kind); 1212 1213 return None; 1214 } 1215 1216 // The visibility of a template is stored in the templated decl. 1217 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1218 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1219 1220 return None; 1221 } 1222 1223 Optional<Visibility> 1224 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1225 return getExplicitVisibilityAux(this, kind, false); 1226 } 1227 1228 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, 1229 Decl *ContextDecl, 1230 LVComputationKind computation) { 1231 // This lambda has its linkage/visibility determined by its owner. 1232 const NamedDecl *Owner; 1233 if (!ContextDecl) 1234 Owner = dyn_cast<NamedDecl>(DC); 1235 else if (isa<ParmVarDecl>(ContextDecl)) 1236 Owner = 1237 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); 1238 else 1239 Owner = cast<NamedDecl>(ContextDecl); 1240 1241 if (!Owner) 1242 return LinkageInfo::none(); 1243 1244 // If the owner has a deduced type, we need to skip querying the linkage and 1245 // visibility of that type, because it might involve this closure type. The 1246 // only effect of this is that we might give a lambda VisibleNoLinkage rather 1247 // than NoLinkage when we don't strictly need to, which is benign. 1248 auto *VD = dyn_cast<VarDecl>(Owner); 1249 LinkageInfo OwnerLV = 1250 VD && VD->getType()->getContainedDeducedType() 1251 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) 1252 : getLVForDecl(Owner, computation); 1253 1254 // A lambda never formally has linkage. But if the owner is externally 1255 // visible, then the lambda is too. We apply the same rules to blocks. 1256 if (!isExternallyVisible(OwnerLV.getLinkage())) 1257 return LinkageInfo::none(); 1258 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), 1259 OwnerLV.isVisibilityExplicit()); 1260 } 1261 1262 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, 1263 LVComputationKind computation) { 1264 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1265 if (Function->isInAnonymousNamespace() && 1266 !isFirstInExternCContext(Function)) 1267 return getInternalLinkageFor(Function); 1268 1269 // This is a "void f();" which got merged with a file static. 1270 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1271 return getInternalLinkageFor(Function); 1272 1273 LinkageInfo LV; 1274 if (!hasExplicitVisibilityAlready(computation)) { 1275 if (Optional<Visibility> Vis = 1276 getExplicitVisibility(Function, computation)) 1277 LV.mergeVisibility(*Vis, true); 1278 } 1279 1280 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1281 // merging storage classes and visibility attributes, so we don't have to 1282 // look at previous decls in here. 1283 1284 return LV; 1285 } 1286 1287 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1288 if (Var->hasExternalStorage()) { 1289 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) 1290 return getInternalLinkageFor(Var); 1291 1292 LinkageInfo LV; 1293 if (Var->getStorageClass() == SC_PrivateExtern) 1294 LV.mergeVisibility(HiddenVisibility, true); 1295 else if (!hasExplicitVisibilityAlready(computation)) { 1296 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1297 LV.mergeVisibility(*Vis, true); 1298 } 1299 1300 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1301 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1302 if (PrevLV.getLinkage()) 1303 LV.setLinkage(PrevLV.getLinkage()); 1304 LV.mergeVisibility(PrevLV); 1305 } 1306 1307 return LV; 1308 } 1309 1310 if (!Var->isStaticLocal()) 1311 return LinkageInfo::none(); 1312 } 1313 1314 ASTContext &Context = D->getASTContext(); 1315 if (!Context.getLangOpts().CPlusPlus) 1316 return LinkageInfo::none(); 1317 1318 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1319 if (!OuterD || OuterD->isInvalidDecl()) 1320 return LinkageInfo::none(); 1321 1322 LinkageInfo LV; 1323 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1324 if (!BD->getBlockManglingNumber()) 1325 return LinkageInfo::none(); 1326 1327 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1328 BD->getBlockManglingContextDecl(), computation); 1329 } else { 1330 const auto *FD = cast<FunctionDecl>(OuterD); 1331 if (!FD->isInlined() && 1332 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1333 return LinkageInfo::none(); 1334 1335 // If a function is hidden by -fvisibility-inlines-hidden option and 1336 // is not explicitly attributed as a hidden function, 1337 // we should not make static local variables in the function hidden. 1338 LV = getLVForDecl(FD, computation); 1339 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && 1340 !LV.isVisibilityExplicit() && 1341 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) { 1342 assert(cast<VarDecl>(D)->isStaticLocal()); 1343 // If this was an implicitly hidden inline method, check again for 1344 // explicit visibility on the parent class, and use that for static locals 1345 // if present. 1346 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1347 LV = getLVForDecl(MD->getParent(), computation); 1348 if (!LV.isVisibilityExplicit()) { 1349 Visibility globalVisibility = 1350 computation.isValueVisibility() 1351 ? Context.getLangOpts().getValueVisibilityMode() 1352 : Context.getLangOpts().getTypeVisibilityMode(); 1353 return LinkageInfo(VisibleNoLinkage, globalVisibility, 1354 /*visibilityExplicit=*/false); 1355 } 1356 } 1357 } 1358 if (!isExternallyVisible(LV.getLinkage())) 1359 return LinkageInfo::none(); 1360 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1361 LV.isVisibilityExplicit()); 1362 } 1363 1364 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, 1365 LVComputationKind computation, 1366 bool IgnoreVarTypeLinkage) { 1367 // Internal_linkage attribute overrides other considerations. 1368 if (D->hasAttr<InternalLinkageAttr>()) 1369 return getInternalLinkageFor(D); 1370 1371 // Objective-C: treat all Objective-C declarations as having external 1372 // linkage. 1373 switch (D->getKind()) { 1374 default: 1375 break; 1376 1377 // Per C++ [basic.link]p2, only the names of objects, references, 1378 // functions, types, templates, namespaces, and values ever have linkage. 1379 // 1380 // Note that the name of a typedef, namespace alias, using declaration, 1381 // and so on are not the name of the corresponding type, namespace, or 1382 // declaration, so they do *not* have linkage. 1383 case Decl::ImplicitParam: 1384 case Decl::Label: 1385 case Decl::NamespaceAlias: 1386 case Decl::ParmVar: 1387 case Decl::Using: 1388 case Decl::UsingEnum: 1389 case Decl::UsingShadow: 1390 case Decl::UsingDirective: 1391 return LinkageInfo::none(); 1392 1393 case Decl::EnumConstant: 1394 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1395 if (D->getASTContext().getLangOpts().CPlusPlus) 1396 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1397 return LinkageInfo::visible_none(); 1398 1399 case Decl::Typedef: 1400 case Decl::TypeAlias: 1401 // A typedef declaration has linkage if it gives a type a name for 1402 // linkage purposes. 1403 if (!cast<TypedefNameDecl>(D) 1404 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1405 return LinkageInfo::none(); 1406 break; 1407 1408 case Decl::TemplateTemplateParm: // count these as external 1409 case Decl::NonTypeTemplateParm: 1410 case Decl::ObjCAtDefsField: 1411 case Decl::ObjCCategory: 1412 case Decl::ObjCCategoryImpl: 1413 case Decl::ObjCCompatibleAlias: 1414 case Decl::ObjCImplementation: 1415 case Decl::ObjCMethod: 1416 case Decl::ObjCProperty: 1417 case Decl::ObjCPropertyImpl: 1418 case Decl::ObjCProtocol: 1419 return getExternalLinkageFor(D); 1420 1421 case Decl::CXXRecord: { 1422 const auto *Record = cast<CXXRecordDecl>(D); 1423 if (Record->isLambda()) { 1424 if (Record->hasKnownLambdaInternalLinkage() || 1425 !Record->getLambdaManglingNumber()) { 1426 // This lambda has no mangling number, so it's internal. 1427 return getInternalLinkageFor(D); 1428 } 1429 1430 return getLVForClosure( 1431 Record->getDeclContext()->getRedeclContext(), 1432 Record->getLambdaContextDecl(), computation); 1433 } 1434 1435 break; 1436 } 1437 1438 case Decl::TemplateParamObject: { 1439 // The template parameter object can be referenced from anywhere its type 1440 // and value can be referenced. 1441 auto *TPO = cast<TemplateParamObjectDecl>(D); 1442 LinkageInfo LV = getLVForType(*TPO->getType(), computation); 1443 LV.merge(getLVForValue(TPO->getValue(), computation)); 1444 return LV; 1445 } 1446 } 1447 1448 // Handle linkage for namespace-scope names. 1449 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1450 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); 1451 1452 // C++ [basic.link]p5: 1453 // In addition, a member function, static data member, a named 1454 // class or enumeration of class scope, or an unnamed class or 1455 // enumeration defined in a class-scope typedef declaration such 1456 // that the class or enumeration has the typedef name for linkage 1457 // purposes (7.1.3), has external linkage if the name of the class 1458 // has external linkage. 1459 if (D->getDeclContext()->isRecord()) 1460 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); 1461 1462 // C++ [basic.link]p6: 1463 // The name of a function declared in block scope and the name of 1464 // an object declared by a block scope extern declaration have 1465 // linkage. If there is a visible declaration of an entity with 1466 // linkage having the same name and type, ignoring entities 1467 // declared outside the innermost enclosing namespace scope, the 1468 // block scope declaration declares that same entity and receives 1469 // the linkage of the previous declaration. If there is more than 1470 // one such matching entity, the program is ill-formed. Otherwise, 1471 // if no matching entity is found, the block scope entity receives 1472 // external linkage. 1473 if (D->getDeclContext()->isFunctionOrMethod()) 1474 return getLVForLocalDecl(D, computation); 1475 1476 // C++ [basic.link]p6: 1477 // Names not covered by these rules have no linkage. 1478 return LinkageInfo::none(); 1479 } 1480 1481 /// getLVForDecl - Get the linkage and visibility for the given declaration. 1482 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, 1483 LVComputationKind computation) { 1484 // Internal_linkage attribute overrides other considerations. 1485 if (D->hasAttr<InternalLinkageAttr>()) 1486 return getInternalLinkageFor(D); 1487 1488 if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) 1489 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1490 1491 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation)) 1492 return *LI; 1493 1494 LinkageInfo LV = computeLVForDecl(D, computation); 1495 if (D->hasCachedLinkage()) 1496 assert(D->getCachedLinkage() == LV.getLinkage()); 1497 1498 D->setCachedLinkage(LV.getLinkage()); 1499 cache(D, computation, LV); 1500 1501 #ifndef NDEBUG 1502 // In C (because of gnu inline) and in c++ with microsoft extensions an 1503 // static can follow an extern, so we can have two decls with different 1504 // linkages. 1505 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1506 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1507 return LV; 1508 1509 // We have just computed the linkage for this decl. By induction we know 1510 // that all other computed linkages match, check that the one we just 1511 // computed also does. 1512 NamedDecl *Old = nullptr; 1513 for (auto I : D->redecls()) { 1514 auto *T = cast<NamedDecl>(I); 1515 if (T == D) 1516 continue; 1517 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1518 Old = T; 1519 break; 1520 } 1521 } 1522 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1523 #endif 1524 1525 return LV; 1526 } 1527 1528 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { 1529 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D) 1530 ? NamedDecl::VisibilityForType 1531 : NamedDecl::VisibilityForValue; 1532 LVComputationKind CK(EK); 1533 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility 1534 ? CK.forLinkageOnly() 1535 : CK); 1536 } 1537 1538 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { 1539 Module *M = getOwningModule(); 1540 if (!M) 1541 return nullptr; 1542 1543 switch (M->Kind) { 1544 case Module::ModuleMapModule: 1545 // Module map modules have no special linkage semantics. 1546 return nullptr; 1547 1548 case Module::ModuleInterfaceUnit: 1549 return M; 1550 1551 case Module::GlobalModuleFragment: { 1552 // External linkage declarations in the global module have no owning module 1553 // for linkage purposes. But internal linkage declarations in the global 1554 // module fragment of a particular module are owned by that module for 1555 // linkage purposes. 1556 if (IgnoreLinkage) 1557 return nullptr; 1558 bool InternalLinkage; 1559 if (auto *ND = dyn_cast<NamedDecl>(this)) 1560 InternalLinkage = !ND->hasExternalFormalLinkage(); 1561 else { 1562 auto *NSD = dyn_cast<NamespaceDecl>(this); 1563 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) || 1564 isInAnonymousNamespace(); 1565 } 1566 return InternalLinkage ? M->Parent : nullptr; 1567 } 1568 1569 case Module::PrivateModuleFragment: 1570 // The private module fragment is part of its containing module for linkage 1571 // purposes. 1572 return M->Parent; 1573 } 1574 1575 llvm_unreachable("unknown module kind"); 1576 } 1577 1578 void NamedDecl::printName(raw_ostream &os) const { 1579 os << Name; 1580 } 1581 1582 std::string NamedDecl::getQualifiedNameAsString() const { 1583 std::string QualName; 1584 llvm::raw_string_ostream OS(QualName); 1585 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1586 return OS.str(); 1587 } 1588 1589 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1590 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1591 } 1592 1593 void NamedDecl::printQualifiedName(raw_ostream &OS, 1594 const PrintingPolicy &P) const { 1595 if (getDeclContext()->isFunctionOrMethod()) { 1596 // We do not print '(anonymous)' for function parameters without name. 1597 printName(OS); 1598 return; 1599 } 1600 printNestedNameSpecifier(OS, P); 1601 if (getDeclName()) 1602 OS << *this; 1603 else { 1604 // Give the printName override a chance to pick a different name before we 1605 // fall back to "(anonymous)". 1606 SmallString<64> NameBuffer; 1607 llvm::raw_svector_ostream NameOS(NameBuffer); 1608 printName(NameOS); 1609 if (NameBuffer.empty()) 1610 OS << "(anonymous)"; 1611 else 1612 OS << NameBuffer; 1613 } 1614 } 1615 1616 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { 1617 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); 1618 } 1619 1620 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, 1621 const PrintingPolicy &P) const { 1622 const DeclContext *Ctx = getDeclContext(); 1623 1624 // For ObjC methods and properties, look through categories and use the 1625 // interface as context. 1626 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) { 1627 if (auto *ID = MD->getClassInterface()) 1628 Ctx = ID; 1629 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { 1630 if (auto *MD = PD->getGetterMethodDecl()) 1631 if (auto *ID = MD->getClassInterface()) 1632 Ctx = ID; 1633 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) { 1634 if (auto *CI = ID->getContainingInterface()) 1635 Ctx = CI; 1636 } 1637 1638 if (Ctx->isFunctionOrMethod()) 1639 return; 1640 1641 using ContextsTy = SmallVector<const DeclContext *, 8>; 1642 ContextsTy Contexts; 1643 1644 // Collect named contexts. 1645 DeclarationName NameInScope = getDeclName(); 1646 for (; Ctx; Ctx = Ctx->getParent()) { 1647 // Suppress anonymous namespace if requested. 1648 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) && 1649 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace()) 1650 continue; 1651 1652 // Suppress inline namespace if it doesn't make the result ambiguous. 1653 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope && 1654 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope)) 1655 continue; 1656 1657 // Skip non-named contexts such as linkage specifications and ExportDecls. 1658 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx); 1659 if (!ND) 1660 continue; 1661 1662 Contexts.push_back(Ctx); 1663 NameInScope = ND->getDeclName(); 1664 } 1665 1666 for (const DeclContext *DC : llvm::reverse(Contexts)) { 1667 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1668 OS << Spec->getName(); 1669 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1670 printTemplateArgumentList( 1671 OS, TemplateArgs.asArray(), P, 1672 Spec->getSpecializedTemplate()->getTemplateParameters()); 1673 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1674 if (ND->isAnonymousNamespace()) { 1675 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1676 : "(anonymous namespace)"); 1677 } 1678 else 1679 OS << *ND; 1680 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1681 if (!RD->getIdentifier()) 1682 OS << "(anonymous " << RD->getKindName() << ')'; 1683 else 1684 OS << *RD; 1685 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1686 const FunctionProtoType *FT = nullptr; 1687 if (FD->hasWrittenPrototype()) 1688 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1689 1690 OS << *FD << '('; 1691 if (FT) { 1692 unsigned NumParams = FD->getNumParams(); 1693 for (unsigned i = 0; i < NumParams; ++i) { 1694 if (i) 1695 OS << ", "; 1696 OS << FD->getParamDecl(i)->getType().stream(P); 1697 } 1698 1699 if (FT->isVariadic()) { 1700 if (NumParams > 0) 1701 OS << ", "; 1702 OS << "..."; 1703 } 1704 } 1705 OS << ')'; 1706 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1707 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1708 // enumerator is declared in the scope that immediately contains 1709 // the enum-specifier. Each scoped enumerator is declared in the 1710 // scope of the enumeration. 1711 // For the case of unscoped enumerator, do not include in the qualified 1712 // name any information about its enum enclosing scope, as its visibility 1713 // is global. 1714 if (ED->isScoped()) 1715 OS << *ED; 1716 else 1717 continue; 1718 } else { 1719 OS << *cast<NamedDecl>(DC); 1720 } 1721 OS << "::"; 1722 } 1723 } 1724 1725 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1726 const PrintingPolicy &Policy, 1727 bool Qualified) const { 1728 if (Qualified) 1729 printQualifiedName(OS, Policy); 1730 else 1731 printName(OS); 1732 } 1733 1734 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1735 return true; 1736 } 1737 static bool isRedeclarableImpl(...) { return false; } 1738 static bool isRedeclarable(Decl::Kind K) { 1739 switch (K) { 1740 #define DECL(Type, Base) \ 1741 case Decl::Type: \ 1742 return isRedeclarableImpl((Type##Decl *)nullptr); 1743 #define ABSTRACT_DECL(DECL) 1744 #include "clang/AST/DeclNodes.inc" 1745 } 1746 llvm_unreachable("unknown decl kind"); 1747 } 1748 1749 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1750 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1751 1752 // Never replace one imported declaration with another; we need both results 1753 // when re-exporting. 1754 if (OldD->isFromASTFile() && isFromASTFile()) 1755 return false; 1756 1757 // A kind mismatch implies that the declaration is not replaced. 1758 if (OldD->getKind() != getKind()) 1759 return false; 1760 1761 // For method declarations, we never replace. (Why?) 1762 if (isa<ObjCMethodDecl>(this)) 1763 return false; 1764 1765 // For parameters, pick the newer one. This is either an error or (in 1766 // Objective-C) permitted as an extension. 1767 if (isa<ParmVarDecl>(this)) 1768 return true; 1769 1770 // Inline namespaces can give us two declarations with the same 1771 // name and kind in the same scope but different contexts; we should 1772 // keep both declarations in this case. 1773 if (!this->getDeclContext()->getRedeclContext()->Equals( 1774 OldD->getDeclContext()->getRedeclContext())) 1775 return false; 1776 1777 // Using declarations can be replaced if they import the same name from the 1778 // same context. 1779 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1780 ASTContext &Context = getASTContext(); 1781 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1782 Context.getCanonicalNestedNameSpecifier( 1783 cast<UsingDecl>(OldD)->getQualifier()); 1784 } 1785 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1786 ASTContext &Context = getASTContext(); 1787 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1788 Context.getCanonicalNestedNameSpecifier( 1789 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1790 } 1791 1792 if (isRedeclarable(getKind())) { 1793 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1794 return false; 1795 1796 if (IsKnownNewer) 1797 return true; 1798 1799 // Check whether this is actually newer than OldD. We want to keep the 1800 // newer declaration. This loop will usually only iterate once, because 1801 // OldD is usually the previous declaration. 1802 for (auto D : redecls()) { 1803 if (D == OldD) 1804 break; 1805 1806 // If we reach the canonical declaration, then OldD is not actually older 1807 // than this one. 1808 // 1809 // FIXME: In this case, we should not add this decl to the lookup table. 1810 if (D->isCanonicalDecl()) 1811 return false; 1812 } 1813 1814 // It's a newer declaration of the same kind of declaration in the same 1815 // scope: we want this decl instead of the existing one. 1816 return true; 1817 } 1818 1819 // In all other cases, we need to keep both declarations in case they have 1820 // different visibility. Any attempt to use the name will result in an 1821 // ambiguity if more than one is visible. 1822 return false; 1823 } 1824 1825 bool NamedDecl::hasLinkage() const { 1826 return getFormalLinkage() != NoLinkage; 1827 } 1828 1829 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1830 NamedDecl *ND = this; 1831 while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1832 ND = UD->getTargetDecl(); 1833 1834 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1835 return AD->getClassInterface(); 1836 1837 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1838 return AD->getNamespace(); 1839 1840 return ND; 1841 } 1842 1843 bool NamedDecl::isCXXInstanceMember() const { 1844 if (!isCXXClassMember()) 1845 return false; 1846 1847 const NamedDecl *D = this; 1848 if (isa<UsingShadowDecl>(D)) 1849 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1850 1851 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1852 return true; 1853 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1854 return MD->isInstance(); 1855 return false; 1856 } 1857 1858 //===----------------------------------------------------------------------===// 1859 // DeclaratorDecl Implementation 1860 //===----------------------------------------------------------------------===// 1861 1862 template <typename DeclT> 1863 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1864 if (decl->getNumTemplateParameterLists() > 0) 1865 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1866 return decl->getInnerLocStart(); 1867 } 1868 1869 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1870 TypeSourceInfo *TSI = getTypeSourceInfo(); 1871 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1872 return SourceLocation(); 1873 } 1874 1875 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const { 1876 TypeSourceInfo *TSI = getTypeSourceInfo(); 1877 if (TSI) return TSI->getTypeLoc().getEndLoc(); 1878 return SourceLocation(); 1879 } 1880 1881 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1882 if (QualifierLoc) { 1883 // Make sure the extended decl info is allocated. 1884 if (!hasExtInfo()) { 1885 // Save (non-extended) type source info pointer. 1886 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1887 // Allocate external info struct. 1888 DeclInfo = new (getASTContext()) ExtInfo; 1889 // Restore savedTInfo into (extended) decl info. 1890 getExtInfo()->TInfo = savedTInfo; 1891 } 1892 // Set qualifier info. 1893 getExtInfo()->QualifierLoc = QualifierLoc; 1894 } else if (hasExtInfo()) { 1895 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1896 getExtInfo()->QualifierLoc = QualifierLoc; 1897 } 1898 } 1899 1900 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) { 1901 assert(TrailingRequiresClause); 1902 // Make sure the extended decl info is allocated. 1903 if (!hasExtInfo()) { 1904 // Save (non-extended) type source info pointer. 1905 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1906 // Allocate external info struct. 1907 DeclInfo = new (getASTContext()) ExtInfo; 1908 // Restore savedTInfo into (extended) decl info. 1909 getExtInfo()->TInfo = savedTInfo; 1910 } 1911 // Set requires clause info. 1912 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause; 1913 } 1914 1915 void DeclaratorDecl::setTemplateParameterListsInfo( 1916 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1917 assert(!TPLists.empty()); 1918 // Make sure the extended decl info is allocated. 1919 if (!hasExtInfo()) { 1920 // Save (non-extended) type source info pointer. 1921 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1922 // Allocate external info struct. 1923 DeclInfo = new (getASTContext()) ExtInfo; 1924 // Restore savedTInfo into (extended) decl info. 1925 getExtInfo()->TInfo = savedTInfo; 1926 } 1927 // Set the template parameter lists info. 1928 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1929 } 1930 1931 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1932 return getTemplateOrInnerLocStart(this); 1933 } 1934 1935 // Helper function: returns true if QT is or contains a type 1936 // having a postfix component. 1937 static bool typeIsPostfix(QualType QT) { 1938 while (true) { 1939 const Type* T = QT.getTypePtr(); 1940 switch (T->getTypeClass()) { 1941 default: 1942 return false; 1943 case Type::Pointer: 1944 QT = cast<PointerType>(T)->getPointeeType(); 1945 break; 1946 case Type::BlockPointer: 1947 QT = cast<BlockPointerType>(T)->getPointeeType(); 1948 break; 1949 case Type::MemberPointer: 1950 QT = cast<MemberPointerType>(T)->getPointeeType(); 1951 break; 1952 case Type::LValueReference: 1953 case Type::RValueReference: 1954 QT = cast<ReferenceType>(T)->getPointeeType(); 1955 break; 1956 case Type::PackExpansion: 1957 QT = cast<PackExpansionType>(T)->getPattern(); 1958 break; 1959 case Type::Paren: 1960 case Type::ConstantArray: 1961 case Type::DependentSizedArray: 1962 case Type::IncompleteArray: 1963 case Type::VariableArray: 1964 case Type::FunctionProto: 1965 case Type::FunctionNoProto: 1966 return true; 1967 } 1968 } 1969 } 1970 1971 SourceRange DeclaratorDecl::getSourceRange() const { 1972 SourceLocation RangeEnd = getLocation(); 1973 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1974 // If the declaration has no name or the type extends past the name take the 1975 // end location of the type. 1976 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1977 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1978 } 1979 return SourceRange(getOuterLocStart(), RangeEnd); 1980 } 1981 1982 void QualifierInfo::setTemplateParameterListsInfo( 1983 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1984 // Free previous template parameters (if any). 1985 if (NumTemplParamLists > 0) { 1986 Context.Deallocate(TemplParamLists); 1987 TemplParamLists = nullptr; 1988 NumTemplParamLists = 0; 1989 } 1990 // Set info on matched template parameter lists (if any). 1991 if (!TPLists.empty()) { 1992 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 1993 NumTemplParamLists = TPLists.size(); 1994 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 1995 } 1996 } 1997 1998 //===----------------------------------------------------------------------===// 1999 // VarDecl Implementation 2000 //===----------------------------------------------------------------------===// 2001 2002 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 2003 switch (SC) { 2004 case SC_None: break; 2005 case SC_Auto: return "auto"; 2006 case SC_Extern: return "extern"; 2007 case SC_PrivateExtern: return "__private_extern__"; 2008 case SC_Register: return "register"; 2009 case SC_Static: return "static"; 2010 } 2011 2012 llvm_unreachable("Invalid storage class"); 2013 } 2014 2015 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 2016 SourceLocation StartLoc, SourceLocation IdLoc, 2017 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2018 StorageClass SC) 2019 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 2020 redeclarable_base(C) { 2021 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 2022 "VarDeclBitfields too large!"); 2023 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 2024 "ParmVarDeclBitfields too large!"); 2025 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 2026 "NonParmVarDeclBitfields too large!"); 2027 AllBits = 0; 2028 VarDeclBits.SClass = SC; 2029 // Everything else is implicitly initialized to false. 2030 } 2031 2032 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 2033 SourceLocation StartL, SourceLocation IdL, 2034 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2035 StorageClass S) { 2036 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 2037 } 2038 2039 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2040 return new (C, ID) 2041 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 2042 QualType(), nullptr, SC_None); 2043 } 2044 2045 void VarDecl::setStorageClass(StorageClass SC) { 2046 assert(isLegalForVariable(SC)); 2047 VarDeclBits.SClass = SC; 2048 } 2049 2050 VarDecl::TLSKind VarDecl::getTLSKind() const { 2051 switch (VarDeclBits.TSCSpec) { 2052 case TSCS_unspecified: 2053 if (!hasAttr<ThreadAttr>() && 2054 !(getASTContext().getLangOpts().OpenMPUseTLS && 2055 getASTContext().getTargetInfo().isTLSSupported() && 2056 hasAttr<OMPThreadPrivateDeclAttr>())) 2057 return TLS_None; 2058 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 2059 LangOptions::MSVC2015)) || 2060 hasAttr<OMPThreadPrivateDeclAttr>()) 2061 ? TLS_Dynamic 2062 : TLS_Static; 2063 case TSCS___thread: // Fall through. 2064 case TSCS__Thread_local: 2065 return TLS_Static; 2066 case TSCS_thread_local: 2067 return TLS_Dynamic; 2068 } 2069 llvm_unreachable("Unknown thread storage class specifier!"); 2070 } 2071 2072 SourceRange VarDecl::getSourceRange() const { 2073 if (const Expr *Init = getInit()) { 2074 SourceLocation InitEnd = Init->getEndLoc(); 2075 // If Init is implicit, ignore its source range and fallback on 2076 // DeclaratorDecl::getSourceRange() to handle postfix elements. 2077 if (InitEnd.isValid() && InitEnd != getLocation()) 2078 return SourceRange(getOuterLocStart(), InitEnd); 2079 } 2080 return DeclaratorDecl::getSourceRange(); 2081 } 2082 2083 template<typename T> 2084 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 2085 // C++ [dcl.link]p1: All function types, function names with external linkage, 2086 // and variable names with external linkage have a language linkage. 2087 if (!D.hasExternalFormalLinkage()) 2088 return NoLanguageLinkage; 2089 2090 // Language linkage is a C++ concept, but saying that everything else in C has 2091 // C language linkage fits the implementation nicely. 2092 ASTContext &Context = D.getASTContext(); 2093 if (!Context.getLangOpts().CPlusPlus) 2094 return CLanguageLinkage; 2095 2096 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 2097 // language linkage of the names of class members and the function type of 2098 // class member functions. 2099 const DeclContext *DC = D.getDeclContext(); 2100 if (DC->isRecord()) 2101 return CXXLanguageLinkage; 2102 2103 // If the first decl is in an extern "C" context, any other redeclaration 2104 // will have C language linkage. If the first one is not in an extern "C" 2105 // context, we would have reported an error for any other decl being in one. 2106 if (isFirstInExternCContext(&D)) 2107 return CLanguageLinkage; 2108 return CXXLanguageLinkage; 2109 } 2110 2111 template<typename T> 2112 static bool isDeclExternC(const T &D) { 2113 // Since the context is ignored for class members, they can only have C++ 2114 // language linkage or no language linkage. 2115 const DeclContext *DC = D.getDeclContext(); 2116 if (DC->isRecord()) { 2117 assert(D.getASTContext().getLangOpts().CPlusPlus); 2118 return false; 2119 } 2120 2121 return D.getLanguageLinkage() == CLanguageLinkage; 2122 } 2123 2124 LanguageLinkage VarDecl::getLanguageLinkage() const { 2125 return getDeclLanguageLinkage(*this); 2126 } 2127 2128 bool VarDecl::isExternC() const { 2129 return isDeclExternC(*this); 2130 } 2131 2132 bool VarDecl::isInExternCContext() const { 2133 return getLexicalDeclContext()->isExternCContext(); 2134 } 2135 2136 bool VarDecl::isInExternCXXContext() const { 2137 return getLexicalDeclContext()->isExternCXXContext(); 2138 } 2139 2140 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 2141 2142 VarDecl::DefinitionKind 2143 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 2144 if (isThisDeclarationADemotedDefinition()) 2145 return DeclarationOnly; 2146 2147 // C++ [basic.def]p2: 2148 // A declaration is a definition unless [...] it contains the 'extern' 2149 // specifier or a linkage-specification and neither an initializer [...], 2150 // it declares a non-inline static data member in a class declaration [...], 2151 // it declares a static data member outside a class definition and the variable 2152 // was defined within the class with the constexpr specifier [...], 2153 // C++1y [temp.expl.spec]p15: 2154 // An explicit specialization of a static data member or an explicit 2155 // specialization of a static data member template is a definition if the 2156 // declaration includes an initializer; otherwise, it is a declaration. 2157 // 2158 // FIXME: How do you declare (but not define) a partial specialization of 2159 // a static data member template outside the containing class? 2160 if (isStaticDataMember()) { 2161 if (isOutOfLine() && 2162 !(getCanonicalDecl()->isInline() && 2163 getCanonicalDecl()->isConstexpr()) && 2164 (hasInit() || 2165 // If the first declaration is out-of-line, this may be an 2166 // instantiation of an out-of-line partial specialization of a variable 2167 // template for which we have not yet instantiated the initializer. 2168 (getFirstDecl()->isOutOfLine() 2169 ? getTemplateSpecializationKind() == TSK_Undeclared 2170 : getTemplateSpecializationKind() != 2171 TSK_ExplicitSpecialization) || 2172 isa<VarTemplatePartialSpecializationDecl>(this))) 2173 return Definition; 2174 if (!isOutOfLine() && isInline()) 2175 return Definition; 2176 return DeclarationOnly; 2177 } 2178 // C99 6.7p5: 2179 // A definition of an identifier is a declaration for that identifier that 2180 // [...] causes storage to be reserved for that object. 2181 // Note: that applies for all non-file-scope objects. 2182 // C99 6.9.2p1: 2183 // If the declaration of an identifier for an object has file scope and an 2184 // initializer, the declaration is an external definition for the identifier 2185 if (hasInit()) 2186 return Definition; 2187 2188 if (hasDefiningAttr()) 2189 return Definition; 2190 2191 if (const auto *SAA = getAttr<SelectAnyAttr>()) 2192 if (!SAA->isInherited()) 2193 return Definition; 2194 2195 // A variable template specialization (other than a static data member 2196 // template or an explicit specialization) is a declaration until we 2197 // instantiate its initializer. 2198 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2199 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2200 !isa<VarTemplatePartialSpecializationDecl>(VTSD) && 2201 !VTSD->IsCompleteDefinition) 2202 return DeclarationOnly; 2203 } 2204 2205 if (hasExternalStorage()) 2206 return DeclarationOnly; 2207 2208 // [dcl.link] p7: 2209 // A declaration directly contained in a linkage-specification is treated 2210 // as if it contains the extern specifier for the purpose of determining 2211 // the linkage of the declared name and whether it is a definition. 2212 if (isSingleLineLanguageLinkage(*this)) 2213 return DeclarationOnly; 2214 2215 // C99 6.9.2p2: 2216 // A declaration of an object that has file scope without an initializer, 2217 // and without a storage class specifier or the scs 'static', constitutes 2218 // a tentative definition. 2219 // No such thing in C++. 2220 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 2221 return TentativeDefinition; 2222 2223 // What's left is (in C, block-scope) declarations without initializers or 2224 // external storage. These are definitions. 2225 return Definition; 2226 } 2227 2228 VarDecl *VarDecl::getActingDefinition() { 2229 DefinitionKind Kind = isThisDeclarationADefinition(); 2230 if (Kind != TentativeDefinition) 2231 return nullptr; 2232 2233 VarDecl *LastTentative = nullptr; 2234 2235 // Loop through the declaration chain, starting with the most recent. 2236 for (VarDecl *Decl = getMostRecentDecl(); Decl; 2237 Decl = Decl->getPreviousDecl()) { 2238 Kind = Decl->isThisDeclarationADefinition(); 2239 if (Kind == Definition) 2240 return nullptr; 2241 // Record the first (most recent) TentativeDefinition that is encountered. 2242 if (Kind == TentativeDefinition && !LastTentative) 2243 LastTentative = Decl; 2244 } 2245 2246 return LastTentative; 2247 } 2248 2249 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2250 VarDecl *First = getFirstDecl(); 2251 for (auto I : First->redecls()) { 2252 if (I->isThisDeclarationADefinition(C) == Definition) 2253 return I; 2254 } 2255 return nullptr; 2256 } 2257 2258 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2259 DefinitionKind Kind = DeclarationOnly; 2260 2261 const VarDecl *First = getFirstDecl(); 2262 for (auto I : First->redecls()) { 2263 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2264 if (Kind == Definition) 2265 break; 2266 } 2267 2268 return Kind; 2269 } 2270 2271 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2272 for (auto I : redecls()) { 2273 if (auto Expr = I->getInit()) { 2274 D = I; 2275 return Expr; 2276 } 2277 } 2278 return nullptr; 2279 } 2280 2281 bool VarDecl::hasInit() const { 2282 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2283 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2284 return false; 2285 2286 return !Init.isNull(); 2287 } 2288 2289 Expr *VarDecl::getInit() { 2290 if (!hasInit()) 2291 return nullptr; 2292 2293 if (auto *S = Init.dyn_cast<Stmt *>()) 2294 return cast<Expr>(S); 2295 2296 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2297 } 2298 2299 Stmt **VarDecl::getInitAddress() { 2300 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2301 return &ES->Value; 2302 2303 return Init.getAddrOfPtr1(); 2304 } 2305 2306 VarDecl *VarDecl::getInitializingDeclaration() { 2307 VarDecl *Def = nullptr; 2308 for (auto I : redecls()) { 2309 if (I->hasInit()) 2310 return I; 2311 2312 if (I->isThisDeclarationADefinition()) { 2313 if (isStaticDataMember()) 2314 return I; 2315 Def = I; 2316 } 2317 } 2318 return Def; 2319 } 2320 2321 bool VarDecl::isOutOfLine() const { 2322 if (Decl::isOutOfLine()) 2323 return true; 2324 2325 if (!isStaticDataMember()) 2326 return false; 2327 2328 // If this static data member was instantiated from a static data member of 2329 // a class template, check whether that static data member was defined 2330 // out-of-line. 2331 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2332 return VD->isOutOfLine(); 2333 2334 return false; 2335 } 2336 2337 void VarDecl::setInit(Expr *I) { 2338 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2339 Eval->~EvaluatedStmt(); 2340 getASTContext().Deallocate(Eval); 2341 } 2342 2343 Init = I; 2344 } 2345 2346 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const { 2347 const LangOptions &Lang = C.getLangOpts(); 2348 2349 // OpenCL permits const integral variables to be used in constant 2350 // expressions, like in C++98. 2351 if (!Lang.CPlusPlus && !Lang.OpenCL) 2352 return false; 2353 2354 // Function parameters are never usable in constant expressions. 2355 if (isa<ParmVarDecl>(this)) 2356 return false; 2357 2358 // The values of weak variables are never usable in constant expressions. 2359 if (isWeak()) 2360 return false; 2361 2362 // In C++11, any variable of reference type can be used in a constant 2363 // expression if it is initialized by a constant expression. 2364 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2365 return true; 2366 2367 // Only const objects can be used in constant expressions in C++. C++98 does 2368 // not require the variable to be non-volatile, but we consider this to be a 2369 // defect. 2370 if (!getType().isConstant(C) || getType().isVolatileQualified()) 2371 return false; 2372 2373 // In C++, const, non-volatile variables of integral or enumeration types 2374 // can be used in constant expressions. 2375 if (getType()->isIntegralOrEnumerationType()) 2376 return true; 2377 2378 // Additionally, in C++11, non-volatile constexpr variables can be used in 2379 // constant expressions. 2380 return Lang.CPlusPlus11 && isConstexpr(); 2381 } 2382 2383 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const { 2384 // C++2a [expr.const]p3: 2385 // A variable is usable in constant expressions after its initializing 2386 // declaration is encountered... 2387 const VarDecl *DefVD = nullptr; 2388 const Expr *Init = getAnyInitializer(DefVD); 2389 if (!Init || Init->isValueDependent() || getType()->isDependentType()) 2390 return false; 2391 // ... if it is a constexpr variable, or it is of reference type or of 2392 // const-qualified integral or enumeration type, ... 2393 if (!DefVD->mightBeUsableInConstantExpressions(Context)) 2394 return false; 2395 // ... and its initializer is a constant initializer. 2396 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization()) 2397 return false; 2398 // C++98 [expr.const]p1: 2399 // An integral constant-expression can involve only [...] const variables 2400 // or static data members of integral or enumeration types initialized with 2401 // [integer] constant expressions (dcl.init) 2402 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) && 2403 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context)) 2404 return false; 2405 return true; 2406 } 2407 2408 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2409 /// form, which contains extra information on the evaluated value of the 2410 /// initializer. 2411 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2412 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2413 if (!Eval) { 2414 // Note: EvaluatedStmt contains an APValue, which usually holds 2415 // resources not allocated from the ASTContext. We need to do some 2416 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2417 // where we can detect whether there's anything to clean up or not. 2418 Eval = new (getASTContext()) EvaluatedStmt; 2419 Eval->Value = Init.get<Stmt *>(); 2420 Init = Eval; 2421 } 2422 return Eval; 2423 } 2424 2425 EvaluatedStmt *VarDecl::getEvaluatedStmt() const { 2426 return Init.dyn_cast<EvaluatedStmt *>(); 2427 } 2428 2429 APValue *VarDecl::evaluateValue() const { 2430 SmallVector<PartialDiagnosticAt, 8> Notes; 2431 return evaluateValue(Notes); 2432 } 2433 2434 APValue *VarDecl::evaluateValue( 2435 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2436 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2437 2438 const auto *Init = cast<Expr>(Eval->Value); 2439 assert(!Init->isValueDependent()); 2440 2441 // We only produce notes indicating why an initializer is non-constant the 2442 // first time it is evaluated. FIXME: The notes won't always be emitted the 2443 // first time we try evaluation, so might not be produced at all. 2444 if (Eval->WasEvaluated) 2445 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; 2446 2447 if (Eval->IsEvaluating) { 2448 // FIXME: Produce a diagnostic for self-initialization. 2449 return nullptr; 2450 } 2451 2452 Eval->IsEvaluating = true; 2453 2454 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), 2455 this, Notes); 2456 2457 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2458 // or that it's empty (so that there's nothing to clean up) if evaluation 2459 // failed. 2460 if (!Result) 2461 Eval->Evaluated = APValue(); 2462 else if (Eval->Evaluated.needsCleanup()) 2463 getASTContext().addDestruction(&Eval->Evaluated); 2464 2465 Eval->IsEvaluating = false; 2466 Eval->WasEvaluated = true; 2467 2468 return Result ? &Eval->Evaluated : nullptr; 2469 } 2470 2471 APValue *VarDecl::getEvaluatedValue() const { 2472 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2473 if (Eval->WasEvaluated) 2474 return &Eval->Evaluated; 2475 2476 return nullptr; 2477 } 2478 2479 bool VarDecl::hasICEInitializer(const ASTContext &Context) const { 2480 const Expr *Init = getInit(); 2481 assert(Init && "no initializer"); 2482 2483 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2484 if (!Eval->CheckedForICEInit) { 2485 Eval->CheckedForICEInit = true; 2486 Eval->HasICEInit = Init->isIntegerConstantExpr(Context); 2487 } 2488 return Eval->HasICEInit; 2489 } 2490 2491 bool VarDecl::hasConstantInitialization() const { 2492 // In C, all globals (and only globals) have constant initialization. 2493 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus) 2494 return true; 2495 2496 // In C++, it depends on whether the evaluation at the point of definition 2497 // was evaluatable as a constant initializer. 2498 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2499 return Eval->HasConstantInitialization; 2500 2501 return false; 2502 } 2503 2504 bool VarDecl::checkForConstantInitialization( 2505 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2506 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2507 // If we ask for the value before we know whether we have a constant 2508 // initializer, we can compute the wrong value (for example, due to 2509 // std::is_constant_evaluated()). 2510 assert(!Eval->WasEvaluated && 2511 "already evaluated var value before checking for constant init"); 2512 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++"); 2513 2514 assert(!cast<Expr>(Eval->Value)->isValueDependent()); 2515 2516 // Evaluate the initializer to check whether it's a constant expression. 2517 Eval->HasConstantInitialization = evaluateValue(Notes) && Notes.empty(); 2518 return Eval->HasConstantInitialization; 2519 } 2520 2521 bool VarDecl::isParameterPack() const { 2522 return isa<PackExpansionType>(getType()); 2523 } 2524 2525 template<typename DeclT> 2526 static DeclT *getDefinitionOrSelf(DeclT *D) { 2527 assert(D); 2528 if (auto *Def = D->getDefinition()) 2529 return Def; 2530 return D; 2531 } 2532 2533 bool VarDecl::isEscapingByref() const { 2534 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; 2535 } 2536 2537 bool VarDecl::isNonEscapingByref() const { 2538 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; 2539 } 2540 2541 bool VarDecl::hasDependentAlignment() const { 2542 QualType T = getType(); 2543 return T->isDependentType() || T->isUndeducedAutoType() || 2544 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) { 2545 return AA->isAlignmentDependent(); 2546 }); 2547 } 2548 2549 VarDecl *VarDecl::getTemplateInstantiationPattern() const { 2550 const VarDecl *VD = this; 2551 2552 // If this is an instantiated member, walk back to the template from which 2553 // it was instantiated. 2554 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { 2555 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 2556 VD = VD->getInstantiatedFromStaticDataMember(); 2557 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) 2558 VD = NewVD; 2559 } 2560 } 2561 2562 // If it's an instantiated variable template specialization, find the 2563 // template or partial specialization from which it was instantiated. 2564 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2565 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { 2566 auto From = VDTemplSpec->getInstantiatedFrom(); 2567 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { 2568 while (!VTD->isMemberSpecialization()) { 2569 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); 2570 if (!NewVTD) 2571 break; 2572 VTD = NewVTD; 2573 } 2574 return getDefinitionOrSelf(VTD->getTemplatedDecl()); 2575 } 2576 if (auto *VTPSD = 2577 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 2578 while (!VTPSD->isMemberSpecialization()) { 2579 auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); 2580 if (!NewVTPSD) 2581 break; 2582 VTPSD = NewVTPSD; 2583 } 2584 return getDefinitionOrSelf<VarDecl>(VTPSD); 2585 } 2586 } 2587 } 2588 2589 // If this is the pattern of a variable template, find where it was 2590 // instantiated from. FIXME: Is this necessary? 2591 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { 2592 while (!VarTemplate->isMemberSpecialization()) { 2593 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); 2594 if (!NewVT) 2595 break; 2596 VarTemplate = NewVT; 2597 } 2598 2599 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); 2600 } 2601 2602 if (VD == this) 2603 return nullptr; 2604 return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); 2605 } 2606 2607 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2608 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2609 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2610 2611 return nullptr; 2612 } 2613 2614 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2615 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2616 return Spec->getSpecializationKind(); 2617 2618 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2619 return MSI->getTemplateSpecializationKind(); 2620 2621 return TSK_Undeclared; 2622 } 2623 2624 TemplateSpecializationKind 2625 VarDecl::getTemplateSpecializationKindForInstantiation() const { 2626 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2627 return MSI->getTemplateSpecializationKind(); 2628 2629 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2630 return Spec->getSpecializationKind(); 2631 2632 return TSK_Undeclared; 2633 } 2634 2635 SourceLocation VarDecl::getPointOfInstantiation() const { 2636 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2637 return Spec->getPointOfInstantiation(); 2638 2639 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2640 return MSI->getPointOfInstantiation(); 2641 2642 return SourceLocation(); 2643 } 2644 2645 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2646 return getASTContext().getTemplateOrSpecializationInfo(this) 2647 .dyn_cast<VarTemplateDecl *>(); 2648 } 2649 2650 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2651 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2652 } 2653 2654 bool VarDecl::isKnownToBeDefined() const { 2655 const auto &LangOpts = getASTContext().getLangOpts(); 2656 // In CUDA mode without relocatable device code, variables of form 'extern 2657 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared 2658 // memory pool. These are never undefined variables, even if they appear 2659 // inside of an anon namespace or static function. 2660 // 2661 // With CUDA relocatable device code enabled, these variables don't get 2662 // special handling; they're treated like regular extern variables. 2663 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && 2664 hasExternalStorage() && hasAttr<CUDASharedAttr>() && 2665 isa<IncompleteArrayType>(getType())) 2666 return true; 2667 2668 return hasDefinition(); 2669 } 2670 2671 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { 2672 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || 2673 (!Ctx.getLangOpts().RegisterStaticDestructors && 2674 !hasAttr<AlwaysDestroyAttr>())); 2675 } 2676 2677 QualType::DestructionKind 2678 VarDecl::needsDestruction(const ASTContext &Ctx) const { 2679 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2680 if (Eval->HasConstantDestruction) 2681 return QualType::DK_none; 2682 2683 if (isNoDestroy(Ctx)) 2684 return QualType::DK_none; 2685 2686 return getType().isDestructedType(); 2687 } 2688 2689 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2690 if (isStaticDataMember()) 2691 // FIXME: Remove ? 2692 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2693 return getASTContext().getTemplateOrSpecializationInfo(this) 2694 .dyn_cast<MemberSpecializationInfo *>(); 2695 return nullptr; 2696 } 2697 2698 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2699 SourceLocation PointOfInstantiation) { 2700 assert((isa<VarTemplateSpecializationDecl>(this) || 2701 getMemberSpecializationInfo()) && 2702 "not a variable or static data member template specialization"); 2703 2704 if (VarTemplateSpecializationDecl *Spec = 2705 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2706 Spec->setSpecializationKind(TSK); 2707 if (TSK != TSK_ExplicitSpecialization && 2708 PointOfInstantiation.isValid() && 2709 Spec->getPointOfInstantiation().isInvalid()) { 2710 Spec->setPointOfInstantiation(PointOfInstantiation); 2711 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2712 L->InstantiationRequested(this); 2713 } 2714 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2715 MSI->setTemplateSpecializationKind(TSK); 2716 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2717 MSI->getPointOfInstantiation().isInvalid()) { 2718 MSI->setPointOfInstantiation(PointOfInstantiation); 2719 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2720 L->InstantiationRequested(this); 2721 } 2722 } 2723 } 2724 2725 void 2726 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2727 TemplateSpecializationKind TSK) { 2728 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2729 "Previous template or instantiation?"); 2730 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2731 } 2732 2733 //===----------------------------------------------------------------------===// 2734 // ParmVarDecl Implementation 2735 //===----------------------------------------------------------------------===// 2736 2737 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2738 SourceLocation StartLoc, 2739 SourceLocation IdLoc, IdentifierInfo *Id, 2740 QualType T, TypeSourceInfo *TInfo, 2741 StorageClass S, Expr *DefArg) { 2742 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2743 S, DefArg); 2744 } 2745 2746 QualType ParmVarDecl::getOriginalType() const { 2747 TypeSourceInfo *TSI = getTypeSourceInfo(); 2748 QualType T = TSI ? TSI->getType() : getType(); 2749 if (const auto *DT = dyn_cast<DecayedType>(T)) 2750 return DT->getOriginalType(); 2751 return T; 2752 } 2753 2754 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2755 return new (C, ID) 2756 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2757 nullptr, QualType(), nullptr, SC_None, nullptr); 2758 } 2759 2760 SourceRange ParmVarDecl::getSourceRange() const { 2761 if (!hasInheritedDefaultArg()) { 2762 SourceRange ArgRange = getDefaultArgRange(); 2763 if (ArgRange.isValid()) 2764 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2765 } 2766 2767 // DeclaratorDecl considers the range of postfix types as overlapping with the 2768 // declaration name, but this is not the case with parameters in ObjC methods. 2769 if (isa<ObjCMethodDecl>(getDeclContext())) 2770 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); 2771 2772 return DeclaratorDecl::getSourceRange(); 2773 } 2774 2775 bool ParmVarDecl::isDestroyedInCallee() const { 2776 // ns_consumed only affects code generation in ARC 2777 if (hasAttr<NSConsumedAttr>()) 2778 return getASTContext().getLangOpts().ObjCAutoRefCount; 2779 2780 // FIXME: isParamDestroyedInCallee() should probably imply 2781 // isDestructedType() 2782 auto *RT = getType()->getAs<RecordType>(); 2783 if (RT && RT->getDecl()->isParamDestroyedInCallee() && 2784 getType().isDestructedType()) 2785 return true; 2786 2787 return false; 2788 } 2789 2790 Expr *ParmVarDecl::getDefaultArg() { 2791 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2792 assert(!hasUninstantiatedDefaultArg() && 2793 "Default argument is not yet instantiated!"); 2794 2795 Expr *Arg = getInit(); 2796 if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) 2797 return E->getSubExpr(); 2798 2799 return Arg; 2800 } 2801 2802 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2803 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2804 Init = defarg; 2805 } 2806 2807 SourceRange ParmVarDecl::getDefaultArgRange() const { 2808 switch (ParmVarDeclBits.DefaultArgKind) { 2809 case DAK_None: 2810 case DAK_Unparsed: 2811 // Nothing we can do here. 2812 return SourceRange(); 2813 2814 case DAK_Uninstantiated: 2815 return getUninstantiatedDefaultArg()->getSourceRange(); 2816 2817 case DAK_Normal: 2818 if (const Expr *E = getInit()) 2819 return E->getSourceRange(); 2820 2821 // Missing an actual expression, may be invalid. 2822 return SourceRange(); 2823 } 2824 llvm_unreachable("Invalid default argument kind."); 2825 } 2826 2827 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2828 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2829 Init = arg; 2830 } 2831 2832 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2833 assert(hasUninstantiatedDefaultArg() && 2834 "Wrong kind of initialization expression!"); 2835 return cast_or_null<Expr>(Init.get<Stmt *>()); 2836 } 2837 2838 bool ParmVarDecl::hasDefaultArg() const { 2839 // FIXME: We should just return false for DAK_None here once callers are 2840 // prepared for the case that we encountered an invalid default argument and 2841 // were unable to even build an invalid expression. 2842 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2843 !Init.isNull(); 2844 } 2845 2846 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2847 getASTContext().setParameterIndex(this, parameterIndex); 2848 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2849 } 2850 2851 unsigned ParmVarDecl::getParameterIndexLarge() const { 2852 return getASTContext().getParameterIndex(this); 2853 } 2854 2855 //===----------------------------------------------------------------------===// 2856 // FunctionDecl Implementation 2857 //===----------------------------------------------------------------------===// 2858 2859 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, 2860 SourceLocation StartLoc, 2861 const DeclarationNameInfo &NameInfo, QualType T, 2862 TypeSourceInfo *TInfo, StorageClass S, 2863 bool UsesFPIntrin, bool isInlineSpecified, 2864 ConstexprSpecKind ConstexprKind, 2865 Expr *TrailingRequiresClause) 2866 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, 2867 StartLoc), 2868 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0), 2869 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { 2870 assert(T.isNull() || T->isFunctionType()); 2871 FunctionDeclBits.SClass = S; 2872 FunctionDeclBits.IsInline = isInlineSpecified; 2873 FunctionDeclBits.IsInlineSpecified = isInlineSpecified; 2874 FunctionDeclBits.IsVirtualAsWritten = false; 2875 FunctionDeclBits.IsPure = false; 2876 FunctionDeclBits.HasInheritedPrototype = false; 2877 FunctionDeclBits.HasWrittenPrototype = true; 2878 FunctionDeclBits.IsDeleted = false; 2879 FunctionDeclBits.IsTrivial = false; 2880 FunctionDeclBits.IsTrivialForCall = false; 2881 FunctionDeclBits.IsDefaulted = false; 2882 FunctionDeclBits.IsExplicitlyDefaulted = false; 2883 FunctionDeclBits.HasDefaultedFunctionInfo = false; 2884 FunctionDeclBits.HasImplicitReturnZero = false; 2885 FunctionDeclBits.IsLateTemplateParsed = false; 2886 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind); 2887 FunctionDeclBits.InstantiationIsPending = false; 2888 FunctionDeclBits.UsesSEHTry = false; 2889 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin; 2890 FunctionDeclBits.HasSkippedBody = false; 2891 FunctionDeclBits.WillHaveBody = false; 2892 FunctionDeclBits.IsMultiVersion = false; 2893 FunctionDeclBits.IsCopyDeductionCandidate = false; 2894 FunctionDeclBits.HasODRHash = false; 2895 if (TrailingRequiresClause) 2896 setTrailingRequiresClause(TrailingRequiresClause); 2897 } 2898 2899 void FunctionDecl::getNameForDiagnostic( 2900 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2901 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2902 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2903 if (TemplateArgs) 2904 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); 2905 } 2906 2907 bool FunctionDecl::isVariadic() const { 2908 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 2909 return FT->isVariadic(); 2910 return false; 2911 } 2912 2913 FunctionDecl::DefaultedFunctionInfo * 2914 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context, 2915 ArrayRef<DeclAccessPair> Lookups) { 2916 DefaultedFunctionInfo *Info = new (Context.Allocate( 2917 totalSizeToAlloc<DeclAccessPair>(Lookups.size()), 2918 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair)))) 2919 DefaultedFunctionInfo; 2920 Info->NumLookups = Lookups.size(); 2921 std::uninitialized_copy(Lookups.begin(), Lookups.end(), 2922 Info->getTrailingObjects<DeclAccessPair>()); 2923 return Info; 2924 } 2925 2926 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) { 2927 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"); 2928 assert(!Body && "can't replace function body with defaulted function info"); 2929 2930 FunctionDeclBits.HasDefaultedFunctionInfo = true; 2931 DefaultedInfo = Info; 2932 } 2933 2934 FunctionDecl::DefaultedFunctionInfo * 2935 FunctionDecl::getDefaultedFunctionInfo() const { 2936 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr; 2937 } 2938 2939 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2940 for (auto I : redecls()) { 2941 if (I->doesThisDeclarationHaveABody()) { 2942 Definition = I; 2943 return true; 2944 } 2945 } 2946 2947 return false; 2948 } 2949 2950 bool FunctionDecl::hasTrivialBody() const { 2951 Stmt *S = getBody(); 2952 if (!S) { 2953 // Since we don't have a body for this function, we don't know if it's 2954 // trivial or not. 2955 return false; 2956 } 2957 2958 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2959 return true; 2960 return false; 2961 } 2962 2963 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const { 2964 if (!getFriendObjectKind()) 2965 return false; 2966 2967 // Check for a friend function instantiated from a friend function 2968 // definition in a templated class. 2969 if (const FunctionDecl *InstantiatedFrom = 2970 getInstantiatedFromMemberFunction()) 2971 return InstantiatedFrom->getFriendObjectKind() && 2972 InstantiatedFrom->isThisDeclarationADefinition(); 2973 2974 // Check for a friend function template instantiated from a friend 2975 // function template definition in a templated class. 2976 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) { 2977 if (const FunctionTemplateDecl *InstantiatedFrom = 2978 Template->getInstantiatedFromMemberTemplate()) 2979 return InstantiatedFrom->getFriendObjectKind() && 2980 InstantiatedFrom->isThisDeclarationADefinition(); 2981 } 2982 2983 return false; 2984 } 2985 2986 bool FunctionDecl::isDefined(const FunctionDecl *&Definition, 2987 bool CheckForPendingFriendDefinition) const { 2988 for (const FunctionDecl *FD : redecls()) { 2989 if (FD->isThisDeclarationADefinition()) { 2990 Definition = FD; 2991 return true; 2992 } 2993 2994 // If this is a friend function defined in a class template, it does not 2995 // have a body until it is used, nevertheless it is a definition, see 2996 // [temp.inst]p2: 2997 // 2998 // ... for the purpose of determining whether an instantiated redeclaration 2999 // is valid according to [basic.def.odr] and [class.mem], a declaration that 3000 // corresponds to a definition in the template is considered to be a 3001 // definition. 3002 // 3003 // The following code must produce redefinition error: 3004 // 3005 // template<typename T> struct C20 { friend void func_20() {} }; 3006 // C20<int> c20i; 3007 // void func_20() {} 3008 // 3009 if (CheckForPendingFriendDefinition && 3010 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { 3011 Definition = FD; 3012 return true; 3013 } 3014 } 3015 3016 return false; 3017 } 3018 3019 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 3020 if (!hasBody(Definition)) 3021 return nullptr; 3022 3023 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && 3024 "definition should not have a body"); 3025 if (Definition->Body) 3026 return Definition->Body.get(getASTContext().getExternalSource()); 3027 3028 return nullptr; 3029 } 3030 3031 void FunctionDecl::setBody(Stmt *B) { 3032 FunctionDeclBits.HasDefaultedFunctionInfo = false; 3033 Body = LazyDeclStmtPtr(B); 3034 if (B) 3035 EndRangeLoc = B->getEndLoc(); 3036 } 3037 3038 void FunctionDecl::setPure(bool P) { 3039 FunctionDeclBits.IsPure = P; 3040 if (P) 3041 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 3042 Parent->markedVirtualFunctionPure(); 3043 } 3044 3045 template<std::size_t Len> 3046 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 3047 IdentifierInfo *II = ND->getIdentifier(); 3048 return II && II->isStr(Str); 3049 } 3050 3051 bool FunctionDecl::isMain() const { 3052 const TranslationUnitDecl *tunit = 3053 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3054 return tunit && 3055 !tunit->getASTContext().getLangOpts().Freestanding && 3056 isNamed(this, "main"); 3057 } 3058 3059 bool FunctionDecl::isMSVCRTEntryPoint() const { 3060 const TranslationUnitDecl *TUnit = 3061 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3062 if (!TUnit) 3063 return false; 3064 3065 // Even though we aren't really targeting MSVCRT if we are freestanding, 3066 // semantic analysis for these functions remains the same. 3067 3068 // MSVCRT entry points only exist on MSVCRT targets. 3069 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 3070 return false; 3071 3072 // Nameless functions like constructors cannot be entry points. 3073 if (!getIdentifier()) 3074 return false; 3075 3076 return llvm::StringSwitch<bool>(getName()) 3077 .Cases("main", // an ANSI console app 3078 "wmain", // a Unicode console App 3079 "WinMain", // an ANSI GUI app 3080 "wWinMain", // a Unicode GUI app 3081 "DllMain", // a DLL 3082 true) 3083 .Default(false); 3084 } 3085 3086 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 3087 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 3088 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 3089 getDeclName().getCXXOverloadedOperator() == OO_Delete || 3090 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 3091 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 3092 3093 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3094 return false; 3095 3096 const auto *proto = getType()->castAs<FunctionProtoType>(); 3097 if (proto->getNumParams() != 2 || proto->isVariadic()) 3098 return false; 3099 3100 ASTContext &Context = 3101 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 3102 ->getASTContext(); 3103 3104 // The result type and first argument type are constant across all 3105 // these operators. The second argument must be exactly void*. 3106 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 3107 } 3108 3109 bool FunctionDecl::isReplaceableGlobalAllocationFunction( 3110 Optional<unsigned> *AlignmentParam, bool *IsNothrow) const { 3111 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 3112 return false; 3113 if (getDeclName().getCXXOverloadedOperator() != OO_New && 3114 getDeclName().getCXXOverloadedOperator() != OO_Delete && 3115 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 3116 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 3117 return false; 3118 3119 if (isa<CXXRecordDecl>(getDeclContext())) 3120 return false; 3121 3122 // This can only fail for an invalid 'operator new' declaration. 3123 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3124 return false; 3125 3126 const auto *FPT = getType()->castAs<FunctionProtoType>(); 3127 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) 3128 return false; 3129 3130 // If this is a single-parameter function, it must be a replaceable global 3131 // allocation or deallocation function. 3132 if (FPT->getNumParams() == 1) 3133 return true; 3134 3135 unsigned Params = 1; 3136 QualType Ty = FPT->getParamType(Params); 3137 ASTContext &Ctx = getASTContext(); 3138 3139 auto Consume = [&] { 3140 ++Params; 3141 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 3142 }; 3143 3144 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 3145 bool IsSizedDelete = false; 3146 if (Ctx.getLangOpts().SizedDeallocation && 3147 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 3148 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 3149 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 3150 IsSizedDelete = true; 3151 Consume(); 3152 } 3153 3154 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 3155 // new/delete. 3156 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { 3157 Consume(); 3158 if (AlignmentParam) 3159 *AlignmentParam = Params; 3160 } 3161 3162 // Finally, if this is not a sized delete, the final parameter can 3163 // be a 'const std::nothrow_t&'. 3164 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 3165 Ty = Ty->getPointeeType(); 3166 if (Ty.getCVRQualifiers() != Qualifiers::Const) 3167 return false; 3168 if (Ty->isNothrowT()) { 3169 if (IsNothrow) 3170 *IsNothrow = true; 3171 Consume(); 3172 } 3173 } 3174 3175 return Params == FPT->getNumParams(); 3176 } 3177 3178 bool FunctionDecl::isInlineBuiltinDeclaration() const { 3179 if (!getBuiltinID()) 3180 return false; 3181 3182 const FunctionDecl *Definition; 3183 return hasBody(Definition) && Definition->isInlineSpecified() && 3184 Definition->hasAttr<AlwaysInlineAttr>() && 3185 Definition->hasAttr<GNUInlineAttr>(); 3186 } 3187 3188 bool FunctionDecl::isDestroyingOperatorDelete() const { 3189 // C++ P0722: 3190 // Within a class C, a single object deallocation function with signature 3191 // (T, std::destroying_delete_t, <more params>) 3192 // is a destroying operator delete. 3193 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || 3194 getNumParams() < 2) 3195 return false; 3196 3197 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); 3198 return RD && RD->isInStdNamespace() && RD->getIdentifier() && 3199 RD->getIdentifier()->isStr("destroying_delete_t"); 3200 } 3201 3202 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 3203 return getDeclLanguageLinkage(*this); 3204 } 3205 3206 bool FunctionDecl::isExternC() const { 3207 return isDeclExternC(*this); 3208 } 3209 3210 bool FunctionDecl::isInExternCContext() const { 3211 if (hasAttr<OpenCLKernelAttr>()) 3212 return true; 3213 return getLexicalDeclContext()->isExternCContext(); 3214 } 3215 3216 bool FunctionDecl::isInExternCXXContext() const { 3217 return getLexicalDeclContext()->isExternCXXContext(); 3218 } 3219 3220 bool FunctionDecl::isGlobal() const { 3221 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 3222 return Method->isStatic(); 3223 3224 if (getCanonicalDecl()->getStorageClass() == SC_Static) 3225 return false; 3226 3227 for (const DeclContext *DC = getDeclContext(); 3228 DC->isNamespace(); 3229 DC = DC->getParent()) { 3230 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 3231 if (!Namespace->getDeclName()) 3232 return false; 3233 break; 3234 } 3235 } 3236 3237 return true; 3238 } 3239 3240 bool FunctionDecl::isNoReturn() const { 3241 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 3242 hasAttr<C11NoReturnAttr>()) 3243 return true; 3244 3245 if (auto *FnTy = getType()->getAs<FunctionType>()) 3246 return FnTy->getNoReturnAttr(); 3247 3248 return false; 3249 } 3250 3251 3252 MultiVersionKind FunctionDecl::getMultiVersionKind() const { 3253 if (hasAttr<TargetAttr>()) 3254 return MultiVersionKind::Target; 3255 if (hasAttr<CPUDispatchAttr>()) 3256 return MultiVersionKind::CPUDispatch; 3257 if (hasAttr<CPUSpecificAttr>()) 3258 return MultiVersionKind::CPUSpecific; 3259 return MultiVersionKind::None; 3260 } 3261 3262 bool FunctionDecl::isCPUDispatchMultiVersion() const { 3263 return isMultiVersion() && hasAttr<CPUDispatchAttr>(); 3264 } 3265 3266 bool FunctionDecl::isCPUSpecificMultiVersion() const { 3267 return isMultiVersion() && hasAttr<CPUSpecificAttr>(); 3268 } 3269 3270 bool FunctionDecl::isTargetMultiVersion() const { 3271 return isMultiVersion() && hasAttr<TargetAttr>(); 3272 } 3273 3274 void 3275 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 3276 redeclarable_base::setPreviousDecl(PrevDecl); 3277 3278 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 3279 FunctionTemplateDecl *PrevFunTmpl 3280 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 3281 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 3282 FunTmpl->setPreviousDecl(PrevFunTmpl); 3283 } 3284 3285 if (PrevDecl && PrevDecl->isInlined()) 3286 setImplicitlyInline(true); 3287 } 3288 3289 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 3290 3291 /// Returns a value indicating whether this function corresponds to a builtin 3292 /// function. 3293 /// 3294 /// The function corresponds to a built-in function if it is declared at 3295 /// translation scope or within an extern "C" block and its name matches with 3296 /// the name of a builtin. The returned value will be 0 for functions that do 3297 /// not correspond to a builtin, a value of type \c Builtin::ID if in the 3298 /// target-independent range \c [1,Builtin::First), or a target-specific builtin 3299 /// value. 3300 /// 3301 /// \param ConsiderWrapperFunctions If true, we should consider wrapper 3302 /// functions as their wrapped builtins. This shouldn't be done in general, but 3303 /// it's useful in Sema to diagnose calls to wrappers based on their semantics. 3304 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { 3305 unsigned BuiltinID = 0; 3306 3307 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) { 3308 BuiltinID = ABAA->getBuiltinName()->getBuiltinID(); 3309 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) { 3310 BuiltinID = BAA->getBuiltinName()->getBuiltinID(); 3311 } else if (const auto *A = getAttr<BuiltinAttr>()) { 3312 BuiltinID = A->getID(); 3313 } 3314 3315 if (!BuiltinID) 3316 return 0; 3317 3318 // If the function is marked "overloadable", it has a different mangled name 3319 // and is not the C library function. 3320 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() && 3321 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>())) 3322 return 0; 3323 3324 ASTContext &Context = getASTContext(); 3325 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3326 return BuiltinID; 3327 3328 // This function has the name of a known C library 3329 // function. Determine whether it actually refers to the C library 3330 // function or whether it just has the same name. 3331 3332 // If this is a static function, it's not a builtin. 3333 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) 3334 return 0; 3335 3336 // OpenCL v1.2 s6.9.f - The library functions defined in 3337 // the C99 standard headers are not available. 3338 if (Context.getLangOpts().OpenCL && 3339 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3340 return 0; 3341 3342 // CUDA does not have device-side standard library. printf and malloc are the 3343 // only special cases that are supported by device-side runtime. 3344 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && 3345 !hasAttr<CUDAHostAttr>() && 3346 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3347 return 0; 3348 3349 // As AMDGCN implementation of OpenMP does not have a device-side standard 3350 // library, none of the predefined library functions except printf and malloc 3351 // should be treated as a builtin i.e. 0 should be returned for them. 3352 if (Context.getTargetInfo().getTriple().isAMDGCN() && 3353 Context.getLangOpts().OpenMPIsDevice && 3354 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 3355 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3356 return 0; 3357 3358 return BuiltinID; 3359 } 3360 3361 /// getNumParams - Return the number of parameters this function must have 3362 /// based on its FunctionType. This is the length of the ParamInfo array 3363 /// after it has been created. 3364 unsigned FunctionDecl::getNumParams() const { 3365 const auto *FPT = getType()->getAs<FunctionProtoType>(); 3366 return FPT ? FPT->getNumParams() : 0; 3367 } 3368 3369 void FunctionDecl::setParams(ASTContext &C, 3370 ArrayRef<ParmVarDecl *> NewParamInfo) { 3371 assert(!ParamInfo && "Already has param info!"); 3372 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 3373 3374 // Zero params -> null pointer. 3375 if (!NewParamInfo.empty()) { 3376 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 3377 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3378 } 3379 } 3380 3381 /// getMinRequiredArguments - Returns the minimum number of arguments 3382 /// needed to call this function. This may be fewer than the number of 3383 /// function parameters, if some of the parameters have default 3384 /// arguments (in C++) or are parameter packs (C++11). 3385 unsigned FunctionDecl::getMinRequiredArguments() const { 3386 if (!getASTContext().getLangOpts().CPlusPlus) 3387 return getNumParams(); 3388 3389 // Note that it is possible for a parameter with no default argument to 3390 // follow a parameter with a default argument. 3391 unsigned NumRequiredArgs = 0; 3392 unsigned MinParamsSoFar = 0; 3393 for (auto *Param : parameters()) { 3394 if (!Param->isParameterPack()) { 3395 ++MinParamsSoFar; 3396 if (!Param->hasDefaultArg()) 3397 NumRequiredArgs = MinParamsSoFar; 3398 } 3399 } 3400 return NumRequiredArgs; 3401 } 3402 3403 bool FunctionDecl::hasOneParamOrDefaultArgs() const { 3404 return getNumParams() == 1 || 3405 (getNumParams() > 1 && 3406 std::all_of(param_begin() + 1, param_end(), 3407 [](ParmVarDecl *P) { return P->hasDefaultArg(); })); 3408 } 3409 3410 /// The combination of the extern and inline keywords under MSVC forces 3411 /// the function to be required. 3412 /// 3413 /// Note: This function assumes that we will only get called when isInlined() 3414 /// would return true for this FunctionDecl. 3415 bool FunctionDecl::isMSExternInline() const { 3416 assert(isInlined() && "expected to get called on an inlined function!"); 3417 3418 const ASTContext &Context = getASTContext(); 3419 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 3420 !hasAttr<DLLExportAttr>()) 3421 return false; 3422 3423 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 3424 FD = FD->getPreviousDecl()) 3425 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3426 return true; 3427 3428 return false; 3429 } 3430 3431 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 3432 if (Redecl->getStorageClass() != SC_Extern) 3433 return false; 3434 3435 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 3436 FD = FD->getPreviousDecl()) 3437 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3438 return false; 3439 3440 return true; 3441 } 3442 3443 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 3444 // Only consider file-scope declarations in this test. 3445 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 3446 return false; 3447 3448 // Only consider explicit declarations; the presence of a builtin for a 3449 // libcall shouldn't affect whether a definition is externally visible. 3450 if (Redecl->isImplicit()) 3451 return false; 3452 3453 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 3454 return true; // Not an inline definition 3455 3456 return false; 3457 } 3458 3459 /// For a function declaration in C or C++, determine whether this 3460 /// declaration causes the definition to be externally visible. 3461 /// 3462 /// For instance, this determines if adding the current declaration to the set 3463 /// of redeclarations of the given functions causes 3464 /// isInlineDefinitionExternallyVisible to change from false to true. 3465 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 3466 assert(!doesThisDeclarationHaveABody() && 3467 "Must have a declaration without a body."); 3468 3469 ASTContext &Context = getASTContext(); 3470 3471 if (Context.getLangOpts().MSVCCompat) { 3472 const FunctionDecl *Definition; 3473 if (hasBody(Definition) && Definition->isInlined() && 3474 redeclForcesDefMSVC(this)) 3475 return true; 3476 } 3477 3478 if (Context.getLangOpts().CPlusPlus) 3479 return false; 3480 3481 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3482 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 3483 // an externally visible definition. 3484 // 3485 // FIXME: What happens if gnu_inline gets added on after the first 3486 // declaration? 3487 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 3488 return false; 3489 3490 const FunctionDecl *Prev = this; 3491 bool FoundBody = false; 3492 while ((Prev = Prev->getPreviousDecl())) { 3493 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3494 3495 if (Prev->doesThisDeclarationHaveABody()) { 3496 // If it's not the case that both 'inline' and 'extern' are 3497 // specified on the definition, then it is always externally visible. 3498 if (!Prev->isInlineSpecified() || 3499 Prev->getStorageClass() != SC_Extern) 3500 return false; 3501 } else if (Prev->isInlineSpecified() && 3502 Prev->getStorageClass() != SC_Extern) { 3503 return false; 3504 } 3505 } 3506 return FoundBody; 3507 } 3508 3509 // C99 6.7.4p6: 3510 // [...] If all of the file scope declarations for a function in a 3511 // translation unit include the inline function specifier without extern, 3512 // then the definition in that translation unit is an inline definition. 3513 if (isInlineSpecified() && getStorageClass() != SC_Extern) 3514 return false; 3515 const FunctionDecl *Prev = this; 3516 bool FoundBody = false; 3517 while ((Prev = Prev->getPreviousDecl())) { 3518 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3519 if (RedeclForcesDefC99(Prev)) 3520 return false; 3521 } 3522 return FoundBody; 3523 } 3524 3525 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const { 3526 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3527 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>() 3528 : FunctionTypeLoc(); 3529 } 3530 3531 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 3532 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3533 if (!FTL) 3534 return SourceRange(); 3535 3536 // Skip self-referential return types. 3537 const SourceManager &SM = getASTContext().getSourceManager(); 3538 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 3539 SourceLocation Boundary = getNameInfo().getBeginLoc(); 3540 if (RTRange.isInvalid() || Boundary.isInvalid() || 3541 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 3542 return SourceRange(); 3543 3544 return RTRange; 3545 } 3546 3547 SourceRange FunctionDecl::getParametersSourceRange() const { 3548 unsigned NP = getNumParams(); 3549 SourceLocation EllipsisLoc = getEllipsisLoc(); 3550 3551 if (NP == 0 && EllipsisLoc.isInvalid()) 3552 return SourceRange(); 3553 3554 SourceLocation Begin = 3555 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc; 3556 SourceLocation End = EllipsisLoc.isValid() 3557 ? EllipsisLoc 3558 : ParamInfo[NP - 1]->getSourceRange().getEnd(); 3559 3560 return SourceRange(Begin, End); 3561 } 3562 3563 SourceRange FunctionDecl::getExceptionSpecSourceRange() const { 3564 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3565 return FTL ? FTL.getExceptionSpecRange() : SourceRange(); 3566 } 3567 3568 /// For an inline function definition in C, or for a gnu_inline function 3569 /// in C++, determine whether the definition will be externally visible. 3570 /// 3571 /// Inline function definitions are always available for inlining optimizations. 3572 /// However, depending on the language dialect, declaration specifiers, and 3573 /// attributes, the definition of an inline function may or may not be 3574 /// "externally" visible to other translation units in the program. 3575 /// 3576 /// In C99, inline definitions are not externally visible by default. However, 3577 /// if even one of the global-scope declarations is marked "extern inline", the 3578 /// inline definition becomes externally visible (C99 6.7.4p6). 3579 /// 3580 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 3581 /// definition, we use the GNU semantics for inline, which are nearly the 3582 /// opposite of C99 semantics. In particular, "inline" by itself will create 3583 /// an externally visible symbol, but "extern inline" will not create an 3584 /// externally visible symbol. 3585 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 3586 assert((doesThisDeclarationHaveABody() || willHaveBody() || 3587 hasAttr<AliasAttr>()) && 3588 "Must be a function definition"); 3589 assert(isInlined() && "Function must be inline"); 3590 ASTContext &Context = getASTContext(); 3591 3592 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3593 // Note: If you change the logic here, please change 3594 // doesDeclarationForceExternallyVisibleDefinition as well. 3595 // 3596 // If it's not the case that both 'inline' and 'extern' are 3597 // specified on the definition, then this inline definition is 3598 // externally visible. 3599 if (Context.getLangOpts().CPlusPlus) 3600 return false; 3601 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3602 return true; 3603 3604 // If any declaration is 'inline' but not 'extern', then this definition 3605 // is externally visible. 3606 for (auto Redecl : redecls()) { 3607 if (Redecl->isInlineSpecified() && 3608 Redecl->getStorageClass() != SC_Extern) 3609 return true; 3610 } 3611 3612 return false; 3613 } 3614 3615 // The rest of this function is C-only. 3616 assert(!Context.getLangOpts().CPlusPlus && 3617 "should not use C inline rules in C++"); 3618 3619 // C99 6.7.4p6: 3620 // [...] If all of the file scope declarations for a function in a 3621 // translation unit include the inline function specifier without extern, 3622 // then the definition in that translation unit is an inline definition. 3623 for (auto Redecl : redecls()) { 3624 if (RedeclForcesDefC99(Redecl)) 3625 return true; 3626 } 3627 3628 // C99 6.7.4p6: 3629 // An inline definition does not provide an external definition for the 3630 // function, and does not forbid an external definition in another 3631 // translation unit. 3632 return false; 3633 } 3634 3635 /// getOverloadedOperator - Which C++ overloaded operator this 3636 /// function represents, if any. 3637 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3638 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3639 return getDeclName().getCXXOverloadedOperator(); 3640 return OO_None; 3641 } 3642 3643 /// getLiteralIdentifier - The literal suffix identifier this function 3644 /// represents, if any. 3645 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3646 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3647 return getDeclName().getCXXLiteralIdentifier(); 3648 return nullptr; 3649 } 3650 3651 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3652 if (TemplateOrSpecialization.isNull()) 3653 return TK_NonTemplate; 3654 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 3655 return TK_FunctionTemplate; 3656 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3657 return TK_MemberSpecialization; 3658 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3659 return TK_FunctionTemplateSpecialization; 3660 if (TemplateOrSpecialization.is 3661 <DependentFunctionTemplateSpecializationInfo*>()) 3662 return TK_DependentFunctionTemplateSpecialization; 3663 3664 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3665 } 3666 3667 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3668 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3669 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3670 3671 return nullptr; 3672 } 3673 3674 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3675 if (auto *MSI = 3676 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3677 return MSI; 3678 if (auto *FTSI = TemplateOrSpecialization 3679 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3680 return FTSI->getMemberSpecializationInfo(); 3681 return nullptr; 3682 } 3683 3684 void 3685 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3686 FunctionDecl *FD, 3687 TemplateSpecializationKind TSK) { 3688 assert(TemplateOrSpecialization.isNull() && 3689 "Member function is already a specialization"); 3690 MemberSpecializationInfo *Info 3691 = new (C) MemberSpecializationInfo(FD, TSK); 3692 TemplateOrSpecialization = Info; 3693 } 3694 3695 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3696 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); 3697 } 3698 3699 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { 3700 assert(TemplateOrSpecialization.isNull() && 3701 "Member function is already a specialization"); 3702 TemplateOrSpecialization = Template; 3703 } 3704 3705 bool FunctionDecl::isImplicitlyInstantiable() const { 3706 // If the function is invalid, it can't be implicitly instantiated. 3707 if (isInvalidDecl()) 3708 return false; 3709 3710 switch (getTemplateSpecializationKindForInstantiation()) { 3711 case TSK_Undeclared: 3712 case TSK_ExplicitInstantiationDefinition: 3713 case TSK_ExplicitSpecialization: 3714 return false; 3715 3716 case TSK_ImplicitInstantiation: 3717 return true; 3718 3719 case TSK_ExplicitInstantiationDeclaration: 3720 // Handled below. 3721 break; 3722 } 3723 3724 // Find the actual template from which we will instantiate. 3725 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3726 bool HasPattern = false; 3727 if (PatternDecl) 3728 HasPattern = PatternDecl->hasBody(PatternDecl); 3729 3730 // C++0x [temp.explicit]p9: 3731 // Except for inline functions, other explicit instantiation declarations 3732 // have the effect of suppressing the implicit instantiation of the entity 3733 // to which they refer. 3734 if (!HasPattern || !PatternDecl) 3735 return true; 3736 3737 return PatternDecl->isInlined(); 3738 } 3739 3740 bool FunctionDecl::isTemplateInstantiation() const { 3741 // FIXME: Remove this, it's not clear what it means. (Which template 3742 // specialization kind?) 3743 return clang::isTemplateInstantiation(getTemplateSpecializationKind()); 3744 } 3745 3746 FunctionDecl * 3747 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const { 3748 // If this is a generic lambda call operator specialization, its 3749 // instantiation pattern is always its primary template's pattern 3750 // even if its primary template was instantiated from another 3751 // member template (which happens with nested generic lambdas). 3752 // Since a lambda's call operator's body is transformed eagerly, 3753 // we don't have to go hunting for a prototype definition template 3754 // (i.e. instantiated-from-member-template) to use as an instantiation 3755 // pattern. 3756 3757 if (isGenericLambdaCallOperatorSpecialization( 3758 dyn_cast<CXXMethodDecl>(this))) { 3759 assert(getPrimaryTemplate() && "not a generic lambda call operator?"); 3760 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); 3761 } 3762 3763 // Check for a declaration of this function that was instantiated from a 3764 // friend definition. 3765 const FunctionDecl *FD = nullptr; 3766 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true)) 3767 FD = this; 3768 3769 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) { 3770 if (ForDefinition && 3771 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) 3772 return nullptr; 3773 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); 3774 } 3775 3776 if (ForDefinition && 3777 !clang::isTemplateInstantiation(getTemplateSpecializationKind())) 3778 return nullptr; 3779 3780 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3781 // If we hit a point where the user provided a specialization of this 3782 // template, we're done looking. 3783 while (!ForDefinition || !Primary->isMemberSpecialization()) { 3784 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); 3785 if (!NewPrimary) 3786 break; 3787 Primary = NewPrimary; 3788 } 3789 3790 return getDefinitionOrSelf(Primary->getTemplatedDecl()); 3791 } 3792 3793 return nullptr; 3794 } 3795 3796 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3797 if (FunctionTemplateSpecializationInfo *Info 3798 = TemplateOrSpecialization 3799 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3800 return Info->getTemplate(); 3801 } 3802 return nullptr; 3803 } 3804 3805 FunctionTemplateSpecializationInfo * 3806 FunctionDecl::getTemplateSpecializationInfo() const { 3807 return TemplateOrSpecialization 3808 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3809 } 3810 3811 const TemplateArgumentList * 3812 FunctionDecl::getTemplateSpecializationArgs() const { 3813 if (FunctionTemplateSpecializationInfo *Info 3814 = TemplateOrSpecialization 3815 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3816 return Info->TemplateArguments; 3817 } 3818 return nullptr; 3819 } 3820 3821 const ASTTemplateArgumentListInfo * 3822 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3823 if (FunctionTemplateSpecializationInfo *Info 3824 = TemplateOrSpecialization 3825 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3826 return Info->TemplateArgumentsAsWritten; 3827 } 3828 return nullptr; 3829 } 3830 3831 void 3832 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3833 FunctionTemplateDecl *Template, 3834 const TemplateArgumentList *TemplateArgs, 3835 void *InsertPos, 3836 TemplateSpecializationKind TSK, 3837 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3838 SourceLocation PointOfInstantiation) { 3839 assert((TemplateOrSpecialization.isNull() || 3840 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && 3841 "Member function is already a specialization"); 3842 assert(TSK != TSK_Undeclared && 3843 "Must specify the type of function template specialization"); 3844 assert((TemplateOrSpecialization.isNull() || 3845 TSK == TSK_ExplicitSpecialization) && 3846 "Member specialization must be an explicit specialization"); 3847 FunctionTemplateSpecializationInfo *Info = 3848 FunctionTemplateSpecializationInfo::Create( 3849 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, 3850 PointOfInstantiation, 3851 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); 3852 TemplateOrSpecialization = Info; 3853 Template->addSpecialization(Info, InsertPos); 3854 } 3855 3856 void 3857 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3858 const UnresolvedSetImpl &Templates, 3859 const TemplateArgumentListInfo &TemplateArgs) { 3860 assert(TemplateOrSpecialization.isNull()); 3861 DependentFunctionTemplateSpecializationInfo *Info = 3862 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3863 TemplateArgs); 3864 TemplateOrSpecialization = Info; 3865 } 3866 3867 DependentFunctionTemplateSpecializationInfo * 3868 FunctionDecl::getDependentSpecializationInfo() const { 3869 return TemplateOrSpecialization 3870 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 3871 } 3872 3873 DependentFunctionTemplateSpecializationInfo * 3874 DependentFunctionTemplateSpecializationInfo::Create( 3875 ASTContext &Context, const UnresolvedSetImpl &Ts, 3876 const TemplateArgumentListInfo &TArgs) { 3877 void *Buffer = Context.Allocate( 3878 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3879 TArgs.size(), Ts.size())); 3880 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 3881 } 3882 3883 DependentFunctionTemplateSpecializationInfo:: 3884 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3885 const TemplateArgumentListInfo &TArgs) 3886 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3887 NumTemplates = Ts.size(); 3888 NumArgs = TArgs.size(); 3889 3890 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 3891 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3892 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3893 3894 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 3895 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3896 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3897 } 3898 3899 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3900 // For a function template specialization, query the specialization 3901 // information object. 3902 if (FunctionTemplateSpecializationInfo *FTSInfo = 3903 TemplateOrSpecialization 3904 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3905 return FTSInfo->getTemplateSpecializationKind(); 3906 3907 if (MemberSpecializationInfo *MSInfo = 3908 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3909 return MSInfo->getTemplateSpecializationKind(); 3910 3911 return TSK_Undeclared; 3912 } 3913 3914 TemplateSpecializationKind 3915 FunctionDecl::getTemplateSpecializationKindForInstantiation() const { 3916 // This is the same as getTemplateSpecializationKind(), except that for a 3917 // function that is both a function template specialization and a member 3918 // specialization, we prefer the member specialization information. Eg: 3919 // 3920 // template<typename T> struct A { 3921 // template<typename U> void f() {} 3922 // template<> void f<int>() {} 3923 // }; 3924 // 3925 // For A<int>::f<int>(): 3926 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization 3927 // * getTemplateSpecializationKindForInstantiation() will return 3928 // TSK_ImplicitInstantiation 3929 // 3930 // This reflects the facts that A<int>::f<int> is an explicit specialization 3931 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated 3932 // from A::f<int> if a definition is needed. 3933 if (FunctionTemplateSpecializationInfo *FTSInfo = 3934 TemplateOrSpecialization 3935 .dyn_cast<FunctionTemplateSpecializationInfo *>()) { 3936 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) 3937 return MSInfo->getTemplateSpecializationKind(); 3938 return FTSInfo->getTemplateSpecializationKind(); 3939 } 3940 3941 if (MemberSpecializationInfo *MSInfo = 3942 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3943 return MSInfo->getTemplateSpecializationKind(); 3944 3945 return TSK_Undeclared; 3946 } 3947 3948 void 3949 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3950 SourceLocation PointOfInstantiation) { 3951 if (FunctionTemplateSpecializationInfo *FTSInfo 3952 = TemplateOrSpecialization.dyn_cast< 3953 FunctionTemplateSpecializationInfo*>()) { 3954 FTSInfo->setTemplateSpecializationKind(TSK); 3955 if (TSK != TSK_ExplicitSpecialization && 3956 PointOfInstantiation.isValid() && 3957 FTSInfo->getPointOfInstantiation().isInvalid()) { 3958 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3959 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3960 L->InstantiationRequested(this); 3961 } 3962 } else if (MemberSpecializationInfo *MSInfo 3963 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3964 MSInfo->setTemplateSpecializationKind(TSK); 3965 if (TSK != TSK_ExplicitSpecialization && 3966 PointOfInstantiation.isValid() && 3967 MSInfo->getPointOfInstantiation().isInvalid()) { 3968 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3969 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3970 L->InstantiationRequested(this); 3971 } 3972 } else 3973 llvm_unreachable("Function cannot have a template specialization kind"); 3974 } 3975 3976 SourceLocation FunctionDecl::getPointOfInstantiation() const { 3977 if (FunctionTemplateSpecializationInfo *FTSInfo 3978 = TemplateOrSpecialization.dyn_cast< 3979 FunctionTemplateSpecializationInfo*>()) 3980 return FTSInfo->getPointOfInstantiation(); 3981 if (MemberSpecializationInfo *MSInfo = 3982 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3983 return MSInfo->getPointOfInstantiation(); 3984 3985 return SourceLocation(); 3986 } 3987 3988 bool FunctionDecl::isOutOfLine() const { 3989 if (Decl::isOutOfLine()) 3990 return true; 3991 3992 // If this function was instantiated from a member function of a 3993 // class template, check whether that member function was defined out-of-line. 3994 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 3995 const FunctionDecl *Definition; 3996 if (FD->hasBody(Definition)) 3997 return Definition->isOutOfLine(); 3998 } 3999 4000 // If this function was instantiated from a function template, 4001 // check whether that function template was defined out-of-line. 4002 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 4003 const FunctionDecl *Definition; 4004 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 4005 return Definition->isOutOfLine(); 4006 } 4007 4008 return false; 4009 } 4010 4011 SourceRange FunctionDecl::getSourceRange() const { 4012 return SourceRange(getOuterLocStart(), EndRangeLoc); 4013 } 4014 4015 unsigned FunctionDecl::getMemoryFunctionKind() const { 4016 IdentifierInfo *FnInfo = getIdentifier(); 4017 4018 if (!FnInfo) 4019 return 0; 4020 4021 // Builtin handling. 4022 switch (getBuiltinID()) { 4023 case Builtin::BI__builtin_memset: 4024 case Builtin::BI__builtin___memset_chk: 4025 case Builtin::BImemset: 4026 return Builtin::BImemset; 4027 4028 case Builtin::BI__builtin_memcpy: 4029 case Builtin::BI__builtin___memcpy_chk: 4030 case Builtin::BImemcpy: 4031 return Builtin::BImemcpy; 4032 4033 case Builtin::BI__builtin_mempcpy: 4034 case Builtin::BI__builtin___mempcpy_chk: 4035 case Builtin::BImempcpy: 4036 return Builtin::BImempcpy; 4037 4038 case Builtin::BI__builtin_memmove: 4039 case Builtin::BI__builtin___memmove_chk: 4040 case Builtin::BImemmove: 4041 return Builtin::BImemmove; 4042 4043 case Builtin::BIstrlcpy: 4044 case Builtin::BI__builtin___strlcpy_chk: 4045 return Builtin::BIstrlcpy; 4046 4047 case Builtin::BIstrlcat: 4048 case Builtin::BI__builtin___strlcat_chk: 4049 return Builtin::BIstrlcat; 4050 4051 case Builtin::BI__builtin_memcmp: 4052 case Builtin::BImemcmp: 4053 return Builtin::BImemcmp; 4054 4055 case Builtin::BI__builtin_bcmp: 4056 case Builtin::BIbcmp: 4057 return Builtin::BIbcmp; 4058 4059 case Builtin::BI__builtin_strncpy: 4060 case Builtin::BI__builtin___strncpy_chk: 4061 case Builtin::BIstrncpy: 4062 return Builtin::BIstrncpy; 4063 4064 case Builtin::BI__builtin_strncmp: 4065 case Builtin::BIstrncmp: 4066 return Builtin::BIstrncmp; 4067 4068 case Builtin::BI__builtin_strncasecmp: 4069 case Builtin::BIstrncasecmp: 4070 return Builtin::BIstrncasecmp; 4071 4072 case Builtin::BI__builtin_strncat: 4073 case Builtin::BI__builtin___strncat_chk: 4074 case Builtin::BIstrncat: 4075 return Builtin::BIstrncat; 4076 4077 case Builtin::BI__builtin_strndup: 4078 case Builtin::BIstrndup: 4079 return Builtin::BIstrndup; 4080 4081 case Builtin::BI__builtin_strlen: 4082 case Builtin::BIstrlen: 4083 return Builtin::BIstrlen; 4084 4085 case Builtin::BI__builtin_bzero: 4086 case Builtin::BIbzero: 4087 return Builtin::BIbzero; 4088 4089 case Builtin::BIfree: 4090 return Builtin::BIfree; 4091 4092 default: 4093 if (isExternC()) { 4094 if (FnInfo->isStr("memset")) 4095 return Builtin::BImemset; 4096 if (FnInfo->isStr("memcpy")) 4097 return Builtin::BImemcpy; 4098 if (FnInfo->isStr("mempcpy")) 4099 return Builtin::BImempcpy; 4100 if (FnInfo->isStr("memmove")) 4101 return Builtin::BImemmove; 4102 if (FnInfo->isStr("memcmp")) 4103 return Builtin::BImemcmp; 4104 if (FnInfo->isStr("bcmp")) 4105 return Builtin::BIbcmp; 4106 if (FnInfo->isStr("strncpy")) 4107 return Builtin::BIstrncpy; 4108 if (FnInfo->isStr("strncmp")) 4109 return Builtin::BIstrncmp; 4110 if (FnInfo->isStr("strncasecmp")) 4111 return Builtin::BIstrncasecmp; 4112 if (FnInfo->isStr("strncat")) 4113 return Builtin::BIstrncat; 4114 if (FnInfo->isStr("strndup")) 4115 return Builtin::BIstrndup; 4116 if (FnInfo->isStr("strlen")) 4117 return Builtin::BIstrlen; 4118 if (FnInfo->isStr("bzero")) 4119 return Builtin::BIbzero; 4120 } else if (isInStdNamespace()) { 4121 if (FnInfo->isStr("free")) 4122 return Builtin::BIfree; 4123 } 4124 break; 4125 } 4126 return 0; 4127 } 4128 4129 unsigned FunctionDecl::getODRHash() const { 4130 assert(hasODRHash()); 4131 return ODRHash; 4132 } 4133 4134 unsigned FunctionDecl::getODRHash() { 4135 if (hasODRHash()) 4136 return ODRHash; 4137 4138 if (auto *FT = getInstantiatedFromMemberFunction()) { 4139 setHasODRHash(true); 4140 ODRHash = FT->getODRHash(); 4141 return ODRHash; 4142 } 4143 4144 class ODRHash Hash; 4145 Hash.AddFunctionDecl(this); 4146 setHasODRHash(true); 4147 ODRHash = Hash.CalculateHash(); 4148 return ODRHash; 4149 } 4150 4151 //===----------------------------------------------------------------------===// 4152 // FieldDecl Implementation 4153 //===----------------------------------------------------------------------===// 4154 4155 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 4156 SourceLocation StartLoc, SourceLocation IdLoc, 4157 IdentifierInfo *Id, QualType T, 4158 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 4159 InClassInitStyle InitStyle) { 4160 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 4161 BW, Mutable, InitStyle); 4162 } 4163 4164 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4165 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 4166 SourceLocation(), nullptr, QualType(), nullptr, 4167 nullptr, false, ICIS_NoInit); 4168 } 4169 4170 bool FieldDecl::isAnonymousStructOrUnion() const { 4171 if (!isImplicit() || getDeclName()) 4172 return false; 4173 4174 if (const auto *Record = getType()->getAs<RecordType>()) 4175 return Record->getDecl()->isAnonymousStructOrUnion(); 4176 4177 return false; 4178 } 4179 4180 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 4181 assert(isBitField() && "not a bitfield"); 4182 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); 4183 } 4184 4185 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { 4186 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && 4187 getBitWidthValue(Ctx) == 0; 4188 } 4189 4190 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { 4191 if (isZeroLengthBitField(Ctx)) 4192 return true; 4193 4194 // C++2a [intro.object]p7: 4195 // An object has nonzero size if it 4196 // -- is not a potentially-overlapping subobject, or 4197 if (!hasAttr<NoUniqueAddressAttr>()) 4198 return false; 4199 4200 // -- is not of class type, or 4201 const auto *RT = getType()->getAs<RecordType>(); 4202 if (!RT) 4203 return false; 4204 const RecordDecl *RD = RT->getDecl()->getDefinition(); 4205 if (!RD) { 4206 assert(isInvalidDecl() && "valid field has incomplete type"); 4207 return false; 4208 } 4209 4210 // -- [has] virtual member functions or virtual base classes, or 4211 // -- has subobjects of nonzero size or bit-fields of nonzero length 4212 const auto *CXXRD = cast<CXXRecordDecl>(RD); 4213 if (!CXXRD->isEmpty()) 4214 return false; 4215 4216 // Otherwise, [...] the circumstances under which the object has zero size 4217 // are implementation-defined. 4218 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS 4219 // ABI will do. 4220 return true; 4221 } 4222 4223 unsigned FieldDecl::getFieldIndex() const { 4224 const FieldDecl *Canonical = getCanonicalDecl(); 4225 if (Canonical != this) 4226 return Canonical->getFieldIndex(); 4227 4228 if (CachedFieldIndex) return CachedFieldIndex - 1; 4229 4230 unsigned Index = 0; 4231 const RecordDecl *RD = getParent()->getDefinition(); 4232 assert(RD && "requested index for field of struct with no definition"); 4233 4234 for (auto *Field : RD->fields()) { 4235 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 4236 ++Index; 4237 } 4238 4239 assert(CachedFieldIndex && "failed to find field in parent"); 4240 return CachedFieldIndex - 1; 4241 } 4242 4243 SourceRange FieldDecl::getSourceRange() const { 4244 const Expr *FinalExpr = getInClassInitializer(); 4245 if (!FinalExpr) 4246 FinalExpr = getBitWidth(); 4247 if (FinalExpr) 4248 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); 4249 return DeclaratorDecl::getSourceRange(); 4250 } 4251 4252 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 4253 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 4254 "capturing type in non-lambda or captured record."); 4255 assert(InitStorage.getInt() == ISK_NoInit && 4256 InitStorage.getPointer() == nullptr && 4257 "bit width, initializer or captured type already set"); 4258 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 4259 ISK_CapturedVLAType); 4260 } 4261 4262 //===----------------------------------------------------------------------===// 4263 // TagDecl Implementation 4264 //===----------------------------------------------------------------------===// 4265 4266 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, 4267 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, 4268 SourceLocation StartL) 4269 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), 4270 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { 4271 assert((DK != Enum || TK == TTK_Enum) && 4272 "EnumDecl not matched with TTK_Enum"); 4273 setPreviousDecl(PrevDecl); 4274 setTagKind(TK); 4275 setCompleteDefinition(false); 4276 setBeingDefined(false); 4277 setEmbeddedInDeclarator(false); 4278 setFreeStanding(false); 4279 setCompleteDefinitionRequired(false); 4280 } 4281 4282 SourceLocation TagDecl::getOuterLocStart() const { 4283 return getTemplateOrInnerLocStart(this); 4284 } 4285 4286 SourceRange TagDecl::getSourceRange() const { 4287 SourceLocation RBraceLoc = BraceRange.getEnd(); 4288 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 4289 return SourceRange(getOuterLocStart(), E); 4290 } 4291 4292 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 4293 4294 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 4295 TypedefNameDeclOrQualifier = TDD; 4296 if (const Type *T = getTypeForDecl()) { 4297 (void)T; 4298 assert(T->isLinkageValid()); 4299 } 4300 assert(isLinkageValid()); 4301 } 4302 4303 void TagDecl::startDefinition() { 4304 setBeingDefined(true); 4305 4306 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 4307 struct CXXRecordDecl::DefinitionData *Data = 4308 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 4309 for (auto I : redecls()) 4310 cast<CXXRecordDecl>(I)->DefinitionData = Data; 4311 } 4312 } 4313 4314 void TagDecl::completeDefinition() { 4315 assert((!isa<CXXRecordDecl>(this) || 4316 cast<CXXRecordDecl>(this)->hasDefinition()) && 4317 "definition completed but not started"); 4318 4319 setCompleteDefinition(true); 4320 setBeingDefined(false); 4321 4322 if (ASTMutationListener *L = getASTMutationListener()) 4323 L->CompletedTagDefinition(this); 4324 } 4325 4326 TagDecl *TagDecl::getDefinition() const { 4327 if (isCompleteDefinition()) 4328 return const_cast<TagDecl *>(this); 4329 4330 // If it's possible for us to have an out-of-date definition, check now. 4331 if (mayHaveOutOfDateDef()) { 4332 if (IdentifierInfo *II = getIdentifier()) { 4333 if (II->isOutOfDate()) { 4334 updateOutOfDate(*II); 4335 } 4336 } 4337 } 4338 4339 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 4340 return CXXRD->getDefinition(); 4341 4342 for (auto R : redecls()) 4343 if (R->isCompleteDefinition()) 4344 return R; 4345 4346 return nullptr; 4347 } 4348 4349 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 4350 if (QualifierLoc) { 4351 // Make sure the extended qualifier info is allocated. 4352 if (!hasExtInfo()) 4353 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4354 // Set qualifier info. 4355 getExtInfo()->QualifierLoc = QualifierLoc; 4356 } else { 4357 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 4358 if (hasExtInfo()) { 4359 if (getExtInfo()->NumTemplParamLists == 0) { 4360 getASTContext().Deallocate(getExtInfo()); 4361 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 4362 } 4363 else 4364 getExtInfo()->QualifierLoc = QualifierLoc; 4365 } 4366 } 4367 } 4368 4369 void TagDecl::setTemplateParameterListsInfo( 4370 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 4371 assert(!TPLists.empty()); 4372 // Make sure the extended decl info is allocated. 4373 if (!hasExtInfo()) 4374 // Allocate external info struct. 4375 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4376 // Set the template parameter lists info. 4377 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 4378 } 4379 4380 //===----------------------------------------------------------------------===// 4381 // EnumDecl Implementation 4382 //===----------------------------------------------------------------------===// 4383 4384 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4385 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, 4386 bool Scoped, bool ScopedUsingClassTag, bool Fixed) 4387 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4388 assert(Scoped || !ScopedUsingClassTag); 4389 IntegerType = nullptr; 4390 setNumPositiveBits(0); 4391 setNumNegativeBits(0); 4392 setScoped(Scoped); 4393 setScopedUsingClassTag(ScopedUsingClassTag); 4394 setFixed(Fixed); 4395 setHasODRHash(false); 4396 ODRHash = 0; 4397 } 4398 4399 void EnumDecl::anchor() {} 4400 4401 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 4402 SourceLocation StartLoc, SourceLocation IdLoc, 4403 IdentifierInfo *Id, 4404 EnumDecl *PrevDecl, bool IsScoped, 4405 bool IsScopedUsingClassTag, bool IsFixed) { 4406 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 4407 IsScoped, IsScopedUsingClassTag, IsFixed); 4408 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4409 C.getTypeDeclType(Enum, PrevDecl); 4410 return Enum; 4411 } 4412 4413 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4414 EnumDecl *Enum = 4415 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 4416 nullptr, nullptr, false, false, false); 4417 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4418 return Enum; 4419 } 4420 4421 SourceRange EnumDecl::getIntegerTypeRange() const { 4422 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 4423 return TI->getTypeLoc().getSourceRange(); 4424 return SourceRange(); 4425 } 4426 4427 void EnumDecl::completeDefinition(QualType NewType, 4428 QualType NewPromotionType, 4429 unsigned NumPositiveBits, 4430 unsigned NumNegativeBits) { 4431 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 4432 if (!IntegerType) 4433 IntegerType = NewType.getTypePtr(); 4434 PromotionType = NewPromotionType; 4435 setNumPositiveBits(NumPositiveBits); 4436 setNumNegativeBits(NumNegativeBits); 4437 TagDecl::completeDefinition(); 4438 } 4439 4440 bool EnumDecl::isClosed() const { 4441 if (const auto *A = getAttr<EnumExtensibilityAttr>()) 4442 return A->getExtensibility() == EnumExtensibilityAttr::Closed; 4443 return true; 4444 } 4445 4446 bool EnumDecl::isClosedFlag() const { 4447 return isClosed() && hasAttr<FlagEnumAttr>(); 4448 } 4449 4450 bool EnumDecl::isClosedNonFlag() const { 4451 return isClosed() && !hasAttr<FlagEnumAttr>(); 4452 } 4453 4454 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 4455 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 4456 return MSI->getTemplateSpecializationKind(); 4457 4458 return TSK_Undeclared; 4459 } 4460 4461 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4462 SourceLocation PointOfInstantiation) { 4463 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 4464 assert(MSI && "Not an instantiated member enumeration?"); 4465 MSI->setTemplateSpecializationKind(TSK); 4466 if (TSK != TSK_ExplicitSpecialization && 4467 PointOfInstantiation.isValid() && 4468 MSI->getPointOfInstantiation().isInvalid()) 4469 MSI->setPointOfInstantiation(PointOfInstantiation); 4470 } 4471 4472 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 4473 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 4474 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 4475 EnumDecl *ED = getInstantiatedFromMemberEnum(); 4476 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 4477 ED = NewED; 4478 return getDefinitionOrSelf(ED); 4479 } 4480 } 4481 4482 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 4483 "couldn't find pattern for enum instantiation"); 4484 return nullptr; 4485 } 4486 4487 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 4488 if (SpecializationInfo) 4489 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 4490 4491 return nullptr; 4492 } 4493 4494 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 4495 TemplateSpecializationKind TSK) { 4496 assert(!SpecializationInfo && "Member enum is already a specialization"); 4497 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 4498 } 4499 4500 unsigned EnumDecl::getODRHash() { 4501 if (hasODRHash()) 4502 return ODRHash; 4503 4504 class ODRHash Hash; 4505 Hash.AddEnumDecl(this); 4506 setHasODRHash(true); 4507 ODRHash = Hash.CalculateHash(); 4508 return ODRHash; 4509 } 4510 4511 SourceRange EnumDecl::getSourceRange() const { 4512 auto Res = TagDecl::getSourceRange(); 4513 // Set end-point to enum-base, e.g. enum foo : ^bar 4514 if (auto *TSI = getIntegerTypeSourceInfo()) { 4515 // TagDecl doesn't know about the enum base. 4516 if (!getBraceRange().getEnd().isValid()) 4517 Res.setEnd(TSI->getTypeLoc().getEndLoc()); 4518 } 4519 return Res; 4520 } 4521 4522 //===----------------------------------------------------------------------===// 4523 // RecordDecl Implementation 4524 //===----------------------------------------------------------------------===// 4525 4526 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 4527 DeclContext *DC, SourceLocation StartLoc, 4528 SourceLocation IdLoc, IdentifierInfo *Id, 4529 RecordDecl *PrevDecl) 4530 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4531 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); 4532 setHasFlexibleArrayMember(false); 4533 setAnonymousStructOrUnion(false); 4534 setHasObjectMember(false); 4535 setHasVolatileMember(false); 4536 setHasLoadedFieldsFromExternalStorage(false); 4537 setNonTrivialToPrimitiveDefaultInitialize(false); 4538 setNonTrivialToPrimitiveCopy(false); 4539 setNonTrivialToPrimitiveDestroy(false); 4540 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); 4541 setHasNonTrivialToPrimitiveDestructCUnion(false); 4542 setHasNonTrivialToPrimitiveCopyCUnion(false); 4543 setParamDestroyedInCallee(false); 4544 setArgPassingRestrictions(APK_CanPassInRegs); 4545 } 4546 4547 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 4548 SourceLocation StartLoc, SourceLocation IdLoc, 4549 IdentifierInfo *Id, RecordDecl* PrevDecl) { 4550 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 4551 StartLoc, IdLoc, Id, PrevDecl); 4552 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4553 4554 C.getTypeDeclType(R, PrevDecl); 4555 return R; 4556 } 4557 4558 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 4559 RecordDecl *R = 4560 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 4561 SourceLocation(), nullptr, nullptr); 4562 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4563 return R; 4564 } 4565 4566 bool RecordDecl::isInjectedClassName() const { 4567 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 4568 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 4569 } 4570 4571 bool RecordDecl::isLambda() const { 4572 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 4573 return RD->isLambda(); 4574 return false; 4575 } 4576 4577 bool RecordDecl::isCapturedRecord() const { 4578 return hasAttr<CapturedRecordAttr>(); 4579 } 4580 4581 void RecordDecl::setCapturedRecord() { 4582 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 4583 } 4584 4585 bool RecordDecl::isOrContainsUnion() const { 4586 if (isUnion()) 4587 return true; 4588 4589 if (const RecordDecl *Def = getDefinition()) { 4590 for (const FieldDecl *FD : Def->fields()) { 4591 const RecordType *RT = FD->getType()->getAs<RecordType>(); 4592 if (RT && RT->getDecl()->isOrContainsUnion()) 4593 return true; 4594 } 4595 } 4596 4597 return false; 4598 } 4599 4600 RecordDecl::field_iterator RecordDecl::field_begin() const { 4601 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) 4602 LoadFieldsFromExternalStorage(); 4603 4604 return field_iterator(decl_iterator(FirstDecl)); 4605 } 4606 4607 /// completeDefinition - Notes that the definition of this type is now 4608 /// complete. 4609 void RecordDecl::completeDefinition() { 4610 assert(!isCompleteDefinition() && "Cannot redefine record!"); 4611 TagDecl::completeDefinition(); 4612 4613 ASTContext &Ctx = getASTContext(); 4614 4615 // Layouts are dumped when computed, so if we are dumping for all complete 4616 // types, we need to force usage to get types that wouldn't be used elsewhere. 4617 if (Ctx.getLangOpts().DumpRecordLayoutsComplete) 4618 (void)Ctx.getASTRecordLayout(this); 4619 } 4620 4621 /// isMsStruct - Get whether or not this record uses ms_struct layout. 4622 /// This which can be turned on with an attribute, pragma, or the 4623 /// -mms-bitfields command-line option. 4624 bool RecordDecl::isMsStruct(const ASTContext &C) const { 4625 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 4626 } 4627 4628 void RecordDecl::LoadFieldsFromExternalStorage() const { 4629 ExternalASTSource *Source = getASTContext().getExternalSource(); 4630 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 4631 4632 // Notify that we have a RecordDecl doing some initialization. 4633 ExternalASTSource::Deserializing TheFields(Source); 4634 4635 SmallVector<Decl*, 64> Decls; 4636 setHasLoadedFieldsFromExternalStorage(true); 4637 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 4638 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 4639 }, Decls); 4640 4641 #ifndef NDEBUG 4642 // Check that all decls we got were FieldDecls. 4643 for (unsigned i=0, e=Decls.size(); i != e; ++i) 4644 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 4645 #endif 4646 4647 if (Decls.empty()) 4648 return; 4649 4650 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 4651 /*FieldsAlreadyLoaded=*/false); 4652 } 4653 4654 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 4655 ASTContext &Context = getASTContext(); 4656 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & 4657 (SanitizerKind::Address | SanitizerKind::KernelAddress); 4658 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) 4659 return false; 4660 const auto &NoSanitizeList = Context.getNoSanitizeList(); 4661 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 4662 // We may be able to relax some of these requirements. 4663 int ReasonToReject = -1; 4664 if (!CXXRD || CXXRD->isExternCContext()) 4665 ReasonToReject = 0; // is not C++. 4666 else if (CXXRD->hasAttr<PackedAttr>()) 4667 ReasonToReject = 1; // is packed. 4668 else if (CXXRD->isUnion()) 4669 ReasonToReject = 2; // is a union. 4670 else if (CXXRD->isTriviallyCopyable()) 4671 ReasonToReject = 3; // is trivially copyable. 4672 else if (CXXRD->hasTrivialDestructor()) 4673 ReasonToReject = 4; // has trivial destructor. 4674 else if (CXXRD->isStandardLayout()) 4675 ReasonToReject = 5; // is standard layout. 4676 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(), 4677 "field-padding")) 4678 ReasonToReject = 6; // is in an excluded file. 4679 else if (NoSanitizeList.containsType( 4680 EnabledAsanMask, getQualifiedNameAsString(), "field-padding")) 4681 ReasonToReject = 7; // The type is excluded. 4682 4683 if (EmitRemark) { 4684 if (ReasonToReject >= 0) 4685 Context.getDiagnostics().Report( 4686 getLocation(), 4687 diag::remark_sanitize_address_insert_extra_padding_rejected) 4688 << getQualifiedNameAsString() << ReasonToReject; 4689 else 4690 Context.getDiagnostics().Report( 4691 getLocation(), 4692 diag::remark_sanitize_address_insert_extra_padding_accepted) 4693 << getQualifiedNameAsString(); 4694 } 4695 return ReasonToReject < 0; 4696 } 4697 4698 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 4699 for (const auto *I : fields()) { 4700 if (I->getIdentifier()) 4701 return I; 4702 4703 if (const auto *RT = I->getType()->getAs<RecordType>()) 4704 if (const FieldDecl *NamedDataMember = 4705 RT->getDecl()->findFirstNamedDataMember()) 4706 return NamedDataMember; 4707 } 4708 4709 // We didn't find a named data member. 4710 return nullptr; 4711 } 4712 4713 //===----------------------------------------------------------------------===// 4714 // BlockDecl Implementation 4715 //===----------------------------------------------------------------------===// 4716 4717 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) 4718 : Decl(Block, DC, CaretLoc), DeclContext(Block) { 4719 setIsVariadic(false); 4720 setCapturesCXXThis(false); 4721 setBlockMissingReturnType(true); 4722 setIsConversionFromLambda(false); 4723 setDoesNotEscape(false); 4724 setCanAvoidCopyToHeap(false); 4725 } 4726 4727 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 4728 assert(!ParamInfo && "Already has param info!"); 4729 4730 // Zero params -> null pointer. 4731 if (!NewParamInfo.empty()) { 4732 NumParams = NewParamInfo.size(); 4733 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 4734 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 4735 } 4736 } 4737 4738 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 4739 bool CapturesCXXThis) { 4740 this->setCapturesCXXThis(CapturesCXXThis); 4741 this->NumCaptures = Captures.size(); 4742 4743 if (Captures.empty()) { 4744 this->Captures = nullptr; 4745 return; 4746 } 4747 4748 this->Captures = Captures.copy(Context).data(); 4749 } 4750 4751 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 4752 for (const auto &I : captures()) 4753 // Only auto vars can be captured, so no redeclaration worries. 4754 if (I.getVariable() == variable) 4755 return true; 4756 4757 return false; 4758 } 4759 4760 SourceRange BlockDecl::getSourceRange() const { 4761 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); 4762 } 4763 4764 //===----------------------------------------------------------------------===// 4765 // Other Decl Allocation/Deallocation Method Implementations 4766 //===----------------------------------------------------------------------===// 4767 4768 void TranslationUnitDecl::anchor() {} 4769 4770 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 4771 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 4772 } 4773 4774 void PragmaCommentDecl::anchor() {} 4775 4776 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 4777 TranslationUnitDecl *DC, 4778 SourceLocation CommentLoc, 4779 PragmaMSCommentKind CommentKind, 4780 StringRef Arg) { 4781 PragmaCommentDecl *PCD = 4782 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 4783 PragmaCommentDecl(DC, CommentLoc, CommentKind); 4784 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 4785 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 4786 return PCD; 4787 } 4788 4789 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 4790 unsigned ID, 4791 unsigned ArgSize) { 4792 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 4793 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 4794 } 4795 4796 void PragmaDetectMismatchDecl::anchor() {} 4797 4798 PragmaDetectMismatchDecl * 4799 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 4800 SourceLocation Loc, StringRef Name, 4801 StringRef Value) { 4802 size_t ValueStart = Name.size() + 1; 4803 PragmaDetectMismatchDecl *PDMD = 4804 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 4805 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 4806 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 4807 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 4808 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 4809 Value.size()); 4810 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 4811 return PDMD; 4812 } 4813 4814 PragmaDetectMismatchDecl * 4815 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4816 unsigned NameValueSize) { 4817 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 4818 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 4819 } 4820 4821 void ExternCContextDecl::anchor() {} 4822 4823 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 4824 TranslationUnitDecl *DC) { 4825 return new (C, DC) ExternCContextDecl(DC); 4826 } 4827 4828 void LabelDecl::anchor() {} 4829 4830 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4831 SourceLocation IdentL, IdentifierInfo *II) { 4832 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 4833 } 4834 4835 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4836 SourceLocation IdentL, IdentifierInfo *II, 4837 SourceLocation GnuLabelL) { 4838 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 4839 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 4840 } 4841 4842 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4843 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 4844 SourceLocation()); 4845 } 4846 4847 void LabelDecl::setMSAsmLabel(StringRef Name) { 4848 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 4849 memcpy(Buffer, Name.data(), Name.size()); 4850 Buffer[Name.size()] = '\0'; 4851 MSAsmName = Buffer; 4852 } 4853 4854 void ValueDecl::anchor() {} 4855 4856 bool ValueDecl::isWeak() const { 4857 auto *MostRecent = getMostRecentDecl(); 4858 return MostRecent->hasAttr<WeakAttr>() || 4859 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported(); 4860 } 4861 4862 void ImplicitParamDecl::anchor() {} 4863 4864 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 4865 SourceLocation IdLoc, 4866 IdentifierInfo *Id, QualType Type, 4867 ImplicitParamKind ParamKind) { 4868 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); 4869 } 4870 4871 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, 4872 ImplicitParamKind ParamKind) { 4873 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); 4874 } 4875 4876 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 4877 unsigned ID) { 4878 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); 4879 } 4880 4881 FunctionDecl * 4882 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4883 const DeclarationNameInfo &NameInfo, QualType T, 4884 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, 4885 bool isInlineSpecified, bool hasWrittenPrototype, 4886 ConstexprSpecKind ConstexprKind, 4887 Expr *TrailingRequiresClause) { 4888 FunctionDecl *New = new (C, DC) FunctionDecl( 4889 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, 4890 isInlineSpecified, ConstexprKind, TrailingRequiresClause); 4891 New->setHasWrittenPrototype(hasWrittenPrototype); 4892 return New; 4893 } 4894 4895 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4896 return new (C, ID) FunctionDecl( 4897 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), 4898 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr); 4899 } 4900 4901 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4902 return new (C, DC) BlockDecl(DC, L); 4903 } 4904 4905 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4906 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 4907 } 4908 4909 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 4910 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 4911 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 4912 4913 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 4914 unsigned NumParams) { 4915 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4916 CapturedDecl(DC, NumParams); 4917 } 4918 4919 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4920 unsigned NumParams) { 4921 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4922 CapturedDecl(nullptr, NumParams); 4923 } 4924 4925 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 4926 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 4927 4928 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 4929 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 4930 4931 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 4932 SourceLocation L, 4933 IdentifierInfo *Id, QualType T, 4934 Expr *E, const llvm::APSInt &V) { 4935 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 4936 } 4937 4938 EnumConstantDecl * 4939 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4940 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 4941 QualType(), nullptr, llvm::APSInt()); 4942 } 4943 4944 void IndirectFieldDecl::anchor() {} 4945 4946 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 4947 SourceLocation L, DeclarationName N, 4948 QualType T, 4949 MutableArrayRef<NamedDecl *> CH) 4950 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 4951 ChainingSize(CH.size()) { 4952 // In C++, indirect field declarations conflict with tag declarations in the 4953 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 4954 if (C.getLangOpts().CPlusPlus) 4955 IdentifierNamespace |= IDNS_Tag; 4956 } 4957 4958 IndirectFieldDecl * 4959 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 4960 IdentifierInfo *Id, QualType T, 4961 llvm::MutableArrayRef<NamedDecl *> CH) { 4962 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 4963 } 4964 4965 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 4966 unsigned ID) { 4967 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), 4968 DeclarationName(), QualType(), None); 4969 } 4970 4971 SourceRange EnumConstantDecl::getSourceRange() const { 4972 SourceLocation End = getLocation(); 4973 if (Init) 4974 End = Init->getEndLoc(); 4975 return SourceRange(getLocation(), End); 4976 } 4977 4978 void TypeDecl::anchor() {} 4979 4980 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 4981 SourceLocation StartLoc, SourceLocation IdLoc, 4982 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 4983 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4984 } 4985 4986 void TypedefNameDecl::anchor() {} 4987 4988 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 4989 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 4990 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 4991 auto *ThisTypedef = this; 4992 if (AnyRedecl && OwningTypedef) { 4993 OwningTypedef = OwningTypedef->getCanonicalDecl(); 4994 ThisTypedef = ThisTypedef->getCanonicalDecl(); 4995 } 4996 if (OwningTypedef == ThisTypedef) 4997 return TT->getDecl(); 4998 } 4999 5000 return nullptr; 5001 } 5002 5003 bool TypedefNameDecl::isTransparentTagSlow() const { 5004 auto determineIsTransparent = [&]() { 5005 if (auto *TT = getUnderlyingType()->getAs<TagType>()) { 5006 if (auto *TD = TT->getDecl()) { 5007 if (TD->getName() != getName()) 5008 return false; 5009 SourceLocation TTLoc = getLocation(); 5010 SourceLocation TDLoc = TD->getLocation(); 5011 if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) 5012 return false; 5013 SourceManager &SM = getASTContext().getSourceManager(); 5014 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); 5015 } 5016 } 5017 return false; 5018 }; 5019 5020 bool isTransparent = determineIsTransparent(); 5021 MaybeModedTInfo.setInt((isTransparent << 1) | 1); 5022 return isTransparent; 5023 } 5024 5025 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5026 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 5027 nullptr, nullptr); 5028 } 5029 5030 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 5031 SourceLocation StartLoc, 5032 SourceLocation IdLoc, IdentifierInfo *Id, 5033 TypeSourceInfo *TInfo) { 5034 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5035 } 5036 5037 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5038 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 5039 SourceLocation(), nullptr, nullptr); 5040 } 5041 5042 SourceRange TypedefDecl::getSourceRange() const { 5043 SourceLocation RangeEnd = getLocation(); 5044 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 5045 if (typeIsPostfix(TInfo->getType())) 5046 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5047 } 5048 return SourceRange(getBeginLoc(), RangeEnd); 5049 } 5050 5051 SourceRange TypeAliasDecl::getSourceRange() const { 5052 SourceLocation RangeEnd = getBeginLoc(); 5053 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 5054 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5055 return SourceRange(getBeginLoc(), RangeEnd); 5056 } 5057 5058 void FileScopeAsmDecl::anchor() {} 5059 5060 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 5061 StringLiteral *Str, 5062 SourceLocation AsmLoc, 5063 SourceLocation RParenLoc) { 5064 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 5065 } 5066 5067 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 5068 unsigned ID) { 5069 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 5070 SourceLocation()); 5071 } 5072 5073 void EmptyDecl::anchor() {} 5074 5075 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 5076 return new (C, DC) EmptyDecl(DC, L); 5077 } 5078 5079 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5080 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 5081 } 5082 5083 //===----------------------------------------------------------------------===// 5084 // ImportDecl Implementation 5085 //===----------------------------------------------------------------------===// 5086 5087 /// Retrieve the number of module identifiers needed to name the given 5088 /// module. 5089 static unsigned getNumModuleIdentifiers(Module *Mod) { 5090 unsigned Result = 1; 5091 while (Mod->Parent) { 5092 Mod = Mod->Parent; 5093 ++Result; 5094 } 5095 return Result; 5096 } 5097 5098 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5099 Module *Imported, 5100 ArrayRef<SourceLocation> IdentifierLocs) 5101 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5102 NextLocalImportAndComplete(nullptr, true) { 5103 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 5104 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5105 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 5106 StoredLocs); 5107 } 5108 5109 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5110 Module *Imported, SourceLocation EndLoc) 5111 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5112 NextLocalImportAndComplete(nullptr, false) { 5113 *getTrailingObjects<SourceLocation>() = EndLoc; 5114 } 5115 5116 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 5117 SourceLocation StartLoc, Module *Imported, 5118 ArrayRef<SourceLocation> IdentifierLocs) { 5119 return new (C, DC, 5120 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 5121 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 5122 } 5123 5124 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 5125 SourceLocation StartLoc, 5126 Module *Imported, 5127 SourceLocation EndLoc) { 5128 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 5129 ImportDecl(DC, StartLoc, Imported, EndLoc); 5130 Import->setImplicit(); 5131 return Import; 5132 } 5133 5134 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5135 unsigned NumLocations) { 5136 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 5137 ImportDecl(EmptyShell()); 5138 } 5139 5140 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 5141 if (!isImportComplete()) 5142 return None; 5143 5144 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5145 return llvm::makeArrayRef(StoredLocs, 5146 getNumModuleIdentifiers(getImportedModule())); 5147 } 5148 5149 SourceRange ImportDecl::getSourceRange() const { 5150 if (!isImportComplete()) 5151 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 5152 5153 return SourceRange(getLocation(), getIdentifierLocs().back()); 5154 } 5155 5156 //===----------------------------------------------------------------------===// 5157 // ExportDecl Implementation 5158 //===----------------------------------------------------------------------===// 5159 5160 void ExportDecl::anchor() {} 5161 5162 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 5163 SourceLocation ExportLoc) { 5164 return new (C, DC) ExportDecl(DC, ExportLoc); 5165 } 5166 5167 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5168 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 5169 } 5170