xref: /freebsd-src/contrib/llvm-project/clang/lib/AST/Decl.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Redeclarable.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/IdentifierTable.h"
40 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/LangOptions.h"
42 #include "clang/Basic/Linkage.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/NoSanitizeList.h"
45 #include "clang/Basic/PartialDiagnostic.h"
46 #include "clang/Basic/Sanitizers.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetCXXABI.h"
51 #include "clang/Basic/TargetInfo.h"
52 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73 
74 using namespace clang;
75 
76 Decl *clang::getPrimaryMergedDecl(Decl *D) {
77   return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79 
80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81   SourceLocation Loc = this->Loc;
82   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83   if (Loc.isValid()) {
84     Loc.print(OS, Context.getSourceManager());
85     OS << ": ";
86   }
87   OS << Message;
88 
89   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90     OS << " '";
91     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92     OS << "'";
93   }
94 
95   OS << '\n';
96 }
97 
98 // Defined here so that it can be inlined into its direct callers.
99 bool Decl::isOutOfLine() const {
100   return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102 
103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104     : Decl(TranslationUnit, nullptr, SourceLocation()),
105       DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
106 
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110 
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored.  Only the innermost
116 // visibility attribute applies.  If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments.  But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility.  For example,
148 // the visibility of a specialization of either of these templates:
149 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 //   template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'.  That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156 
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160   return computation.IgnoreExplicitVisibility;
161 }
162 
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
166 withExplicitVisibilityAlready(LVComputationKind Kind) {
167   Kind.IgnoreExplicitVisibility = true;
168   return Kind;
169 }
170 
171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172                                                   LVComputationKind kind) {
173   assert(!kind.IgnoreExplicitVisibility &&
174          "asking for explicit visibility when we shouldn't be");
175   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176 }
177 
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
180 static bool usesTypeVisibility(const NamedDecl *D) {
181   return isa<TypeDecl>(D) ||
182          isa<ClassTemplateDecl>(D) ||
183          isa<ObjCInterfaceDecl>(D);
184 }
185 
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190 isExplicitMemberSpecialization(const T *D) {
191   if (const MemberSpecializationInfo *member =
192         D->getMemberSpecializationInfo()) {
193     return member->isExplicitSpecialization();
194   }
195   return false;
196 }
197 
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202   return D->isMemberSpecialization();
203 }
204 
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
208 static Visibility getVisibilityFromAttr(const T *attr) {
209   switch (attr->getVisibility()) {
210   case T::Default:
211     return DefaultVisibility;
212   case T::Hidden:
213     return HiddenVisibility;
214   case T::Protected:
215     return ProtectedVisibility;
216   }
217   llvm_unreachable("bad visibility kind");
218 }
219 
220 /// Return the explicit visibility of the given declaration.
221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222                                     NamedDecl::ExplicitVisibilityKind kind) {
223   // If we're ultimately computing the visibility of a type, look for
224   // a 'type_visibility' attribute before looking for 'visibility'.
225   if (kind == NamedDecl::VisibilityForType) {
226     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227       return getVisibilityFromAttr(A);
228     }
229   }
230 
231   // If this declaration has an explicit visibility attribute, use it.
232   if (const auto *A = D->getAttr<VisibilityAttr>()) {
233     return getVisibilityFromAttr(A);
234   }
235 
236   return None;
237 }
238 
239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240                                           LVComputationKind computation) {
241   if (computation.IgnoreAllVisibility)
242     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243   return getTypeLinkageAndVisibility(&T);
244 }
245 
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list.  For visibility purposes, template
248 /// parameters are part of the signature of a template.
249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250     const TemplateParameterList *Params, LVComputationKind computation) {
251   LinkageInfo LV;
252   for (const NamedDecl *P : *Params) {
253     // Template type parameters are the most common and never
254     // contribute to visibility, pack or not.
255     if (isa<TemplateTypeParmDecl>(P))
256       continue;
257 
258     // Non-type template parameters can be restricted by the value type, e.g.
259     //   template <enum X> class A { ... };
260     // We have to be careful here, though, because we can be dealing with
261     // dependent types.
262     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263       // Handle the non-pack case first.
264       if (!NTTP->isExpandedParameterPack()) {
265         if (!NTTP->getType()->isDependentType()) {
266           LV.merge(getLVForType(*NTTP->getType(), computation));
267         }
268         continue;
269       }
270 
271       // Look at all the types in an expanded pack.
272       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273         QualType type = NTTP->getExpansionType(i);
274         if (!type->isDependentType())
275           LV.merge(getTypeLinkageAndVisibility(type));
276       }
277       continue;
278     }
279 
280     // Template template parameters can be restricted by their
281     // template parameters, recursively.
282     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283 
284     // Handle the non-pack case first.
285     if (!TTP->isExpandedParameterPack()) {
286       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287                                              computation));
288       continue;
289     }
290 
291     // Look at all expansions in an expanded pack.
292     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293            i != n; ++i) {
294       LV.merge(getLVForTemplateParameterList(
295           TTP->getExpansionTemplateParameters(i), computation));
296     }
297   }
298 
299   return LV;
300 }
301 
302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303   const Decl *Ret = nullptr;
304   const DeclContext *DC = D->getDeclContext();
305   while (DC->getDeclKind() != Decl::TranslationUnit) {
306     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307       Ret = cast<Decl>(DC);
308     DC = DC->getParent();
309   }
310   return Ret;
311 }
312 
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
318 LinkageInfo
319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320                                               LVComputationKind computation) {
321   LinkageInfo LV;
322 
323   for (const TemplateArgument &Arg : Args) {
324     switch (Arg.getKind()) {
325     case TemplateArgument::Null:
326     case TemplateArgument::Integral:
327     case TemplateArgument::Expression:
328       continue;
329 
330     case TemplateArgument::Type:
331       LV.merge(getLVForType(*Arg.getAsType(), computation));
332       continue;
333 
334     case TemplateArgument::Declaration: {
335       const NamedDecl *ND = Arg.getAsDecl();
336       assert(!usesTypeVisibility(ND));
337       LV.merge(getLVForDecl(ND, computation));
338       continue;
339     }
340 
341     case TemplateArgument::NullPtr:
342       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343       continue;
344 
345     case TemplateArgument::Template:
346     case TemplateArgument::TemplateExpansion:
347       if (TemplateDecl *Template =
348               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349         LV.merge(getLVForDecl(Template, computation));
350       continue;
351 
352     case TemplateArgument::Pack:
353       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354       continue;
355     }
356     llvm_unreachable("bad template argument kind");
357   }
358 
359   return LV;
360 }
361 
362 LinkageInfo
363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364                                               LVComputationKind computation) {
365   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367 
368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369                         const FunctionTemplateSpecializationInfo *specInfo) {
370   // Include visibility from the template parameters and arguments
371   // only if this is not an explicit instantiation or specialization
372   // with direct explicit visibility.  (Implicit instantiations won't
373   // have a direct attribute.)
374   if (!specInfo->isExplicitInstantiationOrSpecialization())
375     return true;
376 
377   return !fn->hasAttr<VisibilityAttr>();
378 }
379 
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
387 void LinkageComputer::mergeTemplateLV(
388     LinkageInfo &LV, const FunctionDecl *fn,
389     const FunctionTemplateSpecializationInfo *specInfo,
390     LVComputationKind computation) {
391   bool considerVisibility =
392     shouldConsiderTemplateVisibility(fn, specInfo);
393 
394   // Merge information from the template parameters.
395   FunctionTemplateDecl *temp = specInfo->getTemplate();
396   LinkageInfo tempLV =
397     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399 
400   // Merge information from the template arguments.
401   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405 
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
408 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409                                          LVComputationKind computation) {
410   if (computation.IgnoreAllVisibility)
411     return false;
412 
413   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414          D->hasAttr<VisibilityAttr>();
415 }
416 
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
419 static bool shouldConsiderTemplateVisibility(
420                                  const ClassTemplateSpecializationDecl *spec,
421                                  LVComputationKind computation) {
422   // Include visibility from the template parameters and arguments
423   // only if this is not an explicit instantiation or specialization
424   // with direct explicit visibility (and note that implicit
425   // instantiations won't have a direct attribute).
426   //
427   // Furthermore, we want to ignore template parameters and arguments
428   // for an explicit specialization when computing the visibility of a
429   // member thereof with explicit visibility.
430   //
431   // This is a bit complex; let's unpack it.
432   //
433   // An explicit class specialization is an independent, top-level
434   // declaration.  As such, if it or any of its members has an
435   // explicit visibility attribute, that must directly express the
436   // user's intent, and we should honor it.  The same logic applies to
437   // an explicit instantiation of a member of such a thing.
438 
439   // Fast path: if this is not an explicit instantiation or
440   // specialization, we always want to consider template-related
441   // visibility restrictions.
442   if (!spec->isExplicitInstantiationOrSpecialization())
443     return true;
444 
445   // This is the 'member thereof' check.
446   if (spec->isExplicitSpecialization() &&
447       hasExplicitVisibilityAlready(computation))
448     return false;
449 
450   return !hasDirectVisibilityAttribute(spec, computation);
451 }
452 
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
455 void LinkageComputer::mergeTemplateLV(
456     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457     LVComputationKind computation) {
458   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459 
460   // Merge information from the template parameters, but ignore
461   // visibility if we're only considering template arguments.
462 
463   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464   LinkageInfo tempLV =
465     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466   LV.mergeMaybeWithVisibility(tempLV,
467            considerVisibility && !hasExplicitVisibilityAlready(computation));
468 
469   // Merge information from the template arguments.  We ignore
470   // template-argument visibility if we've got an explicit
471   // instantiation with a visibility attribute.
472   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474   if (considerVisibility)
475     LV.mergeVisibility(argsLV);
476   LV.mergeExternalVisibility(argsLV);
477 }
478 
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
483 static bool shouldConsiderTemplateVisibility(
484                                  const VarTemplateSpecializationDecl *spec,
485                                  LVComputationKind computation) {
486   // Include visibility from the template parameters and arguments
487   // only if this is not an explicit instantiation or specialization
488   // with direct explicit visibility (and note that implicit
489   // instantiations won't have a direct attribute).
490   if (!spec->isExplicitInstantiationOrSpecialization())
491     return true;
492 
493   // An explicit variable specialization is an independent, top-level
494   // declaration.  As such, if it has an explicit visibility attribute,
495   // that must directly express the user's intent, and we should honor
496   // it.
497   if (spec->isExplicitSpecialization() &&
498       hasExplicitVisibilityAlready(computation))
499     return false;
500 
501   return !hasDirectVisibilityAttribute(spec, computation);
502 }
503 
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508                                       const VarTemplateSpecializationDecl *spec,
509                                       LVComputationKind computation) {
510   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511 
512   // Merge information from the template parameters, but ignore
513   // visibility if we're only considering template arguments.
514 
515   VarTemplateDecl *temp = spec->getSpecializedTemplate();
516   LinkageInfo tempLV =
517     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518   LV.mergeMaybeWithVisibility(tempLV,
519            considerVisibility && !hasExplicitVisibilityAlready(computation));
520 
521   // Merge information from the template arguments.  We ignore
522   // template-argument visibility if we've got an explicit
523   // instantiation with a visibility attribute.
524   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526   if (considerVisibility)
527     LV.mergeVisibility(argsLV);
528   LV.mergeExternalVisibility(argsLV);
529 }
530 
531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533   const LangOptions &Opts = D->getASTContext().getLangOpts();
534   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535     return false;
536 
537   const auto *FD = dyn_cast<FunctionDecl>(D);
538   if (!FD)
539     return false;
540 
541   TemplateSpecializationKind TSK = TSK_Undeclared;
542   if (FunctionTemplateSpecializationInfo *spec
543       = FD->getTemplateSpecializationInfo()) {
544     TSK = spec->getTemplateSpecializationKind();
545   } else if (MemberSpecializationInfo *MSI =
546              FD->getMemberSpecializationInfo()) {
547     TSK = MSI->getTemplateSpecializationKind();
548   }
549 
550   const FunctionDecl *Def = nullptr;
551   // InlineVisibilityHidden only applies to definitions, and
552   // isInlined() only gives meaningful answers on definitions
553   // anyway.
554   return TSK != TSK_ExplicitInstantiationDeclaration &&
555     TSK != TSK_ExplicitInstantiationDefinition &&
556     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558 
559 template <typename T> static bool isFirstInExternCContext(T *D) {
560   const T *First = D->getFirstDecl();
561   return First->isInExternCContext();
562 }
563 
564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566     if (!SD->hasBraces())
567       return true;
568   return false;
569 }
570 
571 /// Determine whether D is declared in the purview of a named module.
572 static bool isInModulePurview(const NamedDecl *D) {
573   if (auto *M = D->getOwningModule())
574     return M->isModulePurview();
575   return false;
576 }
577 
578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579   // FIXME: Handle isModulePrivate.
580   switch (D->getModuleOwnershipKind()) {
581   case Decl::ModuleOwnershipKind::Unowned:
582   case Decl::ModuleOwnershipKind::ModulePrivate:
583     return false;
584   case Decl::ModuleOwnershipKind::Visible:
585   case Decl::ModuleOwnershipKind::VisibleWhenImported:
586     return isInModulePurview(D);
587   }
588   llvm_unreachable("unexpected module ownership kind");
589 }
590 
591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592   // Internal linkage declarations within a module interface unit are modeled
593   // as "module-internal linkage", which means that they have internal linkage
594   // formally but can be indirectly accessed from outside the module via inline
595   // functions and templates defined within the module.
596   if (isInModulePurview(D))
597     return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598 
599   return LinkageInfo::internal();
600 }
601 
602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603   // C++ Modules TS [basic.link]/6.8:
604   //   - A name declared at namespace scope that does not have internal linkage
605   //     by the previous rules and that is introduced by a non-exported
606   //     declaration has module linkage.
607   if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608                                   cast<NamedDecl>(D->getCanonicalDecl())))
609     return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610 
611   return LinkageInfo::external();
612 }
613 
614 static StorageClass getStorageClass(const Decl *D) {
615   if (auto *TD = dyn_cast<TemplateDecl>(D))
616     D = TD->getTemplatedDecl();
617   if (D) {
618     if (auto *VD = dyn_cast<VarDecl>(D))
619       return VD->getStorageClass();
620     if (auto *FD = dyn_cast<FunctionDecl>(D))
621       return FD->getStorageClass();
622   }
623   return SC_None;
624 }
625 
626 LinkageInfo
627 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628                                             LVComputationKind computation,
629                                             bool IgnoreVarTypeLinkage) {
630   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
631          "Not a name having namespace scope");
632   ASTContext &Context = D->getASTContext();
633 
634   // C++ [basic.link]p3:
635   //   A name having namespace scope (3.3.6) has internal linkage if it
636   //   is the name of
637 
638   if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639     // - a variable, variable template, function, or function template
640     //   that is explicitly declared static; or
641     // (This bullet corresponds to C99 6.2.2p3.)
642     return getInternalLinkageFor(D);
643   }
644 
645   if (const auto *Var = dyn_cast<VarDecl>(D)) {
646     // - a non-template variable of non-volatile const-qualified type, unless
647     //   - it is explicitly declared extern, or
648     //   - it is inline or exported, or
649     //   - it was previously declared and the prior declaration did not have
650     //     internal linkage
651     // (There is no equivalent in C99.)
652     if (Context.getLangOpts().CPlusPlus &&
653         Var->getType().isConstQualified() &&
654         !Var->getType().isVolatileQualified() &&
655         !Var->isInline() &&
656         !isExportedFromModuleInterfaceUnit(Var) &&
657         !isa<VarTemplateSpecializationDecl>(Var) &&
658         !Var->getDescribedVarTemplate()) {
659       const VarDecl *PrevVar = Var->getPreviousDecl();
660       if (PrevVar)
661         return getLVForDecl(PrevVar, computation);
662 
663       if (Var->getStorageClass() != SC_Extern &&
664           Var->getStorageClass() != SC_PrivateExtern &&
665           !isSingleLineLanguageLinkage(*Var))
666         return getInternalLinkageFor(Var);
667     }
668 
669     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670          PrevVar = PrevVar->getPreviousDecl()) {
671       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672           Var->getStorageClass() == SC_None)
673         return getDeclLinkageAndVisibility(PrevVar);
674       // Explicitly declared static.
675       if (PrevVar->getStorageClass() == SC_Static)
676         return getInternalLinkageFor(Var);
677     }
678   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679     //   - a data member of an anonymous union.
680     const VarDecl *VD = IFD->getVarDecl();
681     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
682     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683   }
684   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
685 
686   // FIXME: This gives internal linkage to names that should have no linkage
687   // (those not covered by [basic.link]p6).
688   if (D->isInAnonymousNamespace()) {
689     const auto *Var = dyn_cast<VarDecl>(D);
690     const auto *Func = dyn_cast<FunctionDecl>(D);
691     // FIXME: The check for extern "C" here is not justified by the standard
692     // wording, but we retain it from the pre-DR1113 model to avoid breaking
693     // code.
694     //
695     // C++11 [basic.link]p4:
696     //   An unnamed namespace or a namespace declared directly or indirectly
697     //   within an unnamed namespace has internal linkage.
698     if ((!Var || !isFirstInExternCContext(Var)) &&
699         (!Func || !isFirstInExternCContext(Func)))
700       return getInternalLinkageFor(D);
701   }
702 
703   // Set up the defaults.
704 
705   // C99 6.2.2p5:
706   //   If the declaration of an identifier for an object has file
707   //   scope and no storage-class specifier, its linkage is
708   //   external.
709   LinkageInfo LV = getExternalLinkageFor(D);
710 
711   if (!hasExplicitVisibilityAlready(computation)) {
712     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713       LV.mergeVisibility(*Vis, true);
714     } else {
715       // If we're declared in a namespace with a visibility attribute,
716       // use that namespace's visibility, and it still counts as explicit.
717       for (const DeclContext *DC = D->getDeclContext();
718            !isa<TranslationUnitDecl>(DC);
719            DC = DC->getParent()) {
720         const auto *ND = dyn_cast<NamespaceDecl>(DC);
721         if (!ND) continue;
722         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723           LV.mergeVisibility(*Vis, true);
724           break;
725         }
726       }
727     }
728 
729     // Add in global settings if the above didn't give us direct visibility.
730     if (!LV.isVisibilityExplicit()) {
731       // Use global type/value visibility as appropriate.
732       Visibility globalVisibility =
733           computation.isValueVisibility()
734               ? Context.getLangOpts().getValueVisibilityMode()
735               : Context.getLangOpts().getTypeVisibilityMode();
736       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737 
738       // If we're paying attention to global visibility, apply
739       // -finline-visibility-hidden if this is an inline method.
740       if (useInlineVisibilityHidden(D))
741         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742     }
743   }
744 
745   // C++ [basic.link]p4:
746 
747   //   A name having namespace scope that has not been given internal linkage
748   //   above and that is the name of
749   //   [...bullets...]
750   //   has its linkage determined as follows:
751   //     - if the enclosing namespace has internal linkage, the name has
752   //       internal linkage; [handled above]
753   //     - otherwise, if the declaration of the name is attached to a named
754   //       module and is not exported, the name has module linkage;
755   //     - otherwise, the name has external linkage.
756   // LV is currently set up to handle the last two bullets.
757   //
758   //   The bullets are:
759 
760   //     - a variable; or
761   if (const auto *Var = dyn_cast<VarDecl>(D)) {
762     // GCC applies the following optimization to variables and static
763     // data members, but not to functions:
764     //
765     // Modify the variable's LV by the LV of its type unless this is
766     // C or extern "C".  This follows from [basic.link]p9:
767     //   A type without linkage shall not be used as the type of a
768     //   variable or function with external linkage unless
769     //    - the entity has C language linkage, or
770     //    - the entity is declared within an unnamed namespace, or
771     //    - the entity is not used or is defined in the same
772     //      translation unit.
773     // and [basic.link]p10:
774     //   ...the types specified by all declarations referring to a
775     //   given variable or function shall be identical...
776     // C does not have an equivalent rule.
777     //
778     // Ignore this if we've got an explicit attribute;  the user
779     // probably knows what they're doing.
780     //
781     // Note that we don't want to make the variable non-external
782     // because of this, but unique-external linkage suits us.
783     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784         !IgnoreVarTypeLinkage) {
785       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786       if (!isExternallyVisible(TypeLV.getLinkage()))
787         return LinkageInfo::uniqueExternal();
788       if (!LV.isVisibilityExplicit())
789         LV.mergeVisibility(TypeLV);
790     }
791 
792     if (Var->getStorageClass() == SC_PrivateExtern)
793       LV.mergeVisibility(HiddenVisibility, true);
794 
795     // Note that Sema::MergeVarDecl already takes care of implementing
796     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797     // to do it here.
798 
799     // As per function and class template specializations (below),
800     // consider LV for the template and template arguments.  We're at file
801     // scope, so we do not need to worry about nested specializations.
802     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803       mergeTemplateLV(LV, spec, computation);
804     }
805 
806   //     - a function; or
807   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808     // In theory, we can modify the function's LV by the LV of its
809     // type unless it has C linkage (see comment above about variables
810     // for justification).  In practice, GCC doesn't do this, so it's
811     // just too painful to make work.
812 
813     if (Function->getStorageClass() == SC_PrivateExtern)
814       LV.mergeVisibility(HiddenVisibility, true);
815 
816     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817     // merging storage classes and visibility attributes, so we don't have to
818     // look at previous decls in here.
819 
820     // In C++, then if the type of the function uses a type with
821     // unique-external linkage, it's not legally usable from outside
822     // this translation unit.  However, we should use the C linkage
823     // rules instead for extern "C" declarations.
824     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825       // Only look at the type-as-written. Otherwise, deducing the return type
826       // of a function could change its linkage.
827       QualType TypeAsWritten = Function->getType();
828       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829         TypeAsWritten = TSI->getType();
830       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831         return LinkageInfo::uniqueExternal();
832     }
833 
834     // Consider LV from the template and the template arguments.
835     // We're at file scope, so we do not need to worry about nested
836     // specializations.
837     if (FunctionTemplateSpecializationInfo *specInfo
838                                = Function->getTemplateSpecializationInfo()) {
839       mergeTemplateLV(LV, Function, specInfo, computation);
840     }
841 
842   //     - a named class (Clause 9), or an unnamed class defined in a
843   //       typedef declaration in which the class has the typedef name
844   //       for linkage purposes (7.1.3); or
845   //     - a named enumeration (7.2), or an unnamed enumeration
846   //       defined in a typedef declaration in which the enumeration
847   //       has the typedef name for linkage purposes (7.1.3); or
848   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849     // Unnamed tags have no linkage.
850     if (!Tag->hasNameForLinkage())
851       return LinkageInfo::none();
852 
853     // If this is a class template specialization, consider the
854     // linkage of the template and template arguments.  We're at file
855     // scope, so we do not need to worry about nested specializations.
856     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857       mergeTemplateLV(LV, spec, computation);
858     }
859 
860   // FIXME: This is not part of the C++ standard any more.
861   //     - an enumerator belonging to an enumeration with external linkage; or
862   } else if (isa<EnumConstantDecl>(D)) {
863     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864                                       computation);
865     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866       return LinkageInfo::none();
867     LV.merge(EnumLV);
868 
869   //     - a template
870   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872     LinkageInfo tempLV =
873       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875 
876   //     An unnamed namespace or a namespace declared directly or indirectly
877   //     within an unnamed namespace has internal linkage. All other namespaces
878   //     have external linkage.
879   //
880   // We handled names in anonymous namespaces above.
881   } else if (isa<NamespaceDecl>(D)) {
882     return LV;
883 
884   // By extension, we assign external linkage to Objective-C
885   // interfaces.
886   } else if (isa<ObjCInterfaceDecl>(D)) {
887     // fallout
888 
889   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890     // A typedef declaration has linkage if it gives a type a name for
891     // linkage purposes.
892     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893       return LinkageInfo::none();
894 
895   } else if (isa<MSGuidDecl>(D)) {
896     // A GUID behaves like an inline variable with external linkage. Fall
897     // through.
898 
899   // Everything not covered here has no linkage.
900   } else {
901     return LinkageInfo::none();
902   }
903 
904   // If we ended up with non-externally-visible linkage, visibility should
905   // always be default.
906   if (!isExternallyVisible(LV.getLinkage()))
907     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
908 
909   // Mark the symbols as hidden when compiling for the device.
910   if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
911     LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
912 
913   return LV;
914 }
915 
916 LinkageInfo
917 LinkageComputer::getLVForClassMember(const NamedDecl *D,
918                                      LVComputationKind computation,
919                                      bool IgnoreVarTypeLinkage) {
920   // Only certain class members have linkage.  Note that fields don't
921   // really have linkage, but it's convenient to say they do for the
922   // purposes of calculating linkage of pointer-to-data-member
923   // template arguments.
924   //
925   // Templates also don't officially have linkage, but since we ignore
926   // the C++ standard and look at template arguments when determining
927   // linkage and visibility of a template specialization, we might hit
928   // a template template argument that way. If we do, we need to
929   // consider its linkage.
930   if (!(isa<CXXMethodDecl>(D) ||
931         isa<VarDecl>(D) ||
932         isa<FieldDecl>(D) ||
933         isa<IndirectFieldDecl>(D) ||
934         isa<TagDecl>(D) ||
935         isa<TemplateDecl>(D)))
936     return LinkageInfo::none();
937 
938   LinkageInfo LV;
939 
940   // If we have an explicit visibility attribute, merge that in.
941   if (!hasExplicitVisibilityAlready(computation)) {
942     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
943       LV.mergeVisibility(*Vis, true);
944     // If we're paying attention to global visibility, apply
945     // -finline-visibility-hidden if this is an inline method.
946     //
947     // Note that we do this before merging information about
948     // the class visibility.
949     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
950       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
951   }
952 
953   // If this class member has an explicit visibility attribute, the only
954   // thing that can change its visibility is the template arguments, so
955   // only look for them when processing the class.
956   LVComputationKind classComputation = computation;
957   if (LV.isVisibilityExplicit())
958     classComputation = withExplicitVisibilityAlready(computation);
959 
960   LinkageInfo classLV =
961     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
962   // The member has the same linkage as the class. If that's not externally
963   // visible, we don't need to compute anything about the linkage.
964   // FIXME: If we're only computing linkage, can we bail out here?
965   if (!isExternallyVisible(classLV.getLinkage()))
966     return classLV;
967 
968 
969   // Otherwise, don't merge in classLV yet, because in certain cases
970   // we need to completely ignore the visibility from it.
971 
972   // Specifically, if this decl exists and has an explicit attribute.
973   const NamedDecl *explicitSpecSuppressor = nullptr;
974 
975   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
976     // Only look at the type-as-written. Otherwise, deducing the return type
977     // of a function could change its linkage.
978     QualType TypeAsWritten = MD->getType();
979     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
980       TypeAsWritten = TSI->getType();
981     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
982       return LinkageInfo::uniqueExternal();
983 
984     // If this is a method template specialization, use the linkage for
985     // the template parameters and arguments.
986     if (FunctionTemplateSpecializationInfo *spec
987            = MD->getTemplateSpecializationInfo()) {
988       mergeTemplateLV(LV, MD, spec, computation);
989       if (spec->isExplicitSpecialization()) {
990         explicitSpecSuppressor = MD;
991       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
992         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
993       }
994     } else if (isExplicitMemberSpecialization(MD)) {
995       explicitSpecSuppressor = MD;
996     }
997 
998   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
999     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1000       mergeTemplateLV(LV, spec, computation);
1001       if (spec->isExplicitSpecialization()) {
1002         explicitSpecSuppressor = spec;
1003       } else {
1004         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1005         if (isExplicitMemberSpecialization(temp)) {
1006           explicitSpecSuppressor = temp->getTemplatedDecl();
1007         }
1008       }
1009     } else if (isExplicitMemberSpecialization(RD)) {
1010       explicitSpecSuppressor = RD;
1011     }
1012 
1013   // Static data members.
1014   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1015     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1016       mergeTemplateLV(LV, spec, computation);
1017 
1018     // Modify the variable's linkage by its type, but ignore the
1019     // type's visibility unless it's a definition.
1020     if (!IgnoreVarTypeLinkage) {
1021       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1022       // FIXME: If the type's linkage is not externally visible, we can
1023       // give this static data member UniqueExternalLinkage.
1024       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1025         LV.mergeVisibility(typeLV);
1026       LV.mergeExternalVisibility(typeLV);
1027     }
1028 
1029     if (isExplicitMemberSpecialization(VD)) {
1030       explicitSpecSuppressor = VD;
1031     }
1032 
1033   // Template members.
1034   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1035     bool considerVisibility =
1036       (!LV.isVisibilityExplicit() &&
1037        !classLV.isVisibilityExplicit() &&
1038        !hasExplicitVisibilityAlready(computation));
1039     LinkageInfo tempLV =
1040       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1041     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1042 
1043     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1044       if (isExplicitMemberSpecialization(redeclTemp)) {
1045         explicitSpecSuppressor = temp->getTemplatedDecl();
1046       }
1047     }
1048   }
1049 
1050   // We should never be looking for an attribute directly on a template.
1051   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1052 
1053   // If this member is an explicit member specialization, and it has
1054   // an explicit attribute, ignore visibility from the parent.
1055   bool considerClassVisibility = true;
1056   if (explicitSpecSuppressor &&
1057       // optimization: hasDVA() is true only with explicit visibility.
1058       LV.isVisibilityExplicit() &&
1059       classLV.getVisibility() != DefaultVisibility &&
1060       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1061     considerClassVisibility = false;
1062   }
1063 
1064   // Finally, merge in information from the class.
1065   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1066   return LV;
1067 }
1068 
1069 void NamedDecl::anchor() {}
1070 
1071 bool NamedDecl::isLinkageValid() const {
1072   if (!hasCachedLinkage())
1073     return true;
1074 
1075   Linkage L = LinkageComputer{}
1076                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1077                   .getLinkage();
1078   return L == getCachedLinkage();
1079 }
1080 
1081 ReservedIdentifierStatus
1082 NamedDecl::isReserved(const LangOptions &LangOpts) const {
1083   const IdentifierInfo *II = getIdentifier();
1084 
1085   // This triggers at least for CXXLiteralIdentifiers, which we already checked
1086   // at lexing time.
1087   if (!II)
1088     return ReservedIdentifierStatus::NotReserved;
1089 
1090   ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1091   if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1092     // This name is only reserved at global scope. Check if this declaration
1093     // conflicts with a global scope declaration.
1094     if (isa<ParmVarDecl>(this) || isTemplateParameter())
1095       return ReservedIdentifierStatus::NotReserved;
1096 
1097     // C++ [dcl.link]/7:
1098     //   Two declarations [conflict] if [...] one declares a function or
1099     //   variable with C language linkage, and the other declares [...] a
1100     //   variable that belongs to the global scope.
1101     //
1102     // Therefore names that are reserved at global scope are also reserved as
1103     // names of variables and functions with C language linkage.
1104     const DeclContext *DC = getDeclContext()->getRedeclContext();
1105     if (DC->isTranslationUnit())
1106       return Status;
1107     if (auto *VD = dyn_cast<VarDecl>(this))
1108       if (VD->isExternC())
1109         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1110     if (auto *FD = dyn_cast<FunctionDecl>(this))
1111       if (FD->isExternC())
1112         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1113     return ReservedIdentifierStatus::NotReserved;
1114   }
1115 
1116   return Status;
1117 }
1118 
1119 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1120   StringRef name = getName();
1121   if (name.empty()) return SFF_None;
1122 
1123   if (name.front() == 'C')
1124     if (name == "CFStringCreateWithFormat" ||
1125         name == "CFStringCreateWithFormatAndArguments" ||
1126         name == "CFStringAppendFormat" ||
1127         name == "CFStringAppendFormatAndArguments")
1128       return SFF_CFString;
1129   return SFF_None;
1130 }
1131 
1132 Linkage NamedDecl::getLinkageInternal() const {
1133   // We don't care about visibility here, so ask for the cheapest
1134   // possible visibility analysis.
1135   return LinkageComputer{}
1136       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1137       .getLinkage();
1138 }
1139 
1140 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1141   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1142 }
1143 
1144 static Optional<Visibility>
1145 getExplicitVisibilityAux(const NamedDecl *ND,
1146                          NamedDecl::ExplicitVisibilityKind kind,
1147                          bool IsMostRecent) {
1148   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1149 
1150   // Check the declaration itself first.
1151   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1152     return V;
1153 
1154   // If this is a member class of a specialization of a class template
1155   // and the corresponding decl has explicit visibility, use that.
1156   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1157     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1158     if (InstantiatedFrom)
1159       return getVisibilityOf(InstantiatedFrom, kind);
1160   }
1161 
1162   // If there wasn't explicit visibility there, and this is a
1163   // specialization of a class template, check for visibility
1164   // on the pattern.
1165   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1166     // Walk all the template decl till this point to see if there are
1167     // explicit visibility attributes.
1168     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1169     while (TD != nullptr) {
1170       auto Vis = getVisibilityOf(TD, kind);
1171       if (Vis != None)
1172         return Vis;
1173       TD = TD->getPreviousDecl();
1174     }
1175     return None;
1176   }
1177 
1178   // Use the most recent declaration.
1179   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1180     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1181     if (MostRecent != ND)
1182       return getExplicitVisibilityAux(MostRecent, kind, true);
1183   }
1184 
1185   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1186     if (Var->isStaticDataMember()) {
1187       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1188       if (InstantiatedFrom)
1189         return getVisibilityOf(InstantiatedFrom, kind);
1190     }
1191 
1192     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1193       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1194                              kind);
1195 
1196     return None;
1197   }
1198   // Also handle function template specializations.
1199   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1200     // If the function is a specialization of a template with an
1201     // explicit visibility attribute, use that.
1202     if (FunctionTemplateSpecializationInfo *templateInfo
1203           = fn->getTemplateSpecializationInfo())
1204       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1205                              kind);
1206 
1207     // If the function is a member of a specialization of a class template
1208     // and the corresponding decl has explicit visibility, use that.
1209     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1210     if (InstantiatedFrom)
1211       return getVisibilityOf(InstantiatedFrom, kind);
1212 
1213     return None;
1214   }
1215 
1216   // The visibility of a template is stored in the templated decl.
1217   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1218     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1219 
1220   return None;
1221 }
1222 
1223 Optional<Visibility>
1224 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1225   return getExplicitVisibilityAux(this, kind, false);
1226 }
1227 
1228 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1229                                              Decl *ContextDecl,
1230                                              LVComputationKind computation) {
1231   // This lambda has its linkage/visibility determined by its owner.
1232   const NamedDecl *Owner;
1233   if (!ContextDecl)
1234     Owner = dyn_cast<NamedDecl>(DC);
1235   else if (isa<ParmVarDecl>(ContextDecl))
1236     Owner =
1237         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1238   else
1239     Owner = cast<NamedDecl>(ContextDecl);
1240 
1241   if (!Owner)
1242     return LinkageInfo::none();
1243 
1244   // If the owner has a deduced type, we need to skip querying the linkage and
1245   // visibility of that type, because it might involve this closure type.  The
1246   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1247   // than NoLinkage when we don't strictly need to, which is benign.
1248   auto *VD = dyn_cast<VarDecl>(Owner);
1249   LinkageInfo OwnerLV =
1250       VD && VD->getType()->getContainedDeducedType()
1251           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1252           : getLVForDecl(Owner, computation);
1253 
1254   // A lambda never formally has linkage. But if the owner is externally
1255   // visible, then the lambda is too. We apply the same rules to blocks.
1256   if (!isExternallyVisible(OwnerLV.getLinkage()))
1257     return LinkageInfo::none();
1258   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1259                      OwnerLV.isVisibilityExplicit());
1260 }
1261 
1262 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1263                                                LVComputationKind computation) {
1264   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1265     if (Function->isInAnonymousNamespace() &&
1266         !isFirstInExternCContext(Function))
1267       return getInternalLinkageFor(Function);
1268 
1269     // This is a "void f();" which got merged with a file static.
1270     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1271       return getInternalLinkageFor(Function);
1272 
1273     LinkageInfo LV;
1274     if (!hasExplicitVisibilityAlready(computation)) {
1275       if (Optional<Visibility> Vis =
1276               getExplicitVisibility(Function, computation))
1277         LV.mergeVisibility(*Vis, true);
1278     }
1279 
1280     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1281     // merging storage classes and visibility attributes, so we don't have to
1282     // look at previous decls in here.
1283 
1284     return LV;
1285   }
1286 
1287   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1288     if (Var->hasExternalStorage()) {
1289       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1290         return getInternalLinkageFor(Var);
1291 
1292       LinkageInfo LV;
1293       if (Var->getStorageClass() == SC_PrivateExtern)
1294         LV.mergeVisibility(HiddenVisibility, true);
1295       else if (!hasExplicitVisibilityAlready(computation)) {
1296         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1297           LV.mergeVisibility(*Vis, true);
1298       }
1299 
1300       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1301         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1302         if (PrevLV.getLinkage())
1303           LV.setLinkage(PrevLV.getLinkage());
1304         LV.mergeVisibility(PrevLV);
1305       }
1306 
1307       return LV;
1308     }
1309 
1310     if (!Var->isStaticLocal())
1311       return LinkageInfo::none();
1312   }
1313 
1314   ASTContext &Context = D->getASTContext();
1315   if (!Context.getLangOpts().CPlusPlus)
1316     return LinkageInfo::none();
1317 
1318   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1319   if (!OuterD || OuterD->isInvalidDecl())
1320     return LinkageInfo::none();
1321 
1322   LinkageInfo LV;
1323   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1324     if (!BD->getBlockManglingNumber())
1325       return LinkageInfo::none();
1326 
1327     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1328                          BD->getBlockManglingContextDecl(), computation);
1329   } else {
1330     const auto *FD = cast<FunctionDecl>(OuterD);
1331     if (!FD->isInlined() &&
1332         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1333       return LinkageInfo::none();
1334 
1335     // If a function is hidden by -fvisibility-inlines-hidden option and
1336     // is not explicitly attributed as a hidden function,
1337     // we should not make static local variables in the function hidden.
1338     LV = getLVForDecl(FD, computation);
1339     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1340         !LV.isVisibilityExplicit() &&
1341         !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1342       assert(cast<VarDecl>(D)->isStaticLocal());
1343       // If this was an implicitly hidden inline method, check again for
1344       // explicit visibility on the parent class, and use that for static locals
1345       // if present.
1346       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1347         LV = getLVForDecl(MD->getParent(), computation);
1348       if (!LV.isVisibilityExplicit()) {
1349         Visibility globalVisibility =
1350             computation.isValueVisibility()
1351                 ? Context.getLangOpts().getValueVisibilityMode()
1352                 : Context.getLangOpts().getTypeVisibilityMode();
1353         return LinkageInfo(VisibleNoLinkage, globalVisibility,
1354                            /*visibilityExplicit=*/false);
1355       }
1356     }
1357   }
1358   if (!isExternallyVisible(LV.getLinkage()))
1359     return LinkageInfo::none();
1360   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1361                      LV.isVisibilityExplicit());
1362 }
1363 
1364 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1365                                               LVComputationKind computation,
1366                                               bool IgnoreVarTypeLinkage) {
1367   // Internal_linkage attribute overrides other considerations.
1368   if (D->hasAttr<InternalLinkageAttr>())
1369     return getInternalLinkageFor(D);
1370 
1371   // Objective-C: treat all Objective-C declarations as having external
1372   // linkage.
1373   switch (D->getKind()) {
1374     default:
1375       break;
1376 
1377     // Per C++ [basic.link]p2, only the names of objects, references,
1378     // functions, types, templates, namespaces, and values ever have linkage.
1379     //
1380     // Note that the name of a typedef, namespace alias, using declaration,
1381     // and so on are not the name of the corresponding type, namespace, or
1382     // declaration, so they do *not* have linkage.
1383     case Decl::ImplicitParam:
1384     case Decl::Label:
1385     case Decl::NamespaceAlias:
1386     case Decl::ParmVar:
1387     case Decl::Using:
1388     case Decl::UsingEnum:
1389     case Decl::UsingShadow:
1390     case Decl::UsingDirective:
1391       return LinkageInfo::none();
1392 
1393     case Decl::EnumConstant:
1394       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1395       if (D->getASTContext().getLangOpts().CPlusPlus)
1396         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1397       return LinkageInfo::visible_none();
1398 
1399     case Decl::Typedef:
1400     case Decl::TypeAlias:
1401       // A typedef declaration has linkage if it gives a type a name for
1402       // linkage purposes.
1403       if (!cast<TypedefNameDecl>(D)
1404                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1405         return LinkageInfo::none();
1406       break;
1407 
1408     case Decl::TemplateTemplateParm: // count these as external
1409     case Decl::NonTypeTemplateParm:
1410     case Decl::ObjCAtDefsField:
1411     case Decl::ObjCCategory:
1412     case Decl::ObjCCategoryImpl:
1413     case Decl::ObjCCompatibleAlias:
1414     case Decl::ObjCImplementation:
1415     case Decl::ObjCMethod:
1416     case Decl::ObjCProperty:
1417     case Decl::ObjCPropertyImpl:
1418     case Decl::ObjCProtocol:
1419       return getExternalLinkageFor(D);
1420 
1421     case Decl::CXXRecord: {
1422       const auto *Record = cast<CXXRecordDecl>(D);
1423       if (Record->isLambda()) {
1424         if (Record->hasKnownLambdaInternalLinkage() ||
1425             !Record->getLambdaManglingNumber()) {
1426           // This lambda has no mangling number, so it's internal.
1427           return getInternalLinkageFor(D);
1428         }
1429 
1430         return getLVForClosure(
1431                   Record->getDeclContext()->getRedeclContext(),
1432                   Record->getLambdaContextDecl(), computation);
1433       }
1434 
1435       break;
1436     }
1437 
1438     case Decl::TemplateParamObject: {
1439       // The template parameter object can be referenced from anywhere its type
1440       // and value can be referenced.
1441       auto *TPO = cast<TemplateParamObjectDecl>(D);
1442       LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1443       LV.merge(getLVForValue(TPO->getValue(), computation));
1444       return LV;
1445     }
1446   }
1447 
1448   // Handle linkage for namespace-scope names.
1449   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1450     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1451 
1452   // C++ [basic.link]p5:
1453   //   In addition, a member function, static data member, a named
1454   //   class or enumeration of class scope, or an unnamed class or
1455   //   enumeration defined in a class-scope typedef declaration such
1456   //   that the class or enumeration has the typedef name for linkage
1457   //   purposes (7.1.3), has external linkage if the name of the class
1458   //   has external linkage.
1459   if (D->getDeclContext()->isRecord())
1460     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1461 
1462   // C++ [basic.link]p6:
1463   //   The name of a function declared in block scope and the name of
1464   //   an object declared by a block scope extern declaration have
1465   //   linkage. If there is a visible declaration of an entity with
1466   //   linkage having the same name and type, ignoring entities
1467   //   declared outside the innermost enclosing namespace scope, the
1468   //   block scope declaration declares that same entity and receives
1469   //   the linkage of the previous declaration. If there is more than
1470   //   one such matching entity, the program is ill-formed. Otherwise,
1471   //   if no matching entity is found, the block scope entity receives
1472   //   external linkage.
1473   if (D->getDeclContext()->isFunctionOrMethod())
1474     return getLVForLocalDecl(D, computation);
1475 
1476   // C++ [basic.link]p6:
1477   //   Names not covered by these rules have no linkage.
1478   return LinkageInfo::none();
1479 }
1480 
1481 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1482 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1483                                           LVComputationKind computation) {
1484   // Internal_linkage attribute overrides other considerations.
1485   if (D->hasAttr<InternalLinkageAttr>())
1486     return getInternalLinkageFor(D);
1487 
1488   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1489     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1490 
1491   if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1492     return *LI;
1493 
1494   LinkageInfo LV = computeLVForDecl(D, computation);
1495   if (D->hasCachedLinkage())
1496     assert(D->getCachedLinkage() == LV.getLinkage());
1497 
1498   D->setCachedLinkage(LV.getLinkage());
1499   cache(D, computation, LV);
1500 
1501 #ifndef NDEBUG
1502   // In C (because of gnu inline) and in c++ with microsoft extensions an
1503   // static can follow an extern, so we can have two decls with different
1504   // linkages.
1505   const LangOptions &Opts = D->getASTContext().getLangOpts();
1506   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1507     return LV;
1508 
1509   // We have just computed the linkage for this decl. By induction we know
1510   // that all other computed linkages match, check that the one we just
1511   // computed also does.
1512   NamedDecl *Old = nullptr;
1513   for (auto I : D->redecls()) {
1514     auto *T = cast<NamedDecl>(I);
1515     if (T == D)
1516       continue;
1517     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1518       Old = T;
1519       break;
1520     }
1521   }
1522   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1523 #endif
1524 
1525   return LV;
1526 }
1527 
1528 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1529   NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1530                                              ? NamedDecl::VisibilityForType
1531                                              : NamedDecl::VisibilityForValue;
1532   LVComputationKind CK(EK);
1533   return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1534                              ? CK.forLinkageOnly()
1535                              : CK);
1536 }
1537 
1538 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1539   Module *M = getOwningModule();
1540   if (!M)
1541     return nullptr;
1542 
1543   switch (M->Kind) {
1544   case Module::ModuleMapModule:
1545     // Module map modules have no special linkage semantics.
1546     return nullptr;
1547 
1548   case Module::ModuleInterfaceUnit:
1549     return M;
1550 
1551   case Module::GlobalModuleFragment: {
1552     // External linkage declarations in the global module have no owning module
1553     // for linkage purposes. But internal linkage declarations in the global
1554     // module fragment of a particular module are owned by that module for
1555     // linkage purposes.
1556     if (IgnoreLinkage)
1557       return nullptr;
1558     bool InternalLinkage;
1559     if (auto *ND = dyn_cast<NamedDecl>(this))
1560       InternalLinkage = !ND->hasExternalFormalLinkage();
1561     else {
1562       auto *NSD = dyn_cast<NamespaceDecl>(this);
1563       InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1564                         isInAnonymousNamespace();
1565     }
1566     return InternalLinkage ? M->Parent : nullptr;
1567   }
1568 
1569   case Module::PrivateModuleFragment:
1570     // The private module fragment is part of its containing module for linkage
1571     // purposes.
1572     return M->Parent;
1573   }
1574 
1575   llvm_unreachable("unknown module kind");
1576 }
1577 
1578 void NamedDecl::printName(raw_ostream &os) const {
1579   os << Name;
1580 }
1581 
1582 std::string NamedDecl::getQualifiedNameAsString() const {
1583   std::string QualName;
1584   llvm::raw_string_ostream OS(QualName);
1585   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1586   return OS.str();
1587 }
1588 
1589 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1590   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1591 }
1592 
1593 void NamedDecl::printQualifiedName(raw_ostream &OS,
1594                                    const PrintingPolicy &P) const {
1595   if (getDeclContext()->isFunctionOrMethod()) {
1596     // We do not print '(anonymous)' for function parameters without name.
1597     printName(OS);
1598     return;
1599   }
1600   printNestedNameSpecifier(OS, P);
1601   if (getDeclName())
1602     OS << *this;
1603   else {
1604     // Give the printName override a chance to pick a different name before we
1605     // fall back to "(anonymous)".
1606     SmallString<64> NameBuffer;
1607     llvm::raw_svector_ostream NameOS(NameBuffer);
1608     printName(NameOS);
1609     if (NameBuffer.empty())
1610       OS << "(anonymous)";
1611     else
1612       OS << NameBuffer;
1613   }
1614 }
1615 
1616 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1617   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1618 }
1619 
1620 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1621                                          const PrintingPolicy &P) const {
1622   const DeclContext *Ctx = getDeclContext();
1623 
1624   // For ObjC methods and properties, look through categories and use the
1625   // interface as context.
1626   if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1627     if (auto *ID = MD->getClassInterface())
1628       Ctx = ID;
1629   } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1630     if (auto *MD = PD->getGetterMethodDecl())
1631       if (auto *ID = MD->getClassInterface())
1632         Ctx = ID;
1633   } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1634     if (auto *CI = ID->getContainingInterface())
1635       Ctx = CI;
1636   }
1637 
1638   if (Ctx->isFunctionOrMethod())
1639     return;
1640 
1641   using ContextsTy = SmallVector<const DeclContext *, 8>;
1642   ContextsTy Contexts;
1643 
1644   // Collect named contexts.
1645   DeclarationName NameInScope = getDeclName();
1646   for (; Ctx; Ctx = Ctx->getParent()) {
1647     // Suppress anonymous namespace if requested.
1648     if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1649         cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1650       continue;
1651 
1652     // Suppress inline namespace if it doesn't make the result ambiguous.
1653     if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1654         cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1655       continue;
1656 
1657     // Skip non-named contexts such as linkage specifications and ExportDecls.
1658     const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1659     if (!ND)
1660       continue;
1661 
1662     Contexts.push_back(Ctx);
1663     NameInScope = ND->getDeclName();
1664   }
1665 
1666   for (const DeclContext *DC : llvm::reverse(Contexts)) {
1667     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1668       OS << Spec->getName();
1669       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1670       printTemplateArgumentList(
1671           OS, TemplateArgs.asArray(), P,
1672           Spec->getSpecializedTemplate()->getTemplateParameters());
1673     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1674       if (ND->isAnonymousNamespace()) {
1675         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1676                                 : "(anonymous namespace)");
1677       }
1678       else
1679         OS << *ND;
1680     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1681       if (!RD->getIdentifier())
1682         OS << "(anonymous " << RD->getKindName() << ')';
1683       else
1684         OS << *RD;
1685     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1686       const FunctionProtoType *FT = nullptr;
1687       if (FD->hasWrittenPrototype())
1688         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1689 
1690       OS << *FD << '(';
1691       if (FT) {
1692         unsigned NumParams = FD->getNumParams();
1693         for (unsigned i = 0; i < NumParams; ++i) {
1694           if (i)
1695             OS << ", ";
1696           OS << FD->getParamDecl(i)->getType().stream(P);
1697         }
1698 
1699         if (FT->isVariadic()) {
1700           if (NumParams > 0)
1701             OS << ", ";
1702           OS << "...";
1703         }
1704       }
1705       OS << ')';
1706     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1707       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1708       // enumerator is declared in the scope that immediately contains
1709       // the enum-specifier. Each scoped enumerator is declared in the
1710       // scope of the enumeration.
1711       // For the case of unscoped enumerator, do not include in the qualified
1712       // name any information about its enum enclosing scope, as its visibility
1713       // is global.
1714       if (ED->isScoped())
1715         OS << *ED;
1716       else
1717         continue;
1718     } else {
1719       OS << *cast<NamedDecl>(DC);
1720     }
1721     OS << "::";
1722   }
1723 }
1724 
1725 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1726                                      const PrintingPolicy &Policy,
1727                                      bool Qualified) const {
1728   if (Qualified)
1729     printQualifiedName(OS, Policy);
1730   else
1731     printName(OS);
1732 }
1733 
1734 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1735   return true;
1736 }
1737 static bool isRedeclarableImpl(...) { return false; }
1738 static bool isRedeclarable(Decl::Kind K) {
1739   switch (K) {
1740 #define DECL(Type, Base) \
1741   case Decl::Type: \
1742     return isRedeclarableImpl((Type##Decl *)nullptr);
1743 #define ABSTRACT_DECL(DECL)
1744 #include "clang/AST/DeclNodes.inc"
1745   }
1746   llvm_unreachable("unknown decl kind");
1747 }
1748 
1749 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1750   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1751 
1752   // Never replace one imported declaration with another; we need both results
1753   // when re-exporting.
1754   if (OldD->isFromASTFile() && isFromASTFile())
1755     return false;
1756 
1757   // A kind mismatch implies that the declaration is not replaced.
1758   if (OldD->getKind() != getKind())
1759     return false;
1760 
1761   // For method declarations, we never replace. (Why?)
1762   if (isa<ObjCMethodDecl>(this))
1763     return false;
1764 
1765   // For parameters, pick the newer one. This is either an error or (in
1766   // Objective-C) permitted as an extension.
1767   if (isa<ParmVarDecl>(this))
1768     return true;
1769 
1770   // Inline namespaces can give us two declarations with the same
1771   // name and kind in the same scope but different contexts; we should
1772   // keep both declarations in this case.
1773   if (!this->getDeclContext()->getRedeclContext()->Equals(
1774           OldD->getDeclContext()->getRedeclContext()))
1775     return false;
1776 
1777   // Using declarations can be replaced if they import the same name from the
1778   // same context.
1779   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1780     ASTContext &Context = getASTContext();
1781     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1782            Context.getCanonicalNestedNameSpecifier(
1783                cast<UsingDecl>(OldD)->getQualifier());
1784   }
1785   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1786     ASTContext &Context = getASTContext();
1787     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1788            Context.getCanonicalNestedNameSpecifier(
1789                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1790   }
1791 
1792   if (isRedeclarable(getKind())) {
1793     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1794       return false;
1795 
1796     if (IsKnownNewer)
1797       return true;
1798 
1799     // Check whether this is actually newer than OldD. We want to keep the
1800     // newer declaration. This loop will usually only iterate once, because
1801     // OldD is usually the previous declaration.
1802     for (auto D : redecls()) {
1803       if (D == OldD)
1804         break;
1805 
1806       // If we reach the canonical declaration, then OldD is not actually older
1807       // than this one.
1808       //
1809       // FIXME: In this case, we should not add this decl to the lookup table.
1810       if (D->isCanonicalDecl())
1811         return false;
1812     }
1813 
1814     // It's a newer declaration of the same kind of declaration in the same
1815     // scope: we want this decl instead of the existing one.
1816     return true;
1817   }
1818 
1819   // In all other cases, we need to keep both declarations in case they have
1820   // different visibility. Any attempt to use the name will result in an
1821   // ambiguity if more than one is visible.
1822   return false;
1823 }
1824 
1825 bool NamedDecl::hasLinkage() const {
1826   return getFormalLinkage() != NoLinkage;
1827 }
1828 
1829 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1830   NamedDecl *ND = this;
1831   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1832     ND = UD->getTargetDecl();
1833 
1834   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1835     return AD->getClassInterface();
1836 
1837   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1838     return AD->getNamespace();
1839 
1840   return ND;
1841 }
1842 
1843 bool NamedDecl::isCXXInstanceMember() const {
1844   if (!isCXXClassMember())
1845     return false;
1846 
1847   const NamedDecl *D = this;
1848   if (isa<UsingShadowDecl>(D))
1849     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1850 
1851   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1852     return true;
1853   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1854     return MD->isInstance();
1855   return false;
1856 }
1857 
1858 //===----------------------------------------------------------------------===//
1859 // DeclaratorDecl Implementation
1860 //===----------------------------------------------------------------------===//
1861 
1862 template <typename DeclT>
1863 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1864   if (decl->getNumTemplateParameterLists() > 0)
1865     return decl->getTemplateParameterList(0)->getTemplateLoc();
1866   return decl->getInnerLocStart();
1867 }
1868 
1869 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1870   TypeSourceInfo *TSI = getTypeSourceInfo();
1871   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1872   return SourceLocation();
1873 }
1874 
1875 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1876   TypeSourceInfo *TSI = getTypeSourceInfo();
1877   if (TSI) return TSI->getTypeLoc().getEndLoc();
1878   return SourceLocation();
1879 }
1880 
1881 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1882   if (QualifierLoc) {
1883     // Make sure the extended decl info is allocated.
1884     if (!hasExtInfo()) {
1885       // Save (non-extended) type source info pointer.
1886       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1887       // Allocate external info struct.
1888       DeclInfo = new (getASTContext()) ExtInfo;
1889       // Restore savedTInfo into (extended) decl info.
1890       getExtInfo()->TInfo = savedTInfo;
1891     }
1892     // Set qualifier info.
1893     getExtInfo()->QualifierLoc = QualifierLoc;
1894   } else if (hasExtInfo()) {
1895     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1896     getExtInfo()->QualifierLoc = QualifierLoc;
1897   }
1898 }
1899 
1900 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1901   assert(TrailingRequiresClause);
1902   // Make sure the extended decl info is allocated.
1903   if (!hasExtInfo()) {
1904     // Save (non-extended) type source info pointer.
1905     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1906     // Allocate external info struct.
1907     DeclInfo = new (getASTContext()) ExtInfo;
1908     // Restore savedTInfo into (extended) decl info.
1909     getExtInfo()->TInfo = savedTInfo;
1910   }
1911   // Set requires clause info.
1912   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1913 }
1914 
1915 void DeclaratorDecl::setTemplateParameterListsInfo(
1916     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1917   assert(!TPLists.empty());
1918   // Make sure the extended decl info is allocated.
1919   if (!hasExtInfo()) {
1920     // Save (non-extended) type source info pointer.
1921     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1922     // Allocate external info struct.
1923     DeclInfo = new (getASTContext()) ExtInfo;
1924     // Restore savedTInfo into (extended) decl info.
1925     getExtInfo()->TInfo = savedTInfo;
1926   }
1927   // Set the template parameter lists info.
1928   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1929 }
1930 
1931 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1932   return getTemplateOrInnerLocStart(this);
1933 }
1934 
1935 // Helper function: returns true if QT is or contains a type
1936 // having a postfix component.
1937 static bool typeIsPostfix(QualType QT) {
1938   while (true) {
1939     const Type* T = QT.getTypePtr();
1940     switch (T->getTypeClass()) {
1941     default:
1942       return false;
1943     case Type::Pointer:
1944       QT = cast<PointerType>(T)->getPointeeType();
1945       break;
1946     case Type::BlockPointer:
1947       QT = cast<BlockPointerType>(T)->getPointeeType();
1948       break;
1949     case Type::MemberPointer:
1950       QT = cast<MemberPointerType>(T)->getPointeeType();
1951       break;
1952     case Type::LValueReference:
1953     case Type::RValueReference:
1954       QT = cast<ReferenceType>(T)->getPointeeType();
1955       break;
1956     case Type::PackExpansion:
1957       QT = cast<PackExpansionType>(T)->getPattern();
1958       break;
1959     case Type::Paren:
1960     case Type::ConstantArray:
1961     case Type::DependentSizedArray:
1962     case Type::IncompleteArray:
1963     case Type::VariableArray:
1964     case Type::FunctionProto:
1965     case Type::FunctionNoProto:
1966       return true;
1967     }
1968   }
1969 }
1970 
1971 SourceRange DeclaratorDecl::getSourceRange() const {
1972   SourceLocation RangeEnd = getLocation();
1973   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1974     // If the declaration has no name or the type extends past the name take the
1975     // end location of the type.
1976     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1977       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1978   }
1979   return SourceRange(getOuterLocStart(), RangeEnd);
1980 }
1981 
1982 void QualifierInfo::setTemplateParameterListsInfo(
1983     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1984   // Free previous template parameters (if any).
1985   if (NumTemplParamLists > 0) {
1986     Context.Deallocate(TemplParamLists);
1987     TemplParamLists = nullptr;
1988     NumTemplParamLists = 0;
1989   }
1990   // Set info on matched template parameter lists (if any).
1991   if (!TPLists.empty()) {
1992     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1993     NumTemplParamLists = TPLists.size();
1994     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1995   }
1996 }
1997 
1998 //===----------------------------------------------------------------------===//
1999 // VarDecl Implementation
2000 //===----------------------------------------------------------------------===//
2001 
2002 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2003   switch (SC) {
2004   case SC_None:                 break;
2005   case SC_Auto:                 return "auto";
2006   case SC_Extern:               return "extern";
2007   case SC_PrivateExtern:        return "__private_extern__";
2008   case SC_Register:             return "register";
2009   case SC_Static:               return "static";
2010   }
2011 
2012   llvm_unreachable("Invalid storage class");
2013 }
2014 
2015 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2016                  SourceLocation StartLoc, SourceLocation IdLoc,
2017                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2018                  StorageClass SC)
2019     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2020       redeclarable_base(C) {
2021   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2022                 "VarDeclBitfields too large!");
2023   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2024                 "ParmVarDeclBitfields too large!");
2025   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2026                 "NonParmVarDeclBitfields too large!");
2027   AllBits = 0;
2028   VarDeclBits.SClass = SC;
2029   // Everything else is implicitly initialized to false.
2030 }
2031 
2032 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
2033                          SourceLocation StartL, SourceLocation IdL,
2034                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2035                          StorageClass S) {
2036   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2037 }
2038 
2039 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2040   return new (C, ID)
2041       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2042               QualType(), nullptr, SC_None);
2043 }
2044 
2045 void VarDecl::setStorageClass(StorageClass SC) {
2046   assert(isLegalForVariable(SC));
2047   VarDeclBits.SClass = SC;
2048 }
2049 
2050 VarDecl::TLSKind VarDecl::getTLSKind() const {
2051   switch (VarDeclBits.TSCSpec) {
2052   case TSCS_unspecified:
2053     if (!hasAttr<ThreadAttr>() &&
2054         !(getASTContext().getLangOpts().OpenMPUseTLS &&
2055           getASTContext().getTargetInfo().isTLSSupported() &&
2056           hasAttr<OMPThreadPrivateDeclAttr>()))
2057       return TLS_None;
2058     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2059                 LangOptions::MSVC2015)) ||
2060             hasAttr<OMPThreadPrivateDeclAttr>())
2061                ? TLS_Dynamic
2062                : TLS_Static;
2063   case TSCS___thread: // Fall through.
2064   case TSCS__Thread_local:
2065     return TLS_Static;
2066   case TSCS_thread_local:
2067     return TLS_Dynamic;
2068   }
2069   llvm_unreachable("Unknown thread storage class specifier!");
2070 }
2071 
2072 SourceRange VarDecl::getSourceRange() const {
2073   if (const Expr *Init = getInit()) {
2074     SourceLocation InitEnd = Init->getEndLoc();
2075     // If Init is implicit, ignore its source range and fallback on
2076     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2077     if (InitEnd.isValid() && InitEnd != getLocation())
2078       return SourceRange(getOuterLocStart(), InitEnd);
2079   }
2080   return DeclaratorDecl::getSourceRange();
2081 }
2082 
2083 template<typename T>
2084 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2085   // C++ [dcl.link]p1: All function types, function names with external linkage,
2086   // and variable names with external linkage have a language linkage.
2087   if (!D.hasExternalFormalLinkage())
2088     return NoLanguageLinkage;
2089 
2090   // Language linkage is a C++ concept, but saying that everything else in C has
2091   // C language linkage fits the implementation nicely.
2092   ASTContext &Context = D.getASTContext();
2093   if (!Context.getLangOpts().CPlusPlus)
2094     return CLanguageLinkage;
2095 
2096   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2097   // language linkage of the names of class members and the function type of
2098   // class member functions.
2099   const DeclContext *DC = D.getDeclContext();
2100   if (DC->isRecord())
2101     return CXXLanguageLinkage;
2102 
2103   // If the first decl is in an extern "C" context, any other redeclaration
2104   // will have C language linkage. If the first one is not in an extern "C"
2105   // context, we would have reported an error for any other decl being in one.
2106   if (isFirstInExternCContext(&D))
2107     return CLanguageLinkage;
2108   return CXXLanguageLinkage;
2109 }
2110 
2111 template<typename T>
2112 static bool isDeclExternC(const T &D) {
2113   // Since the context is ignored for class members, they can only have C++
2114   // language linkage or no language linkage.
2115   const DeclContext *DC = D.getDeclContext();
2116   if (DC->isRecord()) {
2117     assert(D.getASTContext().getLangOpts().CPlusPlus);
2118     return false;
2119   }
2120 
2121   return D.getLanguageLinkage() == CLanguageLinkage;
2122 }
2123 
2124 LanguageLinkage VarDecl::getLanguageLinkage() const {
2125   return getDeclLanguageLinkage(*this);
2126 }
2127 
2128 bool VarDecl::isExternC() const {
2129   return isDeclExternC(*this);
2130 }
2131 
2132 bool VarDecl::isInExternCContext() const {
2133   return getLexicalDeclContext()->isExternCContext();
2134 }
2135 
2136 bool VarDecl::isInExternCXXContext() const {
2137   return getLexicalDeclContext()->isExternCXXContext();
2138 }
2139 
2140 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2141 
2142 VarDecl::DefinitionKind
2143 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2144   if (isThisDeclarationADemotedDefinition())
2145     return DeclarationOnly;
2146 
2147   // C++ [basic.def]p2:
2148   //   A declaration is a definition unless [...] it contains the 'extern'
2149   //   specifier or a linkage-specification and neither an initializer [...],
2150   //   it declares a non-inline static data member in a class declaration [...],
2151   //   it declares a static data member outside a class definition and the variable
2152   //   was defined within the class with the constexpr specifier [...],
2153   // C++1y [temp.expl.spec]p15:
2154   //   An explicit specialization of a static data member or an explicit
2155   //   specialization of a static data member template is a definition if the
2156   //   declaration includes an initializer; otherwise, it is a declaration.
2157   //
2158   // FIXME: How do you declare (but not define) a partial specialization of
2159   // a static data member template outside the containing class?
2160   if (isStaticDataMember()) {
2161     if (isOutOfLine() &&
2162         !(getCanonicalDecl()->isInline() &&
2163           getCanonicalDecl()->isConstexpr()) &&
2164         (hasInit() ||
2165          // If the first declaration is out-of-line, this may be an
2166          // instantiation of an out-of-line partial specialization of a variable
2167          // template for which we have not yet instantiated the initializer.
2168          (getFirstDecl()->isOutOfLine()
2169               ? getTemplateSpecializationKind() == TSK_Undeclared
2170               : getTemplateSpecializationKind() !=
2171                     TSK_ExplicitSpecialization) ||
2172          isa<VarTemplatePartialSpecializationDecl>(this)))
2173       return Definition;
2174     if (!isOutOfLine() && isInline())
2175       return Definition;
2176     return DeclarationOnly;
2177   }
2178   // C99 6.7p5:
2179   //   A definition of an identifier is a declaration for that identifier that
2180   //   [...] causes storage to be reserved for that object.
2181   // Note: that applies for all non-file-scope objects.
2182   // C99 6.9.2p1:
2183   //   If the declaration of an identifier for an object has file scope and an
2184   //   initializer, the declaration is an external definition for the identifier
2185   if (hasInit())
2186     return Definition;
2187 
2188   if (hasDefiningAttr())
2189     return Definition;
2190 
2191   if (const auto *SAA = getAttr<SelectAnyAttr>())
2192     if (!SAA->isInherited())
2193       return Definition;
2194 
2195   // A variable template specialization (other than a static data member
2196   // template or an explicit specialization) is a declaration until we
2197   // instantiate its initializer.
2198   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2199     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2200         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2201         !VTSD->IsCompleteDefinition)
2202       return DeclarationOnly;
2203   }
2204 
2205   if (hasExternalStorage())
2206     return DeclarationOnly;
2207 
2208   // [dcl.link] p7:
2209   //   A declaration directly contained in a linkage-specification is treated
2210   //   as if it contains the extern specifier for the purpose of determining
2211   //   the linkage of the declared name and whether it is a definition.
2212   if (isSingleLineLanguageLinkage(*this))
2213     return DeclarationOnly;
2214 
2215   // C99 6.9.2p2:
2216   //   A declaration of an object that has file scope without an initializer,
2217   //   and without a storage class specifier or the scs 'static', constitutes
2218   //   a tentative definition.
2219   // No such thing in C++.
2220   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2221     return TentativeDefinition;
2222 
2223   // What's left is (in C, block-scope) declarations without initializers or
2224   // external storage. These are definitions.
2225   return Definition;
2226 }
2227 
2228 VarDecl *VarDecl::getActingDefinition() {
2229   DefinitionKind Kind = isThisDeclarationADefinition();
2230   if (Kind != TentativeDefinition)
2231     return nullptr;
2232 
2233   VarDecl *LastTentative = nullptr;
2234 
2235   // Loop through the declaration chain, starting with the most recent.
2236   for (VarDecl *Decl = getMostRecentDecl(); Decl;
2237        Decl = Decl->getPreviousDecl()) {
2238     Kind = Decl->isThisDeclarationADefinition();
2239     if (Kind == Definition)
2240       return nullptr;
2241     // Record the first (most recent) TentativeDefinition that is encountered.
2242     if (Kind == TentativeDefinition && !LastTentative)
2243       LastTentative = Decl;
2244   }
2245 
2246   return LastTentative;
2247 }
2248 
2249 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2250   VarDecl *First = getFirstDecl();
2251   for (auto I : First->redecls()) {
2252     if (I->isThisDeclarationADefinition(C) == Definition)
2253       return I;
2254   }
2255   return nullptr;
2256 }
2257 
2258 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2259   DefinitionKind Kind = DeclarationOnly;
2260 
2261   const VarDecl *First = getFirstDecl();
2262   for (auto I : First->redecls()) {
2263     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2264     if (Kind == Definition)
2265       break;
2266   }
2267 
2268   return Kind;
2269 }
2270 
2271 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2272   for (auto I : redecls()) {
2273     if (auto Expr = I->getInit()) {
2274       D = I;
2275       return Expr;
2276     }
2277   }
2278   return nullptr;
2279 }
2280 
2281 bool VarDecl::hasInit() const {
2282   if (auto *P = dyn_cast<ParmVarDecl>(this))
2283     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2284       return false;
2285 
2286   return !Init.isNull();
2287 }
2288 
2289 Expr *VarDecl::getInit() {
2290   if (!hasInit())
2291     return nullptr;
2292 
2293   if (auto *S = Init.dyn_cast<Stmt *>())
2294     return cast<Expr>(S);
2295 
2296   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2297 }
2298 
2299 Stmt **VarDecl::getInitAddress() {
2300   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2301     return &ES->Value;
2302 
2303   return Init.getAddrOfPtr1();
2304 }
2305 
2306 VarDecl *VarDecl::getInitializingDeclaration() {
2307   VarDecl *Def = nullptr;
2308   for (auto I : redecls()) {
2309     if (I->hasInit())
2310       return I;
2311 
2312     if (I->isThisDeclarationADefinition()) {
2313       if (isStaticDataMember())
2314         return I;
2315       Def = I;
2316     }
2317   }
2318   return Def;
2319 }
2320 
2321 bool VarDecl::isOutOfLine() const {
2322   if (Decl::isOutOfLine())
2323     return true;
2324 
2325   if (!isStaticDataMember())
2326     return false;
2327 
2328   // If this static data member was instantiated from a static data member of
2329   // a class template, check whether that static data member was defined
2330   // out-of-line.
2331   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2332     return VD->isOutOfLine();
2333 
2334   return false;
2335 }
2336 
2337 void VarDecl::setInit(Expr *I) {
2338   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2339     Eval->~EvaluatedStmt();
2340     getASTContext().Deallocate(Eval);
2341   }
2342 
2343   Init = I;
2344 }
2345 
2346 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2347   const LangOptions &Lang = C.getLangOpts();
2348 
2349   // OpenCL permits const integral variables to be used in constant
2350   // expressions, like in C++98.
2351   if (!Lang.CPlusPlus && !Lang.OpenCL)
2352     return false;
2353 
2354   // Function parameters are never usable in constant expressions.
2355   if (isa<ParmVarDecl>(this))
2356     return false;
2357 
2358   // The values of weak variables are never usable in constant expressions.
2359   if (isWeak())
2360     return false;
2361 
2362   // In C++11, any variable of reference type can be used in a constant
2363   // expression if it is initialized by a constant expression.
2364   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2365     return true;
2366 
2367   // Only const objects can be used in constant expressions in C++. C++98 does
2368   // not require the variable to be non-volatile, but we consider this to be a
2369   // defect.
2370   if (!getType().isConstant(C) || getType().isVolatileQualified())
2371     return false;
2372 
2373   // In C++, const, non-volatile variables of integral or enumeration types
2374   // can be used in constant expressions.
2375   if (getType()->isIntegralOrEnumerationType())
2376     return true;
2377 
2378   // Additionally, in C++11, non-volatile constexpr variables can be used in
2379   // constant expressions.
2380   return Lang.CPlusPlus11 && isConstexpr();
2381 }
2382 
2383 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2384   // C++2a [expr.const]p3:
2385   //   A variable is usable in constant expressions after its initializing
2386   //   declaration is encountered...
2387   const VarDecl *DefVD = nullptr;
2388   const Expr *Init = getAnyInitializer(DefVD);
2389   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2390     return false;
2391   //   ... if it is a constexpr variable, or it is of reference type or of
2392   //   const-qualified integral or enumeration type, ...
2393   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2394     return false;
2395   //   ... and its initializer is a constant initializer.
2396   if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2397     return false;
2398   // C++98 [expr.const]p1:
2399   //   An integral constant-expression can involve only [...] const variables
2400   //   or static data members of integral or enumeration types initialized with
2401   //   [integer] constant expressions (dcl.init)
2402   if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2403       !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2404     return false;
2405   return true;
2406 }
2407 
2408 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2409 /// form, which contains extra information on the evaluated value of the
2410 /// initializer.
2411 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2412   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2413   if (!Eval) {
2414     // Note: EvaluatedStmt contains an APValue, which usually holds
2415     // resources not allocated from the ASTContext.  We need to do some
2416     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2417     // where we can detect whether there's anything to clean up or not.
2418     Eval = new (getASTContext()) EvaluatedStmt;
2419     Eval->Value = Init.get<Stmt *>();
2420     Init = Eval;
2421   }
2422   return Eval;
2423 }
2424 
2425 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2426   return Init.dyn_cast<EvaluatedStmt *>();
2427 }
2428 
2429 APValue *VarDecl::evaluateValue() const {
2430   SmallVector<PartialDiagnosticAt, 8> Notes;
2431   return evaluateValue(Notes);
2432 }
2433 
2434 APValue *VarDecl::evaluateValue(
2435     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2436   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2437 
2438   const auto *Init = cast<Expr>(Eval->Value);
2439   assert(!Init->isValueDependent());
2440 
2441   // We only produce notes indicating why an initializer is non-constant the
2442   // first time it is evaluated. FIXME: The notes won't always be emitted the
2443   // first time we try evaluation, so might not be produced at all.
2444   if (Eval->WasEvaluated)
2445     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2446 
2447   if (Eval->IsEvaluating) {
2448     // FIXME: Produce a diagnostic for self-initialization.
2449     return nullptr;
2450   }
2451 
2452   Eval->IsEvaluating = true;
2453 
2454   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2455                                             this, Notes);
2456 
2457   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2458   // or that it's empty (so that there's nothing to clean up) if evaluation
2459   // failed.
2460   if (!Result)
2461     Eval->Evaluated = APValue();
2462   else if (Eval->Evaluated.needsCleanup())
2463     getASTContext().addDestruction(&Eval->Evaluated);
2464 
2465   Eval->IsEvaluating = false;
2466   Eval->WasEvaluated = true;
2467 
2468   return Result ? &Eval->Evaluated : nullptr;
2469 }
2470 
2471 APValue *VarDecl::getEvaluatedValue() const {
2472   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2473     if (Eval->WasEvaluated)
2474       return &Eval->Evaluated;
2475 
2476   return nullptr;
2477 }
2478 
2479 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2480   const Expr *Init = getInit();
2481   assert(Init && "no initializer");
2482 
2483   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2484   if (!Eval->CheckedForICEInit) {
2485     Eval->CheckedForICEInit = true;
2486     Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2487   }
2488   return Eval->HasICEInit;
2489 }
2490 
2491 bool VarDecl::hasConstantInitialization() const {
2492   // In C, all globals (and only globals) have constant initialization.
2493   if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2494     return true;
2495 
2496   // In C++, it depends on whether the evaluation at the point of definition
2497   // was evaluatable as a constant initializer.
2498   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2499     return Eval->HasConstantInitialization;
2500 
2501   return false;
2502 }
2503 
2504 bool VarDecl::checkForConstantInitialization(
2505     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2506   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2507   // If we ask for the value before we know whether we have a constant
2508   // initializer, we can compute the wrong value (for example, due to
2509   // std::is_constant_evaluated()).
2510   assert(!Eval->WasEvaluated &&
2511          "already evaluated var value before checking for constant init");
2512   assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++");
2513 
2514   assert(!cast<Expr>(Eval->Value)->isValueDependent());
2515 
2516   // Evaluate the initializer to check whether it's a constant expression.
2517   Eval->HasConstantInitialization = evaluateValue(Notes) && Notes.empty();
2518   return Eval->HasConstantInitialization;
2519 }
2520 
2521 bool VarDecl::isParameterPack() const {
2522   return isa<PackExpansionType>(getType());
2523 }
2524 
2525 template<typename DeclT>
2526 static DeclT *getDefinitionOrSelf(DeclT *D) {
2527   assert(D);
2528   if (auto *Def = D->getDefinition())
2529     return Def;
2530   return D;
2531 }
2532 
2533 bool VarDecl::isEscapingByref() const {
2534   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2535 }
2536 
2537 bool VarDecl::isNonEscapingByref() const {
2538   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2539 }
2540 
2541 bool VarDecl::hasDependentAlignment() const {
2542   QualType T = getType();
2543   return T->isDependentType() || T->isUndeducedAutoType() ||
2544          llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2545            return AA->isAlignmentDependent();
2546          });
2547 }
2548 
2549 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2550   const VarDecl *VD = this;
2551 
2552   // If this is an instantiated member, walk back to the template from which
2553   // it was instantiated.
2554   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2555     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2556       VD = VD->getInstantiatedFromStaticDataMember();
2557       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2558         VD = NewVD;
2559     }
2560   }
2561 
2562   // If it's an instantiated variable template specialization, find the
2563   // template or partial specialization from which it was instantiated.
2564   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2565     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2566       auto From = VDTemplSpec->getInstantiatedFrom();
2567       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2568         while (!VTD->isMemberSpecialization()) {
2569           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2570           if (!NewVTD)
2571             break;
2572           VTD = NewVTD;
2573         }
2574         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2575       }
2576       if (auto *VTPSD =
2577               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2578         while (!VTPSD->isMemberSpecialization()) {
2579           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2580           if (!NewVTPSD)
2581             break;
2582           VTPSD = NewVTPSD;
2583         }
2584         return getDefinitionOrSelf<VarDecl>(VTPSD);
2585       }
2586     }
2587   }
2588 
2589   // If this is the pattern of a variable template, find where it was
2590   // instantiated from. FIXME: Is this necessary?
2591   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2592     while (!VarTemplate->isMemberSpecialization()) {
2593       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2594       if (!NewVT)
2595         break;
2596       VarTemplate = NewVT;
2597     }
2598 
2599     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2600   }
2601 
2602   if (VD == this)
2603     return nullptr;
2604   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2605 }
2606 
2607 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2608   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2609     return cast<VarDecl>(MSI->getInstantiatedFrom());
2610 
2611   return nullptr;
2612 }
2613 
2614 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2615   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2616     return Spec->getSpecializationKind();
2617 
2618   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2619     return MSI->getTemplateSpecializationKind();
2620 
2621   return TSK_Undeclared;
2622 }
2623 
2624 TemplateSpecializationKind
2625 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2626   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2627     return MSI->getTemplateSpecializationKind();
2628 
2629   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2630     return Spec->getSpecializationKind();
2631 
2632   return TSK_Undeclared;
2633 }
2634 
2635 SourceLocation VarDecl::getPointOfInstantiation() const {
2636   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2637     return Spec->getPointOfInstantiation();
2638 
2639   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2640     return MSI->getPointOfInstantiation();
2641 
2642   return SourceLocation();
2643 }
2644 
2645 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2646   return getASTContext().getTemplateOrSpecializationInfo(this)
2647       .dyn_cast<VarTemplateDecl *>();
2648 }
2649 
2650 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2651   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2652 }
2653 
2654 bool VarDecl::isKnownToBeDefined() const {
2655   const auto &LangOpts = getASTContext().getLangOpts();
2656   // In CUDA mode without relocatable device code, variables of form 'extern
2657   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2658   // memory pool.  These are never undefined variables, even if they appear
2659   // inside of an anon namespace or static function.
2660   //
2661   // With CUDA relocatable device code enabled, these variables don't get
2662   // special handling; they're treated like regular extern variables.
2663   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2664       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2665       isa<IncompleteArrayType>(getType()))
2666     return true;
2667 
2668   return hasDefinition();
2669 }
2670 
2671 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2672   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2673                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2674                                  !hasAttr<AlwaysDestroyAttr>()));
2675 }
2676 
2677 QualType::DestructionKind
2678 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2679   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2680     if (Eval->HasConstantDestruction)
2681       return QualType::DK_none;
2682 
2683   if (isNoDestroy(Ctx))
2684     return QualType::DK_none;
2685 
2686   return getType().isDestructedType();
2687 }
2688 
2689 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2690   if (isStaticDataMember())
2691     // FIXME: Remove ?
2692     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2693     return getASTContext().getTemplateOrSpecializationInfo(this)
2694         .dyn_cast<MemberSpecializationInfo *>();
2695   return nullptr;
2696 }
2697 
2698 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2699                                          SourceLocation PointOfInstantiation) {
2700   assert((isa<VarTemplateSpecializationDecl>(this) ||
2701           getMemberSpecializationInfo()) &&
2702          "not a variable or static data member template specialization");
2703 
2704   if (VarTemplateSpecializationDecl *Spec =
2705           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2706     Spec->setSpecializationKind(TSK);
2707     if (TSK != TSK_ExplicitSpecialization &&
2708         PointOfInstantiation.isValid() &&
2709         Spec->getPointOfInstantiation().isInvalid()) {
2710       Spec->setPointOfInstantiation(PointOfInstantiation);
2711       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2712         L->InstantiationRequested(this);
2713     }
2714   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2715     MSI->setTemplateSpecializationKind(TSK);
2716     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2717         MSI->getPointOfInstantiation().isInvalid()) {
2718       MSI->setPointOfInstantiation(PointOfInstantiation);
2719       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2720         L->InstantiationRequested(this);
2721     }
2722   }
2723 }
2724 
2725 void
2726 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2727                                             TemplateSpecializationKind TSK) {
2728   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2729          "Previous template or instantiation?");
2730   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2731 }
2732 
2733 //===----------------------------------------------------------------------===//
2734 // ParmVarDecl Implementation
2735 //===----------------------------------------------------------------------===//
2736 
2737 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2738                                  SourceLocation StartLoc,
2739                                  SourceLocation IdLoc, IdentifierInfo *Id,
2740                                  QualType T, TypeSourceInfo *TInfo,
2741                                  StorageClass S, Expr *DefArg) {
2742   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2743                                  S, DefArg);
2744 }
2745 
2746 QualType ParmVarDecl::getOriginalType() const {
2747   TypeSourceInfo *TSI = getTypeSourceInfo();
2748   QualType T = TSI ? TSI->getType() : getType();
2749   if (const auto *DT = dyn_cast<DecayedType>(T))
2750     return DT->getOriginalType();
2751   return T;
2752 }
2753 
2754 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2755   return new (C, ID)
2756       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2757                   nullptr, QualType(), nullptr, SC_None, nullptr);
2758 }
2759 
2760 SourceRange ParmVarDecl::getSourceRange() const {
2761   if (!hasInheritedDefaultArg()) {
2762     SourceRange ArgRange = getDefaultArgRange();
2763     if (ArgRange.isValid())
2764       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2765   }
2766 
2767   // DeclaratorDecl considers the range of postfix types as overlapping with the
2768   // declaration name, but this is not the case with parameters in ObjC methods.
2769   if (isa<ObjCMethodDecl>(getDeclContext()))
2770     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2771 
2772   return DeclaratorDecl::getSourceRange();
2773 }
2774 
2775 bool ParmVarDecl::isDestroyedInCallee() const {
2776   // ns_consumed only affects code generation in ARC
2777   if (hasAttr<NSConsumedAttr>())
2778     return getASTContext().getLangOpts().ObjCAutoRefCount;
2779 
2780   // FIXME: isParamDestroyedInCallee() should probably imply
2781   // isDestructedType()
2782   auto *RT = getType()->getAs<RecordType>();
2783   if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2784       getType().isDestructedType())
2785     return true;
2786 
2787   return false;
2788 }
2789 
2790 Expr *ParmVarDecl::getDefaultArg() {
2791   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2792   assert(!hasUninstantiatedDefaultArg() &&
2793          "Default argument is not yet instantiated!");
2794 
2795   Expr *Arg = getInit();
2796   if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2797     return E->getSubExpr();
2798 
2799   return Arg;
2800 }
2801 
2802 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2803   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2804   Init = defarg;
2805 }
2806 
2807 SourceRange ParmVarDecl::getDefaultArgRange() const {
2808   switch (ParmVarDeclBits.DefaultArgKind) {
2809   case DAK_None:
2810   case DAK_Unparsed:
2811     // Nothing we can do here.
2812     return SourceRange();
2813 
2814   case DAK_Uninstantiated:
2815     return getUninstantiatedDefaultArg()->getSourceRange();
2816 
2817   case DAK_Normal:
2818     if (const Expr *E = getInit())
2819       return E->getSourceRange();
2820 
2821     // Missing an actual expression, may be invalid.
2822     return SourceRange();
2823   }
2824   llvm_unreachable("Invalid default argument kind.");
2825 }
2826 
2827 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2828   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2829   Init = arg;
2830 }
2831 
2832 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2833   assert(hasUninstantiatedDefaultArg() &&
2834          "Wrong kind of initialization expression!");
2835   return cast_or_null<Expr>(Init.get<Stmt *>());
2836 }
2837 
2838 bool ParmVarDecl::hasDefaultArg() const {
2839   // FIXME: We should just return false for DAK_None here once callers are
2840   // prepared for the case that we encountered an invalid default argument and
2841   // were unable to even build an invalid expression.
2842   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2843          !Init.isNull();
2844 }
2845 
2846 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2847   getASTContext().setParameterIndex(this, parameterIndex);
2848   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2849 }
2850 
2851 unsigned ParmVarDecl::getParameterIndexLarge() const {
2852   return getASTContext().getParameterIndex(this);
2853 }
2854 
2855 //===----------------------------------------------------------------------===//
2856 // FunctionDecl Implementation
2857 //===----------------------------------------------------------------------===//
2858 
2859 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2860                            SourceLocation StartLoc,
2861                            const DeclarationNameInfo &NameInfo, QualType T,
2862                            TypeSourceInfo *TInfo, StorageClass S,
2863                            bool UsesFPIntrin, bool isInlineSpecified,
2864                            ConstexprSpecKind ConstexprKind,
2865                            Expr *TrailingRequiresClause)
2866     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2867                      StartLoc),
2868       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2869       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2870   assert(T.isNull() || T->isFunctionType());
2871   FunctionDeclBits.SClass = S;
2872   FunctionDeclBits.IsInline = isInlineSpecified;
2873   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2874   FunctionDeclBits.IsVirtualAsWritten = false;
2875   FunctionDeclBits.IsPure = false;
2876   FunctionDeclBits.HasInheritedPrototype = false;
2877   FunctionDeclBits.HasWrittenPrototype = true;
2878   FunctionDeclBits.IsDeleted = false;
2879   FunctionDeclBits.IsTrivial = false;
2880   FunctionDeclBits.IsTrivialForCall = false;
2881   FunctionDeclBits.IsDefaulted = false;
2882   FunctionDeclBits.IsExplicitlyDefaulted = false;
2883   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2884   FunctionDeclBits.HasImplicitReturnZero = false;
2885   FunctionDeclBits.IsLateTemplateParsed = false;
2886   FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2887   FunctionDeclBits.InstantiationIsPending = false;
2888   FunctionDeclBits.UsesSEHTry = false;
2889   FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
2890   FunctionDeclBits.HasSkippedBody = false;
2891   FunctionDeclBits.WillHaveBody = false;
2892   FunctionDeclBits.IsMultiVersion = false;
2893   FunctionDeclBits.IsCopyDeductionCandidate = false;
2894   FunctionDeclBits.HasODRHash = false;
2895   if (TrailingRequiresClause)
2896     setTrailingRequiresClause(TrailingRequiresClause);
2897 }
2898 
2899 void FunctionDecl::getNameForDiagnostic(
2900     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2901   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2902   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2903   if (TemplateArgs)
2904     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2905 }
2906 
2907 bool FunctionDecl::isVariadic() const {
2908   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2909     return FT->isVariadic();
2910   return false;
2911 }
2912 
2913 FunctionDecl::DefaultedFunctionInfo *
2914 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2915                                             ArrayRef<DeclAccessPair> Lookups) {
2916   DefaultedFunctionInfo *Info = new (Context.Allocate(
2917       totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2918       std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2919       DefaultedFunctionInfo;
2920   Info->NumLookups = Lookups.size();
2921   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2922                           Info->getTrailingObjects<DeclAccessPair>());
2923   return Info;
2924 }
2925 
2926 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2927   assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
2928   assert(!Body && "can't replace function body with defaulted function info");
2929 
2930   FunctionDeclBits.HasDefaultedFunctionInfo = true;
2931   DefaultedInfo = Info;
2932 }
2933 
2934 FunctionDecl::DefaultedFunctionInfo *
2935 FunctionDecl::getDefaultedFunctionInfo() const {
2936   return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2937 }
2938 
2939 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2940   for (auto I : redecls()) {
2941     if (I->doesThisDeclarationHaveABody()) {
2942       Definition = I;
2943       return true;
2944     }
2945   }
2946 
2947   return false;
2948 }
2949 
2950 bool FunctionDecl::hasTrivialBody() const {
2951   Stmt *S = getBody();
2952   if (!S) {
2953     // Since we don't have a body for this function, we don't know if it's
2954     // trivial or not.
2955     return false;
2956   }
2957 
2958   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2959     return true;
2960   return false;
2961 }
2962 
2963 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
2964   if (!getFriendObjectKind())
2965     return false;
2966 
2967   // Check for a friend function instantiated from a friend function
2968   // definition in a templated class.
2969   if (const FunctionDecl *InstantiatedFrom =
2970           getInstantiatedFromMemberFunction())
2971     return InstantiatedFrom->getFriendObjectKind() &&
2972            InstantiatedFrom->isThisDeclarationADefinition();
2973 
2974   // Check for a friend function template instantiated from a friend
2975   // function template definition in a templated class.
2976   if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
2977     if (const FunctionTemplateDecl *InstantiatedFrom =
2978             Template->getInstantiatedFromMemberTemplate())
2979       return InstantiatedFrom->getFriendObjectKind() &&
2980              InstantiatedFrom->isThisDeclarationADefinition();
2981   }
2982 
2983   return false;
2984 }
2985 
2986 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
2987                              bool CheckForPendingFriendDefinition) const {
2988   for (const FunctionDecl *FD : redecls()) {
2989     if (FD->isThisDeclarationADefinition()) {
2990       Definition = FD;
2991       return true;
2992     }
2993 
2994     // If this is a friend function defined in a class template, it does not
2995     // have a body until it is used, nevertheless it is a definition, see
2996     // [temp.inst]p2:
2997     //
2998     // ... for the purpose of determining whether an instantiated redeclaration
2999     // is valid according to [basic.def.odr] and [class.mem], a declaration that
3000     // corresponds to a definition in the template is considered to be a
3001     // definition.
3002     //
3003     // The following code must produce redefinition error:
3004     //
3005     //     template<typename T> struct C20 { friend void func_20() {} };
3006     //     C20<int> c20i;
3007     //     void func_20() {}
3008     //
3009     if (CheckForPendingFriendDefinition &&
3010         FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3011       Definition = FD;
3012       return true;
3013     }
3014   }
3015 
3016   return false;
3017 }
3018 
3019 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3020   if (!hasBody(Definition))
3021     return nullptr;
3022 
3023   assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
3024          "definition should not have a body");
3025   if (Definition->Body)
3026     return Definition->Body.get(getASTContext().getExternalSource());
3027 
3028   return nullptr;
3029 }
3030 
3031 void FunctionDecl::setBody(Stmt *B) {
3032   FunctionDeclBits.HasDefaultedFunctionInfo = false;
3033   Body = LazyDeclStmtPtr(B);
3034   if (B)
3035     EndRangeLoc = B->getEndLoc();
3036 }
3037 
3038 void FunctionDecl::setPure(bool P) {
3039   FunctionDeclBits.IsPure = P;
3040   if (P)
3041     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3042       Parent->markedVirtualFunctionPure();
3043 }
3044 
3045 template<std::size_t Len>
3046 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3047   IdentifierInfo *II = ND->getIdentifier();
3048   return II && II->isStr(Str);
3049 }
3050 
3051 bool FunctionDecl::isMain() const {
3052   const TranslationUnitDecl *tunit =
3053     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3054   return tunit &&
3055          !tunit->getASTContext().getLangOpts().Freestanding &&
3056          isNamed(this, "main");
3057 }
3058 
3059 bool FunctionDecl::isMSVCRTEntryPoint() const {
3060   const TranslationUnitDecl *TUnit =
3061       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3062   if (!TUnit)
3063     return false;
3064 
3065   // Even though we aren't really targeting MSVCRT if we are freestanding,
3066   // semantic analysis for these functions remains the same.
3067 
3068   // MSVCRT entry points only exist on MSVCRT targets.
3069   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3070     return false;
3071 
3072   // Nameless functions like constructors cannot be entry points.
3073   if (!getIdentifier())
3074     return false;
3075 
3076   return llvm::StringSwitch<bool>(getName())
3077       .Cases("main",     // an ANSI console app
3078              "wmain",    // a Unicode console App
3079              "WinMain",  // an ANSI GUI app
3080              "wWinMain", // a Unicode GUI app
3081              "DllMain",  // a DLL
3082              true)
3083       .Default(false);
3084 }
3085 
3086 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3087   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
3088   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
3089          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3090          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
3091          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
3092 
3093   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3094     return false;
3095 
3096   const auto *proto = getType()->castAs<FunctionProtoType>();
3097   if (proto->getNumParams() != 2 || proto->isVariadic())
3098     return false;
3099 
3100   ASTContext &Context =
3101     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3102       ->getASTContext();
3103 
3104   // The result type and first argument type are constant across all
3105   // these operators.  The second argument must be exactly void*.
3106   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3107 }
3108 
3109 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3110     Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3111   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3112     return false;
3113   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3114       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3115       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3116       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3117     return false;
3118 
3119   if (isa<CXXRecordDecl>(getDeclContext()))
3120     return false;
3121 
3122   // This can only fail for an invalid 'operator new' declaration.
3123   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3124     return false;
3125 
3126   const auto *FPT = getType()->castAs<FunctionProtoType>();
3127   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3128     return false;
3129 
3130   // If this is a single-parameter function, it must be a replaceable global
3131   // allocation or deallocation function.
3132   if (FPT->getNumParams() == 1)
3133     return true;
3134 
3135   unsigned Params = 1;
3136   QualType Ty = FPT->getParamType(Params);
3137   ASTContext &Ctx = getASTContext();
3138 
3139   auto Consume = [&] {
3140     ++Params;
3141     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3142   };
3143 
3144   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3145   bool IsSizedDelete = false;
3146   if (Ctx.getLangOpts().SizedDeallocation &&
3147       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3148        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3149       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3150     IsSizedDelete = true;
3151     Consume();
3152   }
3153 
3154   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3155   // new/delete.
3156   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3157     Consume();
3158     if (AlignmentParam)
3159       *AlignmentParam = Params;
3160   }
3161 
3162   // Finally, if this is not a sized delete, the final parameter can
3163   // be a 'const std::nothrow_t&'.
3164   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3165     Ty = Ty->getPointeeType();
3166     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3167       return false;
3168     if (Ty->isNothrowT()) {
3169       if (IsNothrow)
3170         *IsNothrow = true;
3171       Consume();
3172     }
3173   }
3174 
3175   return Params == FPT->getNumParams();
3176 }
3177 
3178 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3179   if (!getBuiltinID())
3180     return false;
3181 
3182   const FunctionDecl *Definition;
3183   return hasBody(Definition) && Definition->isInlineSpecified() &&
3184          Definition->hasAttr<AlwaysInlineAttr>() &&
3185          Definition->hasAttr<GNUInlineAttr>();
3186 }
3187 
3188 bool FunctionDecl::isDestroyingOperatorDelete() const {
3189   // C++ P0722:
3190   //   Within a class C, a single object deallocation function with signature
3191   //     (T, std::destroying_delete_t, <more params>)
3192   //   is a destroying operator delete.
3193   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3194       getNumParams() < 2)
3195     return false;
3196 
3197   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3198   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3199          RD->getIdentifier()->isStr("destroying_delete_t");
3200 }
3201 
3202 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3203   return getDeclLanguageLinkage(*this);
3204 }
3205 
3206 bool FunctionDecl::isExternC() const {
3207   return isDeclExternC(*this);
3208 }
3209 
3210 bool FunctionDecl::isInExternCContext() const {
3211   if (hasAttr<OpenCLKernelAttr>())
3212     return true;
3213   return getLexicalDeclContext()->isExternCContext();
3214 }
3215 
3216 bool FunctionDecl::isInExternCXXContext() const {
3217   return getLexicalDeclContext()->isExternCXXContext();
3218 }
3219 
3220 bool FunctionDecl::isGlobal() const {
3221   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3222     return Method->isStatic();
3223 
3224   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3225     return false;
3226 
3227   for (const DeclContext *DC = getDeclContext();
3228        DC->isNamespace();
3229        DC = DC->getParent()) {
3230     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3231       if (!Namespace->getDeclName())
3232         return false;
3233       break;
3234     }
3235   }
3236 
3237   return true;
3238 }
3239 
3240 bool FunctionDecl::isNoReturn() const {
3241   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3242       hasAttr<C11NoReturnAttr>())
3243     return true;
3244 
3245   if (auto *FnTy = getType()->getAs<FunctionType>())
3246     return FnTy->getNoReturnAttr();
3247 
3248   return false;
3249 }
3250 
3251 
3252 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3253   if (hasAttr<TargetAttr>())
3254     return MultiVersionKind::Target;
3255   if (hasAttr<CPUDispatchAttr>())
3256     return MultiVersionKind::CPUDispatch;
3257   if (hasAttr<CPUSpecificAttr>())
3258     return MultiVersionKind::CPUSpecific;
3259   if (hasAttr<TargetClonesAttr>())
3260     return MultiVersionKind::TargetClones;
3261   return MultiVersionKind::None;
3262 }
3263 
3264 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3265   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3266 }
3267 
3268 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3269   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3270 }
3271 
3272 bool FunctionDecl::isTargetMultiVersion() const {
3273   return isMultiVersion() && hasAttr<TargetAttr>();
3274 }
3275 
3276 bool FunctionDecl::isTargetClonesMultiVersion() const {
3277   return isMultiVersion() && hasAttr<TargetClonesAttr>();
3278 }
3279 
3280 void
3281 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3282   redeclarable_base::setPreviousDecl(PrevDecl);
3283 
3284   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3285     FunctionTemplateDecl *PrevFunTmpl
3286       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3287     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3288     FunTmpl->setPreviousDecl(PrevFunTmpl);
3289   }
3290 
3291   if (PrevDecl && PrevDecl->isInlined())
3292     setImplicitlyInline(true);
3293 }
3294 
3295 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3296 
3297 /// Returns a value indicating whether this function corresponds to a builtin
3298 /// function.
3299 ///
3300 /// The function corresponds to a built-in function if it is declared at
3301 /// translation scope or within an extern "C" block and its name matches with
3302 /// the name of a builtin. The returned value will be 0 for functions that do
3303 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3304 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3305 /// value.
3306 ///
3307 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3308 /// functions as their wrapped builtins. This shouldn't be done in general, but
3309 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3310 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3311   unsigned BuiltinID = 0;
3312 
3313   if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3314     BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3315   } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3316     BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3317   } else if (const auto *A = getAttr<BuiltinAttr>()) {
3318     BuiltinID = A->getID();
3319   }
3320 
3321   if (!BuiltinID)
3322     return 0;
3323 
3324   // If the function is marked "overloadable", it has a different mangled name
3325   // and is not the C library function.
3326   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3327       (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3328     return 0;
3329 
3330   ASTContext &Context = getASTContext();
3331   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3332     return BuiltinID;
3333 
3334   // This function has the name of a known C library
3335   // function. Determine whether it actually refers to the C library
3336   // function or whether it just has the same name.
3337 
3338   // If this is a static function, it's not a builtin.
3339   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3340     return 0;
3341 
3342   // OpenCL v1.2 s6.9.f - The library functions defined in
3343   // the C99 standard headers are not available.
3344   if (Context.getLangOpts().OpenCL &&
3345       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3346     return 0;
3347 
3348   // CUDA does not have device-side standard library. printf and malloc are the
3349   // only special cases that are supported by device-side runtime.
3350   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3351       !hasAttr<CUDAHostAttr>() &&
3352       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3353     return 0;
3354 
3355   // As AMDGCN implementation of OpenMP does not have a device-side standard
3356   // library, none of the predefined library functions except printf and malloc
3357   // should be treated as a builtin i.e. 0 should be returned for them.
3358   if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3359       Context.getLangOpts().OpenMPIsDevice &&
3360       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3361       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3362     return 0;
3363 
3364   return BuiltinID;
3365 }
3366 
3367 /// getNumParams - Return the number of parameters this function must have
3368 /// based on its FunctionType.  This is the length of the ParamInfo array
3369 /// after it has been created.
3370 unsigned FunctionDecl::getNumParams() const {
3371   const auto *FPT = getType()->getAs<FunctionProtoType>();
3372   return FPT ? FPT->getNumParams() : 0;
3373 }
3374 
3375 void FunctionDecl::setParams(ASTContext &C,
3376                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3377   assert(!ParamInfo && "Already has param info!");
3378   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3379 
3380   // Zero params -> null pointer.
3381   if (!NewParamInfo.empty()) {
3382     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3383     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3384   }
3385 }
3386 
3387 /// getMinRequiredArguments - Returns the minimum number of arguments
3388 /// needed to call this function. This may be fewer than the number of
3389 /// function parameters, if some of the parameters have default
3390 /// arguments (in C++) or are parameter packs (C++11).
3391 unsigned FunctionDecl::getMinRequiredArguments() const {
3392   if (!getASTContext().getLangOpts().CPlusPlus)
3393     return getNumParams();
3394 
3395   // Note that it is possible for a parameter with no default argument to
3396   // follow a parameter with a default argument.
3397   unsigned NumRequiredArgs = 0;
3398   unsigned MinParamsSoFar = 0;
3399   for (auto *Param : parameters()) {
3400     if (!Param->isParameterPack()) {
3401       ++MinParamsSoFar;
3402       if (!Param->hasDefaultArg())
3403         NumRequiredArgs = MinParamsSoFar;
3404     }
3405   }
3406   return NumRequiredArgs;
3407 }
3408 
3409 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3410   return getNumParams() == 1 ||
3411          (getNumParams() > 1 &&
3412           std::all_of(param_begin() + 1, param_end(),
3413                       [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3414 }
3415 
3416 /// The combination of the extern and inline keywords under MSVC forces
3417 /// the function to be required.
3418 ///
3419 /// Note: This function assumes that we will only get called when isInlined()
3420 /// would return true for this FunctionDecl.
3421 bool FunctionDecl::isMSExternInline() const {
3422   assert(isInlined() && "expected to get called on an inlined function!");
3423 
3424   const ASTContext &Context = getASTContext();
3425   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3426       !hasAttr<DLLExportAttr>())
3427     return false;
3428 
3429   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3430        FD = FD->getPreviousDecl())
3431     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3432       return true;
3433 
3434   return false;
3435 }
3436 
3437 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3438   if (Redecl->getStorageClass() != SC_Extern)
3439     return false;
3440 
3441   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3442        FD = FD->getPreviousDecl())
3443     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3444       return false;
3445 
3446   return true;
3447 }
3448 
3449 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3450   // Only consider file-scope declarations in this test.
3451   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3452     return false;
3453 
3454   // Only consider explicit declarations; the presence of a builtin for a
3455   // libcall shouldn't affect whether a definition is externally visible.
3456   if (Redecl->isImplicit())
3457     return false;
3458 
3459   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3460     return true; // Not an inline definition
3461 
3462   return false;
3463 }
3464 
3465 /// For a function declaration in C or C++, determine whether this
3466 /// declaration causes the definition to be externally visible.
3467 ///
3468 /// For instance, this determines if adding the current declaration to the set
3469 /// of redeclarations of the given functions causes
3470 /// isInlineDefinitionExternallyVisible to change from false to true.
3471 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3472   assert(!doesThisDeclarationHaveABody() &&
3473          "Must have a declaration without a body.");
3474 
3475   ASTContext &Context = getASTContext();
3476 
3477   if (Context.getLangOpts().MSVCCompat) {
3478     const FunctionDecl *Definition;
3479     if (hasBody(Definition) && Definition->isInlined() &&
3480         redeclForcesDefMSVC(this))
3481       return true;
3482   }
3483 
3484   if (Context.getLangOpts().CPlusPlus)
3485     return false;
3486 
3487   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3488     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3489     // an externally visible definition.
3490     //
3491     // FIXME: What happens if gnu_inline gets added on after the first
3492     // declaration?
3493     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3494       return false;
3495 
3496     const FunctionDecl *Prev = this;
3497     bool FoundBody = false;
3498     while ((Prev = Prev->getPreviousDecl())) {
3499       FoundBody |= Prev->doesThisDeclarationHaveABody();
3500 
3501       if (Prev->doesThisDeclarationHaveABody()) {
3502         // If it's not the case that both 'inline' and 'extern' are
3503         // specified on the definition, then it is always externally visible.
3504         if (!Prev->isInlineSpecified() ||
3505             Prev->getStorageClass() != SC_Extern)
3506           return false;
3507       } else if (Prev->isInlineSpecified() &&
3508                  Prev->getStorageClass() != SC_Extern) {
3509         return false;
3510       }
3511     }
3512     return FoundBody;
3513   }
3514 
3515   // C99 6.7.4p6:
3516   //   [...] If all of the file scope declarations for a function in a
3517   //   translation unit include the inline function specifier without extern,
3518   //   then the definition in that translation unit is an inline definition.
3519   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3520     return false;
3521   const FunctionDecl *Prev = this;
3522   bool FoundBody = false;
3523   while ((Prev = Prev->getPreviousDecl())) {
3524     FoundBody |= Prev->doesThisDeclarationHaveABody();
3525     if (RedeclForcesDefC99(Prev))
3526       return false;
3527   }
3528   return FoundBody;
3529 }
3530 
3531 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3532   const TypeSourceInfo *TSI = getTypeSourceInfo();
3533   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3534              : FunctionTypeLoc();
3535 }
3536 
3537 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3538   FunctionTypeLoc FTL = getFunctionTypeLoc();
3539   if (!FTL)
3540     return SourceRange();
3541 
3542   // Skip self-referential return types.
3543   const SourceManager &SM = getASTContext().getSourceManager();
3544   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3545   SourceLocation Boundary = getNameInfo().getBeginLoc();
3546   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3547       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3548     return SourceRange();
3549 
3550   return RTRange;
3551 }
3552 
3553 SourceRange FunctionDecl::getParametersSourceRange() const {
3554   unsigned NP = getNumParams();
3555   SourceLocation EllipsisLoc = getEllipsisLoc();
3556 
3557   if (NP == 0 && EllipsisLoc.isInvalid())
3558     return SourceRange();
3559 
3560   SourceLocation Begin =
3561       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3562   SourceLocation End = EllipsisLoc.isValid()
3563                            ? EllipsisLoc
3564                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3565 
3566   return SourceRange(Begin, End);
3567 }
3568 
3569 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3570   FunctionTypeLoc FTL = getFunctionTypeLoc();
3571   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3572 }
3573 
3574 /// For an inline function definition in C, or for a gnu_inline function
3575 /// in C++, determine whether the definition will be externally visible.
3576 ///
3577 /// Inline function definitions are always available for inlining optimizations.
3578 /// However, depending on the language dialect, declaration specifiers, and
3579 /// attributes, the definition of an inline function may or may not be
3580 /// "externally" visible to other translation units in the program.
3581 ///
3582 /// In C99, inline definitions are not externally visible by default. However,
3583 /// if even one of the global-scope declarations is marked "extern inline", the
3584 /// inline definition becomes externally visible (C99 6.7.4p6).
3585 ///
3586 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3587 /// definition, we use the GNU semantics for inline, which are nearly the
3588 /// opposite of C99 semantics. In particular, "inline" by itself will create
3589 /// an externally visible symbol, but "extern inline" will not create an
3590 /// externally visible symbol.
3591 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3592   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3593           hasAttr<AliasAttr>()) &&
3594          "Must be a function definition");
3595   assert(isInlined() && "Function must be inline");
3596   ASTContext &Context = getASTContext();
3597 
3598   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3599     // Note: If you change the logic here, please change
3600     // doesDeclarationForceExternallyVisibleDefinition as well.
3601     //
3602     // If it's not the case that both 'inline' and 'extern' are
3603     // specified on the definition, then this inline definition is
3604     // externally visible.
3605     if (Context.getLangOpts().CPlusPlus)
3606       return false;
3607     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3608       return true;
3609 
3610     // If any declaration is 'inline' but not 'extern', then this definition
3611     // is externally visible.
3612     for (auto Redecl : redecls()) {
3613       if (Redecl->isInlineSpecified() &&
3614           Redecl->getStorageClass() != SC_Extern)
3615         return true;
3616     }
3617 
3618     return false;
3619   }
3620 
3621   // The rest of this function is C-only.
3622   assert(!Context.getLangOpts().CPlusPlus &&
3623          "should not use C inline rules in C++");
3624 
3625   // C99 6.7.4p6:
3626   //   [...] If all of the file scope declarations for a function in a
3627   //   translation unit include the inline function specifier without extern,
3628   //   then the definition in that translation unit is an inline definition.
3629   for (auto Redecl : redecls()) {
3630     if (RedeclForcesDefC99(Redecl))
3631       return true;
3632   }
3633 
3634   // C99 6.7.4p6:
3635   //   An inline definition does not provide an external definition for the
3636   //   function, and does not forbid an external definition in another
3637   //   translation unit.
3638   return false;
3639 }
3640 
3641 /// getOverloadedOperator - Which C++ overloaded operator this
3642 /// function represents, if any.
3643 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3644   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3645     return getDeclName().getCXXOverloadedOperator();
3646   return OO_None;
3647 }
3648 
3649 /// getLiteralIdentifier - The literal suffix identifier this function
3650 /// represents, if any.
3651 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3652   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3653     return getDeclName().getCXXLiteralIdentifier();
3654   return nullptr;
3655 }
3656 
3657 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3658   if (TemplateOrSpecialization.isNull())
3659     return TK_NonTemplate;
3660   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3661     return TK_FunctionTemplate;
3662   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3663     return TK_MemberSpecialization;
3664   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3665     return TK_FunctionTemplateSpecialization;
3666   if (TemplateOrSpecialization.is
3667                                <DependentFunctionTemplateSpecializationInfo*>())
3668     return TK_DependentFunctionTemplateSpecialization;
3669 
3670   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3671 }
3672 
3673 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3674   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3675     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3676 
3677   return nullptr;
3678 }
3679 
3680 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3681   if (auto *MSI =
3682           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3683     return MSI;
3684   if (auto *FTSI = TemplateOrSpecialization
3685                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
3686     return FTSI->getMemberSpecializationInfo();
3687   return nullptr;
3688 }
3689 
3690 void
3691 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3692                                                FunctionDecl *FD,
3693                                                TemplateSpecializationKind TSK) {
3694   assert(TemplateOrSpecialization.isNull() &&
3695          "Member function is already a specialization");
3696   MemberSpecializationInfo *Info
3697     = new (C) MemberSpecializationInfo(FD, TSK);
3698   TemplateOrSpecialization = Info;
3699 }
3700 
3701 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3702   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3703 }
3704 
3705 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3706   assert(TemplateOrSpecialization.isNull() &&
3707          "Member function is already a specialization");
3708   TemplateOrSpecialization = Template;
3709 }
3710 
3711 bool FunctionDecl::isImplicitlyInstantiable() const {
3712   // If the function is invalid, it can't be implicitly instantiated.
3713   if (isInvalidDecl())
3714     return false;
3715 
3716   switch (getTemplateSpecializationKindForInstantiation()) {
3717   case TSK_Undeclared:
3718   case TSK_ExplicitInstantiationDefinition:
3719   case TSK_ExplicitSpecialization:
3720     return false;
3721 
3722   case TSK_ImplicitInstantiation:
3723     return true;
3724 
3725   case TSK_ExplicitInstantiationDeclaration:
3726     // Handled below.
3727     break;
3728   }
3729 
3730   // Find the actual template from which we will instantiate.
3731   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3732   bool HasPattern = false;
3733   if (PatternDecl)
3734     HasPattern = PatternDecl->hasBody(PatternDecl);
3735 
3736   // C++0x [temp.explicit]p9:
3737   //   Except for inline functions, other explicit instantiation declarations
3738   //   have the effect of suppressing the implicit instantiation of the entity
3739   //   to which they refer.
3740   if (!HasPattern || !PatternDecl)
3741     return true;
3742 
3743   return PatternDecl->isInlined();
3744 }
3745 
3746 bool FunctionDecl::isTemplateInstantiation() const {
3747   // FIXME: Remove this, it's not clear what it means. (Which template
3748   // specialization kind?)
3749   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3750 }
3751 
3752 FunctionDecl *
3753 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3754   // If this is a generic lambda call operator specialization, its
3755   // instantiation pattern is always its primary template's pattern
3756   // even if its primary template was instantiated from another
3757   // member template (which happens with nested generic lambdas).
3758   // Since a lambda's call operator's body is transformed eagerly,
3759   // we don't have to go hunting for a prototype definition template
3760   // (i.e. instantiated-from-member-template) to use as an instantiation
3761   // pattern.
3762 
3763   if (isGenericLambdaCallOperatorSpecialization(
3764           dyn_cast<CXXMethodDecl>(this))) {
3765     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3766     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3767   }
3768 
3769   // Check for a declaration of this function that was instantiated from a
3770   // friend definition.
3771   const FunctionDecl *FD = nullptr;
3772   if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3773     FD = this;
3774 
3775   if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3776     if (ForDefinition &&
3777         !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3778       return nullptr;
3779     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3780   }
3781 
3782   if (ForDefinition &&
3783       !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3784     return nullptr;
3785 
3786   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3787     // If we hit a point where the user provided a specialization of this
3788     // template, we're done looking.
3789     while (!ForDefinition || !Primary->isMemberSpecialization()) {
3790       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3791       if (!NewPrimary)
3792         break;
3793       Primary = NewPrimary;
3794     }
3795 
3796     return getDefinitionOrSelf(Primary->getTemplatedDecl());
3797   }
3798 
3799   return nullptr;
3800 }
3801 
3802 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3803   if (FunctionTemplateSpecializationInfo *Info
3804         = TemplateOrSpecialization
3805             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3806     return Info->getTemplate();
3807   }
3808   return nullptr;
3809 }
3810 
3811 FunctionTemplateSpecializationInfo *
3812 FunctionDecl::getTemplateSpecializationInfo() const {
3813   return TemplateOrSpecialization
3814       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3815 }
3816 
3817 const TemplateArgumentList *
3818 FunctionDecl::getTemplateSpecializationArgs() const {
3819   if (FunctionTemplateSpecializationInfo *Info
3820         = TemplateOrSpecialization
3821             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3822     return Info->TemplateArguments;
3823   }
3824   return nullptr;
3825 }
3826 
3827 const ASTTemplateArgumentListInfo *
3828 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3829   if (FunctionTemplateSpecializationInfo *Info
3830         = TemplateOrSpecialization
3831             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3832     return Info->TemplateArgumentsAsWritten;
3833   }
3834   return nullptr;
3835 }
3836 
3837 void
3838 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3839                                                 FunctionTemplateDecl *Template,
3840                                      const TemplateArgumentList *TemplateArgs,
3841                                                 void *InsertPos,
3842                                                 TemplateSpecializationKind TSK,
3843                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3844                                           SourceLocation PointOfInstantiation) {
3845   assert((TemplateOrSpecialization.isNull() ||
3846           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3847          "Member function is already a specialization");
3848   assert(TSK != TSK_Undeclared &&
3849          "Must specify the type of function template specialization");
3850   assert((TemplateOrSpecialization.isNull() ||
3851           TSK == TSK_ExplicitSpecialization) &&
3852          "Member specialization must be an explicit specialization");
3853   FunctionTemplateSpecializationInfo *Info =
3854       FunctionTemplateSpecializationInfo::Create(
3855           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3856           PointOfInstantiation,
3857           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3858   TemplateOrSpecialization = Info;
3859   Template->addSpecialization(Info, InsertPos);
3860 }
3861 
3862 void
3863 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3864                                     const UnresolvedSetImpl &Templates,
3865                              const TemplateArgumentListInfo &TemplateArgs) {
3866   assert(TemplateOrSpecialization.isNull());
3867   DependentFunctionTemplateSpecializationInfo *Info =
3868       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3869                                                           TemplateArgs);
3870   TemplateOrSpecialization = Info;
3871 }
3872 
3873 DependentFunctionTemplateSpecializationInfo *
3874 FunctionDecl::getDependentSpecializationInfo() const {
3875   return TemplateOrSpecialization
3876       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3877 }
3878 
3879 DependentFunctionTemplateSpecializationInfo *
3880 DependentFunctionTemplateSpecializationInfo::Create(
3881     ASTContext &Context, const UnresolvedSetImpl &Ts,
3882     const TemplateArgumentListInfo &TArgs) {
3883   void *Buffer = Context.Allocate(
3884       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3885           TArgs.size(), Ts.size()));
3886   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3887 }
3888 
3889 DependentFunctionTemplateSpecializationInfo::
3890 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3891                                       const TemplateArgumentListInfo &TArgs)
3892   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3893   NumTemplates = Ts.size();
3894   NumArgs = TArgs.size();
3895 
3896   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3897   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3898     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3899 
3900   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3901   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3902     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3903 }
3904 
3905 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3906   // For a function template specialization, query the specialization
3907   // information object.
3908   if (FunctionTemplateSpecializationInfo *FTSInfo =
3909           TemplateOrSpecialization
3910               .dyn_cast<FunctionTemplateSpecializationInfo *>())
3911     return FTSInfo->getTemplateSpecializationKind();
3912 
3913   if (MemberSpecializationInfo *MSInfo =
3914           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3915     return MSInfo->getTemplateSpecializationKind();
3916 
3917   return TSK_Undeclared;
3918 }
3919 
3920 TemplateSpecializationKind
3921 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3922   // This is the same as getTemplateSpecializationKind(), except that for a
3923   // function that is both a function template specialization and a member
3924   // specialization, we prefer the member specialization information. Eg:
3925   //
3926   // template<typename T> struct A {
3927   //   template<typename U> void f() {}
3928   //   template<> void f<int>() {}
3929   // };
3930   //
3931   // For A<int>::f<int>():
3932   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3933   // * getTemplateSpecializationKindForInstantiation() will return
3934   //       TSK_ImplicitInstantiation
3935   //
3936   // This reflects the facts that A<int>::f<int> is an explicit specialization
3937   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3938   // from A::f<int> if a definition is needed.
3939   if (FunctionTemplateSpecializationInfo *FTSInfo =
3940           TemplateOrSpecialization
3941               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3942     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3943       return MSInfo->getTemplateSpecializationKind();
3944     return FTSInfo->getTemplateSpecializationKind();
3945   }
3946 
3947   if (MemberSpecializationInfo *MSInfo =
3948           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3949     return MSInfo->getTemplateSpecializationKind();
3950 
3951   return TSK_Undeclared;
3952 }
3953 
3954 void
3955 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3956                                           SourceLocation PointOfInstantiation) {
3957   if (FunctionTemplateSpecializationInfo *FTSInfo
3958         = TemplateOrSpecialization.dyn_cast<
3959                                     FunctionTemplateSpecializationInfo*>()) {
3960     FTSInfo->setTemplateSpecializationKind(TSK);
3961     if (TSK != TSK_ExplicitSpecialization &&
3962         PointOfInstantiation.isValid() &&
3963         FTSInfo->getPointOfInstantiation().isInvalid()) {
3964       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3965       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3966         L->InstantiationRequested(this);
3967     }
3968   } else if (MemberSpecializationInfo *MSInfo
3969              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3970     MSInfo->setTemplateSpecializationKind(TSK);
3971     if (TSK != TSK_ExplicitSpecialization &&
3972         PointOfInstantiation.isValid() &&
3973         MSInfo->getPointOfInstantiation().isInvalid()) {
3974       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3975       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3976         L->InstantiationRequested(this);
3977     }
3978   } else
3979     llvm_unreachable("Function cannot have a template specialization kind");
3980 }
3981 
3982 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3983   if (FunctionTemplateSpecializationInfo *FTSInfo
3984         = TemplateOrSpecialization.dyn_cast<
3985                                         FunctionTemplateSpecializationInfo*>())
3986     return FTSInfo->getPointOfInstantiation();
3987   if (MemberSpecializationInfo *MSInfo =
3988           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3989     return MSInfo->getPointOfInstantiation();
3990 
3991   return SourceLocation();
3992 }
3993 
3994 bool FunctionDecl::isOutOfLine() const {
3995   if (Decl::isOutOfLine())
3996     return true;
3997 
3998   // If this function was instantiated from a member function of a
3999   // class template, check whether that member function was defined out-of-line.
4000   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4001     const FunctionDecl *Definition;
4002     if (FD->hasBody(Definition))
4003       return Definition->isOutOfLine();
4004   }
4005 
4006   // If this function was instantiated from a function template,
4007   // check whether that function template was defined out-of-line.
4008   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4009     const FunctionDecl *Definition;
4010     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4011       return Definition->isOutOfLine();
4012   }
4013 
4014   return false;
4015 }
4016 
4017 SourceRange FunctionDecl::getSourceRange() const {
4018   return SourceRange(getOuterLocStart(), EndRangeLoc);
4019 }
4020 
4021 unsigned FunctionDecl::getMemoryFunctionKind() const {
4022   IdentifierInfo *FnInfo = getIdentifier();
4023 
4024   if (!FnInfo)
4025     return 0;
4026 
4027   // Builtin handling.
4028   switch (getBuiltinID()) {
4029   case Builtin::BI__builtin_memset:
4030   case Builtin::BI__builtin___memset_chk:
4031   case Builtin::BImemset:
4032     return Builtin::BImemset;
4033 
4034   case Builtin::BI__builtin_memcpy:
4035   case Builtin::BI__builtin___memcpy_chk:
4036   case Builtin::BImemcpy:
4037     return Builtin::BImemcpy;
4038 
4039   case Builtin::BI__builtin_mempcpy:
4040   case Builtin::BI__builtin___mempcpy_chk:
4041   case Builtin::BImempcpy:
4042     return Builtin::BImempcpy;
4043 
4044   case Builtin::BI__builtin_memmove:
4045   case Builtin::BI__builtin___memmove_chk:
4046   case Builtin::BImemmove:
4047     return Builtin::BImemmove;
4048 
4049   case Builtin::BIstrlcpy:
4050   case Builtin::BI__builtin___strlcpy_chk:
4051     return Builtin::BIstrlcpy;
4052 
4053   case Builtin::BIstrlcat:
4054   case Builtin::BI__builtin___strlcat_chk:
4055     return Builtin::BIstrlcat;
4056 
4057   case Builtin::BI__builtin_memcmp:
4058   case Builtin::BImemcmp:
4059     return Builtin::BImemcmp;
4060 
4061   case Builtin::BI__builtin_bcmp:
4062   case Builtin::BIbcmp:
4063     return Builtin::BIbcmp;
4064 
4065   case Builtin::BI__builtin_strncpy:
4066   case Builtin::BI__builtin___strncpy_chk:
4067   case Builtin::BIstrncpy:
4068     return Builtin::BIstrncpy;
4069 
4070   case Builtin::BI__builtin_strncmp:
4071   case Builtin::BIstrncmp:
4072     return Builtin::BIstrncmp;
4073 
4074   case Builtin::BI__builtin_strncasecmp:
4075   case Builtin::BIstrncasecmp:
4076     return Builtin::BIstrncasecmp;
4077 
4078   case Builtin::BI__builtin_strncat:
4079   case Builtin::BI__builtin___strncat_chk:
4080   case Builtin::BIstrncat:
4081     return Builtin::BIstrncat;
4082 
4083   case Builtin::BI__builtin_strndup:
4084   case Builtin::BIstrndup:
4085     return Builtin::BIstrndup;
4086 
4087   case Builtin::BI__builtin_strlen:
4088   case Builtin::BIstrlen:
4089     return Builtin::BIstrlen;
4090 
4091   case Builtin::BI__builtin_bzero:
4092   case Builtin::BIbzero:
4093     return Builtin::BIbzero;
4094 
4095   case Builtin::BIfree:
4096     return Builtin::BIfree;
4097 
4098   default:
4099     if (isExternC()) {
4100       if (FnInfo->isStr("memset"))
4101         return Builtin::BImemset;
4102       if (FnInfo->isStr("memcpy"))
4103         return Builtin::BImemcpy;
4104       if (FnInfo->isStr("mempcpy"))
4105         return Builtin::BImempcpy;
4106       if (FnInfo->isStr("memmove"))
4107         return Builtin::BImemmove;
4108       if (FnInfo->isStr("memcmp"))
4109         return Builtin::BImemcmp;
4110       if (FnInfo->isStr("bcmp"))
4111         return Builtin::BIbcmp;
4112       if (FnInfo->isStr("strncpy"))
4113         return Builtin::BIstrncpy;
4114       if (FnInfo->isStr("strncmp"))
4115         return Builtin::BIstrncmp;
4116       if (FnInfo->isStr("strncasecmp"))
4117         return Builtin::BIstrncasecmp;
4118       if (FnInfo->isStr("strncat"))
4119         return Builtin::BIstrncat;
4120       if (FnInfo->isStr("strndup"))
4121         return Builtin::BIstrndup;
4122       if (FnInfo->isStr("strlen"))
4123         return Builtin::BIstrlen;
4124       if (FnInfo->isStr("bzero"))
4125         return Builtin::BIbzero;
4126     } else if (isInStdNamespace()) {
4127       if (FnInfo->isStr("free"))
4128         return Builtin::BIfree;
4129     }
4130     break;
4131   }
4132   return 0;
4133 }
4134 
4135 unsigned FunctionDecl::getODRHash() const {
4136   assert(hasODRHash());
4137   return ODRHash;
4138 }
4139 
4140 unsigned FunctionDecl::getODRHash() {
4141   if (hasODRHash())
4142     return ODRHash;
4143 
4144   if (auto *FT = getInstantiatedFromMemberFunction()) {
4145     setHasODRHash(true);
4146     ODRHash = FT->getODRHash();
4147     return ODRHash;
4148   }
4149 
4150   class ODRHash Hash;
4151   Hash.AddFunctionDecl(this);
4152   setHasODRHash(true);
4153   ODRHash = Hash.CalculateHash();
4154   return ODRHash;
4155 }
4156 
4157 //===----------------------------------------------------------------------===//
4158 // FieldDecl Implementation
4159 //===----------------------------------------------------------------------===//
4160 
4161 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4162                              SourceLocation StartLoc, SourceLocation IdLoc,
4163                              IdentifierInfo *Id, QualType T,
4164                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4165                              InClassInitStyle InitStyle) {
4166   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4167                                BW, Mutable, InitStyle);
4168 }
4169 
4170 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4171   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4172                                SourceLocation(), nullptr, QualType(), nullptr,
4173                                nullptr, false, ICIS_NoInit);
4174 }
4175 
4176 bool FieldDecl::isAnonymousStructOrUnion() const {
4177   if (!isImplicit() || getDeclName())
4178     return false;
4179 
4180   if (const auto *Record = getType()->getAs<RecordType>())
4181     return Record->getDecl()->isAnonymousStructOrUnion();
4182 
4183   return false;
4184 }
4185 
4186 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4187   assert(isBitField() && "not a bitfield");
4188   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4189 }
4190 
4191 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4192   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4193          getBitWidthValue(Ctx) == 0;
4194 }
4195 
4196 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4197   if (isZeroLengthBitField(Ctx))
4198     return true;
4199 
4200   // C++2a [intro.object]p7:
4201   //   An object has nonzero size if it
4202   //     -- is not a potentially-overlapping subobject, or
4203   if (!hasAttr<NoUniqueAddressAttr>())
4204     return false;
4205 
4206   //     -- is not of class type, or
4207   const auto *RT = getType()->getAs<RecordType>();
4208   if (!RT)
4209     return false;
4210   const RecordDecl *RD = RT->getDecl()->getDefinition();
4211   if (!RD) {
4212     assert(isInvalidDecl() && "valid field has incomplete type");
4213     return false;
4214   }
4215 
4216   //     -- [has] virtual member functions or virtual base classes, or
4217   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4218   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4219   if (!CXXRD->isEmpty())
4220     return false;
4221 
4222   // Otherwise, [...] the circumstances under which the object has zero size
4223   // are implementation-defined.
4224   // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4225   // ABI will do.
4226   return true;
4227 }
4228 
4229 unsigned FieldDecl::getFieldIndex() const {
4230   const FieldDecl *Canonical = getCanonicalDecl();
4231   if (Canonical != this)
4232     return Canonical->getFieldIndex();
4233 
4234   if (CachedFieldIndex) return CachedFieldIndex - 1;
4235 
4236   unsigned Index = 0;
4237   const RecordDecl *RD = getParent()->getDefinition();
4238   assert(RD && "requested index for field of struct with no definition");
4239 
4240   for (auto *Field : RD->fields()) {
4241     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4242     ++Index;
4243   }
4244 
4245   assert(CachedFieldIndex && "failed to find field in parent");
4246   return CachedFieldIndex - 1;
4247 }
4248 
4249 SourceRange FieldDecl::getSourceRange() const {
4250   const Expr *FinalExpr = getInClassInitializer();
4251   if (!FinalExpr)
4252     FinalExpr = getBitWidth();
4253   if (FinalExpr)
4254     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4255   return DeclaratorDecl::getSourceRange();
4256 }
4257 
4258 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4259   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4260          "capturing type in non-lambda or captured record.");
4261   assert(InitStorage.getInt() == ISK_NoInit &&
4262          InitStorage.getPointer() == nullptr &&
4263          "bit width, initializer or captured type already set");
4264   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4265                                ISK_CapturedVLAType);
4266 }
4267 
4268 //===----------------------------------------------------------------------===//
4269 // TagDecl Implementation
4270 //===----------------------------------------------------------------------===//
4271 
4272 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4273                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4274                  SourceLocation StartL)
4275     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4276       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4277   assert((DK != Enum || TK == TTK_Enum) &&
4278          "EnumDecl not matched with TTK_Enum");
4279   setPreviousDecl(PrevDecl);
4280   setTagKind(TK);
4281   setCompleteDefinition(false);
4282   setBeingDefined(false);
4283   setEmbeddedInDeclarator(false);
4284   setFreeStanding(false);
4285   setCompleteDefinitionRequired(false);
4286 }
4287 
4288 SourceLocation TagDecl::getOuterLocStart() const {
4289   return getTemplateOrInnerLocStart(this);
4290 }
4291 
4292 SourceRange TagDecl::getSourceRange() const {
4293   SourceLocation RBraceLoc = BraceRange.getEnd();
4294   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4295   return SourceRange(getOuterLocStart(), E);
4296 }
4297 
4298 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4299 
4300 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4301   TypedefNameDeclOrQualifier = TDD;
4302   if (const Type *T = getTypeForDecl()) {
4303     (void)T;
4304     assert(T->isLinkageValid());
4305   }
4306   assert(isLinkageValid());
4307 }
4308 
4309 void TagDecl::startDefinition() {
4310   setBeingDefined(true);
4311 
4312   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4313     struct CXXRecordDecl::DefinitionData *Data =
4314       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4315     for (auto I : redecls())
4316       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4317   }
4318 }
4319 
4320 void TagDecl::completeDefinition() {
4321   assert((!isa<CXXRecordDecl>(this) ||
4322           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4323          "definition completed but not started");
4324 
4325   setCompleteDefinition(true);
4326   setBeingDefined(false);
4327 
4328   if (ASTMutationListener *L = getASTMutationListener())
4329     L->CompletedTagDefinition(this);
4330 }
4331 
4332 TagDecl *TagDecl::getDefinition() const {
4333   if (isCompleteDefinition())
4334     return const_cast<TagDecl *>(this);
4335 
4336   // If it's possible for us to have an out-of-date definition, check now.
4337   if (mayHaveOutOfDateDef()) {
4338     if (IdentifierInfo *II = getIdentifier()) {
4339       if (II->isOutOfDate()) {
4340         updateOutOfDate(*II);
4341       }
4342     }
4343   }
4344 
4345   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4346     return CXXRD->getDefinition();
4347 
4348   for (auto R : redecls())
4349     if (R->isCompleteDefinition())
4350       return R;
4351 
4352   return nullptr;
4353 }
4354 
4355 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4356   if (QualifierLoc) {
4357     // Make sure the extended qualifier info is allocated.
4358     if (!hasExtInfo())
4359       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4360     // Set qualifier info.
4361     getExtInfo()->QualifierLoc = QualifierLoc;
4362   } else {
4363     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4364     if (hasExtInfo()) {
4365       if (getExtInfo()->NumTemplParamLists == 0) {
4366         getASTContext().Deallocate(getExtInfo());
4367         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4368       }
4369       else
4370         getExtInfo()->QualifierLoc = QualifierLoc;
4371     }
4372   }
4373 }
4374 
4375 void TagDecl::setTemplateParameterListsInfo(
4376     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4377   assert(!TPLists.empty());
4378   // Make sure the extended decl info is allocated.
4379   if (!hasExtInfo())
4380     // Allocate external info struct.
4381     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4382   // Set the template parameter lists info.
4383   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4384 }
4385 
4386 //===----------------------------------------------------------------------===//
4387 // EnumDecl Implementation
4388 //===----------------------------------------------------------------------===//
4389 
4390 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4391                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4392                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4393     : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4394   assert(Scoped || !ScopedUsingClassTag);
4395   IntegerType = nullptr;
4396   setNumPositiveBits(0);
4397   setNumNegativeBits(0);
4398   setScoped(Scoped);
4399   setScopedUsingClassTag(ScopedUsingClassTag);
4400   setFixed(Fixed);
4401   setHasODRHash(false);
4402   ODRHash = 0;
4403 }
4404 
4405 void EnumDecl::anchor() {}
4406 
4407 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4408                            SourceLocation StartLoc, SourceLocation IdLoc,
4409                            IdentifierInfo *Id,
4410                            EnumDecl *PrevDecl, bool IsScoped,
4411                            bool IsScopedUsingClassTag, bool IsFixed) {
4412   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4413                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4414   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4415   C.getTypeDeclType(Enum, PrevDecl);
4416   return Enum;
4417 }
4418 
4419 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4420   EnumDecl *Enum =
4421       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4422                            nullptr, nullptr, false, false, false);
4423   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4424   return Enum;
4425 }
4426 
4427 SourceRange EnumDecl::getIntegerTypeRange() const {
4428   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4429     return TI->getTypeLoc().getSourceRange();
4430   return SourceRange();
4431 }
4432 
4433 void EnumDecl::completeDefinition(QualType NewType,
4434                                   QualType NewPromotionType,
4435                                   unsigned NumPositiveBits,
4436                                   unsigned NumNegativeBits) {
4437   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4438   if (!IntegerType)
4439     IntegerType = NewType.getTypePtr();
4440   PromotionType = NewPromotionType;
4441   setNumPositiveBits(NumPositiveBits);
4442   setNumNegativeBits(NumNegativeBits);
4443   TagDecl::completeDefinition();
4444 }
4445 
4446 bool EnumDecl::isClosed() const {
4447   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4448     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4449   return true;
4450 }
4451 
4452 bool EnumDecl::isClosedFlag() const {
4453   return isClosed() && hasAttr<FlagEnumAttr>();
4454 }
4455 
4456 bool EnumDecl::isClosedNonFlag() const {
4457   return isClosed() && !hasAttr<FlagEnumAttr>();
4458 }
4459 
4460 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4461   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4462     return MSI->getTemplateSpecializationKind();
4463 
4464   return TSK_Undeclared;
4465 }
4466 
4467 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4468                                          SourceLocation PointOfInstantiation) {
4469   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4470   assert(MSI && "Not an instantiated member enumeration?");
4471   MSI->setTemplateSpecializationKind(TSK);
4472   if (TSK != TSK_ExplicitSpecialization &&
4473       PointOfInstantiation.isValid() &&
4474       MSI->getPointOfInstantiation().isInvalid())
4475     MSI->setPointOfInstantiation(PointOfInstantiation);
4476 }
4477 
4478 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4479   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4480     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4481       EnumDecl *ED = getInstantiatedFromMemberEnum();
4482       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4483         ED = NewED;
4484       return getDefinitionOrSelf(ED);
4485     }
4486   }
4487 
4488   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4489          "couldn't find pattern for enum instantiation");
4490   return nullptr;
4491 }
4492 
4493 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4494   if (SpecializationInfo)
4495     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4496 
4497   return nullptr;
4498 }
4499 
4500 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4501                                             TemplateSpecializationKind TSK) {
4502   assert(!SpecializationInfo && "Member enum is already a specialization");
4503   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4504 }
4505 
4506 unsigned EnumDecl::getODRHash() {
4507   if (hasODRHash())
4508     return ODRHash;
4509 
4510   class ODRHash Hash;
4511   Hash.AddEnumDecl(this);
4512   setHasODRHash(true);
4513   ODRHash = Hash.CalculateHash();
4514   return ODRHash;
4515 }
4516 
4517 SourceRange EnumDecl::getSourceRange() const {
4518   auto Res = TagDecl::getSourceRange();
4519   // Set end-point to enum-base, e.g. enum foo : ^bar
4520   if (auto *TSI = getIntegerTypeSourceInfo()) {
4521     // TagDecl doesn't know about the enum base.
4522     if (!getBraceRange().getEnd().isValid())
4523       Res.setEnd(TSI->getTypeLoc().getEndLoc());
4524   }
4525   return Res;
4526 }
4527 
4528 //===----------------------------------------------------------------------===//
4529 // RecordDecl Implementation
4530 //===----------------------------------------------------------------------===//
4531 
4532 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4533                        DeclContext *DC, SourceLocation StartLoc,
4534                        SourceLocation IdLoc, IdentifierInfo *Id,
4535                        RecordDecl *PrevDecl)
4536     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4537   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4538   setHasFlexibleArrayMember(false);
4539   setAnonymousStructOrUnion(false);
4540   setHasObjectMember(false);
4541   setHasVolatileMember(false);
4542   setHasLoadedFieldsFromExternalStorage(false);
4543   setNonTrivialToPrimitiveDefaultInitialize(false);
4544   setNonTrivialToPrimitiveCopy(false);
4545   setNonTrivialToPrimitiveDestroy(false);
4546   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4547   setHasNonTrivialToPrimitiveDestructCUnion(false);
4548   setHasNonTrivialToPrimitiveCopyCUnion(false);
4549   setParamDestroyedInCallee(false);
4550   setArgPassingRestrictions(APK_CanPassInRegs);
4551 }
4552 
4553 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4554                                SourceLocation StartLoc, SourceLocation IdLoc,
4555                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
4556   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4557                                          StartLoc, IdLoc, Id, PrevDecl);
4558   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4559 
4560   C.getTypeDeclType(R, PrevDecl);
4561   return R;
4562 }
4563 
4564 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4565   RecordDecl *R =
4566       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4567                              SourceLocation(), nullptr, nullptr);
4568   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4569   return R;
4570 }
4571 
4572 bool RecordDecl::isInjectedClassName() const {
4573   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4574     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4575 }
4576 
4577 bool RecordDecl::isLambda() const {
4578   if (auto RD = dyn_cast<CXXRecordDecl>(this))
4579     return RD->isLambda();
4580   return false;
4581 }
4582 
4583 bool RecordDecl::isCapturedRecord() const {
4584   return hasAttr<CapturedRecordAttr>();
4585 }
4586 
4587 void RecordDecl::setCapturedRecord() {
4588   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4589 }
4590 
4591 bool RecordDecl::isOrContainsUnion() const {
4592   if (isUnion())
4593     return true;
4594 
4595   if (const RecordDecl *Def = getDefinition()) {
4596     for (const FieldDecl *FD : Def->fields()) {
4597       const RecordType *RT = FD->getType()->getAs<RecordType>();
4598       if (RT && RT->getDecl()->isOrContainsUnion())
4599         return true;
4600     }
4601   }
4602 
4603   return false;
4604 }
4605 
4606 RecordDecl::field_iterator RecordDecl::field_begin() const {
4607   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4608     LoadFieldsFromExternalStorage();
4609 
4610   return field_iterator(decl_iterator(FirstDecl));
4611 }
4612 
4613 /// completeDefinition - Notes that the definition of this type is now
4614 /// complete.
4615 void RecordDecl::completeDefinition() {
4616   assert(!isCompleteDefinition() && "Cannot redefine record!");
4617   TagDecl::completeDefinition();
4618 
4619   ASTContext &Ctx = getASTContext();
4620 
4621   // Layouts are dumped when computed, so if we are dumping for all complete
4622   // types, we need to force usage to get types that wouldn't be used elsewhere.
4623   if (Ctx.getLangOpts().DumpRecordLayoutsComplete)
4624     (void)Ctx.getASTRecordLayout(this);
4625 }
4626 
4627 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4628 /// This which can be turned on with an attribute, pragma, or the
4629 /// -mms-bitfields command-line option.
4630 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4631   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4632 }
4633 
4634 void RecordDecl::LoadFieldsFromExternalStorage() const {
4635   ExternalASTSource *Source = getASTContext().getExternalSource();
4636   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4637 
4638   // Notify that we have a RecordDecl doing some initialization.
4639   ExternalASTSource::Deserializing TheFields(Source);
4640 
4641   SmallVector<Decl*, 64> Decls;
4642   setHasLoadedFieldsFromExternalStorage(true);
4643   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4644     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4645   }, Decls);
4646 
4647 #ifndef NDEBUG
4648   // Check that all decls we got were FieldDecls.
4649   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4650     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4651 #endif
4652 
4653   if (Decls.empty())
4654     return;
4655 
4656   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4657                                                  /*FieldsAlreadyLoaded=*/false);
4658 }
4659 
4660 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4661   ASTContext &Context = getASTContext();
4662   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4663       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4664   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4665     return false;
4666   const auto &NoSanitizeList = Context.getNoSanitizeList();
4667   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4668   // We may be able to relax some of these requirements.
4669   int ReasonToReject = -1;
4670   if (!CXXRD || CXXRD->isExternCContext())
4671     ReasonToReject = 0;  // is not C++.
4672   else if (CXXRD->hasAttr<PackedAttr>())
4673     ReasonToReject = 1;  // is packed.
4674   else if (CXXRD->isUnion())
4675     ReasonToReject = 2;  // is a union.
4676   else if (CXXRD->isTriviallyCopyable())
4677     ReasonToReject = 3;  // is trivially copyable.
4678   else if (CXXRD->hasTrivialDestructor())
4679     ReasonToReject = 4;  // has trivial destructor.
4680   else if (CXXRD->isStandardLayout())
4681     ReasonToReject = 5;  // is standard layout.
4682   else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4683                                            "field-padding"))
4684     ReasonToReject = 6;  // is in an excluded file.
4685   else if (NoSanitizeList.containsType(
4686                EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4687     ReasonToReject = 7;  // The type is excluded.
4688 
4689   if (EmitRemark) {
4690     if (ReasonToReject >= 0)
4691       Context.getDiagnostics().Report(
4692           getLocation(),
4693           diag::remark_sanitize_address_insert_extra_padding_rejected)
4694           << getQualifiedNameAsString() << ReasonToReject;
4695     else
4696       Context.getDiagnostics().Report(
4697           getLocation(),
4698           diag::remark_sanitize_address_insert_extra_padding_accepted)
4699           << getQualifiedNameAsString();
4700   }
4701   return ReasonToReject < 0;
4702 }
4703 
4704 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4705   for (const auto *I : fields()) {
4706     if (I->getIdentifier())
4707       return I;
4708 
4709     if (const auto *RT = I->getType()->getAs<RecordType>())
4710       if (const FieldDecl *NamedDataMember =
4711               RT->getDecl()->findFirstNamedDataMember())
4712         return NamedDataMember;
4713   }
4714 
4715   // We didn't find a named data member.
4716   return nullptr;
4717 }
4718 
4719 //===----------------------------------------------------------------------===//
4720 // BlockDecl Implementation
4721 //===----------------------------------------------------------------------===//
4722 
4723 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4724     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4725   setIsVariadic(false);
4726   setCapturesCXXThis(false);
4727   setBlockMissingReturnType(true);
4728   setIsConversionFromLambda(false);
4729   setDoesNotEscape(false);
4730   setCanAvoidCopyToHeap(false);
4731 }
4732 
4733 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4734   assert(!ParamInfo && "Already has param info!");
4735 
4736   // Zero params -> null pointer.
4737   if (!NewParamInfo.empty()) {
4738     NumParams = NewParamInfo.size();
4739     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4740     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4741   }
4742 }
4743 
4744 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4745                             bool CapturesCXXThis) {
4746   this->setCapturesCXXThis(CapturesCXXThis);
4747   this->NumCaptures = Captures.size();
4748 
4749   if (Captures.empty()) {
4750     this->Captures = nullptr;
4751     return;
4752   }
4753 
4754   this->Captures = Captures.copy(Context).data();
4755 }
4756 
4757 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4758   for (const auto &I : captures())
4759     // Only auto vars can be captured, so no redeclaration worries.
4760     if (I.getVariable() == variable)
4761       return true;
4762 
4763   return false;
4764 }
4765 
4766 SourceRange BlockDecl::getSourceRange() const {
4767   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4768 }
4769 
4770 //===----------------------------------------------------------------------===//
4771 // Other Decl Allocation/Deallocation Method Implementations
4772 //===----------------------------------------------------------------------===//
4773 
4774 void TranslationUnitDecl::anchor() {}
4775 
4776 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4777   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4778 }
4779 
4780 void PragmaCommentDecl::anchor() {}
4781 
4782 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4783                                              TranslationUnitDecl *DC,
4784                                              SourceLocation CommentLoc,
4785                                              PragmaMSCommentKind CommentKind,
4786                                              StringRef Arg) {
4787   PragmaCommentDecl *PCD =
4788       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4789           PragmaCommentDecl(DC, CommentLoc, CommentKind);
4790   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4791   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4792   return PCD;
4793 }
4794 
4795 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4796                                                          unsigned ID,
4797                                                          unsigned ArgSize) {
4798   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4799       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4800 }
4801 
4802 void PragmaDetectMismatchDecl::anchor() {}
4803 
4804 PragmaDetectMismatchDecl *
4805 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4806                                  SourceLocation Loc, StringRef Name,
4807                                  StringRef Value) {
4808   size_t ValueStart = Name.size() + 1;
4809   PragmaDetectMismatchDecl *PDMD =
4810       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4811           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4812   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4813   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4814   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4815          Value.size());
4816   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4817   return PDMD;
4818 }
4819 
4820 PragmaDetectMismatchDecl *
4821 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4822                                              unsigned NameValueSize) {
4823   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4824       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4825 }
4826 
4827 void ExternCContextDecl::anchor() {}
4828 
4829 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4830                                                TranslationUnitDecl *DC) {
4831   return new (C, DC) ExternCContextDecl(DC);
4832 }
4833 
4834 void LabelDecl::anchor() {}
4835 
4836 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4837                              SourceLocation IdentL, IdentifierInfo *II) {
4838   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4839 }
4840 
4841 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4842                              SourceLocation IdentL, IdentifierInfo *II,
4843                              SourceLocation GnuLabelL) {
4844   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4845   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4846 }
4847 
4848 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4849   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4850                                SourceLocation());
4851 }
4852 
4853 void LabelDecl::setMSAsmLabel(StringRef Name) {
4854 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4855   memcpy(Buffer, Name.data(), Name.size());
4856   Buffer[Name.size()] = '\0';
4857   MSAsmName = Buffer;
4858 }
4859 
4860 void ValueDecl::anchor() {}
4861 
4862 bool ValueDecl::isWeak() const {
4863   auto *MostRecent = getMostRecentDecl();
4864   return MostRecent->hasAttr<WeakAttr>() ||
4865          MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
4866 }
4867 
4868 void ImplicitParamDecl::anchor() {}
4869 
4870 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4871                                              SourceLocation IdLoc,
4872                                              IdentifierInfo *Id, QualType Type,
4873                                              ImplicitParamKind ParamKind) {
4874   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4875 }
4876 
4877 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4878                                              ImplicitParamKind ParamKind) {
4879   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4880 }
4881 
4882 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4883                                                          unsigned ID) {
4884   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4885 }
4886 
4887 FunctionDecl *
4888 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4889                      const DeclarationNameInfo &NameInfo, QualType T,
4890                      TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
4891                      bool isInlineSpecified, bool hasWrittenPrototype,
4892                      ConstexprSpecKind ConstexprKind,
4893                      Expr *TrailingRequiresClause) {
4894   FunctionDecl *New = new (C, DC) FunctionDecl(
4895       Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
4896       isInlineSpecified, ConstexprKind, TrailingRequiresClause);
4897   New->setHasWrittenPrototype(hasWrittenPrototype);
4898   return New;
4899 }
4900 
4901 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4902   return new (C, ID) FunctionDecl(
4903       Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
4904       nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
4905 }
4906 
4907 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4908   return new (C, DC) BlockDecl(DC, L);
4909 }
4910 
4911 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4912   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4913 }
4914 
4915 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4916     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4917       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4918 
4919 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4920                                    unsigned NumParams) {
4921   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4922       CapturedDecl(DC, NumParams);
4923 }
4924 
4925 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4926                                                unsigned NumParams) {
4927   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4928       CapturedDecl(nullptr, NumParams);
4929 }
4930 
4931 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4932 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4933 
4934 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4935 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4936 
4937 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4938                                            SourceLocation L,
4939                                            IdentifierInfo *Id, QualType T,
4940                                            Expr *E, const llvm::APSInt &V) {
4941   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4942 }
4943 
4944 EnumConstantDecl *
4945 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4946   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4947                                       QualType(), nullptr, llvm::APSInt());
4948 }
4949 
4950 void IndirectFieldDecl::anchor() {}
4951 
4952 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4953                                      SourceLocation L, DeclarationName N,
4954                                      QualType T,
4955                                      MutableArrayRef<NamedDecl *> CH)
4956     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4957       ChainingSize(CH.size()) {
4958   // In C++, indirect field declarations conflict with tag declarations in the
4959   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4960   if (C.getLangOpts().CPlusPlus)
4961     IdentifierNamespace |= IDNS_Tag;
4962 }
4963 
4964 IndirectFieldDecl *
4965 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4966                           IdentifierInfo *Id, QualType T,
4967                           llvm::MutableArrayRef<NamedDecl *> CH) {
4968   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4969 }
4970 
4971 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4972                                                          unsigned ID) {
4973   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4974                                        DeclarationName(), QualType(), None);
4975 }
4976 
4977 SourceRange EnumConstantDecl::getSourceRange() const {
4978   SourceLocation End = getLocation();
4979   if (Init)
4980     End = Init->getEndLoc();
4981   return SourceRange(getLocation(), End);
4982 }
4983 
4984 void TypeDecl::anchor() {}
4985 
4986 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4987                                  SourceLocation StartLoc, SourceLocation IdLoc,
4988                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4989   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4990 }
4991 
4992 void TypedefNameDecl::anchor() {}
4993 
4994 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4995   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4996     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4997     auto *ThisTypedef = this;
4998     if (AnyRedecl && OwningTypedef) {
4999       OwningTypedef = OwningTypedef->getCanonicalDecl();
5000       ThisTypedef = ThisTypedef->getCanonicalDecl();
5001     }
5002     if (OwningTypedef == ThisTypedef)
5003       return TT->getDecl();
5004   }
5005 
5006   return nullptr;
5007 }
5008 
5009 bool TypedefNameDecl::isTransparentTagSlow() const {
5010   auto determineIsTransparent = [&]() {
5011     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5012       if (auto *TD = TT->getDecl()) {
5013         if (TD->getName() != getName())
5014           return false;
5015         SourceLocation TTLoc = getLocation();
5016         SourceLocation TDLoc = TD->getLocation();
5017         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5018           return false;
5019         SourceManager &SM = getASTContext().getSourceManager();
5020         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5021       }
5022     }
5023     return false;
5024   };
5025 
5026   bool isTransparent = determineIsTransparent();
5027   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5028   return isTransparent;
5029 }
5030 
5031 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5032   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5033                                  nullptr, nullptr);
5034 }
5035 
5036 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5037                                      SourceLocation StartLoc,
5038                                      SourceLocation IdLoc, IdentifierInfo *Id,
5039                                      TypeSourceInfo *TInfo) {
5040   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5041 }
5042 
5043 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5044   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5045                                    SourceLocation(), nullptr, nullptr);
5046 }
5047 
5048 SourceRange TypedefDecl::getSourceRange() const {
5049   SourceLocation RangeEnd = getLocation();
5050   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5051     if (typeIsPostfix(TInfo->getType()))
5052       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5053   }
5054   return SourceRange(getBeginLoc(), RangeEnd);
5055 }
5056 
5057 SourceRange TypeAliasDecl::getSourceRange() const {
5058   SourceLocation RangeEnd = getBeginLoc();
5059   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5060     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5061   return SourceRange(getBeginLoc(), RangeEnd);
5062 }
5063 
5064 void FileScopeAsmDecl::anchor() {}
5065 
5066 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5067                                            StringLiteral *Str,
5068                                            SourceLocation AsmLoc,
5069                                            SourceLocation RParenLoc) {
5070   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5071 }
5072 
5073 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5074                                                        unsigned ID) {
5075   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5076                                       SourceLocation());
5077 }
5078 
5079 void EmptyDecl::anchor() {}
5080 
5081 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5082   return new (C, DC) EmptyDecl(DC, L);
5083 }
5084 
5085 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5086   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5087 }
5088 
5089 //===----------------------------------------------------------------------===//
5090 // ImportDecl Implementation
5091 //===----------------------------------------------------------------------===//
5092 
5093 /// Retrieve the number of module identifiers needed to name the given
5094 /// module.
5095 static unsigned getNumModuleIdentifiers(Module *Mod) {
5096   unsigned Result = 1;
5097   while (Mod->Parent) {
5098     Mod = Mod->Parent;
5099     ++Result;
5100   }
5101   return Result;
5102 }
5103 
5104 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5105                        Module *Imported,
5106                        ArrayRef<SourceLocation> IdentifierLocs)
5107     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5108       NextLocalImportAndComplete(nullptr, true) {
5109   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5110   auto *StoredLocs = getTrailingObjects<SourceLocation>();
5111   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5112                           StoredLocs);
5113 }
5114 
5115 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5116                        Module *Imported, SourceLocation EndLoc)
5117     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5118       NextLocalImportAndComplete(nullptr, false) {
5119   *getTrailingObjects<SourceLocation>() = EndLoc;
5120 }
5121 
5122 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5123                                SourceLocation StartLoc, Module *Imported,
5124                                ArrayRef<SourceLocation> IdentifierLocs) {
5125   return new (C, DC,
5126               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5127       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5128 }
5129 
5130 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5131                                        SourceLocation StartLoc,
5132                                        Module *Imported,
5133                                        SourceLocation EndLoc) {
5134   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5135       ImportDecl(DC, StartLoc, Imported, EndLoc);
5136   Import->setImplicit();
5137   return Import;
5138 }
5139 
5140 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5141                                            unsigned NumLocations) {
5142   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5143       ImportDecl(EmptyShell());
5144 }
5145 
5146 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5147   if (!isImportComplete())
5148     return None;
5149 
5150   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5151   return llvm::makeArrayRef(StoredLocs,
5152                             getNumModuleIdentifiers(getImportedModule()));
5153 }
5154 
5155 SourceRange ImportDecl::getSourceRange() const {
5156   if (!isImportComplete())
5157     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5158 
5159   return SourceRange(getLocation(), getIdentifierLocs().back());
5160 }
5161 
5162 //===----------------------------------------------------------------------===//
5163 // ExportDecl Implementation
5164 //===----------------------------------------------------------------------===//
5165 
5166 void ExportDecl::anchor() {}
5167 
5168 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5169                                SourceLocation ExportLoc) {
5170   return new (C, DC) ExportDecl(DC, ExportLoc);
5171 }
5172 
5173 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5174   return new (C, ID) ExportDecl(nullptr, SourceLocation());
5175 }
5176