xref: /freebsd-src/contrib/llvm-project/clang/lib/AST/Decl.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Redeclarable.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/IdentifierTable.h"
40 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/LangOptions.h"
42 #include "clang/Basic/Linkage.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/NoSanitizeList.h"
45 #include "clang/Basic/PartialDiagnostic.h"
46 #include "clang/Basic/Sanitizers.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetCXXABI.h"
51 #include "clang/Basic/TargetInfo.h"
52 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73 
74 using namespace clang;
75 
76 Decl *clang::getPrimaryMergedDecl(Decl *D) {
77   return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79 
80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81   SourceLocation Loc = this->Loc;
82   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83   if (Loc.isValid()) {
84     Loc.print(OS, Context.getSourceManager());
85     OS << ": ";
86   }
87   OS << Message;
88 
89   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90     OS << " '";
91     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92     OS << "'";
93   }
94 
95   OS << '\n';
96 }
97 
98 // Defined here so that it can be inlined into its direct callers.
99 bool Decl::isOutOfLine() const {
100   return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102 
103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104     : Decl(TranslationUnit, nullptr, SourceLocation()),
105       DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
106 
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110 
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored.  Only the innermost
116 // visibility attribute applies.  If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments.  But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility.  For example,
148 // the visibility of a specialization of either of these templates:
149 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 //   template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'.  That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156 
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160   return computation.IgnoreExplicitVisibility;
161 }
162 
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
166 withExplicitVisibilityAlready(LVComputationKind Kind) {
167   Kind.IgnoreExplicitVisibility = true;
168   return Kind;
169 }
170 
171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172                                                   LVComputationKind kind) {
173   assert(!kind.IgnoreExplicitVisibility &&
174          "asking for explicit visibility when we shouldn't be");
175   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176 }
177 
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
180 static bool usesTypeVisibility(const NamedDecl *D) {
181   return isa<TypeDecl>(D) ||
182          isa<ClassTemplateDecl>(D) ||
183          isa<ObjCInterfaceDecl>(D);
184 }
185 
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190 isExplicitMemberSpecialization(const T *D) {
191   if (const MemberSpecializationInfo *member =
192         D->getMemberSpecializationInfo()) {
193     return member->isExplicitSpecialization();
194   }
195   return false;
196 }
197 
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202   return D->isMemberSpecialization();
203 }
204 
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
208 static Visibility getVisibilityFromAttr(const T *attr) {
209   switch (attr->getVisibility()) {
210   case T::Default:
211     return DefaultVisibility;
212   case T::Hidden:
213     return HiddenVisibility;
214   case T::Protected:
215     return ProtectedVisibility;
216   }
217   llvm_unreachable("bad visibility kind");
218 }
219 
220 /// Return the explicit visibility of the given declaration.
221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222                                     NamedDecl::ExplicitVisibilityKind kind) {
223   // If we're ultimately computing the visibility of a type, look for
224   // a 'type_visibility' attribute before looking for 'visibility'.
225   if (kind == NamedDecl::VisibilityForType) {
226     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227       return getVisibilityFromAttr(A);
228     }
229   }
230 
231   // If this declaration has an explicit visibility attribute, use it.
232   if (const auto *A = D->getAttr<VisibilityAttr>()) {
233     return getVisibilityFromAttr(A);
234   }
235 
236   return None;
237 }
238 
239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240                                           LVComputationKind computation) {
241   if (computation.IgnoreAllVisibility)
242     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243   return getTypeLinkageAndVisibility(&T);
244 }
245 
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list.  For visibility purposes, template
248 /// parameters are part of the signature of a template.
249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250     const TemplateParameterList *Params, LVComputationKind computation) {
251   LinkageInfo LV;
252   for (const NamedDecl *P : *Params) {
253     // Template type parameters are the most common and never
254     // contribute to visibility, pack or not.
255     if (isa<TemplateTypeParmDecl>(P))
256       continue;
257 
258     // Non-type template parameters can be restricted by the value type, e.g.
259     //   template <enum X> class A { ... };
260     // We have to be careful here, though, because we can be dealing with
261     // dependent types.
262     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263       // Handle the non-pack case first.
264       if (!NTTP->isExpandedParameterPack()) {
265         if (!NTTP->getType()->isDependentType()) {
266           LV.merge(getLVForType(*NTTP->getType(), computation));
267         }
268         continue;
269       }
270 
271       // Look at all the types in an expanded pack.
272       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273         QualType type = NTTP->getExpansionType(i);
274         if (!type->isDependentType())
275           LV.merge(getTypeLinkageAndVisibility(type));
276       }
277       continue;
278     }
279 
280     // Template template parameters can be restricted by their
281     // template parameters, recursively.
282     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283 
284     // Handle the non-pack case first.
285     if (!TTP->isExpandedParameterPack()) {
286       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287                                              computation));
288       continue;
289     }
290 
291     // Look at all expansions in an expanded pack.
292     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293            i != n; ++i) {
294       LV.merge(getLVForTemplateParameterList(
295           TTP->getExpansionTemplateParameters(i), computation));
296     }
297   }
298 
299   return LV;
300 }
301 
302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303   const Decl *Ret = nullptr;
304   const DeclContext *DC = D->getDeclContext();
305   while (DC->getDeclKind() != Decl::TranslationUnit) {
306     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307       Ret = cast<Decl>(DC);
308     DC = DC->getParent();
309   }
310   return Ret;
311 }
312 
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
318 LinkageInfo
319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320                                               LVComputationKind computation) {
321   LinkageInfo LV;
322 
323   for (const TemplateArgument &Arg : Args) {
324     switch (Arg.getKind()) {
325     case TemplateArgument::Null:
326     case TemplateArgument::Integral:
327     case TemplateArgument::Expression:
328       continue;
329 
330     case TemplateArgument::Type:
331       LV.merge(getLVForType(*Arg.getAsType(), computation));
332       continue;
333 
334     case TemplateArgument::Declaration: {
335       const NamedDecl *ND = Arg.getAsDecl();
336       assert(!usesTypeVisibility(ND));
337       LV.merge(getLVForDecl(ND, computation));
338       continue;
339     }
340 
341     case TemplateArgument::NullPtr:
342       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343       continue;
344 
345     case TemplateArgument::Template:
346     case TemplateArgument::TemplateExpansion:
347       if (TemplateDecl *Template =
348               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349         LV.merge(getLVForDecl(Template, computation));
350       continue;
351 
352     case TemplateArgument::Pack:
353       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354       continue;
355     }
356     llvm_unreachable("bad template argument kind");
357   }
358 
359   return LV;
360 }
361 
362 LinkageInfo
363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364                                               LVComputationKind computation) {
365   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367 
368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369                         const FunctionTemplateSpecializationInfo *specInfo) {
370   // Include visibility from the template parameters and arguments
371   // only if this is not an explicit instantiation or specialization
372   // with direct explicit visibility.  (Implicit instantiations won't
373   // have a direct attribute.)
374   if (!specInfo->isExplicitInstantiationOrSpecialization())
375     return true;
376 
377   return !fn->hasAttr<VisibilityAttr>();
378 }
379 
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
387 void LinkageComputer::mergeTemplateLV(
388     LinkageInfo &LV, const FunctionDecl *fn,
389     const FunctionTemplateSpecializationInfo *specInfo,
390     LVComputationKind computation) {
391   bool considerVisibility =
392     shouldConsiderTemplateVisibility(fn, specInfo);
393 
394   // Merge information from the template parameters.
395   FunctionTemplateDecl *temp = specInfo->getTemplate();
396   LinkageInfo tempLV =
397     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399 
400   // Merge information from the template arguments.
401   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405 
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
408 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409                                          LVComputationKind computation) {
410   if (computation.IgnoreAllVisibility)
411     return false;
412 
413   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414          D->hasAttr<VisibilityAttr>();
415 }
416 
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
419 static bool shouldConsiderTemplateVisibility(
420                                  const ClassTemplateSpecializationDecl *spec,
421                                  LVComputationKind computation) {
422   // Include visibility from the template parameters and arguments
423   // only if this is not an explicit instantiation or specialization
424   // with direct explicit visibility (and note that implicit
425   // instantiations won't have a direct attribute).
426   //
427   // Furthermore, we want to ignore template parameters and arguments
428   // for an explicit specialization when computing the visibility of a
429   // member thereof with explicit visibility.
430   //
431   // This is a bit complex; let's unpack it.
432   //
433   // An explicit class specialization is an independent, top-level
434   // declaration.  As such, if it or any of its members has an
435   // explicit visibility attribute, that must directly express the
436   // user's intent, and we should honor it.  The same logic applies to
437   // an explicit instantiation of a member of such a thing.
438 
439   // Fast path: if this is not an explicit instantiation or
440   // specialization, we always want to consider template-related
441   // visibility restrictions.
442   if (!spec->isExplicitInstantiationOrSpecialization())
443     return true;
444 
445   // This is the 'member thereof' check.
446   if (spec->isExplicitSpecialization() &&
447       hasExplicitVisibilityAlready(computation))
448     return false;
449 
450   return !hasDirectVisibilityAttribute(spec, computation);
451 }
452 
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
455 void LinkageComputer::mergeTemplateLV(
456     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457     LVComputationKind computation) {
458   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459 
460   // Merge information from the template parameters, but ignore
461   // visibility if we're only considering template arguments.
462 
463   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464   LinkageInfo tempLV =
465     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466   LV.mergeMaybeWithVisibility(tempLV,
467            considerVisibility && !hasExplicitVisibilityAlready(computation));
468 
469   // Merge information from the template arguments.  We ignore
470   // template-argument visibility if we've got an explicit
471   // instantiation with a visibility attribute.
472   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474   if (considerVisibility)
475     LV.mergeVisibility(argsLV);
476   LV.mergeExternalVisibility(argsLV);
477 }
478 
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
483 static bool shouldConsiderTemplateVisibility(
484                                  const VarTemplateSpecializationDecl *spec,
485                                  LVComputationKind computation) {
486   // Include visibility from the template parameters and arguments
487   // only if this is not an explicit instantiation or specialization
488   // with direct explicit visibility (and note that implicit
489   // instantiations won't have a direct attribute).
490   if (!spec->isExplicitInstantiationOrSpecialization())
491     return true;
492 
493   // An explicit variable specialization is an independent, top-level
494   // declaration.  As such, if it has an explicit visibility attribute,
495   // that must directly express the user's intent, and we should honor
496   // it.
497   if (spec->isExplicitSpecialization() &&
498       hasExplicitVisibilityAlready(computation))
499     return false;
500 
501   return !hasDirectVisibilityAttribute(spec, computation);
502 }
503 
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508                                       const VarTemplateSpecializationDecl *spec,
509                                       LVComputationKind computation) {
510   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511 
512   // Merge information from the template parameters, but ignore
513   // visibility if we're only considering template arguments.
514 
515   VarTemplateDecl *temp = spec->getSpecializedTemplate();
516   LinkageInfo tempLV =
517     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518   LV.mergeMaybeWithVisibility(tempLV,
519            considerVisibility && !hasExplicitVisibilityAlready(computation));
520 
521   // Merge information from the template arguments.  We ignore
522   // template-argument visibility if we've got an explicit
523   // instantiation with a visibility attribute.
524   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526   if (considerVisibility)
527     LV.mergeVisibility(argsLV);
528   LV.mergeExternalVisibility(argsLV);
529 }
530 
531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533   const LangOptions &Opts = D->getASTContext().getLangOpts();
534   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535     return false;
536 
537   const auto *FD = dyn_cast<FunctionDecl>(D);
538   if (!FD)
539     return false;
540 
541   TemplateSpecializationKind TSK = TSK_Undeclared;
542   if (FunctionTemplateSpecializationInfo *spec
543       = FD->getTemplateSpecializationInfo()) {
544     TSK = spec->getTemplateSpecializationKind();
545   } else if (MemberSpecializationInfo *MSI =
546              FD->getMemberSpecializationInfo()) {
547     TSK = MSI->getTemplateSpecializationKind();
548   }
549 
550   const FunctionDecl *Def = nullptr;
551   // InlineVisibilityHidden only applies to definitions, and
552   // isInlined() only gives meaningful answers on definitions
553   // anyway.
554   return TSK != TSK_ExplicitInstantiationDeclaration &&
555     TSK != TSK_ExplicitInstantiationDefinition &&
556     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558 
559 template <typename T> static bool isFirstInExternCContext(T *D) {
560   const T *First = D->getFirstDecl();
561   return First->isInExternCContext();
562 }
563 
564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566     if (!SD->hasBraces())
567       return true;
568   return false;
569 }
570 
571 /// Determine whether D is declared in the purview of a named module.
572 static bool isInModulePurview(const NamedDecl *D) {
573   if (auto *M = D->getOwningModule())
574     return M->isModulePurview();
575   return false;
576 }
577 
578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579   // FIXME: Handle isModulePrivate.
580   switch (D->getModuleOwnershipKind()) {
581   case Decl::ModuleOwnershipKind::Unowned:
582   case Decl::ModuleOwnershipKind::ModulePrivate:
583     return false;
584   case Decl::ModuleOwnershipKind::Visible:
585   case Decl::ModuleOwnershipKind::VisibleWhenImported:
586     return isInModulePurview(D);
587   }
588   llvm_unreachable("unexpected module ownership kind");
589 }
590 
591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592   // Internal linkage declarations within a module interface unit are modeled
593   // as "module-internal linkage", which means that they have internal linkage
594   // formally but can be indirectly accessed from outside the module via inline
595   // functions and templates defined within the module.
596   if (isInModulePurview(D))
597     return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598 
599   return LinkageInfo::internal();
600 }
601 
602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603   // C++ Modules TS [basic.link]/6.8:
604   //   - A name declared at namespace scope that does not have internal linkage
605   //     by the previous rules and that is introduced by a non-exported
606   //     declaration has module linkage.
607   //
608   // [basic.namespace.general]/p2
609   //   A namespace is never attached to a named module and never has a name with
610   //   module linkage.
611   if (isInModulePurview(D) &&
612       !isExportedFromModuleInterfaceUnit(
613           cast<NamedDecl>(D->getCanonicalDecl())) &&
614       !isa<NamespaceDecl>(D))
615     return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
616 
617   return LinkageInfo::external();
618 }
619 
620 static StorageClass getStorageClass(const Decl *D) {
621   if (auto *TD = dyn_cast<TemplateDecl>(D))
622     D = TD->getTemplatedDecl();
623   if (D) {
624     if (auto *VD = dyn_cast<VarDecl>(D))
625       return VD->getStorageClass();
626     if (auto *FD = dyn_cast<FunctionDecl>(D))
627       return FD->getStorageClass();
628   }
629   return SC_None;
630 }
631 
632 LinkageInfo
633 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
634                                             LVComputationKind computation,
635                                             bool IgnoreVarTypeLinkage) {
636   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
637          "Not a name having namespace scope");
638   ASTContext &Context = D->getASTContext();
639 
640   // C++ [basic.link]p3:
641   //   A name having namespace scope (3.3.6) has internal linkage if it
642   //   is the name of
643 
644   if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
645     // - a variable, variable template, function, or function template
646     //   that is explicitly declared static; or
647     // (This bullet corresponds to C99 6.2.2p3.)
648     return getInternalLinkageFor(D);
649   }
650 
651   if (const auto *Var = dyn_cast<VarDecl>(D)) {
652     // - a non-template variable of non-volatile const-qualified type, unless
653     //   - it is explicitly declared extern, or
654     //   - it is inline or exported, or
655     //   - it was previously declared and the prior declaration did not have
656     //     internal linkage
657     // (There is no equivalent in C99.)
658     if (Context.getLangOpts().CPlusPlus &&
659         Var->getType().isConstQualified() &&
660         !Var->getType().isVolatileQualified() &&
661         !Var->isInline() &&
662         !isExportedFromModuleInterfaceUnit(Var) &&
663         !isa<VarTemplateSpecializationDecl>(Var) &&
664         !Var->getDescribedVarTemplate()) {
665       const VarDecl *PrevVar = Var->getPreviousDecl();
666       if (PrevVar)
667         return getLVForDecl(PrevVar, computation);
668 
669       if (Var->getStorageClass() != SC_Extern &&
670           Var->getStorageClass() != SC_PrivateExtern &&
671           !isSingleLineLanguageLinkage(*Var))
672         return getInternalLinkageFor(Var);
673     }
674 
675     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
676          PrevVar = PrevVar->getPreviousDecl()) {
677       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
678           Var->getStorageClass() == SC_None)
679         return getDeclLinkageAndVisibility(PrevVar);
680       // Explicitly declared static.
681       if (PrevVar->getStorageClass() == SC_Static)
682         return getInternalLinkageFor(Var);
683     }
684   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
685     //   - a data member of an anonymous union.
686     const VarDecl *VD = IFD->getVarDecl();
687     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
688     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
689   }
690   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
691 
692   // FIXME: This gives internal linkage to names that should have no linkage
693   // (those not covered by [basic.link]p6).
694   if (D->isInAnonymousNamespace()) {
695     const auto *Var = dyn_cast<VarDecl>(D);
696     const auto *Func = dyn_cast<FunctionDecl>(D);
697     // FIXME: The check for extern "C" here is not justified by the standard
698     // wording, but we retain it from the pre-DR1113 model to avoid breaking
699     // code.
700     //
701     // C++11 [basic.link]p4:
702     //   An unnamed namespace or a namespace declared directly or indirectly
703     //   within an unnamed namespace has internal linkage.
704     if ((!Var || !isFirstInExternCContext(Var)) &&
705         (!Func || !isFirstInExternCContext(Func)))
706       return getInternalLinkageFor(D);
707   }
708 
709   // Set up the defaults.
710 
711   // C99 6.2.2p5:
712   //   If the declaration of an identifier for an object has file
713   //   scope and no storage-class specifier, its linkage is
714   //   external.
715   LinkageInfo LV = getExternalLinkageFor(D);
716 
717   if (!hasExplicitVisibilityAlready(computation)) {
718     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
719       LV.mergeVisibility(*Vis, true);
720     } else {
721       // If we're declared in a namespace with a visibility attribute,
722       // use that namespace's visibility, and it still counts as explicit.
723       for (const DeclContext *DC = D->getDeclContext();
724            !isa<TranslationUnitDecl>(DC);
725            DC = DC->getParent()) {
726         const auto *ND = dyn_cast<NamespaceDecl>(DC);
727         if (!ND) continue;
728         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
729           LV.mergeVisibility(*Vis, true);
730           break;
731         }
732       }
733     }
734 
735     // Add in global settings if the above didn't give us direct visibility.
736     if (!LV.isVisibilityExplicit()) {
737       // Use global type/value visibility as appropriate.
738       Visibility globalVisibility =
739           computation.isValueVisibility()
740               ? Context.getLangOpts().getValueVisibilityMode()
741               : Context.getLangOpts().getTypeVisibilityMode();
742       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
743 
744       // If we're paying attention to global visibility, apply
745       // -finline-visibility-hidden if this is an inline method.
746       if (useInlineVisibilityHidden(D))
747         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
748     }
749   }
750 
751   // C++ [basic.link]p4:
752 
753   //   A name having namespace scope that has not been given internal linkage
754   //   above and that is the name of
755   //   [...bullets...]
756   //   has its linkage determined as follows:
757   //     - if the enclosing namespace has internal linkage, the name has
758   //       internal linkage; [handled above]
759   //     - otherwise, if the declaration of the name is attached to a named
760   //       module and is not exported, the name has module linkage;
761   //     - otherwise, the name has external linkage.
762   // LV is currently set up to handle the last two bullets.
763   //
764   //   The bullets are:
765 
766   //     - a variable; or
767   if (const auto *Var = dyn_cast<VarDecl>(D)) {
768     // GCC applies the following optimization to variables and static
769     // data members, but not to functions:
770     //
771     // Modify the variable's LV by the LV of its type unless this is
772     // C or extern "C".  This follows from [basic.link]p9:
773     //   A type without linkage shall not be used as the type of a
774     //   variable or function with external linkage unless
775     //    - the entity has C language linkage, or
776     //    - the entity is declared within an unnamed namespace, or
777     //    - the entity is not used or is defined in the same
778     //      translation unit.
779     // and [basic.link]p10:
780     //   ...the types specified by all declarations referring to a
781     //   given variable or function shall be identical...
782     // C does not have an equivalent rule.
783     //
784     // Ignore this if we've got an explicit attribute;  the user
785     // probably knows what they're doing.
786     //
787     // Note that we don't want to make the variable non-external
788     // because of this, but unique-external linkage suits us.
789     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
790         !IgnoreVarTypeLinkage) {
791       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
792       if (!isExternallyVisible(TypeLV.getLinkage()))
793         return LinkageInfo::uniqueExternal();
794       if (!LV.isVisibilityExplicit())
795         LV.mergeVisibility(TypeLV);
796     }
797 
798     if (Var->getStorageClass() == SC_PrivateExtern)
799       LV.mergeVisibility(HiddenVisibility, true);
800 
801     // Note that Sema::MergeVarDecl already takes care of implementing
802     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
803     // to do it here.
804 
805     // As per function and class template specializations (below),
806     // consider LV for the template and template arguments.  We're at file
807     // scope, so we do not need to worry about nested specializations.
808     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
809       mergeTemplateLV(LV, spec, computation);
810     }
811 
812   //     - a function; or
813   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
814     // In theory, we can modify the function's LV by the LV of its
815     // type unless it has C linkage (see comment above about variables
816     // for justification).  In practice, GCC doesn't do this, so it's
817     // just too painful to make work.
818 
819     if (Function->getStorageClass() == SC_PrivateExtern)
820       LV.mergeVisibility(HiddenVisibility, true);
821 
822     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
823     // merging storage classes and visibility attributes, so we don't have to
824     // look at previous decls in here.
825 
826     // In C++, then if the type of the function uses a type with
827     // unique-external linkage, it's not legally usable from outside
828     // this translation unit.  However, we should use the C linkage
829     // rules instead for extern "C" declarations.
830     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
831       // Only look at the type-as-written. Otherwise, deducing the return type
832       // of a function could change its linkage.
833       QualType TypeAsWritten = Function->getType();
834       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
835         TypeAsWritten = TSI->getType();
836       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
837         return LinkageInfo::uniqueExternal();
838     }
839 
840     // Consider LV from the template and the template arguments.
841     // We're at file scope, so we do not need to worry about nested
842     // specializations.
843     if (FunctionTemplateSpecializationInfo *specInfo
844                                = Function->getTemplateSpecializationInfo()) {
845       mergeTemplateLV(LV, Function, specInfo, computation);
846     }
847 
848   //     - a named class (Clause 9), or an unnamed class defined in a
849   //       typedef declaration in which the class has the typedef name
850   //       for linkage purposes (7.1.3); or
851   //     - a named enumeration (7.2), or an unnamed enumeration
852   //       defined in a typedef declaration in which the enumeration
853   //       has the typedef name for linkage purposes (7.1.3); or
854   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
855     // Unnamed tags have no linkage.
856     if (!Tag->hasNameForLinkage())
857       return LinkageInfo::none();
858 
859     // If this is a class template specialization, consider the
860     // linkage of the template and template arguments.  We're at file
861     // scope, so we do not need to worry about nested specializations.
862     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
863       mergeTemplateLV(LV, spec, computation);
864     }
865 
866   // FIXME: This is not part of the C++ standard any more.
867   //     - an enumerator belonging to an enumeration with external linkage; or
868   } else if (isa<EnumConstantDecl>(D)) {
869     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
870                                       computation);
871     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
872       return LinkageInfo::none();
873     LV.merge(EnumLV);
874 
875   //     - a template
876   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
877     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
878     LinkageInfo tempLV =
879       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
880     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
881 
882   //     An unnamed namespace or a namespace declared directly or indirectly
883   //     within an unnamed namespace has internal linkage. All other namespaces
884   //     have external linkage.
885   //
886   // We handled names in anonymous namespaces above.
887   } else if (isa<NamespaceDecl>(D)) {
888     return LV;
889 
890   // By extension, we assign external linkage to Objective-C
891   // interfaces.
892   } else if (isa<ObjCInterfaceDecl>(D)) {
893     // fallout
894 
895   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
896     // A typedef declaration has linkage if it gives a type a name for
897     // linkage purposes.
898     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
899       return LinkageInfo::none();
900 
901   } else if (isa<MSGuidDecl>(D)) {
902     // A GUID behaves like an inline variable with external linkage. Fall
903     // through.
904 
905   // Everything not covered here has no linkage.
906   } else {
907     return LinkageInfo::none();
908   }
909 
910   // If we ended up with non-externally-visible linkage, visibility should
911   // always be default.
912   if (!isExternallyVisible(LV.getLinkage()))
913     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
914 
915   // Mark the symbols as hidden when compiling for the device.
916   if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
917     LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
918 
919   return LV;
920 }
921 
922 LinkageInfo
923 LinkageComputer::getLVForClassMember(const NamedDecl *D,
924                                      LVComputationKind computation,
925                                      bool IgnoreVarTypeLinkage) {
926   // Only certain class members have linkage.  Note that fields don't
927   // really have linkage, but it's convenient to say they do for the
928   // purposes of calculating linkage of pointer-to-data-member
929   // template arguments.
930   //
931   // Templates also don't officially have linkage, but since we ignore
932   // the C++ standard and look at template arguments when determining
933   // linkage and visibility of a template specialization, we might hit
934   // a template template argument that way. If we do, we need to
935   // consider its linkage.
936   if (!(isa<CXXMethodDecl>(D) ||
937         isa<VarDecl>(D) ||
938         isa<FieldDecl>(D) ||
939         isa<IndirectFieldDecl>(D) ||
940         isa<TagDecl>(D) ||
941         isa<TemplateDecl>(D)))
942     return LinkageInfo::none();
943 
944   LinkageInfo LV;
945 
946   // If we have an explicit visibility attribute, merge that in.
947   if (!hasExplicitVisibilityAlready(computation)) {
948     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
949       LV.mergeVisibility(*Vis, true);
950     // If we're paying attention to global visibility, apply
951     // -finline-visibility-hidden if this is an inline method.
952     //
953     // Note that we do this before merging information about
954     // the class visibility.
955     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
956       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
957   }
958 
959   // If this class member has an explicit visibility attribute, the only
960   // thing that can change its visibility is the template arguments, so
961   // only look for them when processing the class.
962   LVComputationKind classComputation = computation;
963   if (LV.isVisibilityExplicit())
964     classComputation = withExplicitVisibilityAlready(computation);
965 
966   LinkageInfo classLV =
967     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
968   // The member has the same linkage as the class. If that's not externally
969   // visible, we don't need to compute anything about the linkage.
970   // FIXME: If we're only computing linkage, can we bail out here?
971   if (!isExternallyVisible(classLV.getLinkage()))
972     return classLV;
973 
974 
975   // Otherwise, don't merge in classLV yet, because in certain cases
976   // we need to completely ignore the visibility from it.
977 
978   // Specifically, if this decl exists and has an explicit attribute.
979   const NamedDecl *explicitSpecSuppressor = nullptr;
980 
981   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
982     // Only look at the type-as-written. Otherwise, deducing the return type
983     // of a function could change its linkage.
984     QualType TypeAsWritten = MD->getType();
985     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
986       TypeAsWritten = TSI->getType();
987     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
988       return LinkageInfo::uniqueExternal();
989 
990     // If this is a method template specialization, use the linkage for
991     // the template parameters and arguments.
992     if (FunctionTemplateSpecializationInfo *spec
993            = MD->getTemplateSpecializationInfo()) {
994       mergeTemplateLV(LV, MD, spec, computation);
995       if (spec->isExplicitSpecialization()) {
996         explicitSpecSuppressor = MD;
997       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
998         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
999       }
1000     } else if (isExplicitMemberSpecialization(MD)) {
1001       explicitSpecSuppressor = MD;
1002     }
1003 
1004   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1005     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1006       mergeTemplateLV(LV, spec, computation);
1007       if (spec->isExplicitSpecialization()) {
1008         explicitSpecSuppressor = spec;
1009       } else {
1010         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1011         if (isExplicitMemberSpecialization(temp)) {
1012           explicitSpecSuppressor = temp->getTemplatedDecl();
1013         }
1014       }
1015     } else if (isExplicitMemberSpecialization(RD)) {
1016       explicitSpecSuppressor = RD;
1017     }
1018 
1019   // Static data members.
1020   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1021     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1022       mergeTemplateLV(LV, spec, computation);
1023 
1024     // Modify the variable's linkage by its type, but ignore the
1025     // type's visibility unless it's a definition.
1026     if (!IgnoreVarTypeLinkage) {
1027       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1028       // FIXME: If the type's linkage is not externally visible, we can
1029       // give this static data member UniqueExternalLinkage.
1030       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1031         LV.mergeVisibility(typeLV);
1032       LV.mergeExternalVisibility(typeLV);
1033     }
1034 
1035     if (isExplicitMemberSpecialization(VD)) {
1036       explicitSpecSuppressor = VD;
1037     }
1038 
1039   // Template members.
1040   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1041     bool considerVisibility =
1042       (!LV.isVisibilityExplicit() &&
1043        !classLV.isVisibilityExplicit() &&
1044        !hasExplicitVisibilityAlready(computation));
1045     LinkageInfo tempLV =
1046       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1047     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1048 
1049     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1050       if (isExplicitMemberSpecialization(redeclTemp)) {
1051         explicitSpecSuppressor = temp->getTemplatedDecl();
1052       }
1053     }
1054   }
1055 
1056   // We should never be looking for an attribute directly on a template.
1057   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1058 
1059   // If this member is an explicit member specialization, and it has
1060   // an explicit attribute, ignore visibility from the parent.
1061   bool considerClassVisibility = true;
1062   if (explicitSpecSuppressor &&
1063       // optimization: hasDVA() is true only with explicit visibility.
1064       LV.isVisibilityExplicit() &&
1065       classLV.getVisibility() != DefaultVisibility &&
1066       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1067     considerClassVisibility = false;
1068   }
1069 
1070   // Finally, merge in information from the class.
1071   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1072   return LV;
1073 }
1074 
1075 void NamedDecl::anchor() {}
1076 
1077 bool NamedDecl::isLinkageValid() const {
1078   if (!hasCachedLinkage())
1079     return true;
1080 
1081   Linkage L = LinkageComputer{}
1082                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1083                   .getLinkage();
1084   return L == getCachedLinkage();
1085 }
1086 
1087 ReservedIdentifierStatus
1088 NamedDecl::isReserved(const LangOptions &LangOpts) const {
1089   const IdentifierInfo *II = getIdentifier();
1090 
1091   // This triggers at least for CXXLiteralIdentifiers, which we already checked
1092   // at lexing time.
1093   if (!II)
1094     return ReservedIdentifierStatus::NotReserved;
1095 
1096   ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1097   if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1098     // This name is only reserved at global scope. Check if this declaration
1099     // conflicts with a global scope declaration.
1100     if (isa<ParmVarDecl>(this) || isTemplateParameter())
1101       return ReservedIdentifierStatus::NotReserved;
1102 
1103     // C++ [dcl.link]/7:
1104     //   Two declarations [conflict] if [...] one declares a function or
1105     //   variable with C language linkage, and the other declares [...] a
1106     //   variable that belongs to the global scope.
1107     //
1108     // Therefore names that are reserved at global scope are also reserved as
1109     // names of variables and functions with C language linkage.
1110     const DeclContext *DC = getDeclContext()->getRedeclContext();
1111     if (DC->isTranslationUnit())
1112       return Status;
1113     if (auto *VD = dyn_cast<VarDecl>(this))
1114       if (VD->isExternC())
1115         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1116     if (auto *FD = dyn_cast<FunctionDecl>(this))
1117       if (FD->isExternC())
1118         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1119     return ReservedIdentifierStatus::NotReserved;
1120   }
1121 
1122   return Status;
1123 }
1124 
1125 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1126   StringRef name = getName();
1127   if (name.empty()) return SFF_None;
1128 
1129   if (name.front() == 'C')
1130     if (name == "CFStringCreateWithFormat" ||
1131         name == "CFStringCreateWithFormatAndArguments" ||
1132         name == "CFStringAppendFormat" ||
1133         name == "CFStringAppendFormatAndArguments")
1134       return SFF_CFString;
1135   return SFF_None;
1136 }
1137 
1138 Linkage NamedDecl::getLinkageInternal() const {
1139   // We don't care about visibility here, so ask for the cheapest
1140   // possible visibility analysis.
1141   return LinkageComputer{}
1142       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1143       .getLinkage();
1144 }
1145 
1146 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1147   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1148 }
1149 
1150 static Optional<Visibility>
1151 getExplicitVisibilityAux(const NamedDecl *ND,
1152                          NamedDecl::ExplicitVisibilityKind kind,
1153                          bool IsMostRecent) {
1154   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1155 
1156   // Check the declaration itself first.
1157   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1158     return V;
1159 
1160   // If this is a member class of a specialization of a class template
1161   // and the corresponding decl has explicit visibility, use that.
1162   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1163     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1164     if (InstantiatedFrom)
1165       return getVisibilityOf(InstantiatedFrom, kind);
1166   }
1167 
1168   // If there wasn't explicit visibility there, and this is a
1169   // specialization of a class template, check for visibility
1170   // on the pattern.
1171   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1172     // Walk all the template decl till this point to see if there are
1173     // explicit visibility attributes.
1174     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1175     while (TD != nullptr) {
1176       auto Vis = getVisibilityOf(TD, kind);
1177       if (Vis != None)
1178         return Vis;
1179       TD = TD->getPreviousDecl();
1180     }
1181     return None;
1182   }
1183 
1184   // Use the most recent declaration.
1185   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1186     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1187     if (MostRecent != ND)
1188       return getExplicitVisibilityAux(MostRecent, kind, true);
1189   }
1190 
1191   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1192     if (Var->isStaticDataMember()) {
1193       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1194       if (InstantiatedFrom)
1195         return getVisibilityOf(InstantiatedFrom, kind);
1196     }
1197 
1198     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1199       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1200                              kind);
1201 
1202     return None;
1203   }
1204   // Also handle function template specializations.
1205   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1206     // If the function is a specialization of a template with an
1207     // explicit visibility attribute, use that.
1208     if (FunctionTemplateSpecializationInfo *templateInfo
1209           = fn->getTemplateSpecializationInfo())
1210       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1211                              kind);
1212 
1213     // If the function is a member of a specialization of a class template
1214     // and the corresponding decl has explicit visibility, use that.
1215     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1216     if (InstantiatedFrom)
1217       return getVisibilityOf(InstantiatedFrom, kind);
1218 
1219     return None;
1220   }
1221 
1222   // The visibility of a template is stored in the templated decl.
1223   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1224     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1225 
1226   return None;
1227 }
1228 
1229 Optional<Visibility>
1230 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1231   return getExplicitVisibilityAux(this, kind, false);
1232 }
1233 
1234 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1235                                              Decl *ContextDecl,
1236                                              LVComputationKind computation) {
1237   // This lambda has its linkage/visibility determined by its owner.
1238   const NamedDecl *Owner;
1239   if (!ContextDecl)
1240     Owner = dyn_cast<NamedDecl>(DC);
1241   else if (isa<ParmVarDecl>(ContextDecl))
1242     Owner =
1243         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1244   else
1245     Owner = cast<NamedDecl>(ContextDecl);
1246 
1247   if (!Owner)
1248     return LinkageInfo::none();
1249 
1250   // If the owner has a deduced type, we need to skip querying the linkage and
1251   // visibility of that type, because it might involve this closure type.  The
1252   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1253   // than NoLinkage when we don't strictly need to, which is benign.
1254   auto *VD = dyn_cast<VarDecl>(Owner);
1255   LinkageInfo OwnerLV =
1256       VD && VD->getType()->getContainedDeducedType()
1257           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1258           : getLVForDecl(Owner, computation);
1259 
1260   // A lambda never formally has linkage. But if the owner is externally
1261   // visible, then the lambda is too. We apply the same rules to blocks.
1262   if (!isExternallyVisible(OwnerLV.getLinkage()))
1263     return LinkageInfo::none();
1264   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1265                      OwnerLV.isVisibilityExplicit());
1266 }
1267 
1268 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1269                                                LVComputationKind computation) {
1270   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1271     if (Function->isInAnonymousNamespace() &&
1272         !isFirstInExternCContext(Function))
1273       return getInternalLinkageFor(Function);
1274 
1275     // This is a "void f();" which got merged with a file static.
1276     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1277       return getInternalLinkageFor(Function);
1278 
1279     LinkageInfo LV;
1280     if (!hasExplicitVisibilityAlready(computation)) {
1281       if (Optional<Visibility> Vis =
1282               getExplicitVisibility(Function, computation))
1283         LV.mergeVisibility(*Vis, true);
1284     }
1285 
1286     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1287     // merging storage classes and visibility attributes, so we don't have to
1288     // look at previous decls in here.
1289 
1290     return LV;
1291   }
1292 
1293   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1294     if (Var->hasExternalStorage()) {
1295       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1296         return getInternalLinkageFor(Var);
1297 
1298       LinkageInfo LV;
1299       if (Var->getStorageClass() == SC_PrivateExtern)
1300         LV.mergeVisibility(HiddenVisibility, true);
1301       else if (!hasExplicitVisibilityAlready(computation)) {
1302         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1303           LV.mergeVisibility(*Vis, true);
1304       }
1305 
1306       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1307         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1308         if (PrevLV.getLinkage())
1309           LV.setLinkage(PrevLV.getLinkage());
1310         LV.mergeVisibility(PrevLV);
1311       }
1312 
1313       return LV;
1314     }
1315 
1316     if (!Var->isStaticLocal())
1317       return LinkageInfo::none();
1318   }
1319 
1320   ASTContext &Context = D->getASTContext();
1321   if (!Context.getLangOpts().CPlusPlus)
1322     return LinkageInfo::none();
1323 
1324   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1325   if (!OuterD || OuterD->isInvalidDecl())
1326     return LinkageInfo::none();
1327 
1328   LinkageInfo LV;
1329   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1330     if (!BD->getBlockManglingNumber())
1331       return LinkageInfo::none();
1332 
1333     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1334                          BD->getBlockManglingContextDecl(), computation);
1335   } else {
1336     const auto *FD = cast<FunctionDecl>(OuterD);
1337     if (!FD->isInlined() &&
1338         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1339       return LinkageInfo::none();
1340 
1341     // If a function is hidden by -fvisibility-inlines-hidden option and
1342     // is not explicitly attributed as a hidden function,
1343     // we should not make static local variables in the function hidden.
1344     LV = getLVForDecl(FD, computation);
1345     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1346         !LV.isVisibilityExplicit() &&
1347         !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1348       assert(cast<VarDecl>(D)->isStaticLocal());
1349       // If this was an implicitly hidden inline method, check again for
1350       // explicit visibility on the parent class, and use that for static locals
1351       // if present.
1352       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1353         LV = getLVForDecl(MD->getParent(), computation);
1354       if (!LV.isVisibilityExplicit()) {
1355         Visibility globalVisibility =
1356             computation.isValueVisibility()
1357                 ? Context.getLangOpts().getValueVisibilityMode()
1358                 : Context.getLangOpts().getTypeVisibilityMode();
1359         return LinkageInfo(VisibleNoLinkage, globalVisibility,
1360                            /*visibilityExplicit=*/false);
1361       }
1362     }
1363   }
1364   if (!isExternallyVisible(LV.getLinkage()))
1365     return LinkageInfo::none();
1366   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1367                      LV.isVisibilityExplicit());
1368 }
1369 
1370 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1371                                               LVComputationKind computation,
1372                                               bool IgnoreVarTypeLinkage) {
1373   // Internal_linkage attribute overrides other considerations.
1374   if (D->hasAttr<InternalLinkageAttr>())
1375     return getInternalLinkageFor(D);
1376 
1377   // Objective-C: treat all Objective-C declarations as having external
1378   // linkage.
1379   switch (D->getKind()) {
1380     default:
1381       break;
1382 
1383     // Per C++ [basic.link]p2, only the names of objects, references,
1384     // functions, types, templates, namespaces, and values ever have linkage.
1385     //
1386     // Note that the name of a typedef, namespace alias, using declaration,
1387     // and so on are not the name of the corresponding type, namespace, or
1388     // declaration, so they do *not* have linkage.
1389     case Decl::ImplicitParam:
1390     case Decl::Label:
1391     case Decl::NamespaceAlias:
1392     case Decl::ParmVar:
1393     case Decl::Using:
1394     case Decl::UsingEnum:
1395     case Decl::UsingShadow:
1396     case Decl::UsingDirective:
1397       return LinkageInfo::none();
1398 
1399     case Decl::EnumConstant:
1400       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1401       if (D->getASTContext().getLangOpts().CPlusPlus)
1402         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1403       return LinkageInfo::visible_none();
1404 
1405     case Decl::Typedef:
1406     case Decl::TypeAlias:
1407       // A typedef declaration has linkage if it gives a type a name for
1408       // linkage purposes.
1409       if (!cast<TypedefNameDecl>(D)
1410                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1411         return LinkageInfo::none();
1412       break;
1413 
1414     case Decl::TemplateTemplateParm: // count these as external
1415     case Decl::NonTypeTemplateParm:
1416     case Decl::ObjCAtDefsField:
1417     case Decl::ObjCCategory:
1418     case Decl::ObjCCategoryImpl:
1419     case Decl::ObjCCompatibleAlias:
1420     case Decl::ObjCImplementation:
1421     case Decl::ObjCMethod:
1422     case Decl::ObjCProperty:
1423     case Decl::ObjCPropertyImpl:
1424     case Decl::ObjCProtocol:
1425       return getExternalLinkageFor(D);
1426 
1427     case Decl::CXXRecord: {
1428       const auto *Record = cast<CXXRecordDecl>(D);
1429       if (Record->isLambda()) {
1430         if (Record->hasKnownLambdaInternalLinkage() ||
1431             !Record->getLambdaManglingNumber()) {
1432           // This lambda has no mangling number, so it's internal.
1433           return getInternalLinkageFor(D);
1434         }
1435 
1436         return getLVForClosure(
1437                   Record->getDeclContext()->getRedeclContext(),
1438                   Record->getLambdaContextDecl(), computation);
1439       }
1440 
1441       break;
1442     }
1443 
1444     case Decl::TemplateParamObject: {
1445       // The template parameter object can be referenced from anywhere its type
1446       // and value can be referenced.
1447       auto *TPO = cast<TemplateParamObjectDecl>(D);
1448       LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1449       LV.merge(getLVForValue(TPO->getValue(), computation));
1450       return LV;
1451     }
1452   }
1453 
1454   // Handle linkage for namespace-scope names.
1455   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1456     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1457 
1458   // C++ [basic.link]p5:
1459   //   In addition, a member function, static data member, a named
1460   //   class or enumeration of class scope, or an unnamed class or
1461   //   enumeration defined in a class-scope typedef declaration such
1462   //   that the class or enumeration has the typedef name for linkage
1463   //   purposes (7.1.3), has external linkage if the name of the class
1464   //   has external linkage.
1465   if (D->getDeclContext()->isRecord())
1466     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1467 
1468   // C++ [basic.link]p6:
1469   //   The name of a function declared in block scope and the name of
1470   //   an object declared by a block scope extern declaration have
1471   //   linkage. If there is a visible declaration of an entity with
1472   //   linkage having the same name and type, ignoring entities
1473   //   declared outside the innermost enclosing namespace scope, the
1474   //   block scope declaration declares that same entity and receives
1475   //   the linkage of the previous declaration. If there is more than
1476   //   one such matching entity, the program is ill-formed. Otherwise,
1477   //   if no matching entity is found, the block scope entity receives
1478   //   external linkage.
1479   if (D->getDeclContext()->isFunctionOrMethod())
1480     return getLVForLocalDecl(D, computation);
1481 
1482   // C++ [basic.link]p6:
1483   //   Names not covered by these rules have no linkage.
1484   return LinkageInfo::none();
1485 }
1486 
1487 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1488 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1489                                           LVComputationKind computation) {
1490   // Internal_linkage attribute overrides other considerations.
1491   if (D->hasAttr<InternalLinkageAttr>())
1492     return getInternalLinkageFor(D);
1493 
1494   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1495     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1496 
1497   if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1498     return *LI;
1499 
1500   LinkageInfo LV = computeLVForDecl(D, computation);
1501   if (D->hasCachedLinkage())
1502     assert(D->getCachedLinkage() == LV.getLinkage());
1503 
1504   D->setCachedLinkage(LV.getLinkage());
1505   cache(D, computation, LV);
1506 
1507 #ifndef NDEBUG
1508   // In C (because of gnu inline) and in c++ with microsoft extensions an
1509   // static can follow an extern, so we can have two decls with different
1510   // linkages.
1511   const LangOptions &Opts = D->getASTContext().getLangOpts();
1512   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1513     return LV;
1514 
1515   // We have just computed the linkage for this decl. By induction we know
1516   // that all other computed linkages match, check that the one we just
1517   // computed also does.
1518   NamedDecl *Old = nullptr;
1519   for (auto I : D->redecls()) {
1520     auto *T = cast<NamedDecl>(I);
1521     if (T == D)
1522       continue;
1523     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1524       Old = T;
1525       break;
1526     }
1527   }
1528   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1529 #endif
1530 
1531   return LV;
1532 }
1533 
1534 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1535   NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1536                                              ? NamedDecl::VisibilityForType
1537                                              : NamedDecl::VisibilityForValue;
1538   LVComputationKind CK(EK);
1539   return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1540                              ? CK.forLinkageOnly()
1541                              : CK);
1542 }
1543 
1544 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1545   Module *M = getOwningModule();
1546   if (!M)
1547     return nullptr;
1548 
1549   switch (M->Kind) {
1550   case Module::ModuleMapModule:
1551     // Module map modules have no special linkage semantics.
1552     return nullptr;
1553 
1554   case Module::ModuleInterfaceUnit:
1555     return M;
1556 
1557   case Module::GlobalModuleFragment: {
1558     // External linkage declarations in the global module have no owning module
1559     // for linkage purposes. But internal linkage declarations in the global
1560     // module fragment of a particular module are owned by that module for
1561     // linkage purposes.
1562     if (IgnoreLinkage)
1563       return nullptr;
1564     bool InternalLinkage;
1565     if (auto *ND = dyn_cast<NamedDecl>(this))
1566       InternalLinkage = !ND->hasExternalFormalLinkage();
1567     else {
1568       auto *NSD = dyn_cast<NamespaceDecl>(this);
1569       InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1570                         isInAnonymousNamespace();
1571     }
1572     return InternalLinkage ? M->Parent : nullptr;
1573   }
1574 
1575   case Module::PrivateModuleFragment:
1576     // The private module fragment is part of its containing module for linkage
1577     // purposes.
1578     return M->Parent;
1579   }
1580 
1581   llvm_unreachable("unknown module kind");
1582 }
1583 
1584 void NamedDecl::printName(raw_ostream &os) const {
1585   os << Name;
1586 }
1587 
1588 std::string NamedDecl::getQualifiedNameAsString() const {
1589   std::string QualName;
1590   llvm::raw_string_ostream OS(QualName);
1591   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1592   return QualName;
1593 }
1594 
1595 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1596   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1597 }
1598 
1599 void NamedDecl::printQualifiedName(raw_ostream &OS,
1600                                    const PrintingPolicy &P) const {
1601   if (getDeclContext()->isFunctionOrMethod()) {
1602     // We do not print '(anonymous)' for function parameters without name.
1603     printName(OS);
1604     return;
1605   }
1606   printNestedNameSpecifier(OS, P);
1607   if (getDeclName())
1608     OS << *this;
1609   else {
1610     // Give the printName override a chance to pick a different name before we
1611     // fall back to "(anonymous)".
1612     SmallString<64> NameBuffer;
1613     llvm::raw_svector_ostream NameOS(NameBuffer);
1614     printName(NameOS);
1615     if (NameBuffer.empty())
1616       OS << "(anonymous)";
1617     else
1618       OS << NameBuffer;
1619   }
1620 }
1621 
1622 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1623   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1624 }
1625 
1626 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1627                                          const PrintingPolicy &P) const {
1628   const DeclContext *Ctx = getDeclContext();
1629 
1630   // For ObjC methods and properties, look through categories and use the
1631   // interface as context.
1632   if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1633     if (auto *ID = MD->getClassInterface())
1634       Ctx = ID;
1635   } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1636     if (auto *MD = PD->getGetterMethodDecl())
1637       if (auto *ID = MD->getClassInterface())
1638         Ctx = ID;
1639   } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1640     if (auto *CI = ID->getContainingInterface())
1641       Ctx = CI;
1642   }
1643 
1644   if (Ctx->isFunctionOrMethod())
1645     return;
1646 
1647   using ContextsTy = SmallVector<const DeclContext *, 8>;
1648   ContextsTy Contexts;
1649 
1650   // Collect named contexts.
1651   DeclarationName NameInScope = getDeclName();
1652   for (; Ctx; Ctx = Ctx->getParent()) {
1653     // Suppress anonymous namespace if requested.
1654     if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1655         cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1656       continue;
1657 
1658     // Suppress inline namespace if it doesn't make the result ambiguous.
1659     if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1660         cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1661       continue;
1662 
1663     // Skip non-named contexts such as linkage specifications and ExportDecls.
1664     const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1665     if (!ND)
1666       continue;
1667 
1668     Contexts.push_back(Ctx);
1669     NameInScope = ND->getDeclName();
1670   }
1671 
1672   for (const DeclContext *DC : llvm::reverse(Contexts)) {
1673     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1674       OS << Spec->getName();
1675       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1676       printTemplateArgumentList(
1677           OS, TemplateArgs.asArray(), P,
1678           Spec->getSpecializedTemplate()->getTemplateParameters());
1679     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1680       if (ND->isAnonymousNamespace()) {
1681         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1682                                 : "(anonymous namespace)");
1683       }
1684       else
1685         OS << *ND;
1686     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1687       if (!RD->getIdentifier())
1688         OS << "(anonymous " << RD->getKindName() << ')';
1689       else
1690         OS << *RD;
1691     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1692       const FunctionProtoType *FT = nullptr;
1693       if (FD->hasWrittenPrototype())
1694         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1695 
1696       OS << *FD << '(';
1697       if (FT) {
1698         unsigned NumParams = FD->getNumParams();
1699         for (unsigned i = 0; i < NumParams; ++i) {
1700           if (i)
1701             OS << ", ";
1702           OS << FD->getParamDecl(i)->getType().stream(P);
1703         }
1704 
1705         if (FT->isVariadic()) {
1706           if (NumParams > 0)
1707             OS << ", ";
1708           OS << "...";
1709         }
1710       }
1711       OS << ')';
1712     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1713       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1714       // enumerator is declared in the scope that immediately contains
1715       // the enum-specifier. Each scoped enumerator is declared in the
1716       // scope of the enumeration.
1717       // For the case of unscoped enumerator, do not include in the qualified
1718       // name any information about its enum enclosing scope, as its visibility
1719       // is global.
1720       if (ED->isScoped())
1721         OS << *ED;
1722       else
1723         continue;
1724     } else {
1725       OS << *cast<NamedDecl>(DC);
1726     }
1727     OS << "::";
1728   }
1729 }
1730 
1731 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1732                                      const PrintingPolicy &Policy,
1733                                      bool Qualified) const {
1734   if (Qualified)
1735     printQualifiedName(OS, Policy);
1736   else
1737     printName(OS);
1738 }
1739 
1740 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1741   return true;
1742 }
1743 static bool isRedeclarableImpl(...) { return false; }
1744 static bool isRedeclarable(Decl::Kind K) {
1745   switch (K) {
1746 #define DECL(Type, Base) \
1747   case Decl::Type: \
1748     return isRedeclarableImpl((Type##Decl *)nullptr);
1749 #define ABSTRACT_DECL(DECL)
1750 #include "clang/AST/DeclNodes.inc"
1751   }
1752   llvm_unreachable("unknown decl kind");
1753 }
1754 
1755 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1756   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1757 
1758   // Never replace one imported declaration with another; we need both results
1759   // when re-exporting.
1760   if (OldD->isFromASTFile() && isFromASTFile())
1761     return false;
1762 
1763   // A kind mismatch implies that the declaration is not replaced.
1764   if (OldD->getKind() != getKind())
1765     return false;
1766 
1767   // For method declarations, we never replace. (Why?)
1768   if (isa<ObjCMethodDecl>(this))
1769     return false;
1770 
1771   // For parameters, pick the newer one. This is either an error or (in
1772   // Objective-C) permitted as an extension.
1773   if (isa<ParmVarDecl>(this))
1774     return true;
1775 
1776   // Inline namespaces can give us two declarations with the same
1777   // name and kind in the same scope but different contexts; we should
1778   // keep both declarations in this case.
1779   if (!this->getDeclContext()->getRedeclContext()->Equals(
1780           OldD->getDeclContext()->getRedeclContext()))
1781     return false;
1782 
1783   // Using declarations can be replaced if they import the same name from the
1784   // same context.
1785   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1786     ASTContext &Context = getASTContext();
1787     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1788            Context.getCanonicalNestedNameSpecifier(
1789                cast<UsingDecl>(OldD)->getQualifier());
1790   }
1791   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1792     ASTContext &Context = getASTContext();
1793     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1794            Context.getCanonicalNestedNameSpecifier(
1795                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1796   }
1797 
1798   if (isRedeclarable(getKind())) {
1799     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1800       return false;
1801 
1802     if (IsKnownNewer)
1803       return true;
1804 
1805     // Check whether this is actually newer than OldD. We want to keep the
1806     // newer declaration. This loop will usually only iterate once, because
1807     // OldD is usually the previous declaration.
1808     for (auto D : redecls()) {
1809       if (D == OldD)
1810         break;
1811 
1812       // If we reach the canonical declaration, then OldD is not actually older
1813       // than this one.
1814       //
1815       // FIXME: In this case, we should not add this decl to the lookup table.
1816       if (D->isCanonicalDecl())
1817         return false;
1818     }
1819 
1820     // It's a newer declaration of the same kind of declaration in the same
1821     // scope: we want this decl instead of the existing one.
1822     return true;
1823   }
1824 
1825   // In all other cases, we need to keep both declarations in case they have
1826   // different visibility. Any attempt to use the name will result in an
1827   // ambiguity if more than one is visible.
1828   return false;
1829 }
1830 
1831 bool NamedDecl::hasLinkage() const {
1832   return getFormalLinkage() != NoLinkage;
1833 }
1834 
1835 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1836   NamedDecl *ND = this;
1837   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1838     ND = UD->getTargetDecl();
1839 
1840   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1841     return AD->getClassInterface();
1842 
1843   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1844     return AD->getNamespace();
1845 
1846   return ND;
1847 }
1848 
1849 bool NamedDecl::isCXXInstanceMember() const {
1850   if (!isCXXClassMember())
1851     return false;
1852 
1853   const NamedDecl *D = this;
1854   if (isa<UsingShadowDecl>(D))
1855     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1856 
1857   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1858     return true;
1859   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1860     return MD->isInstance();
1861   return false;
1862 }
1863 
1864 //===----------------------------------------------------------------------===//
1865 // DeclaratorDecl Implementation
1866 //===----------------------------------------------------------------------===//
1867 
1868 template <typename DeclT>
1869 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1870   if (decl->getNumTemplateParameterLists() > 0)
1871     return decl->getTemplateParameterList(0)->getTemplateLoc();
1872   return decl->getInnerLocStart();
1873 }
1874 
1875 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1876   TypeSourceInfo *TSI = getTypeSourceInfo();
1877   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1878   return SourceLocation();
1879 }
1880 
1881 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1882   TypeSourceInfo *TSI = getTypeSourceInfo();
1883   if (TSI) return TSI->getTypeLoc().getEndLoc();
1884   return SourceLocation();
1885 }
1886 
1887 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1888   if (QualifierLoc) {
1889     // Make sure the extended decl info is allocated.
1890     if (!hasExtInfo()) {
1891       // Save (non-extended) type source info pointer.
1892       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1893       // Allocate external info struct.
1894       DeclInfo = new (getASTContext()) ExtInfo;
1895       // Restore savedTInfo into (extended) decl info.
1896       getExtInfo()->TInfo = savedTInfo;
1897     }
1898     // Set qualifier info.
1899     getExtInfo()->QualifierLoc = QualifierLoc;
1900   } else if (hasExtInfo()) {
1901     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1902     getExtInfo()->QualifierLoc = QualifierLoc;
1903   }
1904 }
1905 
1906 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1907   assert(TrailingRequiresClause);
1908   // Make sure the extended decl info is allocated.
1909   if (!hasExtInfo()) {
1910     // Save (non-extended) type source info pointer.
1911     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1912     // Allocate external info struct.
1913     DeclInfo = new (getASTContext()) ExtInfo;
1914     // Restore savedTInfo into (extended) decl info.
1915     getExtInfo()->TInfo = savedTInfo;
1916   }
1917   // Set requires clause info.
1918   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1919 }
1920 
1921 void DeclaratorDecl::setTemplateParameterListsInfo(
1922     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1923   assert(!TPLists.empty());
1924   // Make sure the extended decl info is allocated.
1925   if (!hasExtInfo()) {
1926     // Save (non-extended) type source info pointer.
1927     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1928     // Allocate external info struct.
1929     DeclInfo = new (getASTContext()) ExtInfo;
1930     // Restore savedTInfo into (extended) decl info.
1931     getExtInfo()->TInfo = savedTInfo;
1932   }
1933   // Set the template parameter lists info.
1934   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1935 }
1936 
1937 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1938   return getTemplateOrInnerLocStart(this);
1939 }
1940 
1941 // Helper function: returns true if QT is or contains a type
1942 // having a postfix component.
1943 static bool typeIsPostfix(QualType QT) {
1944   while (true) {
1945     const Type* T = QT.getTypePtr();
1946     switch (T->getTypeClass()) {
1947     default:
1948       return false;
1949     case Type::Pointer:
1950       QT = cast<PointerType>(T)->getPointeeType();
1951       break;
1952     case Type::BlockPointer:
1953       QT = cast<BlockPointerType>(T)->getPointeeType();
1954       break;
1955     case Type::MemberPointer:
1956       QT = cast<MemberPointerType>(T)->getPointeeType();
1957       break;
1958     case Type::LValueReference:
1959     case Type::RValueReference:
1960       QT = cast<ReferenceType>(T)->getPointeeType();
1961       break;
1962     case Type::PackExpansion:
1963       QT = cast<PackExpansionType>(T)->getPattern();
1964       break;
1965     case Type::Paren:
1966     case Type::ConstantArray:
1967     case Type::DependentSizedArray:
1968     case Type::IncompleteArray:
1969     case Type::VariableArray:
1970     case Type::FunctionProto:
1971     case Type::FunctionNoProto:
1972       return true;
1973     }
1974   }
1975 }
1976 
1977 SourceRange DeclaratorDecl::getSourceRange() const {
1978   SourceLocation RangeEnd = getLocation();
1979   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1980     // If the declaration has no name or the type extends past the name take the
1981     // end location of the type.
1982     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1983       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1984   }
1985   return SourceRange(getOuterLocStart(), RangeEnd);
1986 }
1987 
1988 void QualifierInfo::setTemplateParameterListsInfo(
1989     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1990   // Free previous template parameters (if any).
1991   if (NumTemplParamLists > 0) {
1992     Context.Deallocate(TemplParamLists);
1993     TemplParamLists = nullptr;
1994     NumTemplParamLists = 0;
1995   }
1996   // Set info on matched template parameter lists (if any).
1997   if (!TPLists.empty()) {
1998     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1999     NumTemplParamLists = TPLists.size();
2000     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
2001   }
2002 }
2003 
2004 //===----------------------------------------------------------------------===//
2005 // VarDecl Implementation
2006 //===----------------------------------------------------------------------===//
2007 
2008 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2009   switch (SC) {
2010   case SC_None:                 break;
2011   case SC_Auto:                 return "auto";
2012   case SC_Extern:               return "extern";
2013   case SC_PrivateExtern:        return "__private_extern__";
2014   case SC_Register:             return "register";
2015   case SC_Static:               return "static";
2016   }
2017 
2018   llvm_unreachable("Invalid storage class");
2019 }
2020 
2021 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2022                  SourceLocation StartLoc, SourceLocation IdLoc,
2023                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2024                  StorageClass SC)
2025     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2026       redeclarable_base(C) {
2027   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2028                 "VarDeclBitfields too large!");
2029   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2030                 "ParmVarDeclBitfields too large!");
2031   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2032                 "NonParmVarDeclBitfields too large!");
2033   AllBits = 0;
2034   VarDeclBits.SClass = SC;
2035   // Everything else is implicitly initialized to false.
2036 }
2037 
2038 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
2039                          SourceLocation StartL, SourceLocation IdL,
2040                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2041                          StorageClass S) {
2042   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2043 }
2044 
2045 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2046   return new (C, ID)
2047       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2048               QualType(), nullptr, SC_None);
2049 }
2050 
2051 void VarDecl::setStorageClass(StorageClass SC) {
2052   assert(isLegalForVariable(SC));
2053   VarDeclBits.SClass = SC;
2054 }
2055 
2056 VarDecl::TLSKind VarDecl::getTLSKind() const {
2057   switch (VarDeclBits.TSCSpec) {
2058   case TSCS_unspecified:
2059     if (!hasAttr<ThreadAttr>() &&
2060         !(getASTContext().getLangOpts().OpenMPUseTLS &&
2061           getASTContext().getTargetInfo().isTLSSupported() &&
2062           hasAttr<OMPThreadPrivateDeclAttr>()))
2063       return TLS_None;
2064     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2065                 LangOptions::MSVC2015)) ||
2066             hasAttr<OMPThreadPrivateDeclAttr>())
2067                ? TLS_Dynamic
2068                : TLS_Static;
2069   case TSCS___thread: // Fall through.
2070   case TSCS__Thread_local:
2071     return TLS_Static;
2072   case TSCS_thread_local:
2073     return TLS_Dynamic;
2074   }
2075   llvm_unreachable("Unknown thread storage class specifier!");
2076 }
2077 
2078 SourceRange VarDecl::getSourceRange() const {
2079   if (const Expr *Init = getInit()) {
2080     SourceLocation InitEnd = Init->getEndLoc();
2081     // If Init is implicit, ignore its source range and fallback on
2082     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2083     if (InitEnd.isValid() && InitEnd != getLocation())
2084       return SourceRange(getOuterLocStart(), InitEnd);
2085   }
2086   return DeclaratorDecl::getSourceRange();
2087 }
2088 
2089 template<typename T>
2090 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2091   // C++ [dcl.link]p1: All function types, function names with external linkage,
2092   // and variable names with external linkage have a language linkage.
2093   if (!D.hasExternalFormalLinkage())
2094     return NoLanguageLinkage;
2095 
2096   // Language linkage is a C++ concept, but saying that everything else in C has
2097   // C language linkage fits the implementation nicely.
2098   ASTContext &Context = D.getASTContext();
2099   if (!Context.getLangOpts().CPlusPlus)
2100     return CLanguageLinkage;
2101 
2102   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2103   // language linkage of the names of class members and the function type of
2104   // class member functions.
2105   const DeclContext *DC = D.getDeclContext();
2106   if (DC->isRecord())
2107     return CXXLanguageLinkage;
2108 
2109   // If the first decl is in an extern "C" context, any other redeclaration
2110   // will have C language linkage. If the first one is not in an extern "C"
2111   // context, we would have reported an error for any other decl being in one.
2112   if (isFirstInExternCContext(&D))
2113     return CLanguageLinkage;
2114   return CXXLanguageLinkage;
2115 }
2116 
2117 template<typename T>
2118 static bool isDeclExternC(const T &D) {
2119   // Since the context is ignored for class members, they can only have C++
2120   // language linkage or no language linkage.
2121   const DeclContext *DC = D.getDeclContext();
2122   if (DC->isRecord()) {
2123     assert(D.getASTContext().getLangOpts().CPlusPlus);
2124     return false;
2125   }
2126 
2127   return D.getLanguageLinkage() == CLanguageLinkage;
2128 }
2129 
2130 LanguageLinkage VarDecl::getLanguageLinkage() const {
2131   return getDeclLanguageLinkage(*this);
2132 }
2133 
2134 bool VarDecl::isExternC() const {
2135   return isDeclExternC(*this);
2136 }
2137 
2138 bool VarDecl::isInExternCContext() const {
2139   return getLexicalDeclContext()->isExternCContext();
2140 }
2141 
2142 bool VarDecl::isInExternCXXContext() const {
2143   return getLexicalDeclContext()->isExternCXXContext();
2144 }
2145 
2146 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2147 
2148 VarDecl::DefinitionKind
2149 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2150   if (isThisDeclarationADemotedDefinition())
2151     return DeclarationOnly;
2152 
2153   // C++ [basic.def]p2:
2154   //   A declaration is a definition unless [...] it contains the 'extern'
2155   //   specifier or a linkage-specification and neither an initializer [...],
2156   //   it declares a non-inline static data member in a class declaration [...],
2157   //   it declares a static data member outside a class definition and the variable
2158   //   was defined within the class with the constexpr specifier [...],
2159   // C++1y [temp.expl.spec]p15:
2160   //   An explicit specialization of a static data member or an explicit
2161   //   specialization of a static data member template is a definition if the
2162   //   declaration includes an initializer; otherwise, it is a declaration.
2163   //
2164   // FIXME: How do you declare (but not define) a partial specialization of
2165   // a static data member template outside the containing class?
2166   if (isStaticDataMember()) {
2167     if (isOutOfLine() &&
2168         !(getCanonicalDecl()->isInline() &&
2169           getCanonicalDecl()->isConstexpr()) &&
2170         (hasInit() ||
2171          // If the first declaration is out-of-line, this may be an
2172          // instantiation of an out-of-line partial specialization of a variable
2173          // template for which we have not yet instantiated the initializer.
2174          (getFirstDecl()->isOutOfLine()
2175               ? getTemplateSpecializationKind() == TSK_Undeclared
2176               : getTemplateSpecializationKind() !=
2177                     TSK_ExplicitSpecialization) ||
2178          isa<VarTemplatePartialSpecializationDecl>(this)))
2179       return Definition;
2180     if (!isOutOfLine() && isInline())
2181       return Definition;
2182     return DeclarationOnly;
2183   }
2184   // C99 6.7p5:
2185   //   A definition of an identifier is a declaration for that identifier that
2186   //   [...] causes storage to be reserved for that object.
2187   // Note: that applies for all non-file-scope objects.
2188   // C99 6.9.2p1:
2189   //   If the declaration of an identifier for an object has file scope and an
2190   //   initializer, the declaration is an external definition for the identifier
2191   if (hasInit())
2192     return Definition;
2193 
2194   if (hasDefiningAttr())
2195     return Definition;
2196 
2197   if (const auto *SAA = getAttr<SelectAnyAttr>())
2198     if (!SAA->isInherited())
2199       return Definition;
2200 
2201   // A variable template specialization (other than a static data member
2202   // template or an explicit specialization) is a declaration until we
2203   // instantiate its initializer.
2204   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2205     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2206         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2207         !VTSD->IsCompleteDefinition)
2208       return DeclarationOnly;
2209   }
2210 
2211   if (hasExternalStorage())
2212     return DeclarationOnly;
2213 
2214   // [dcl.link] p7:
2215   //   A declaration directly contained in a linkage-specification is treated
2216   //   as if it contains the extern specifier for the purpose of determining
2217   //   the linkage of the declared name and whether it is a definition.
2218   if (isSingleLineLanguageLinkage(*this))
2219     return DeclarationOnly;
2220 
2221   // C99 6.9.2p2:
2222   //   A declaration of an object that has file scope without an initializer,
2223   //   and without a storage class specifier or the scs 'static', constitutes
2224   //   a tentative definition.
2225   // No such thing in C++.
2226   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2227     return TentativeDefinition;
2228 
2229   // What's left is (in C, block-scope) declarations without initializers or
2230   // external storage. These are definitions.
2231   return Definition;
2232 }
2233 
2234 VarDecl *VarDecl::getActingDefinition() {
2235   DefinitionKind Kind = isThisDeclarationADefinition();
2236   if (Kind != TentativeDefinition)
2237     return nullptr;
2238 
2239   VarDecl *LastTentative = nullptr;
2240 
2241   // Loop through the declaration chain, starting with the most recent.
2242   for (VarDecl *Decl = getMostRecentDecl(); Decl;
2243        Decl = Decl->getPreviousDecl()) {
2244     Kind = Decl->isThisDeclarationADefinition();
2245     if (Kind == Definition)
2246       return nullptr;
2247     // Record the first (most recent) TentativeDefinition that is encountered.
2248     if (Kind == TentativeDefinition && !LastTentative)
2249       LastTentative = Decl;
2250   }
2251 
2252   return LastTentative;
2253 }
2254 
2255 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2256   VarDecl *First = getFirstDecl();
2257   for (auto I : First->redecls()) {
2258     if (I->isThisDeclarationADefinition(C) == Definition)
2259       return I;
2260   }
2261   return nullptr;
2262 }
2263 
2264 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2265   DefinitionKind Kind = DeclarationOnly;
2266 
2267   const VarDecl *First = getFirstDecl();
2268   for (auto I : First->redecls()) {
2269     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2270     if (Kind == Definition)
2271       break;
2272   }
2273 
2274   return Kind;
2275 }
2276 
2277 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2278   for (auto I : redecls()) {
2279     if (auto Expr = I->getInit()) {
2280       D = I;
2281       return Expr;
2282     }
2283   }
2284   return nullptr;
2285 }
2286 
2287 bool VarDecl::hasInit() const {
2288   if (auto *P = dyn_cast<ParmVarDecl>(this))
2289     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2290       return false;
2291 
2292   return !Init.isNull();
2293 }
2294 
2295 Expr *VarDecl::getInit() {
2296   if (!hasInit())
2297     return nullptr;
2298 
2299   if (auto *S = Init.dyn_cast<Stmt *>())
2300     return cast<Expr>(S);
2301 
2302   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2303 }
2304 
2305 Stmt **VarDecl::getInitAddress() {
2306   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2307     return &ES->Value;
2308 
2309   return Init.getAddrOfPtr1();
2310 }
2311 
2312 VarDecl *VarDecl::getInitializingDeclaration() {
2313   VarDecl *Def = nullptr;
2314   for (auto I : redecls()) {
2315     if (I->hasInit())
2316       return I;
2317 
2318     if (I->isThisDeclarationADefinition()) {
2319       if (isStaticDataMember())
2320         return I;
2321       Def = I;
2322     }
2323   }
2324   return Def;
2325 }
2326 
2327 bool VarDecl::isOutOfLine() const {
2328   if (Decl::isOutOfLine())
2329     return true;
2330 
2331   if (!isStaticDataMember())
2332     return false;
2333 
2334   // If this static data member was instantiated from a static data member of
2335   // a class template, check whether that static data member was defined
2336   // out-of-line.
2337   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2338     return VD->isOutOfLine();
2339 
2340   return false;
2341 }
2342 
2343 void VarDecl::setInit(Expr *I) {
2344   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2345     Eval->~EvaluatedStmt();
2346     getASTContext().Deallocate(Eval);
2347   }
2348 
2349   Init = I;
2350 }
2351 
2352 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2353   const LangOptions &Lang = C.getLangOpts();
2354 
2355   // OpenCL permits const integral variables to be used in constant
2356   // expressions, like in C++98.
2357   if (!Lang.CPlusPlus && !Lang.OpenCL)
2358     return false;
2359 
2360   // Function parameters are never usable in constant expressions.
2361   if (isa<ParmVarDecl>(this))
2362     return false;
2363 
2364   // The values of weak variables are never usable in constant expressions.
2365   if (isWeak())
2366     return false;
2367 
2368   // In C++11, any variable of reference type can be used in a constant
2369   // expression if it is initialized by a constant expression.
2370   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2371     return true;
2372 
2373   // Only const objects can be used in constant expressions in C++. C++98 does
2374   // not require the variable to be non-volatile, but we consider this to be a
2375   // defect.
2376   if (!getType().isConstant(C) || getType().isVolatileQualified())
2377     return false;
2378 
2379   // In C++, const, non-volatile variables of integral or enumeration types
2380   // can be used in constant expressions.
2381   if (getType()->isIntegralOrEnumerationType())
2382     return true;
2383 
2384   // Additionally, in C++11, non-volatile constexpr variables can be used in
2385   // constant expressions.
2386   return Lang.CPlusPlus11 && isConstexpr();
2387 }
2388 
2389 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2390   // C++2a [expr.const]p3:
2391   //   A variable is usable in constant expressions after its initializing
2392   //   declaration is encountered...
2393   const VarDecl *DefVD = nullptr;
2394   const Expr *Init = getAnyInitializer(DefVD);
2395   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2396     return false;
2397   //   ... if it is a constexpr variable, or it is of reference type or of
2398   //   const-qualified integral or enumeration type, ...
2399   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2400     return false;
2401   //   ... and its initializer is a constant initializer.
2402   if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2403     return false;
2404   // C++98 [expr.const]p1:
2405   //   An integral constant-expression can involve only [...] const variables
2406   //   or static data members of integral or enumeration types initialized with
2407   //   [integer] constant expressions (dcl.init)
2408   if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2409       !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2410     return false;
2411   return true;
2412 }
2413 
2414 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2415 /// form, which contains extra information on the evaluated value of the
2416 /// initializer.
2417 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2418   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2419   if (!Eval) {
2420     // Note: EvaluatedStmt contains an APValue, which usually holds
2421     // resources not allocated from the ASTContext.  We need to do some
2422     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2423     // where we can detect whether there's anything to clean up or not.
2424     Eval = new (getASTContext()) EvaluatedStmt;
2425     Eval->Value = Init.get<Stmt *>();
2426     Init = Eval;
2427   }
2428   return Eval;
2429 }
2430 
2431 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2432   return Init.dyn_cast<EvaluatedStmt *>();
2433 }
2434 
2435 APValue *VarDecl::evaluateValue() const {
2436   SmallVector<PartialDiagnosticAt, 8> Notes;
2437   return evaluateValue(Notes);
2438 }
2439 
2440 APValue *VarDecl::evaluateValue(
2441     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2442   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2443 
2444   const auto *Init = cast<Expr>(Eval->Value);
2445   assert(!Init->isValueDependent());
2446 
2447   // We only produce notes indicating why an initializer is non-constant the
2448   // first time it is evaluated. FIXME: The notes won't always be emitted the
2449   // first time we try evaluation, so might not be produced at all.
2450   if (Eval->WasEvaluated)
2451     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2452 
2453   if (Eval->IsEvaluating) {
2454     // FIXME: Produce a diagnostic for self-initialization.
2455     return nullptr;
2456   }
2457 
2458   Eval->IsEvaluating = true;
2459 
2460   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2461                                             this, Notes);
2462 
2463   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2464   // or that it's empty (so that there's nothing to clean up) if evaluation
2465   // failed.
2466   if (!Result)
2467     Eval->Evaluated = APValue();
2468   else if (Eval->Evaluated.needsCleanup())
2469     getASTContext().addDestruction(&Eval->Evaluated);
2470 
2471   Eval->IsEvaluating = false;
2472   Eval->WasEvaluated = true;
2473 
2474   return Result ? &Eval->Evaluated : nullptr;
2475 }
2476 
2477 APValue *VarDecl::getEvaluatedValue() const {
2478   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2479     if (Eval->WasEvaluated)
2480       return &Eval->Evaluated;
2481 
2482   return nullptr;
2483 }
2484 
2485 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2486   const Expr *Init = getInit();
2487   assert(Init && "no initializer");
2488 
2489   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2490   if (!Eval->CheckedForICEInit) {
2491     Eval->CheckedForICEInit = true;
2492     Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2493   }
2494   return Eval->HasICEInit;
2495 }
2496 
2497 bool VarDecl::hasConstantInitialization() const {
2498   // In C, all globals (and only globals) have constant initialization.
2499   if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2500     return true;
2501 
2502   // In C++, it depends on whether the evaluation at the point of definition
2503   // was evaluatable as a constant initializer.
2504   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2505     return Eval->HasConstantInitialization;
2506 
2507   return false;
2508 }
2509 
2510 bool VarDecl::checkForConstantInitialization(
2511     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2512   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2513   // If we ask for the value before we know whether we have a constant
2514   // initializer, we can compute the wrong value (for example, due to
2515   // std::is_constant_evaluated()).
2516   assert(!Eval->WasEvaluated &&
2517          "already evaluated var value before checking for constant init");
2518   assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++");
2519 
2520   assert(!cast<Expr>(Eval->Value)->isValueDependent());
2521 
2522   // Evaluate the initializer to check whether it's a constant expression.
2523   Eval->HasConstantInitialization = evaluateValue(Notes) && Notes.empty();
2524   return Eval->HasConstantInitialization;
2525 }
2526 
2527 bool VarDecl::isParameterPack() const {
2528   return isa<PackExpansionType>(getType());
2529 }
2530 
2531 template<typename DeclT>
2532 static DeclT *getDefinitionOrSelf(DeclT *D) {
2533   assert(D);
2534   if (auto *Def = D->getDefinition())
2535     return Def;
2536   return D;
2537 }
2538 
2539 bool VarDecl::isEscapingByref() const {
2540   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2541 }
2542 
2543 bool VarDecl::isNonEscapingByref() const {
2544   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2545 }
2546 
2547 bool VarDecl::hasDependentAlignment() const {
2548   QualType T = getType();
2549   return T->isDependentType() || T->isUndeducedAutoType() ||
2550          llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2551            return AA->isAlignmentDependent();
2552          });
2553 }
2554 
2555 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2556   const VarDecl *VD = this;
2557 
2558   // If this is an instantiated member, walk back to the template from which
2559   // it was instantiated.
2560   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2561     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2562       VD = VD->getInstantiatedFromStaticDataMember();
2563       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2564         VD = NewVD;
2565     }
2566   }
2567 
2568   // If it's an instantiated variable template specialization, find the
2569   // template or partial specialization from which it was instantiated.
2570   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2571     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2572       auto From = VDTemplSpec->getInstantiatedFrom();
2573       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2574         while (!VTD->isMemberSpecialization()) {
2575           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2576           if (!NewVTD)
2577             break;
2578           VTD = NewVTD;
2579         }
2580         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2581       }
2582       if (auto *VTPSD =
2583               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2584         while (!VTPSD->isMemberSpecialization()) {
2585           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2586           if (!NewVTPSD)
2587             break;
2588           VTPSD = NewVTPSD;
2589         }
2590         return getDefinitionOrSelf<VarDecl>(VTPSD);
2591       }
2592     }
2593   }
2594 
2595   // If this is the pattern of a variable template, find where it was
2596   // instantiated from. FIXME: Is this necessary?
2597   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2598     while (!VarTemplate->isMemberSpecialization()) {
2599       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2600       if (!NewVT)
2601         break;
2602       VarTemplate = NewVT;
2603     }
2604 
2605     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2606   }
2607 
2608   if (VD == this)
2609     return nullptr;
2610   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2611 }
2612 
2613 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2614   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2615     return cast<VarDecl>(MSI->getInstantiatedFrom());
2616 
2617   return nullptr;
2618 }
2619 
2620 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2621   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2622     return Spec->getSpecializationKind();
2623 
2624   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2625     return MSI->getTemplateSpecializationKind();
2626 
2627   return TSK_Undeclared;
2628 }
2629 
2630 TemplateSpecializationKind
2631 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2632   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2633     return MSI->getTemplateSpecializationKind();
2634 
2635   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2636     return Spec->getSpecializationKind();
2637 
2638   return TSK_Undeclared;
2639 }
2640 
2641 SourceLocation VarDecl::getPointOfInstantiation() const {
2642   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2643     return Spec->getPointOfInstantiation();
2644 
2645   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2646     return MSI->getPointOfInstantiation();
2647 
2648   return SourceLocation();
2649 }
2650 
2651 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2652   return getASTContext().getTemplateOrSpecializationInfo(this)
2653       .dyn_cast<VarTemplateDecl *>();
2654 }
2655 
2656 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2657   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2658 }
2659 
2660 bool VarDecl::isKnownToBeDefined() const {
2661   const auto &LangOpts = getASTContext().getLangOpts();
2662   // In CUDA mode without relocatable device code, variables of form 'extern
2663   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2664   // memory pool.  These are never undefined variables, even if they appear
2665   // inside of an anon namespace or static function.
2666   //
2667   // With CUDA relocatable device code enabled, these variables don't get
2668   // special handling; they're treated like regular extern variables.
2669   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2670       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2671       isa<IncompleteArrayType>(getType()))
2672     return true;
2673 
2674   return hasDefinition();
2675 }
2676 
2677 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2678   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2679                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2680                                  !hasAttr<AlwaysDestroyAttr>()));
2681 }
2682 
2683 QualType::DestructionKind
2684 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2685   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2686     if (Eval->HasConstantDestruction)
2687       return QualType::DK_none;
2688 
2689   if (isNoDestroy(Ctx))
2690     return QualType::DK_none;
2691 
2692   return getType().isDestructedType();
2693 }
2694 
2695 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2696   if (isStaticDataMember())
2697     // FIXME: Remove ?
2698     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2699     return getASTContext().getTemplateOrSpecializationInfo(this)
2700         .dyn_cast<MemberSpecializationInfo *>();
2701   return nullptr;
2702 }
2703 
2704 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2705                                          SourceLocation PointOfInstantiation) {
2706   assert((isa<VarTemplateSpecializationDecl>(this) ||
2707           getMemberSpecializationInfo()) &&
2708          "not a variable or static data member template specialization");
2709 
2710   if (VarTemplateSpecializationDecl *Spec =
2711           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2712     Spec->setSpecializationKind(TSK);
2713     if (TSK != TSK_ExplicitSpecialization &&
2714         PointOfInstantiation.isValid() &&
2715         Spec->getPointOfInstantiation().isInvalid()) {
2716       Spec->setPointOfInstantiation(PointOfInstantiation);
2717       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2718         L->InstantiationRequested(this);
2719     }
2720   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2721     MSI->setTemplateSpecializationKind(TSK);
2722     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2723         MSI->getPointOfInstantiation().isInvalid()) {
2724       MSI->setPointOfInstantiation(PointOfInstantiation);
2725       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2726         L->InstantiationRequested(this);
2727     }
2728   }
2729 }
2730 
2731 void
2732 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2733                                             TemplateSpecializationKind TSK) {
2734   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2735          "Previous template or instantiation?");
2736   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2737 }
2738 
2739 //===----------------------------------------------------------------------===//
2740 // ParmVarDecl Implementation
2741 //===----------------------------------------------------------------------===//
2742 
2743 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2744                                  SourceLocation StartLoc,
2745                                  SourceLocation IdLoc, IdentifierInfo *Id,
2746                                  QualType T, TypeSourceInfo *TInfo,
2747                                  StorageClass S, Expr *DefArg) {
2748   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2749                                  S, DefArg);
2750 }
2751 
2752 QualType ParmVarDecl::getOriginalType() const {
2753   TypeSourceInfo *TSI = getTypeSourceInfo();
2754   QualType T = TSI ? TSI->getType() : getType();
2755   if (const auto *DT = dyn_cast<DecayedType>(T))
2756     return DT->getOriginalType();
2757   return T;
2758 }
2759 
2760 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2761   return new (C, ID)
2762       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2763                   nullptr, QualType(), nullptr, SC_None, nullptr);
2764 }
2765 
2766 SourceRange ParmVarDecl::getSourceRange() const {
2767   if (!hasInheritedDefaultArg()) {
2768     SourceRange ArgRange = getDefaultArgRange();
2769     if (ArgRange.isValid())
2770       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2771   }
2772 
2773   // DeclaratorDecl considers the range of postfix types as overlapping with the
2774   // declaration name, but this is not the case with parameters in ObjC methods.
2775   if (isa<ObjCMethodDecl>(getDeclContext()))
2776     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2777 
2778   return DeclaratorDecl::getSourceRange();
2779 }
2780 
2781 bool ParmVarDecl::isDestroyedInCallee() const {
2782   // ns_consumed only affects code generation in ARC
2783   if (hasAttr<NSConsumedAttr>())
2784     return getASTContext().getLangOpts().ObjCAutoRefCount;
2785 
2786   // FIXME: isParamDestroyedInCallee() should probably imply
2787   // isDestructedType()
2788   auto *RT = getType()->getAs<RecordType>();
2789   if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2790       getType().isDestructedType())
2791     return true;
2792 
2793   return false;
2794 }
2795 
2796 Expr *ParmVarDecl::getDefaultArg() {
2797   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2798   assert(!hasUninstantiatedDefaultArg() &&
2799          "Default argument is not yet instantiated!");
2800 
2801   Expr *Arg = getInit();
2802   if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2803     return E->getSubExpr();
2804 
2805   return Arg;
2806 }
2807 
2808 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2809   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2810   Init = defarg;
2811 }
2812 
2813 SourceRange ParmVarDecl::getDefaultArgRange() const {
2814   switch (ParmVarDeclBits.DefaultArgKind) {
2815   case DAK_None:
2816   case DAK_Unparsed:
2817     // Nothing we can do here.
2818     return SourceRange();
2819 
2820   case DAK_Uninstantiated:
2821     return getUninstantiatedDefaultArg()->getSourceRange();
2822 
2823   case DAK_Normal:
2824     if (const Expr *E = getInit())
2825       return E->getSourceRange();
2826 
2827     // Missing an actual expression, may be invalid.
2828     return SourceRange();
2829   }
2830   llvm_unreachable("Invalid default argument kind.");
2831 }
2832 
2833 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2834   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2835   Init = arg;
2836 }
2837 
2838 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2839   assert(hasUninstantiatedDefaultArg() &&
2840          "Wrong kind of initialization expression!");
2841   return cast_or_null<Expr>(Init.get<Stmt *>());
2842 }
2843 
2844 bool ParmVarDecl::hasDefaultArg() const {
2845   // FIXME: We should just return false for DAK_None here once callers are
2846   // prepared for the case that we encountered an invalid default argument and
2847   // were unable to even build an invalid expression.
2848   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2849          !Init.isNull();
2850 }
2851 
2852 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2853   getASTContext().setParameterIndex(this, parameterIndex);
2854   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2855 }
2856 
2857 unsigned ParmVarDecl::getParameterIndexLarge() const {
2858   return getASTContext().getParameterIndex(this);
2859 }
2860 
2861 //===----------------------------------------------------------------------===//
2862 // FunctionDecl Implementation
2863 //===----------------------------------------------------------------------===//
2864 
2865 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2866                            SourceLocation StartLoc,
2867                            const DeclarationNameInfo &NameInfo, QualType T,
2868                            TypeSourceInfo *TInfo, StorageClass S,
2869                            bool UsesFPIntrin, bool isInlineSpecified,
2870                            ConstexprSpecKind ConstexprKind,
2871                            Expr *TrailingRequiresClause)
2872     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2873                      StartLoc),
2874       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2875       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2876   assert(T.isNull() || T->isFunctionType());
2877   FunctionDeclBits.SClass = S;
2878   FunctionDeclBits.IsInline = isInlineSpecified;
2879   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2880   FunctionDeclBits.IsVirtualAsWritten = false;
2881   FunctionDeclBits.IsPure = false;
2882   FunctionDeclBits.HasInheritedPrototype = false;
2883   FunctionDeclBits.HasWrittenPrototype = true;
2884   FunctionDeclBits.IsDeleted = false;
2885   FunctionDeclBits.IsTrivial = false;
2886   FunctionDeclBits.IsTrivialForCall = false;
2887   FunctionDeclBits.IsDefaulted = false;
2888   FunctionDeclBits.IsExplicitlyDefaulted = false;
2889   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2890   FunctionDeclBits.HasImplicitReturnZero = false;
2891   FunctionDeclBits.IsLateTemplateParsed = false;
2892   FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2893   FunctionDeclBits.InstantiationIsPending = false;
2894   FunctionDeclBits.UsesSEHTry = false;
2895   FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
2896   FunctionDeclBits.HasSkippedBody = false;
2897   FunctionDeclBits.WillHaveBody = false;
2898   FunctionDeclBits.IsMultiVersion = false;
2899   FunctionDeclBits.IsCopyDeductionCandidate = false;
2900   FunctionDeclBits.HasODRHash = false;
2901   if (TrailingRequiresClause)
2902     setTrailingRequiresClause(TrailingRequiresClause);
2903 }
2904 
2905 void FunctionDecl::getNameForDiagnostic(
2906     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2907   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2908   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2909   if (TemplateArgs)
2910     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2911 }
2912 
2913 bool FunctionDecl::isVariadic() const {
2914   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2915     return FT->isVariadic();
2916   return false;
2917 }
2918 
2919 FunctionDecl::DefaultedFunctionInfo *
2920 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2921                                             ArrayRef<DeclAccessPair> Lookups) {
2922   DefaultedFunctionInfo *Info = new (Context.Allocate(
2923       totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2924       std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2925       DefaultedFunctionInfo;
2926   Info->NumLookups = Lookups.size();
2927   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2928                           Info->getTrailingObjects<DeclAccessPair>());
2929   return Info;
2930 }
2931 
2932 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2933   assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
2934   assert(!Body && "can't replace function body with defaulted function info");
2935 
2936   FunctionDeclBits.HasDefaultedFunctionInfo = true;
2937   DefaultedInfo = Info;
2938 }
2939 
2940 FunctionDecl::DefaultedFunctionInfo *
2941 FunctionDecl::getDefaultedFunctionInfo() const {
2942   return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2943 }
2944 
2945 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2946   for (auto I : redecls()) {
2947     if (I->doesThisDeclarationHaveABody()) {
2948       Definition = I;
2949       return true;
2950     }
2951   }
2952 
2953   return false;
2954 }
2955 
2956 bool FunctionDecl::hasTrivialBody() const {
2957   Stmt *S = getBody();
2958   if (!S) {
2959     // Since we don't have a body for this function, we don't know if it's
2960     // trivial or not.
2961     return false;
2962   }
2963 
2964   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2965     return true;
2966   return false;
2967 }
2968 
2969 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
2970   if (!getFriendObjectKind())
2971     return false;
2972 
2973   // Check for a friend function instantiated from a friend function
2974   // definition in a templated class.
2975   if (const FunctionDecl *InstantiatedFrom =
2976           getInstantiatedFromMemberFunction())
2977     return InstantiatedFrom->getFriendObjectKind() &&
2978            InstantiatedFrom->isThisDeclarationADefinition();
2979 
2980   // Check for a friend function template instantiated from a friend
2981   // function template definition in a templated class.
2982   if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
2983     if (const FunctionTemplateDecl *InstantiatedFrom =
2984             Template->getInstantiatedFromMemberTemplate())
2985       return InstantiatedFrom->getFriendObjectKind() &&
2986              InstantiatedFrom->isThisDeclarationADefinition();
2987   }
2988 
2989   return false;
2990 }
2991 
2992 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
2993                              bool CheckForPendingFriendDefinition) const {
2994   for (const FunctionDecl *FD : redecls()) {
2995     if (FD->isThisDeclarationADefinition()) {
2996       Definition = FD;
2997       return true;
2998     }
2999 
3000     // If this is a friend function defined in a class template, it does not
3001     // have a body until it is used, nevertheless it is a definition, see
3002     // [temp.inst]p2:
3003     //
3004     // ... for the purpose of determining whether an instantiated redeclaration
3005     // is valid according to [basic.def.odr] and [class.mem], a declaration that
3006     // corresponds to a definition in the template is considered to be a
3007     // definition.
3008     //
3009     // The following code must produce redefinition error:
3010     //
3011     //     template<typename T> struct C20 { friend void func_20() {} };
3012     //     C20<int> c20i;
3013     //     void func_20() {}
3014     //
3015     if (CheckForPendingFriendDefinition &&
3016         FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3017       Definition = FD;
3018       return true;
3019     }
3020   }
3021 
3022   return false;
3023 }
3024 
3025 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3026   if (!hasBody(Definition))
3027     return nullptr;
3028 
3029   assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
3030          "definition should not have a body");
3031   if (Definition->Body)
3032     return Definition->Body.get(getASTContext().getExternalSource());
3033 
3034   return nullptr;
3035 }
3036 
3037 void FunctionDecl::setBody(Stmt *B) {
3038   FunctionDeclBits.HasDefaultedFunctionInfo = false;
3039   Body = LazyDeclStmtPtr(B);
3040   if (B)
3041     EndRangeLoc = B->getEndLoc();
3042 }
3043 
3044 void FunctionDecl::setPure(bool P) {
3045   FunctionDeclBits.IsPure = P;
3046   if (P)
3047     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3048       Parent->markedVirtualFunctionPure();
3049 }
3050 
3051 template<std::size_t Len>
3052 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3053   IdentifierInfo *II = ND->getIdentifier();
3054   return II && II->isStr(Str);
3055 }
3056 
3057 bool FunctionDecl::isMain() const {
3058   const TranslationUnitDecl *tunit =
3059     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3060   return tunit &&
3061          !tunit->getASTContext().getLangOpts().Freestanding &&
3062          isNamed(this, "main");
3063 }
3064 
3065 bool FunctionDecl::isMSVCRTEntryPoint() const {
3066   const TranslationUnitDecl *TUnit =
3067       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3068   if (!TUnit)
3069     return false;
3070 
3071   // Even though we aren't really targeting MSVCRT if we are freestanding,
3072   // semantic analysis for these functions remains the same.
3073 
3074   // MSVCRT entry points only exist on MSVCRT targets.
3075   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3076     return false;
3077 
3078   // Nameless functions like constructors cannot be entry points.
3079   if (!getIdentifier())
3080     return false;
3081 
3082   return llvm::StringSwitch<bool>(getName())
3083       .Cases("main",     // an ANSI console app
3084              "wmain",    // a Unicode console App
3085              "WinMain",  // an ANSI GUI app
3086              "wWinMain", // a Unicode GUI app
3087              "DllMain",  // a DLL
3088              true)
3089       .Default(false);
3090 }
3091 
3092 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3093   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
3094   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
3095          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3096          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
3097          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
3098 
3099   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3100     return false;
3101 
3102   const auto *proto = getType()->castAs<FunctionProtoType>();
3103   if (proto->getNumParams() != 2 || proto->isVariadic())
3104     return false;
3105 
3106   ASTContext &Context =
3107     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3108       ->getASTContext();
3109 
3110   // The result type and first argument type are constant across all
3111   // these operators.  The second argument must be exactly void*.
3112   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3113 }
3114 
3115 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3116     Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3117   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3118     return false;
3119   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3120       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3121       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3122       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3123     return false;
3124 
3125   if (isa<CXXRecordDecl>(getDeclContext()))
3126     return false;
3127 
3128   // This can only fail for an invalid 'operator new' declaration.
3129   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3130     return false;
3131 
3132   const auto *FPT = getType()->castAs<FunctionProtoType>();
3133   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3134     return false;
3135 
3136   // If this is a single-parameter function, it must be a replaceable global
3137   // allocation or deallocation function.
3138   if (FPT->getNumParams() == 1)
3139     return true;
3140 
3141   unsigned Params = 1;
3142   QualType Ty = FPT->getParamType(Params);
3143   ASTContext &Ctx = getASTContext();
3144 
3145   auto Consume = [&] {
3146     ++Params;
3147     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3148   };
3149 
3150   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3151   bool IsSizedDelete = false;
3152   if (Ctx.getLangOpts().SizedDeallocation &&
3153       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3154        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3155       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3156     IsSizedDelete = true;
3157     Consume();
3158   }
3159 
3160   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3161   // new/delete.
3162   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3163     Consume();
3164     if (AlignmentParam)
3165       *AlignmentParam = Params;
3166   }
3167 
3168   // Finally, if this is not a sized delete, the final parameter can
3169   // be a 'const std::nothrow_t&'.
3170   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3171     Ty = Ty->getPointeeType();
3172     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3173       return false;
3174     if (Ty->isNothrowT()) {
3175       if (IsNothrow)
3176         *IsNothrow = true;
3177       Consume();
3178     }
3179   }
3180 
3181   return Params == FPT->getNumParams();
3182 }
3183 
3184 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3185   if (!getBuiltinID())
3186     return false;
3187 
3188   const FunctionDecl *Definition;
3189   return hasBody(Definition) && Definition->isInlineSpecified() &&
3190          Definition->hasAttr<AlwaysInlineAttr>() &&
3191          Definition->hasAttr<GNUInlineAttr>();
3192 }
3193 
3194 bool FunctionDecl::isDestroyingOperatorDelete() const {
3195   // C++ P0722:
3196   //   Within a class C, a single object deallocation function with signature
3197   //     (T, std::destroying_delete_t, <more params>)
3198   //   is a destroying operator delete.
3199   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3200       getNumParams() < 2)
3201     return false;
3202 
3203   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3204   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3205          RD->getIdentifier()->isStr("destroying_delete_t");
3206 }
3207 
3208 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3209   return getDeclLanguageLinkage(*this);
3210 }
3211 
3212 bool FunctionDecl::isExternC() const {
3213   return isDeclExternC(*this);
3214 }
3215 
3216 bool FunctionDecl::isInExternCContext() const {
3217   if (hasAttr<OpenCLKernelAttr>())
3218     return true;
3219   return getLexicalDeclContext()->isExternCContext();
3220 }
3221 
3222 bool FunctionDecl::isInExternCXXContext() const {
3223   return getLexicalDeclContext()->isExternCXXContext();
3224 }
3225 
3226 bool FunctionDecl::isGlobal() const {
3227   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3228     return Method->isStatic();
3229 
3230   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3231     return false;
3232 
3233   for (const DeclContext *DC = getDeclContext();
3234        DC->isNamespace();
3235        DC = DC->getParent()) {
3236     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3237       if (!Namespace->getDeclName())
3238         return false;
3239       break;
3240     }
3241   }
3242 
3243   return true;
3244 }
3245 
3246 bool FunctionDecl::isNoReturn() const {
3247   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3248       hasAttr<C11NoReturnAttr>())
3249     return true;
3250 
3251   if (auto *FnTy = getType()->getAs<FunctionType>())
3252     return FnTy->getNoReturnAttr();
3253 
3254   return false;
3255 }
3256 
3257 
3258 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3259   if (hasAttr<TargetAttr>())
3260     return MultiVersionKind::Target;
3261   if (hasAttr<CPUDispatchAttr>())
3262     return MultiVersionKind::CPUDispatch;
3263   if (hasAttr<CPUSpecificAttr>())
3264     return MultiVersionKind::CPUSpecific;
3265   if (hasAttr<TargetClonesAttr>())
3266     return MultiVersionKind::TargetClones;
3267   return MultiVersionKind::None;
3268 }
3269 
3270 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3271   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3272 }
3273 
3274 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3275   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3276 }
3277 
3278 bool FunctionDecl::isTargetMultiVersion() const {
3279   return isMultiVersion() && hasAttr<TargetAttr>();
3280 }
3281 
3282 bool FunctionDecl::isTargetClonesMultiVersion() const {
3283   return isMultiVersion() && hasAttr<TargetClonesAttr>();
3284 }
3285 
3286 void
3287 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3288   redeclarable_base::setPreviousDecl(PrevDecl);
3289 
3290   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3291     FunctionTemplateDecl *PrevFunTmpl
3292       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3293     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3294     FunTmpl->setPreviousDecl(PrevFunTmpl);
3295   }
3296 
3297   if (PrevDecl && PrevDecl->isInlined())
3298     setImplicitlyInline(true);
3299 }
3300 
3301 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3302 
3303 /// Returns a value indicating whether this function corresponds to a builtin
3304 /// function.
3305 ///
3306 /// The function corresponds to a built-in function if it is declared at
3307 /// translation scope or within an extern "C" block and its name matches with
3308 /// the name of a builtin. The returned value will be 0 for functions that do
3309 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3310 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3311 /// value.
3312 ///
3313 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3314 /// functions as their wrapped builtins. This shouldn't be done in general, but
3315 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3316 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3317   unsigned BuiltinID = 0;
3318 
3319   if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3320     BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3321   } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3322     BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3323   } else if (const auto *A = getAttr<BuiltinAttr>()) {
3324     BuiltinID = A->getID();
3325   }
3326 
3327   if (!BuiltinID)
3328     return 0;
3329 
3330   // If the function is marked "overloadable", it has a different mangled name
3331   // and is not the C library function.
3332   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3333       (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3334     return 0;
3335 
3336   ASTContext &Context = getASTContext();
3337   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3338     return BuiltinID;
3339 
3340   // This function has the name of a known C library
3341   // function. Determine whether it actually refers to the C library
3342   // function or whether it just has the same name.
3343 
3344   // If this is a static function, it's not a builtin.
3345   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3346     return 0;
3347 
3348   // OpenCL v1.2 s6.9.f - The library functions defined in
3349   // the C99 standard headers are not available.
3350   if (Context.getLangOpts().OpenCL &&
3351       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3352     return 0;
3353 
3354   // CUDA does not have device-side standard library. printf and malloc are the
3355   // only special cases that are supported by device-side runtime.
3356   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3357       !hasAttr<CUDAHostAttr>() &&
3358       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3359     return 0;
3360 
3361   // As AMDGCN implementation of OpenMP does not have a device-side standard
3362   // library, none of the predefined library functions except printf and malloc
3363   // should be treated as a builtin i.e. 0 should be returned for them.
3364   if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3365       Context.getLangOpts().OpenMPIsDevice &&
3366       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3367       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3368     return 0;
3369 
3370   return BuiltinID;
3371 }
3372 
3373 /// getNumParams - Return the number of parameters this function must have
3374 /// based on its FunctionType.  This is the length of the ParamInfo array
3375 /// after it has been created.
3376 unsigned FunctionDecl::getNumParams() const {
3377   const auto *FPT = getType()->getAs<FunctionProtoType>();
3378   return FPT ? FPT->getNumParams() : 0;
3379 }
3380 
3381 void FunctionDecl::setParams(ASTContext &C,
3382                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3383   assert(!ParamInfo && "Already has param info!");
3384   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3385 
3386   // Zero params -> null pointer.
3387   if (!NewParamInfo.empty()) {
3388     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3389     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3390   }
3391 }
3392 
3393 /// getMinRequiredArguments - Returns the minimum number of arguments
3394 /// needed to call this function. This may be fewer than the number of
3395 /// function parameters, if some of the parameters have default
3396 /// arguments (in C++) or are parameter packs (C++11).
3397 unsigned FunctionDecl::getMinRequiredArguments() const {
3398   if (!getASTContext().getLangOpts().CPlusPlus)
3399     return getNumParams();
3400 
3401   // Note that it is possible for a parameter with no default argument to
3402   // follow a parameter with a default argument.
3403   unsigned NumRequiredArgs = 0;
3404   unsigned MinParamsSoFar = 0;
3405   for (auto *Param : parameters()) {
3406     if (!Param->isParameterPack()) {
3407       ++MinParamsSoFar;
3408       if (!Param->hasDefaultArg())
3409         NumRequiredArgs = MinParamsSoFar;
3410     }
3411   }
3412   return NumRequiredArgs;
3413 }
3414 
3415 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3416   return getNumParams() == 1 ||
3417          (getNumParams() > 1 &&
3418           std::all_of(param_begin() + 1, param_end(),
3419                       [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3420 }
3421 
3422 /// The combination of the extern and inline keywords under MSVC forces
3423 /// the function to be required.
3424 ///
3425 /// Note: This function assumes that we will only get called when isInlined()
3426 /// would return true for this FunctionDecl.
3427 bool FunctionDecl::isMSExternInline() const {
3428   assert(isInlined() && "expected to get called on an inlined function!");
3429 
3430   const ASTContext &Context = getASTContext();
3431   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3432       !hasAttr<DLLExportAttr>())
3433     return false;
3434 
3435   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3436        FD = FD->getPreviousDecl())
3437     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3438       return true;
3439 
3440   return false;
3441 }
3442 
3443 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3444   if (Redecl->getStorageClass() != SC_Extern)
3445     return false;
3446 
3447   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3448        FD = FD->getPreviousDecl())
3449     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3450       return false;
3451 
3452   return true;
3453 }
3454 
3455 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3456   // Only consider file-scope declarations in this test.
3457   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3458     return false;
3459 
3460   // Only consider explicit declarations; the presence of a builtin for a
3461   // libcall shouldn't affect whether a definition is externally visible.
3462   if (Redecl->isImplicit())
3463     return false;
3464 
3465   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3466     return true; // Not an inline definition
3467 
3468   return false;
3469 }
3470 
3471 /// For a function declaration in C or C++, determine whether this
3472 /// declaration causes the definition to be externally visible.
3473 ///
3474 /// For instance, this determines if adding the current declaration to the set
3475 /// of redeclarations of the given functions causes
3476 /// isInlineDefinitionExternallyVisible to change from false to true.
3477 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3478   assert(!doesThisDeclarationHaveABody() &&
3479          "Must have a declaration without a body.");
3480 
3481   ASTContext &Context = getASTContext();
3482 
3483   if (Context.getLangOpts().MSVCCompat) {
3484     const FunctionDecl *Definition;
3485     if (hasBody(Definition) && Definition->isInlined() &&
3486         redeclForcesDefMSVC(this))
3487       return true;
3488   }
3489 
3490   if (Context.getLangOpts().CPlusPlus)
3491     return false;
3492 
3493   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3494     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3495     // an externally visible definition.
3496     //
3497     // FIXME: What happens if gnu_inline gets added on after the first
3498     // declaration?
3499     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3500       return false;
3501 
3502     const FunctionDecl *Prev = this;
3503     bool FoundBody = false;
3504     while ((Prev = Prev->getPreviousDecl())) {
3505       FoundBody |= Prev->doesThisDeclarationHaveABody();
3506 
3507       if (Prev->doesThisDeclarationHaveABody()) {
3508         // If it's not the case that both 'inline' and 'extern' are
3509         // specified on the definition, then it is always externally visible.
3510         if (!Prev->isInlineSpecified() ||
3511             Prev->getStorageClass() != SC_Extern)
3512           return false;
3513       } else if (Prev->isInlineSpecified() &&
3514                  Prev->getStorageClass() != SC_Extern) {
3515         return false;
3516       }
3517     }
3518     return FoundBody;
3519   }
3520 
3521   // C99 6.7.4p6:
3522   //   [...] If all of the file scope declarations for a function in a
3523   //   translation unit include the inline function specifier without extern,
3524   //   then the definition in that translation unit is an inline definition.
3525   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3526     return false;
3527   const FunctionDecl *Prev = this;
3528   bool FoundBody = false;
3529   while ((Prev = Prev->getPreviousDecl())) {
3530     FoundBody |= Prev->doesThisDeclarationHaveABody();
3531     if (RedeclForcesDefC99(Prev))
3532       return false;
3533   }
3534   return FoundBody;
3535 }
3536 
3537 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3538   const TypeSourceInfo *TSI = getTypeSourceInfo();
3539   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3540              : FunctionTypeLoc();
3541 }
3542 
3543 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3544   FunctionTypeLoc FTL = getFunctionTypeLoc();
3545   if (!FTL)
3546     return SourceRange();
3547 
3548   // Skip self-referential return types.
3549   const SourceManager &SM = getASTContext().getSourceManager();
3550   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3551   SourceLocation Boundary = getNameInfo().getBeginLoc();
3552   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3553       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3554     return SourceRange();
3555 
3556   return RTRange;
3557 }
3558 
3559 SourceRange FunctionDecl::getParametersSourceRange() const {
3560   unsigned NP = getNumParams();
3561   SourceLocation EllipsisLoc = getEllipsisLoc();
3562 
3563   if (NP == 0 && EllipsisLoc.isInvalid())
3564     return SourceRange();
3565 
3566   SourceLocation Begin =
3567       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3568   SourceLocation End = EllipsisLoc.isValid()
3569                            ? EllipsisLoc
3570                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3571 
3572   return SourceRange(Begin, End);
3573 }
3574 
3575 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3576   FunctionTypeLoc FTL = getFunctionTypeLoc();
3577   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3578 }
3579 
3580 /// For an inline function definition in C, or for a gnu_inline function
3581 /// in C++, determine whether the definition will be externally visible.
3582 ///
3583 /// Inline function definitions are always available for inlining optimizations.
3584 /// However, depending on the language dialect, declaration specifiers, and
3585 /// attributes, the definition of an inline function may or may not be
3586 /// "externally" visible to other translation units in the program.
3587 ///
3588 /// In C99, inline definitions are not externally visible by default. However,
3589 /// if even one of the global-scope declarations is marked "extern inline", the
3590 /// inline definition becomes externally visible (C99 6.7.4p6).
3591 ///
3592 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3593 /// definition, we use the GNU semantics for inline, which are nearly the
3594 /// opposite of C99 semantics. In particular, "inline" by itself will create
3595 /// an externally visible symbol, but "extern inline" will not create an
3596 /// externally visible symbol.
3597 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3598   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3599           hasAttr<AliasAttr>()) &&
3600          "Must be a function definition");
3601   assert(isInlined() && "Function must be inline");
3602   ASTContext &Context = getASTContext();
3603 
3604   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3605     // Note: If you change the logic here, please change
3606     // doesDeclarationForceExternallyVisibleDefinition as well.
3607     //
3608     // If it's not the case that both 'inline' and 'extern' are
3609     // specified on the definition, then this inline definition is
3610     // externally visible.
3611     if (Context.getLangOpts().CPlusPlus)
3612       return false;
3613     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3614       return true;
3615 
3616     // If any declaration is 'inline' but not 'extern', then this definition
3617     // is externally visible.
3618     for (auto Redecl : redecls()) {
3619       if (Redecl->isInlineSpecified() &&
3620           Redecl->getStorageClass() != SC_Extern)
3621         return true;
3622     }
3623 
3624     return false;
3625   }
3626 
3627   // The rest of this function is C-only.
3628   assert(!Context.getLangOpts().CPlusPlus &&
3629          "should not use C inline rules in C++");
3630 
3631   // C99 6.7.4p6:
3632   //   [...] If all of the file scope declarations for a function in a
3633   //   translation unit include the inline function specifier without extern,
3634   //   then the definition in that translation unit is an inline definition.
3635   for (auto Redecl : redecls()) {
3636     if (RedeclForcesDefC99(Redecl))
3637       return true;
3638   }
3639 
3640   // C99 6.7.4p6:
3641   //   An inline definition does not provide an external definition for the
3642   //   function, and does not forbid an external definition in another
3643   //   translation unit.
3644   return false;
3645 }
3646 
3647 /// getOverloadedOperator - Which C++ overloaded operator this
3648 /// function represents, if any.
3649 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3650   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3651     return getDeclName().getCXXOverloadedOperator();
3652   return OO_None;
3653 }
3654 
3655 /// getLiteralIdentifier - The literal suffix identifier this function
3656 /// represents, if any.
3657 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3658   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3659     return getDeclName().getCXXLiteralIdentifier();
3660   return nullptr;
3661 }
3662 
3663 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3664   if (TemplateOrSpecialization.isNull())
3665     return TK_NonTemplate;
3666   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3667     return TK_FunctionTemplate;
3668   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3669     return TK_MemberSpecialization;
3670   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3671     return TK_FunctionTemplateSpecialization;
3672   if (TemplateOrSpecialization.is
3673                                <DependentFunctionTemplateSpecializationInfo*>())
3674     return TK_DependentFunctionTemplateSpecialization;
3675 
3676   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3677 }
3678 
3679 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3680   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3681     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3682 
3683   return nullptr;
3684 }
3685 
3686 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3687   if (auto *MSI =
3688           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3689     return MSI;
3690   if (auto *FTSI = TemplateOrSpecialization
3691                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
3692     return FTSI->getMemberSpecializationInfo();
3693   return nullptr;
3694 }
3695 
3696 void
3697 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3698                                                FunctionDecl *FD,
3699                                                TemplateSpecializationKind TSK) {
3700   assert(TemplateOrSpecialization.isNull() &&
3701          "Member function is already a specialization");
3702   MemberSpecializationInfo *Info
3703     = new (C) MemberSpecializationInfo(FD, TSK);
3704   TemplateOrSpecialization = Info;
3705 }
3706 
3707 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3708   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3709 }
3710 
3711 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3712   assert(TemplateOrSpecialization.isNull() &&
3713          "Member function is already a specialization");
3714   TemplateOrSpecialization = Template;
3715 }
3716 
3717 bool FunctionDecl::isImplicitlyInstantiable() const {
3718   // If the function is invalid, it can't be implicitly instantiated.
3719   if (isInvalidDecl())
3720     return false;
3721 
3722   switch (getTemplateSpecializationKindForInstantiation()) {
3723   case TSK_Undeclared:
3724   case TSK_ExplicitInstantiationDefinition:
3725   case TSK_ExplicitSpecialization:
3726     return false;
3727 
3728   case TSK_ImplicitInstantiation:
3729     return true;
3730 
3731   case TSK_ExplicitInstantiationDeclaration:
3732     // Handled below.
3733     break;
3734   }
3735 
3736   // Find the actual template from which we will instantiate.
3737   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3738   bool HasPattern = false;
3739   if (PatternDecl)
3740     HasPattern = PatternDecl->hasBody(PatternDecl);
3741 
3742   // C++0x [temp.explicit]p9:
3743   //   Except for inline functions, other explicit instantiation declarations
3744   //   have the effect of suppressing the implicit instantiation of the entity
3745   //   to which they refer.
3746   if (!HasPattern || !PatternDecl)
3747     return true;
3748 
3749   return PatternDecl->isInlined();
3750 }
3751 
3752 bool FunctionDecl::isTemplateInstantiation() const {
3753   // FIXME: Remove this, it's not clear what it means. (Which template
3754   // specialization kind?)
3755   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3756 }
3757 
3758 FunctionDecl *
3759 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3760   // If this is a generic lambda call operator specialization, its
3761   // instantiation pattern is always its primary template's pattern
3762   // even if its primary template was instantiated from another
3763   // member template (which happens with nested generic lambdas).
3764   // Since a lambda's call operator's body is transformed eagerly,
3765   // we don't have to go hunting for a prototype definition template
3766   // (i.e. instantiated-from-member-template) to use as an instantiation
3767   // pattern.
3768 
3769   if (isGenericLambdaCallOperatorSpecialization(
3770           dyn_cast<CXXMethodDecl>(this))) {
3771     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3772     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3773   }
3774 
3775   // Check for a declaration of this function that was instantiated from a
3776   // friend definition.
3777   const FunctionDecl *FD = nullptr;
3778   if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3779     FD = this;
3780 
3781   if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3782     if (ForDefinition &&
3783         !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3784       return nullptr;
3785     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3786   }
3787 
3788   if (ForDefinition &&
3789       !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3790     return nullptr;
3791 
3792   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3793     // If we hit a point where the user provided a specialization of this
3794     // template, we're done looking.
3795     while (!ForDefinition || !Primary->isMemberSpecialization()) {
3796       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3797       if (!NewPrimary)
3798         break;
3799       Primary = NewPrimary;
3800     }
3801 
3802     return getDefinitionOrSelf(Primary->getTemplatedDecl());
3803   }
3804 
3805   return nullptr;
3806 }
3807 
3808 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3809   if (FunctionTemplateSpecializationInfo *Info
3810         = TemplateOrSpecialization
3811             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3812     return Info->getTemplate();
3813   }
3814   return nullptr;
3815 }
3816 
3817 FunctionTemplateSpecializationInfo *
3818 FunctionDecl::getTemplateSpecializationInfo() const {
3819   return TemplateOrSpecialization
3820       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3821 }
3822 
3823 const TemplateArgumentList *
3824 FunctionDecl::getTemplateSpecializationArgs() const {
3825   if (FunctionTemplateSpecializationInfo *Info
3826         = TemplateOrSpecialization
3827             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3828     return Info->TemplateArguments;
3829   }
3830   return nullptr;
3831 }
3832 
3833 const ASTTemplateArgumentListInfo *
3834 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3835   if (FunctionTemplateSpecializationInfo *Info
3836         = TemplateOrSpecialization
3837             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3838     return Info->TemplateArgumentsAsWritten;
3839   }
3840   return nullptr;
3841 }
3842 
3843 void
3844 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3845                                                 FunctionTemplateDecl *Template,
3846                                      const TemplateArgumentList *TemplateArgs,
3847                                                 void *InsertPos,
3848                                                 TemplateSpecializationKind TSK,
3849                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3850                                           SourceLocation PointOfInstantiation) {
3851   assert((TemplateOrSpecialization.isNull() ||
3852           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3853          "Member function is already a specialization");
3854   assert(TSK != TSK_Undeclared &&
3855          "Must specify the type of function template specialization");
3856   assert((TemplateOrSpecialization.isNull() ||
3857           TSK == TSK_ExplicitSpecialization) &&
3858          "Member specialization must be an explicit specialization");
3859   FunctionTemplateSpecializationInfo *Info =
3860       FunctionTemplateSpecializationInfo::Create(
3861           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3862           PointOfInstantiation,
3863           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3864   TemplateOrSpecialization = Info;
3865   Template->addSpecialization(Info, InsertPos);
3866 }
3867 
3868 void
3869 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3870                                     const UnresolvedSetImpl &Templates,
3871                              const TemplateArgumentListInfo &TemplateArgs) {
3872   assert(TemplateOrSpecialization.isNull());
3873   DependentFunctionTemplateSpecializationInfo *Info =
3874       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3875                                                           TemplateArgs);
3876   TemplateOrSpecialization = Info;
3877 }
3878 
3879 DependentFunctionTemplateSpecializationInfo *
3880 FunctionDecl::getDependentSpecializationInfo() const {
3881   return TemplateOrSpecialization
3882       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3883 }
3884 
3885 DependentFunctionTemplateSpecializationInfo *
3886 DependentFunctionTemplateSpecializationInfo::Create(
3887     ASTContext &Context, const UnresolvedSetImpl &Ts,
3888     const TemplateArgumentListInfo &TArgs) {
3889   void *Buffer = Context.Allocate(
3890       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3891           TArgs.size(), Ts.size()));
3892   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3893 }
3894 
3895 DependentFunctionTemplateSpecializationInfo::
3896 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3897                                       const TemplateArgumentListInfo &TArgs)
3898   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3899   NumTemplates = Ts.size();
3900   NumArgs = TArgs.size();
3901 
3902   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3903   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3904     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3905 
3906   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3907   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3908     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3909 }
3910 
3911 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3912   // For a function template specialization, query the specialization
3913   // information object.
3914   if (FunctionTemplateSpecializationInfo *FTSInfo =
3915           TemplateOrSpecialization
3916               .dyn_cast<FunctionTemplateSpecializationInfo *>())
3917     return FTSInfo->getTemplateSpecializationKind();
3918 
3919   if (MemberSpecializationInfo *MSInfo =
3920           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3921     return MSInfo->getTemplateSpecializationKind();
3922 
3923   return TSK_Undeclared;
3924 }
3925 
3926 TemplateSpecializationKind
3927 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3928   // This is the same as getTemplateSpecializationKind(), except that for a
3929   // function that is both a function template specialization and a member
3930   // specialization, we prefer the member specialization information. Eg:
3931   //
3932   // template<typename T> struct A {
3933   //   template<typename U> void f() {}
3934   //   template<> void f<int>() {}
3935   // };
3936   //
3937   // For A<int>::f<int>():
3938   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3939   // * getTemplateSpecializationKindForInstantiation() will return
3940   //       TSK_ImplicitInstantiation
3941   //
3942   // This reflects the facts that A<int>::f<int> is an explicit specialization
3943   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3944   // from A::f<int> if a definition is needed.
3945   if (FunctionTemplateSpecializationInfo *FTSInfo =
3946           TemplateOrSpecialization
3947               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3948     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3949       return MSInfo->getTemplateSpecializationKind();
3950     return FTSInfo->getTemplateSpecializationKind();
3951   }
3952 
3953   if (MemberSpecializationInfo *MSInfo =
3954           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3955     return MSInfo->getTemplateSpecializationKind();
3956 
3957   return TSK_Undeclared;
3958 }
3959 
3960 void
3961 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3962                                           SourceLocation PointOfInstantiation) {
3963   if (FunctionTemplateSpecializationInfo *FTSInfo
3964         = TemplateOrSpecialization.dyn_cast<
3965                                     FunctionTemplateSpecializationInfo*>()) {
3966     FTSInfo->setTemplateSpecializationKind(TSK);
3967     if (TSK != TSK_ExplicitSpecialization &&
3968         PointOfInstantiation.isValid() &&
3969         FTSInfo->getPointOfInstantiation().isInvalid()) {
3970       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3971       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3972         L->InstantiationRequested(this);
3973     }
3974   } else if (MemberSpecializationInfo *MSInfo
3975              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3976     MSInfo->setTemplateSpecializationKind(TSK);
3977     if (TSK != TSK_ExplicitSpecialization &&
3978         PointOfInstantiation.isValid() &&
3979         MSInfo->getPointOfInstantiation().isInvalid()) {
3980       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3981       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3982         L->InstantiationRequested(this);
3983     }
3984   } else
3985     llvm_unreachable("Function cannot have a template specialization kind");
3986 }
3987 
3988 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3989   if (FunctionTemplateSpecializationInfo *FTSInfo
3990         = TemplateOrSpecialization.dyn_cast<
3991                                         FunctionTemplateSpecializationInfo*>())
3992     return FTSInfo->getPointOfInstantiation();
3993   if (MemberSpecializationInfo *MSInfo =
3994           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3995     return MSInfo->getPointOfInstantiation();
3996 
3997   return SourceLocation();
3998 }
3999 
4000 bool FunctionDecl::isOutOfLine() const {
4001   if (Decl::isOutOfLine())
4002     return true;
4003 
4004   // If this function was instantiated from a member function of a
4005   // class template, check whether that member function was defined out-of-line.
4006   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4007     const FunctionDecl *Definition;
4008     if (FD->hasBody(Definition))
4009       return Definition->isOutOfLine();
4010   }
4011 
4012   // If this function was instantiated from a function template,
4013   // check whether that function template was defined out-of-line.
4014   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4015     const FunctionDecl *Definition;
4016     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4017       return Definition->isOutOfLine();
4018   }
4019 
4020   return false;
4021 }
4022 
4023 SourceRange FunctionDecl::getSourceRange() const {
4024   return SourceRange(getOuterLocStart(), EndRangeLoc);
4025 }
4026 
4027 unsigned FunctionDecl::getMemoryFunctionKind() const {
4028   IdentifierInfo *FnInfo = getIdentifier();
4029 
4030   if (!FnInfo)
4031     return 0;
4032 
4033   // Builtin handling.
4034   switch (getBuiltinID()) {
4035   case Builtin::BI__builtin_memset:
4036   case Builtin::BI__builtin___memset_chk:
4037   case Builtin::BImemset:
4038     return Builtin::BImemset;
4039 
4040   case Builtin::BI__builtin_memcpy:
4041   case Builtin::BI__builtin___memcpy_chk:
4042   case Builtin::BImemcpy:
4043     return Builtin::BImemcpy;
4044 
4045   case Builtin::BI__builtin_mempcpy:
4046   case Builtin::BI__builtin___mempcpy_chk:
4047   case Builtin::BImempcpy:
4048     return Builtin::BImempcpy;
4049 
4050   case Builtin::BI__builtin_memmove:
4051   case Builtin::BI__builtin___memmove_chk:
4052   case Builtin::BImemmove:
4053     return Builtin::BImemmove;
4054 
4055   case Builtin::BIstrlcpy:
4056   case Builtin::BI__builtin___strlcpy_chk:
4057     return Builtin::BIstrlcpy;
4058 
4059   case Builtin::BIstrlcat:
4060   case Builtin::BI__builtin___strlcat_chk:
4061     return Builtin::BIstrlcat;
4062 
4063   case Builtin::BI__builtin_memcmp:
4064   case Builtin::BImemcmp:
4065     return Builtin::BImemcmp;
4066 
4067   case Builtin::BI__builtin_bcmp:
4068   case Builtin::BIbcmp:
4069     return Builtin::BIbcmp;
4070 
4071   case Builtin::BI__builtin_strncpy:
4072   case Builtin::BI__builtin___strncpy_chk:
4073   case Builtin::BIstrncpy:
4074     return Builtin::BIstrncpy;
4075 
4076   case Builtin::BI__builtin_strncmp:
4077   case Builtin::BIstrncmp:
4078     return Builtin::BIstrncmp;
4079 
4080   case Builtin::BI__builtin_strncasecmp:
4081   case Builtin::BIstrncasecmp:
4082     return Builtin::BIstrncasecmp;
4083 
4084   case Builtin::BI__builtin_strncat:
4085   case Builtin::BI__builtin___strncat_chk:
4086   case Builtin::BIstrncat:
4087     return Builtin::BIstrncat;
4088 
4089   case Builtin::BI__builtin_strndup:
4090   case Builtin::BIstrndup:
4091     return Builtin::BIstrndup;
4092 
4093   case Builtin::BI__builtin_strlen:
4094   case Builtin::BIstrlen:
4095     return Builtin::BIstrlen;
4096 
4097   case Builtin::BI__builtin_bzero:
4098   case Builtin::BIbzero:
4099     return Builtin::BIbzero;
4100 
4101   case Builtin::BIfree:
4102     return Builtin::BIfree;
4103 
4104   default:
4105     if (isExternC()) {
4106       if (FnInfo->isStr("memset"))
4107         return Builtin::BImemset;
4108       if (FnInfo->isStr("memcpy"))
4109         return Builtin::BImemcpy;
4110       if (FnInfo->isStr("mempcpy"))
4111         return Builtin::BImempcpy;
4112       if (FnInfo->isStr("memmove"))
4113         return Builtin::BImemmove;
4114       if (FnInfo->isStr("memcmp"))
4115         return Builtin::BImemcmp;
4116       if (FnInfo->isStr("bcmp"))
4117         return Builtin::BIbcmp;
4118       if (FnInfo->isStr("strncpy"))
4119         return Builtin::BIstrncpy;
4120       if (FnInfo->isStr("strncmp"))
4121         return Builtin::BIstrncmp;
4122       if (FnInfo->isStr("strncasecmp"))
4123         return Builtin::BIstrncasecmp;
4124       if (FnInfo->isStr("strncat"))
4125         return Builtin::BIstrncat;
4126       if (FnInfo->isStr("strndup"))
4127         return Builtin::BIstrndup;
4128       if (FnInfo->isStr("strlen"))
4129         return Builtin::BIstrlen;
4130       if (FnInfo->isStr("bzero"))
4131         return Builtin::BIbzero;
4132     } else if (isInStdNamespace()) {
4133       if (FnInfo->isStr("free"))
4134         return Builtin::BIfree;
4135     }
4136     break;
4137   }
4138   return 0;
4139 }
4140 
4141 unsigned FunctionDecl::getODRHash() const {
4142   assert(hasODRHash());
4143   return ODRHash;
4144 }
4145 
4146 unsigned FunctionDecl::getODRHash() {
4147   if (hasODRHash())
4148     return ODRHash;
4149 
4150   if (auto *FT = getInstantiatedFromMemberFunction()) {
4151     setHasODRHash(true);
4152     ODRHash = FT->getODRHash();
4153     return ODRHash;
4154   }
4155 
4156   class ODRHash Hash;
4157   Hash.AddFunctionDecl(this);
4158   setHasODRHash(true);
4159   ODRHash = Hash.CalculateHash();
4160   return ODRHash;
4161 }
4162 
4163 //===----------------------------------------------------------------------===//
4164 // FieldDecl Implementation
4165 //===----------------------------------------------------------------------===//
4166 
4167 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4168                              SourceLocation StartLoc, SourceLocation IdLoc,
4169                              IdentifierInfo *Id, QualType T,
4170                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4171                              InClassInitStyle InitStyle) {
4172   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4173                                BW, Mutable, InitStyle);
4174 }
4175 
4176 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4177   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4178                                SourceLocation(), nullptr, QualType(), nullptr,
4179                                nullptr, false, ICIS_NoInit);
4180 }
4181 
4182 bool FieldDecl::isAnonymousStructOrUnion() const {
4183   if (!isImplicit() || getDeclName())
4184     return false;
4185 
4186   if (const auto *Record = getType()->getAs<RecordType>())
4187     return Record->getDecl()->isAnonymousStructOrUnion();
4188 
4189   return false;
4190 }
4191 
4192 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4193   assert(isBitField() && "not a bitfield");
4194   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4195 }
4196 
4197 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4198   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4199          getBitWidthValue(Ctx) == 0;
4200 }
4201 
4202 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4203   if (isZeroLengthBitField(Ctx))
4204     return true;
4205 
4206   // C++2a [intro.object]p7:
4207   //   An object has nonzero size if it
4208   //     -- is not a potentially-overlapping subobject, or
4209   if (!hasAttr<NoUniqueAddressAttr>())
4210     return false;
4211 
4212   //     -- is not of class type, or
4213   const auto *RT = getType()->getAs<RecordType>();
4214   if (!RT)
4215     return false;
4216   const RecordDecl *RD = RT->getDecl()->getDefinition();
4217   if (!RD) {
4218     assert(isInvalidDecl() && "valid field has incomplete type");
4219     return false;
4220   }
4221 
4222   //     -- [has] virtual member functions or virtual base classes, or
4223   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4224   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4225   if (!CXXRD->isEmpty())
4226     return false;
4227 
4228   // Otherwise, [...] the circumstances under which the object has zero size
4229   // are implementation-defined.
4230   // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4231   // ABI will do.
4232   return true;
4233 }
4234 
4235 unsigned FieldDecl::getFieldIndex() const {
4236   const FieldDecl *Canonical = getCanonicalDecl();
4237   if (Canonical != this)
4238     return Canonical->getFieldIndex();
4239 
4240   if (CachedFieldIndex) return CachedFieldIndex - 1;
4241 
4242   unsigned Index = 0;
4243   const RecordDecl *RD = getParent()->getDefinition();
4244   assert(RD && "requested index for field of struct with no definition");
4245 
4246   for (auto *Field : RD->fields()) {
4247     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4248     ++Index;
4249   }
4250 
4251   assert(CachedFieldIndex && "failed to find field in parent");
4252   return CachedFieldIndex - 1;
4253 }
4254 
4255 SourceRange FieldDecl::getSourceRange() const {
4256   const Expr *FinalExpr = getInClassInitializer();
4257   if (!FinalExpr)
4258     FinalExpr = getBitWidth();
4259   if (FinalExpr)
4260     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4261   return DeclaratorDecl::getSourceRange();
4262 }
4263 
4264 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4265   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4266          "capturing type in non-lambda or captured record.");
4267   assert(InitStorage.getInt() == ISK_NoInit &&
4268          InitStorage.getPointer() == nullptr &&
4269          "bit width, initializer or captured type already set");
4270   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4271                                ISK_CapturedVLAType);
4272 }
4273 
4274 //===----------------------------------------------------------------------===//
4275 // TagDecl Implementation
4276 //===----------------------------------------------------------------------===//
4277 
4278 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4279                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4280                  SourceLocation StartL)
4281     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4282       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4283   assert((DK != Enum || TK == TTK_Enum) &&
4284          "EnumDecl not matched with TTK_Enum");
4285   setPreviousDecl(PrevDecl);
4286   setTagKind(TK);
4287   setCompleteDefinition(false);
4288   setBeingDefined(false);
4289   setEmbeddedInDeclarator(false);
4290   setFreeStanding(false);
4291   setCompleteDefinitionRequired(false);
4292 }
4293 
4294 SourceLocation TagDecl::getOuterLocStart() const {
4295   return getTemplateOrInnerLocStart(this);
4296 }
4297 
4298 SourceRange TagDecl::getSourceRange() const {
4299   SourceLocation RBraceLoc = BraceRange.getEnd();
4300   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4301   return SourceRange(getOuterLocStart(), E);
4302 }
4303 
4304 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4305 
4306 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4307   TypedefNameDeclOrQualifier = TDD;
4308   if (const Type *T = getTypeForDecl()) {
4309     (void)T;
4310     assert(T->isLinkageValid());
4311   }
4312   assert(isLinkageValid());
4313 }
4314 
4315 void TagDecl::startDefinition() {
4316   setBeingDefined(true);
4317 
4318   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4319     struct CXXRecordDecl::DefinitionData *Data =
4320       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4321     for (auto I : redecls())
4322       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4323   }
4324 }
4325 
4326 void TagDecl::completeDefinition() {
4327   assert((!isa<CXXRecordDecl>(this) ||
4328           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4329          "definition completed but not started");
4330 
4331   setCompleteDefinition(true);
4332   setBeingDefined(false);
4333 
4334   if (ASTMutationListener *L = getASTMutationListener())
4335     L->CompletedTagDefinition(this);
4336 }
4337 
4338 TagDecl *TagDecl::getDefinition() const {
4339   if (isCompleteDefinition())
4340     return const_cast<TagDecl *>(this);
4341 
4342   // If it's possible for us to have an out-of-date definition, check now.
4343   if (mayHaveOutOfDateDef()) {
4344     if (IdentifierInfo *II = getIdentifier()) {
4345       if (II->isOutOfDate()) {
4346         updateOutOfDate(*II);
4347       }
4348     }
4349   }
4350 
4351   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4352     return CXXRD->getDefinition();
4353 
4354   for (auto R : redecls())
4355     if (R->isCompleteDefinition())
4356       return R;
4357 
4358   return nullptr;
4359 }
4360 
4361 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4362   if (QualifierLoc) {
4363     // Make sure the extended qualifier info is allocated.
4364     if (!hasExtInfo())
4365       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4366     // Set qualifier info.
4367     getExtInfo()->QualifierLoc = QualifierLoc;
4368   } else {
4369     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4370     if (hasExtInfo()) {
4371       if (getExtInfo()->NumTemplParamLists == 0) {
4372         getASTContext().Deallocate(getExtInfo());
4373         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4374       }
4375       else
4376         getExtInfo()->QualifierLoc = QualifierLoc;
4377     }
4378   }
4379 }
4380 
4381 void TagDecl::setTemplateParameterListsInfo(
4382     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4383   assert(!TPLists.empty());
4384   // Make sure the extended decl info is allocated.
4385   if (!hasExtInfo())
4386     // Allocate external info struct.
4387     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4388   // Set the template parameter lists info.
4389   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4390 }
4391 
4392 //===----------------------------------------------------------------------===//
4393 // EnumDecl Implementation
4394 //===----------------------------------------------------------------------===//
4395 
4396 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4397                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4398                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4399     : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4400   assert(Scoped || !ScopedUsingClassTag);
4401   IntegerType = nullptr;
4402   setNumPositiveBits(0);
4403   setNumNegativeBits(0);
4404   setScoped(Scoped);
4405   setScopedUsingClassTag(ScopedUsingClassTag);
4406   setFixed(Fixed);
4407   setHasODRHash(false);
4408   ODRHash = 0;
4409 }
4410 
4411 void EnumDecl::anchor() {}
4412 
4413 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4414                            SourceLocation StartLoc, SourceLocation IdLoc,
4415                            IdentifierInfo *Id,
4416                            EnumDecl *PrevDecl, bool IsScoped,
4417                            bool IsScopedUsingClassTag, bool IsFixed) {
4418   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4419                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4420   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4421   C.getTypeDeclType(Enum, PrevDecl);
4422   return Enum;
4423 }
4424 
4425 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4426   EnumDecl *Enum =
4427       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4428                            nullptr, nullptr, false, false, false);
4429   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4430   return Enum;
4431 }
4432 
4433 SourceRange EnumDecl::getIntegerTypeRange() const {
4434   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4435     return TI->getTypeLoc().getSourceRange();
4436   return SourceRange();
4437 }
4438 
4439 void EnumDecl::completeDefinition(QualType NewType,
4440                                   QualType NewPromotionType,
4441                                   unsigned NumPositiveBits,
4442                                   unsigned NumNegativeBits) {
4443   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4444   if (!IntegerType)
4445     IntegerType = NewType.getTypePtr();
4446   PromotionType = NewPromotionType;
4447   setNumPositiveBits(NumPositiveBits);
4448   setNumNegativeBits(NumNegativeBits);
4449   TagDecl::completeDefinition();
4450 }
4451 
4452 bool EnumDecl::isClosed() const {
4453   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4454     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4455   return true;
4456 }
4457 
4458 bool EnumDecl::isClosedFlag() const {
4459   return isClosed() && hasAttr<FlagEnumAttr>();
4460 }
4461 
4462 bool EnumDecl::isClosedNonFlag() const {
4463   return isClosed() && !hasAttr<FlagEnumAttr>();
4464 }
4465 
4466 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4467   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4468     return MSI->getTemplateSpecializationKind();
4469 
4470   return TSK_Undeclared;
4471 }
4472 
4473 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4474                                          SourceLocation PointOfInstantiation) {
4475   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4476   assert(MSI && "Not an instantiated member enumeration?");
4477   MSI->setTemplateSpecializationKind(TSK);
4478   if (TSK != TSK_ExplicitSpecialization &&
4479       PointOfInstantiation.isValid() &&
4480       MSI->getPointOfInstantiation().isInvalid())
4481     MSI->setPointOfInstantiation(PointOfInstantiation);
4482 }
4483 
4484 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4485   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4486     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4487       EnumDecl *ED = getInstantiatedFromMemberEnum();
4488       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4489         ED = NewED;
4490       return getDefinitionOrSelf(ED);
4491     }
4492   }
4493 
4494   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4495          "couldn't find pattern for enum instantiation");
4496   return nullptr;
4497 }
4498 
4499 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4500   if (SpecializationInfo)
4501     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4502 
4503   return nullptr;
4504 }
4505 
4506 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4507                                             TemplateSpecializationKind TSK) {
4508   assert(!SpecializationInfo && "Member enum is already a specialization");
4509   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4510 }
4511 
4512 unsigned EnumDecl::getODRHash() {
4513   if (hasODRHash())
4514     return ODRHash;
4515 
4516   class ODRHash Hash;
4517   Hash.AddEnumDecl(this);
4518   setHasODRHash(true);
4519   ODRHash = Hash.CalculateHash();
4520   return ODRHash;
4521 }
4522 
4523 SourceRange EnumDecl::getSourceRange() const {
4524   auto Res = TagDecl::getSourceRange();
4525   // Set end-point to enum-base, e.g. enum foo : ^bar
4526   if (auto *TSI = getIntegerTypeSourceInfo()) {
4527     // TagDecl doesn't know about the enum base.
4528     if (!getBraceRange().getEnd().isValid())
4529       Res.setEnd(TSI->getTypeLoc().getEndLoc());
4530   }
4531   return Res;
4532 }
4533 
4534 //===----------------------------------------------------------------------===//
4535 // RecordDecl Implementation
4536 //===----------------------------------------------------------------------===//
4537 
4538 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4539                        DeclContext *DC, SourceLocation StartLoc,
4540                        SourceLocation IdLoc, IdentifierInfo *Id,
4541                        RecordDecl *PrevDecl)
4542     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4543   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4544   setHasFlexibleArrayMember(false);
4545   setAnonymousStructOrUnion(false);
4546   setHasObjectMember(false);
4547   setHasVolatileMember(false);
4548   setHasLoadedFieldsFromExternalStorage(false);
4549   setNonTrivialToPrimitiveDefaultInitialize(false);
4550   setNonTrivialToPrimitiveCopy(false);
4551   setNonTrivialToPrimitiveDestroy(false);
4552   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4553   setHasNonTrivialToPrimitiveDestructCUnion(false);
4554   setHasNonTrivialToPrimitiveCopyCUnion(false);
4555   setParamDestroyedInCallee(false);
4556   setArgPassingRestrictions(APK_CanPassInRegs);
4557 }
4558 
4559 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4560                                SourceLocation StartLoc, SourceLocation IdLoc,
4561                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
4562   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4563                                          StartLoc, IdLoc, Id, PrevDecl);
4564   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4565 
4566   C.getTypeDeclType(R, PrevDecl);
4567   return R;
4568 }
4569 
4570 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4571   RecordDecl *R =
4572       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4573                              SourceLocation(), nullptr, nullptr);
4574   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4575   return R;
4576 }
4577 
4578 bool RecordDecl::isInjectedClassName() const {
4579   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4580     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4581 }
4582 
4583 bool RecordDecl::isLambda() const {
4584   if (auto RD = dyn_cast<CXXRecordDecl>(this))
4585     return RD->isLambda();
4586   return false;
4587 }
4588 
4589 bool RecordDecl::isCapturedRecord() const {
4590   return hasAttr<CapturedRecordAttr>();
4591 }
4592 
4593 void RecordDecl::setCapturedRecord() {
4594   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4595 }
4596 
4597 bool RecordDecl::isOrContainsUnion() const {
4598   if (isUnion())
4599     return true;
4600 
4601   if (const RecordDecl *Def = getDefinition()) {
4602     for (const FieldDecl *FD : Def->fields()) {
4603       const RecordType *RT = FD->getType()->getAs<RecordType>();
4604       if (RT && RT->getDecl()->isOrContainsUnion())
4605         return true;
4606     }
4607   }
4608 
4609   return false;
4610 }
4611 
4612 RecordDecl::field_iterator RecordDecl::field_begin() const {
4613   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4614     LoadFieldsFromExternalStorage();
4615 
4616   return field_iterator(decl_iterator(FirstDecl));
4617 }
4618 
4619 /// completeDefinition - Notes that the definition of this type is now
4620 /// complete.
4621 void RecordDecl::completeDefinition() {
4622   assert(!isCompleteDefinition() && "Cannot redefine record!");
4623   TagDecl::completeDefinition();
4624 
4625   ASTContext &Ctx = getASTContext();
4626 
4627   // Layouts are dumped when computed, so if we are dumping for all complete
4628   // types, we need to force usage to get types that wouldn't be used elsewhere.
4629   if (Ctx.getLangOpts().DumpRecordLayoutsComplete)
4630     (void)Ctx.getASTRecordLayout(this);
4631 }
4632 
4633 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4634 /// This which can be turned on with an attribute, pragma, or the
4635 /// -mms-bitfields command-line option.
4636 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4637   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4638 }
4639 
4640 void RecordDecl::LoadFieldsFromExternalStorage() const {
4641   ExternalASTSource *Source = getASTContext().getExternalSource();
4642   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4643 
4644   // Notify that we have a RecordDecl doing some initialization.
4645   ExternalASTSource::Deserializing TheFields(Source);
4646 
4647   SmallVector<Decl*, 64> Decls;
4648   setHasLoadedFieldsFromExternalStorage(true);
4649   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4650     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4651   }, Decls);
4652 
4653 #ifndef NDEBUG
4654   // Check that all decls we got were FieldDecls.
4655   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4656     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4657 #endif
4658 
4659   if (Decls.empty())
4660     return;
4661 
4662   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4663                                                  /*FieldsAlreadyLoaded=*/false);
4664 }
4665 
4666 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4667   ASTContext &Context = getASTContext();
4668   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4669       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4670   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4671     return false;
4672   const auto &NoSanitizeList = Context.getNoSanitizeList();
4673   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4674   // We may be able to relax some of these requirements.
4675   int ReasonToReject = -1;
4676   if (!CXXRD || CXXRD->isExternCContext())
4677     ReasonToReject = 0;  // is not C++.
4678   else if (CXXRD->hasAttr<PackedAttr>())
4679     ReasonToReject = 1;  // is packed.
4680   else if (CXXRD->isUnion())
4681     ReasonToReject = 2;  // is a union.
4682   else if (CXXRD->isTriviallyCopyable())
4683     ReasonToReject = 3;  // is trivially copyable.
4684   else if (CXXRD->hasTrivialDestructor())
4685     ReasonToReject = 4;  // has trivial destructor.
4686   else if (CXXRD->isStandardLayout())
4687     ReasonToReject = 5;  // is standard layout.
4688   else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4689                                            "field-padding"))
4690     ReasonToReject = 6;  // is in an excluded file.
4691   else if (NoSanitizeList.containsType(
4692                EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4693     ReasonToReject = 7;  // The type is excluded.
4694 
4695   if (EmitRemark) {
4696     if (ReasonToReject >= 0)
4697       Context.getDiagnostics().Report(
4698           getLocation(),
4699           diag::remark_sanitize_address_insert_extra_padding_rejected)
4700           << getQualifiedNameAsString() << ReasonToReject;
4701     else
4702       Context.getDiagnostics().Report(
4703           getLocation(),
4704           diag::remark_sanitize_address_insert_extra_padding_accepted)
4705           << getQualifiedNameAsString();
4706   }
4707   return ReasonToReject < 0;
4708 }
4709 
4710 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4711   for (const auto *I : fields()) {
4712     if (I->getIdentifier())
4713       return I;
4714 
4715     if (const auto *RT = I->getType()->getAs<RecordType>())
4716       if (const FieldDecl *NamedDataMember =
4717               RT->getDecl()->findFirstNamedDataMember())
4718         return NamedDataMember;
4719   }
4720 
4721   // We didn't find a named data member.
4722   return nullptr;
4723 }
4724 
4725 //===----------------------------------------------------------------------===//
4726 // BlockDecl Implementation
4727 //===----------------------------------------------------------------------===//
4728 
4729 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4730     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4731   setIsVariadic(false);
4732   setCapturesCXXThis(false);
4733   setBlockMissingReturnType(true);
4734   setIsConversionFromLambda(false);
4735   setDoesNotEscape(false);
4736   setCanAvoidCopyToHeap(false);
4737 }
4738 
4739 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4740   assert(!ParamInfo && "Already has param info!");
4741 
4742   // Zero params -> null pointer.
4743   if (!NewParamInfo.empty()) {
4744     NumParams = NewParamInfo.size();
4745     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4746     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4747   }
4748 }
4749 
4750 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4751                             bool CapturesCXXThis) {
4752   this->setCapturesCXXThis(CapturesCXXThis);
4753   this->NumCaptures = Captures.size();
4754 
4755   if (Captures.empty()) {
4756     this->Captures = nullptr;
4757     return;
4758   }
4759 
4760   this->Captures = Captures.copy(Context).data();
4761 }
4762 
4763 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4764   for (const auto &I : captures())
4765     // Only auto vars can be captured, so no redeclaration worries.
4766     if (I.getVariable() == variable)
4767       return true;
4768 
4769   return false;
4770 }
4771 
4772 SourceRange BlockDecl::getSourceRange() const {
4773   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4774 }
4775 
4776 //===----------------------------------------------------------------------===//
4777 // Other Decl Allocation/Deallocation Method Implementations
4778 //===----------------------------------------------------------------------===//
4779 
4780 void TranslationUnitDecl::anchor() {}
4781 
4782 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4783   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4784 }
4785 
4786 void PragmaCommentDecl::anchor() {}
4787 
4788 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4789                                              TranslationUnitDecl *DC,
4790                                              SourceLocation CommentLoc,
4791                                              PragmaMSCommentKind CommentKind,
4792                                              StringRef Arg) {
4793   PragmaCommentDecl *PCD =
4794       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4795           PragmaCommentDecl(DC, CommentLoc, CommentKind);
4796   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4797   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4798   return PCD;
4799 }
4800 
4801 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4802                                                          unsigned ID,
4803                                                          unsigned ArgSize) {
4804   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4805       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4806 }
4807 
4808 void PragmaDetectMismatchDecl::anchor() {}
4809 
4810 PragmaDetectMismatchDecl *
4811 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4812                                  SourceLocation Loc, StringRef Name,
4813                                  StringRef Value) {
4814   size_t ValueStart = Name.size() + 1;
4815   PragmaDetectMismatchDecl *PDMD =
4816       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4817           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4818   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4819   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4820   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4821          Value.size());
4822   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4823   return PDMD;
4824 }
4825 
4826 PragmaDetectMismatchDecl *
4827 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4828                                              unsigned NameValueSize) {
4829   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4830       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4831 }
4832 
4833 void ExternCContextDecl::anchor() {}
4834 
4835 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4836                                                TranslationUnitDecl *DC) {
4837   return new (C, DC) ExternCContextDecl(DC);
4838 }
4839 
4840 void LabelDecl::anchor() {}
4841 
4842 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4843                              SourceLocation IdentL, IdentifierInfo *II) {
4844   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4845 }
4846 
4847 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4848                              SourceLocation IdentL, IdentifierInfo *II,
4849                              SourceLocation GnuLabelL) {
4850   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4851   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4852 }
4853 
4854 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4855   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4856                                SourceLocation());
4857 }
4858 
4859 void LabelDecl::setMSAsmLabel(StringRef Name) {
4860 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4861   memcpy(Buffer, Name.data(), Name.size());
4862   Buffer[Name.size()] = '\0';
4863   MSAsmName = Buffer;
4864 }
4865 
4866 void ValueDecl::anchor() {}
4867 
4868 bool ValueDecl::isWeak() const {
4869   auto *MostRecent = getMostRecentDecl();
4870   return MostRecent->hasAttr<WeakAttr>() ||
4871          MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
4872 }
4873 
4874 void ImplicitParamDecl::anchor() {}
4875 
4876 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4877                                              SourceLocation IdLoc,
4878                                              IdentifierInfo *Id, QualType Type,
4879                                              ImplicitParamKind ParamKind) {
4880   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4881 }
4882 
4883 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4884                                              ImplicitParamKind ParamKind) {
4885   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4886 }
4887 
4888 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4889                                                          unsigned ID) {
4890   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4891 }
4892 
4893 FunctionDecl *
4894 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4895                      const DeclarationNameInfo &NameInfo, QualType T,
4896                      TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
4897                      bool isInlineSpecified, bool hasWrittenPrototype,
4898                      ConstexprSpecKind ConstexprKind,
4899                      Expr *TrailingRequiresClause) {
4900   FunctionDecl *New = new (C, DC) FunctionDecl(
4901       Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
4902       isInlineSpecified, ConstexprKind, TrailingRequiresClause);
4903   New->setHasWrittenPrototype(hasWrittenPrototype);
4904   return New;
4905 }
4906 
4907 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4908   return new (C, ID) FunctionDecl(
4909       Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
4910       nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
4911 }
4912 
4913 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4914   return new (C, DC) BlockDecl(DC, L);
4915 }
4916 
4917 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4918   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4919 }
4920 
4921 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4922     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4923       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4924 
4925 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4926                                    unsigned NumParams) {
4927   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4928       CapturedDecl(DC, NumParams);
4929 }
4930 
4931 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4932                                                unsigned NumParams) {
4933   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4934       CapturedDecl(nullptr, NumParams);
4935 }
4936 
4937 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4938 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4939 
4940 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4941 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4942 
4943 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4944                                            SourceLocation L,
4945                                            IdentifierInfo *Id, QualType T,
4946                                            Expr *E, const llvm::APSInt &V) {
4947   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4948 }
4949 
4950 EnumConstantDecl *
4951 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4952   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4953                                       QualType(), nullptr, llvm::APSInt());
4954 }
4955 
4956 void IndirectFieldDecl::anchor() {}
4957 
4958 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4959                                      SourceLocation L, DeclarationName N,
4960                                      QualType T,
4961                                      MutableArrayRef<NamedDecl *> CH)
4962     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4963       ChainingSize(CH.size()) {
4964   // In C++, indirect field declarations conflict with tag declarations in the
4965   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4966   if (C.getLangOpts().CPlusPlus)
4967     IdentifierNamespace |= IDNS_Tag;
4968 }
4969 
4970 IndirectFieldDecl *
4971 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4972                           IdentifierInfo *Id, QualType T,
4973                           llvm::MutableArrayRef<NamedDecl *> CH) {
4974   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4975 }
4976 
4977 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4978                                                          unsigned ID) {
4979   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4980                                        DeclarationName(), QualType(), None);
4981 }
4982 
4983 SourceRange EnumConstantDecl::getSourceRange() const {
4984   SourceLocation End = getLocation();
4985   if (Init)
4986     End = Init->getEndLoc();
4987   return SourceRange(getLocation(), End);
4988 }
4989 
4990 void TypeDecl::anchor() {}
4991 
4992 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4993                                  SourceLocation StartLoc, SourceLocation IdLoc,
4994                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4995   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4996 }
4997 
4998 void TypedefNameDecl::anchor() {}
4999 
5000 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
5001   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
5002     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5003     auto *ThisTypedef = this;
5004     if (AnyRedecl && OwningTypedef) {
5005       OwningTypedef = OwningTypedef->getCanonicalDecl();
5006       ThisTypedef = ThisTypedef->getCanonicalDecl();
5007     }
5008     if (OwningTypedef == ThisTypedef)
5009       return TT->getDecl();
5010   }
5011 
5012   return nullptr;
5013 }
5014 
5015 bool TypedefNameDecl::isTransparentTagSlow() const {
5016   auto determineIsTransparent = [&]() {
5017     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5018       if (auto *TD = TT->getDecl()) {
5019         if (TD->getName() != getName())
5020           return false;
5021         SourceLocation TTLoc = getLocation();
5022         SourceLocation TDLoc = TD->getLocation();
5023         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5024           return false;
5025         SourceManager &SM = getASTContext().getSourceManager();
5026         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5027       }
5028     }
5029     return false;
5030   };
5031 
5032   bool isTransparent = determineIsTransparent();
5033   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5034   return isTransparent;
5035 }
5036 
5037 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5038   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5039                                  nullptr, nullptr);
5040 }
5041 
5042 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5043                                      SourceLocation StartLoc,
5044                                      SourceLocation IdLoc, IdentifierInfo *Id,
5045                                      TypeSourceInfo *TInfo) {
5046   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5047 }
5048 
5049 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5050   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5051                                    SourceLocation(), nullptr, nullptr);
5052 }
5053 
5054 SourceRange TypedefDecl::getSourceRange() const {
5055   SourceLocation RangeEnd = getLocation();
5056   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5057     if (typeIsPostfix(TInfo->getType()))
5058       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5059   }
5060   return SourceRange(getBeginLoc(), RangeEnd);
5061 }
5062 
5063 SourceRange TypeAliasDecl::getSourceRange() const {
5064   SourceLocation RangeEnd = getBeginLoc();
5065   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5066     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5067   return SourceRange(getBeginLoc(), RangeEnd);
5068 }
5069 
5070 void FileScopeAsmDecl::anchor() {}
5071 
5072 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5073                                            StringLiteral *Str,
5074                                            SourceLocation AsmLoc,
5075                                            SourceLocation RParenLoc) {
5076   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5077 }
5078 
5079 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5080                                                        unsigned ID) {
5081   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5082                                       SourceLocation());
5083 }
5084 
5085 void EmptyDecl::anchor() {}
5086 
5087 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5088   return new (C, DC) EmptyDecl(DC, L);
5089 }
5090 
5091 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5092   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5093 }
5094 
5095 //===----------------------------------------------------------------------===//
5096 // ImportDecl Implementation
5097 //===----------------------------------------------------------------------===//
5098 
5099 /// Retrieve the number of module identifiers needed to name the given
5100 /// module.
5101 static unsigned getNumModuleIdentifiers(Module *Mod) {
5102   unsigned Result = 1;
5103   while (Mod->Parent) {
5104     Mod = Mod->Parent;
5105     ++Result;
5106   }
5107   return Result;
5108 }
5109 
5110 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5111                        Module *Imported,
5112                        ArrayRef<SourceLocation> IdentifierLocs)
5113     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5114       NextLocalImportAndComplete(nullptr, true) {
5115   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5116   auto *StoredLocs = getTrailingObjects<SourceLocation>();
5117   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5118                           StoredLocs);
5119 }
5120 
5121 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5122                        Module *Imported, SourceLocation EndLoc)
5123     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5124       NextLocalImportAndComplete(nullptr, false) {
5125   *getTrailingObjects<SourceLocation>() = EndLoc;
5126 }
5127 
5128 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5129                                SourceLocation StartLoc, Module *Imported,
5130                                ArrayRef<SourceLocation> IdentifierLocs) {
5131   return new (C, DC,
5132               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5133       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5134 }
5135 
5136 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5137                                        SourceLocation StartLoc,
5138                                        Module *Imported,
5139                                        SourceLocation EndLoc) {
5140   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5141       ImportDecl(DC, StartLoc, Imported, EndLoc);
5142   Import->setImplicit();
5143   return Import;
5144 }
5145 
5146 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5147                                            unsigned NumLocations) {
5148   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5149       ImportDecl(EmptyShell());
5150 }
5151 
5152 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5153   if (!isImportComplete())
5154     return None;
5155 
5156   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5157   return llvm::makeArrayRef(StoredLocs,
5158                             getNumModuleIdentifiers(getImportedModule()));
5159 }
5160 
5161 SourceRange ImportDecl::getSourceRange() const {
5162   if (!isImportComplete())
5163     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5164 
5165   return SourceRange(getLocation(), getIdentifierLocs().back());
5166 }
5167 
5168 //===----------------------------------------------------------------------===//
5169 // ExportDecl Implementation
5170 //===----------------------------------------------------------------------===//
5171 
5172 void ExportDecl::anchor() {}
5173 
5174 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5175                                SourceLocation ExportLoc) {
5176   return new (C, DC) ExportDecl(DC, ExportLoc);
5177 }
5178 
5179 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5180   return new (C, ID) ExportDecl(nullptr, SourceLocation());
5181 }
5182