xref: /freebsd-src/contrib/llvm-project/clang/lib/AST/ASTContext.cpp (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/DependenceFlags.h"
33 #include "clang/AST/Expr.h"
34 #include "clang/AST/ExprCXX.h"
35 #include "clang/AST/ExprConcepts.h"
36 #include "clang/AST/ExternalASTSource.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/MangleNumberingContext.h"
39 #include "clang/AST/NestedNameSpecifier.h"
40 #include "clang/AST/ParentMapContext.h"
41 #include "clang/AST/RawCommentList.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/Stmt.h"
44 #include "clang/AST/TemplateBase.h"
45 #include "clang/AST/TemplateName.h"
46 #include "clang/AST/Type.h"
47 #include "clang/AST/TypeLoc.h"
48 #include "clang/AST/UnresolvedSet.h"
49 #include "clang/AST/VTableBuilder.h"
50 #include "clang/Basic/AddressSpaces.h"
51 #include "clang/Basic/Builtins.h"
52 #include "clang/Basic/CommentOptions.h"
53 #include "clang/Basic/ExceptionSpecificationType.h"
54 #include "clang/Basic/IdentifierTable.h"
55 #include "clang/Basic/LLVM.h"
56 #include "clang/Basic/LangOptions.h"
57 #include "clang/Basic/Linkage.h"
58 #include "clang/Basic/Module.h"
59 #include "clang/Basic/NoSanitizeList.h"
60 #include "clang/Basic/ObjCRuntime.h"
61 #include "clang/Basic/ProfileList.h"
62 #include "clang/Basic/SourceLocation.h"
63 #include "clang/Basic/SourceManager.h"
64 #include "clang/Basic/Specifiers.h"
65 #include "clang/Basic/TargetCXXABI.h"
66 #include "clang/Basic/TargetInfo.h"
67 #include "clang/Basic/XRayLists.h"
68 #include "llvm/ADT/APFixedPoint.h"
69 #include "llvm/ADT/APInt.h"
70 #include "llvm/ADT/APSInt.h"
71 #include "llvm/ADT/ArrayRef.h"
72 #include "llvm/ADT/DenseMap.h"
73 #include "llvm/ADT/DenseSet.h"
74 #include "llvm/ADT/FoldingSet.h"
75 #include "llvm/ADT/PointerUnion.h"
76 #include "llvm/ADT/STLExtras.h"
77 #include "llvm/ADT/SmallPtrSet.h"
78 #include "llvm/ADT/SmallVector.h"
79 #include "llvm/ADT/StringExtras.h"
80 #include "llvm/ADT/StringRef.h"
81 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
82 #include "llvm/Support/Capacity.h"
83 #include "llvm/Support/Casting.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/MD5.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/TargetParser/Triple.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstddef>
93 #include <cstdint>
94 #include <cstdlib>
95 #include <map>
96 #include <memory>
97 #include <optional>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101 
102 using namespace clang;
103 
104 enum FloatingRank {
105   BFloat16Rank,
106   Float16Rank,
107   HalfRank,
108   FloatRank,
109   DoubleRank,
110   LongDoubleRank,
111   Float128Rank,
112   Ibm128Rank
113 };
114 
115 /// \returns The locations that are relevant when searching for Doc comments
116 /// related to \p D.
117 static SmallVector<SourceLocation, 2>
118 getDeclLocsForCommentSearch(const Decl *D, SourceManager &SourceMgr) {
119   assert(D);
120 
121   // User can not attach documentation to implicit declarations.
122   if (D->isImplicit())
123     return {};
124 
125   // User can not attach documentation to implicit instantiations.
126   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
127     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
128       return {};
129   }
130 
131   if (const auto *VD = dyn_cast<VarDecl>(D)) {
132     if (VD->isStaticDataMember() &&
133         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
134       return {};
135   }
136 
137   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
138     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
139       return {};
140   }
141 
142   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
143     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
144     if (TSK == TSK_ImplicitInstantiation ||
145         TSK == TSK_Undeclared)
146       return {};
147   }
148 
149   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
150     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
151       return {};
152   }
153   if (const auto *TD = dyn_cast<TagDecl>(D)) {
154     // When tag declaration (but not definition!) is part of the
155     // decl-specifier-seq of some other declaration, it doesn't get comment
156     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
157       return {};
158   }
159   // TODO: handle comments for function parameters properly.
160   if (isa<ParmVarDecl>(D))
161     return {};
162 
163   // TODO: we could look up template parameter documentation in the template
164   // documentation.
165   if (isa<TemplateTypeParmDecl>(D) ||
166       isa<NonTypeTemplateParmDecl>(D) ||
167       isa<TemplateTemplateParmDecl>(D))
168     return {};
169 
170   SmallVector<SourceLocation, 2> Locations;
171   // Find declaration location.
172   // For Objective-C declarations we generally don't expect to have multiple
173   // declarators, thus use declaration starting location as the "declaration
174   // location".
175   // For all other declarations multiple declarators are used quite frequently,
176   // so we use the location of the identifier as the "declaration location".
177   SourceLocation BaseLocation;
178   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
179       isa<ObjCPropertyDecl>(D) || isa<RedeclarableTemplateDecl>(D) ||
180       isa<ClassTemplateSpecializationDecl>(D) ||
181       // Allow association with Y across {} in `typedef struct X {} Y`.
182       isa<TypedefDecl>(D))
183     BaseLocation = D->getBeginLoc();
184   else
185     BaseLocation = D->getLocation();
186 
187   if (!D->getLocation().isMacroID()) {
188     Locations.emplace_back(BaseLocation);
189   } else {
190     const auto *DeclCtx = D->getDeclContext();
191 
192     // When encountering definitions generated from a macro (that are not
193     // contained by another declaration in the macro) we need to try and find
194     // the comment at the location of the expansion but if there is no comment
195     // there we should retry to see if there is a comment inside the macro as
196     // well. To this end we return first BaseLocation to first look at the
197     // expansion site, the second value is the spelling location of the
198     // beginning of the declaration defined inside the macro.
199     if (!(DeclCtx &&
200           Decl::castFromDeclContext(DeclCtx)->getLocation().isMacroID())) {
201       Locations.emplace_back(SourceMgr.getExpansionLoc(BaseLocation));
202     }
203 
204     // We use Decl::getBeginLoc() and not just BaseLocation here to ensure that
205     // we don't refer to the macro argument location at the expansion site (this
206     // can happen if the name's spelling is provided via macro argument), and
207     // always to the declaration itself.
208     Locations.emplace_back(SourceMgr.getSpellingLoc(D->getBeginLoc()));
209   }
210 
211   return Locations;
212 }
213 
214 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
215     const Decl *D, const SourceLocation RepresentativeLocForDecl,
216     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
217   // If the declaration doesn't map directly to a location in a file, we
218   // can't find the comment.
219   if (RepresentativeLocForDecl.isInvalid() ||
220       !RepresentativeLocForDecl.isFileID())
221     return nullptr;
222 
223   // If there are no comments anywhere, we won't find anything.
224   if (CommentsInTheFile.empty())
225     return nullptr;
226 
227   // Decompose the location for the declaration and find the beginning of the
228   // file buffer.
229   const std::pair<FileID, unsigned> DeclLocDecomp =
230       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
231 
232   // Slow path.
233   auto OffsetCommentBehindDecl =
234       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
235 
236   // First check whether we have a trailing comment.
237   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
238     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
239     if ((CommentBehindDecl->isDocumentation() ||
240          LangOpts.CommentOpts.ParseAllComments) &&
241         CommentBehindDecl->isTrailingComment() &&
242         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
243          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
244 
245       // Check that Doxygen trailing comment comes after the declaration, starts
246       // on the same line and in the same file as the declaration.
247       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
248           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
249                                        OffsetCommentBehindDecl->first)) {
250         return CommentBehindDecl;
251       }
252     }
253   }
254 
255   // The comment just after the declaration was not a trailing comment.
256   // Let's look at the previous comment.
257   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
258     return nullptr;
259 
260   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
261   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
262 
263   // Check that we actually have a non-member Doxygen comment.
264   if (!(CommentBeforeDecl->isDocumentation() ||
265         LangOpts.CommentOpts.ParseAllComments) ||
266       CommentBeforeDecl->isTrailingComment())
267     return nullptr;
268 
269   // Decompose the end of the comment.
270   const unsigned CommentEndOffset =
271       Comments.getCommentEndOffset(CommentBeforeDecl);
272 
273   // Get the corresponding buffer.
274   bool Invalid = false;
275   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
276                                                &Invalid).data();
277   if (Invalid)
278     return nullptr;
279 
280   // Extract text between the comment and declaration.
281   StringRef Text(Buffer + CommentEndOffset,
282                  DeclLocDecomp.second - CommentEndOffset);
283 
284   // There should be no other declarations or preprocessor directives between
285   // comment and declaration.
286   if (Text.find_last_of(";{}#@") != StringRef::npos)
287     return nullptr;
288 
289   return CommentBeforeDecl;
290 }
291 
292 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
293   const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr);
294 
295   for (const auto DeclLoc : DeclLocs) {
296     // If the declaration doesn't map directly to a location in a file, we
297     // can't find the comment.
298     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
299       continue;
300 
301     if (ExternalSource && !CommentsLoaded) {
302       ExternalSource->ReadComments();
303       CommentsLoaded = true;
304     }
305 
306     if (Comments.empty())
307       continue;
308 
309     const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
310     if (!File.isValid())
311       continue;
312 
313     const auto CommentsInThisFile = Comments.getCommentsInFile(File);
314     if (!CommentsInThisFile || CommentsInThisFile->empty())
315       continue;
316 
317     if (RawComment *Comment =
318             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile))
319       return Comment;
320   }
321 
322   return nullptr;
323 }
324 
325 void ASTContext::addComment(const RawComment &RC) {
326   assert(LangOpts.RetainCommentsFromSystemHeaders ||
327          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
328   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
329 }
330 
331 /// If we have a 'templated' declaration for a template, adjust 'D' to
332 /// refer to the actual template.
333 /// If we have an implicit instantiation, adjust 'D' to refer to template.
334 static const Decl &adjustDeclToTemplate(const Decl &D) {
335   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
336     // Is this function declaration part of a function template?
337     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
338       return *FTD;
339 
340     // Nothing to do if function is not an implicit instantiation.
341     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
342       return D;
343 
344     // Function is an implicit instantiation of a function template?
345     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
346       return *FTD;
347 
348     // Function is instantiated from a member definition of a class template?
349     if (const FunctionDecl *MemberDecl =
350             FD->getInstantiatedFromMemberFunction())
351       return *MemberDecl;
352 
353     return D;
354   }
355   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
356     // Static data member is instantiated from a member definition of a class
357     // template?
358     if (VD->isStaticDataMember())
359       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
360         return *MemberDecl;
361 
362     return D;
363   }
364   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
365     // Is this class declaration part of a class template?
366     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
367       return *CTD;
368 
369     // Class is an implicit instantiation of a class template or partial
370     // specialization?
371     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
372       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
373         return D;
374       llvm::PointerUnion<ClassTemplateDecl *,
375                          ClassTemplatePartialSpecializationDecl *>
376           PU = CTSD->getSpecializedTemplateOrPartial();
377       return PU.is<ClassTemplateDecl *>()
378                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
379                  : *static_cast<const Decl *>(
380                        PU.get<ClassTemplatePartialSpecializationDecl *>());
381     }
382 
383     // Class is instantiated from a member definition of a class template?
384     if (const MemberSpecializationInfo *Info =
385             CRD->getMemberSpecializationInfo())
386       return *Info->getInstantiatedFrom();
387 
388     return D;
389   }
390   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
391     // Enum is instantiated from a member definition of a class template?
392     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
393       return *MemberDecl;
394 
395     return D;
396   }
397   // FIXME: Adjust alias templates?
398   return D;
399 }
400 
401 const RawComment *ASTContext::getRawCommentForAnyRedecl(
402                                                 const Decl *D,
403                                                 const Decl **OriginalDecl) const {
404   if (!D) {
405     if (OriginalDecl)
406       OriginalDecl = nullptr;
407     return nullptr;
408   }
409 
410   D = &adjustDeclToTemplate(*D);
411 
412   // Any comment directly attached to D?
413   {
414     auto DeclComment = DeclRawComments.find(D);
415     if (DeclComment != DeclRawComments.end()) {
416       if (OriginalDecl)
417         *OriginalDecl = D;
418       return DeclComment->second;
419     }
420   }
421 
422   // Any comment attached to any redeclaration of D?
423   const Decl *CanonicalD = D->getCanonicalDecl();
424   if (!CanonicalD)
425     return nullptr;
426 
427   {
428     auto RedeclComment = RedeclChainComments.find(CanonicalD);
429     if (RedeclComment != RedeclChainComments.end()) {
430       if (OriginalDecl)
431         *OriginalDecl = RedeclComment->second;
432       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
433       assert(CommentAtRedecl != DeclRawComments.end() &&
434              "This decl is supposed to have comment attached.");
435       return CommentAtRedecl->second;
436     }
437   }
438 
439   // Any redeclarations of D that we haven't checked for comments yet?
440   // We can't use DenseMap::iterator directly since it'd get invalid.
441   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
442     return CommentlessRedeclChains.lookup(CanonicalD);
443   }();
444 
445   for (const auto Redecl : D->redecls()) {
446     assert(Redecl);
447     // Skip all redeclarations that have been checked previously.
448     if (LastCheckedRedecl) {
449       if (LastCheckedRedecl == Redecl) {
450         LastCheckedRedecl = nullptr;
451       }
452       continue;
453     }
454     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
455     if (RedeclComment) {
456       cacheRawCommentForDecl(*Redecl, *RedeclComment);
457       if (OriginalDecl)
458         *OriginalDecl = Redecl;
459       return RedeclComment;
460     }
461     CommentlessRedeclChains[CanonicalD] = Redecl;
462   }
463 
464   if (OriginalDecl)
465     *OriginalDecl = nullptr;
466   return nullptr;
467 }
468 
469 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
470                                         const RawComment &Comment) const {
471   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
472   DeclRawComments.try_emplace(&OriginalD, &Comment);
473   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
474   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
475   CommentlessRedeclChains.erase(CanonicalDecl);
476 }
477 
478 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
479                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
480   const DeclContext *DC = ObjCMethod->getDeclContext();
481   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
482     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
483     if (!ID)
484       return;
485     // Add redeclared method here.
486     for (const auto *Ext : ID->known_extensions()) {
487       if (ObjCMethodDecl *RedeclaredMethod =
488             Ext->getMethod(ObjCMethod->getSelector(),
489                                   ObjCMethod->isInstanceMethod()))
490         Redeclared.push_back(RedeclaredMethod);
491     }
492   }
493 }
494 
495 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
496                                                  const Preprocessor *PP) {
497   if (Comments.empty() || Decls.empty())
498     return;
499 
500   FileID File;
501   for (Decl *D : Decls) {
502     SourceLocation Loc = D->getLocation();
503     if (Loc.isValid()) {
504       // See if there are any new comments that are not attached to a decl.
505       // The location doesn't have to be precise - we care only about the file.
506       File = SourceMgr.getDecomposedLoc(Loc).first;
507       break;
508     }
509   }
510 
511   if (File.isInvalid())
512     return;
513 
514   auto CommentsInThisFile = Comments.getCommentsInFile(File);
515   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
516       CommentsInThisFile->rbegin()->second->isAttached())
517     return;
518 
519   // There is at least one comment not attached to a decl.
520   // Maybe it should be attached to one of Decls?
521   //
522   // Note that this way we pick up not only comments that precede the
523   // declaration, but also comments that *follow* the declaration -- thanks to
524   // the lookahead in the lexer: we've consumed the semicolon and looked
525   // ahead through comments.
526   for (const Decl *D : Decls) {
527     assert(D);
528     if (D->isInvalidDecl())
529       continue;
530 
531     D = &adjustDeclToTemplate(*D);
532 
533     if (DeclRawComments.count(D) > 0)
534       continue;
535 
536     const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr);
537 
538     for (const auto DeclLoc : DeclLocs) {
539       if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
540         continue;
541 
542       if (RawComment *const DocComment = getRawCommentForDeclNoCacheImpl(
543               D, DeclLoc, *CommentsInThisFile)) {
544         cacheRawCommentForDecl(*D, *DocComment);
545         comments::FullComment *FC = DocComment->parse(*this, PP, D);
546         ParsedComments[D->getCanonicalDecl()] = FC;
547         break;
548       }
549     }
550   }
551 }
552 
553 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
554                                                     const Decl *D) const {
555   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
556   ThisDeclInfo->CommentDecl = D;
557   ThisDeclInfo->IsFilled = false;
558   ThisDeclInfo->fill();
559   ThisDeclInfo->CommentDecl = FC->getDecl();
560   if (!ThisDeclInfo->TemplateParameters)
561     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
562   comments::FullComment *CFC =
563     new (*this) comments::FullComment(FC->getBlocks(),
564                                       ThisDeclInfo);
565   return CFC;
566 }
567 
568 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
569   const RawComment *RC = getRawCommentForDeclNoCache(D);
570   return RC ? RC->parse(*this, nullptr, D) : nullptr;
571 }
572 
573 comments::FullComment *ASTContext::getCommentForDecl(
574                                               const Decl *D,
575                                               const Preprocessor *PP) const {
576   if (!D || D->isInvalidDecl())
577     return nullptr;
578   D = &adjustDeclToTemplate(*D);
579 
580   const Decl *Canonical = D->getCanonicalDecl();
581   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
582       ParsedComments.find(Canonical);
583 
584   if (Pos != ParsedComments.end()) {
585     if (Canonical != D) {
586       comments::FullComment *FC = Pos->second;
587       comments::FullComment *CFC = cloneFullComment(FC, D);
588       return CFC;
589     }
590     return Pos->second;
591   }
592 
593   const Decl *OriginalDecl = nullptr;
594 
595   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
596   if (!RC) {
597     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
598       SmallVector<const NamedDecl*, 8> Overridden;
599       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
600       if (OMD && OMD->isPropertyAccessor())
601         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
602           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
603             return cloneFullComment(FC, D);
604       if (OMD)
605         addRedeclaredMethods(OMD, Overridden);
606       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
607       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
608         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
609           return cloneFullComment(FC, D);
610     }
611     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
612       // Attach any tag type's documentation to its typedef if latter
613       // does not have one of its own.
614       QualType QT = TD->getUnderlyingType();
615       if (const auto *TT = QT->getAs<TagType>())
616         if (const Decl *TD = TT->getDecl())
617           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
618             return cloneFullComment(FC, D);
619     }
620     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
621       while (IC->getSuperClass()) {
622         IC = IC->getSuperClass();
623         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
624           return cloneFullComment(FC, D);
625       }
626     }
627     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
628       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
629         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
630           return cloneFullComment(FC, D);
631     }
632     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
633       if (!(RD = RD->getDefinition()))
634         return nullptr;
635       // Check non-virtual bases.
636       for (const auto &I : RD->bases()) {
637         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
638           continue;
639         QualType Ty = I.getType();
640         if (Ty.isNull())
641           continue;
642         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
643           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
644             continue;
645 
646           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
647             return cloneFullComment(FC, D);
648         }
649       }
650       // Check virtual bases.
651       for (const auto &I : RD->vbases()) {
652         if (I.getAccessSpecifier() != AS_public)
653           continue;
654         QualType Ty = I.getType();
655         if (Ty.isNull())
656           continue;
657         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
658           if (!(VirtualBase= VirtualBase->getDefinition()))
659             continue;
660           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
661             return cloneFullComment(FC, D);
662         }
663       }
664     }
665     return nullptr;
666   }
667 
668   // If the RawComment was attached to other redeclaration of this Decl, we
669   // should parse the comment in context of that other Decl.  This is important
670   // because comments can contain references to parameter names which can be
671   // different across redeclarations.
672   if (D != OriginalDecl && OriginalDecl)
673     return getCommentForDecl(OriginalDecl, PP);
674 
675   comments::FullComment *FC = RC->parse(*this, PP, D);
676   ParsedComments[Canonical] = FC;
677   return FC;
678 }
679 
680 void
681 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
682                                                    const ASTContext &C,
683                                                TemplateTemplateParmDecl *Parm) {
684   ID.AddInteger(Parm->getDepth());
685   ID.AddInteger(Parm->getPosition());
686   ID.AddBoolean(Parm->isParameterPack());
687 
688   TemplateParameterList *Params = Parm->getTemplateParameters();
689   ID.AddInteger(Params->size());
690   for (TemplateParameterList::const_iterator P = Params->begin(),
691                                           PEnd = Params->end();
692        P != PEnd; ++P) {
693     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
694       ID.AddInteger(0);
695       ID.AddBoolean(TTP->isParameterPack());
696       if (TTP->isExpandedParameterPack()) {
697         ID.AddBoolean(true);
698         ID.AddInteger(TTP->getNumExpansionParameters());
699       } else
700         ID.AddBoolean(false);
701       continue;
702     }
703 
704     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
705       ID.AddInteger(1);
706       ID.AddBoolean(NTTP->isParameterPack());
707       ID.AddPointer(C.getUnconstrainedType(C.getCanonicalType(NTTP->getType()))
708                         .getAsOpaquePtr());
709       if (NTTP->isExpandedParameterPack()) {
710         ID.AddBoolean(true);
711         ID.AddInteger(NTTP->getNumExpansionTypes());
712         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
713           QualType T = NTTP->getExpansionType(I);
714           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
715         }
716       } else
717         ID.AddBoolean(false);
718       continue;
719     }
720 
721     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
722     ID.AddInteger(2);
723     Profile(ID, C, TTP);
724   }
725 }
726 
727 TemplateTemplateParmDecl *
728 ASTContext::getCanonicalTemplateTemplateParmDecl(
729                                           TemplateTemplateParmDecl *TTP) const {
730   // Check if we already have a canonical template template parameter.
731   llvm::FoldingSetNodeID ID;
732   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
733   void *InsertPos = nullptr;
734   CanonicalTemplateTemplateParm *Canonical
735     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
736   if (Canonical)
737     return Canonical->getParam();
738 
739   // Build a canonical template parameter list.
740   TemplateParameterList *Params = TTP->getTemplateParameters();
741   SmallVector<NamedDecl *, 4> CanonParams;
742   CanonParams.reserve(Params->size());
743   for (TemplateParameterList::const_iterator P = Params->begin(),
744                                           PEnd = Params->end();
745        P != PEnd; ++P) {
746     // Note that, per C++20 [temp.over.link]/6, when determining whether
747     // template-parameters are equivalent, constraints are ignored.
748     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
749       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(
750           *this, getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
751           TTP->getDepth(), TTP->getIndex(), nullptr, false,
752           TTP->isParameterPack(), /*HasTypeConstraint=*/false,
753           TTP->isExpandedParameterPack()
754               ? std::optional<unsigned>(TTP->getNumExpansionParameters())
755               : std::nullopt);
756       CanonParams.push_back(NewTTP);
757     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
758       QualType T = getUnconstrainedType(getCanonicalType(NTTP->getType()));
759       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
760       NonTypeTemplateParmDecl *Param;
761       if (NTTP->isExpandedParameterPack()) {
762         SmallVector<QualType, 2> ExpandedTypes;
763         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
764         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
765           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
766           ExpandedTInfos.push_back(
767                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
768         }
769 
770         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
771                                                 SourceLocation(),
772                                                 SourceLocation(),
773                                                 NTTP->getDepth(),
774                                                 NTTP->getPosition(), nullptr,
775                                                 T,
776                                                 TInfo,
777                                                 ExpandedTypes,
778                                                 ExpandedTInfos);
779       } else {
780         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
781                                                 SourceLocation(),
782                                                 SourceLocation(),
783                                                 NTTP->getDepth(),
784                                                 NTTP->getPosition(), nullptr,
785                                                 T,
786                                                 NTTP->isParameterPack(),
787                                                 TInfo);
788       }
789       CanonParams.push_back(Param);
790     } else
791       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
792                                            cast<TemplateTemplateParmDecl>(*P)));
793   }
794 
795   TemplateTemplateParmDecl *CanonTTP = TemplateTemplateParmDecl::Create(
796       *this, getTranslationUnitDecl(), SourceLocation(), TTP->getDepth(),
797       TTP->getPosition(), TTP->isParameterPack(), nullptr,
798       TemplateParameterList::Create(*this, SourceLocation(), SourceLocation(),
799                                     CanonParams, SourceLocation(),
800                                     /*RequiresClause=*/nullptr));
801 
802   // Get the new insert position for the node we care about.
803   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
804   assert(!Canonical && "Shouldn't be in the map!");
805   (void)Canonical;
806 
807   // Create the canonical template template parameter entry.
808   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
809   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
810   return CanonTTP;
811 }
812 
813 TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
814   auto Kind = getTargetInfo().getCXXABI().getKind();
815   return getLangOpts().CXXABI.value_or(Kind);
816 }
817 
818 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
819   if (!LangOpts.CPlusPlus) return nullptr;
820 
821   switch (getCXXABIKind()) {
822   case TargetCXXABI::AppleARM64:
823   case TargetCXXABI::Fuchsia:
824   case TargetCXXABI::GenericARM: // Same as Itanium at this level
825   case TargetCXXABI::iOS:
826   case TargetCXXABI::WatchOS:
827   case TargetCXXABI::GenericAArch64:
828   case TargetCXXABI::GenericMIPS:
829   case TargetCXXABI::GenericItanium:
830   case TargetCXXABI::WebAssembly:
831   case TargetCXXABI::XL:
832     return CreateItaniumCXXABI(*this);
833   case TargetCXXABI::Microsoft:
834     return CreateMicrosoftCXXABI(*this);
835   }
836   llvm_unreachable("Invalid CXXABI type!");
837 }
838 
839 interp::Context &ASTContext::getInterpContext() {
840   if (!InterpContext) {
841     InterpContext.reset(new interp::Context(*this));
842   }
843   return *InterpContext.get();
844 }
845 
846 ParentMapContext &ASTContext::getParentMapContext() {
847   if (!ParentMapCtx)
848     ParentMapCtx.reset(new ParentMapContext(*this));
849   return *ParentMapCtx.get();
850 }
851 
852 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
853                                           const LangOptions &LangOpts) {
854   switch (LangOpts.getAddressSpaceMapMangling()) {
855   case LangOptions::ASMM_Target:
856     return TI.useAddressSpaceMapMangling();
857   case LangOptions::ASMM_On:
858     return true;
859   case LangOptions::ASMM_Off:
860     return false;
861   }
862   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
863 }
864 
865 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
866                        IdentifierTable &idents, SelectorTable &sels,
867                        Builtin::Context &builtins, TranslationUnitKind TUKind)
868     : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize),
869       DependentSizedArrayTypes(this_()), DependentSizedExtVectorTypes(this_()),
870       DependentAddressSpaceTypes(this_()), DependentVectorTypes(this_()),
871       DependentSizedMatrixTypes(this_()),
872       FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize),
873       DependentTypeOfExprTypes(this_()), DependentDecltypeTypes(this_()),
874       TemplateSpecializationTypes(this_()),
875       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
876       DependentBitIntTypes(this_()), SubstTemplateTemplateParmPacks(this_()),
877       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
878       NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
879       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
880                                         LangOpts.XRayNeverInstrumentFiles,
881                                         LangOpts.XRayAttrListFiles, SM)),
882       ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
883       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
884       BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this),
885       Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
886       CompCategories(this_()), LastSDM(nullptr, 0) {
887   addTranslationUnitDecl();
888 }
889 
890 void ASTContext::cleanup() {
891   // Release the DenseMaps associated with DeclContext objects.
892   // FIXME: Is this the ideal solution?
893   ReleaseDeclContextMaps();
894 
895   // Call all of the deallocation functions on all of their targets.
896   for (auto &Pair : Deallocations)
897     (Pair.first)(Pair.second);
898   Deallocations.clear();
899 
900   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
901   // because they can contain DenseMaps.
902   for (llvm::DenseMap<const ObjCContainerDecl*,
903        const ASTRecordLayout*>::iterator
904        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
905     // Increment in loop to prevent using deallocated memory.
906     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
907       R->Destroy(*this);
908   ObjCLayouts.clear();
909 
910   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
911        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
912     // Increment in loop to prevent using deallocated memory.
913     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
914       R->Destroy(*this);
915   }
916   ASTRecordLayouts.clear();
917 
918   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
919                                                     AEnd = DeclAttrs.end();
920        A != AEnd; ++A)
921     A->second->~AttrVec();
922   DeclAttrs.clear();
923 
924   for (const auto &Value : ModuleInitializers)
925     Value.second->~PerModuleInitializers();
926   ModuleInitializers.clear();
927 }
928 
929 ASTContext::~ASTContext() { cleanup(); }
930 
931 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
932   TraversalScope = TopLevelDecls;
933   getParentMapContext().clear();
934 }
935 
936 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
937   Deallocations.push_back({Callback, Data});
938 }
939 
940 void
941 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
942   ExternalSource = std::move(Source);
943 }
944 
945 void ASTContext::PrintStats() const {
946   llvm::errs() << "\n*** AST Context Stats:\n";
947   llvm::errs() << "  " << Types.size() << " types total.\n";
948 
949   unsigned counts[] = {
950 #define TYPE(Name, Parent) 0,
951 #define ABSTRACT_TYPE(Name, Parent)
952 #include "clang/AST/TypeNodes.inc"
953     0 // Extra
954   };
955 
956   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
957     Type *T = Types[i];
958     counts[(unsigned)T->getTypeClass()]++;
959   }
960 
961   unsigned Idx = 0;
962   unsigned TotalBytes = 0;
963 #define TYPE(Name, Parent)                                              \
964   if (counts[Idx])                                                      \
965     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
966                  << " types, " << sizeof(Name##Type) << " each "        \
967                  << "(" << counts[Idx] * sizeof(Name##Type)             \
968                  << " bytes)\n";                                        \
969   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
970   ++Idx;
971 #define ABSTRACT_TYPE(Name, Parent)
972 #include "clang/AST/TypeNodes.inc"
973 
974   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
975 
976   // Implicit special member functions.
977   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
978                << NumImplicitDefaultConstructors
979                << " implicit default constructors created\n";
980   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
981                << NumImplicitCopyConstructors
982                << " implicit copy constructors created\n";
983   if (getLangOpts().CPlusPlus)
984     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
985                  << NumImplicitMoveConstructors
986                  << " implicit move constructors created\n";
987   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
988                << NumImplicitCopyAssignmentOperators
989                << " implicit copy assignment operators created\n";
990   if (getLangOpts().CPlusPlus)
991     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
992                  << NumImplicitMoveAssignmentOperators
993                  << " implicit move assignment operators created\n";
994   llvm::errs() << NumImplicitDestructorsDeclared << "/"
995                << NumImplicitDestructors
996                << " implicit destructors created\n";
997 
998   if (ExternalSource) {
999     llvm::errs() << "\n";
1000     ExternalSource->PrintStats();
1001   }
1002 
1003   BumpAlloc.PrintStats();
1004 }
1005 
1006 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1007                                            bool NotifyListeners) {
1008   if (NotifyListeners)
1009     if (auto *Listener = getASTMutationListener())
1010       Listener->RedefinedHiddenDefinition(ND, M);
1011 
1012   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1013 }
1014 
1015 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1016   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1017   if (It == MergedDefModules.end())
1018     return;
1019 
1020   auto &Merged = It->second;
1021   llvm::DenseSet<Module*> Found;
1022   for (Module *&M : Merged)
1023     if (!Found.insert(M).second)
1024       M = nullptr;
1025   llvm::erase(Merged, nullptr);
1026 }
1027 
1028 ArrayRef<Module *>
1029 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1030   auto MergedIt =
1031       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1032   if (MergedIt == MergedDefModules.end())
1033     return std::nullopt;
1034   return MergedIt->second;
1035 }
1036 
1037 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1038   if (LazyInitializers.empty())
1039     return;
1040 
1041   auto *Source = Ctx.getExternalSource();
1042   assert(Source && "lazy initializers but no external source");
1043 
1044   auto LazyInits = std::move(LazyInitializers);
1045   LazyInitializers.clear();
1046 
1047   for (auto ID : LazyInits)
1048     Initializers.push_back(Source->GetExternalDecl(ID));
1049 
1050   assert(LazyInitializers.empty() &&
1051          "GetExternalDecl for lazy module initializer added more inits");
1052 }
1053 
1054 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1055   // One special case: if we add a module initializer that imports another
1056   // module, and that module's only initializer is an ImportDecl, simplify.
1057   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1058     auto It = ModuleInitializers.find(ID->getImportedModule());
1059 
1060     // Maybe the ImportDecl does nothing at all. (Common case.)
1061     if (It == ModuleInitializers.end())
1062       return;
1063 
1064     // Maybe the ImportDecl only imports another ImportDecl.
1065     auto &Imported = *It->second;
1066     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1067       Imported.resolve(*this);
1068       auto *OnlyDecl = Imported.Initializers.front();
1069       if (isa<ImportDecl>(OnlyDecl))
1070         D = OnlyDecl;
1071     }
1072   }
1073 
1074   auto *&Inits = ModuleInitializers[M];
1075   if (!Inits)
1076     Inits = new (*this) PerModuleInitializers;
1077   Inits->Initializers.push_back(D);
1078 }
1079 
1080 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1081   auto *&Inits = ModuleInitializers[M];
1082   if (!Inits)
1083     Inits = new (*this) PerModuleInitializers;
1084   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1085                                  IDs.begin(), IDs.end());
1086 }
1087 
1088 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1089   auto It = ModuleInitializers.find(M);
1090   if (It == ModuleInitializers.end())
1091     return std::nullopt;
1092 
1093   auto *Inits = It->second;
1094   Inits->resolve(*this);
1095   return Inits->Initializers;
1096 }
1097 
1098 void ASTContext::setCurrentNamedModule(Module *M) {
1099   assert(M->isNamedModule());
1100   assert(!CurrentCXXNamedModule &&
1101          "We should set named module for ASTContext for only once");
1102   CurrentCXXNamedModule = M;
1103 }
1104 
1105 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1106   if (!ExternCContext)
1107     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1108 
1109   return ExternCContext;
1110 }
1111 
1112 BuiltinTemplateDecl *
1113 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1114                                      const IdentifierInfo *II) const {
1115   auto *BuiltinTemplate =
1116       BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK);
1117   BuiltinTemplate->setImplicit();
1118   getTranslationUnitDecl()->addDecl(BuiltinTemplate);
1119 
1120   return BuiltinTemplate;
1121 }
1122 
1123 BuiltinTemplateDecl *
1124 ASTContext::getMakeIntegerSeqDecl() const {
1125   if (!MakeIntegerSeqDecl)
1126     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1127                                                   getMakeIntegerSeqName());
1128   return MakeIntegerSeqDecl;
1129 }
1130 
1131 BuiltinTemplateDecl *
1132 ASTContext::getTypePackElementDecl() const {
1133   if (!TypePackElementDecl)
1134     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1135                                                    getTypePackElementName());
1136   return TypePackElementDecl;
1137 }
1138 
1139 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1140                                             RecordDecl::TagKind TK) const {
1141   SourceLocation Loc;
1142   RecordDecl *NewDecl;
1143   if (getLangOpts().CPlusPlus)
1144     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1145                                     Loc, &Idents.get(Name));
1146   else
1147     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1148                                  &Idents.get(Name));
1149   NewDecl->setImplicit();
1150   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1151       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1152   return NewDecl;
1153 }
1154 
1155 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1156                                               StringRef Name) const {
1157   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1158   TypedefDecl *NewDecl = TypedefDecl::Create(
1159       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1160       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1161   NewDecl->setImplicit();
1162   return NewDecl;
1163 }
1164 
1165 TypedefDecl *ASTContext::getInt128Decl() const {
1166   if (!Int128Decl)
1167     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1168   return Int128Decl;
1169 }
1170 
1171 TypedefDecl *ASTContext::getUInt128Decl() const {
1172   if (!UInt128Decl)
1173     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1174   return UInt128Decl;
1175 }
1176 
1177 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1178   auto *Ty = new (*this, alignof(BuiltinType)) BuiltinType(K);
1179   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1180   Types.push_back(Ty);
1181 }
1182 
1183 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1184                                   const TargetInfo *AuxTarget) {
1185   assert((!this->Target || this->Target == &Target) &&
1186          "Incorrect target reinitialization");
1187   assert(VoidTy.isNull() && "Context reinitialized?");
1188 
1189   this->Target = &Target;
1190   this->AuxTarget = AuxTarget;
1191 
1192   ABI.reset(createCXXABI(Target));
1193   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1194 
1195   // C99 6.2.5p19.
1196   InitBuiltinType(VoidTy,              BuiltinType::Void);
1197 
1198   // C99 6.2.5p2.
1199   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1200   // C99 6.2.5p3.
1201   if (LangOpts.CharIsSigned)
1202     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1203   else
1204     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1205   // C99 6.2.5p4.
1206   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1207   InitBuiltinType(ShortTy,             BuiltinType::Short);
1208   InitBuiltinType(IntTy,               BuiltinType::Int);
1209   InitBuiltinType(LongTy,              BuiltinType::Long);
1210   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1211 
1212   // C99 6.2.5p6.
1213   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1214   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1215   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1216   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1217   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1218 
1219   // C99 6.2.5p10.
1220   InitBuiltinType(FloatTy,             BuiltinType::Float);
1221   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1222   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1223 
1224   // GNU extension, __float128 for IEEE quadruple precision
1225   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1226 
1227   // __ibm128 for IBM extended precision
1228   InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128);
1229 
1230   // C11 extension ISO/IEC TS 18661-3
1231   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1232 
1233   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1234   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1235   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1236   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1237   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1238   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1239   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1240   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1241   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1242   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1243   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1244   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1245   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1246   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1247   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1248   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1249   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1250   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1251   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1252   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1253   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1254   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1255   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1256   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1257   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1258 
1259   // GNU extension, 128-bit integers.
1260   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1261   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1262 
1263   // C++ 3.9.1p5
1264   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1265     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1266   else  // -fshort-wchar makes wchar_t be unsigned.
1267     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1268   if (LangOpts.CPlusPlus && LangOpts.WChar)
1269     WideCharTy = WCharTy;
1270   else {
1271     // C99 (or C++ using -fno-wchar).
1272     WideCharTy = getFromTargetType(Target.getWCharType());
1273   }
1274 
1275   WIntTy = getFromTargetType(Target.getWIntType());
1276 
1277   // C++20 (proposed)
1278   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1279 
1280   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1281     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1282   else // C99
1283     Char16Ty = getFromTargetType(Target.getChar16Type());
1284 
1285   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1286     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1287   else // C99
1288     Char32Ty = getFromTargetType(Target.getChar32Type());
1289 
1290   // Placeholder type for type-dependent expressions whose type is
1291   // completely unknown. No code should ever check a type against
1292   // DependentTy and users should never see it; however, it is here to
1293   // help diagnose failures to properly check for type-dependent
1294   // expressions.
1295   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1296 
1297   // Placeholder type for functions.
1298   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1299 
1300   // Placeholder type for bound members.
1301   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1302 
1303   // Placeholder type for pseudo-objects.
1304   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1305 
1306   // "any" type; useful for debugger-like clients.
1307   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1308 
1309   // Placeholder type for unbridged ARC casts.
1310   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1311 
1312   // Placeholder type for builtin functions.
1313   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1314 
1315   // Placeholder type for OMP array sections.
1316   if (LangOpts.OpenMP) {
1317     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1318     InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1319     InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1320   }
1321   if (LangOpts.MatrixTypes)
1322     InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1323 
1324   // Builtin types for 'id', 'Class', and 'SEL'.
1325   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1326   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1327   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1328 
1329   if (LangOpts.OpenCL) {
1330 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1331     InitBuiltinType(SingletonId, BuiltinType::Id);
1332 #include "clang/Basic/OpenCLImageTypes.def"
1333 
1334     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1335     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1336     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1337     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1338     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1339 
1340 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1341     InitBuiltinType(Id##Ty, BuiltinType::Id);
1342 #include "clang/Basic/OpenCLExtensionTypes.def"
1343   }
1344 
1345   if (Target.hasAArch64SVETypes()) {
1346 #define SVE_TYPE(Name, Id, SingletonId) \
1347     InitBuiltinType(SingletonId, BuiltinType::Id);
1348 #include "clang/Basic/AArch64SVEACLETypes.def"
1349   }
1350 
1351   if (Target.getTriple().isPPC64()) {
1352 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
1353       InitBuiltinType(Id##Ty, BuiltinType::Id);
1354 #include "clang/Basic/PPCTypes.def"
1355 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
1356     InitBuiltinType(Id##Ty, BuiltinType::Id);
1357 #include "clang/Basic/PPCTypes.def"
1358   }
1359 
1360   if (Target.hasRISCVVTypes()) {
1361 #define RVV_TYPE(Name, Id, SingletonId)                                        \
1362   InitBuiltinType(SingletonId, BuiltinType::Id);
1363 #include "clang/Basic/RISCVVTypes.def"
1364   }
1365 
1366   if (Target.getTriple().isWasm() && Target.hasFeature("reference-types")) {
1367 #define WASM_TYPE(Name, Id, SingletonId)                                       \
1368   InitBuiltinType(SingletonId, BuiltinType::Id);
1369 #include "clang/Basic/WebAssemblyReferenceTypes.def"
1370   }
1371 
1372   // Builtin type for __objc_yes and __objc_no
1373   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1374                        SignedCharTy : BoolTy);
1375 
1376   ObjCConstantStringType = QualType();
1377 
1378   ObjCSuperType = QualType();
1379 
1380   // void * type
1381   if (LangOpts.OpenCLGenericAddressSpace) {
1382     auto Q = VoidTy.getQualifiers();
1383     Q.setAddressSpace(LangAS::opencl_generic);
1384     VoidPtrTy = getPointerType(getCanonicalType(
1385         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1386   } else {
1387     VoidPtrTy = getPointerType(VoidTy);
1388   }
1389 
1390   // nullptr type (C++0x 2.14.7)
1391   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1392 
1393   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1394   InitBuiltinType(HalfTy, BuiltinType::Half);
1395 
1396   InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1397 
1398   // Builtin type used to help define __builtin_va_list.
1399   VaListTagDecl = nullptr;
1400 
1401   // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1402   if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1403     MSGuidTagDecl = buildImplicitRecord("_GUID");
1404     getTranslationUnitDecl()->addDecl(MSGuidTagDecl);
1405   }
1406 }
1407 
1408 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1409   return SourceMgr.getDiagnostics();
1410 }
1411 
1412 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1413   AttrVec *&Result = DeclAttrs[D];
1414   if (!Result) {
1415     void *Mem = Allocate(sizeof(AttrVec));
1416     Result = new (Mem) AttrVec;
1417   }
1418 
1419   return *Result;
1420 }
1421 
1422 /// Erase the attributes corresponding to the given declaration.
1423 void ASTContext::eraseDeclAttrs(const Decl *D) {
1424   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1425   if (Pos != DeclAttrs.end()) {
1426     Pos->second->~AttrVec();
1427     DeclAttrs.erase(Pos);
1428   }
1429 }
1430 
1431 // FIXME: Remove ?
1432 MemberSpecializationInfo *
1433 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1434   assert(Var->isStaticDataMember() && "Not a static data member");
1435   return getTemplateOrSpecializationInfo(Var)
1436       .dyn_cast<MemberSpecializationInfo *>();
1437 }
1438 
1439 ASTContext::TemplateOrSpecializationInfo
1440 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1441   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1442       TemplateOrInstantiation.find(Var);
1443   if (Pos == TemplateOrInstantiation.end())
1444     return {};
1445 
1446   return Pos->second;
1447 }
1448 
1449 void
1450 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1451                                                 TemplateSpecializationKind TSK,
1452                                           SourceLocation PointOfInstantiation) {
1453   assert(Inst->isStaticDataMember() && "Not a static data member");
1454   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1455   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1456                                             Tmpl, TSK, PointOfInstantiation));
1457 }
1458 
1459 void
1460 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1461                                             TemplateOrSpecializationInfo TSI) {
1462   assert(!TemplateOrInstantiation[Inst] &&
1463          "Already noted what the variable was instantiated from");
1464   TemplateOrInstantiation[Inst] = TSI;
1465 }
1466 
1467 NamedDecl *
1468 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1469   return InstantiatedFromUsingDecl.lookup(UUD);
1470 }
1471 
1472 void
1473 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1474   assert((isa<UsingDecl>(Pattern) ||
1475           isa<UnresolvedUsingValueDecl>(Pattern) ||
1476           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1477          "pattern decl is not a using decl");
1478   assert((isa<UsingDecl>(Inst) ||
1479           isa<UnresolvedUsingValueDecl>(Inst) ||
1480           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1481          "instantiation did not produce a using decl");
1482   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1483   InstantiatedFromUsingDecl[Inst] = Pattern;
1484 }
1485 
1486 UsingEnumDecl *
1487 ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) {
1488   return InstantiatedFromUsingEnumDecl.lookup(UUD);
1489 }
1490 
1491 void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
1492                                                   UsingEnumDecl *Pattern) {
1493   assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists");
1494   InstantiatedFromUsingEnumDecl[Inst] = Pattern;
1495 }
1496 
1497 UsingShadowDecl *
1498 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1499   return InstantiatedFromUsingShadowDecl.lookup(Inst);
1500 }
1501 
1502 void
1503 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1504                                                UsingShadowDecl *Pattern) {
1505   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1506   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1507 }
1508 
1509 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1510   return InstantiatedFromUnnamedFieldDecl.lookup(Field);
1511 }
1512 
1513 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1514                                                      FieldDecl *Tmpl) {
1515   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1516   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1517   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1518          "Already noted what unnamed field was instantiated from");
1519 
1520   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1521 }
1522 
1523 ASTContext::overridden_cxx_method_iterator
1524 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1525   return overridden_methods(Method).begin();
1526 }
1527 
1528 ASTContext::overridden_cxx_method_iterator
1529 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1530   return overridden_methods(Method).end();
1531 }
1532 
1533 unsigned
1534 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1535   auto Range = overridden_methods(Method);
1536   return Range.end() - Range.begin();
1537 }
1538 
1539 ASTContext::overridden_method_range
1540 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1541   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1542       OverriddenMethods.find(Method->getCanonicalDecl());
1543   if (Pos == OverriddenMethods.end())
1544     return overridden_method_range(nullptr, nullptr);
1545   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1546 }
1547 
1548 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1549                                      const CXXMethodDecl *Overridden) {
1550   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1551   OverriddenMethods[Method].push_back(Overridden);
1552 }
1553 
1554 void ASTContext::getOverriddenMethods(
1555                       const NamedDecl *D,
1556                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1557   assert(D);
1558 
1559   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1560     Overridden.append(overridden_methods_begin(CXXMethod),
1561                       overridden_methods_end(CXXMethod));
1562     return;
1563   }
1564 
1565   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1566   if (!Method)
1567     return;
1568 
1569   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1570   Method->getOverriddenMethods(OverDecls);
1571   Overridden.append(OverDecls.begin(), OverDecls.end());
1572 }
1573 
1574 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1575   assert(!Import->getNextLocalImport() &&
1576          "Import declaration already in the chain");
1577   assert(!Import->isFromASTFile() && "Non-local import declaration");
1578   if (!FirstLocalImport) {
1579     FirstLocalImport = Import;
1580     LastLocalImport = Import;
1581     return;
1582   }
1583 
1584   LastLocalImport->setNextLocalImport(Import);
1585   LastLocalImport = Import;
1586 }
1587 
1588 //===----------------------------------------------------------------------===//
1589 //                         Type Sizing and Analysis
1590 //===----------------------------------------------------------------------===//
1591 
1592 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1593 /// scalar floating point type.
1594 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1595   switch (T->castAs<BuiltinType>()->getKind()) {
1596   default:
1597     llvm_unreachable("Not a floating point type!");
1598   case BuiltinType::BFloat16:
1599     return Target->getBFloat16Format();
1600   case BuiltinType::Float16:
1601     return Target->getHalfFormat();
1602   case BuiltinType::Half:
1603     // For HLSL, when the native half type is disabled, half will be treat as
1604     // float.
1605     if (getLangOpts().HLSL)
1606       if (getLangOpts().NativeHalfType)
1607         return Target->getHalfFormat();
1608       else
1609         return Target->getFloatFormat();
1610     else
1611       return Target->getHalfFormat();
1612   case BuiltinType::Float:      return Target->getFloatFormat();
1613   case BuiltinType::Double:     return Target->getDoubleFormat();
1614   case BuiltinType::Ibm128:
1615     return Target->getIbm128Format();
1616   case BuiltinType::LongDouble:
1617     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice)
1618       return AuxTarget->getLongDoubleFormat();
1619     return Target->getLongDoubleFormat();
1620   case BuiltinType::Float128:
1621     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice)
1622       return AuxTarget->getFloat128Format();
1623     return Target->getFloat128Format();
1624   }
1625 }
1626 
1627 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1628   unsigned Align = Target->getCharWidth();
1629 
1630   const unsigned AlignFromAttr = D->getMaxAlignment();
1631   if (AlignFromAttr)
1632     Align = AlignFromAttr;
1633 
1634   // __attribute__((aligned)) can increase or decrease alignment
1635   // *except* on a struct or struct member, where it only increases
1636   // alignment unless 'packed' is also specified.
1637   //
1638   // It is an error for alignas to decrease alignment, so we can
1639   // ignore that possibility;  Sema should diagnose it.
1640   bool UseAlignAttrOnly;
1641   if (const FieldDecl *FD = dyn_cast<FieldDecl>(D))
1642     UseAlignAttrOnly =
1643         FD->hasAttr<PackedAttr>() || FD->getParent()->hasAttr<PackedAttr>();
1644   else
1645     UseAlignAttrOnly = AlignFromAttr != 0;
1646   // If we're using the align attribute only, just ignore everything
1647   // else about the declaration and its type.
1648   if (UseAlignAttrOnly) {
1649     // do nothing
1650   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1651     QualType T = VD->getType();
1652     if (const auto *RT = T->getAs<ReferenceType>()) {
1653       if (ForAlignof)
1654         T = RT->getPointeeType();
1655       else
1656         T = getPointerType(RT->getPointeeType());
1657     }
1658     QualType BaseT = getBaseElementType(T);
1659     if (T->isFunctionType())
1660       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1661     else if (!BaseT->isIncompleteType()) {
1662       // Adjust alignments of declarations with array type by the
1663       // large-array alignment on the target.
1664       if (const ArrayType *arrayType = getAsArrayType(T)) {
1665         unsigned MinWidth = Target->getLargeArrayMinWidth();
1666         if (!ForAlignof && MinWidth) {
1667           if (isa<VariableArrayType>(arrayType))
1668             Align = std::max(Align, Target->getLargeArrayAlign());
1669           else if (isa<ConstantArrayType>(arrayType) &&
1670                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1671             Align = std::max(Align, Target->getLargeArrayAlign());
1672         }
1673       }
1674       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1675       if (BaseT.getQualifiers().hasUnaligned())
1676         Align = Target->getCharWidth();
1677     }
1678 
1679     // Ensure miminum alignment for global variables.
1680     if (const auto *VD = dyn_cast<VarDecl>(D))
1681       if (VD->hasGlobalStorage() && !ForAlignof) {
1682         uint64_t TypeSize =
1683             !BaseT->isIncompleteType() ? getTypeSize(T.getTypePtr()) : 0;
1684         Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1685       }
1686 
1687     // Fields can be subject to extra alignment constraints, like if
1688     // the field is packed, the struct is packed, or the struct has a
1689     // a max-field-alignment constraint (#pragma pack).  So calculate
1690     // the actual alignment of the field within the struct, and then
1691     // (as we're expected to) constrain that by the alignment of the type.
1692     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1693       const RecordDecl *Parent = Field->getParent();
1694       // We can only produce a sensible answer if the record is valid.
1695       if (!Parent->isInvalidDecl()) {
1696         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1697 
1698         // Start with the record's overall alignment.
1699         unsigned FieldAlign = toBits(Layout.getAlignment());
1700 
1701         // Use the GCD of that and the offset within the record.
1702         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1703         if (Offset > 0) {
1704           // Alignment is always a power of 2, so the GCD will be a power of 2,
1705           // which means we get to do this crazy thing instead of Euclid's.
1706           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1707           if (LowBitOfOffset < FieldAlign)
1708             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1709         }
1710 
1711         Align = std::min(Align, FieldAlign);
1712       }
1713     }
1714   }
1715 
1716   // Some targets have hard limitation on the maximum requestable alignment in
1717   // aligned attribute for static variables.
1718   const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
1719   const auto *VD = dyn_cast<VarDecl>(D);
1720   if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
1721     Align = std::min(Align, MaxAlignedAttr);
1722 
1723   return toCharUnitsFromBits(Align);
1724 }
1725 
1726 CharUnits ASTContext::getExnObjectAlignment() const {
1727   return toCharUnitsFromBits(Target->getExnObjectAlignment());
1728 }
1729 
1730 // getTypeInfoDataSizeInChars - Return the size of a type, in
1731 // chars. If the type is a record, its data size is returned.  This is
1732 // the size of the memcpy that's performed when assigning this type
1733 // using a trivial copy/move assignment operator.
1734 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1735   TypeInfoChars Info = getTypeInfoInChars(T);
1736 
1737   // In C++, objects can sometimes be allocated into the tail padding
1738   // of a base-class subobject.  We decide whether that's possible
1739   // during class layout, so here we can just trust the layout results.
1740   if (getLangOpts().CPlusPlus) {
1741     if (const auto *RT = T->getAs<RecordType>()) {
1742       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1743       Info.Width = layout.getDataSize();
1744     }
1745   }
1746 
1747   return Info;
1748 }
1749 
1750 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1751 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1752 TypeInfoChars
1753 static getConstantArrayInfoInChars(const ASTContext &Context,
1754                                    const ConstantArrayType *CAT) {
1755   TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1756   uint64_t Size = CAT->getSize().getZExtValue();
1757   assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
1758               (uint64_t)(-1)/Size) &&
1759          "Overflow in array type char size evaluation");
1760   uint64_t Width = EltInfo.Width.getQuantity() * Size;
1761   unsigned Align = EltInfo.Align.getQuantity();
1762   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1763       Context.getTargetInfo().getPointerWidth(LangAS::Default) == 64)
1764     Width = llvm::alignTo(Width, Align);
1765   return TypeInfoChars(CharUnits::fromQuantity(Width),
1766                        CharUnits::fromQuantity(Align),
1767                        EltInfo.AlignRequirement);
1768 }
1769 
1770 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1771   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1772     return getConstantArrayInfoInChars(*this, CAT);
1773   TypeInfo Info = getTypeInfo(T);
1774   return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1775                        toCharUnitsFromBits(Info.Align), Info.AlignRequirement);
1776 }
1777 
1778 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1779   return getTypeInfoInChars(T.getTypePtr());
1780 }
1781 
1782 bool ASTContext::isPromotableIntegerType(QualType T) const {
1783   // HLSL doesn't promote all small integer types to int, it
1784   // just uses the rank-based promotion rules for all types.
1785   if (getLangOpts().HLSL)
1786     return false;
1787 
1788   if (const auto *BT = T->getAs<BuiltinType>())
1789     switch (BT->getKind()) {
1790     case BuiltinType::Bool:
1791     case BuiltinType::Char_S:
1792     case BuiltinType::Char_U:
1793     case BuiltinType::SChar:
1794     case BuiltinType::UChar:
1795     case BuiltinType::Short:
1796     case BuiltinType::UShort:
1797     case BuiltinType::WChar_S:
1798     case BuiltinType::WChar_U:
1799     case BuiltinType::Char8:
1800     case BuiltinType::Char16:
1801     case BuiltinType::Char32:
1802       return true;
1803     default:
1804       return false;
1805     }
1806 
1807   // Enumerated types are promotable to their compatible integer types
1808   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1809   if (const auto *ET = T->getAs<EnumType>()) {
1810     if (T->isDependentType() || ET->getDecl()->getPromotionType().isNull() ||
1811         ET->getDecl()->isScoped())
1812       return false;
1813 
1814     return true;
1815   }
1816 
1817   return false;
1818 }
1819 
1820 bool ASTContext::isAlignmentRequired(const Type *T) const {
1821   return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None;
1822 }
1823 
1824 bool ASTContext::isAlignmentRequired(QualType T) const {
1825   return isAlignmentRequired(T.getTypePtr());
1826 }
1827 
1828 unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1829                                          bool NeedsPreferredAlignment) const {
1830   // An alignment on a typedef overrides anything else.
1831   if (const auto *TT = T->getAs<TypedefType>())
1832     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1833       return Align;
1834 
1835   // If we have an (array of) complete type, we're done.
1836   T = getBaseElementType(T);
1837   if (!T->isIncompleteType())
1838     return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1839 
1840   // If we had an array type, its element type might be a typedef
1841   // type with an alignment attribute.
1842   if (const auto *TT = T->getAs<TypedefType>())
1843     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1844       return Align;
1845 
1846   // Otherwise, see if the declaration of the type had an attribute.
1847   if (const auto *TT = T->getAs<TagType>())
1848     return TT->getDecl()->getMaxAlignment();
1849 
1850   return 0;
1851 }
1852 
1853 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1854   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1855   if (I != MemoizedTypeInfo.end())
1856     return I->second;
1857 
1858   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1859   TypeInfo TI = getTypeInfoImpl(T);
1860   MemoizedTypeInfo[T] = TI;
1861   return TI;
1862 }
1863 
1864 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1865 /// method does not work on incomplete types.
1866 ///
1867 /// FIXME: Pointers into different addr spaces could have different sizes and
1868 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1869 /// should take a QualType, &c.
1870 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1871   uint64_t Width = 0;
1872   unsigned Align = 8;
1873   AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1874   LangAS AS = LangAS::Default;
1875   switch (T->getTypeClass()) {
1876 #define TYPE(Class, Base)
1877 #define ABSTRACT_TYPE(Class, Base)
1878 #define NON_CANONICAL_TYPE(Class, Base)
1879 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1880 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1881   case Type::Class:                                                            \
1882   assert(!T->isDependentType() && "should not see dependent types here");      \
1883   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1884 #include "clang/AST/TypeNodes.inc"
1885     llvm_unreachable("Should not see dependent types");
1886 
1887   case Type::FunctionNoProto:
1888   case Type::FunctionProto:
1889     // GCC extension: alignof(function) = 32 bits
1890     Width = 0;
1891     Align = 32;
1892     break;
1893 
1894   case Type::IncompleteArray:
1895   case Type::VariableArray:
1896   case Type::ConstantArray: {
1897     // Model non-constant sized arrays as size zero, but track the alignment.
1898     uint64_t Size = 0;
1899     if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1900       Size = CAT->getSize().getZExtValue();
1901 
1902     TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1903     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1904            "Overflow in array type bit size evaluation");
1905     Width = EltInfo.Width * Size;
1906     Align = EltInfo.Align;
1907     AlignRequirement = EltInfo.AlignRequirement;
1908     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1909         getTargetInfo().getPointerWidth(LangAS::Default) == 64)
1910       Width = llvm::alignTo(Width, Align);
1911     break;
1912   }
1913 
1914   case Type::ExtVector:
1915   case Type::Vector: {
1916     const auto *VT = cast<VectorType>(T);
1917     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1918     Width = VT->isExtVectorBoolType() ? VT->getNumElements()
1919                                       : EltInfo.Width * VT->getNumElements();
1920     // Enforce at least byte size and alignment.
1921     Width = std::max<unsigned>(8, Width);
1922     Align = std::max<unsigned>(8, Width);
1923 
1924     // If the alignment is not a power of 2, round up to the next power of 2.
1925     // This happens for non-power-of-2 length vectors.
1926     if (Align & (Align-1)) {
1927       Align = llvm::bit_ceil(Align);
1928       Width = llvm::alignTo(Width, Align);
1929     }
1930     // Adjust the alignment based on the target max.
1931     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1932     if (TargetVectorAlign && TargetVectorAlign < Align)
1933       Align = TargetVectorAlign;
1934     if (VT->getVectorKind() == VectorKind::SveFixedLengthData)
1935       // Adjust the alignment for fixed-length SVE vectors. This is important
1936       // for non-power-of-2 vector lengths.
1937       Align = 128;
1938     else if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate)
1939       // Adjust the alignment for fixed-length SVE predicates.
1940       Align = 16;
1941     else if (VT->getVectorKind() == VectorKind::RVVFixedLengthData)
1942       // Adjust the alignment for fixed-length RVV vectors.
1943       Align = std::min<unsigned>(64, Width);
1944     break;
1945   }
1946 
1947   case Type::ConstantMatrix: {
1948     const auto *MT = cast<ConstantMatrixType>(T);
1949     TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
1950     // The internal layout of a matrix value is implementation defined.
1951     // Initially be ABI compatible with arrays with respect to alignment and
1952     // size.
1953     Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
1954     Align = ElementInfo.Align;
1955     break;
1956   }
1957 
1958   case Type::Builtin:
1959     switch (cast<BuiltinType>(T)->getKind()) {
1960     default: llvm_unreachable("Unknown builtin type!");
1961     case BuiltinType::Void:
1962       // GCC extension: alignof(void) = 8 bits.
1963       Width = 0;
1964       Align = 8;
1965       break;
1966     case BuiltinType::Bool:
1967       Width = Target->getBoolWidth();
1968       Align = Target->getBoolAlign();
1969       break;
1970     case BuiltinType::Char_S:
1971     case BuiltinType::Char_U:
1972     case BuiltinType::UChar:
1973     case BuiltinType::SChar:
1974     case BuiltinType::Char8:
1975       Width = Target->getCharWidth();
1976       Align = Target->getCharAlign();
1977       break;
1978     case BuiltinType::WChar_S:
1979     case BuiltinType::WChar_U:
1980       Width = Target->getWCharWidth();
1981       Align = Target->getWCharAlign();
1982       break;
1983     case BuiltinType::Char16:
1984       Width = Target->getChar16Width();
1985       Align = Target->getChar16Align();
1986       break;
1987     case BuiltinType::Char32:
1988       Width = Target->getChar32Width();
1989       Align = Target->getChar32Align();
1990       break;
1991     case BuiltinType::UShort:
1992     case BuiltinType::Short:
1993       Width = Target->getShortWidth();
1994       Align = Target->getShortAlign();
1995       break;
1996     case BuiltinType::UInt:
1997     case BuiltinType::Int:
1998       Width = Target->getIntWidth();
1999       Align = Target->getIntAlign();
2000       break;
2001     case BuiltinType::ULong:
2002     case BuiltinType::Long:
2003       Width = Target->getLongWidth();
2004       Align = Target->getLongAlign();
2005       break;
2006     case BuiltinType::ULongLong:
2007     case BuiltinType::LongLong:
2008       Width = Target->getLongLongWidth();
2009       Align = Target->getLongLongAlign();
2010       break;
2011     case BuiltinType::Int128:
2012     case BuiltinType::UInt128:
2013       Width = 128;
2014       Align = Target->getInt128Align();
2015       break;
2016     case BuiltinType::ShortAccum:
2017     case BuiltinType::UShortAccum:
2018     case BuiltinType::SatShortAccum:
2019     case BuiltinType::SatUShortAccum:
2020       Width = Target->getShortAccumWidth();
2021       Align = Target->getShortAccumAlign();
2022       break;
2023     case BuiltinType::Accum:
2024     case BuiltinType::UAccum:
2025     case BuiltinType::SatAccum:
2026     case BuiltinType::SatUAccum:
2027       Width = Target->getAccumWidth();
2028       Align = Target->getAccumAlign();
2029       break;
2030     case BuiltinType::LongAccum:
2031     case BuiltinType::ULongAccum:
2032     case BuiltinType::SatLongAccum:
2033     case BuiltinType::SatULongAccum:
2034       Width = Target->getLongAccumWidth();
2035       Align = Target->getLongAccumAlign();
2036       break;
2037     case BuiltinType::ShortFract:
2038     case BuiltinType::UShortFract:
2039     case BuiltinType::SatShortFract:
2040     case BuiltinType::SatUShortFract:
2041       Width = Target->getShortFractWidth();
2042       Align = Target->getShortFractAlign();
2043       break;
2044     case BuiltinType::Fract:
2045     case BuiltinType::UFract:
2046     case BuiltinType::SatFract:
2047     case BuiltinType::SatUFract:
2048       Width = Target->getFractWidth();
2049       Align = Target->getFractAlign();
2050       break;
2051     case BuiltinType::LongFract:
2052     case BuiltinType::ULongFract:
2053     case BuiltinType::SatLongFract:
2054     case BuiltinType::SatULongFract:
2055       Width = Target->getLongFractWidth();
2056       Align = Target->getLongFractAlign();
2057       break;
2058     case BuiltinType::BFloat16:
2059       if (Target->hasBFloat16Type()) {
2060         Width = Target->getBFloat16Width();
2061         Align = Target->getBFloat16Align();
2062       } else if ((getLangOpts().SYCLIsDevice ||
2063                   (getLangOpts().OpenMP &&
2064                    getLangOpts().OpenMPIsTargetDevice)) &&
2065                  AuxTarget->hasBFloat16Type()) {
2066         Width = AuxTarget->getBFloat16Width();
2067         Align = AuxTarget->getBFloat16Align();
2068       }
2069       break;
2070     case BuiltinType::Float16:
2071     case BuiltinType::Half:
2072       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2073           !getLangOpts().OpenMPIsTargetDevice) {
2074         Width = Target->getHalfWidth();
2075         Align = Target->getHalfAlign();
2076       } else {
2077         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
2078                "Expected OpenMP device compilation.");
2079         Width = AuxTarget->getHalfWidth();
2080         Align = AuxTarget->getHalfAlign();
2081       }
2082       break;
2083     case BuiltinType::Float:
2084       Width = Target->getFloatWidth();
2085       Align = Target->getFloatAlign();
2086       break;
2087     case BuiltinType::Double:
2088       Width = Target->getDoubleWidth();
2089       Align = Target->getDoubleAlign();
2090       break;
2091     case BuiltinType::Ibm128:
2092       Width = Target->getIbm128Width();
2093       Align = Target->getIbm128Align();
2094       break;
2095     case BuiltinType::LongDouble:
2096       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
2097           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2098            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2099         Width = AuxTarget->getLongDoubleWidth();
2100         Align = AuxTarget->getLongDoubleAlign();
2101       } else {
2102         Width = Target->getLongDoubleWidth();
2103         Align = Target->getLongDoubleAlign();
2104       }
2105       break;
2106     case BuiltinType::Float128:
2107       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2108           !getLangOpts().OpenMPIsTargetDevice) {
2109         Width = Target->getFloat128Width();
2110         Align = Target->getFloat128Align();
2111       } else {
2112         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
2113                "Expected OpenMP device compilation.");
2114         Width = AuxTarget->getFloat128Width();
2115         Align = AuxTarget->getFloat128Align();
2116       }
2117       break;
2118     case BuiltinType::NullPtr:
2119       // C++ 3.9.1p11: sizeof(nullptr_t) == sizeof(void*)
2120       Width = Target->getPointerWidth(LangAS::Default);
2121       Align = Target->getPointerAlign(LangAS::Default);
2122       break;
2123     case BuiltinType::ObjCId:
2124     case BuiltinType::ObjCClass:
2125     case BuiltinType::ObjCSel:
2126       Width = Target->getPointerWidth(LangAS::Default);
2127       Align = Target->getPointerAlign(LangAS::Default);
2128       break;
2129     case BuiltinType::OCLSampler:
2130     case BuiltinType::OCLEvent:
2131     case BuiltinType::OCLClkEvent:
2132     case BuiltinType::OCLQueue:
2133     case BuiltinType::OCLReserveID:
2134 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2135     case BuiltinType::Id:
2136 #include "clang/Basic/OpenCLImageTypes.def"
2137 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2138   case BuiltinType::Id:
2139 #include "clang/Basic/OpenCLExtensionTypes.def"
2140       AS = Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
2141       Width = Target->getPointerWidth(AS);
2142       Align = Target->getPointerAlign(AS);
2143       break;
2144     // The SVE types are effectively target-specific.  The length of an
2145     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2146     // of 128 bits.  There is one predicate bit for each vector byte, so the
2147     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2148     //
2149     // Because the length is only known at runtime, we use a dummy value
2150     // of 0 for the static length.  The alignment values are those defined
2151     // by the Procedure Call Standard for the Arm Architecture.
2152 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
2153                         IsSigned, IsFP, IsBF)                                  \
2154   case BuiltinType::Id:                                                        \
2155     Width = 0;                                                                 \
2156     Align = 128;                                                               \
2157     break;
2158 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
2159   case BuiltinType::Id:                                                        \
2160     Width = 0;                                                                 \
2161     Align = 16;                                                                \
2162     break;
2163 #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId)                    \
2164   case BuiltinType::Id:                                                        \
2165     Width = 0;                                                                 \
2166     Align = 16;                                                                \
2167     break;
2168 #include "clang/Basic/AArch64SVEACLETypes.def"
2169 #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \
2170   case BuiltinType::Id:                                                        \
2171     Width = Size;                                                              \
2172     Align = Size;                                                              \
2173     break;
2174 #include "clang/Basic/PPCTypes.def"
2175 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \
2176                         IsFP, IsBF)                                            \
2177   case BuiltinType::Id:                                                        \
2178     Width = 0;                                                                 \
2179     Align = ElBits;                                                            \
2180     break;
2181 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \
2182   case BuiltinType::Id:                                                        \
2183     Width = 0;                                                                 \
2184     Align = 8;                                                                 \
2185     break;
2186 #include "clang/Basic/RISCVVTypes.def"
2187 #define WASM_TYPE(Name, Id, SingletonId)                                       \
2188   case BuiltinType::Id:                                                        \
2189     Width = 0;                                                                 \
2190     Align = 8;                                                                 \
2191     break;
2192 #include "clang/Basic/WebAssemblyReferenceTypes.def"
2193     }
2194     break;
2195   case Type::ObjCObjectPointer:
2196     Width = Target->getPointerWidth(LangAS::Default);
2197     Align = Target->getPointerAlign(LangAS::Default);
2198     break;
2199   case Type::BlockPointer:
2200     AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
2201     Width = Target->getPointerWidth(AS);
2202     Align = Target->getPointerAlign(AS);
2203     break;
2204   case Type::LValueReference:
2205   case Type::RValueReference:
2206     // alignof and sizeof should never enter this code path here, so we go
2207     // the pointer route.
2208     AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
2209     Width = Target->getPointerWidth(AS);
2210     Align = Target->getPointerAlign(AS);
2211     break;
2212   case Type::Pointer:
2213     AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
2214     Width = Target->getPointerWidth(AS);
2215     Align = Target->getPointerAlign(AS);
2216     break;
2217   case Type::MemberPointer: {
2218     const auto *MPT = cast<MemberPointerType>(T);
2219     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2220     Width = MPI.Width;
2221     Align = MPI.Align;
2222     break;
2223   }
2224   case Type::Complex: {
2225     // Complex types have the same alignment as their elements, but twice the
2226     // size.
2227     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2228     Width = EltInfo.Width * 2;
2229     Align = EltInfo.Align;
2230     break;
2231   }
2232   case Type::ObjCObject:
2233     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2234   case Type::Adjusted:
2235   case Type::Decayed:
2236     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2237   case Type::ObjCInterface: {
2238     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2239     if (ObjCI->getDecl()->isInvalidDecl()) {
2240       Width = 8;
2241       Align = 8;
2242       break;
2243     }
2244     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2245     Width = toBits(Layout.getSize());
2246     Align = toBits(Layout.getAlignment());
2247     break;
2248   }
2249   case Type::BitInt: {
2250     const auto *EIT = cast<BitIntType>(T);
2251     Align = std::clamp<unsigned>(llvm::PowerOf2Ceil(EIT->getNumBits()),
2252                                  getCharWidth(), Target->getLongLongAlign());
2253     Width = llvm::alignTo(EIT->getNumBits(), Align);
2254     break;
2255   }
2256   case Type::Record:
2257   case Type::Enum: {
2258     const auto *TT = cast<TagType>(T);
2259 
2260     if (TT->getDecl()->isInvalidDecl()) {
2261       Width = 8;
2262       Align = 8;
2263       break;
2264     }
2265 
2266     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2267       const EnumDecl *ED = ET->getDecl();
2268       TypeInfo Info =
2269           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2270       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2271         Info.Align = AttrAlign;
2272         Info.AlignRequirement = AlignRequirementKind::RequiredByEnum;
2273       }
2274       return Info;
2275     }
2276 
2277     const auto *RT = cast<RecordType>(TT);
2278     const RecordDecl *RD = RT->getDecl();
2279     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2280     Width = toBits(Layout.getSize());
2281     Align = toBits(Layout.getAlignment());
2282     AlignRequirement = RD->hasAttr<AlignedAttr>()
2283                            ? AlignRequirementKind::RequiredByRecord
2284                            : AlignRequirementKind::None;
2285     break;
2286   }
2287 
2288   case Type::SubstTemplateTypeParm:
2289     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2290                        getReplacementType().getTypePtr());
2291 
2292   case Type::Auto:
2293   case Type::DeducedTemplateSpecialization: {
2294     const auto *A = cast<DeducedType>(T);
2295     assert(!A->getDeducedType().isNull() &&
2296            "cannot request the size of an undeduced or dependent auto type");
2297     return getTypeInfo(A->getDeducedType().getTypePtr());
2298   }
2299 
2300   case Type::Paren:
2301     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2302 
2303   case Type::MacroQualified:
2304     return getTypeInfo(
2305         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2306 
2307   case Type::ObjCTypeParam:
2308     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2309 
2310   case Type::Using:
2311     return getTypeInfo(cast<UsingType>(T)->desugar().getTypePtr());
2312 
2313   case Type::Typedef: {
2314     const auto *TT = cast<TypedefType>(T);
2315     TypeInfo Info = getTypeInfo(TT->desugar().getTypePtr());
2316     // If the typedef has an aligned attribute on it, it overrides any computed
2317     // alignment we have.  This violates the GCC documentation (which says that
2318     // attribute(aligned) can only round up) but matches its implementation.
2319     if (unsigned AttrAlign = TT->getDecl()->getMaxAlignment()) {
2320       Align = AttrAlign;
2321       AlignRequirement = AlignRequirementKind::RequiredByTypedef;
2322     } else {
2323       Align = Info.Align;
2324       AlignRequirement = Info.AlignRequirement;
2325     }
2326     Width = Info.Width;
2327     break;
2328   }
2329 
2330   case Type::Elaborated:
2331     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2332 
2333   case Type::Attributed:
2334     return getTypeInfo(
2335                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2336 
2337   case Type::BTFTagAttributed:
2338     return getTypeInfo(
2339         cast<BTFTagAttributedType>(T)->getWrappedType().getTypePtr());
2340 
2341   case Type::Atomic: {
2342     // Start with the base type information.
2343     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2344     Width = Info.Width;
2345     Align = Info.Align;
2346 
2347     if (!Width) {
2348       // An otherwise zero-sized type should still generate an
2349       // atomic operation.
2350       Width = Target->getCharWidth();
2351       assert(Align);
2352     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2353       // If the size of the type doesn't exceed the platform's max
2354       // atomic promotion width, make the size and alignment more
2355       // favorable to atomic operations:
2356 
2357       // Round the size up to a power of 2.
2358       Width = llvm::bit_ceil(Width);
2359 
2360       // Set the alignment equal to the size.
2361       Align = static_cast<unsigned>(Width);
2362     }
2363   }
2364   break;
2365 
2366   case Type::Pipe:
2367     Width = Target->getPointerWidth(LangAS::opencl_global);
2368     Align = Target->getPointerAlign(LangAS::opencl_global);
2369     break;
2370   }
2371 
2372   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2373   return TypeInfo(Width, Align, AlignRequirement);
2374 }
2375 
2376 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2377   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2378   if (I != MemoizedUnadjustedAlign.end())
2379     return I->second;
2380 
2381   unsigned UnadjustedAlign;
2382   if (const auto *RT = T->getAs<RecordType>()) {
2383     const RecordDecl *RD = RT->getDecl();
2384     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2385     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2386   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2387     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2388     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2389   } else {
2390     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2391   }
2392 
2393   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2394   return UnadjustedAlign;
2395 }
2396 
2397 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2398   unsigned SimdAlign = llvm::OpenMPIRBuilder::getOpenMPDefaultSimdAlign(
2399       getTargetInfo().getTriple(), Target->getTargetOpts().FeatureMap);
2400   return SimdAlign;
2401 }
2402 
2403 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2404 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2405   return CharUnits::fromQuantity(BitSize / getCharWidth());
2406 }
2407 
2408 /// toBits - Convert a size in characters to a size in characters.
2409 int64_t ASTContext::toBits(CharUnits CharSize) const {
2410   return CharSize.getQuantity() * getCharWidth();
2411 }
2412 
2413 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2414 /// This method does not work on incomplete types.
2415 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2416   return getTypeInfoInChars(T).Width;
2417 }
2418 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2419   return getTypeInfoInChars(T).Width;
2420 }
2421 
2422 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2423 /// characters. This method does not work on incomplete types.
2424 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2425   return toCharUnitsFromBits(getTypeAlign(T));
2426 }
2427 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2428   return toCharUnitsFromBits(getTypeAlign(T));
2429 }
2430 
2431 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2432 /// type, in characters, before alignment adjustments. This method does
2433 /// not work on incomplete types.
2434 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2435   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2436 }
2437 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2438   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2439 }
2440 
2441 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2442 /// type for the current target in bits.  This can be different than the ABI
2443 /// alignment in cases where it is beneficial for performance or backwards
2444 /// compatibility preserving to overalign a data type. (Note: despite the name,
2445 /// the preferred alignment is ABI-impacting, and not an optimization.)
2446 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2447   TypeInfo TI = getTypeInfo(T);
2448   unsigned ABIAlign = TI.Align;
2449 
2450   T = T->getBaseElementTypeUnsafe();
2451 
2452   // The preferred alignment of member pointers is that of a pointer.
2453   if (T->isMemberPointerType())
2454     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2455 
2456   if (!Target->allowsLargerPreferedTypeAlignment())
2457     return ABIAlign;
2458 
2459   if (const auto *RT = T->getAs<RecordType>()) {
2460     const RecordDecl *RD = RT->getDecl();
2461 
2462     // When used as part of a typedef, or together with a 'packed' attribute,
2463     // the 'aligned' attribute can be used to decrease alignment. Note that the
2464     // 'packed' case is already taken into consideration when computing the
2465     // alignment, we only need to handle the typedef case here.
2466     if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
2467         RD->isInvalidDecl())
2468       return ABIAlign;
2469 
2470     unsigned PreferredAlign = static_cast<unsigned>(
2471         toBits(getASTRecordLayout(RD).PreferredAlignment));
2472     assert(PreferredAlign >= ABIAlign &&
2473            "PreferredAlign should be at least as large as ABIAlign.");
2474     return PreferredAlign;
2475   }
2476 
2477   // Double (and, for targets supporting AIX `power` alignment, long double) and
2478   // long long should be naturally aligned (despite requiring less alignment) if
2479   // possible.
2480   if (const auto *CT = T->getAs<ComplexType>())
2481     T = CT->getElementType().getTypePtr();
2482   if (const auto *ET = T->getAs<EnumType>())
2483     T = ET->getDecl()->getIntegerType().getTypePtr();
2484   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2485       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2486       T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2487       (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2488        Target->defaultsToAIXPowerAlignment()))
2489     // Don't increase the alignment if an alignment attribute was specified on a
2490     // typedef declaration.
2491     if (!TI.isAlignRequired())
2492       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2493 
2494   return ABIAlign;
2495 }
2496 
2497 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2498 /// for __attribute__((aligned)) on this target, to be used if no alignment
2499 /// value is specified.
2500 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2501   return getTargetInfo().getDefaultAlignForAttributeAligned();
2502 }
2503 
2504 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2505 /// to a global variable of the specified type.
2506 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2507   uint64_t TypeSize = getTypeSize(T.getTypePtr());
2508   return std::max(getPreferredTypeAlign(T),
2509                   getTargetInfo().getMinGlobalAlign(TypeSize));
2510 }
2511 
2512 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2513 /// should be given to a global variable of the specified type.
2514 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2515   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2516 }
2517 
2518 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2519   CharUnits Offset = CharUnits::Zero();
2520   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2521   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2522     Offset += Layout->getBaseClassOffset(Base);
2523     Layout = &getASTRecordLayout(Base);
2524   }
2525   return Offset;
2526 }
2527 
2528 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2529   const ValueDecl *MPD = MP.getMemberPointerDecl();
2530   CharUnits ThisAdjustment = CharUnits::Zero();
2531   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2532   bool DerivedMember = MP.isMemberPointerToDerivedMember();
2533   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2534   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2535     const CXXRecordDecl *Base = RD;
2536     const CXXRecordDecl *Derived = Path[I];
2537     if (DerivedMember)
2538       std::swap(Base, Derived);
2539     ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2540     RD = Path[I];
2541   }
2542   if (DerivedMember)
2543     ThisAdjustment = -ThisAdjustment;
2544   return ThisAdjustment;
2545 }
2546 
2547 /// DeepCollectObjCIvars -
2548 /// This routine first collects all declared, but not synthesized, ivars in
2549 /// super class and then collects all ivars, including those synthesized for
2550 /// current class. This routine is used for implementation of current class
2551 /// when all ivars, declared and synthesized are known.
2552 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2553                                       bool leafClass,
2554                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2555   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2556     DeepCollectObjCIvars(SuperClass, false, Ivars);
2557   if (!leafClass) {
2558     llvm::append_range(Ivars, OI->ivars());
2559   } else {
2560     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2561     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2562          Iv= Iv->getNextIvar())
2563       Ivars.push_back(Iv);
2564   }
2565 }
2566 
2567 /// CollectInheritedProtocols - Collect all protocols in current class and
2568 /// those inherited by it.
2569 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2570                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2571   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2572     // We can use protocol_iterator here instead of
2573     // all_referenced_protocol_iterator since we are walking all categories.
2574     for (auto *Proto : OI->all_referenced_protocols()) {
2575       CollectInheritedProtocols(Proto, Protocols);
2576     }
2577 
2578     // Categories of this Interface.
2579     for (const auto *Cat : OI->visible_categories())
2580       CollectInheritedProtocols(Cat, Protocols);
2581 
2582     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2583       while (SD) {
2584         CollectInheritedProtocols(SD, Protocols);
2585         SD = SD->getSuperClass();
2586       }
2587   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2588     for (auto *Proto : OC->protocols()) {
2589       CollectInheritedProtocols(Proto, Protocols);
2590     }
2591   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2592     // Insert the protocol.
2593     if (!Protocols.insert(
2594           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2595       return;
2596 
2597     for (auto *Proto : OP->protocols())
2598       CollectInheritedProtocols(Proto, Protocols);
2599   }
2600 }
2601 
2602 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2603                                                 const RecordDecl *RD,
2604                                                 bool CheckIfTriviallyCopyable) {
2605   assert(RD->isUnion() && "Must be union type");
2606   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2607 
2608   for (const auto *Field : RD->fields()) {
2609     if (!Context.hasUniqueObjectRepresentations(Field->getType(),
2610                                                 CheckIfTriviallyCopyable))
2611       return false;
2612     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2613     if (FieldSize != UnionSize)
2614       return false;
2615   }
2616   return !RD->field_empty();
2617 }
2618 
2619 static int64_t getSubobjectOffset(const FieldDecl *Field,
2620                                   const ASTContext &Context,
2621                                   const clang::ASTRecordLayout & /*Layout*/) {
2622   return Context.getFieldOffset(Field);
2623 }
2624 
2625 static int64_t getSubobjectOffset(const CXXRecordDecl *RD,
2626                                   const ASTContext &Context,
2627                                   const clang::ASTRecordLayout &Layout) {
2628   return Context.toBits(Layout.getBaseClassOffset(RD));
2629 }
2630 
2631 static std::optional<int64_t>
2632 structHasUniqueObjectRepresentations(const ASTContext &Context,
2633                                      const RecordDecl *RD,
2634                                      bool CheckIfTriviallyCopyable);
2635 
2636 static std::optional<int64_t>
2637 getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context,
2638                        bool CheckIfTriviallyCopyable) {
2639   if (Field->getType()->isRecordType()) {
2640     const RecordDecl *RD = Field->getType()->getAsRecordDecl();
2641     if (!RD->isUnion())
2642       return structHasUniqueObjectRepresentations(Context, RD,
2643                                                   CheckIfTriviallyCopyable);
2644   }
2645 
2646   // A _BitInt type may not be unique if it has padding bits
2647   // but if it is a bitfield the padding bits are not used.
2648   bool IsBitIntType = Field->getType()->isBitIntType();
2649   if (!Field->getType()->isReferenceType() && !IsBitIntType &&
2650       !Context.hasUniqueObjectRepresentations(Field->getType(),
2651                                               CheckIfTriviallyCopyable))
2652     return std::nullopt;
2653 
2654   int64_t FieldSizeInBits =
2655       Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2656   if (Field->isBitField()) {
2657     // If we have explicit padding bits, they don't contribute bits
2658     // to the actual object representation, so return 0.
2659     if (Field->isUnnamedBitfield())
2660       return 0;
2661 
2662     int64_t BitfieldSize = Field->getBitWidthValue(Context);
2663     if (IsBitIntType) {
2664       if ((unsigned)BitfieldSize >
2665           cast<BitIntType>(Field->getType())->getNumBits())
2666         return std::nullopt;
2667     } else if (BitfieldSize > FieldSizeInBits) {
2668       return std::nullopt;
2669     }
2670     FieldSizeInBits = BitfieldSize;
2671   } else if (IsBitIntType && !Context.hasUniqueObjectRepresentations(
2672                                  Field->getType(), CheckIfTriviallyCopyable)) {
2673     return std::nullopt;
2674   }
2675   return FieldSizeInBits;
2676 }
2677 
2678 static std::optional<int64_t>
2679 getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context,
2680                        bool CheckIfTriviallyCopyable) {
2681   return structHasUniqueObjectRepresentations(Context, RD,
2682                                               CheckIfTriviallyCopyable);
2683 }
2684 
2685 template <typename RangeT>
2686 static std::optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations(
2687     const RangeT &Subobjects, int64_t CurOffsetInBits,
2688     const ASTContext &Context, const clang::ASTRecordLayout &Layout,
2689     bool CheckIfTriviallyCopyable) {
2690   for (const auto *Subobject : Subobjects) {
2691     std::optional<int64_t> SizeInBits =
2692         getSubobjectSizeInBits(Subobject, Context, CheckIfTriviallyCopyable);
2693     if (!SizeInBits)
2694       return std::nullopt;
2695     if (*SizeInBits != 0) {
2696       int64_t Offset = getSubobjectOffset(Subobject, Context, Layout);
2697       if (Offset != CurOffsetInBits)
2698         return std::nullopt;
2699       CurOffsetInBits += *SizeInBits;
2700     }
2701   }
2702   return CurOffsetInBits;
2703 }
2704 
2705 static std::optional<int64_t>
2706 structHasUniqueObjectRepresentations(const ASTContext &Context,
2707                                      const RecordDecl *RD,
2708                                      bool CheckIfTriviallyCopyable) {
2709   assert(!RD->isUnion() && "Must be struct/class type");
2710   const auto &Layout = Context.getASTRecordLayout(RD);
2711 
2712   int64_t CurOffsetInBits = 0;
2713   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2714     if (ClassDecl->isDynamicClass())
2715       return std::nullopt;
2716 
2717     SmallVector<CXXRecordDecl *, 4> Bases;
2718     for (const auto &Base : ClassDecl->bases()) {
2719       // Empty types can be inherited from, and non-empty types can potentially
2720       // have tail padding, so just make sure there isn't an error.
2721       Bases.emplace_back(Base.getType()->getAsCXXRecordDecl());
2722     }
2723 
2724     llvm::sort(Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
2725       return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
2726     });
2727 
2728     std::optional<int64_t> OffsetAfterBases =
2729         structSubobjectsHaveUniqueObjectRepresentations(
2730             Bases, CurOffsetInBits, Context, Layout, CheckIfTriviallyCopyable);
2731     if (!OffsetAfterBases)
2732       return std::nullopt;
2733     CurOffsetInBits = *OffsetAfterBases;
2734   }
2735 
2736   std::optional<int64_t> OffsetAfterFields =
2737       structSubobjectsHaveUniqueObjectRepresentations(
2738           RD->fields(), CurOffsetInBits, Context, Layout,
2739           CheckIfTriviallyCopyable);
2740   if (!OffsetAfterFields)
2741     return std::nullopt;
2742   CurOffsetInBits = *OffsetAfterFields;
2743 
2744   return CurOffsetInBits;
2745 }
2746 
2747 bool ASTContext::hasUniqueObjectRepresentations(
2748     QualType Ty, bool CheckIfTriviallyCopyable) const {
2749   // C++17 [meta.unary.prop]:
2750   //   The predicate condition for a template specialization
2751   //   has_unique_object_representations<T> shall be
2752   //   satisfied if and only if:
2753   //     (9.1) - T is trivially copyable, and
2754   //     (9.2) - any two objects of type T with the same value have the same
2755   //     object representation, where two objects
2756   //   of array or non-union class type are considered to have the same value
2757   //   if their respective sequences of
2758   //   direct subobjects have the same values, and two objects of union type
2759   //   are considered to have the same
2760   //   value if they have the same active member and the corresponding members
2761   //   have the same value.
2762   //   The set of scalar types for which this condition holds is
2763   //   implementation-defined. [ Note: If a type has padding
2764   //   bits, the condition does not hold; otherwise, the condition holds true
2765   //   for unsigned integral types. -- end note ]
2766   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2767 
2768   // Arrays are unique only if their element type is unique.
2769   if (Ty->isArrayType())
2770     return hasUniqueObjectRepresentations(getBaseElementType(Ty),
2771                                           CheckIfTriviallyCopyable);
2772 
2773   // (9.1) - T is trivially copyable...
2774   if (CheckIfTriviallyCopyable && !Ty.isTriviallyCopyableType(*this))
2775     return false;
2776 
2777   // All integrals and enums are unique.
2778   if (Ty->isIntegralOrEnumerationType()) {
2779     // Except _BitInt types that have padding bits.
2780     if (const auto *BIT = Ty->getAs<BitIntType>())
2781       return getTypeSize(BIT) == BIT->getNumBits();
2782 
2783     return true;
2784   }
2785 
2786   // All other pointers are unique.
2787   if (Ty->isPointerType())
2788     return true;
2789 
2790   if (const auto *MPT = Ty->getAs<MemberPointerType>())
2791     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2792 
2793   if (Ty->isRecordType()) {
2794     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2795 
2796     if (Record->isInvalidDecl())
2797       return false;
2798 
2799     if (Record->isUnion())
2800       return unionHasUniqueObjectRepresentations(*this, Record,
2801                                                  CheckIfTriviallyCopyable);
2802 
2803     std::optional<int64_t> StructSize = structHasUniqueObjectRepresentations(
2804         *this, Record, CheckIfTriviallyCopyable);
2805 
2806     return StructSize && *StructSize == static_cast<int64_t>(getTypeSize(Ty));
2807   }
2808 
2809   // FIXME: More cases to handle here (list by rsmith):
2810   // vectors (careful about, eg, vector of 3 foo)
2811   // _Complex int and friends
2812   // _Atomic T
2813   // Obj-C block pointers
2814   // Obj-C object pointers
2815   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2816   // clk_event_t, queue_t, reserve_id_t)
2817   // There're also Obj-C class types and the Obj-C selector type, but I think it
2818   // makes sense for those to return false here.
2819 
2820   return false;
2821 }
2822 
2823 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2824   unsigned count = 0;
2825   // Count ivars declared in class extension.
2826   for (const auto *Ext : OI->known_extensions())
2827     count += Ext->ivar_size();
2828 
2829   // Count ivar defined in this class's implementation.  This
2830   // includes synthesized ivars.
2831   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2832     count += ImplDecl->ivar_size();
2833 
2834   return count;
2835 }
2836 
2837 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2838   if (!E)
2839     return false;
2840 
2841   // nullptr_t is always treated as null.
2842   if (E->getType()->isNullPtrType()) return true;
2843 
2844   if (E->getType()->isAnyPointerType() &&
2845       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2846                                                 Expr::NPC_ValueDependentIsNull))
2847     return true;
2848 
2849   // Unfortunately, __null has type 'int'.
2850   if (isa<GNUNullExpr>(E)) return true;
2851 
2852   return false;
2853 }
2854 
2855 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2856 /// exists.
2857 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2858   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2859     I = ObjCImpls.find(D);
2860   if (I != ObjCImpls.end())
2861     return cast<ObjCImplementationDecl>(I->second);
2862   return nullptr;
2863 }
2864 
2865 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2866 /// exists.
2867 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2868   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2869     I = ObjCImpls.find(D);
2870   if (I != ObjCImpls.end())
2871     return cast<ObjCCategoryImplDecl>(I->second);
2872   return nullptr;
2873 }
2874 
2875 /// Set the implementation of ObjCInterfaceDecl.
2876 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2877                            ObjCImplementationDecl *ImplD) {
2878   assert(IFaceD && ImplD && "Passed null params");
2879   ObjCImpls[IFaceD] = ImplD;
2880 }
2881 
2882 /// Set the implementation of ObjCCategoryDecl.
2883 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2884                            ObjCCategoryImplDecl *ImplD) {
2885   assert(CatD && ImplD && "Passed null params");
2886   ObjCImpls[CatD] = ImplD;
2887 }
2888 
2889 const ObjCMethodDecl *
2890 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2891   return ObjCMethodRedecls.lookup(MD);
2892 }
2893 
2894 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2895                                             const ObjCMethodDecl *Redecl) {
2896   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2897   ObjCMethodRedecls[MD] = Redecl;
2898 }
2899 
2900 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2901                                               const NamedDecl *ND) const {
2902   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2903     return ID;
2904   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2905     return CD->getClassInterface();
2906   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2907     return IMD->getClassInterface();
2908 
2909   return nullptr;
2910 }
2911 
2912 /// Get the copy initialization expression of VarDecl, or nullptr if
2913 /// none exists.
2914 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2915   assert(VD && "Passed null params");
2916   assert(VD->hasAttr<BlocksAttr>() &&
2917          "getBlockVarCopyInits - not __block var");
2918   auto I = BlockVarCopyInits.find(VD);
2919   if (I != BlockVarCopyInits.end())
2920     return I->second;
2921   return {nullptr, false};
2922 }
2923 
2924 /// Set the copy initialization expression of a block var decl.
2925 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2926                                      bool CanThrow) {
2927   assert(VD && CopyExpr && "Passed null params");
2928   assert(VD->hasAttr<BlocksAttr>() &&
2929          "setBlockVarCopyInits - not __block var");
2930   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2931 }
2932 
2933 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2934                                                  unsigned DataSize) const {
2935   if (!DataSize)
2936     DataSize = TypeLoc::getFullDataSizeForType(T);
2937   else
2938     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2939            "incorrect data size provided to CreateTypeSourceInfo!");
2940 
2941   auto *TInfo =
2942     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2943   new (TInfo) TypeSourceInfo(T, DataSize);
2944   return TInfo;
2945 }
2946 
2947 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2948                                                      SourceLocation L) const {
2949   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2950   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2951   return DI;
2952 }
2953 
2954 const ASTRecordLayout &
2955 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2956   return getObjCLayout(D, nullptr);
2957 }
2958 
2959 const ASTRecordLayout &
2960 ASTContext::getASTObjCImplementationLayout(
2961                                         const ObjCImplementationDecl *D) const {
2962   return getObjCLayout(D->getClassInterface(), D);
2963 }
2964 
2965 static auto getCanonicalTemplateArguments(const ASTContext &C,
2966                                           ArrayRef<TemplateArgument> Args,
2967                                           bool &AnyNonCanonArgs) {
2968   SmallVector<TemplateArgument, 16> CanonArgs(Args);
2969   for (auto &Arg : CanonArgs) {
2970     TemplateArgument OrigArg = Arg;
2971     Arg = C.getCanonicalTemplateArgument(Arg);
2972     AnyNonCanonArgs |= !Arg.structurallyEquals(OrigArg);
2973   }
2974   return CanonArgs;
2975 }
2976 
2977 //===----------------------------------------------------------------------===//
2978 //                   Type creation/memoization methods
2979 //===----------------------------------------------------------------------===//
2980 
2981 QualType
2982 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2983   unsigned fastQuals = quals.getFastQualifiers();
2984   quals.removeFastQualifiers();
2985 
2986   // Check if we've already instantiated this type.
2987   llvm::FoldingSetNodeID ID;
2988   ExtQuals::Profile(ID, baseType, quals);
2989   void *insertPos = nullptr;
2990   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2991     assert(eq->getQualifiers() == quals);
2992     return QualType(eq, fastQuals);
2993   }
2994 
2995   // If the base type is not canonical, make the appropriate canonical type.
2996   QualType canon;
2997   if (!baseType->isCanonicalUnqualified()) {
2998     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2999     canonSplit.Quals.addConsistentQualifiers(quals);
3000     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
3001 
3002     // Re-find the insert position.
3003     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
3004   }
3005 
3006   auto *eq = new (*this, alignof(ExtQuals)) ExtQuals(baseType, canon, quals);
3007   ExtQualNodes.InsertNode(eq, insertPos);
3008   return QualType(eq, fastQuals);
3009 }
3010 
3011 QualType ASTContext::getAddrSpaceQualType(QualType T,
3012                                           LangAS AddressSpace) const {
3013   QualType CanT = getCanonicalType(T);
3014   if (CanT.getAddressSpace() == AddressSpace)
3015     return T;
3016 
3017   // If we are composing extended qualifiers together, merge together
3018   // into one ExtQuals node.
3019   QualifierCollector Quals;
3020   const Type *TypeNode = Quals.strip(T);
3021 
3022   // If this type already has an address space specified, it cannot get
3023   // another one.
3024   assert(!Quals.hasAddressSpace() &&
3025          "Type cannot be in multiple addr spaces!");
3026   Quals.addAddressSpace(AddressSpace);
3027 
3028   return getExtQualType(TypeNode, Quals);
3029 }
3030 
3031 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
3032   // If the type is not qualified with an address space, just return it
3033   // immediately.
3034   if (!T.hasAddressSpace())
3035     return T;
3036 
3037   // If we are composing extended qualifiers together, merge together
3038   // into one ExtQuals node.
3039   QualifierCollector Quals;
3040   const Type *TypeNode;
3041 
3042   while (T.hasAddressSpace()) {
3043     TypeNode = Quals.strip(T);
3044 
3045     // If the type no longer has an address space after stripping qualifiers,
3046     // jump out.
3047     if (!QualType(TypeNode, 0).hasAddressSpace())
3048       break;
3049 
3050     // There might be sugar in the way. Strip it and try again.
3051     T = T.getSingleStepDesugaredType(*this);
3052   }
3053 
3054   Quals.removeAddressSpace();
3055 
3056   // Removal of the address space can mean there are no longer any
3057   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
3058   // or required.
3059   if (Quals.hasNonFastQualifiers())
3060     return getExtQualType(TypeNode, Quals);
3061   else
3062     return QualType(TypeNode, Quals.getFastQualifiers());
3063 }
3064 
3065 QualType ASTContext::getObjCGCQualType(QualType T,
3066                                        Qualifiers::GC GCAttr) const {
3067   QualType CanT = getCanonicalType(T);
3068   if (CanT.getObjCGCAttr() == GCAttr)
3069     return T;
3070 
3071   if (const auto *ptr = T->getAs<PointerType>()) {
3072     QualType Pointee = ptr->getPointeeType();
3073     if (Pointee->isAnyPointerType()) {
3074       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
3075       return getPointerType(ResultType);
3076     }
3077   }
3078 
3079   // If we are composing extended qualifiers together, merge together
3080   // into one ExtQuals node.
3081   QualifierCollector Quals;
3082   const Type *TypeNode = Quals.strip(T);
3083 
3084   // If this type already has an ObjCGC specified, it cannot get
3085   // another one.
3086   assert(!Quals.hasObjCGCAttr() &&
3087          "Type cannot have multiple ObjCGCs!");
3088   Quals.addObjCGCAttr(GCAttr);
3089 
3090   return getExtQualType(TypeNode, Quals);
3091 }
3092 
3093 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
3094   if (const PointerType *Ptr = T->getAs<PointerType>()) {
3095     QualType Pointee = Ptr->getPointeeType();
3096     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
3097       return getPointerType(removeAddrSpaceQualType(Pointee));
3098     }
3099   }
3100   return T;
3101 }
3102 
3103 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
3104                                                    FunctionType::ExtInfo Info) {
3105   if (T->getExtInfo() == Info)
3106     return T;
3107 
3108   QualType Result;
3109   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
3110     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
3111   } else {
3112     const auto *FPT = cast<FunctionProtoType>(T);
3113     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3114     EPI.ExtInfo = Info;
3115     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3116   }
3117 
3118   return cast<FunctionType>(Result.getTypePtr());
3119 }
3120 
3121 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3122                                                  QualType ResultType) {
3123   FD = FD->getMostRecentDecl();
3124   while (true) {
3125     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3126     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3127     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3128     if (FunctionDecl *Next = FD->getPreviousDecl())
3129       FD = Next;
3130     else
3131       break;
3132   }
3133   if (ASTMutationListener *L = getASTMutationListener())
3134     L->DeducedReturnType(FD, ResultType);
3135 }
3136 
3137 /// Get a function type and produce the equivalent function type with the
3138 /// specified exception specification. Type sugar that can be present on a
3139 /// declaration of a function with an exception specification is permitted
3140 /// and preserved. Other type sugar (for instance, typedefs) is not.
3141 QualType ASTContext::getFunctionTypeWithExceptionSpec(
3142     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const {
3143   // Might have some parens.
3144   if (const auto *PT = dyn_cast<ParenType>(Orig))
3145     return getParenType(
3146         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3147 
3148   // Might be wrapped in a macro qualified type.
3149   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3150     return getMacroQualifiedType(
3151         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3152         MQT->getMacroIdentifier());
3153 
3154   // Might have a calling-convention attribute.
3155   if (const auto *AT = dyn_cast<AttributedType>(Orig))
3156     return getAttributedType(
3157         AT->getAttrKind(),
3158         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3159         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3160 
3161   // Anything else must be a function type. Rebuild it with the new exception
3162   // specification.
3163   const auto *Proto = Orig->castAs<FunctionProtoType>();
3164   return getFunctionType(
3165       Proto->getReturnType(), Proto->getParamTypes(),
3166       Proto->getExtProtoInfo().withExceptionSpec(ESI));
3167 }
3168 
3169 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3170                                                           QualType U) const {
3171   return hasSameType(T, U) ||
3172          (getLangOpts().CPlusPlus17 &&
3173           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3174                       getFunctionTypeWithExceptionSpec(U, EST_None)));
3175 }
3176 
3177 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3178   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3179     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3180     SmallVector<QualType, 16> Args(Proto->param_types().size());
3181     for (unsigned i = 0, n = Args.size(); i != n; ++i)
3182       Args[i] = removePtrSizeAddrSpace(Proto->param_types()[i]);
3183     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3184   }
3185 
3186   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3187     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3188     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3189   }
3190 
3191   return T;
3192 }
3193 
3194 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3195   return hasSameType(T, U) ||
3196          hasSameType(getFunctionTypeWithoutPtrSizes(T),
3197                      getFunctionTypeWithoutPtrSizes(U));
3198 }
3199 
3200 void ASTContext::adjustExceptionSpec(
3201     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3202     bool AsWritten) {
3203   // Update the type.
3204   QualType Updated =
3205       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3206   FD->setType(Updated);
3207 
3208   if (!AsWritten)
3209     return;
3210 
3211   // Update the type in the type source information too.
3212   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3213     // If the type and the type-as-written differ, we may need to update
3214     // the type-as-written too.
3215     if (TSInfo->getType() != FD->getType())
3216       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3217 
3218     // FIXME: When we get proper type location information for exceptions,
3219     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3220     // up the TypeSourceInfo;
3221     assert(TypeLoc::getFullDataSizeForType(Updated) ==
3222                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3223            "TypeLoc size mismatch from updating exception specification");
3224     TSInfo->overrideType(Updated);
3225   }
3226 }
3227 
3228 /// getComplexType - Return the uniqued reference to the type for a complex
3229 /// number with the specified element type.
3230 QualType ASTContext::getComplexType(QualType T) const {
3231   // Unique pointers, to guarantee there is only one pointer of a particular
3232   // structure.
3233   llvm::FoldingSetNodeID ID;
3234   ComplexType::Profile(ID, T);
3235 
3236   void *InsertPos = nullptr;
3237   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3238     return QualType(CT, 0);
3239 
3240   // If the pointee type isn't canonical, this won't be a canonical type either,
3241   // so fill in the canonical type field.
3242   QualType Canonical;
3243   if (!T.isCanonical()) {
3244     Canonical = getComplexType(getCanonicalType(T));
3245 
3246     // Get the new insert position for the node we care about.
3247     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3248     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3249   }
3250   auto *New = new (*this, alignof(ComplexType)) ComplexType(T, Canonical);
3251   Types.push_back(New);
3252   ComplexTypes.InsertNode(New, InsertPos);
3253   return QualType(New, 0);
3254 }
3255 
3256 /// getPointerType - Return the uniqued reference to the type for a pointer to
3257 /// the specified type.
3258 QualType ASTContext::getPointerType(QualType T) const {
3259   // Unique pointers, to guarantee there is only one pointer of a particular
3260   // structure.
3261   llvm::FoldingSetNodeID ID;
3262   PointerType::Profile(ID, T);
3263 
3264   void *InsertPos = nullptr;
3265   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3266     return QualType(PT, 0);
3267 
3268   // If the pointee type isn't canonical, this won't be a canonical type either,
3269   // so fill in the canonical type field.
3270   QualType Canonical;
3271   if (!T.isCanonical()) {
3272     Canonical = getPointerType(getCanonicalType(T));
3273 
3274     // Get the new insert position for the node we care about.
3275     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3276     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3277   }
3278   auto *New = new (*this, alignof(PointerType)) PointerType(T, Canonical);
3279   Types.push_back(New);
3280   PointerTypes.InsertNode(New, InsertPos);
3281   return QualType(New, 0);
3282 }
3283 
3284 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3285   llvm::FoldingSetNodeID ID;
3286   AdjustedType::Profile(ID, Orig, New);
3287   void *InsertPos = nullptr;
3288   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3289   if (AT)
3290     return QualType(AT, 0);
3291 
3292   QualType Canonical = getCanonicalType(New);
3293 
3294   // Get the new insert position for the node we care about.
3295   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3296   assert(!AT && "Shouldn't be in the map!");
3297 
3298   AT = new (*this, alignof(AdjustedType))
3299       AdjustedType(Type::Adjusted, Orig, New, Canonical);
3300   Types.push_back(AT);
3301   AdjustedTypes.InsertNode(AT, InsertPos);
3302   return QualType(AT, 0);
3303 }
3304 
3305 QualType ASTContext::getDecayedType(QualType Orig, QualType Decayed) const {
3306   llvm::FoldingSetNodeID ID;
3307   AdjustedType::Profile(ID, Orig, Decayed);
3308   void *InsertPos = nullptr;
3309   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3310   if (AT)
3311     return QualType(AT, 0);
3312 
3313   QualType Canonical = getCanonicalType(Decayed);
3314 
3315   // Get the new insert position for the node we care about.
3316   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3317   assert(!AT && "Shouldn't be in the map!");
3318 
3319   AT = new (*this, alignof(DecayedType)) DecayedType(Orig, Decayed, Canonical);
3320   Types.push_back(AT);
3321   AdjustedTypes.InsertNode(AT, InsertPos);
3322   return QualType(AT, 0);
3323 }
3324 
3325 QualType ASTContext::getDecayedType(QualType T) const {
3326   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3327 
3328   QualType Decayed;
3329 
3330   // C99 6.7.5.3p7:
3331   //   A declaration of a parameter as "array of type" shall be
3332   //   adjusted to "qualified pointer to type", where the type
3333   //   qualifiers (if any) are those specified within the [ and ] of
3334   //   the array type derivation.
3335   if (T->isArrayType())
3336     Decayed = getArrayDecayedType(T);
3337 
3338   // C99 6.7.5.3p8:
3339   //   A declaration of a parameter as "function returning type"
3340   //   shall be adjusted to "pointer to function returning type", as
3341   //   in 6.3.2.1.
3342   if (T->isFunctionType())
3343     Decayed = getPointerType(T);
3344 
3345   return getDecayedType(T, Decayed);
3346 }
3347 
3348 /// getBlockPointerType - Return the uniqued reference to the type for
3349 /// a pointer to the specified block.
3350 QualType ASTContext::getBlockPointerType(QualType T) const {
3351   assert(T->isFunctionType() && "block of function types only");
3352   // Unique pointers, to guarantee there is only one block of a particular
3353   // structure.
3354   llvm::FoldingSetNodeID ID;
3355   BlockPointerType::Profile(ID, T);
3356 
3357   void *InsertPos = nullptr;
3358   if (BlockPointerType *PT =
3359         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3360     return QualType(PT, 0);
3361 
3362   // If the block pointee type isn't canonical, this won't be a canonical
3363   // type either so fill in the canonical type field.
3364   QualType Canonical;
3365   if (!T.isCanonical()) {
3366     Canonical = getBlockPointerType(getCanonicalType(T));
3367 
3368     // Get the new insert position for the node we care about.
3369     BlockPointerType *NewIP =
3370       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3371     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3372   }
3373   auto *New =
3374       new (*this, alignof(BlockPointerType)) BlockPointerType(T, Canonical);
3375   Types.push_back(New);
3376   BlockPointerTypes.InsertNode(New, InsertPos);
3377   return QualType(New, 0);
3378 }
3379 
3380 /// getLValueReferenceType - Return the uniqued reference to the type for an
3381 /// lvalue reference to the specified type.
3382 QualType
3383 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3384   assert((!T->isPlaceholderType() ||
3385           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3386          "Unresolved placeholder type");
3387 
3388   // Unique pointers, to guarantee there is only one pointer of a particular
3389   // structure.
3390   llvm::FoldingSetNodeID ID;
3391   ReferenceType::Profile(ID, T, SpelledAsLValue);
3392 
3393   void *InsertPos = nullptr;
3394   if (LValueReferenceType *RT =
3395         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3396     return QualType(RT, 0);
3397 
3398   const auto *InnerRef = T->getAs<ReferenceType>();
3399 
3400   // If the referencee type isn't canonical, this won't be a canonical type
3401   // either, so fill in the canonical type field.
3402   QualType Canonical;
3403   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3404     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3405     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3406 
3407     // Get the new insert position for the node we care about.
3408     LValueReferenceType *NewIP =
3409       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3410     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3411   }
3412 
3413   auto *New = new (*this, alignof(LValueReferenceType))
3414       LValueReferenceType(T, Canonical, SpelledAsLValue);
3415   Types.push_back(New);
3416   LValueReferenceTypes.InsertNode(New, InsertPos);
3417 
3418   return QualType(New, 0);
3419 }
3420 
3421 /// getRValueReferenceType - Return the uniqued reference to the type for an
3422 /// rvalue reference to the specified type.
3423 QualType ASTContext::getRValueReferenceType(QualType T) const {
3424   assert((!T->isPlaceholderType() ||
3425           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3426          "Unresolved placeholder type");
3427 
3428   // Unique pointers, to guarantee there is only one pointer of a particular
3429   // structure.
3430   llvm::FoldingSetNodeID ID;
3431   ReferenceType::Profile(ID, T, false);
3432 
3433   void *InsertPos = nullptr;
3434   if (RValueReferenceType *RT =
3435         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3436     return QualType(RT, 0);
3437 
3438   const auto *InnerRef = T->getAs<ReferenceType>();
3439 
3440   // If the referencee type isn't canonical, this won't be a canonical type
3441   // either, so fill in the canonical type field.
3442   QualType Canonical;
3443   if (InnerRef || !T.isCanonical()) {
3444     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3445     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3446 
3447     // Get the new insert position for the node we care about.
3448     RValueReferenceType *NewIP =
3449       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3450     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3451   }
3452 
3453   auto *New = new (*this, alignof(RValueReferenceType))
3454       RValueReferenceType(T, Canonical);
3455   Types.push_back(New);
3456   RValueReferenceTypes.InsertNode(New, InsertPos);
3457   return QualType(New, 0);
3458 }
3459 
3460 /// getMemberPointerType - Return the uniqued reference to the type for a
3461 /// member pointer to the specified type, in the specified class.
3462 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3463   // Unique pointers, to guarantee there is only one pointer of a particular
3464   // structure.
3465   llvm::FoldingSetNodeID ID;
3466   MemberPointerType::Profile(ID, T, Cls);
3467 
3468   void *InsertPos = nullptr;
3469   if (MemberPointerType *PT =
3470       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3471     return QualType(PT, 0);
3472 
3473   // If the pointee or class type isn't canonical, this won't be a canonical
3474   // type either, so fill in the canonical type field.
3475   QualType Canonical;
3476   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3477     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3478 
3479     // Get the new insert position for the node we care about.
3480     MemberPointerType *NewIP =
3481       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3482     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3483   }
3484   auto *New = new (*this, alignof(MemberPointerType))
3485       MemberPointerType(T, Cls, Canonical);
3486   Types.push_back(New);
3487   MemberPointerTypes.InsertNode(New, InsertPos);
3488   return QualType(New, 0);
3489 }
3490 
3491 /// getConstantArrayType - Return the unique reference to the type for an
3492 /// array of the specified element type.
3493 QualType ASTContext::getConstantArrayType(QualType EltTy,
3494                                           const llvm::APInt &ArySizeIn,
3495                                           const Expr *SizeExpr,
3496                                           ArraySizeModifier ASM,
3497                                           unsigned IndexTypeQuals) const {
3498   assert((EltTy->isDependentType() ||
3499           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3500          "Constant array of VLAs is illegal!");
3501 
3502   // We only need the size as part of the type if it's instantiation-dependent.
3503   if (SizeExpr && !SizeExpr->isInstantiationDependent())
3504     SizeExpr = nullptr;
3505 
3506   // Convert the array size into a canonical width matching the pointer size for
3507   // the target.
3508   llvm::APInt ArySize(ArySizeIn);
3509   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3510 
3511   llvm::FoldingSetNodeID ID;
3512   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3513                              IndexTypeQuals);
3514 
3515   void *InsertPos = nullptr;
3516   if (ConstantArrayType *ATP =
3517       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3518     return QualType(ATP, 0);
3519 
3520   // If the element type isn't canonical or has qualifiers, or the array bound
3521   // is instantiation-dependent, this won't be a canonical type either, so fill
3522   // in the canonical type field.
3523   QualType Canon;
3524   // FIXME: Check below should look for qualifiers behind sugar.
3525   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3526     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3527     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3528                                  ASM, IndexTypeQuals);
3529     Canon = getQualifiedType(Canon, canonSplit.Quals);
3530 
3531     // Get the new insert position for the node we care about.
3532     ConstantArrayType *NewIP =
3533       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3534     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3535   }
3536 
3537   void *Mem = Allocate(
3538       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3539       alignof(ConstantArrayType));
3540   auto *New = new (Mem)
3541     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3542   ConstantArrayTypes.InsertNode(New, InsertPos);
3543   Types.push_back(New);
3544   return QualType(New, 0);
3545 }
3546 
3547 /// getVariableArrayDecayedType - Turns the given type, which may be
3548 /// variably-modified, into the corresponding type with all the known
3549 /// sizes replaced with [*].
3550 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3551   // Vastly most common case.
3552   if (!type->isVariablyModifiedType()) return type;
3553 
3554   QualType result;
3555 
3556   SplitQualType split = type.getSplitDesugaredType();
3557   const Type *ty = split.Ty;
3558   switch (ty->getTypeClass()) {
3559 #define TYPE(Class, Base)
3560 #define ABSTRACT_TYPE(Class, Base)
3561 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3562 #include "clang/AST/TypeNodes.inc"
3563     llvm_unreachable("didn't desugar past all non-canonical types?");
3564 
3565   // These types should never be variably-modified.
3566   case Type::Builtin:
3567   case Type::Complex:
3568   case Type::Vector:
3569   case Type::DependentVector:
3570   case Type::ExtVector:
3571   case Type::DependentSizedExtVector:
3572   case Type::ConstantMatrix:
3573   case Type::DependentSizedMatrix:
3574   case Type::DependentAddressSpace:
3575   case Type::ObjCObject:
3576   case Type::ObjCInterface:
3577   case Type::ObjCObjectPointer:
3578   case Type::Record:
3579   case Type::Enum:
3580   case Type::UnresolvedUsing:
3581   case Type::TypeOfExpr:
3582   case Type::TypeOf:
3583   case Type::Decltype:
3584   case Type::UnaryTransform:
3585   case Type::DependentName:
3586   case Type::InjectedClassName:
3587   case Type::TemplateSpecialization:
3588   case Type::DependentTemplateSpecialization:
3589   case Type::TemplateTypeParm:
3590   case Type::SubstTemplateTypeParmPack:
3591   case Type::Auto:
3592   case Type::DeducedTemplateSpecialization:
3593   case Type::PackExpansion:
3594   case Type::BitInt:
3595   case Type::DependentBitInt:
3596     llvm_unreachable("type should never be variably-modified");
3597 
3598   // These types can be variably-modified but should never need to
3599   // further decay.
3600   case Type::FunctionNoProto:
3601   case Type::FunctionProto:
3602   case Type::BlockPointer:
3603   case Type::MemberPointer:
3604   case Type::Pipe:
3605     return type;
3606 
3607   // These types can be variably-modified.  All these modifications
3608   // preserve structure except as noted by comments.
3609   // TODO: if we ever care about optimizing VLAs, there are no-op
3610   // optimizations available here.
3611   case Type::Pointer:
3612     result = getPointerType(getVariableArrayDecayedType(
3613                               cast<PointerType>(ty)->getPointeeType()));
3614     break;
3615 
3616   case Type::LValueReference: {
3617     const auto *lv = cast<LValueReferenceType>(ty);
3618     result = getLValueReferenceType(
3619                  getVariableArrayDecayedType(lv->getPointeeType()),
3620                                     lv->isSpelledAsLValue());
3621     break;
3622   }
3623 
3624   case Type::RValueReference: {
3625     const auto *lv = cast<RValueReferenceType>(ty);
3626     result = getRValueReferenceType(
3627                  getVariableArrayDecayedType(lv->getPointeeType()));
3628     break;
3629   }
3630 
3631   case Type::Atomic: {
3632     const auto *at = cast<AtomicType>(ty);
3633     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3634     break;
3635   }
3636 
3637   case Type::ConstantArray: {
3638     const auto *cat = cast<ConstantArrayType>(ty);
3639     result = getConstantArrayType(
3640                  getVariableArrayDecayedType(cat->getElementType()),
3641                                   cat->getSize(),
3642                                   cat->getSizeExpr(),
3643                                   cat->getSizeModifier(),
3644                                   cat->getIndexTypeCVRQualifiers());
3645     break;
3646   }
3647 
3648   case Type::DependentSizedArray: {
3649     const auto *dat = cast<DependentSizedArrayType>(ty);
3650     result = getDependentSizedArrayType(
3651                  getVariableArrayDecayedType(dat->getElementType()),
3652                                         dat->getSizeExpr(),
3653                                         dat->getSizeModifier(),
3654                                         dat->getIndexTypeCVRQualifiers(),
3655                                         dat->getBracketsRange());
3656     break;
3657   }
3658 
3659   // Turn incomplete types into [*] types.
3660   case Type::IncompleteArray: {
3661     const auto *iat = cast<IncompleteArrayType>(ty);
3662     result =
3663         getVariableArrayType(getVariableArrayDecayedType(iat->getElementType()),
3664                              /*size*/ nullptr, ArraySizeModifier::Normal,
3665                              iat->getIndexTypeCVRQualifiers(), SourceRange());
3666     break;
3667   }
3668 
3669   // Turn VLA types into [*] types.
3670   case Type::VariableArray: {
3671     const auto *vat = cast<VariableArrayType>(ty);
3672     result = getVariableArrayType(
3673         getVariableArrayDecayedType(vat->getElementType()),
3674         /*size*/ nullptr, ArraySizeModifier::Star,
3675         vat->getIndexTypeCVRQualifiers(), vat->getBracketsRange());
3676     break;
3677   }
3678   }
3679 
3680   // Apply the top-level qualifiers from the original.
3681   return getQualifiedType(result, split.Quals);
3682 }
3683 
3684 /// getVariableArrayType - Returns a non-unique reference to the type for a
3685 /// variable array of the specified element type.
3686 QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
3687                                           ArraySizeModifier ASM,
3688                                           unsigned IndexTypeQuals,
3689                                           SourceRange Brackets) const {
3690   // Since we don't unique expressions, it isn't possible to unique VLA's
3691   // that have an expression provided for their size.
3692   QualType Canon;
3693 
3694   // Be sure to pull qualifiers off the element type.
3695   // FIXME: Check below should look for qualifiers behind sugar.
3696   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3697     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3698     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3699                                  IndexTypeQuals, Brackets);
3700     Canon = getQualifiedType(Canon, canonSplit.Quals);
3701   }
3702 
3703   auto *New = new (*this, alignof(VariableArrayType))
3704       VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3705 
3706   VariableArrayTypes.push_back(New);
3707   Types.push_back(New);
3708   return QualType(New, 0);
3709 }
3710 
3711 /// getDependentSizedArrayType - Returns a non-unique reference to
3712 /// the type for a dependently-sized array of the specified element
3713 /// type.
3714 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3715                                                 Expr *numElements,
3716                                                 ArraySizeModifier ASM,
3717                                                 unsigned elementTypeQuals,
3718                                                 SourceRange brackets) const {
3719   assert((!numElements || numElements->isTypeDependent() ||
3720           numElements->isValueDependent()) &&
3721          "Size must be type- or value-dependent!");
3722 
3723   // Dependently-sized array types that do not have a specified number
3724   // of elements will have their sizes deduced from a dependent
3725   // initializer.  We do no canonicalization here at all, which is okay
3726   // because they can't be used in most locations.
3727   if (!numElements) {
3728     auto *newType = new (*this, alignof(DependentSizedArrayType))
3729         DependentSizedArrayType(elementType, QualType(), numElements, ASM,
3730                                 elementTypeQuals, brackets);
3731     Types.push_back(newType);
3732     return QualType(newType, 0);
3733   }
3734 
3735   // Otherwise, we actually build a new type every time, but we
3736   // also build a canonical type.
3737 
3738   SplitQualType canonElementType = getCanonicalType(elementType).split();
3739 
3740   void *insertPos = nullptr;
3741   llvm::FoldingSetNodeID ID;
3742   DependentSizedArrayType::Profile(ID, *this,
3743                                    QualType(canonElementType.Ty, 0),
3744                                    ASM, elementTypeQuals, numElements);
3745 
3746   // Look for an existing type with these properties.
3747   DependentSizedArrayType *canonTy =
3748     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3749 
3750   // If we don't have one, build one.
3751   if (!canonTy) {
3752     canonTy = new (*this, alignof(DependentSizedArrayType))
3753         DependentSizedArrayType(QualType(canonElementType.Ty, 0), QualType(),
3754                                 numElements, ASM, elementTypeQuals, brackets);
3755     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3756     Types.push_back(canonTy);
3757   }
3758 
3759   // Apply qualifiers from the element type to the array.
3760   QualType canon = getQualifiedType(QualType(canonTy,0),
3761                                     canonElementType.Quals);
3762 
3763   // If we didn't need extra canonicalization for the element type or the size
3764   // expression, then just use that as our result.
3765   if (QualType(canonElementType.Ty, 0) == elementType &&
3766       canonTy->getSizeExpr() == numElements)
3767     return canon;
3768 
3769   // Otherwise, we need to build a type which follows the spelling
3770   // of the element type.
3771   auto *sugaredType = new (*this, alignof(DependentSizedArrayType))
3772       DependentSizedArrayType(elementType, canon, numElements, ASM,
3773                               elementTypeQuals, brackets);
3774   Types.push_back(sugaredType);
3775   return QualType(sugaredType, 0);
3776 }
3777 
3778 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3779                                             ArraySizeModifier ASM,
3780                                             unsigned elementTypeQuals) const {
3781   llvm::FoldingSetNodeID ID;
3782   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3783 
3784   void *insertPos = nullptr;
3785   if (IncompleteArrayType *iat =
3786        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3787     return QualType(iat, 0);
3788 
3789   // If the element type isn't canonical, this won't be a canonical type
3790   // either, so fill in the canonical type field.  We also have to pull
3791   // qualifiers off the element type.
3792   QualType canon;
3793 
3794   // FIXME: Check below should look for qualifiers behind sugar.
3795   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3796     SplitQualType canonSplit = getCanonicalType(elementType).split();
3797     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3798                                    ASM, elementTypeQuals);
3799     canon = getQualifiedType(canon, canonSplit.Quals);
3800 
3801     // Get the new insert position for the node we care about.
3802     IncompleteArrayType *existing =
3803       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3804     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3805   }
3806 
3807   auto *newType = new (*this, alignof(IncompleteArrayType))
3808       IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3809 
3810   IncompleteArrayTypes.InsertNode(newType, insertPos);
3811   Types.push_back(newType);
3812   return QualType(newType, 0);
3813 }
3814 
3815 ASTContext::BuiltinVectorTypeInfo
3816 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3817 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
3818   {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3819    NUMVECTORS};
3820 
3821 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
3822   {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3823 
3824   switch (Ty->getKind()) {
3825   default:
3826     llvm_unreachable("Unsupported builtin vector type");
3827   case BuiltinType::SveInt8:
3828     return SVE_INT_ELTTY(8, 16, true, 1);
3829   case BuiltinType::SveUint8:
3830     return SVE_INT_ELTTY(8, 16, false, 1);
3831   case BuiltinType::SveInt8x2:
3832     return SVE_INT_ELTTY(8, 16, true, 2);
3833   case BuiltinType::SveUint8x2:
3834     return SVE_INT_ELTTY(8, 16, false, 2);
3835   case BuiltinType::SveInt8x3:
3836     return SVE_INT_ELTTY(8, 16, true, 3);
3837   case BuiltinType::SveUint8x3:
3838     return SVE_INT_ELTTY(8, 16, false, 3);
3839   case BuiltinType::SveInt8x4:
3840     return SVE_INT_ELTTY(8, 16, true, 4);
3841   case BuiltinType::SveUint8x4:
3842     return SVE_INT_ELTTY(8, 16, false, 4);
3843   case BuiltinType::SveInt16:
3844     return SVE_INT_ELTTY(16, 8, true, 1);
3845   case BuiltinType::SveUint16:
3846     return SVE_INT_ELTTY(16, 8, false, 1);
3847   case BuiltinType::SveInt16x2:
3848     return SVE_INT_ELTTY(16, 8, true, 2);
3849   case BuiltinType::SveUint16x2:
3850     return SVE_INT_ELTTY(16, 8, false, 2);
3851   case BuiltinType::SveInt16x3:
3852     return SVE_INT_ELTTY(16, 8, true, 3);
3853   case BuiltinType::SveUint16x3:
3854     return SVE_INT_ELTTY(16, 8, false, 3);
3855   case BuiltinType::SveInt16x4:
3856     return SVE_INT_ELTTY(16, 8, true, 4);
3857   case BuiltinType::SveUint16x4:
3858     return SVE_INT_ELTTY(16, 8, false, 4);
3859   case BuiltinType::SveInt32:
3860     return SVE_INT_ELTTY(32, 4, true, 1);
3861   case BuiltinType::SveUint32:
3862     return SVE_INT_ELTTY(32, 4, false, 1);
3863   case BuiltinType::SveInt32x2:
3864     return SVE_INT_ELTTY(32, 4, true, 2);
3865   case BuiltinType::SveUint32x2:
3866     return SVE_INT_ELTTY(32, 4, false, 2);
3867   case BuiltinType::SveInt32x3:
3868     return SVE_INT_ELTTY(32, 4, true, 3);
3869   case BuiltinType::SveUint32x3:
3870     return SVE_INT_ELTTY(32, 4, false, 3);
3871   case BuiltinType::SveInt32x4:
3872     return SVE_INT_ELTTY(32, 4, true, 4);
3873   case BuiltinType::SveUint32x4:
3874     return SVE_INT_ELTTY(32, 4, false, 4);
3875   case BuiltinType::SveInt64:
3876     return SVE_INT_ELTTY(64, 2, true, 1);
3877   case BuiltinType::SveUint64:
3878     return SVE_INT_ELTTY(64, 2, false, 1);
3879   case BuiltinType::SveInt64x2:
3880     return SVE_INT_ELTTY(64, 2, true, 2);
3881   case BuiltinType::SveUint64x2:
3882     return SVE_INT_ELTTY(64, 2, false, 2);
3883   case BuiltinType::SveInt64x3:
3884     return SVE_INT_ELTTY(64, 2, true, 3);
3885   case BuiltinType::SveUint64x3:
3886     return SVE_INT_ELTTY(64, 2, false, 3);
3887   case BuiltinType::SveInt64x4:
3888     return SVE_INT_ELTTY(64, 2, true, 4);
3889   case BuiltinType::SveUint64x4:
3890     return SVE_INT_ELTTY(64, 2, false, 4);
3891   case BuiltinType::SveBool:
3892     return SVE_ELTTY(BoolTy, 16, 1);
3893   case BuiltinType::SveBoolx2:
3894     return SVE_ELTTY(BoolTy, 16, 2);
3895   case BuiltinType::SveBoolx4:
3896     return SVE_ELTTY(BoolTy, 16, 4);
3897   case BuiltinType::SveFloat16:
3898     return SVE_ELTTY(HalfTy, 8, 1);
3899   case BuiltinType::SveFloat16x2:
3900     return SVE_ELTTY(HalfTy, 8, 2);
3901   case BuiltinType::SveFloat16x3:
3902     return SVE_ELTTY(HalfTy, 8, 3);
3903   case BuiltinType::SveFloat16x4:
3904     return SVE_ELTTY(HalfTy, 8, 4);
3905   case BuiltinType::SveFloat32:
3906     return SVE_ELTTY(FloatTy, 4, 1);
3907   case BuiltinType::SveFloat32x2:
3908     return SVE_ELTTY(FloatTy, 4, 2);
3909   case BuiltinType::SveFloat32x3:
3910     return SVE_ELTTY(FloatTy, 4, 3);
3911   case BuiltinType::SveFloat32x4:
3912     return SVE_ELTTY(FloatTy, 4, 4);
3913   case BuiltinType::SveFloat64:
3914     return SVE_ELTTY(DoubleTy, 2, 1);
3915   case BuiltinType::SveFloat64x2:
3916     return SVE_ELTTY(DoubleTy, 2, 2);
3917   case BuiltinType::SveFloat64x3:
3918     return SVE_ELTTY(DoubleTy, 2, 3);
3919   case BuiltinType::SveFloat64x4:
3920     return SVE_ELTTY(DoubleTy, 2, 4);
3921   case BuiltinType::SveBFloat16:
3922     return SVE_ELTTY(BFloat16Ty, 8, 1);
3923   case BuiltinType::SveBFloat16x2:
3924     return SVE_ELTTY(BFloat16Ty, 8, 2);
3925   case BuiltinType::SveBFloat16x3:
3926     return SVE_ELTTY(BFloat16Ty, 8, 3);
3927   case BuiltinType::SveBFloat16x4:
3928     return SVE_ELTTY(BFloat16Ty, 8, 4);
3929 #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \
3930                             IsSigned)                                          \
3931   case BuiltinType::Id:                                                        \
3932     return {getIntTypeForBitwidth(ElBits, IsSigned),                           \
3933             llvm::ElementCount::getScalable(NumEls), NF};
3934 #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \
3935   case BuiltinType::Id:                                                        \
3936     return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy),    \
3937             llvm::ElementCount::getScalable(NumEls), NF};
3938 #define RVV_VECTOR_TYPE_BFLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)      \
3939   case BuiltinType::Id:                                                        \
3940     return {BFloat16Ty, llvm::ElementCount::getScalable(NumEls), NF};
3941 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3942   case BuiltinType::Id:                                                        \
3943     return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1};
3944 #include "clang/Basic/RISCVVTypes.def"
3945   }
3946 }
3947 
3948 /// getExternrefType - Return a WebAssembly externref type, which represents an
3949 /// opaque reference to a host value.
3950 QualType ASTContext::getWebAssemblyExternrefType() const {
3951   if (Target->getTriple().isWasm() && Target->hasFeature("reference-types")) {
3952 #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS)                  \
3953   if (BuiltinType::Id == BuiltinType::WasmExternRef)                           \
3954     return SingletonId;
3955 #include "clang/Basic/WebAssemblyReferenceTypes.def"
3956   }
3957   llvm_unreachable(
3958       "shouldn't try to generate type externref outside WebAssembly target");
3959 }
3960 
3961 /// getScalableVectorType - Return the unique reference to a scalable vector
3962 /// type of the specified element type and size. VectorType must be a built-in
3963 /// type.
3964 QualType ASTContext::getScalableVectorType(QualType EltTy, unsigned NumElts,
3965                                            unsigned NumFields) const {
3966   if (Target->hasAArch64SVETypes()) {
3967     uint64_t EltTySize = getTypeSize(EltTy);
3968 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
3969                         IsSigned, IsFP, IsBF)                                  \
3970   if (!EltTy->isBooleanType() &&                                               \
3971       ((EltTy->hasIntegerRepresentation() &&                                   \
3972         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
3973        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
3974         IsFP && !IsBF) ||                                                      \
3975        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
3976         IsBF && !IsFP)) &&                                                     \
3977       EltTySize == ElBits && NumElts == NumEls) {                              \
3978     return SingletonId;                                                        \
3979   }
3980 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
3981   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
3982     return SingletonId;
3983 #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingleTonId)
3984 #include "clang/Basic/AArch64SVEACLETypes.def"
3985   } else if (Target->hasRISCVVTypes()) {
3986     uint64_t EltTySize = getTypeSize(EltTy);
3987 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \
3988                         IsFP, IsBF)                                            \
3989   if (!EltTy->isBooleanType() &&                                               \
3990       ((EltTy->hasIntegerRepresentation() &&                                   \
3991         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
3992        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
3993         IsFP && !IsBF) ||                                                      \
3994        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
3995         IsBF && !IsFP)) &&                                                     \
3996       EltTySize == ElBits && NumElts == NumEls && NumFields == NF)             \
3997     return SingletonId;
3998 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3999   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
4000     return SingletonId;
4001 #include "clang/Basic/RISCVVTypes.def"
4002   }
4003   return QualType();
4004 }
4005 
4006 /// getVectorType - Return the unique reference to a vector type of
4007 /// the specified element type and size. VectorType must be a built-in type.
4008 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
4009                                    VectorKind VecKind) const {
4010   assert(vecType->isBuiltinType() ||
4011          (vecType->isBitIntType() &&
4012           // Only support _BitInt elements with byte-sized power of 2 NumBits.
4013           llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()) &&
4014           vecType->castAs<BitIntType>()->getNumBits() >= 8));
4015 
4016   // Check if we've already instantiated a vector of this type.
4017   llvm::FoldingSetNodeID ID;
4018   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
4019 
4020   void *InsertPos = nullptr;
4021   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4022     return QualType(VTP, 0);
4023 
4024   // If the element type isn't canonical, this won't be a canonical type either,
4025   // so fill in the canonical type field.
4026   QualType Canonical;
4027   if (!vecType.isCanonical()) {
4028     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
4029 
4030     // Get the new insert position for the node we care about.
4031     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4032     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4033   }
4034   auto *New = new (*this, alignof(VectorType))
4035       VectorType(vecType, NumElts, Canonical, VecKind);
4036   VectorTypes.InsertNode(New, InsertPos);
4037   Types.push_back(New);
4038   return QualType(New, 0);
4039 }
4040 
4041 QualType ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
4042                                             SourceLocation AttrLoc,
4043                                             VectorKind VecKind) const {
4044   llvm::FoldingSetNodeID ID;
4045   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
4046                                VecKind);
4047   void *InsertPos = nullptr;
4048   DependentVectorType *Canon =
4049       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4050   DependentVectorType *New;
4051 
4052   if (Canon) {
4053     New = new (*this, alignof(DependentVectorType)) DependentVectorType(
4054         VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
4055   } else {
4056     QualType CanonVecTy = getCanonicalType(VecType);
4057     if (CanonVecTy == VecType) {
4058       New = new (*this, alignof(DependentVectorType))
4059           DependentVectorType(VecType, QualType(), SizeExpr, AttrLoc, VecKind);
4060 
4061       DependentVectorType *CanonCheck =
4062           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4063       assert(!CanonCheck &&
4064              "Dependent-sized vector_size canonical type broken");
4065       (void)CanonCheck;
4066       DependentVectorTypes.InsertNode(New, InsertPos);
4067     } else {
4068       QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
4069                                                 SourceLocation(), VecKind);
4070       New = new (*this, alignof(DependentVectorType))
4071           DependentVectorType(VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
4072     }
4073   }
4074 
4075   Types.push_back(New);
4076   return QualType(New, 0);
4077 }
4078 
4079 /// getExtVectorType - Return the unique reference to an extended vector type of
4080 /// the specified element type and size. VectorType must be a built-in type.
4081 QualType ASTContext::getExtVectorType(QualType vecType,
4082                                       unsigned NumElts) const {
4083   assert(vecType->isBuiltinType() || vecType->isDependentType() ||
4084          (vecType->isBitIntType() &&
4085           // Only support _BitInt elements with byte-sized power of 2 NumBits.
4086           llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()) &&
4087           vecType->castAs<BitIntType>()->getNumBits() >= 8));
4088 
4089   // Check if we've already instantiated a vector of this type.
4090   llvm::FoldingSetNodeID ID;
4091   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
4092                       VectorKind::Generic);
4093   void *InsertPos = nullptr;
4094   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4095     return QualType(VTP, 0);
4096 
4097   // If the element type isn't canonical, this won't be a canonical type either,
4098   // so fill in the canonical type field.
4099   QualType Canonical;
4100   if (!vecType.isCanonical()) {
4101     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
4102 
4103     // Get the new insert position for the node we care about.
4104     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4105     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4106   }
4107   auto *New = new (*this, alignof(ExtVectorType))
4108       ExtVectorType(vecType, NumElts, Canonical);
4109   VectorTypes.InsertNode(New, InsertPos);
4110   Types.push_back(New);
4111   return QualType(New, 0);
4112 }
4113 
4114 QualType
4115 ASTContext::getDependentSizedExtVectorType(QualType vecType,
4116                                            Expr *SizeExpr,
4117                                            SourceLocation AttrLoc) const {
4118   llvm::FoldingSetNodeID ID;
4119   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
4120                                        SizeExpr);
4121 
4122   void *InsertPos = nullptr;
4123   DependentSizedExtVectorType *Canon
4124     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4125   DependentSizedExtVectorType *New;
4126   if (Canon) {
4127     // We already have a canonical version of this array type; use it as
4128     // the canonical type for a newly-built type.
4129     New = new (*this, alignof(DependentSizedExtVectorType))
4130         DependentSizedExtVectorType(vecType, QualType(Canon, 0), SizeExpr,
4131                                     AttrLoc);
4132   } else {
4133     QualType CanonVecTy = getCanonicalType(vecType);
4134     if (CanonVecTy == vecType) {
4135       New = new (*this, alignof(DependentSizedExtVectorType))
4136           DependentSizedExtVectorType(vecType, QualType(), SizeExpr, AttrLoc);
4137 
4138       DependentSizedExtVectorType *CanonCheck
4139         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4140       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
4141       (void)CanonCheck;
4142       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
4143     } else {
4144       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
4145                                                            SourceLocation());
4146       New = new (*this, alignof(DependentSizedExtVectorType))
4147           DependentSizedExtVectorType(vecType, CanonExtTy, SizeExpr, AttrLoc);
4148     }
4149   }
4150 
4151   Types.push_back(New);
4152   return QualType(New, 0);
4153 }
4154 
4155 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
4156                                            unsigned NumColumns) const {
4157   llvm::FoldingSetNodeID ID;
4158   ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
4159                               Type::ConstantMatrix);
4160 
4161   assert(MatrixType::isValidElementType(ElementTy) &&
4162          "need a valid element type");
4163   assert(ConstantMatrixType::isDimensionValid(NumRows) &&
4164          ConstantMatrixType::isDimensionValid(NumColumns) &&
4165          "need valid matrix dimensions");
4166   void *InsertPos = nullptr;
4167   if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
4168     return QualType(MTP, 0);
4169 
4170   QualType Canonical;
4171   if (!ElementTy.isCanonical()) {
4172     Canonical =
4173         getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
4174 
4175     ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4176     assert(!NewIP && "Matrix type shouldn't already exist in the map");
4177     (void)NewIP;
4178   }
4179 
4180   auto *New = new (*this, alignof(ConstantMatrixType))
4181       ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4182   MatrixTypes.InsertNode(New, InsertPos);
4183   Types.push_back(New);
4184   return QualType(New, 0);
4185 }
4186 
4187 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4188                                                  Expr *RowExpr,
4189                                                  Expr *ColumnExpr,
4190                                                  SourceLocation AttrLoc) const {
4191   QualType CanonElementTy = getCanonicalType(ElementTy);
4192   llvm::FoldingSetNodeID ID;
4193   DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4194                                     ColumnExpr);
4195 
4196   void *InsertPos = nullptr;
4197   DependentSizedMatrixType *Canon =
4198       DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4199 
4200   if (!Canon) {
4201     Canon = new (*this, alignof(DependentSizedMatrixType))
4202         DependentSizedMatrixType(CanonElementTy, QualType(), RowExpr,
4203                                  ColumnExpr, AttrLoc);
4204 #ifndef NDEBUG
4205     DependentSizedMatrixType *CanonCheck =
4206         DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4207     assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
4208 #endif
4209     DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4210     Types.push_back(Canon);
4211   }
4212 
4213   // Already have a canonical version of the matrix type
4214   //
4215   // If it exactly matches the requested type, use it directly.
4216   if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4217       Canon->getRowExpr() == ColumnExpr)
4218     return QualType(Canon, 0);
4219 
4220   // Use Canon as the canonical type for newly-built type.
4221   DependentSizedMatrixType *New = new (*this, alignof(DependentSizedMatrixType))
4222       DependentSizedMatrixType(ElementTy, QualType(Canon, 0), RowExpr,
4223                                ColumnExpr, AttrLoc);
4224   Types.push_back(New);
4225   return QualType(New, 0);
4226 }
4227 
4228 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4229                                                   Expr *AddrSpaceExpr,
4230                                                   SourceLocation AttrLoc) const {
4231   assert(AddrSpaceExpr->isInstantiationDependent());
4232 
4233   QualType canonPointeeType = getCanonicalType(PointeeType);
4234 
4235   void *insertPos = nullptr;
4236   llvm::FoldingSetNodeID ID;
4237   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4238                                      AddrSpaceExpr);
4239 
4240   DependentAddressSpaceType *canonTy =
4241     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4242 
4243   if (!canonTy) {
4244     canonTy = new (*this, alignof(DependentAddressSpaceType))
4245         DependentAddressSpaceType(canonPointeeType, QualType(), AddrSpaceExpr,
4246                                   AttrLoc);
4247     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4248     Types.push_back(canonTy);
4249   }
4250 
4251   if (canonPointeeType == PointeeType &&
4252       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4253     return QualType(canonTy, 0);
4254 
4255   auto *sugaredType = new (*this, alignof(DependentAddressSpaceType))
4256       DependentAddressSpaceType(PointeeType, QualType(canonTy, 0),
4257                                 AddrSpaceExpr, AttrLoc);
4258   Types.push_back(sugaredType);
4259   return QualType(sugaredType, 0);
4260 }
4261 
4262 /// Determine whether \p T is canonical as the result type of a function.
4263 static bool isCanonicalResultType(QualType T) {
4264   return T.isCanonical() &&
4265          (T.getObjCLifetime() == Qualifiers::OCL_None ||
4266           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4267 }
4268 
4269 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4270 QualType
4271 ASTContext::getFunctionNoProtoType(QualType ResultTy,
4272                                    const FunctionType::ExtInfo &Info) const {
4273   // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter
4274   // functionality creates a function without a prototype regardless of
4275   // language mode (so it makes them even in C++). Once the rewriter has been
4276   // fixed, this assertion can be enabled again.
4277   //assert(!LangOpts.requiresStrictPrototypes() &&
4278   //       "strict prototypes are disabled");
4279 
4280   // Unique functions, to guarantee there is only one function of a particular
4281   // structure.
4282   llvm::FoldingSetNodeID ID;
4283   FunctionNoProtoType::Profile(ID, ResultTy, Info);
4284 
4285   void *InsertPos = nullptr;
4286   if (FunctionNoProtoType *FT =
4287         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4288     return QualType(FT, 0);
4289 
4290   QualType Canonical;
4291   if (!isCanonicalResultType(ResultTy)) {
4292     Canonical =
4293       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4294 
4295     // Get the new insert position for the node we care about.
4296     FunctionNoProtoType *NewIP =
4297       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4298     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4299   }
4300 
4301   auto *New = new (*this, alignof(FunctionNoProtoType))
4302       FunctionNoProtoType(ResultTy, Canonical, Info);
4303   Types.push_back(New);
4304   FunctionNoProtoTypes.InsertNode(New, InsertPos);
4305   return QualType(New, 0);
4306 }
4307 
4308 CanQualType
4309 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4310   CanQualType CanResultType = getCanonicalType(ResultType);
4311 
4312   // Canonical result types do not have ARC lifetime qualifiers.
4313   if (CanResultType.getQualifiers().hasObjCLifetime()) {
4314     Qualifiers Qs = CanResultType.getQualifiers();
4315     Qs.removeObjCLifetime();
4316     return CanQualType::CreateUnsafe(
4317              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4318   }
4319 
4320   return CanResultType;
4321 }
4322 
4323 static bool isCanonicalExceptionSpecification(
4324     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4325   if (ESI.Type == EST_None)
4326     return true;
4327   if (!NoexceptInType)
4328     return false;
4329 
4330   // C++17 onwards: exception specification is part of the type, as a simple
4331   // boolean "can this function type throw".
4332   if (ESI.Type == EST_BasicNoexcept)
4333     return true;
4334 
4335   // A noexcept(expr) specification is (possibly) canonical if expr is
4336   // value-dependent.
4337   if (ESI.Type == EST_DependentNoexcept)
4338     return true;
4339 
4340   // A dynamic exception specification is canonical if it only contains pack
4341   // expansions (so we can't tell whether it's non-throwing) and all its
4342   // contained types are canonical.
4343   if (ESI.Type == EST_Dynamic) {
4344     bool AnyPackExpansions = false;
4345     for (QualType ET : ESI.Exceptions) {
4346       if (!ET.isCanonical())
4347         return false;
4348       if (ET->getAs<PackExpansionType>())
4349         AnyPackExpansions = true;
4350     }
4351     return AnyPackExpansions;
4352   }
4353 
4354   return false;
4355 }
4356 
4357 QualType ASTContext::getFunctionTypeInternal(
4358     QualType ResultTy, ArrayRef<QualType> ArgArray,
4359     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4360   size_t NumArgs = ArgArray.size();
4361 
4362   // Unique functions, to guarantee there is only one function of a particular
4363   // structure.
4364   llvm::FoldingSetNodeID ID;
4365   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4366                              *this, true);
4367 
4368   QualType Canonical;
4369   bool Unique = false;
4370 
4371   void *InsertPos = nullptr;
4372   if (FunctionProtoType *FPT =
4373         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4374     QualType Existing = QualType(FPT, 0);
4375 
4376     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4377     // it so long as our exception specification doesn't contain a dependent
4378     // noexcept expression, or we're just looking for a canonical type.
4379     // Otherwise, we're going to need to create a type
4380     // sugar node to hold the concrete expression.
4381     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4382         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4383       return Existing;
4384 
4385     // We need a new type sugar node for this one, to hold the new noexcept
4386     // expression. We do no canonicalization here, but that's OK since we don't
4387     // expect to see the same noexcept expression much more than once.
4388     Canonical = getCanonicalType(Existing);
4389     Unique = true;
4390   }
4391 
4392   bool NoexceptInType = getLangOpts().CPlusPlus17;
4393   bool IsCanonicalExceptionSpec =
4394       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4395 
4396   // Determine whether the type being created is already canonical or not.
4397   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4398                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4399   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4400     if (!ArgArray[i].isCanonicalAsParam())
4401       isCanonical = false;
4402 
4403   if (OnlyWantCanonical)
4404     assert(isCanonical &&
4405            "given non-canonical parameters constructing canonical type");
4406 
4407   // If this type isn't canonical, get the canonical version of it if we don't
4408   // already have it. The exception spec is only partially part of the
4409   // canonical type, and only in C++17 onwards.
4410   if (!isCanonical && Canonical.isNull()) {
4411     SmallVector<QualType, 16> CanonicalArgs;
4412     CanonicalArgs.reserve(NumArgs);
4413     for (unsigned i = 0; i != NumArgs; ++i)
4414       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4415 
4416     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4417     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4418     CanonicalEPI.HasTrailingReturn = false;
4419 
4420     if (IsCanonicalExceptionSpec) {
4421       // Exception spec is already OK.
4422     } else if (NoexceptInType) {
4423       switch (EPI.ExceptionSpec.Type) {
4424       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4425         // We don't know yet. It shouldn't matter what we pick here; no-one
4426         // should ever look at this.
4427         [[fallthrough]];
4428       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4429         CanonicalEPI.ExceptionSpec.Type = EST_None;
4430         break;
4431 
4432         // A dynamic exception specification is almost always "not noexcept",
4433         // with the exception that a pack expansion might expand to no types.
4434       case EST_Dynamic: {
4435         bool AnyPacks = false;
4436         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4437           if (ET->getAs<PackExpansionType>())
4438             AnyPacks = true;
4439           ExceptionTypeStorage.push_back(getCanonicalType(ET));
4440         }
4441         if (!AnyPacks)
4442           CanonicalEPI.ExceptionSpec.Type = EST_None;
4443         else {
4444           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4445           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4446         }
4447         break;
4448       }
4449 
4450       case EST_DynamicNone:
4451       case EST_BasicNoexcept:
4452       case EST_NoexceptTrue:
4453       case EST_NoThrow:
4454         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4455         break;
4456 
4457       case EST_DependentNoexcept:
4458         llvm_unreachable("dependent noexcept is already canonical");
4459       }
4460     } else {
4461       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4462     }
4463 
4464     // Adjust the canonical function result type.
4465     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4466     Canonical =
4467         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4468 
4469     // Get the new insert position for the node we care about.
4470     FunctionProtoType *NewIP =
4471       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4472     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4473   }
4474 
4475   // Compute the needed size to hold this FunctionProtoType and the
4476   // various trailing objects.
4477   auto ESH = FunctionProtoType::getExceptionSpecSize(
4478       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4479   size_t Size = FunctionProtoType::totalSizeToAlloc<
4480       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4481       FunctionType::ExceptionType, Expr *, FunctionDecl *,
4482       FunctionProtoType::ExtParameterInfo, Qualifiers>(
4483       NumArgs, EPI.Variadic, EPI.requiresFunctionProtoTypeExtraBitfields(),
4484       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4485       EPI.ExtParameterInfos ? NumArgs : 0,
4486       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4487 
4488   auto *FTP = (FunctionProtoType *)Allocate(Size, alignof(FunctionProtoType));
4489   FunctionProtoType::ExtProtoInfo newEPI = EPI;
4490   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4491   Types.push_back(FTP);
4492   if (!Unique)
4493     FunctionProtoTypes.InsertNode(FTP, InsertPos);
4494   return QualType(FTP, 0);
4495 }
4496 
4497 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4498   llvm::FoldingSetNodeID ID;
4499   PipeType::Profile(ID, T, ReadOnly);
4500 
4501   void *InsertPos = nullptr;
4502   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4503     return QualType(PT, 0);
4504 
4505   // If the pipe element type isn't canonical, this won't be a canonical type
4506   // either, so fill in the canonical type field.
4507   QualType Canonical;
4508   if (!T.isCanonical()) {
4509     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4510 
4511     // Get the new insert position for the node we care about.
4512     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4513     assert(!NewIP && "Shouldn't be in the map!");
4514     (void)NewIP;
4515   }
4516   auto *New = new (*this, alignof(PipeType)) PipeType(T, Canonical, ReadOnly);
4517   Types.push_back(New);
4518   PipeTypes.InsertNode(New, InsertPos);
4519   return QualType(New, 0);
4520 }
4521 
4522 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4523   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4524   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4525                          : Ty;
4526 }
4527 
4528 QualType ASTContext::getReadPipeType(QualType T) const {
4529   return getPipeType(T, true);
4530 }
4531 
4532 QualType ASTContext::getWritePipeType(QualType T) const {
4533   return getPipeType(T, false);
4534 }
4535 
4536 QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const {
4537   llvm::FoldingSetNodeID ID;
4538   BitIntType::Profile(ID, IsUnsigned, NumBits);
4539 
4540   void *InsertPos = nullptr;
4541   if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4542     return QualType(EIT, 0);
4543 
4544   auto *New = new (*this, alignof(BitIntType)) BitIntType(IsUnsigned, NumBits);
4545   BitIntTypes.InsertNode(New, InsertPos);
4546   Types.push_back(New);
4547   return QualType(New, 0);
4548 }
4549 
4550 QualType ASTContext::getDependentBitIntType(bool IsUnsigned,
4551                                             Expr *NumBitsExpr) const {
4552   assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4553   llvm::FoldingSetNodeID ID;
4554   DependentBitIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4555 
4556   void *InsertPos = nullptr;
4557   if (DependentBitIntType *Existing =
4558           DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4559     return QualType(Existing, 0);
4560 
4561   auto *New = new (*this, alignof(DependentBitIntType))
4562       DependentBitIntType(IsUnsigned, NumBitsExpr);
4563   DependentBitIntTypes.InsertNode(New, InsertPos);
4564 
4565   Types.push_back(New);
4566   return QualType(New, 0);
4567 }
4568 
4569 #ifndef NDEBUG
4570 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4571   if (!isa<CXXRecordDecl>(D)) return false;
4572   const auto *RD = cast<CXXRecordDecl>(D);
4573   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4574     return true;
4575   if (RD->getDescribedClassTemplate() &&
4576       !isa<ClassTemplateSpecializationDecl>(RD))
4577     return true;
4578   return false;
4579 }
4580 #endif
4581 
4582 /// getInjectedClassNameType - Return the unique reference to the
4583 /// injected class name type for the specified templated declaration.
4584 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4585                                               QualType TST) const {
4586   assert(NeedsInjectedClassNameType(Decl));
4587   if (Decl->TypeForDecl) {
4588     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4589   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4590     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4591     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4592     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4593   } else {
4594     Type *newType = new (*this, alignof(InjectedClassNameType))
4595         InjectedClassNameType(Decl, TST);
4596     Decl->TypeForDecl = newType;
4597     Types.push_back(newType);
4598   }
4599   return QualType(Decl->TypeForDecl, 0);
4600 }
4601 
4602 /// getTypeDeclType - Return the unique reference to the type for the
4603 /// specified type declaration.
4604 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4605   assert(Decl && "Passed null for Decl param");
4606   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4607 
4608   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4609     return getTypedefType(Typedef);
4610 
4611   assert(!isa<TemplateTypeParmDecl>(Decl) &&
4612          "Template type parameter types are always available.");
4613 
4614   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4615     assert(Record->isFirstDecl() && "struct/union has previous declaration");
4616     assert(!NeedsInjectedClassNameType(Record));
4617     return getRecordType(Record);
4618   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4619     assert(Enum->isFirstDecl() && "enum has previous declaration");
4620     return getEnumType(Enum);
4621   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4622     return getUnresolvedUsingType(Using);
4623   } else
4624     llvm_unreachable("TypeDecl without a type?");
4625 
4626   return QualType(Decl->TypeForDecl, 0);
4627 }
4628 
4629 /// getTypedefType - Return the unique reference to the type for the
4630 /// specified typedef name decl.
4631 QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4632                                     QualType Underlying) const {
4633   if (!Decl->TypeForDecl) {
4634     if (Underlying.isNull())
4635       Underlying = Decl->getUnderlyingType();
4636     auto *NewType = new (*this, alignof(TypedefType)) TypedefType(
4637         Type::Typedef, Decl, QualType(), getCanonicalType(Underlying));
4638     Decl->TypeForDecl = NewType;
4639     Types.push_back(NewType);
4640     return QualType(NewType, 0);
4641   }
4642   if (Underlying.isNull() || Decl->getUnderlyingType() == Underlying)
4643     return QualType(Decl->TypeForDecl, 0);
4644   assert(hasSameType(Decl->getUnderlyingType(), Underlying));
4645 
4646   llvm::FoldingSetNodeID ID;
4647   TypedefType::Profile(ID, Decl, Underlying);
4648 
4649   void *InsertPos = nullptr;
4650   if (TypedefType *T = TypedefTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4651     assert(!T->typeMatchesDecl() &&
4652            "non-divergent case should be handled with TypeDecl");
4653     return QualType(T, 0);
4654   }
4655 
4656   void *Mem = Allocate(TypedefType::totalSizeToAlloc<QualType>(true),
4657                        alignof(TypedefType));
4658   auto *NewType = new (Mem) TypedefType(Type::Typedef, Decl, Underlying,
4659                                         getCanonicalType(Underlying));
4660   TypedefTypes.InsertNode(NewType, InsertPos);
4661   Types.push_back(NewType);
4662   return QualType(NewType, 0);
4663 }
4664 
4665 QualType ASTContext::getUsingType(const UsingShadowDecl *Found,
4666                                   QualType Underlying) const {
4667   llvm::FoldingSetNodeID ID;
4668   UsingType::Profile(ID, Found, Underlying);
4669 
4670   void *InsertPos = nullptr;
4671   if (UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos))
4672     return QualType(T, 0);
4673 
4674   const Type *TypeForDecl =
4675       cast<TypeDecl>(Found->getTargetDecl())->getTypeForDecl();
4676 
4677   assert(!Underlying.hasLocalQualifiers());
4678   QualType Canon = Underlying->getCanonicalTypeInternal();
4679   assert(TypeForDecl->getCanonicalTypeInternal() == Canon);
4680 
4681   if (Underlying.getTypePtr() == TypeForDecl)
4682     Underlying = QualType();
4683   void *Mem =
4684       Allocate(UsingType::totalSizeToAlloc<QualType>(!Underlying.isNull()),
4685                alignof(UsingType));
4686   UsingType *NewType = new (Mem) UsingType(Found, Underlying, Canon);
4687   Types.push_back(NewType);
4688   UsingTypes.InsertNode(NewType, InsertPos);
4689   return QualType(NewType, 0);
4690 }
4691 
4692 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4693   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4694 
4695   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4696     if (PrevDecl->TypeForDecl)
4697       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4698 
4699   auto *newType = new (*this, alignof(RecordType)) RecordType(Decl);
4700   Decl->TypeForDecl = newType;
4701   Types.push_back(newType);
4702   return QualType(newType, 0);
4703 }
4704 
4705 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4706   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4707 
4708   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4709     if (PrevDecl->TypeForDecl)
4710       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4711 
4712   auto *newType = new (*this, alignof(EnumType)) EnumType(Decl);
4713   Decl->TypeForDecl = newType;
4714   Types.push_back(newType);
4715   return QualType(newType, 0);
4716 }
4717 
4718 QualType ASTContext::getUnresolvedUsingType(
4719     const UnresolvedUsingTypenameDecl *Decl) const {
4720   if (Decl->TypeForDecl)
4721     return QualType(Decl->TypeForDecl, 0);
4722 
4723   if (const UnresolvedUsingTypenameDecl *CanonicalDecl =
4724           Decl->getCanonicalDecl())
4725     if (CanonicalDecl->TypeForDecl)
4726       return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0);
4727 
4728   Type *newType =
4729       new (*this, alignof(UnresolvedUsingType)) UnresolvedUsingType(Decl);
4730   Decl->TypeForDecl = newType;
4731   Types.push_back(newType);
4732   return QualType(newType, 0);
4733 }
4734 
4735 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4736                                        QualType modifiedType,
4737                                        QualType equivalentType) const {
4738   llvm::FoldingSetNodeID id;
4739   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4740 
4741   void *insertPos = nullptr;
4742   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4743   if (type) return QualType(type, 0);
4744 
4745   QualType canon = getCanonicalType(equivalentType);
4746   type = new (*this, alignof(AttributedType))
4747       AttributedType(canon, attrKind, modifiedType, equivalentType);
4748 
4749   Types.push_back(type);
4750   AttributedTypes.InsertNode(type, insertPos);
4751 
4752   return QualType(type, 0);
4753 }
4754 
4755 QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
4756                                              QualType Wrapped) {
4757   llvm::FoldingSetNodeID ID;
4758   BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr);
4759 
4760   void *InsertPos = nullptr;
4761   BTFTagAttributedType *Ty =
4762       BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos);
4763   if (Ty)
4764     return QualType(Ty, 0);
4765 
4766   QualType Canon = getCanonicalType(Wrapped);
4767   Ty = new (*this, alignof(BTFTagAttributedType))
4768       BTFTagAttributedType(Canon, Wrapped, BTFAttr);
4769 
4770   Types.push_back(Ty);
4771   BTFTagAttributedTypes.InsertNode(Ty, InsertPos);
4772 
4773   return QualType(Ty, 0);
4774 }
4775 
4776 /// Retrieve a substitution-result type.
4777 QualType ASTContext::getSubstTemplateTypeParmType(
4778     QualType Replacement, Decl *AssociatedDecl, unsigned Index,
4779     std::optional<unsigned> PackIndex) const {
4780   llvm::FoldingSetNodeID ID;
4781   SubstTemplateTypeParmType::Profile(ID, Replacement, AssociatedDecl, Index,
4782                                      PackIndex);
4783   void *InsertPos = nullptr;
4784   SubstTemplateTypeParmType *SubstParm =
4785       SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4786 
4787   if (!SubstParm) {
4788     void *Mem = Allocate(SubstTemplateTypeParmType::totalSizeToAlloc<QualType>(
4789                              !Replacement.isCanonical()),
4790                          alignof(SubstTemplateTypeParmType));
4791     SubstParm = new (Mem) SubstTemplateTypeParmType(Replacement, AssociatedDecl,
4792                                                     Index, PackIndex);
4793     Types.push_back(SubstParm);
4794     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4795   }
4796 
4797   return QualType(SubstParm, 0);
4798 }
4799 
4800 /// Retrieve a
4801 QualType
4802 ASTContext::getSubstTemplateTypeParmPackType(Decl *AssociatedDecl,
4803                                              unsigned Index, bool Final,
4804                                              const TemplateArgument &ArgPack) {
4805 #ifndef NDEBUG
4806   for (const auto &P : ArgPack.pack_elements())
4807     assert(P.getKind() == TemplateArgument::Type && "Pack contains a non-type");
4808 #endif
4809 
4810   llvm::FoldingSetNodeID ID;
4811   SubstTemplateTypeParmPackType::Profile(ID, AssociatedDecl, Index, Final,
4812                                          ArgPack);
4813   void *InsertPos = nullptr;
4814   if (SubstTemplateTypeParmPackType *SubstParm =
4815           SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4816     return QualType(SubstParm, 0);
4817 
4818   QualType Canon;
4819   {
4820     TemplateArgument CanonArgPack = getCanonicalTemplateArgument(ArgPack);
4821     if (!AssociatedDecl->isCanonicalDecl() ||
4822         !CanonArgPack.structurallyEquals(ArgPack)) {
4823       Canon = getSubstTemplateTypeParmPackType(
4824           AssociatedDecl->getCanonicalDecl(), Index, Final, CanonArgPack);
4825       [[maybe_unused]] const auto *Nothing =
4826           SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4827       assert(!Nothing);
4828     }
4829   }
4830 
4831   auto *SubstParm = new (*this, alignof(SubstTemplateTypeParmPackType))
4832       SubstTemplateTypeParmPackType(Canon, AssociatedDecl, Index, Final,
4833                                     ArgPack);
4834   Types.push_back(SubstParm);
4835   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4836   return QualType(SubstParm, 0);
4837 }
4838 
4839 /// Retrieve the template type parameter type for a template
4840 /// parameter or parameter pack with the given depth, index, and (optionally)
4841 /// name.
4842 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4843                                              bool ParameterPack,
4844                                              TemplateTypeParmDecl *TTPDecl) const {
4845   llvm::FoldingSetNodeID ID;
4846   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4847   void *InsertPos = nullptr;
4848   TemplateTypeParmType *TypeParm
4849     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4850 
4851   if (TypeParm)
4852     return QualType(TypeParm, 0);
4853 
4854   if (TTPDecl) {
4855     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4856     TypeParm = new (*this, alignof(TemplateTypeParmType))
4857         TemplateTypeParmType(TTPDecl, Canon);
4858 
4859     TemplateTypeParmType *TypeCheck
4860       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4861     assert(!TypeCheck && "Template type parameter canonical type broken");
4862     (void)TypeCheck;
4863   } else
4864     TypeParm = new (*this, alignof(TemplateTypeParmType))
4865         TemplateTypeParmType(Depth, Index, ParameterPack);
4866 
4867   Types.push_back(TypeParm);
4868   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4869 
4870   return QualType(TypeParm, 0);
4871 }
4872 
4873 TypeSourceInfo *
4874 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4875                                               SourceLocation NameLoc,
4876                                         const TemplateArgumentListInfo &Args,
4877                                               QualType Underlying) const {
4878   assert(!Name.getAsDependentTemplateName() &&
4879          "No dependent template names here!");
4880   QualType TST =
4881       getTemplateSpecializationType(Name, Args.arguments(), Underlying);
4882 
4883   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4884   TemplateSpecializationTypeLoc TL =
4885       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4886   TL.setTemplateKeywordLoc(SourceLocation());
4887   TL.setTemplateNameLoc(NameLoc);
4888   TL.setLAngleLoc(Args.getLAngleLoc());
4889   TL.setRAngleLoc(Args.getRAngleLoc());
4890   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4891     TL.setArgLocInfo(i, Args[i].getLocInfo());
4892   return DI;
4893 }
4894 
4895 QualType
4896 ASTContext::getTemplateSpecializationType(TemplateName Template,
4897                                           ArrayRef<TemplateArgumentLoc> Args,
4898                                           QualType Underlying) const {
4899   assert(!Template.getAsDependentTemplateName() &&
4900          "No dependent template names here!");
4901 
4902   SmallVector<TemplateArgument, 4> ArgVec;
4903   ArgVec.reserve(Args.size());
4904   for (const TemplateArgumentLoc &Arg : Args)
4905     ArgVec.push_back(Arg.getArgument());
4906 
4907   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4908 }
4909 
4910 #ifndef NDEBUG
4911 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4912   for (const TemplateArgument &Arg : Args)
4913     if (Arg.isPackExpansion())
4914       return true;
4915 
4916   return true;
4917 }
4918 #endif
4919 
4920 QualType
4921 ASTContext::getTemplateSpecializationType(TemplateName Template,
4922                                           ArrayRef<TemplateArgument> Args,
4923                                           QualType Underlying) const {
4924   assert(!Template.getAsDependentTemplateName() &&
4925          "No dependent template names here!");
4926   // Look through qualified template names.
4927   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4928     Template = QTN->getUnderlyingTemplate();
4929 
4930   const auto *TD = Template.getAsTemplateDecl();
4931   bool IsTypeAlias = TD && TD->isTypeAlias();
4932   QualType CanonType;
4933   if (!Underlying.isNull())
4934     CanonType = getCanonicalType(Underlying);
4935   else {
4936     // We can get here with an alias template when the specialization contains
4937     // a pack expansion that does not match up with a parameter pack.
4938     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4939            "Caller must compute aliased type");
4940     IsTypeAlias = false;
4941     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4942   }
4943 
4944   // Allocate the (non-canonical) template specialization type, but don't
4945   // try to unique it: these types typically have location information that
4946   // we don't unique and don't want to lose.
4947   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4948                            sizeof(TemplateArgument) * Args.size() +
4949                            (IsTypeAlias ? sizeof(QualType) : 0),
4950                        alignof(TemplateSpecializationType));
4951   auto *Spec
4952     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4953                                          IsTypeAlias ? Underlying : QualType());
4954 
4955   Types.push_back(Spec);
4956   return QualType(Spec, 0);
4957 }
4958 
4959 QualType ASTContext::getCanonicalTemplateSpecializationType(
4960     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4961   assert(!Template.getAsDependentTemplateName() &&
4962          "No dependent template names here!");
4963 
4964   // Look through qualified template names.
4965   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4966     Template = TemplateName(QTN->getUnderlyingTemplate());
4967 
4968   // Build the canonical template specialization type.
4969   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4970   bool AnyNonCanonArgs = false;
4971   auto CanonArgs =
4972       ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs);
4973 
4974   // Determine whether this canonical template specialization type already
4975   // exists.
4976   llvm::FoldingSetNodeID ID;
4977   TemplateSpecializationType::Profile(ID, CanonTemplate,
4978                                       CanonArgs, *this);
4979 
4980   void *InsertPos = nullptr;
4981   TemplateSpecializationType *Spec
4982     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4983 
4984   if (!Spec) {
4985     // Allocate a new canonical template specialization type.
4986     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4987                           sizeof(TemplateArgument) * CanonArgs.size()),
4988                          alignof(TemplateSpecializationType));
4989     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4990                                                 CanonArgs,
4991                                                 QualType(), QualType());
4992     Types.push_back(Spec);
4993     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4994   }
4995 
4996   assert(Spec->isDependentType() &&
4997          "Non-dependent template-id type must have a canonical type");
4998   return QualType(Spec, 0);
4999 }
5000 
5001 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
5002                                        NestedNameSpecifier *NNS,
5003                                        QualType NamedType,
5004                                        TagDecl *OwnedTagDecl) const {
5005   llvm::FoldingSetNodeID ID;
5006   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
5007 
5008   void *InsertPos = nullptr;
5009   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
5010   if (T)
5011     return QualType(T, 0);
5012 
5013   QualType Canon = NamedType;
5014   if (!Canon.isCanonical()) {
5015     Canon = getCanonicalType(NamedType);
5016     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
5017     assert(!CheckT && "Elaborated canonical type broken");
5018     (void)CheckT;
5019   }
5020 
5021   void *Mem =
5022       Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
5023                alignof(ElaboratedType));
5024   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
5025 
5026   Types.push_back(T);
5027   ElaboratedTypes.InsertNode(T, InsertPos);
5028   return QualType(T, 0);
5029 }
5030 
5031 QualType
5032 ASTContext::getParenType(QualType InnerType) const {
5033   llvm::FoldingSetNodeID ID;
5034   ParenType::Profile(ID, InnerType);
5035 
5036   void *InsertPos = nullptr;
5037   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5038   if (T)
5039     return QualType(T, 0);
5040 
5041   QualType Canon = InnerType;
5042   if (!Canon.isCanonical()) {
5043     Canon = getCanonicalType(InnerType);
5044     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5045     assert(!CheckT && "Paren canonical type broken");
5046     (void)CheckT;
5047   }
5048 
5049   T = new (*this, alignof(ParenType)) ParenType(InnerType, Canon);
5050   Types.push_back(T);
5051   ParenTypes.InsertNode(T, InsertPos);
5052   return QualType(T, 0);
5053 }
5054 
5055 QualType
5056 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
5057                                   const IdentifierInfo *MacroII) const {
5058   QualType Canon = UnderlyingTy;
5059   if (!Canon.isCanonical())
5060     Canon = getCanonicalType(UnderlyingTy);
5061 
5062   auto *newType = new (*this, alignof(MacroQualifiedType))
5063       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
5064   Types.push_back(newType);
5065   return QualType(newType, 0);
5066 }
5067 
5068 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
5069                                           NestedNameSpecifier *NNS,
5070                                           const IdentifierInfo *Name,
5071                                           QualType Canon) const {
5072   if (Canon.isNull()) {
5073     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5074     if (CanonNNS != NNS)
5075       Canon = getDependentNameType(Keyword, CanonNNS, Name);
5076   }
5077 
5078   llvm::FoldingSetNodeID ID;
5079   DependentNameType::Profile(ID, Keyword, NNS, Name);
5080 
5081   void *InsertPos = nullptr;
5082   DependentNameType *T
5083     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
5084   if (T)
5085     return QualType(T, 0);
5086 
5087   T = new (*this, alignof(DependentNameType))
5088       DependentNameType(Keyword, NNS, Name, Canon);
5089   Types.push_back(T);
5090   DependentNameTypes.InsertNode(T, InsertPos);
5091   return QualType(T, 0);
5092 }
5093 
5094 QualType ASTContext::getDependentTemplateSpecializationType(
5095     ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5096     const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const {
5097   // TODO: avoid this copy
5098   SmallVector<TemplateArgument, 16> ArgCopy;
5099   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5100     ArgCopy.push_back(Args[I].getArgument());
5101   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
5102 }
5103 
5104 QualType
5105 ASTContext::getDependentTemplateSpecializationType(
5106                                  ElaboratedTypeKeyword Keyword,
5107                                  NestedNameSpecifier *NNS,
5108                                  const IdentifierInfo *Name,
5109                                  ArrayRef<TemplateArgument> Args) const {
5110   assert((!NNS || NNS->isDependent()) &&
5111          "nested-name-specifier must be dependent");
5112 
5113   llvm::FoldingSetNodeID ID;
5114   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
5115                                                Name, Args);
5116 
5117   void *InsertPos = nullptr;
5118   DependentTemplateSpecializationType *T
5119     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5120   if (T)
5121     return QualType(T, 0);
5122 
5123   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5124 
5125   ElaboratedTypeKeyword CanonKeyword = Keyword;
5126   if (Keyword == ElaboratedTypeKeyword::None)
5127     CanonKeyword = ElaboratedTypeKeyword::Typename;
5128 
5129   bool AnyNonCanonArgs = false;
5130   auto CanonArgs =
5131       ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs);
5132 
5133   QualType Canon;
5134   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
5135     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
5136                                                    Name,
5137                                                    CanonArgs);
5138 
5139     // Find the insert position again.
5140     [[maybe_unused]] auto *Nothing =
5141         DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5142     assert(!Nothing && "canonical type broken");
5143   }
5144 
5145   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
5146                         sizeof(TemplateArgument) * Args.size()),
5147                        alignof(DependentTemplateSpecializationType));
5148   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
5149                                                     Name, Args, Canon);
5150   Types.push_back(T);
5151   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
5152   return QualType(T, 0);
5153 }
5154 
5155 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
5156   TemplateArgument Arg;
5157   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5158     QualType ArgType = getTypeDeclType(TTP);
5159     if (TTP->isParameterPack())
5160       ArgType = getPackExpansionType(ArgType, std::nullopt);
5161 
5162     Arg = TemplateArgument(ArgType);
5163   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5164     QualType T =
5165         NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
5166     // For class NTTPs, ensure we include the 'const' so the type matches that
5167     // of a real template argument.
5168     // FIXME: It would be more faithful to model this as something like an
5169     // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
5170     if (T->isRecordType())
5171       T.addConst();
5172     Expr *E = new (*this) DeclRefExpr(
5173         *this, NTTP, /*RefersToEnclosingVariableOrCapture*/ false, T,
5174         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
5175 
5176     if (NTTP->isParameterPack())
5177       E = new (*this)
5178           PackExpansionExpr(DependentTy, E, NTTP->getLocation(), std::nullopt);
5179     Arg = TemplateArgument(E);
5180   } else {
5181     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
5182     if (TTP->isParameterPack())
5183       Arg = TemplateArgument(TemplateName(TTP), std::optional<unsigned>());
5184     else
5185       Arg = TemplateArgument(TemplateName(TTP));
5186   }
5187 
5188   if (Param->isTemplateParameterPack())
5189     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
5190 
5191   return Arg;
5192 }
5193 
5194 void
5195 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
5196                                     SmallVectorImpl<TemplateArgument> &Args) {
5197   Args.reserve(Args.size() + Params->size());
5198 
5199   for (NamedDecl *Param : *Params)
5200     Args.push_back(getInjectedTemplateArg(Param));
5201 }
5202 
5203 QualType ASTContext::getPackExpansionType(QualType Pattern,
5204                                           std::optional<unsigned> NumExpansions,
5205                                           bool ExpectPackInType) {
5206   assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
5207          "Pack expansions must expand one or more parameter packs");
5208 
5209   llvm::FoldingSetNodeID ID;
5210   PackExpansionType::Profile(ID, Pattern, NumExpansions);
5211 
5212   void *InsertPos = nullptr;
5213   PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5214   if (T)
5215     return QualType(T, 0);
5216 
5217   QualType Canon;
5218   if (!Pattern.isCanonical()) {
5219     Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
5220                                  /*ExpectPackInType=*/false);
5221 
5222     // Find the insert position again, in case we inserted an element into
5223     // PackExpansionTypes and invalidated our insert position.
5224     PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5225   }
5226 
5227   T = new (*this, alignof(PackExpansionType))
5228       PackExpansionType(Pattern, Canon, NumExpansions);
5229   Types.push_back(T);
5230   PackExpansionTypes.InsertNode(T, InsertPos);
5231   return QualType(T, 0);
5232 }
5233 
5234 /// CmpProtocolNames - Comparison predicate for sorting protocols
5235 /// alphabetically.
5236 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
5237                             ObjCProtocolDecl *const *RHS) {
5238   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
5239 }
5240 
5241 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
5242   if (Protocols.empty()) return true;
5243 
5244   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
5245     return false;
5246 
5247   for (unsigned i = 1; i != Protocols.size(); ++i)
5248     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
5249         Protocols[i]->getCanonicalDecl() != Protocols[i])
5250       return false;
5251   return true;
5252 }
5253 
5254 static void
5255 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
5256   // Sort protocols, keyed by name.
5257   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
5258 
5259   // Canonicalize.
5260   for (ObjCProtocolDecl *&P : Protocols)
5261     P = P->getCanonicalDecl();
5262 
5263   // Remove duplicates.
5264   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
5265   Protocols.erase(ProtocolsEnd, Protocols.end());
5266 }
5267 
5268 QualType ASTContext::getObjCObjectType(QualType BaseType,
5269                                        ObjCProtocolDecl * const *Protocols,
5270                                        unsigned NumProtocols) const {
5271   return getObjCObjectType(BaseType, {},
5272                            llvm::ArrayRef(Protocols, NumProtocols),
5273                            /*isKindOf=*/false);
5274 }
5275 
5276 QualType ASTContext::getObjCObjectType(
5277            QualType baseType,
5278            ArrayRef<QualType> typeArgs,
5279            ArrayRef<ObjCProtocolDecl *> protocols,
5280            bool isKindOf) const {
5281   // If the base type is an interface and there aren't any protocols or
5282   // type arguments to add, then the interface type will do just fine.
5283   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5284       isa<ObjCInterfaceType>(baseType))
5285     return baseType;
5286 
5287   // Look in the folding set for an existing type.
5288   llvm::FoldingSetNodeID ID;
5289   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5290   void *InsertPos = nullptr;
5291   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5292     return QualType(QT, 0);
5293 
5294   // Determine the type arguments to be used for canonicalization,
5295   // which may be explicitly specified here or written on the base
5296   // type.
5297   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5298   if (effectiveTypeArgs.empty()) {
5299     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5300       effectiveTypeArgs = baseObject->getTypeArgs();
5301   }
5302 
5303   // Build the canonical type, which has the canonical base type and a
5304   // sorted-and-uniqued list of protocols and the type arguments
5305   // canonicalized.
5306   QualType canonical;
5307   bool typeArgsAreCanonical = llvm::all_of(
5308       effectiveTypeArgs, [&](QualType type) { return type.isCanonical(); });
5309   bool protocolsSorted = areSortedAndUniqued(protocols);
5310   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5311     // Determine the canonical type arguments.
5312     ArrayRef<QualType> canonTypeArgs;
5313     SmallVector<QualType, 4> canonTypeArgsVec;
5314     if (!typeArgsAreCanonical) {
5315       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5316       for (auto typeArg : effectiveTypeArgs)
5317         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5318       canonTypeArgs = canonTypeArgsVec;
5319     } else {
5320       canonTypeArgs = effectiveTypeArgs;
5321     }
5322 
5323     ArrayRef<ObjCProtocolDecl *> canonProtocols;
5324     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5325     if (!protocolsSorted) {
5326       canonProtocolsVec.append(protocols.begin(), protocols.end());
5327       SortAndUniqueProtocols(canonProtocolsVec);
5328       canonProtocols = canonProtocolsVec;
5329     } else {
5330       canonProtocols = protocols;
5331     }
5332 
5333     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5334                                   canonProtocols, isKindOf);
5335 
5336     // Regenerate InsertPos.
5337     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5338   }
5339 
5340   unsigned size = sizeof(ObjCObjectTypeImpl);
5341   size += typeArgs.size() * sizeof(QualType);
5342   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5343   void *mem = Allocate(size, alignof(ObjCObjectTypeImpl));
5344   auto *T =
5345     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5346                                  isKindOf);
5347 
5348   Types.push_back(T);
5349   ObjCObjectTypes.InsertNode(T, InsertPos);
5350   return QualType(T, 0);
5351 }
5352 
5353 /// Apply Objective-C protocol qualifiers to the given type.
5354 /// If this is for the canonical type of a type parameter, we can apply
5355 /// protocol qualifiers on the ObjCObjectPointerType.
5356 QualType
5357 ASTContext::applyObjCProtocolQualifiers(QualType type,
5358                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5359                   bool allowOnPointerType) const {
5360   hasError = false;
5361 
5362   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5363     return getObjCTypeParamType(objT->getDecl(), protocols);
5364   }
5365 
5366   // Apply protocol qualifiers to ObjCObjectPointerType.
5367   if (allowOnPointerType) {
5368     if (const auto *objPtr =
5369             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5370       const ObjCObjectType *objT = objPtr->getObjectType();
5371       // Merge protocol lists and construct ObjCObjectType.
5372       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5373       protocolsVec.append(objT->qual_begin(),
5374                           objT->qual_end());
5375       protocolsVec.append(protocols.begin(), protocols.end());
5376       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5377       type = getObjCObjectType(
5378              objT->getBaseType(),
5379              objT->getTypeArgsAsWritten(),
5380              protocols,
5381              objT->isKindOfTypeAsWritten());
5382       return getObjCObjectPointerType(type);
5383     }
5384   }
5385 
5386   // Apply protocol qualifiers to ObjCObjectType.
5387   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5388     // FIXME: Check for protocols to which the class type is already
5389     // known to conform.
5390 
5391     return getObjCObjectType(objT->getBaseType(),
5392                              objT->getTypeArgsAsWritten(),
5393                              protocols,
5394                              objT->isKindOfTypeAsWritten());
5395   }
5396 
5397   // If the canonical type is ObjCObjectType, ...
5398   if (type->isObjCObjectType()) {
5399     // Silently overwrite any existing protocol qualifiers.
5400     // TODO: determine whether that's the right thing to do.
5401 
5402     // FIXME: Check for protocols to which the class type is already
5403     // known to conform.
5404     return getObjCObjectType(type, {}, protocols, false);
5405   }
5406 
5407   // id<protocol-list>
5408   if (type->isObjCIdType()) {
5409     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5410     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5411                                  objPtr->isKindOfType());
5412     return getObjCObjectPointerType(type);
5413   }
5414 
5415   // Class<protocol-list>
5416   if (type->isObjCClassType()) {
5417     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5418     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5419                                  objPtr->isKindOfType());
5420     return getObjCObjectPointerType(type);
5421   }
5422 
5423   hasError = true;
5424   return type;
5425 }
5426 
5427 QualType
5428 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5429                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
5430   // Look in the folding set for an existing type.
5431   llvm::FoldingSetNodeID ID;
5432   ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5433   void *InsertPos = nullptr;
5434   if (ObjCTypeParamType *TypeParam =
5435       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5436     return QualType(TypeParam, 0);
5437 
5438   // We canonicalize to the underlying type.
5439   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5440   if (!protocols.empty()) {
5441     // Apply the protocol qualifers.
5442     bool hasError;
5443     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5444         Canonical, protocols, hasError, true /*allowOnPointerType*/));
5445     assert(!hasError && "Error when apply protocol qualifier to bound type");
5446   }
5447 
5448   unsigned size = sizeof(ObjCTypeParamType);
5449   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5450   void *mem = Allocate(size, alignof(ObjCTypeParamType));
5451   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5452 
5453   Types.push_back(newType);
5454   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5455   return QualType(newType, 0);
5456 }
5457 
5458 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5459                                               ObjCTypeParamDecl *New) const {
5460   New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5461   // Update TypeForDecl after updating TypeSourceInfo.
5462   auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5463   SmallVector<ObjCProtocolDecl *, 8> protocols;
5464   protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5465   QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5466   New->setTypeForDecl(UpdatedTy.getTypePtr());
5467 }
5468 
5469 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5470 /// protocol list adopt all protocols in QT's qualified-id protocol
5471 /// list.
5472 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5473                                                 ObjCInterfaceDecl *IC) {
5474   if (!QT->isObjCQualifiedIdType())
5475     return false;
5476 
5477   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5478     // If both the right and left sides have qualifiers.
5479     for (auto *Proto : OPT->quals()) {
5480       if (!IC->ClassImplementsProtocol(Proto, false))
5481         return false;
5482     }
5483     return true;
5484   }
5485   return false;
5486 }
5487 
5488 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5489 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
5490 /// of protocols.
5491 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5492                                                 ObjCInterfaceDecl *IDecl) {
5493   if (!QT->isObjCQualifiedIdType())
5494     return false;
5495   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5496   if (!OPT)
5497     return false;
5498   if (!IDecl->hasDefinition())
5499     return false;
5500   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5501   CollectInheritedProtocols(IDecl, InheritedProtocols);
5502   if (InheritedProtocols.empty())
5503     return false;
5504   // Check that if every protocol in list of id<plist> conforms to a protocol
5505   // of IDecl's, then bridge casting is ok.
5506   bool Conforms = false;
5507   for (auto *Proto : OPT->quals()) {
5508     Conforms = false;
5509     for (auto *PI : InheritedProtocols) {
5510       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5511         Conforms = true;
5512         break;
5513       }
5514     }
5515     if (!Conforms)
5516       break;
5517   }
5518   if (Conforms)
5519     return true;
5520 
5521   for (auto *PI : InheritedProtocols) {
5522     // If both the right and left sides have qualifiers.
5523     bool Adopts = false;
5524     for (auto *Proto : OPT->quals()) {
5525       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5526       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5527         break;
5528     }
5529     if (!Adopts)
5530       return false;
5531   }
5532   return true;
5533 }
5534 
5535 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5536 /// the given object type.
5537 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5538   llvm::FoldingSetNodeID ID;
5539   ObjCObjectPointerType::Profile(ID, ObjectT);
5540 
5541   void *InsertPos = nullptr;
5542   if (ObjCObjectPointerType *QT =
5543               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5544     return QualType(QT, 0);
5545 
5546   // Find the canonical object type.
5547   QualType Canonical;
5548   if (!ObjectT.isCanonical()) {
5549     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5550 
5551     // Regenerate InsertPos.
5552     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5553   }
5554 
5555   // No match.
5556   void *Mem =
5557       Allocate(sizeof(ObjCObjectPointerType), alignof(ObjCObjectPointerType));
5558   auto *QType =
5559     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5560 
5561   Types.push_back(QType);
5562   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5563   return QualType(QType, 0);
5564 }
5565 
5566 /// getObjCInterfaceType - Return the unique reference to the type for the
5567 /// specified ObjC interface decl. The list of protocols is optional.
5568 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5569                                           ObjCInterfaceDecl *PrevDecl) const {
5570   if (Decl->TypeForDecl)
5571     return QualType(Decl->TypeForDecl, 0);
5572 
5573   if (PrevDecl) {
5574     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5575     Decl->TypeForDecl = PrevDecl->TypeForDecl;
5576     return QualType(PrevDecl->TypeForDecl, 0);
5577   }
5578 
5579   // Prefer the definition, if there is one.
5580   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5581     Decl = Def;
5582 
5583   void *Mem = Allocate(sizeof(ObjCInterfaceType), alignof(ObjCInterfaceType));
5584   auto *T = new (Mem) ObjCInterfaceType(Decl);
5585   Decl->TypeForDecl = T;
5586   Types.push_back(T);
5587   return QualType(T, 0);
5588 }
5589 
5590 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5591 /// TypeOfExprType AST's (since expression's are never shared). For example,
5592 /// multiple declarations that refer to "typeof(x)" all contain different
5593 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5594 /// on canonical type's (which are always unique).
5595 QualType ASTContext::getTypeOfExprType(Expr *tofExpr, TypeOfKind Kind) const {
5596   TypeOfExprType *toe;
5597   if (tofExpr->isTypeDependent()) {
5598     llvm::FoldingSetNodeID ID;
5599     DependentTypeOfExprType::Profile(ID, *this, tofExpr,
5600                                      Kind == TypeOfKind::Unqualified);
5601 
5602     void *InsertPos = nullptr;
5603     DependentTypeOfExprType *Canon =
5604         DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5605     if (Canon) {
5606       // We already have a "canonical" version of an identical, dependent
5607       // typeof(expr) type. Use that as our canonical type.
5608       toe = new (*this, alignof(TypeOfExprType))
5609           TypeOfExprType(tofExpr, Kind, QualType((TypeOfExprType *)Canon, 0));
5610     } else {
5611       // Build a new, canonical typeof(expr) type.
5612       Canon = new (*this, alignof(DependentTypeOfExprType))
5613           DependentTypeOfExprType(tofExpr, Kind);
5614       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5615       toe = Canon;
5616     }
5617   } else {
5618     QualType Canonical = getCanonicalType(tofExpr->getType());
5619     toe = new (*this, alignof(TypeOfExprType))
5620         TypeOfExprType(tofExpr, Kind, Canonical);
5621   }
5622   Types.push_back(toe);
5623   return QualType(toe, 0);
5624 }
5625 
5626 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5627 /// TypeOfType nodes. The only motivation to unique these nodes would be
5628 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5629 /// an issue. This doesn't affect the type checker, since it operates
5630 /// on canonical types (which are always unique).
5631 QualType ASTContext::getTypeOfType(QualType tofType, TypeOfKind Kind) const {
5632   QualType Canonical = getCanonicalType(tofType);
5633   auto *tot =
5634       new (*this, alignof(TypeOfType)) TypeOfType(tofType, Canonical, Kind);
5635   Types.push_back(tot);
5636   return QualType(tot, 0);
5637 }
5638 
5639 /// getReferenceQualifiedType - Given an expr, will return the type for
5640 /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions
5641 /// and class member access into account.
5642 QualType ASTContext::getReferenceQualifiedType(const Expr *E) const {
5643   // C++11 [dcl.type.simple]p4:
5644   //   [...]
5645   QualType T = E->getType();
5646   switch (E->getValueKind()) {
5647   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5648   //       type of e;
5649   case VK_XValue:
5650     return getRValueReferenceType(T);
5651   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5652   //       type of e;
5653   case VK_LValue:
5654     return getLValueReferenceType(T);
5655   //  - otherwise, decltype(e) is the type of e.
5656   case VK_PRValue:
5657     return T;
5658   }
5659   llvm_unreachable("Unknown value kind");
5660 }
5661 
5662 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5663 /// nodes. This would never be helpful, since each such type has its own
5664 /// expression, and would not give a significant memory saving, since there
5665 /// is an Expr tree under each such type.
5666 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5667   DecltypeType *dt;
5668 
5669   // C++11 [temp.type]p2:
5670   //   If an expression e involves a template parameter, decltype(e) denotes a
5671   //   unique dependent type. Two such decltype-specifiers refer to the same
5672   //   type only if their expressions are equivalent (14.5.6.1).
5673   if (e->isInstantiationDependent()) {
5674     llvm::FoldingSetNodeID ID;
5675     DependentDecltypeType::Profile(ID, *this, e);
5676 
5677     void *InsertPos = nullptr;
5678     DependentDecltypeType *Canon
5679       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5680     if (!Canon) {
5681       // Build a new, canonical decltype(expr) type.
5682       Canon = new (*this, alignof(DependentDecltypeType))
5683           DependentDecltypeType(e, DependentTy);
5684       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5685     }
5686     dt = new (*this, alignof(DecltypeType))
5687         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5688   } else {
5689     dt = new (*this, alignof(DecltypeType))
5690         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5691   }
5692   Types.push_back(dt);
5693   return QualType(dt, 0);
5694 }
5695 
5696 /// getUnaryTransformationType - We don't unique these, since the memory
5697 /// savings are minimal and these are rare.
5698 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5699                                            QualType UnderlyingType,
5700                                            UnaryTransformType::UTTKind Kind)
5701     const {
5702   UnaryTransformType *ut = nullptr;
5703 
5704   if (BaseType->isDependentType()) {
5705     // Look in the folding set for an existing type.
5706     llvm::FoldingSetNodeID ID;
5707     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5708 
5709     void *InsertPos = nullptr;
5710     DependentUnaryTransformType *Canon
5711       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5712 
5713     if (!Canon) {
5714       // Build a new, canonical __underlying_type(type) type.
5715       Canon = new (*this, alignof(DependentUnaryTransformType))
5716           DependentUnaryTransformType(*this, getCanonicalType(BaseType), Kind);
5717       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5718     }
5719     ut = new (*this, alignof(UnaryTransformType))
5720         UnaryTransformType(BaseType, QualType(), Kind, QualType(Canon, 0));
5721   } else {
5722     QualType CanonType = getCanonicalType(UnderlyingType);
5723     ut = new (*this, alignof(UnaryTransformType))
5724         UnaryTransformType(BaseType, UnderlyingType, Kind, CanonType);
5725   }
5726   Types.push_back(ut);
5727   return QualType(ut, 0);
5728 }
5729 
5730 QualType ASTContext::getAutoTypeInternal(
5731     QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent,
5732     bool IsPack, ConceptDecl *TypeConstraintConcept,
5733     ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const {
5734   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5735       !TypeConstraintConcept && !IsDependent)
5736     return getAutoDeductType();
5737 
5738   // Look in the folding set for an existing type.
5739   void *InsertPos = nullptr;
5740   llvm::FoldingSetNodeID ID;
5741   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5742                     TypeConstraintConcept, TypeConstraintArgs);
5743   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5744     return QualType(AT, 0);
5745 
5746   QualType Canon;
5747   if (!IsCanon) {
5748     if (!DeducedType.isNull()) {
5749       Canon = DeducedType.getCanonicalType();
5750     } else if (TypeConstraintConcept) {
5751       bool AnyNonCanonArgs = false;
5752       ConceptDecl *CanonicalConcept = TypeConstraintConcept->getCanonicalDecl();
5753       auto CanonicalConceptArgs = ::getCanonicalTemplateArguments(
5754           *this, TypeConstraintArgs, AnyNonCanonArgs);
5755       if (CanonicalConcept != TypeConstraintConcept || AnyNonCanonArgs) {
5756         Canon =
5757             getAutoTypeInternal(QualType(), Keyword, IsDependent, IsPack,
5758                                 CanonicalConcept, CanonicalConceptArgs, true);
5759         // Find the insert position again.
5760         [[maybe_unused]] auto *Nothing =
5761             AutoTypes.FindNodeOrInsertPos(ID, InsertPos);
5762         assert(!Nothing && "canonical type broken");
5763       }
5764     }
5765   }
5766 
5767   void *Mem = Allocate(sizeof(AutoType) +
5768                            sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5769                        alignof(AutoType));
5770   auto *AT = new (Mem) AutoType(
5771       DeducedType, Keyword,
5772       (IsDependent ? TypeDependence::DependentInstantiation
5773                    : TypeDependence::None) |
5774           (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5775       Canon, TypeConstraintConcept, TypeConstraintArgs);
5776   Types.push_back(AT);
5777   AutoTypes.InsertNode(AT, InsertPos);
5778   return QualType(AT, 0);
5779 }
5780 
5781 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5782 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5783 /// canonical deduced-but-dependent 'auto' type.
5784 QualType
5785 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5786                         bool IsDependent, bool IsPack,
5787                         ConceptDecl *TypeConstraintConcept,
5788                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5789   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5790   assert((!IsDependent || DeducedType.isNull()) &&
5791          "A dependent auto should be undeduced");
5792   return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack,
5793                              TypeConstraintConcept, TypeConstraintArgs);
5794 }
5795 
5796 QualType ASTContext::getUnconstrainedType(QualType T) const {
5797   QualType CanonT = T.getCanonicalType();
5798 
5799   // Remove a type-constraint from a top-level auto or decltype(auto).
5800   if (auto *AT = CanonT->getAs<AutoType>()) {
5801     if (!AT->isConstrained())
5802       return T;
5803     return getQualifiedType(getAutoType(QualType(), AT->getKeyword(), false,
5804                                         AT->containsUnexpandedParameterPack()),
5805                             T.getQualifiers());
5806   }
5807 
5808   // FIXME: We only support constrained auto at the top level in the type of a
5809   // non-type template parameter at the moment. Once we lift that restriction,
5810   // we'll need to recursively build types containing auto here.
5811   assert(!CanonT->getContainedAutoType() ||
5812          !CanonT->getContainedAutoType()->isConstrained());
5813   return T;
5814 }
5815 
5816 /// Return the uniqued reference to the deduced template specialization type
5817 /// which has been deduced to the given type, or to the canonical undeduced
5818 /// such type, or the canonical deduced-but-dependent such type.
5819 QualType ASTContext::getDeducedTemplateSpecializationType(
5820     TemplateName Template, QualType DeducedType, bool IsDependent) const {
5821   // Look in the folding set for an existing type.
5822   void *InsertPos = nullptr;
5823   llvm::FoldingSetNodeID ID;
5824   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5825                                              IsDependent);
5826   if (DeducedTemplateSpecializationType *DTST =
5827           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5828     return QualType(DTST, 0);
5829 
5830   auto *DTST = new (*this, alignof(DeducedTemplateSpecializationType))
5831       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5832   llvm::FoldingSetNodeID TempID;
5833   DTST->Profile(TempID);
5834   assert(ID == TempID && "ID does not match");
5835   Types.push_back(DTST);
5836   DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5837   return QualType(DTST, 0);
5838 }
5839 
5840 /// getAtomicType - Return the uniqued reference to the atomic type for
5841 /// the given value type.
5842 QualType ASTContext::getAtomicType(QualType T) const {
5843   // Unique pointers, to guarantee there is only one pointer of a particular
5844   // structure.
5845   llvm::FoldingSetNodeID ID;
5846   AtomicType::Profile(ID, T);
5847 
5848   void *InsertPos = nullptr;
5849   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5850     return QualType(AT, 0);
5851 
5852   // If the atomic value type isn't canonical, this won't be a canonical type
5853   // either, so fill in the canonical type field.
5854   QualType Canonical;
5855   if (!T.isCanonical()) {
5856     Canonical = getAtomicType(getCanonicalType(T));
5857 
5858     // Get the new insert position for the node we care about.
5859     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5860     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5861   }
5862   auto *New = new (*this, alignof(AtomicType)) AtomicType(T, Canonical);
5863   Types.push_back(New);
5864   AtomicTypes.InsertNode(New, InsertPos);
5865   return QualType(New, 0);
5866 }
5867 
5868 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
5869 QualType ASTContext::getAutoDeductType() const {
5870   if (AutoDeductTy.isNull())
5871     AutoDeductTy = QualType(new (*this, alignof(AutoType))
5872                                 AutoType(QualType(), AutoTypeKeyword::Auto,
5873                                          TypeDependence::None, QualType(),
5874                                          /*concept*/ nullptr, /*args*/ {}),
5875                             0);
5876   return AutoDeductTy;
5877 }
5878 
5879 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5880 QualType ASTContext::getAutoRRefDeductType() const {
5881   if (AutoRRefDeductTy.isNull())
5882     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5883   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5884   return AutoRRefDeductTy;
5885 }
5886 
5887 /// getTagDeclType - Return the unique reference to the type for the
5888 /// specified TagDecl (struct/union/class/enum) decl.
5889 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5890   assert(Decl);
5891   // FIXME: What is the design on getTagDeclType when it requires casting
5892   // away const?  mutable?
5893   return getTypeDeclType(const_cast<TagDecl*>(Decl));
5894 }
5895 
5896 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5897 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5898 /// needs to agree with the definition in <stddef.h>.
5899 CanQualType ASTContext::getSizeType() const {
5900   return getFromTargetType(Target->getSizeType());
5901 }
5902 
5903 /// Return the unique signed counterpart of the integer type
5904 /// corresponding to size_t.
5905 CanQualType ASTContext::getSignedSizeType() const {
5906   return getFromTargetType(Target->getSignedSizeType());
5907 }
5908 
5909 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5910 CanQualType ASTContext::getIntMaxType() const {
5911   return getFromTargetType(Target->getIntMaxType());
5912 }
5913 
5914 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5915 CanQualType ASTContext::getUIntMaxType() const {
5916   return getFromTargetType(Target->getUIntMaxType());
5917 }
5918 
5919 /// getSignedWCharType - Return the type of "signed wchar_t".
5920 /// Used when in C++, as a GCC extension.
5921 QualType ASTContext::getSignedWCharType() const {
5922   // FIXME: derive from "Target" ?
5923   return WCharTy;
5924 }
5925 
5926 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5927 /// Used when in C++, as a GCC extension.
5928 QualType ASTContext::getUnsignedWCharType() const {
5929   // FIXME: derive from "Target" ?
5930   return UnsignedIntTy;
5931 }
5932 
5933 QualType ASTContext::getIntPtrType() const {
5934   return getFromTargetType(Target->getIntPtrType());
5935 }
5936 
5937 QualType ASTContext::getUIntPtrType() const {
5938   return getCorrespondingUnsignedType(getIntPtrType());
5939 }
5940 
5941 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5942 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5943 QualType ASTContext::getPointerDiffType() const {
5944   return getFromTargetType(Target->getPtrDiffType(LangAS::Default));
5945 }
5946 
5947 /// Return the unique unsigned counterpart of "ptrdiff_t"
5948 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5949 /// in the definition of %tu format specifier.
5950 QualType ASTContext::getUnsignedPointerDiffType() const {
5951   return getFromTargetType(Target->getUnsignedPtrDiffType(LangAS::Default));
5952 }
5953 
5954 /// Return the unique type for "pid_t" defined in
5955 /// <sys/types.h>. We need this to compute the correct type for vfork().
5956 QualType ASTContext::getProcessIDType() const {
5957   return getFromTargetType(Target->getProcessIDType());
5958 }
5959 
5960 //===----------------------------------------------------------------------===//
5961 //                              Type Operators
5962 //===----------------------------------------------------------------------===//
5963 
5964 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5965   // Push qualifiers into arrays, and then discard any remaining
5966   // qualifiers.
5967   T = getCanonicalType(T);
5968   T = getVariableArrayDecayedType(T);
5969   const Type *Ty = T.getTypePtr();
5970   QualType Result;
5971   if (isa<ArrayType>(Ty)) {
5972     Result = getArrayDecayedType(QualType(Ty,0));
5973   } else if (isa<FunctionType>(Ty)) {
5974     Result = getPointerType(QualType(Ty, 0));
5975   } else {
5976     Result = QualType(Ty, 0);
5977   }
5978 
5979   return CanQualType::CreateUnsafe(Result);
5980 }
5981 
5982 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5983                                              Qualifiers &quals) {
5984   SplitQualType splitType = type.getSplitUnqualifiedType();
5985 
5986   // FIXME: getSplitUnqualifiedType() actually walks all the way to
5987   // the unqualified desugared type and then drops it on the floor.
5988   // We then have to strip that sugar back off with
5989   // getUnqualifiedDesugaredType(), which is silly.
5990   const auto *AT =
5991       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5992 
5993   // If we don't have an array, just use the results in splitType.
5994   if (!AT) {
5995     quals = splitType.Quals;
5996     return QualType(splitType.Ty, 0);
5997   }
5998 
5999   // Otherwise, recurse on the array's element type.
6000   QualType elementType = AT->getElementType();
6001   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
6002 
6003   // If that didn't change the element type, AT has no qualifiers, so we
6004   // can just use the results in splitType.
6005   if (elementType == unqualElementType) {
6006     assert(quals.empty()); // from the recursive call
6007     quals = splitType.Quals;
6008     return QualType(splitType.Ty, 0);
6009   }
6010 
6011   // Otherwise, add in the qualifiers from the outermost type, then
6012   // build the type back up.
6013   quals.addConsistentQualifiers(splitType.Quals);
6014 
6015   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
6016     return getConstantArrayType(unqualElementType, CAT->getSize(),
6017                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
6018   }
6019 
6020   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
6021     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
6022   }
6023 
6024   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
6025     return getVariableArrayType(unqualElementType,
6026                                 VAT->getSizeExpr(),
6027                                 VAT->getSizeModifier(),
6028                                 VAT->getIndexTypeCVRQualifiers(),
6029                                 VAT->getBracketsRange());
6030   }
6031 
6032   const auto *DSAT = cast<DependentSizedArrayType>(AT);
6033   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
6034                                     DSAT->getSizeModifier(), 0,
6035                                     SourceRange());
6036 }
6037 
6038 /// Attempt to unwrap two types that may both be array types with the same bound
6039 /// (or both be array types of unknown bound) for the purpose of comparing the
6040 /// cv-decomposition of two types per C++ [conv.qual].
6041 ///
6042 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
6043 ///        C++20 [conv.qual], if permitted by the current language mode.
6044 void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
6045                                          bool AllowPiMismatch) {
6046   while (true) {
6047     auto *AT1 = getAsArrayType(T1);
6048     if (!AT1)
6049       return;
6050 
6051     auto *AT2 = getAsArrayType(T2);
6052     if (!AT2)
6053       return;
6054 
6055     // If we don't have two array types with the same constant bound nor two
6056     // incomplete array types, we've unwrapped everything we can.
6057     // C++20 also permits one type to be a constant array type and the other
6058     // to be an incomplete array type.
6059     // FIXME: Consider also unwrapping array of unknown bound and VLA.
6060     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
6061       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
6062       if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) ||
6063             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6064              isa<IncompleteArrayType>(AT2))))
6065         return;
6066     } else if (isa<IncompleteArrayType>(AT1)) {
6067       if (!(isa<IncompleteArrayType>(AT2) ||
6068             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6069              isa<ConstantArrayType>(AT2))))
6070         return;
6071     } else {
6072       return;
6073     }
6074 
6075     T1 = AT1->getElementType();
6076     T2 = AT2->getElementType();
6077   }
6078 }
6079 
6080 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
6081 ///
6082 /// If T1 and T2 are both pointer types of the same kind, or both array types
6083 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
6084 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
6085 ///
6086 /// This function will typically be called in a loop that successively
6087 /// "unwraps" pointer and pointer-to-member types to compare them at each
6088 /// level.
6089 ///
6090 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
6091 ///        C++20 [conv.qual], if permitted by the current language mode.
6092 ///
6093 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
6094 /// pair of types that can't be unwrapped further.
6095 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2,
6096                                     bool AllowPiMismatch) {
6097   UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch);
6098 
6099   const auto *T1PtrType = T1->getAs<PointerType>();
6100   const auto *T2PtrType = T2->getAs<PointerType>();
6101   if (T1PtrType && T2PtrType) {
6102     T1 = T1PtrType->getPointeeType();
6103     T2 = T2PtrType->getPointeeType();
6104     return true;
6105   }
6106 
6107   const auto *T1MPType = T1->getAs<MemberPointerType>();
6108   const auto *T2MPType = T2->getAs<MemberPointerType>();
6109   if (T1MPType && T2MPType &&
6110       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
6111                              QualType(T2MPType->getClass(), 0))) {
6112     T1 = T1MPType->getPointeeType();
6113     T2 = T2MPType->getPointeeType();
6114     return true;
6115   }
6116 
6117   if (getLangOpts().ObjC) {
6118     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
6119     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
6120     if (T1OPType && T2OPType) {
6121       T1 = T1OPType->getPointeeType();
6122       T2 = T2OPType->getPointeeType();
6123       return true;
6124     }
6125   }
6126 
6127   // FIXME: Block pointers, too?
6128 
6129   return false;
6130 }
6131 
6132 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
6133   while (true) {
6134     Qualifiers Quals;
6135     T1 = getUnqualifiedArrayType(T1, Quals);
6136     T2 = getUnqualifiedArrayType(T2, Quals);
6137     if (hasSameType(T1, T2))
6138       return true;
6139     if (!UnwrapSimilarTypes(T1, T2))
6140       return false;
6141   }
6142 }
6143 
6144 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
6145   while (true) {
6146     Qualifiers Quals1, Quals2;
6147     T1 = getUnqualifiedArrayType(T1, Quals1);
6148     T2 = getUnqualifiedArrayType(T2, Quals2);
6149 
6150     Quals1.removeCVRQualifiers();
6151     Quals2.removeCVRQualifiers();
6152     if (Quals1 != Quals2)
6153       return false;
6154 
6155     if (hasSameType(T1, T2))
6156       return true;
6157 
6158     if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false))
6159       return false;
6160   }
6161 }
6162 
6163 DeclarationNameInfo
6164 ASTContext::getNameForTemplate(TemplateName Name,
6165                                SourceLocation NameLoc) const {
6166   switch (Name.getKind()) {
6167   case TemplateName::QualifiedTemplate:
6168   case TemplateName::Template:
6169     // DNInfo work in progress: CHECKME: what about DNLoc?
6170     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
6171                                NameLoc);
6172 
6173   case TemplateName::OverloadedTemplate: {
6174     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
6175     // DNInfo work in progress: CHECKME: what about DNLoc?
6176     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
6177   }
6178 
6179   case TemplateName::AssumedTemplate: {
6180     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
6181     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
6182   }
6183 
6184   case TemplateName::DependentTemplate: {
6185     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6186     DeclarationName DName;
6187     if (DTN->isIdentifier()) {
6188       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
6189       return DeclarationNameInfo(DName, NameLoc);
6190     } else {
6191       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
6192       // DNInfo work in progress: FIXME: source locations?
6193       DeclarationNameLoc DNLoc =
6194           DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange());
6195       return DeclarationNameInfo(DName, NameLoc, DNLoc);
6196     }
6197   }
6198 
6199   case TemplateName::SubstTemplateTemplateParm: {
6200     SubstTemplateTemplateParmStorage *subst
6201       = Name.getAsSubstTemplateTemplateParm();
6202     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
6203                                NameLoc);
6204   }
6205 
6206   case TemplateName::SubstTemplateTemplateParmPack: {
6207     SubstTemplateTemplateParmPackStorage *subst
6208       = Name.getAsSubstTemplateTemplateParmPack();
6209     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
6210                                NameLoc);
6211   }
6212   case TemplateName::UsingTemplate:
6213     return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(),
6214                                NameLoc);
6215   }
6216 
6217   llvm_unreachable("bad template name kind!");
6218 }
6219 
6220 TemplateName
6221 ASTContext::getCanonicalTemplateName(const TemplateName &Name) const {
6222   switch (Name.getKind()) {
6223   case TemplateName::UsingTemplate:
6224   case TemplateName::QualifiedTemplate:
6225   case TemplateName::Template: {
6226     TemplateDecl *Template = Name.getAsTemplateDecl();
6227     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
6228       Template = getCanonicalTemplateTemplateParmDecl(TTP);
6229 
6230     // The canonical template name is the canonical template declaration.
6231     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
6232   }
6233 
6234   case TemplateName::OverloadedTemplate:
6235   case TemplateName::AssumedTemplate:
6236     llvm_unreachable("cannot canonicalize unresolved template");
6237 
6238   case TemplateName::DependentTemplate: {
6239     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6240     assert(DTN && "Non-dependent template names must refer to template decls.");
6241     return DTN->CanonicalTemplateName;
6242   }
6243 
6244   case TemplateName::SubstTemplateTemplateParm: {
6245     SubstTemplateTemplateParmStorage *subst
6246       = Name.getAsSubstTemplateTemplateParm();
6247     return getCanonicalTemplateName(subst->getReplacement());
6248   }
6249 
6250   case TemplateName::SubstTemplateTemplateParmPack: {
6251     SubstTemplateTemplateParmPackStorage *subst =
6252         Name.getAsSubstTemplateTemplateParmPack();
6253     TemplateArgument canonArgPack =
6254         getCanonicalTemplateArgument(subst->getArgumentPack());
6255     return getSubstTemplateTemplateParmPack(
6256         canonArgPack, subst->getAssociatedDecl()->getCanonicalDecl(),
6257         subst->getFinal(), subst->getIndex());
6258   }
6259   }
6260 
6261   llvm_unreachable("bad template name!");
6262 }
6263 
6264 bool ASTContext::hasSameTemplateName(const TemplateName &X,
6265                                      const TemplateName &Y) const {
6266   return getCanonicalTemplateName(X).getAsVoidPointer() ==
6267          getCanonicalTemplateName(Y).getAsVoidPointer();
6268 }
6269 
6270 bool ASTContext::isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const {
6271   if (!XCE != !YCE)
6272     return false;
6273 
6274   if (!XCE)
6275     return true;
6276 
6277   llvm::FoldingSetNodeID XCEID, YCEID;
6278   XCE->Profile(XCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true);
6279   YCE->Profile(YCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true);
6280   return XCEID == YCEID;
6281 }
6282 
6283 bool ASTContext::isSameTypeConstraint(const TypeConstraint *XTC,
6284                                       const TypeConstraint *YTC) const {
6285   if (!XTC != !YTC)
6286     return false;
6287 
6288   if (!XTC)
6289     return true;
6290 
6291   auto *NCX = XTC->getNamedConcept();
6292   auto *NCY = YTC->getNamedConcept();
6293   if (!NCX || !NCY || !isSameEntity(NCX, NCY))
6294     return false;
6295   if (XTC->getConceptReference()->hasExplicitTemplateArgs() !=
6296       YTC->getConceptReference()->hasExplicitTemplateArgs())
6297     return false;
6298   if (XTC->getConceptReference()->hasExplicitTemplateArgs())
6299     if (XTC->getConceptReference()
6300             ->getTemplateArgsAsWritten()
6301             ->NumTemplateArgs !=
6302         YTC->getConceptReference()->getTemplateArgsAsWritten()->NumTemplateArgs)
6303       return false;
6304 
6305   // Compare slowly by profiling.
6306   //
6307   // We couldn't compare the profiling result for the template
6308   // args here. Consider the following example in different modules:
6309   //
6310   // template <__integer_like _Tp, C<_Tp> Sentinel>
6311   // constexpr _Tp operator()(_Tp &&__t, Sentinel &&last) const {
6312   //   return __t;
6313   // }
6314   //
6315   // When we compare the profiling result for `C<_Tp>` in different
6316   // modules, it will compare the type of `_Tp` in different modules.
6317   // However, the type of `_Tp` in different modules refer to different
6318   // types here naturally. So we couldn't compare the profiling result
6319   // for the template args directly.
6320   return isSameConstraintExpr(XTC->getImmediatelyDeclaredConstraint(),
6321                               YTC->getImmediatelyDeclaredConstraint());
6322 }
6323 
6324 bool ASTContext::isSameTemplateParameter(const NamedDecl *X,
6325                                          const NamedDecl *Y) const {
6326   if (X->getKind() != Y->getKind())
6327     return false;
6328 
6329   if (auto *TX = dyn_cast<TemplateTypeParmDecl>(X)) {
6330     auto *TY = cast<TemplateTypeParmDecl>(Y);
6331     if (TX->isParameterPack() != TY->isParameterPack())
6332       return false;
6333     if (TX->hasTypeConstraint() != TY->hasTypeConstraint())
6334       return false;
6335     return isSameTypeConstraint(TX->getTypeConstraint(),
6336                                 TY->getTypeConstraint());
6337   }
6338 
6339   if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6340     auto *TY = cast<NonTypeTemplateParmDecl>(Y);
6341     return TX->isParameterPack() == TY->isParameterPack() &&
6342            TX->getASTContext().hasSameType(TX->getType(), TY->getType()) &&
6343            isSameConstraintExpr(TX->getPlaceholderTypeConstraint(),
6344                                 TY->getPlaceholderTypeConstraint());
6345   }
6346 
6347   auto *TX = cast<TemplateTemplateParmDecl>(X);
6348   auto *TY = cast<TemplateTemplateParmDecl>(Y);
6349   return TX->isParameterPack() == TY->isParameterPack() &&
6350          isSameTemplateParameterList(TX->getTemplateParameters(),
6351                                      TY->getTemplateParameters());
6352 }
6353 
6354 bool ASTContext::isSameTemplateParameterList(
6355     const TemplateParameterList *X, const TemplateParameterList *Y) const {
6356   if (X->size() != Y->size())
6357     return false;
6358 
6359   for (unsigned I = 0, N = X->size(); I != N; ++I)
6360     if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I)))
6361       return false;
6362 
6363   return isSameConstraintExpr(X->getRequiresClause(), Y->getRequiresClause());
6364 }
6365 
6366 bool ASTContext::isSameDefaultTemplateArgument(const NamedDecl *X,
6367                                                const NamedDecl *Y) const {
6368   // If the type parameter isn't the same already, we don't need to check the
6369   // default argument further.
6370   if (!isSameTemplateParameter(X, Y))
6371     return false;
6372 
6373   if (auto *TTPX = dyn_cast<TemplateTypeParmDecl>(X)) {
6374     auto *TTPY = cast<TemplateTypeParmDecl>(Y);
6375     if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument())
6376       return false;
6377 
6378     return hasSameType(TTPX->getDefaultArgument(), TTPY->getDefaultArgument());
6379   }
6380 
6381   if (auto *NTTPX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6382     auto *NTTPY = cast<NonTypeTemplateParmDecl>(Y);
6383     if (!NTTPX->hasDefaultArgument() || !NTTPY->hasDefaultArgument())
6384       return false;
6385 
6386     Expr *DefaultArgumentX = NTTPX->getDefaultArgument()->IgnoreImpCasts();
6387     Expr *DefaultArgumentY = NTTPY->getDefaultArgument()->IgnoreImpCasts();
6388     llvm::FoldingSetNodeID XID, YID;
6389     DefaultArgumentX->Profile(XID, *this, /*Canonical=*/true);
6390     DefaultArgumentY->Profile(YID, *this, /*Canonical=*/true);
6391     return XID == YID;
6392   }
6393 
6394   auto *TTPX = cast<TemplateTemplateParmDecl>(X);
6395   auto *TTPY = cast<TemplateTemplateParmDecl>(Y);
6396 
6397   if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument())
6398     return false;
6399 
6400   const TemplateArgument &TAX = TTPX->getDefaultArgument().getArgument();
6401   const TemplateArgument &TAY = TTPY->getDefaultArgument().getArgument();
6402   return hasSameTemplateName(TAX.getAsTemplate(), TAY.getAsTemplate());
6403 }
6404 
6405 static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) {
6406   if (auto *NS = X->getAsNamespace())
6407     return NS;
6408   if (auto *NAS = X->getAsNamespaceAlias())
6409     return NAS->getNamespace();
6410   return nullptr;
6411 }
6412 
6413 static bool isSameQualifier(const NestedNameSpecifier *X,
6414                             const NestedNameSpecifier *Y) {
6415   if (auto *NSX = getNamespace(X)) {
6416     auto *NSY = getNamespace(Y);
6417     if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl())
6418       return false;
6419   } else if (X->getKind() != Y->getKind())
6420     return false;
6421 
6422   // FIXME: For namespaces and types, we're permitted to check that the entity
6423   // is named via the same tokens. We should probably do so.
6424   switch (X->getKind()) {
6425   case NestedNameSpecifier::Identifier:
6426     if (X->getAsIdentifier() != Y->getAsIdentifier())
6427       return false;
6428     break;
6429   case NestedNameSpecifier::Namespace:
6430   case NestedNameSpecifier::NamespaceAlias:
6431     // We've already checked that we named the same namespace.
6432     break;
6433   case NestedNameSpecifier::TypeSpec:
6434   case NestedNameSpecifier::TypeSpecWithTemplate:
6435     if (X->getAsType()->getCanonicalTypeInternal() !=
6436         Y->getAsType()->getCanonicalTypeInternal())
6437       return false;
6438     break;
6439   case NestedNameSpecifier::Global:
6440   case NestedNameSpecifier::Super:
6441     return true;
6442   }
6443 
6444   // Recurse into earlier portion of NNS, if any.
6445   auto *PX = X->getPrefix();
6446   auto *PY = Y->getPrefix();
6447   if (PX && PY)
6448     return isSameQualifier(PX, PY);
6449   return !PX && !PY;
6450 }
6451 
6452 /// Determine whether the attributes we can overload on are identical for A and
6453 /// B. Will ignore any overloadable attrs represented in the type of A and B.
6454 static bool hasSameOverloadableAttrs(const FunctionDecl *A,
6455                                      const FunctionDecl *B) {
6456   // Note that pass_object_size attributes are represented in the function's
6457   // ExtParameterInfo, so we don't need to check them here.
6458 
6459   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
6460   auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>();
6461   auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>();
6462 
6463   for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) {
6464     std::optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
6465     std::optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
6466 
6467     // Return false if the number of enable_if attributes is different.
6468     if (!Cand1A || !Cand2A)
6469       return false;
6470 
6471     Cand1ID.clear();
6472     Cand2ID.clear();
6473 
6474     (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true);
6475     (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true);
6476 
6477     // Return false if any of the enable_if expressions of A and B are
6478     // different.
6479     if (Cand1ID != Cand2ID)
6480       return false;
6481   }
6482   return true;
6483 }
6484 
6485 bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) const {
6486   // Caution: this function is called by the AST reader during deserialization,
6487   // so it cannot rely on AST invariants being met. Non-trivial accessors
6488   // should be avoided, along with any traversal of redeclaration chains.
6489 
6490   if (X == Y)
6491     return true;
6492 
6493   if (X->getDeclName() != Y->getDeclName())
6494     return false;
6495 
6496   // Must be in the same context.
6497   //
6498   // Note that we can't use DeclContext::Equals here, because the DeclContexts
6499   // could be two different declarations of the same function. (We will fix the
6500   // semantic DC to refer to the primary definition after merging.)
6501   if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()),
6502                           cast<Decl>(Y->getDeclContext()->getRedeclContext())))
6503     return false;
6504 
6505   // Two typedefs refer to the same entity if they have the same underlying
6506   // type.
6507   if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(X))
6508     if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Y))
6509       return hasSameType(TypedefX->getUnderlyingType(),
6510                          TypedefY->getUnderlyingType());
6511 
6512   // Must have the same kind.
6513   if (X->getKind() != Y->getKind())
6514     return false;
6515 
6516   // Objective-C classes and protocols with the same name always match.
6517   if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X))
6518     return true;
6519 
6520   if (isa<ClassTemplateSpecializationDecl>(X)) {
6521     // No need to handle these here: we merge them when adding them to the
6522     // template.
6523     return false;
6524   }
6525 
6526   // Compatible tags match.
6527   if (const auto *TagX = dyn_cast<TagDecl>(X)) {
6528     const auto *TagY = cast<TagDecl>(Y);
6529     return (TagX->getTagKind() == TagY->getTagKind()) ||
6530            ((TagX->getTagKind() == TagTypeKind::Struct ||
6531              TagX->getTagKind() == TagTypeKind::Class ||
6532              TagX->getTagKind() == TagTypeKind::Interface) &&
6533             (TagY->getTagKind() == TagTypeKind::Struct ||
6534              TagY->getTagKind() == TagTypeKind::Class ||
6535              TagY->getTagKind() == TagTypeKind::Interface));
6536   }
6537 
6538   // Functions with the same type and linkage match.
6539   // FIXME: This needs to cope with merging of prototyped/non-prototyped
6540   // functions, etc.
6541   if (const auto *FuncX = dyn_cast<FunctionDecl>(X)) {
6542     const auto *FuncY = cast<FunctionDecl>(Y);
6543     if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(X)) {
6544       const auto *CtorY = cast<CXXConstructorDecl>(Y);
6545       if (CtorX->getInheritedConstructor() &&
6546           !isSameEntity(CtorX->getInheritedConstructor().getConstructor(),
6547                         CtorY->getInheritedConstructor().getConstructor()))
6548         return false;
6549     }
6550 
6551     if (FuncX->isMultiVersion() != FuncY->isMultiVersion())
6552       return false;
6553 
6554     // Multiversioned functions with different feature strings are represented
6555     // as separate declarations.
6556     if (FuncX->isMultiVersion()) {
6557       const auto *TAX = FuncX->getAttr<TargetAttr>();
6558       const auto *TAY = FuncY->getAttr<TargetAttr>();
6559       assert(TAX && TAY && "Multiversion Function without target attribute");
6560 
6561       if (TAX->getFeaturesStr() != TAY->getFeaturesStr())
6562         return false;
6563     }
6564 
6565     // Per C++20 [temp.over.link]/4, friends in different classes are sometimes
6566     // not the same entity if they are constrained.
6567     if ((FuncX->isMemberLikeConstrainedFriend() ||
6568          FuncY->isMemberLikeConstrainedFriend()) &&
6569         !FuncX->getLexicalDeclContext()->Equals(
6570             FuncY->getLexicalDeclContext())) {
6571       return false;
6572     }
6573 
6574     if (!isSameConstraintExpr(FuncX->getTrailingRequiresClause(),
6575                               FuncY->getTrailingRequiresClause()))
6576       return false;
6577 
6578     auto GetTypeAsWritten = [](const FunctionDecl *FD) {
6579       // Map to the first declaration that we've already merged into this one.
6580       // The TSI of redeclarations might not match (due to calling conventions
6581       // being inherited onto the type but not the TSI), but the TSI type of
6582       // the first declaration of the function should match across modules.
6583       FD = FD->getCanonicalDecl();
6584       return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType()
6585                                      : FD->getType();
6586     };
6587     QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY);
6588     if (!hasSameType(XT, YT)) {
6589       // We can get functions with different types on the redecl chain in C++17
6590       // if they have differing exception specifications and at least one of
6591       // the excpetion specs is unresolved.
6592       auto *XFPT = XT->getAs<FunctionProtoType>();
6593       auto *YFPT = YT->getAs<FunctionProtoType>();
6594       if (getLangOpts().CPlusPlus17 && XFPT && YFPT &&
6595           (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) ||
6596            isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) &&
6597           hasSameFunctionTypeIgnoringExceptionSpec(XT, YT))
6598         return true;
6599       return false;
6600     }
6601 
6602     return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() &&
6603            hasSameOverloadableAttrs(FuncX, FuncY);
6604   }
6605 
6606   // Variables with the same type and linkage match.
6607   if (const auto *VarX = dyn_cast<VarDecl>(X)) {
6608     const auto *VarY = cast<VarDecl>(Y);
6609     if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) {
6610       // During deserialization, we might compare variables before we load
6611       // their types. Assume the types will end up being the same.
6612       if (VarX->getType().isNull() || VarY->getType().isNull())
6613         return true;
6614 
6615       if (hasSameType(VarX->getType(), VarY->getType()))
6616         return true;
6617 
6618       // We can get decls with different types on the redecl chain. Eg.
6619       // template <typename T> struct S { static T Var[]; }; // #1
6620       // template <typename T> T S<T>::Var[sizeof(T)]; // #2
6621       // Only? happens when completing an incomplete array type. In this case
6622       // when comparing #1 and #2 we should go through their element type.
6623       const ArrayType *VarXTy = getAsArrayType(VarX->getType());
6624       const ArrayType *VarYTy = getAsArrayType(VarY->getType());
6625       if (!VarXTy || !VarYTy)
6626         return false;
6627       if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType())
6628         return hasSameType(VarXTy->getElementType(), VarYTy->getElementType());
6629     }
6630     return false;
6631   }
6632 
6633   // Namespaces with the same name and inlinedness match.
6634   if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(X)) {
6635     const auto *NamespaceY = cast<NamespaceDecl>(Y);
6636     return NamespaceX->isInline() == NamespaceY->isInline();
6637   }
6638 
6639   // Identical template names and kinds match if their template parameter lists
6640   // and patterns match.
6641   if (const auto *TemplateX = dyn_cast<TemplateDecl>(X)) {
6642     const auto *TemplateY = cast<TemplateDecl>(Y);
6643 
6644     // ConceptDecl wouldn't be the same if their constraint expression differs.
6645     if (const auto *ConceptX = dyn_cast<ConceptDecl>(X)) {
6646       const auto *ConceptY = cast<ConceptDecl>(Y);
6647       if (!isSameConstraintExpr(ConceptX->getConstraintExpr(),
6648                                 ConceptY->getConstraintExpr()))
6649         return false;
6650     }
6651 
6652     return isSameEntity(TemplateX->getTemplatedDecl(),
6653                         TemplateY->getTemplatedDecl()) &&
6654            isSameTemplateParameterList(TemplateX->getTemplateParameters(),
6655                                        TemplateY->getTemplateParameters());
6656   }
6657 
6658   // Fields with the same name and the same type match.
6659   if (const auto *FDX = dyn_cast<FieldDecl>(X)) {
6660     const auto *FDY = cast<FieldDecl>(Y);
6661     // FIXME: Also check the bitwidth is odr-equivalent, if any.
6662     return hasSameType(FDX->getType(), FDY->getType());
6663   }
6664 
6665   // Indirect fields with the same target field match.
6666   if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) {
6667     const auto *IFDY = cast<IndirectFieldDecl>(Y);
6668     return IFDX->getAnonField()->getCanonicalDecl() ==
6669            IFDY->getAnonField()->getCanonicalDecl();
6670   }
6671 
6672   // Enumerators with the same name match.
6673   if (isa<EnumConstantDecl>(X))
6674     // FIXME: Also check the value is odr-equivalent.
6675     return true;
6676 
6677   // Using shadow declarations with the same target match.
6678   if (const auto *USX = dyn_cast<UsingShadowDecl>(X)) {
6679     const auto *USY = cast<UsingShadowDecl>(Y);
6680     return USX->getTargetDecl() == USY->getTargetDecl();
6681   }
6682 
6683   // Using declarations with the same qualifier match. (We already know that
6684   // the name matches.)
6685   if (const auto *UX = dyn_cast<UsingDecl>(X)) {
6686     const auto *UY = cast<UsingDecl>(Y);
6687     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6688            UX->hasTypename() == UY->hasTypename() &&
6689            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6690   }
6691   if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) {
6692     const auto *UY = cast<UnresolvedUsingValueDecl>(Y);
6693     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6694            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6695   }
6696   if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X)) {
6697     return isSameQualifier(
6698         UX->getQualifier(),
6699         cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier());
6700   }
6701 
6702   // Using-pack declarations are only created by instantiation, and match if
6703   // they're instantiated from matching UnresolvedUsing...Decls.
6704   if (const auto *UX = dyn_cast<UsingPackDecl>(X)) {
6705     return declaresSameEntity(
6706         UX->getInstantiatedFromUsingDecl(),
6707         cast<UsingPackDecl>(Y)->getInstantiatedFromUsingDecl());
6708   }
6709 
6710   // Namespace alias definitions with the same target match.
6711   if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) {
6712     const auto *NAY = cast<NamespaceAliasDecl>(Y);
6713     return NAX->getNamespace()->Equals(NAY->getNamespace());
6714   }
6715 
6716   return false;
6717 }
6718 
6719 TemplateArgument
6720 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
6721   switch (Arg.getKind()) {
6722     case TemplateArgument::Null:
6723       return Arg;
6724 
6725     case TemplateArgument::Expression:
6726       return Arg;
6727 
6728     case TemplateArgument::Declaration: {
6729       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
6730       return TemplateArgument(D, getCanonicalType(Arg.getParamTypeForDecl()),
6731                               Arg.getIsDefaulted());
6732     }
6733 
6734     case TemplateArgument::NullPtr:
6735       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
6736                               /*isNullPtr*/ true, Arg.getIsDefaulted());
6737 
6738     case TemplateArgument::Template:
6739       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()),
6740                               Arg.getIsDefaulted());
6741 
6742     case TemplateArgument::TemplateExpansion:
6743       return TemplateArgument(
6744           getCanonicalTemplateName(Arg.getAsTemplateOrTemplatePattern()),
6745           Arg.getNumTemplateExpansions(), Arg.getIsDefaulted());
6746 
6747     case TemplateArgument::Integral:
6748       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
6749 
6750     case TemplateArgument::Type:
6751       return TemplateArgument(getCanonicalType(Arg.getAsType()),
6752                               /*isNullPtr*/ false, Arg.getIsDefaulted());
6753 
6754     case TemplateArgument::Pack: {
6755       bool AnyNonCanonArgs = false;
6756       auto CanonArgs = ::getCanonicalTemplateArguments(
6757           *this, Arg.pack_elements(), AnyNonCanonArgs);
6758       if (!AnyNonCanonArgs)
6759         return Arg;
6760       return TemplateArgument::CreatePackCopy(const_cast<ASTContext &>(*this),
6761                                               CanonArgs);
6762     }
6763   }
6764 
6765   // Silence GCC warning
6766   llvm_unreachable("Unhandled template argument kind");
6767 }
6768 
6769 NestedNameSpecifier *
6770 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
6771   if (!NNS)
6772     return nullptr;
6773 
6774   switch (NNS->getKind()) {
6775   case NestedNameSpecifier::Identifier:
6776     // Canonicalize the prefix but keep the identifier the same.
6777     return NestedNameSpecifier::Create(*this,
6778                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
6779                                        NNS->getAsIdentifier());
6780 
6781   case NestedNameSpecifier::Namespace:
6782     // A namespace is canonical; build a nested-name-specifier with
6783     // this namespace and no prefix.
6784     return NestedNameSpecifier::Create(*this, nullptr,
6785                                  NNS->getAsNamespace()->getOriginalNamespace());
6786 
6787   case NestedNameSpecifier::NamespaceAlias:
6788     // A namespace is canonical; build a nested-name-specifier with
6789     // this namespace and no prefix.
6790     return NestedNameSpecifier::Create(*this, nullptr,
6791                                     NNS->getAsNamespaceAlias()->getNamespace()
6792                                                       ->getOriginalNamespace());
6793 
6794   // The difference between TypeSpec and TypeSpecWithTemplate is that the
6795   // latter will have the 'template' keyword when printed.
6796   case NestedNameSpecifier::TypeSpec:
6797   case NestedNameSpecifier::TypeSpecWithTemplate: {
6798     const Type *T = getCanonicalType(NNS->getAsType());
6799 
6800     // If we have some kind of dependent-named type (e.g., "typename T::type"),
6801     // break it apart into its prefix and identifier, then reconsititute those
6802     // as the canonical nested-name-specifier. This is required to canonicalize
6803     // a dependent nested-name-specifier involving typedefs of dependent-name
6804     // types, e.g.,
6805     //   typedef typename T::type T1;
6806     //   typedef typename T1::type T2;
6807     if (const auto *DNT = T->getAs<DependentNameType>())
6808       return NestedNameSpecifier::Create(
6809           *this, DNT->getQualifier(),
6810           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
6811     if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>())
6812       return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true,
6813                                          const_cast<Type *>(T));
6814 
6815     // TODO: Set 'Template' parameter to true for other template types.
6816     return NestedNameSpecifier::Create(*this, nullptr, false,
6817                                        const_cast<Type *>(T));
6818   }
6819 
6820   case NestedNameSpecifier::Global:
6821   case NestedNameSpecifier::Super:
6822     // The global specifier and __super specifer are canonical and unique.
6823     return NNS;
6824   }
6825 
6826   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6827 }
6828 
6829 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6830   // Handle the non-qualified case efficiently.
6831   if (!T.hasLocalQualifiers()) {
6832     // Handle the common positive case fast.
6833     if (const auto *AT = dyn_cast<ArrayType>(T))
6834       return AT;
6835   }
6836 
6837   // Handle the common negative case fast.
6838   if (!isa<ArrayType>(T.getCanonicalType()))
6839     return nullptr;
6840 
6841   // Apply any qualifiers from the array type to the element type.  This
6842   // implements C99 6.7.3p8: "If the specification of an array type includes
6843   // any type qualifiers, the element type is so qualified, not the array type."
6844 
6845   // If we get here, we either have type qualifiers on the type, or we have
6846   // sugar such as a typedef in the way.  If we have type qualifiers on the type
6847   // we must propagate them down into the element type.
6848 
6849   SplitQualType split = T.getSplitDesugaredType();
6850   Qualifiers qs = split.Quals;
6851 
6852   // If we have a simple case, just return now.
6853   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6854   if (!ATy || qs.empty())
6855     return ATy;
6856 
6857   // Otherwise, we have an array and we have qualifiers on it.  Push the
6858   // qualifiers into the array element type and return a new array type.
6859   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6860 
6861   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6862     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6863                                                 CAT->getSizeExpr(),
6864                                                 CAT->getSizeModifier(),
6865                                            CAT->getIndexTypeCVRQualifiers()));
6866   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6867     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6868                                                   IAT->getSizeModifier(),
6869                                            IAT->getIndexTypeCVRQualifiers()));
6870 
6871   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6872     return cast<ArrayType>(
6873                      getDependentSizedArrayType(NewEltTy,
6874                                                 DSAT->getSizeExpr(),
6875                                                 DSAT->getSizeModifier(),
6876                                               DSAT->getIndexTypeCVRQualifiers(),
6877                                                 DSAT->getBracketsRange()));
6878 
6879   const auto *VAT = cast<VariableArrayType>(ATy);
6880   return cast<ArrayType>(getVariableArrayType(NewEltTy,
6881                                               VAT->getSizeExpr(),
6882                                               VAT->getSizeModifier(),
6883                                               VAT->getIndexTypeCVRQualifiers(),
6884                                               VAT->getBracketsRange()));
6885 }
6886 
6887 QualType ASTContext::getAdjustedParameterType(QualType T) const {
6888   if (T->isArrayType() || T->isFunctionType())
6889     return getDecayedType(T);
6890   return T;
6891 }
6892 
6893 QualType ASTContext::getSignatureParameterType(QualType T) const {
6894   T = getVariableArrayDecayedType(T);
6895   T = getAdjustedParameterType(T);
6896   return T.getUnqualifiedType();
6897 }
6898 
6899 QualType ASTContext::getExceptionObjectType(QualType T) const {
6900   // C++ [except.throw]p3:
6901   //   A throw-expression initializes a temporary object, called the exception
6902   //   object, the type of which is determined by removing any top-level
6903   //   cv-qualifiers from the static type of the operand of throw and adjusting
6904   //   the type from "array of T" or "function returning T" to "pointer to T"
6905   //   or "pointer to function returning T", [...]
6906   T = getVariableArrayDecayedType(T);
6907   if (T->isArrayType() || T->isFunctionType())
6908     T = getDecayedType(T);
6909   return T.getUnqualifiedType();
6910 }
6911 
6912 /// getArrayDecayedType - Return the properly qualified result of decaying the
6913 /// specified array type to a pointer.  This operation is non-trivial when
6914 /// handling typedefs etc.  The canonical type of "T" must be an array type,
6915 /// this returns a pointer to a properly qualified element of the array.
6916 ///
6917 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
6918 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6919   // Get the element type with 'getAsArrayType' so that we don't lose any
6920   // typedefs in the element type of the array.  This also handles propagation
6921   // of type qualifiers from the array type into the element type if present
6922   // (C99 6.7.3p8).
6923   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6924   assert(PrettyArrayType && "Not an array type!");
6925 
6926   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6927 
6928   // int x[restrict 4] ->  int *restrict
6929   QualType Result = getQualifiedType(PtrTy,
6930                                      PrettyArrayType->getIndexTypeQualifiers());
6931 
6932   // int x[_Nullable] -> int * _Nullable
6933   if (auto Nullability = Ty->getNullability()) {
6934     Result = const_cast<ASTContext *>(this)->getAttributedType(
6935         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6936   }
6937   return Result;
6938 }
6939 
6940 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6941   return getBaseElementType(array->getElementType());
6942 }
6943 
6944 QualType ASTContext::getBaseElementType(QualType type) const {
6945   Qualifiers qs;
6946   while (true) {
6947     SplitQualType split = type.getSplitDesugaredType();
6948     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6949     if (!array) break;
6950 
6951     type = array->getElementType();
6952     qs.addConsistentQualifiers(split.Quals);
6953   }
6954 
6955   return getQualifiedType(type, qs);
6956 }
6957 
6958 /// getConstantArrayElementCount - Returns number of constant array elements.
6959 uint64_t
6960 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
6961   uint64_t ElementCount = 1;
6962   do {
6963     ElementCount *= CA->getSize().getZExtValue();
6964     CA = dyn_cast_or_null<ConstantArrayType>(
6965       CA->getElementType()->getAsArrayTypeUnsafe());
6966   } while (CA);
6967   return ElementCount;
6968 }
6969 
6970 uint64_t ASTContext::getArrayInitLoopExprElementCount(
6971     const ArrayInitLoopExpr *AILE) const {
6972   if (!AILE)
6973     return 0;
6974 
6975   uint64_t ElementCount = 1;
6976 
6977   do {
6978     ElementCount *= AILE->getArraySize().getZExtValue();
6979     AILE = dyn_cast<ArrayInitLoopExpr>(AILE->getSubExpr());
6980   } while (AILE);
6981 
6982   return ElementCount;
6983 }
6984 
6985 /// getFloatingRank - Return a relative rank for floating point types.
6986 /// This routine will assert if passed a built-in type that isn't a float.
6987 static FloatingRank getFloatingRank(QualType T) {
6988   if (const auto *CT = T->getAs<ComplexType>())
6989     return getFloatingRank(CT->getElementType());
6990 
6991   switch (T->castAs<BuiltinType>()->getKind()) {
6992   default: llvm_unreachable("getFloatingRank(): not a floating type");
6993   case BuiltinType::Float16:    return Float16Rank;
6994   case BuiltinType::Half:       return HalfRank;
6995   case BuiltinType::Float:      return FloatRank;
6996   case BuiltinType::Double:     return DoubleRank;
6997   case BuiltinType::LongDouble: return LongDoubleRank;
6998   case BuiltinType::Float128:   return Float128Rank;
6999   case BuiltinType::BFloat16:   return BFloat16Rank;
7000   case BuiltinType::Ibm128:     return Ibm128Rank;
7001   }
7002 }
7003 
7004 /// getFloatingTypeOrder - Compare the rank of the two specified floating
7005 /// point types, ignoring the domain of the type (i.e. 'double' ==
7006 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
7007 /// LHS < RHS, return -1.
7008 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
7009   FloatingRank LHSR = getFloatingRank(LHS);
7010   FloatingRank RHSR = getFloatingRank(RHS);
7011 
7012   if (LHSR == RHSR)
7013     return 0;
7014   if (LHSR > RHSR)
7015     return 1;
7016   return -1;
7017 }
7018 
7019 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
7020   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
7021     return 0;
7022   return getFloatingTypeOrder(LHS, RHS);
7023 }
7024 
7025 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
7026 /// routine will assert if passed a built-in type that isn't an integer or enum,
7027 /// or if it is not canonicalized.
7028 unsigned ASTContext::getIntegerRank(const Type *T) const {
7029   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
7030 
7031   // Results in this 'losing' to any type of the same size, but winning if
7032   // larger.
7033   if (const auto *EIT = dyn_cast<BitIntType>(T))
7034     return 0 + (EIT->getNumBits() << 3);
7035 
7036   switch (cast<BuiltinType>(T)->getKind()) {
7037   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
7038   case BuiltinType::Bool:
7039     return 1 + (getIntWidth(BoolTy) << 3);
7040   case BuiltinType::Char_S:
7041   case BuiltinType::Char_U:
7042   case BuiltinType::SChar:
7043   case BuiltinType::UChar:
7044     return 2 + (getIntWidth(CharTy) << 3);
7045   case BuiltinType::Short:
7046   case BuiltinType::UShort:
7047     return 3 + (getIntWidth(ShortTy) << 3);
7048   case BuiltinType::Int:
7049   case BuiltinType::UInt:
7050     return 4 + (getIntWidth(IntTy) << 3);
7051   case BuiltinType::Long:
7052   case BuiltinType::ULong:
7053     return 5 + (getIntWidth(LongTy) << 3);
7054   case BuiltinType::LongLong:
7055   case BuiltinType::ULongLong:
7056     return 6 + (getIntWidth(LongLongTy) << 3);
7057   case BuiltinType::Int128:
7058   case BuiltinType::UInt128:
7059     return 7 + (getIntWidth(Int128Ty) << 3);
7060 
7061   // "The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of
7062   // their underlying types" [c++20 conv.rank]
7063   case BuiltinType::Char8:
7064     return getIntegerRank(UnsignedCharTy.getTypePtr());
7065   case BuiltinType::Char16:
7066     return getIntegerRank(
7067         getFromTargetType(Target->getChar16Type()).getTypePtr());
7068   case BuiltinType::Char32:
7069     return getIntegerRank(
7070         getFromTargetType(Target->getChar32Type()).getTypePtr());
7071   case BuiltinType::WChar_S:
7072   case BuiltinType::WChar_U:
7073     return getIntegerRank(
7074         getFromTargetType(Target->getWCharType()).getTypePtr());
7075   }
7076 }
7077 
7078 /// Whether this is a promotable bitfield reference according
7079 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
7080 ///
7081 /// \returns the type this bit-field will promote to, or NULL if no
7082 /// promotion occurs.
7083 QualType ASTContext::isPromotableBitField(Expr *E) const {
7084   if (E->isTypeDependent() || E->isValueDependent())
7085     return {};
7086 
7087   // C++ [conv.prom]p5:
7088   //    If the bit-field has an enumerated type, it is treated as any other
7089   //    value of that type for promotion purposes.
7090   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
7091     return {};
7092 
7093   // FIXME: We should not do this unless E->refersToBitField() is true. This
7094   // matters in C where getSourceBitField() will find bit-fields for various
7095   // cases where the source expression is not a bit-field designator.
7096 
7097   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
7098   if (!Field)
7099     return {};
7100 
7101   QualType FT = Field->getType();
7102 
7103   uint64_t BitWidth = Field->getBitWidthValue(*this);
7104   uint64_t IntSize = getTypeSize(IntTy);
7105   // C++ [conv.prom]p5:
7106   //   A prvalue for an integral bit-field can be converted to a prvalue of type
7107   //   int if int can represent all the values of the bit-field; otherwise, it
7108   //   can be converted to unsigned int if unsigned int can represent all the
7109   //   values of the bit-field. If the bit-field is larger yet, no integral
7110   //   promotion applies to it.
7111   // C11 6.3.1.1/2:
7112   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
7113   //   If an int can represent all values of the original type (as restricted by
7114   //   the width, for a bit-field), the value is converted to an int; otherwise,
7115   //   it is converted to an unsigned int.
7116   //
7117   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
7118   //        We perform that promotion here to match GCC and C++.
7119   // FIXME: C does not permit promotion of an enum bit-field whose rank is
7120   //        greater than that of 'int'. We perform that promotion to match GCC.
7121   if (BitWidth < IntSize)
7122     return IntTy;
7123 
7124   if (BitWidth == IntSize)
7125     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
7126 
7127   // Bit-fields wider than int are not subject to promotions, and therefore act
7128   // like the base type. GCC has some weird bugs in this area that we
7129   // deliberately do not follow (GCC follows a pre-standard resolution to
7130   // C's DR315 which treats bit-width as being part of the type, and this leaks
7131   // into their semantics in some cases).
7132   return {};
7133 }
7134 
7135 /// getPromotedIntegerType - Returns the type that Promotable will
7136 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
7137 /// integer type.
7138 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
7139   assert(!Promotable.isNull());
7140   assert(isPromotableIntegerType(Promotable));
7141   if (const auto *ET = Promotable->getAs<EnumType>())
7142     return ET->getDecl()->getPromotionType();
7143 
7144   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
7145     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
7146     // (3.9.1) can be converted to a prvalue of the first of the following
7147     // types that can represent all the values of its underlying type:
7148     // int, unsigned int, long int, unsigned long int, long long int, or
7149     // unsigned long long int [...]
7150     // FIXME: Is there some better way to compute this?
7151     if (BT->getKind() == BuiltinType::WChar_S ||
7152         BT->getKind() == BuiltinType::WChar_U ||
7153         BT->getKind() == BuiltinType::Char8 ||
7154         BT->getKind() == BuiltinType::Char16 ||
7155         BT->getKind() == BuiltinType::Char32) {
7156       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
7157       uint64_t FromSize = getTypeSize(BT);
7158       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
7159                                   LongLongTy, UnsignedLongLongTy };
7160       for (const auto &PT : PromoteTypes) {
7161         uint64_t ToSize = getTypeSize(PT);
7162         if (FromSize < ToSize ||
7163             (FromSize == ToSize && FromIsSigned == PT->isSignedIntegerType()))
7164           return PT;
7165       }
7166       llvm_unreachable("char type should fit into long long");
7167     }
7168   }
7169 
7170   // At this point, we should have a signed or unsigned integer type.
7171   if (Promotable->isSignedIntegerType())
7172     return IntTy;
7173   uint64_t PromotableSize = getIntWidth(Promotable);
7174   uint64_t IntSize = getIntWidth(IntTy);
7175   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
7176   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
7177 }
7178 
7179 /// Recurses in pointer/array types until it finds an objc retainable
7180 /// type and returns its ownership.
7181 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
7182   while (!T.isNull()) {
7183     if (T.getObjCLifetime() != Qualifiers::OCL_None)
7184       return T.getObjCLifetime();
7185     if (T->isArrayType())
7186       T = getBaseElementType(T);
7187     else if (const auto *PT = T->getAs<PointerType>())
7188       T = PT->getPointeeType();
7189     else if (const auto *RT = T->getAs<ReferenceType>())
7190       T = RT->getPointeeType();
7191     else
7192       break;
7193   }
7194 
7195   return Qualifiers::OCL_None;
7196 }
7197 
7198 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
7199   // Incomplete enum types are not treated as integer types.
7200   // FIXME: In C++, enum types are never integer types.
7201   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
7202     return ET->getDecl()->getIntegerType().getTypePtr();
7203   return nullptr;
7204 }
7205 
7206 /// getIntegerTypeOrder - Returns the highest ranked integer type:
7207 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
7208 /// LHS < RHS, return -1.
7209 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
7210   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
7211   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
7212 
7213   // Unwrap enums to their underlying type.
7214   if (const auto *ET = dyn_cast<EnumType>(LHSC))
7215     LHSC = getIntegerTypeForEnum(ET);
7216   if (const auto *ET = dyn_cast<EnumType>(RHSC))
7217     RHSC = getIntegerTypeForEnum(ET);
7218 
7219   if (LHSC == RHSC) return 0;
7220 
7221   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
7222   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
7223 
7224   unsigned LHSRank = getIntegerRank(LHSC);
7225   unsigned RHSRank = getIntegerRank(RHSC);
7226 
7227   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
7228     if (LHSRank == RHSRank) return 0;
7229     return LHSRank > RHSRank ? 1 : -1;
7230   }
7231 
7232   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
7233   if (LHSUnsigned) {
7234     // If the unsigned [LHS] type is larger, return it.
7235     if (LHSRank >= RHSRank)
7236       return 1;
7237 
7238     // If the signed type can represent all values of the unsigned type, it
7239     // wins.  Because we are dealing with 2's complement and types that are
7240     // powers of two larger than each other, this is always safe.
7241     return -1;
7242   }
7243 
7244   // If the unsigned [RHS] type is larger, return it.
7245   if (RHSRank >= LHSRank)
7246     return -1;
7247 
7248   // If the signed type can represent all values of the unsigned type, it
7249   // wins.  Because we are dealing with 2's complement and types that are
7250   // powers of two larger than each other, this is always safe.
7251   return 1;
7252 }
7253 
7254 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
7255   if (CFConstantStringTypeDecl)
7256     return CFConstantStringTypeDecl;
7257 
7258   assert(!CFConstantStringTagDecl &&
7259          "tag and typedef should be initialized together");
7260   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
7261   CFConstantStringTagDecl->startDefinition();
7262 
7263   struct {
7264     QualType Type;
7265     const char *Name;
7266   } Fields[5];
7267   unsigned Count = 0;
7268 
7269   /// Objective-C ABI
7270   ///
7271   ///    typedef struct __NSConstantString_tag {
7272   ///      const int *isa;
7273   ///      int flags;
7274   ///      const char *str;
7275   ///      long length;
7276   ///    } __NSConstantString;
7277   ///
7278   /// Swift ABI (4.1, 4.2)
7279   ///
7280   ///    typedef struct __NSConstantString_tag {
7281   ///      uintptr_t _cfisa;
7282   ///      uintptr_t _swift_rc;
7283   ///      _Atomic(uint64_t) _cfinfoa;
7284   ///      const char *_ptr;
7285   ///      uint32_t _length;
7286   ///    } __NSConstantString;
7287   ///
7288   /// Swift ABI (5.0)
7289   ///
7290   ///    typedef struct __NSConstantString_tag {
7291   ///      uintptr_t _cfisa;
7292   ///      uintptr_t _swift_rc;
7293   ///      _Atomic(uint64_t) _cfinfoa;
7294   ///      const char *_ptr;
7295   ///      uintptr_t _length;
7296   ///    } __NSConstantString;
7297 
7298   const auto CFRuntime = getLangOpts().CFRuntime;
7299   if (static_cast<unsigned>(CFRuntime) <
7300       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
7301     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
7302     Fields[Count++] = { IntTy, "flags" };
7303     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
7304     Fields[Count++] = { LongTy, "length" };
7305   } else {
7306     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
7307     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
7308     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
7309     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
7310     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
7311         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
7312       Fields[Count++] = { IntTy, "_ptr" };
7313     else
7314       Fields[Count++] = { getUIntPtrType(), "_ptr" };
7315   }
7316 
7317   // Create fields
7318   for (unsigned i = 0; i < Count; ++i) {
7319     FieldDecl *Field =
7320         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
7321                           SourceLocation(), &Idents.get(Fields[i].Name),
7322                           Fields[i].Type, /*TInfo=*/nullptr,
7323                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7324     Field->setAccess(AS_public);
7325     CFConstantStringTagDecl->addDecl(Field);
7326   }
7327 
7328   CFConstantStringTagDecl->completeDefinition();
7329   // This type is designed to be compatible with NSConstantString, but cannot
7330   // use the same name, since NSConstantString is an interface.
7331   auto tagType = getTagDeclType(CFConstantStringTagDecl);
7332   CFConstantStringTypeDecl =
7333       buildImplicitTypedef(tagType, "__NSConstantString");
7334 
7335   return CFConstantStringTypeDecl;
7336 }
7337 
7338 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
7339   if (!CFConstantStringTagDecl)
7340     getCFConstantStringDecl(); // Build the tag and the typedef.
7341   return CFConstantStringTagDecl;
7342 }
7343 
7344 // getCFConstantStringType - Return the type used for constant CFStrings.
7345 QualType ASTContext::getCFConstantStringType() const {
7346   return getTypedefType(getCFConstantStringDecl());
7347 }
7348 
7349 QualType ASTContext::getObjCSuperType() const {
7350   if (ObjCSuperType.isNull()) {
7351     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
7352     getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl);
7353     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
7354   }
7355   return ObjCSuperType;
7356 }
7357 
7358 void ASTContext::setCFConstantStringType(QualType T) {
7359   const auto *TD = T->castAs<TypedefType>();
7360   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
7361   const auto *TagType =
7362       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
7363   CFConstantStringTagDecl = TagType->getDecl();
7364 }
7365 
7366 QualType ASTContext::getBlockDescriptorType() const {
7367   if (BlockDescriptorType)
7368     return getTagDeclType(BlockDescriptorType);
7369 
7370   RecordDecl *RD;
7371   // FIXME: Needs the FlagAppleBlock bit.
7372   RD = buildImplicitRecord("__block_descriptor");
7373   RD->startDefinition();
7374 
7375   QualType FieldTypes[] = {
7376     UnsignedLongTy,
7377     UnsignedLongTy,
7378   };
7379 
7380   static const char *const FieldNames[] = {
7381     "reserved",
7382     "Size"
7383   };
7384 
7385   for (size_t i = 0; i < 2; ++i) {
7386     FieldDecl *Field = FieldDecl::Create(
7387         *this, RD, SourceLocation(), SourceLocation(),
7388         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7389         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7390     Field->setAccess(AS_public);
7391     RD->addDecl(Field);
7392   }
7393 
7394   RD->completeDefinition();
7395 
7396   BlockDescriptorType = RD;
7397 
7398   return getTagDeclType(BlockDescriptorType);
7399 }
7400 
7401 QualType ASTContext::getBlockDescriptorExtendedType() const {
7402   if (BlockDescriptorExtendedType)
7403     return getTagDeclType(BlockDescriptorExtendedType);
7404 
7405   RecordDecl *RD;
7406   // FIXME: Needs the FlagAppleBlock bit.
7407   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
7408   RD->startDefinition();
7409 
7410   QualType FieldTypes[] = {
7411     UnsignedLongTy,
7412     UnsignedLongTy,
7413     getPointerType(VoidPtrTy),
7414     getPointerType(VoidPtrTy)
7415   };
7416 
7417   static const char *const FieldNames[] = {
7418     "reserved",
7419     "Size",
7420     "CopyFuncPtr",
7421     "DestroyFuncPtr"
7422   };
7423 
7424   for (size_t i = 0; i < 4; ++i) {
7425     FieldDecl *Field = FieldDecl::Create(
7426         *this, RD, SourceLocation(), SourceLocation(),
7427         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7428         /*BitWidth=*/nullptr,
7429         /*Mutable=*/false, ICIS_NoInit);
7430     Field->setAccess(AS_public);
7431     RD->addDecl(Field);
7432   }
7433 
7434   RD->completeDefinition();
7435 
7436   BlockDescriptorExtendedType = RD;
7437   return getTagDeclType(BlockDescriptorExtendedType);
7438 }
7439 
7440 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
7441   const auto *BT = dyn_cast<BuiltinType>(T);
7442 
7443   if (!BT) {
7444     if (isa<PipeType>(T))
7445       return OCLTK_Pipe;
7446 
7447     return OCLTK_Default;
7448   }
7449 
7450   switch (BT->getKind()) {
7451 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
7452   case BuiltinType::Id:                                                        \
7453     return OCLTK_Image;
7454 #include "clang/Basic/OpenCLImageTypes.def"
7455 
7456   case BuiltinType::OCLClkEvent:
7457     return OCLTK_ClkEvent;
7458 
7459   case BuiltinType::OCLEvent:
7460     return OCLTK_Event;
7461 
7462   case BuiltinType::OCLQueue:
7463     return OCLTK_Queue;
7464 
7465   case BuiltinType::OCLReserveID:
7466     return OCLTK_ReserveID;
7467 
7468   case BuiltinType::OCLSampler:
7469     return OCLTK_Sampler;
7470 
7471   default:
7472     return OCLTK_Default;
7473   }
7474 }
7475 
7476 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
7477   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
7478 }
7479 
7480 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
7481 /// requires copy/dispose. Note that this must match the logic
7482 /// in buildByrefHelpers.
7483 bool ASTContext::BlockRequiresCopying(QualType Ty,
7484                                       const VarDecl *D) {
7485   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
7486     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
7487     if (!copyExpr && record->hasTrivialDestructor()) return false;
7488 
7489     return true;
7490   }
7491 
7492   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
7493   // move or destroy.
7494   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
7495     return true;
7496 
7497   if (!Ty->isObjCRetainableType()) return false;
7498 
7499   Qualifiers qs = Ty.getQualifiers();
7500 
7501   // If we have lifetime, that dominates.
7502   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
7503     switch (lifetime) {
7504       case Qualifiers::OCL_None: llvm_unreachable("impossible");
7505 
7506       // These are just bits as far as the runtime is concerned.
7507       case Qualifiers::OCL_ExplicitNone:
7508       case Qualifiers::OCL_Autoreleasing:
7509         return false;
7510 
7511       // These cases should have been taken care of when checking the type's
7512       // non-triviality.
7513       case Qualifiers::OCL_Weak:
7514       case Qualifiers::OCL_Strong:
7515         llvm_unreachable("impossible");
7516     }
7517     llvm_unreachable("fell out of lifetime switch!");
7518   }
7519   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
7520           Ty->isObjCObjectPointerType());
7521 }
7522 
7523 bool ASTContext::getByrefLifetime(QualType Ty,
7524                               Qualifiers::ObjCLifetime &LifeTime,
7525                               bool &HasByrefExtendedLayout) const {
7526   if (!getLangOpts().ObjC ||
7527       getLangOpts().getGC() != LangOptions::NonGC)
7528     return false;
7529 
7530   HasByrefExtendedLayout = false;
7531   if (Ty->isRecordType()) {
7532     HasByrefExtendedLayout = true;
7533     LifeTime = Qualifiers::OCL_None;
7534   } else if ((LifeTime = Ty.getObjCLifetime())) {
7535     // Honor the ARC qualifiers.
7536   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
7537     // The MRR rule.
7538     LifeTime = Qualifiers::OCL_ExplicitNone;
7539   } else {
7540     LifeTime = Qualifiers::OCL_None;
7541   }
7542   return true;
7543 }
7544 
7545 CanQualType ASTContext::getNSUIntegerType() const {
7546   assert(Target && "Expected target to be initialized");
7547   const llvm::Triple &T = Target->getTriple();
7548   // Windows is LLP64 rather than LP64
7549   if (T.isOSWindows() && T.isArch64Bit())
7550     return UnsignedLongLongTy;
7551   return UnsignedLongTy;
7552 }
7553 
7554 CanQualType ASTContext::getNSIntegerType() const {
7555   assert(Target && "Expected target to be initialized");
7556   const llvm::Triple &T = Target->getTriple();
7557   // Windows is LLP64 rather than LP64
7558   if (T.isOSWindows() && T.isArch64Bit())
7559     return LongLongTy;
7560   return LongTy;
7561 }
7562 
7563 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
7564   if (!ObjCInstanceTypeDecl)
7565     ObjCInstanceTypeDecl =
7566         buildImplicitTypedef(getObjCIdType(), "instancetype");
7567   return ObjCInstanceTypeDecl;
7568 }
7569 
7570 // This returns true if a type has been typedefed to BOOL:
7571 // typedef <type> BOOL;
7572 static bool isTypeTypedefedAsBOOL(QualType T) {
7573   if (const auto *TT = dyn_cast<TypedefType>(T))
7574     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
7575       return II->isStr("BOOL");
7576 
7577   return false;
7578 }
7579 
7580 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
7581 /// purpose.
7582 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
7583   if (!type->isIncompleteArrayType() && type->isIncompleteType())
7584     return CharUnits::Zero();
7585 
7586   CharUnits sz = getTypeSizeInChars(type);
7587 
7588   // Make all integer and enum types at least as large as an int
7589   if (sz.isPositive() && type->isIntegralOrEnumerationType())
7590     sz = std::max(sz, getTypeSizeInChars(IntTy));
7591   // Treat arrays as pointers, since that's how they're passed in.
7592   else if (type->isArrayType())
7593     sz = getTypeSizeInChars(VoidPtrTy);
7594   return sz;
7595 }
7596 
7597 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
7598   return getTargetInfo().getCXXABI().isMicrosoft() &&
7599          VD->isStaticDataMember() &&
7600          VD->getType()->isIntegralOrEnumerationType() &&
7601          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
7602 }
7603 
7604 ASTContext::InlineVariableDefinitionKind
7605 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
7606   if (!VD->isInline())
7607     return InlineVariableDefinitionKind::None;
7608 
7609   // In almost all cases, it's a weak definition.
7610   auto *First = VD->getFirstDecl();
7611   if (First->isInlineSpecified() || !First->isStaticDataMember())
7612     return InlineVariableDefinitionKind::Weak;
7613 
7614   // If there's a file-context declaration in this translation unit, it's a
7615   // non-discardable definition.
7616   for (auto *D : VD->redecls())
7617     if (D->getLexicalDeclContext()->isFileContext() &&
7618         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
7619       return InlineVariableDefinitionKind::Strong;
7620 
7621   // If we've not seen one yet, we don't know.
7622   return InlineVariableDefinitionKind::WeakUnknown;
7623 }
7624 
7625 static std::string charUnitsToString(const CharUnits &CU) {
7626   return llvm::itostr(CU.getQuantity());
7627 }
7628 
7629 /// getObjCEncodingForBlock - Return the encoded type for this block
7630 /// declaration.
7631 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
7632   std::string S;
7633 
7634   const BlockDecl *Decl = Expr->getBlockDecl();
7635   QualType BlockTy =
7636       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
7637   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
7638   // Encode result type.
7639   if (getLangOpts().EncodeExtendedBlockSig)
7640     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
7641                                       true /*Extended*/);
7642   else
7643     getObjCEncodingForType(BlockReturnTy, S);
7644   // Compute size of all parameters.
7645   // Start with computing size of a pointer in number of bytes.
7646   // FIXME: There might(should) be a better way of doing this computation!
7647   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7648   CharUnits ParmOffset = PtrSize;
7649   for (auto *PI : Decl->parameters()) {
7650     QualType PType = PI->getType();
7651     CharUnits sz = getObjCEncodingTypeSize(PType);
7652     if (sz.isZero())
7653       continue;
7654     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
7655     ParmOffset += sz;
7656   }
7657   // Size of the argument frame
7658   S += charUnitsToString(ParmOffset);
7659   // Block pointer and offset.
7660   S += "@?0";
7661 
7662   // Argument types.
7663   ParmOffset = PtrSize;
7664   for (auto *PVDecl : Decl->parameters()) {
7665     QualType PType = PVDecl->getOriginalType();
7666     if (const auto *AT =
7667             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7668       // Use array's original type only if it has known number of
7669       // elements.
7670       if (!isa<ConstantArrayType>(AT))
7671         PType = PVDecl->getType();
7672     } else if (PType->isFunctionType())
7673       PType = PVDecl->getType();
7674     if (getLangOpts().EncodeExtendedBlockSig)
7675       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
7676                                       S, true /*Extended*/);
7677     else
7678       getObjCEncodingForType(PType, S);
7679     S += charUnitsToString(ParmOffset);
7680     ParmOffset += getObjCEncodingTypeSize(PType);
7681   }
7682 
7683   return S;
7684 }
7685 
7686 std::string
7687 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
7688   std::string S;
7689   // Encode result type.
7690   getObjCEncodingForType(Decl->getReturnType(), S);
7691   CharUnits ParmOffset;
7692   // Compute size of all parameters.
7693   for (auto *PI : Decl->parameters()) {
7694     QualType PType = PI->getType();
7695     CharUnits sz = getObjCEncodingTypeSize(PType);
7696     if (sz.isZero())
7697       continue;
7698 
7699     assert(sz.isPositive() &&
7700            "getObjCEncodingForFunctionDecl - Incomplete param type");
7701     ParmOffset += sz;
7702   }
7703   S += charUnitsToString(ParmOffset);
7704   ParmOffset = CharUnits::Zero();
7705 
7706   // Argument types.
7707   for (auto *PVDecl : Decl->parameters()) {
7708     QualType PType = PVDecl->getOriginalType();
7709     if (const auto *AT =
7710             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7711       // Use array's original type only if it has known number of
7712       // elements.
7713       if (!isa<ConstantArrayType>(AT))
7714         PType = PVDecl->getType();
7715     } else if (PType->isFunctionType())
7716       PType = PVDecl->getType();
7717     getObjCEncodingForType(PType, S);
7718     S += charUnitsToString(ParmOffset);
7719     ParmOffset += getObjCEncodingTypeSize(PType);
7720   }
7721 
7722   return S;
7723 }
7724 
7725 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
7726 /// method parameter or return type. If Extended, include class names and
7727 /// block object types.
7728 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
7729                                                    QualType T, std::string& S,
7730                                                    bool Extended) const {
7731   // Encode type qualifier, 'in', 'inout', etc. for the parameter.
7732   getObjCEncodingForTypeQualifier(QT, S);
7733   // Encode parameter type.
7734   ObjCEncOptions Options = ObjCEncOptions()
7735                                .setExpandPointedToStructures()
7736                                .setExpandStructures()
7737                                .setIsOutermostType();
7738   if (Extended)
7739     Options.setEncodeBlockParameters().setEncodeClassNames();
7740   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
7741 }
7742 
7743 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
7744 /// declaration.
7745 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
7746                                                      bool Extended) const {
7747   // FIXME: This is not very efficient.
7748   // Encode return type.
7749   std::string S;
7750   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
7751                                     Decl->getReturnType(), S, Extended);
7752   // Compute size of all parameters.
7753   // Start with computing size of a pointer in number of bytes.
7754   // FIXME: There might(should) be a better way of doing this computation!
7755   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7756   // The first two arguments (self and _cmd) are pointers; account for
7757   // their size.
7758   CharUnits ParmOffset = 2 * PtrSize;
7759   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7760        E = Decl->sel_param_end(); PI != E; ++PI) {
7761     QualType PType = (*PI)->getType();
7762     CharUnits sz = getObjCEncodingTypeSize(PType);
7763     if (sz.isZero())
7764       continue;
7765 
7766     assert(sz.isPositive() &&
7767            "getObjCEncodingForMethodDecl - Incomplete param type");
7768     ParmOffset += sz;
7769   }
7770   S += charUnitsToString(ParmOffset);
7771   S += "@0:";
7772   S += charUnitsToString(PtrSize);
7773 
7774   // Argument types.
7775   ParmOffset = 2 * PtrSize;
7776   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7777        E = Decl->sel_param_end(); PI != E; ++PI) {
7778     const ParmVarDecl *PVDecl = *PI;
7779     QualType PType = PVDecl->getOriginalType();
7780     if (const auto *AT =
7781             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7782       // Use array's original type only if it has known number of
7783       // elements.
7784       if (!isa<ConstantArrayType>(AT))
7785         PType = PVDecl->getType();
7786     } else if (PType->isFunctionType())
7787       PType = PVDecl->getType();
7788     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
7789                                       PType, S, Extended);
7790     S += charUnitsToString(ParmOffset);
7791     ParmOffset += getObjCEncodingTypeSize(PType);
7792   }
7793 
7794   return S;
7795 }
7796 
7797 ObjCPropertyImplDecl *
7798 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
7799                                       const ObjCPropertyDecl *PD,
7800                                       const Decl *Container) const {
7801   if (!Container)
7802     return nullptr;
7803   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
7804     for (auto *PID : CID->property_impls())
7805       if (PID->getPropertyDecl() == PD)
7806         return PID;
7807   } else {
7808     const auto *OID = cast<ObjCImplementationDecl>(Container);
7809     for (auto *PID : OID->property_impls())
7810       if (PID->getPropertyDecl() == PD)
7811         return PID;
7812   }
7813   return nullptr;
7814 }
7815 
7816 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
7817 /// property declaration. If non-NULL, Container must be either an
7818 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7819 /// NULL when getting encodings for protocol properties.
7820 /// Property attributes are stored as a comma-delimited C string. The simple
7821 /// attributes readonly and bycopy are encoded as single characters. The
7822 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
7823 /// encoded as single characters, followed by an identifier. Property types
7824 /// are also encoded as a parametrized attribute. The characters used to encode
7825 /// these attributes are defined by the following enumeration:
7826 /// @code
7827 /// enum PropertyAttributes {
7828 /// kPropertyReadOnly = 'R',   // property is read-only.
7829 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
7830 /// kPropertyByref = '&',  // property is a reference to the value last assigned
7831 /// kPropertyDynamic = 'D',    // property is dynamic
7832 /// kPropertyGetter = 'G',     // followed by getter selector name
7833 /// kPropertySetter = 'S',     // followed by setter selector name
7834 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
7835 /// kPropertyType = 'T'              // followed by old-style type encoding.
7836 /// kPropertyWeak = 'W'              // 'weak' property
7837 /// kPropertyStrong = 'P'            // property GC'able
7838 /// kPropertyNonAtomic = 'N'         // property non-atomic
7839 /// kPropertyOptional = '?'          // property optional
7840 /// };
7841 /// @endcode
7842 std::string
7843 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7844                                            const Decl *Container) const {
7845   // Collect information from the property implementation decl(s).
7846   bool Dynamic = false;
7847   ObjCPropertyImplDecl *SynthesizePID = nullptr;
7848 
7849   if (ObjCPropertyImplDecl *PropertyImpDecl =
7850       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7851     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7852       Dynamic = true;
7853     else
7854       SynthesizePID = PropertyImpDecl;
7855   }
7856 
7857   // FIXME: This is not very efficient.
7858   std::string S = "T";
7859 
7860   // Encode result type.
7861   // GCC has some special rules regarding encoding of properties which
7862   // closely resembles encoding of ivars.
7863   getObjCEncodingForPropertyType(PD->getType(), S);
7864 
7865   if (PD->isOptional())
7866     S += ",?";
7867 
7868   if (PD->isReadOnly()) {
7869     S += ",R";
7870     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7871       S += ",C";
7872     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7873       S += ",&";
7874     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7875       S += ",W";
7876   } else {
7877     switch (PD->getSetterKind()) {
7878     case ObjCPropertyDecl::Assign: break;
7879     case ObjCPropertyDecl::Copy:   S += ",C"; break;
7880     case ObjCPropertyDecl::Retain: S += ",&"; break;
7881     case ObjCPropertyDecl::Weak:   S += ",W"; break;
7882     }
7883   }
7884 
7885   // It really isn't clear at all what this means, since properties
7886   // are "dynamic by default".
7887   if (Dynamic)
7888     S += ",D";
7889 
7890   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7891     S += ",N";
7892 
7893   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7894     S += ",G";
7895     S += PD->getGetterName().getAsString();
7896   }
7897 
7898   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7899     S += ",S";
7900     S += PD->getSetterName().getAsString();
7901   }
7902 
7903   if (SynthesizePID) {
7904     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7905     S += ",V";
7906     S += OID->getNameAsString();
7907   }
7908 
7909   // FIXME: OBJCGC: weak & strong
7910   return S;
7911 }
7912 
7913 /// getLegacyIntegralTypeEncoding -
7914 /// Another legacy compatibility encoding: 32-bit longs are encoded as
7915 /// 'l' or 'L' , but not always.  For typedefs, we need to use
7916 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
7917 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7918   if (PointeeTy->getAs<TypedefType>()) {
7919     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7920       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7921         PointeeTy = UnsignedIntTy;
7922       else
7923         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7924           PointeeTy = IntTy;
7925     }
7926   }
7927 }
7928 
7929 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7930                                         const FieldDecl *Field,
7931                                         QualType *NotEncodedT) const {
7932   // We follow the behavior of gcc, expanding structures which are
7933   // directly pointed to, and expanding embedded structures. Note that
7934   // these rules are sufficient to prevent recursive encoding of the
7935   // same type.
7936   getObjCEncodingForTypeImpl(T, S,
7937                              ObjCEncOptions()
7938                                  .setExpandPointedToStructures()
7939                                  .setExpandStructures()
7940                                  .setIsOutermostType(),
7941                              Field, NotEncodedT);
7942 }
7943 
7944 void ASTContext::getObjCEncodingForPropertyType(QualType T,
7945                                                 std::string& S) const {
7946   // Encode result type.
7947   // GCC has some special rules regarding encoding of properties which
7948   // closely resembles encoding of ivars.
7949   getObjCEncodingForTypeImpl(T, S,
7950                              ObjCEncOptions()
7951                                  .setExpandPointedToStructures()
7952                                  .setExpandStructures()
7953                                  .setIsOutermostType()
7954                                  .setEncodingProperty(),
7955                              /*Field=*/nullptr);
7956 }
7957 
7958 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
7959                                             const BuiltinType *BT) {
7960     BuiltinType::Kind kind = BT->getKind();
7961     switch (kind) {
7962     case BuiltinType::Void:       return 'v';
7963     case BuiltinType::Bool:       return 'B';
7964     case BuiltinType::Char8:
7965     case BuiltinType::Char_U:
7966     case BuiltinType::UChar:      return 'C';
7967     case BuiltinType::Char16:
7968     case BuiltinType::UShort:     return 'S';
7969     case BuiltinType::Char32:
7970     case BuiltinType::UInt:       return 'I';
7971     case BuiltinType::ULong:
7972         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
7973     case BuiltinType::UInt128:    return 'T';
7974     case BuiltinType::ULongLong:  return 'Q';
7975     case BuiltinType::Char_S:
7976     case BuiltinType::SChar:      return 'c';
7977     case BuiltinType::Short:      return 's';
7978     case BuiltinType::WChar_S:
7979     case BuiltinType::WChar_U:
7980     case BuiltinType::Int:        return 'i';
7981     case BuiltinType::Long:
7982       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
7983     case BuiltinType::LongLong:   return 'q';
7984     case BuiltinType::Int128:     return 't';
7985     case BuiltinType::Float:      return 'f';
7986     case BuiltinType::Double:     return 'd';
7987     case BuiltinType::LongDouble: return 'D';
7988     case BuiltinType::NullPtr:    return '*'; // like char*
7989 
7990     case BuiltinType::BFloat16:
7991     case BuiltinType::Float16:
7992     case BuiltinType::Float128:
7993     case BuiltinType::Ibm128:
7994     case BuiltinType::Half:
7995     case BuiltinType::ShortAccum:
7996     case BuiltinType::Accum:
7997     case BuiltinType::LongAccum:
7998     case BuiltinType::UShortAccum:
7999     case BuiltinType::UAccum:
8000     case BuiltinType::ULongAccum:
8001     case BuiltinType::ShortFract:
8002     case BuiltinType::Fract:
8003     case BuiltinType::LongFract:
8004     case BuiltinType::UShortFract:
8005     case BuiltinType::UFract:
8006     case BuiltinType::ULongFract:
8007     case BuiltinType::SatShortAccum:
8008     case BuiltinType::SatAccum:
8009     case BuiltinType::SatLongAccum:
8010     case BuiltinType::SatUShortAccum:
8011     case BuiltinType::SatUAccum:
8012     case BuiltinType::SatULongAccum:
8013     case BuiltinType::SatShortFract:
8014     case BuiltinType::SatFract:
8015     case BuiltinType::SatLongFract:
8016     case BuiltinType::SatUShortFract:
8017     case BuiltinType::SatUFract:
8018     case BuiltinType::SatULongFract:
8019       // FIXME: potentially need @encodes for these!
8020       return ' ';
8021 
8022 #define SVE_TYPE(Name, Id, SingletonId) \
8023     case BuiltinType::Id:
8024 #include "clang/Basic/AArch64SVEACLETypes.def"
8025 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
8026 #include "clang/Basic/RISCVVTypes.def"
8027 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
8028 #include "clang/Basic/WebAssemblyReferenceTypes.def"
8029       {
8030         DiagnosticsEngine &Diags = C->getDiagnostics();
8031         unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
8032                                                 "cannot yet @encode type %0");
8033         Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
8034         return ' ';
8035       }
8036 
8037     case BuiltinType::ObjCId:
8038     case BuiltinType::ObjCClass:
8039     case BuiltinType::ObjCSel:
8040       llvm_unreachable("@encoding ObjC primitive type");
8041 
8042     // OpenCL and placeholder types don't need @encodings.
8043 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8044     case BuiltinType::Id:
8045 #include "clang/Basic/OpenCLImageTypes.def"
8046 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
8047     case BuiltinType::Id:
8048 #include "clang/Basic/OpenCLExtensionTypes.def"
8049     case BuiltinType::OCLEvent:
8050     case BuiltinType::OCLClkEvent:
8051     case BuiltinType::OCLQueue:
8052     case BuiltinType::OCLReserveID:
8053     case BuiltinType::OCLSampler:
8054     case BuiltinType::Dependent:
8055 #define PPC_VECTOR_TYPE(Name, Id, Size) \
8056     case BuiltinType::Id:
8057 #include "clang/Basic/PPCTypes.def"
8058 #define BUILTIN_TYPE(KIND, ID)
8059 #define PLACEHOLDER_TYPE(KIND, ID) \
8060     case BuiltinType::KIND:
8061 #include "clang/AST/BuiltinTypes.def"
8062       llvm_unreachable("invalid builtin type for @encode");
8063     }
8064     llvm_unreachable("invalid BuiltinType::Kind value");
8065 }
8066 
8067 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
8068   EnumDecl *Enum = ET->getDecl();
8069 
8070   // The encoding of an non-fixed enum type is always 'i', regardless of size.
8071   if (!Enum->isFixed())
8072     return 'i';
8073 
8074   // The encoding of a fixed enum type matches its fixed underlying type.
8075   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
8076   return getObjCEncodingForPrimitiveType(C, BT);
8077 }
8078 
8079 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
8080                            QualType T, const FieldDecl *FD) {
8081   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
8082   S += 'b';
8083   // The NeXT runtime encodes bit fields as b followed by the number of bits.
8084   // The GNU runtime requires more information; bitfields are encoded as b,
8085   // then the offset (in bits) of the first element, then the type of the
8086   // bitfield, then the size in bits.  For example, in this structure:
8087   //
8088   // struct
8089   // {
8090   //    int integer;
8091   //    int flags:2;
8092   // };
8093   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
8094   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
8095   // information is not especially sensible, but we're stuck with it for
8096   // compatibility with GCC, although providing it breaks anything that
8097   // actually uses runtime introspection and wants to work on both runtimes...
8098   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
8099     uint64_t Offset;
8100 
8101     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
8102       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
8103                                          IVD);
8104     } else {
8105       const RecordDecl *RD = FD->getParent();
8106       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
8107       Offset = RL.getFieldOffset(FD->getFieldIndex());
8108     }
8109 
8110     S += llvm::utostr(Offset);
8111 
8112     if (const auto *ET = T->getAs<EnumType>())
8113       S += ObjCEncodingForEnumType(Ctx, ET);
8114     else {
8115       const auto *BT = T->castAs<BuiltinType>();
8116       S += getObjCEncodingForPrimitiveType(Ctx, BT);
8117     }
8118   }
8119   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
8120 }
8121 
8122 // Helper function for determining whether the encoded type string would include
8123 // a template specialization type.
8124 static bool hasTemplateSpecializationInEncodedString(const Type *T,
8125                                                      bool VisitBasesAndFields) {
8126   T = T->getBaseElementTypeUnsafe();
8127 
8128   if (auto *PT = T->getAs<PointerType>())
8129     return hasTemplateSpecializationInEncodedString(
8130         PT->getPointeeType().getTypePtr(), false);
8131 
8132   auto *CXXRD = T->getAsCXXRecordDecl();
8133 
8134   if (!CXXRD)
8135     return false;
8136 
8137   if (isa<ClassTemplateSpecializationDecl>(CXXRD))
8138     return true;
8139 
8140   if (!CXXRD->hasDefinition() || !VisitBasesAndFields)
8141     return false;
8142 
8143   for (const auto &B : CXXRD->bases())
8144     if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(),
8145                                                  true))
8146       return true;
8147 
8148   for (auto *FD : CXXRD->fields())
8149     if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(),
8150                                                  true))
8151       return true;
8152 
8153   return false;
8154 }
8155 
8156 // FIXME: Use SmallString for accumulating string.
8157 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
8158                                             const ObjCEncOptions Options,
8159                                             const FieldDecl *FD,
8160                                             QualType *NotEncodedT) const {
8161   CanQualType CT = getCanonicalType(T);
8162   switch (CT->getTypeClass()) {
8163   case Type::Builtin:
8164   case Type::Enum:
8165     if (FD && FD->isBitField())
8166       return EncodeBitField(this, S, T, FD);
8167     if (const auto *BT = dyn_cast<BuiltinType>(CT))
8168       S += getObjCEncodingForPrimitiveType(this, BT);
8169     else
8170       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
8171     return;
8172 
8173   case Type::Complex:
8174     S += 'j';
8175     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
8176                                ObjCEncOptions(),
8177                                /*Field=*/nullptr);
8178     return;
8179 
8180   case Type::Atomic:
8181     S += 'A';
8182     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
8183                                ObjCEncOptions(),
8184                                /*Field=*/nullptr);
8185     return;
8186 
8187   // encoding for pointer or reference types.
8188   case Type::Pointer:
8189   case Type::LValueReference:
8190   case Type::RValueReference: {
8191     QualType PointeeTy;
8192     if (isa<PointerType>(CT)) {
8193       const auto *PT = T->castAs<PointerType>();
8194       if (PT->isObjCSelType()) {
8195         S += ':';
8196         return;
8197       }
8198       PointeeTy = PT->getPointeeType();
8199     } else {
8200       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
8201     }
8202 
8203     bool isReadOnly = false;
8204     // For historical/compatibility reasons, the read-only qualifier of the
8205     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
8206     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
8207     // Also, do not emit the 'r' for anything but the outermost type!
8208     if (T->getAs<TypedefType>()) {
8209       if (Options.IsOutermostType() && T.isConstQualified()) {
8210         isReadOnly = true;
8211         S += 'r';
8212       }
8213     } else if (Options.IsOutermostType()) {
8214       QualType P = PointeeTy;
8215       while (auto PT = P->getAs<PointerType>())
8216         P = PT->getPointeeType();
8217       if (P.isConstQualified()) {
8218         isReadOnly = true;
8219         S += 'r';
8220       }
8221     }
8222     if (isReadOnly) {
8223       // Another legacy compatibility encoding. Some ObjC qualifier and type
8224       // combinations need to be rearranged.
8225       // Rewrite "in const" from "nr" to "rn"
8226       if (StringRef(S).ends_with("nr"))
8227         S.replace(S.end()-2, S.end(), "rn");
8228     }
8229 
8230     if (PointeeTy->isCharType()) {
8231       // char pointer types should be encoded as '*' unless it is a
8232       // type that has been typedef'd to 'BOOL'.
8233       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
8234         S += '*';
8235         return;
8236       }
8237     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
8238       // GCC binary compat: Need to convert "struct objc_class *" to "#".
8239       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
8240         S += '#';
8241         return;
8242       }
8243       // GCC binary compat: Need to convert "struct objc_object *" to "@".
8244       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
8245         S += '@';
8246         return;
8247       }
8248       // If the encoded string for the class includes template names, just emit
8249       // "^v" for pointers to the class.
8250       if (getLangOpts().CPlusPlus &&
8251           (!getLangOpts().EncodeCXXClassTemplateSpec &&
8252            hasTemplateSpecializationInEncodedString(
8253                RTy, Options.ExpandPointedToStructures()))) {
8254         S += "^v";
8255         return;
8256       }
8257       // fall through...
8258     }
8259     S += '^';
8260     getLegacyIntegralTypeEncoding(PointeeTy);
8261 
8262     ObjCEncOptions NewOptions;
8263     if (Options.ExpandPointedToStructures())
8264       NewOptions.setExpandStructures();
8265     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
8266                                /*Field=*/nullptr, NotEncodedT);
8267     return;
8268   }
8269 
8270   case Type::ConstantArray:
8271   case Type::IncompleteArray:
8272   case Type::VariableArray: {
8273     const auto *AT = cast<ArrayType>(CT);
8274 
8275     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
8276       // Incomplete arrays are encoded as a pointer to the array element.
8277       S += '^';
8278 
8279       getObjCEncodingForTypeImpl(
8280           AT->getElementType(), S,
8281           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
8282     } else {
8283       S += '[';
8284 
8285       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
8286         S += llvm::utostr(CAT->getSize().getZExtValue());
8287       else {
8288         //Variable length arrays are encoded as a regular array with 0 elements.
8289         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
8290                "Unknown array type!");
8291         S += '0';
8292       }
8293 
8294       getObjCEncodingForTypeImpl(
8295           AT->getElementType(), S,
8296           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
8297           NotEncodedT);
8298       S += ']';
8299     }
8300     return;
8301   }
8302 
8303   case Type::FunctionNoProto:
8304   case Type::FunctionProto:
8305     S += '?';
8306     return;
8307 
8308   case Type::Record: {
8309     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
8310     S += RDecl->isUnion() ? '(' : '{';
8311     // Anonymous structures print as '?'
8312     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
8313       S += II->getName();
8314       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
8315         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
8316         llvm::raw_string_ostream OS(S);
8317         printTemplateArgumentList(OS, TemplateArgs.asArray(),
8318                                   getPrintingPolicy());
8319       }
8320     } else {
8321       S += '?';
8322     }
8323     if (Options.ExpandStructures()) {
8324       S += '=';
8325       if (!RDecl->isUnion()) {
8326         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
8327       } else {
8328         for (const auto *Field : RDecl->fields()) {
8329           if (FD) {
8330             S += '"';
8331             S += Field->getNameAsString();
8332             S += '"';
8333           }
8334 
8335           // Special case bit-fields.
8336           if (Field->isBitField()) {
8337             getObjCEncodingForTypeImpl(Field->getType(), S,
8338                                        ObjCEncOptions().setExpandStructures(),
8339                                        Field);
8340           } else {
8341             QualType qt = Field->getType();
8342             getLegacyIntegralTypeEncoding(qt);
8343             getObjCEncodingForTypeImpl(
8344                 qt, S,
8345                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
8346                 NotEncodedT);
8347           }
8348         }
8349       }
8350     }
8351     S += RDecl->isUnion() ? ')' : '}';
8352     return;
8353   }
8354 
8355   case Type::BlockPointer: {
8356     const auto *BT = T->castAs<BlockPointerType>();
8357     S += "@?"; // Unlike a pointer-to-function, which is "^?".
8358     if (Options.EncodeBlockParameters()) {
8359       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
8360 
8361       S += '<';
8362       // Block return type
8363       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
8364                                  Options.forComponentType(), FD, NotEncodedT);
8365       // Block self
8366       S += "@?";
8367       // Block parameters
8368       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
8369         for (const auto &I : FPT->param_types())
8370           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
8371                                      NotEncodedT);
8372       }
8373       S += '>';
8374     }
8375     return;
8376   }
8377 
8378   case Type::ObjCObject: {
8379     // hack to match legacy encoding of *id and *Class
8380     QualType Ty = getObjCObjectPointerType(CT);
8381     if (Ty->isObjCIdType()) {
8382       S += "{objc_object=}";
8383       return;
8384     }
8385     else if (Ty->isObjCClassType()) {
8386       S += "{objc_class=}";
8387       return;
8388     }
8389     // TODO: Double check to make sure this intentionally falls through.
8390     [[fallthrough]];
8391   }
8392 
8393   case Type::ObjCInterface: {
8394     // Ignore protocol qualifiers when mangling at this level.
8395     // @encode(class_name)
8396     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
8397     S += '{';
8398     S += OI->getObjCRuntimeNameAsString();
8399     if (Options.ExpandStructures()) {
8400       S += '=';
8401       SmallVector<const ObjCIvarDecl*, 32> Ivars;
8402       DeepCollectObjCIvars(OI, true, Ivars);
8403       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
8404         const FieldDecl *Field = Ivars[i];
8405         if (Field->isBitField())
8406           getObjCEncodingForTypeImpl(Field->getType(), S,
8407                                      ObjCEncOptions().setExpandStructures(),
8408                                      Field);
8409         else
8410           getObjCEncodingForTypeImpl(Field->getType(), S,
8411                                      ObjCEncOptions().setExpandStructures(), FD,
8412                                      NotEncodedT);
8413       }
8414     }
8415     S += '}';
8416     return;
8417   }
8418 
8419   case Type::ObjCObjectPointer: {
8420     const auto *OPT = T->castAs<ObjCObjectPointerType>();
8421     if (OPT->isObjCIdType()) {
8422       S += '@';
8423       return;
8424     }
8425 
8426     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
8427       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
8428       // Since this is a binary compatibility issue, need to consult with
8429       // runtime folks. Fortunately, this is a *very* obscure construct.
8430       S += '#';
8431       return;
8432     }
8433 
8434     if (OPT->isObjCQualifiedIdType()) {
8435       getObjCEncodingForTypeImpl(
8436           getObjCIdType(), S,
8437           Options.keepingOnly(ObjCEncOptions()
8438                                   .setExpandPointedToStructures()
8439                                   .setExpandStructures()),
8440           FD);
8441       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
8442         // Note that we do extended encoding of protocol qualifier list
8443         // Only when doing ivar or property encoding.
8444         S += '"';
8445         for (const auto *I : OPT->quals()) {
8446           S += '<';
8447           S += I->getObjCRuntimeNameAsString();
8448           S += '>';
8449         }
8450         S += '"';
8451       }
8452       return;
8453     }
8454 
8455     S += '@';
8456     if (OPT->getInterfaceDecl() &&
8457         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
8458       S += '"';
8459       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
8460       for (const auto *I : OPT->quals()) {
8461         S += '<';
8462         S += I->getObjCRuntimeNameAsString();
8463         S += '>';
8464       }
8465       S += '"';
8466     }
8467     return;
8468   }
8469 
8470   // gcc just blithely ignores member pointers.
8471   // FIXME: we should do better than that.  'M' is available.
8472   case Type::MemberPointer:
8473   // This matches gcc's encoding, even though technically it is insufficient.
8474   //FIXME. We should do a better job than gcc.
8475   case Type::Vector:
8476   case Type::ExtVector:
8477   // Until we have a coherent encoding of these three types, issue warning.
8478     if (NotEncodedT)
8479       *NotEncodedT = T;
8480     return;
8481 
8482   case Type::ConstantMatrix:
8483     if (NotEncodedT)
8484       *NotEncodedT = T;
8485     return;
8486 
8487   case Type::BitInt:
8488     if (NotEncodedT)
8489       *NotEncodedT = T;
8490     return;
8491 
8492   // We could see an undeduced auto type here during error recovery.
8493   // Just ignore it.
8494   case Type::Auto:
8495   case Type::DeducedTemplateSpecialization:
8496     return;
8497 
8498   case Type::Pipe:
8499 #define ABSTRACT_TYPE(KIND, BASE)
8500 #define TYPE(KIND, BASE)
8501 #define DEPENDENT_TYPE(KIND, BASE) \
8502   case Type::KIND:
8503 #define NON_CANONICAL_TYPE(KIND, BASE) \
8504   case Type::KIND:
8505 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
8506   case Type::KIND:
8507 #include "clang/AST/TypeNodes.inc"
8508     llvm_unreachable("@encode for dependent type!");
8509   }
8510   llvm_unreachable("bad type kind!");
8511 }
8512 
8513 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
8514                                                  std::string &S,
8515                                                  const FieldDecl *FD,
8516                                                  bool includeVBases,
8517                                                  QualType *NotEncodedT) const {
8518   assert(RDecl && "Expected non-null RecordDecl");
8519   assert(!RDecl->isUnion() && "Should not be called for unions");
8520   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
8521     return;
8522 
8523   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
8524   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
8525   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
8526 
8527   if (CXXRec) {
8528     for (const auto &BI : CXXRec->bases()) {
8529       if (!BI.isVirtual()) {
8530         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8531         if (base->isEmpty())
8532           continue;
8533         uint64_t offs = toBits(layout.getBaseClassOffset(base));
8534         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8535                                   std::make_pair(offs, base));
8536       }
8537     }
8538   }
8539 
8540   for (FieldDecl *Field : RDecl->fields()) {
8541     if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
8542       continue;
8543     uint64_t offs = layout.getFieldOffset(Field->getFieldIndex());
8544     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8545                               std::make_pair(offs, Field));
8546   }
8547 
8548   if (CXXRec && includeVBases) {
8549     for (const auto &BI : CXXRec->vbases()) {
8550       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8551       if (base->isEmpty())
8552         continue;
8553       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
8554       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
8555           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
8556         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
8557                                   std::make_pair(offs, base));
8558     }
8559   }
8560 
8561   CharUnits size;
8562   if (CXXRec) {
8563     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
8564   } else {
8565     size = layout.getSize();
8566   }
8567 
8568 #ifndef NDEBUG
8569   uint64_t CurOffs = 0;
8570 #endif
8571   std::multimap<uint64_t, NamedDecl *>::iterator
8572     CurLayObj = FieldOrBaseOffsets.begin();
8573 
8574   if (CXXRec && CXXRec->isDynamicClass() &&
8575       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
8576     if (FD) {
8577       S += "\"_vptr$";
8578       std::string recname = CXXRec->getNameAsString();
8579       if (recname.empty()) recname = "?";
8580       S += recname;
8581       S += '"';
8582     }
8583     S += "^^?";
8584 #ifndef NDEBUG
8585     CurOffs += getTypeSize(VoidPtrTy);
8586 #endif
8587   }
8588 
8589   if (!RDecl->hasFlexibleArrayMember()) {
8590     // Mark the end of the structure.
8591     uint64_t offs = toBits(size);
8592     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8593                               std::make_pair(offs, nullptr));
8594   }
8595 
8596   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
8597 #ifndef NDEBUG
8598     assert(CurOffs <= CurLayObj->first);
8599     if (CurOffs < CurLayObj->first) {
8600       uint64_t padding = CurLayObj->first - CurOffs;
8601       // FIXME: There doesn't seem to be a way to indicate in the encoding that
8602       // packing/alignment of members is different that normal, in which case
8603       // the encoding will be out-of-sync with the real layout.
8604       // If the runtime switches to just consider the size of types without
8605       // taking into account alignment, we could make padding explicit in the
8606       // encoding (e.g. using arrays of chars). The encoding strings would be
8607       // longer then though.
8608       CurOffs += padding;
8609     }
8610 #endif
8611 
8612     NamedDecl *dcl = CurLayObj->second;
8613     if (!dcl)
8614       break; // reached end of structure.
8615 
8616     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
8617       // We expand the bases without their virtual bases since those are going
8618       // in the initial structure. Note that this differs from gcc which
8619       // expands virtual bases each time one is encountered in the hierarchy,
8620       // making the encoding type bigger than it really is.
8621       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
8622                                       NotEncodedT);
8623       assert(!base->isEmpty());
8624 #ifndef NDEBUG
8625       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
8626 #endif
8627     } else {
8628       const auto *field = cast<FieldDecl>(dcl);
8629       if (FD) {
8630         S += '"';
8631         S += field->getNameAsString();
8632         S += '"';
8633       }
8634 
8635       if (field->isBitField()) {
8636         EncodeBitField(this, S, field->getType(), field);
8637 #ifndef NDEBUG
8638         CurOffs += field->getBitWidthValue(*this);
8639 #endif
8640       } else {
8641         QualType qt = field->getType();
8642         getLegacyIntegralTypeEncoding(qt);
8643         getObjCEncodingForTypeImpl(
8644             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
8645             FD, NotEncodedT);
8646 #ifndef NDEBUG
8647         CurOffs += getTypeSize(field->getType());
8648 #endif
8649       }
8650     }
8651   }
8652 }
8653 
8654 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
8655                                                  std::string& S) const {
8656   if (QT & Decl::OBJC_TQ_In)
8657     S += 'n';
8658   if (QT & Decl::OBJC_TQ_Inout)
8659     S += 'N';
8660   if (QT & Decl::OBJC_TQ_Out)
8661     S += 'o';
8662   if (QT & Decl::OBJC_TQ_Bycopy)
8663     S += 'O';
8664   if (QT & Decl::OBJC_TQ_Byref)
8665     S += 'R';
8666   if (QT & Decl::OBJC_TQ_Oneway)
8667     S += 'V';
8668 }
8669 
8670 TypedefDecl *ASTContext::getObjCIdDecl() const {
8671   if (!ObjCIdDecl) {
8672     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
8673     T = getObjCObjectPointerType(T);
8674     ObjCIdDecl = buildImplicitTypedef(T, "id");
8675   }
8676   return ObjCIdDecl;
8677 }
8678 
8679 TypedefDecl *ASTContext::getObjCSelDecl() const {
8680   if (!ObjCSelDecl) {
8681     QualType T = getPointerType(ObjCBuiltinSelTy);
8682     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
8683   }
8684   return ObjCSelDecl;
8685 }
8686 
8687 TypedefDecl *ASTContext::getObjCClassDecl() const {
8688   if (!ObjCClassDecl) {
8689     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
8690     T = getObjCObjectPointerType(T);
8691     ObjCClassDecl = buildImplicitTypedef(T, "Class");
8692   }
8693   return ObjCClassDecl;
8694 }
8695 
8696 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
8697   if (!ObjCProtocolClassDecl) {
8698     ObjCProtocolClassDecl
8699       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
8700                                   SourceLocation(),
8701                                   &Idents.get("Protocol"),
8702                                   /*typeParamList=*/nullptr,
8703                                   /*PrevDecl=*/nullptr,
8704                                   SourceLocation(), true);
8705   }
8706 
8707   return ObjCProtocolClassDecl;
8708 }
8709 
8710 //===----------------------------------------------------------------------===//
8711 // __builtin_va_list Construction Functions
8712 //===----------------------------------------------------------------------===//
8713 
8714 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
8715                                                  StringRef Name) {
8716   // typedef char* __builtin[_ms]_va_list;
8717   QualType T = Context->getPointerType(Context->CharTy);
8718   return Context->buildImplicitTypedef(T, Name);
8719 }
8720 
8721 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
8722   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
8723 }
8724 
8725 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
8726   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
8727 }
8728 
8729 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
8730   // typedef void* __builtin_va_list;
8731   QualType T = Context->getPointerType(Context->VoidTy);
8732   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8733 }
8734 
8735 static TypedefDecl *
8736 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
8737   // struct __va_list
8738   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
8739   if (Context->getLangOpts().CPlusPlus) {
8740     // namespace std { struct __va_list {
8741     auto *NS = NamespaceDecl::Create(
8742         const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(),
8743         /*Inline=*/false, SourceLocation(), SourceLocation(),
8744         &Context->Idents.get("std"),
8745         /*PrevDecl=*/nullptr, /*Nested=*/false);
8746     NS->setImplicit();
8747     VaListTagDecl->setDeclContext(NS);
8748   }
8749 
8750   VaListTagDecl->startDefinition();
8751 
8752   const size_t NumFields = 5;
8753   QualType FieldTypes[NumFields];
8754   const char *FieldNames[NumFields];
8755 
8756   // void *__stack;
8757   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8758   FieldNames[0] = "__stack";
8759 
8760   // void *__gr_top;
8761   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8762   FieldNames[1] = "__gr_top";
8763 
8764   // void *__vr_top;
8765   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8766   FieldNames[2] = "__vr_top";
8767 
8768   // int __gr_offs;
8769   FieldTypes[3] = Context->IntTy;
8770   FieldNames[3] = "__gr_offs";
8771 
8772   // int __vr_offs;
8773   FieldTypes[4] = Context->IntTy;
8774   FieldNames[4] = "__vr_offs";
8775 
8776   // Create fields
8777   for (unsigned i = 0; i < NumFields; ++i) {
8778     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8779                                          VaListTagDecl,
8780                                          SourceLocation(),
8781                                          SourceLocation(),
8782                                          &Context->Idents.get(FieldNames[i]),
8783                                          FieldTypes[i], /*TInfo=*/nullptr,
8784                                          /*BitWidth=*/nullptr,
8785                                          /*Mutable=*/false,
8786                                          ICIS_NoInit);
8787     Field->setAccess(AS_public);
8788     VaListTagDecl->addDecl(Field);
8789   }
8790   VaListTagDecl->completeDefinition();
8791   Context->VaListTagDecl = VaListTagDecl;
8792   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8793 
8794   // } __builtin_va_list;
8795   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
8796 }
8797 
8798 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
8799   // typedef struct __va_list_tag {
8800   RecordDecl *VaListTagDecl;
8801 
8802   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8803   VaListTagDecl->startDefinition();
8804 
8805   const size_t NumFields = 5;
8806   QualType FieldTypes[NumFields];
8807   const char *FieldNames[NumFields];
8808 
8809   //   unsigned char gpr;
8810   FieldTypes[0] = Context->UnsignedCharTy;
8811   FieldNames[0] = "gpr";
8812 
8813   //   unsigned char fpr;
8814   FieldTypes[1] = Context->UnsignedCharTy;
8815   FieldNames[1] = "fpr";
8816 
8817   //   unsigned short reserved;
8818   FieldTypes[2] = Context->UnsignedShortTy;
8819   FieldNames[2] = "reserved";
8820 
8821   //   void* overflow_arg_area;
8822   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8823   FieldNames[3] = "overflow_arg_area";
8824 
8825   //   void* reg_save_area;
8826   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
8827   FieldNames[4] = "reg_save_area";
8828 
8829   // Create fields
8830   for (unsigned i = 0; i < NumFields; ++i) {
8831     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
8832                                          SourceLocation(),
8833                                          SourceLocation(),
8834                                          &Context->Idents.get(FieldNames[i]),
8835                                          FieldTypes[i], /*TInfo=*/nullptr,
8836                                          /*BitWidth=*/nullptr,
8837                                          /*Mutable=*/false,
8838                                          ICIS_NoInit);
8839     Field->setAccess(AS_public);
8840     VaListTagDecl->addDecl(Field);
8841   }
8842   VaListTagDecl->completeDefinition();
8843   Context->VaListTagDecl = VaListTagDecl;
8844   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8845 
8846   // } __va_list_tag;
8847   TypedefDecl *VaListTagTypedefDecl =
8848       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8849 
8850   QualType VaListTagTypedefType =
8851     Context->getTypedefType(VaListTagTypedefDecl);
8852 
8853   // typedef __va_list_tag __builtin_va_list[1];
8854   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8855   QualType VaListTagArrayType = Context->getConstantArrayType(
8856       VaListTagTypedefType, Size, nullptr, ArraySizeModifier::Normal, 0);
8857   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8858 }
8859 
8860 static TypedefDecl *
8861 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
8862   // struct __va_list_tag {
8863   RecordDecl *VaListTagDecl;
8864   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8865   VaListTagDecl->startDefinition();
8866 
8867   const size_t NumFields = 4;
8868   QualType FieldTypes[NumFields];
8869   const char *FieldNames[NumFields];
8870 
8871   //   unsigned gp_offset;
8872   FieldTypes[0] = Context->UnsignedIntTy;
8873   FieldNames[0] = "gp_offset";
8874 
8875   //   unsigned fp_offset;
8876   FieldTypes[1] = Context->UnsignedIntTy;
8877   FieldNames[1] = "fp_offset";
8878 
8879   //   void* overflow_arg_area;
8880   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8881   FieldNames[2] = "overflow_arg_area";
8882 
8883   //   void* reg_save_area;
8884   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8885   FieldNames[3] = "reg_save_area";
8886 
8887   // Create fields
8888   for (unsigned i = 0; i < NumFields; ++i) {
8889     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8890                                          VaListTagDecl,
8891                                          SourceLocation(),
8892                                          SourceLocation(),
8893                                          &Context->Idents.get(FieldNames[i]),
8894                                          FieldTypes[i], /*TInfo=*/nullptr,
8895                                          /*BitWidth=*/nullptr,
8896                                          /*Mutable=*/false,
8897                                          ICIS_NoInit);
8898     Field->setAccess(AS_public);
8899     VaListTagDecl->addDecl(Field);
8900   }
8901   VaListTagDecl->completeDefinition();
8902   Context->VaListTagDecl = VaListTagDecl;
8903   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8904 
8905   // };
8906 
8907   // typedef struct __va_list_tag __builtin_va_list[1];
8908   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8909   QualType VaListTagArrayType = Context->getConstantArrayType(
8910       VaListTagType, Size, nullptr, ArraySizeModifier::Normal, 0);
8911   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8912 }
8913 
8914 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8915   // typedef int __builtin_va_list[4];
8916   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8917   QualType IntArrayType = Context->getConstantArrayType(
8918       Context->IntTy, Size, nullptr, ArraySizeModifier::Normal, 0);
8919   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8920 }
8921 
8922 static TypedefDecl *
8923 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8924   // struct __va_list
8925   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8926   if (Context->getLangOpts().CPlusPlus) {
8927     // namespace std { struct __va_list {
8928     NamespaceDecl *NS;
8929     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8930                                Context->getTranslationUnitDecl(),
8931                                /*Inline=*/false, SourceLocation(),
8932                                SourceLocation(), &Context->Idents.get("std"),
8933                                /*PrevDecl=*/nullptr, /*Nested=*/false);
8934     NS->setImplicit();
8935     VaListDecl->setDeclContext(NS);
8936   }
8937 
8938   VaListDecl->startDefinition();
8939 
8940   // void * __ap;
8941   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8942                                        VaListDecl,
8943                                        SourceLocation(),
8944                                        SourceLocation(),
8945                                        &Context->Idents.get("__ap"),
8946                                        Context->getPointerType(Context->VoidTy),
8947                                        /*TInfo=*/nullptr,
8948                                        /*BitWidth=*/nullptr,
8949                                        /*Mutable=*/false,
8950                                        ICIS_NoInit);
8951   Field->setAccess(AS_public);
8952   VaListDecl->addDecl(Field);
8953 
8954   // };
8955   VaListDecl->completeDefinition();
8956   Context->VaListTagDecl = VaListDecl;
8957 
8958   // typedef struct __va_list __builtin_va_list;
8959   QualType T = Context->getRecordType(VaListDecl);
8960   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8961 }
8962 
8963 static TypedefDecl *
8964 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
8965   // struct __va_list_tag {
8966   RecordDecl *VaListTagDecl;
8967   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8968   VaListTagDecl->startDefinition();
8969 
8970   const size_t NumFields = 4;
8971   QualType FieldTypes[NumFields];
8972   const char *FieldNames[NumFields];
8973 
8974   //   long __gpr;
8975   FieldTypes[0] = Context->LongTy;
8976   FieldNames[0] = "__gpr";
8977 
8978   //   long __fpr;
8979   FieldTypes[1] = Context->LongTy;
8980   FieldNames[1] = "__fpr";
8981 
8982   //   void *__overflow_arg_area;
8983   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8984   FieldNames[2] = "__overflow_arg_area";
8985 
8986   //   void *__reg_save_area;
8987   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8988   FieldNames[3] = "__reg_save_area";
8989 
8990   // Create fields
8991   for (unsigned i = 0; i < NumFields; ++i) {
8992     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8993                                          VaListTagDecl,
8994                                          SourceLocation(),
8995                                          SourceLocation(),
8996                                          &Context->Idents.get(FieldNames[i]),
8997                                          FieldTypes[i], /*TInfo=*/nullptr,
8998                                          /*BitWidth=*/nullptr,
8999                                          /*Mutable=*/false,
9000                                          ICIS_NoInit);
9001     Field->setAccess(AS_public);
9002     VaListTagDecl->addDecl(Field);
9003   }
9004   VaListTagDecl->completeDefinition();
9005   Context->VaListTagDecl = VaListTagDecl;
9006   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
9007 
9008   // };
9009 
9010   // typedef __va_list_tag __builtin_va_list[1];
9011   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
9012   QualType VaListTagArrayType = Context->getConstantArrayType(
9013       VaListTagType, Size, nullptr, ArraySizeModifier::Normal, 0);
9014 
9015   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
9016 }
9017 
9018 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
9019   // typedef struct __va_list_tag {
9020   RecordDecl *VaListTagDecl;
9021   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
9022   VaListTagDecl->startDefinition();
9023 
9024   const size_t NumFields = 3;
9025   QualType FieldTypes[NumFields];
9026   const char *FieldNames[NumFields];
9027 
9028   //   void *CurrentSavedRegisterArea;
9029   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
9030   FieldNames[0] = "__current_saved_reg_area_pointer";
9031 
9032   //   void *SavedRegAreaEnd;
9033   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
9034   FieldNames[1] = "__saved_reg_area_end_pointer";
9035 
9036   //   void *OverflowArea;
9037   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
9038   FieldNames[2] = "__overflow_area_pointer";
9039 
9040   // Create fields
9041   for (unsigned i = 0; i < NumFields; ++i) {
9042     FieldDecl *Field = FieldDecl::Create(
9043         const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
9044         SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
9045         /*TInfo=*/nullptr,
9046         /*BitWidth=*/nullptr,
9047         /*Mutable=*/false, ICIS_NoInit);
9048     Field->setAccess(AS_public);
9049     VaListTagDecl->addDecl(Field);
9050   }
9051   VaListTagDecl->completeDefinition();
9052   Context->VaListTagDecl = VaListTagDecl;
9053   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
9054 
9055   // } __va_list_tag;
9056   TypedefDecl *VaListTagTypedefDecl =
9057       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
9058 
9059   QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
9060 
9061   // typedef __va_list_tag __builtin_va_list[1];
9062   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
9063   QualType VaListTagArrayType = Context->getConstantArrayType(
9064       VaListTagTypedefType, Size, nullptr, ArraySizeModifier::Normal, 0);
9065 
9066   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
9067 }
9068 
9069 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
9070                                      TargetInfo::BuiltinVaListKind Kind) {
9071   switch (Kind) {
9072   case TargetInfo::CharPtrBuiltinVaList:
9073     return CreateCharPtrBuiltinVaListDecl(Context);
9074   case TargetInfo::VoidPtrBuiltinVaList:
9075     return CreateVoidPtrBuiltinVaListDecl(Context);
9076   case TargetInfo::AArch64ABIBuiltinVaList:
9077     return CreateAArch64ABIBuiltinVaListDecl(Context);
9078   case TargetInfo::PowerABIBuiltinVaList:
9079     return CreatePowerABIBuiltinVaListDecl(Context);
9080   case TargetInfo::X86_64ABIBuiltinVaList:
9081     return CreateX86_64ABIBuiltinVaListDecl(Context);
9082   case TargetInfo::PNaClABIBuiltinVaList:
9083     return CreatePNaClABIBuiltinVaListDecl(Context);
9084   case TargetInfo::AAPCSABIBuiltinVaList:
9085     return CreateAAPCSABIBuiltinVaListDecl(Context);
9086   case TargetInfo::SystemZBuiltinVaList:
9087     return CreateSystemZBuiltinVaListDecl(Context);
9088   case TargetInfo::HexagonBuiltinVaList:
9089     return CreateHexagonBuiltinVaListDecl(Context);
9090   }
9091 
9092   llvm_unreachable("Unhandled __builtin_va_list type kind");
9093 }
9094 
9095 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
9096   if (!BuiltinVaListDecl) {
9097     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
9098     assert(BuiltinVaListDecl->isImplicit());
9099   }
9100 
9101   return BuiltinVaListDecl;
9102 }
9103 
9104 Decl *ASTContext::getVaListTagDecl() const {
9105   // Force the creation of VaListTagDecl by building the __builtin_va_list
9106   // declaration.
9107   if (!VaListTagDecl)
9108     (void)getBuiltinVaListDecl();
9109 
9110   return VaListTagDecl;
9111 }
9112 
9113 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
9114   if (!BuiltinMSVaListDecl)
9115     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
9116 
9117   return BuiltinMSVaListDecl;
9118 }
9119 
9120 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
9121   // Allow redecl custom type checking builtin for HLSL.
9122   if (LangOpts.HLSL && FD->getBuiltinID() != Builtin::NotBuiltin &&
9123       BuiltinInfo.hasCustomTypechecking(FD->getBuiltinID()))
9124     return true;
9125   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
9126 }
9127 
9128 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
9129   assert(ObjCConstantStringType.isNull() &&
9130          "'NSConstantString' type already set!");
9131 
9132   ObjCConstantStringType = getObjCInterfaceType(Decl);
9133 }
9134 
9135 /// Retrieve the template name that corresponds to a non-empty
9136 /// lookup.
9137 TemplateName
9138 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
9139                                       UnresolvedSetIterator End) const {
9140   unsigned size = End - Begin;
9141   assert(size > 1 && "set is not overloaded!");
9142 
9143   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
9144                           size * sizeof(FunctionTemplateDecl*));
9145   auto *OT = new (memory) OverloadedTemplateStorage(size);
9146 
9147   NamedDecl **Storage = OT->getStorage();
9148   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
9149     NamedDecl *D = *I;
9150     assert(isa<FunctionTemplateDecl>(D) ||
9151            isa<UnresolvedUsingValueDecl>(D) ||
9152            (isa<UsingShadowDecl>(D) &&
9153             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
9154     *Storage++ = D;
9155   }
9156 
9157   return TemplateName(OT);
9158 }
9159 
9160 /// Retrieve a template name representing an unqualified-id that has been
9161 /// assumed to name a template for ADL purposes.
9162 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
9163   auto *OT = new (*this) AssumedTemplateStorage(Name);
9164   return TemplateName(OT);
9165 }
9166 
9167 /// Retrieve the template name that represents a qualified
9168 /// template name such as \c std::vector.
9169 TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
9170                                                   bool TemplateKeyword,
9171                                                   TemplateName Template) const {
9172   assert(NNS && "Missing nested-name-specifier in qualified template name");
9173 
9174   // FIXME: Canonicalization?
9175   llvm::FoldingSetNodeID ID;
9176   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
9177 
9178   void *InsertPos = nullptr;
9179   QualifiedTemplateName *QTN =
9180     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9181   if (!QTN) {
9182     QTN = new (*this, alignof(QualifiedTemplateName))
9183         QualifiedTemplateName(NNS, TemplateKeyword, Template);
9184     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
9185   }
9186 
9187   return TemplateName(QTN);
9188 }
9189 
9190 /// Retrieve the template name that represents a dependent
9191 /// template name such as \c MetaFun::template apply.
9192 TemplateName
9193 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9194                                      const IdentifierInfo *Name) const {
9195   assert((!NNS || NNS->isDependent()) &&
9196          "Nested name specifier must be dependent");
9197 
9198   llvm::FoldingSetNodeID ID;
9199   DependentTemplateName::Profile(ID, NNS, Name);
9200 
9201   void *InsertPos = nullptr;
9202   DependentTemplateName *QTN =
9203     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9204 
9205   if (QTN)
9206     return TemplateName(QTN);
9207 
9208   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9209   if (CanonNNS == NNS) {
9210     QTN = new (*this, alignof(DependentTemplateName))
9211         DependentTemplateName(NNS, Name);
9212   } else {
9213     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
9214     QTN = new (*this, alignof(DependentTemplateName))
9215         DependentTemplateName(NNS, Name, Canon);
9216     DependentTemplateName *CheckQTN =
9217       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9218     assert(!CheckQTN && "Dependent type name canonicalization broken");
9219     (void)CheckQTN;
9220   }
9221 
9222   DependentTemplateNames.InsertNode(QTN, InsertPos);
9223   return TemplateName(QTN);
9224 }
9225 
9226 /// Retrieve the template name that represents a dependent
9227 /// template name such as \c MetaFun::template operator+.
9228 TemplateName
9229 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9230                                      OverloadedOperatorKind Operator) const {
9231   assert((!NNS || NNS->isDependent()) &&
9232          "Nested name specifier must be dependent");
9233 
9234   llvm::FoldingSetNodeID ID;
9235   DependentTemplateName::Profile(ID, NNS, Operator);
9236 
9237   void *InsertPos = nullptr;
9238   DependentTemplateName *QTN
9239     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9240 
9241   if (QTN)
9242     return TemplateName(QTN);
9243 
9244   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9245   if (CanonNNS == NNS) {
9246     QTN = new (*this, alignof(DependentTemplateName))
9247         DependentTemplateName(NNS, Operator);
9248   } else {
9249     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
9250     QTN = new (*this, alignof(DependentTemplateName))
9251         DependentTemplateName(NNS, Operator, Canon);
9252 
9253     DependentTemplateName *CheckQTN
9254       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9255     assert(!CheckQTN && "Dependent template name canonicalization broken");
9256     (void)CheckQTN;
9257   }
9258 
9259   DependentTemplateNames.InsertNode(QTN, InsertPos);
9260   return TemplateName(QTN);
9261 }
9262 
9263 TemplateName ASTContext::getSubstTemplateTemplateParm(
9264     TemplateName Replacement, Decl *AssociatedDecl, unsigned Index,
9265     std::optional<unsigned> PackIndex) const {
9266   llvm::FoldingSetNodeID ID;
9267   SubstTemplateTemplateParmStorage::Profile(ID, Replacement, AssociatedDecl,
9268                                             Index, PackIndex);
9269 
9270   void *insertPos = nullptr;
9271   SubstTemplateTemplateParmStorage *subst
9272     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
9273 
9274   if (!subst) {
9275     subst = new (*this) SubstTemplateTemplateParmStorage(
9276         Replacement, AssociatedDecl, Index, PackIndex);
9277     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
9278   }
9279 
9280   return TemplateName(subst);
9281 }
9282 
9283 TemplateName
9284 ASTContext::getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack,
9285                                              Decl *AssociatedDecl,
9286                                              unsigned Index, bool Final) const {
9287   auto &Self = const_cast<ASTContext &>(*this);
9288   llvm::FoldingSetNodeID ID;
9289   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, ArgPack,
9290                                                 AssociatedDecl, Index, Final);
9291 
9292   void *InsertPos = nullptr;
9293   SubstTemplateTemplateParmPackStorage *Subst
9294     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
9295 
9296   if (!Subst) {
9297     Subst = new (*this) SubstTemplateTemplateParmPackStorage(
9298         ArgPack.pack_elements(), AssociatedDecl, Index, Final);
9299     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
9300   }
9301 
9302   return TemplateName(Subst);
9303 }
9304 
9305 /// getFromTargetType - Given one of the integer types provided by
9306 /// TargetInfo, produce the corresponding type. The unsigned @p Type
9307 /// is actually a value of type @c TargetInfo::IntType.
9308 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
9309   switch (Type) {
9310   case TargetInfo::NoInt: return {};
9311   case TargetInfo::SignedChar: return SignedCharTy;
9312   case TargetInfo::UnsignedChar: return UnsignedCharTy;
9313   case TargetInfo::SignedShort: return ShortTy;
9314   case TargetInfo::UnsignedShort: return UnsignedShortTy;
9315   case TargetInfo::SignedInt: return IntTy;
9316   case TargetInfo::UnsignedInt: return UnsignedIntTy;
9317   case TargetInfo::SignedLong: return LongTy;
9318   case TargetInfo::UnsignedLong: return UnsignedLongTy;
9319   case TargetInfo::SignedLongLong: return LongLongTy;
9320   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
9321   }
9322 
9323   llvm_unreachable("Unhandled TargetInfo::IntType value");
9324 }
9325 
9326 //===----------------------------------------------------------------------===//
9327 //                        Type Predicates.
9328 //===----------------------------------------------------------------------===//
9329 
9330 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
9331 /// garbage collection attribute.
9332 ///
9333 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
9334   if (getLangOpts().getGC() == LangOptions::NonGC)
9335     return Qualifiers::GCNone;
9336 
9337   assert(getLangOpts().ObjC);
9338   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
9339 
9340   // Default behaviour under objective-C's gc is for ObjC pointers
9341   // (or pointers to them) be treated as though they were declared
9342   // as __strong.
9343   if (GCAttrs == Qualifiers::GCNone) {
9344     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
9345       return Qualifiers::Strong;
9346     else if (Ty->isPointerType())
9347       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
9348   } else {
9349     // It's not valid to set GC attributes on anything that isn't a
9350     // pointer.
9351 #ifndef NDEBUG
9352     QualType CT = Ty->getCanonicalTypeInternal();
9353     while (const auto *AT = dyn_cast<ArrayType>(CT))
9354       CT = AT->getElementType();
9355     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
9356 #endif
9357   }
9358   return GCAttrs;
9359 }
9360 
9361 //===----------------------------------------------------------------------===//
9362 //                        Type Compatibility Testing
9363 //===----------------------------------------------------------------------===//
9364 
9365 /// areCompatVectorTypes - Return true if the two specified vector types are
9366 /// compatible.
9367 static bool areCompatVectorTypes(const VectorType *LHS,
9368                                  const VectorType *RHS) {
9369   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9370   return LHS->getElementType() == RHS->getElementType() &&
9371          LHS->getNumElements() == RHS->getNumElements();
9372 }
9373 
9374 /// areCompatMatrixTypes - Return true if the two specified matrix types are
9375 /// compatible.
9376 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
9377                                  const ConstantMatrixType *RHS) {
9378   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9379   return LHS->getElementType() == RHS->getElementType() &&
9380          LHS->getNumRows() == RHS->getNumRows() &&
9381          LHS->getNumColumns() == RHS->getNumColumns();
9382 }
9383 
9384 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
9385                                           QualType SecondVec) {
9386   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
9387   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
9388 
9389   if (hasSameUnqualifiedType(FirstVec, SecondVec))
9390     return true;
9391 
9392   // Treat Neon vector types and most AltiVec vector types as if they are the
9393   // equivalent GCC vector types.
9394   const auto *First = FirstVec->castAs<VectorType>();
9395   const auto *Second = SecondVec->castAs<VectorType>();
9396   if (First->getNumElements() == Second->getNumElements() &&
9397       hasSameType(First->getElementType(), Second->getElementType()) &&
9398       First->getVectorKind() != VectorKind::AltiVecPixel &&
9399       First->getVectorKind() != VectorKind::AltiVecBool &&
9400       Second->getVectorKind() != VectorKind::AltiVecPixel &&
9401       Second->getVectorKind() != VectorKind::AltiVecBool &&
9402       First->getVectorKind() != VectorKind::SveFixedLengthData &&
9403       First->getVectorKind() != VectorKind::SveFixedLengthPredicate &&
9404       Second->getVectorKind() != VectorKind::SveFixedLengthData &&
9405       Second->getVectorKind() != VectorKind::SveFixedLengthPredicate &&
9406       First->getVectorKind() != VectorKind::RVVFixedLengthData &&
9407       Second->getVectorKind() != VectorKind::RVVFixedLengthData)
9408     return true;
9409 
9410   return false;
9411 }
9412 
9413 /// getSVETypeSize - Return SVE vector or predicate register size.
9414 static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) {
9415   assert(Ty->isSveVLSBuiltinType() && "Invalid SVE Type");
9416   if (Ty->getKind() == BuiltinType::SveBool ||
9417       Ty->getKind() == BuiltinType::SveCount)
9418     return (Context.getLangOpts().VScaleMin * 128) / Context.getCharWidth();
9419   return Context.getLangOpts().VScaleMin * 128;
9420 }
9421 
9422 bool ASTContext::areCompatibleSveTypes(QualType FirstType,
9423                                        QualType SecondType) {
9424   assert(
9425       ((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) ||
9426        (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) &&
9427       "Expected SVE builtin type and vector type!");
9428 
9429   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
9430     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
9431       if (const auto *VT = SecondType->getAs<VectorType>()) {
9432         // Predicates have the same representation as uint8 so we also have to
9433         // check the kind to make these types incompatible.
9434         if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate)
9435           return BT->getKind() == BuiltinType::SveBool;
9436         else if (VT->getVectorKind() == VectorKind::SveFixedLengthData)
9437           return VT->getElementType().getCanonicalType() ==
9438                  FirstType->getSveEltType(*this);
9439         else if (VT->getVectorKind() == VectorKind::Generic)
9440           return getTypeSize(SecondType) == getSVETypeSize(*this, BT) &&
9441                  hasSameType(VT->getElementType(),
9442                              getBuiltinVectorTypeInfo(BT).ElementType);
9443       }
9444     }
9445     return false;
9446   };
9447 
9448   return IsValidCast(FirstType, SecondType) ||
9449          IsValidCast(SecondType, FirstType);
9450 }
9451 
9452 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
9453                                           QualType SecondType) {
9454   assert(
9455       ((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) ||
9456        (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) &&
9457       "Expected SVE builtin type and vector type!");
9458 
9459   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
9460     const auto *BT = FirstType->getAs<BuiltinType>();
9461     if (!BT)
9462       return false;
9463 
9464     const auto *VecTy = SecondType->getAs<VectorType>();
9465     if (VecTy && (VecTy->getVectorKind() == VectorKind::SveFixedLengthData ||
9466                   VecTy->getVectorKind() == VectorKind::Generic)) {
9467       const LangOptions::LaxVectorConversionKind LVCKind =
9468           getLangOpts().getLaxVectorConversions();
9469 
9470       // Can not convert between sve predicates and sve vectors because of
9471       // different size.
9472       if (BT->getKind() == BuiltinType::SveBool &&
9473           VecTy->getVectorKind() == VectorKind::SveFixedLengthData)
9474         return false;
9475 
9476       // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
9477       // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
9478       // converts to VLAT and VLAT implicitly converts to GNUT."
9479       // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
9480       // predicates.
9481       if (VecTy->getVectorKind() == VectorKind::Generic &&
9482           getTypeSize(SecondType) != getSVETypeSize(*this, BT))
9483         return false;
9484 
9485       // If -flax-vector-conversions=all is specified, the types are
9486       // certainly compatible.
9487       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
9488         return true;
9489 
9490       // If -flax-vector-conversions=integer is specified, the types are
9491       // compatible if the elements are integer types.
9492       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
9493         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
9494                FirstType->getSveEltType(*this)->isIntegerType();
9495     }
9496 
9497     return false;
9498   };
9499 
9500   return IsLaxCompatible(FirstType, SecondType) ||
9501          IsLaxCompatible(SecondType, FirstType);
9502 }
9503 
9504 /// getRVVTypeSize - Return RVV vector register size.
9505 static uint64_t getRVVTypeSize(ASTContext &Context, const BuiltinType *Ty) {
9506   assert(Ty->isRVVVLSBuiltinType() && "Invalid RVV Type");
9507   auto VScale = Context.getTargetInfo().getVScaleRange(Context.getLangOpts());
9508   if (!VScale)
9509     return 0;
9510 
9511   ASTContext::BuiltinVectorTypeInfo Info = Context.getBuiltinVectorTypeInfo(Ty);
9512 
9513   uint64_t EltSize = Context.getTypeSize(Info.ElementType);
9514   uint64_t MinElts = Info.EC.getKnownMinValue();
9515   return VScale->first * MinElts * EltSize;
9516 }
9517 
9518 bool ASTContext::areCompatibleRVVTypes(QualType FirstType,
9519                                        QualType SecondType) {
9520   assert(
9521       ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) ||
9522        (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) &&
9523       "Expected RVV builtin type and vector type!");
9524 
9525   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
9526     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
9527       if (const auto *VT = SecondType->getAs<VectorType>()) {
9528         if (VT->getVectorKind() == VectorKind::RVVFixedLengthData ||
9529             VT->getVectorKind() == VectorKind::Generic)
9530           return FirstType->isRVVVLSBuiltinType() &&
9531                  getTypeSize(SecondType) == getRVVTypeSize(*this, BT) &&
9532                  hasSameType(VT->getElementType(),
9533                              getBuiltinVectorTypeInfo(BT).ElementType);
9534       }
9535     }
9536     return false;
9537   };
9538 
9539   return IsValidCast(FirstType, SecondType) ||
9540          IsValidCast(SecondType, FirstType);
9541 }
9542 
9543 bool ASTContext::areLaxCompatibleRVVTypes(QualType FirstType,
9544                                           QualType SecondType) {
9545   assert(
9546       ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) ||
9547        (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) &&
9548       "Expected RVV builtin type and vector type!");
9549 
9550   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
9551     const auto *BT = FirstType->getAs<BuiltinType>();
9552     if (!BT)
9553       return false;
9554 
9555     if (!BT->isRVVVLSBuiltinType())
9556       return false;
9557 
9558     const auto *VecTy = SecondType->getAs<VectorType>();
9559     if (VecTy && VecTy->getVectorKind() == VectorKind::Generic) {
9560       const LangOptions::LaxVectorConversionKind LVCKind =
9561           getLangOpts().getLaxVectorConversions();
9562 
9563       // If __riscv_v_fixed_vlen != N do not allow vector lax conversion.
9564       if (getTypeSize(SecondType) != getRVVTypeSize(*this, BT))
9565         return false;
9566 
9567       // If -flax-vector-conversions=all is specified, the types are
9568       // certainly compatible.
9569       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
9570         return true;
9571 
9572       // If -flax-vector-conversions=integer is specified, the types are
9573       // compatible if the elements are integer types.
9574       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
9575         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
9576                FirstType->getRVVEltType(*this)->isIntegerType();
9577     }
9578 
9579     return false;
9580   };
9581 
9582   return IsLaxCompatible(FirstType, SecondType) ||
9583          IsLaxCompatible(SecondType, FirstType);
9584 }
9585 
9586 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
9587   while (true) {
9588     // __strong id
9589     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
9590       if (Attr->getAttrKind() == attr::ObjCOwnership)
9591         return true;
9592 
9593       Ty = Attr->getModifiedType();
9594 
9595     // X *__strong (...)
9596     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
9597       Ty = Paren->getInnerType();
9598 
9599     // We do not want to look through typedefs, typeof(expr),
9600     // typeof(type), or any other way that the type is somehow
9601     // abstracted.
9602     } else {
9603       return false;
9604     }
9605   }
9606 }
9607 
9608 //===----------------------------------------------------------------------===//
9609 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
9610 //===----------------------------------------------------------------------===//
9611 
9612 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
9613 /// inheritance hierarchy of 'rProto'.
9614 bool
9615 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
9616                                            ObjCProtocolDecl *rProto) const {
9617   if (declaresSameEntity(lProto, rProto))
9618     return true;
9619   for (auto *PI : rProto->protocols())
9620     if (ProtocolCompatibleWithProtocol(lProto, PI))
9621       return true;
9622   return false;
9623 }
9624 
9625 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
9626 /// Class<pr1, ...>.
9627 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
9628     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
9629   for (auto *lhsProto : lhs->quals()) {
9630     bool match = false;
9631     for (auto *rhsProto : rhs->quals()) {
9632       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
9633         match = true;
9634         break;
9635       }
9636     }
9637     if (!match)
9638       return false;
9639   }
9640   return true;
9641 }
9642 
9643 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
9644 /// ObjCQualifiedIDType.
9645 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
9646     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
9647     bool compare) {
9648   // Allow id<P..> and an 'id' in all cases.
9649   if (lhs->isObjCIdType() || rhs->isObjCIdType())
9650     return true;
9651 
9652   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
9653   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
9654       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
9655     return false;
9656 
9657   if (lhs->isObjCQualifiedIdType()) {
9658     if (rhs->qual_empty()) {
9659       // If the RHS is a unqualified interface pointer "NSString*",
9660       // make sure we check the class hierarchy.
9661       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9662         for (auto *I : lhs->quals()) {
9663           // when comparing an id<P> on lhs with a static type on rhs,
9664           // see if static class implements all of id's protocols, directly or
9665           // through its super class and categories.
9666           if (!rhsID->ClassImplementsProtocol(I, true))
9667             return false;
9668         }
9669       }
9670       // If there are no qualifiers and no interface, we have an 'id'.
9671       return true;
9672     }
9673     // Both the right and left sides have qualifiers.
9674     for (auto *lhsProto : lhs->quals()) {
9675       bool match = false;
9676 
9677       // when comparing an id<P> on lhs with a static type on rhs,
9678       // see if static class implements all of id's protocols, directly or
9679       // through its super class and categories.
9680       for (auto *rhsProto : rhs->quals()) {
9681         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9682             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9683           match = true;
9684           break;
9685         }
9686       }
9687       // If the RHS is a qualified interface pointer "NSString<P>*",
9688       // make sure we check the class hierarchy.
9689       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9690         for (auto *I : lhs->quals()) {
9691           // when comparing an id<P> on lhs with a static type on rhs,
9692           // see if static class implements all of id's protocols, directly or
9693           // through its super class and categories.
9694           if (rhsID->ClassImplementsProtocol(I, true)) {
9695             match = true;
9696             break;
9697           }
9698         }
9699       }
9700       if (!match)
9701         return false;
9702     }
9703 
9704     return true;
9705   }
9706 
9707   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
9708 
9709   if (lhs->getInterfaceType()) {
9710     // If both the right and left sides have qualifiers.
9711     for (auto *lhsProto : lhs->quals()) {
9712       bool match = false;
9713 
9714       // when comparing an id<P> on rhs with a static type on lhs,
9715       // see if static class implements all of id's protocols, directly or
9716       // through its super class and categories.
9717       // First, lhs protocols in the qualifier list must be found, direct
9718       // or indirect in rhs's qualifier list or it is a mismatch.
9719       for (auto *rhsProto : rhs->quals()) {
9720         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9721             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9722           match = true;
9723           break;
9724         }
9725       }
9726       if (!match)
9727         return false;
9728     }
9729 
9730     // Static class's protocols, or its super class or category protocols
9731     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
9732     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
9733       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
9734       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
9735       // This is rather dubious but matches gcc's behavior. If lhs has
9736       // no type qualifier and its class has no static protocol(s)
9737       // assume that it is mismatch.
9738       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
9739         return false;
9740       for (auto *lhsProto : LHSInheritedProtocols) {
9741         bool match = false;
9742         for (auto *rhsProto : rhs->quals()) {
9743           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9744               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9745             match = true;
9746             break;
9747           }
9748         }
9749         if (!match)
9750           return false;
9751       }
9752     }
9753     return true;
9754   }
9755   return false;
9756 }
9757 
9758 /// canAssignObjCInterfaces - Return true if the two interface types are
9759 /// compatible for assignment from RHS to LHS.  This handles validation of any
9760 /// protocol qualifiers on the LHS or RHS.
9761 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
9762                                          const ObjCObjectPointerType *RHSOPT) {
9763   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9764   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9765 
9766   // If either type represents the built-in 'id' type, return true.
9767   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
9768     return true;
9769 
9770   // Function object that propagates a successful result or handles
9771   // __kindof types.
9772   auto finish = [&](bool succeeded) -> bool {
9773     if (succeeded)
9774       return true;
9775 
9776     if (!RHS->isKindOfType())
9777       return false;
9778 
9779     // Strip off __kindof and protocol qualifiers, then check whether
9780     // we can assign the other way.
9781     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9782                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
9783   };
9784 
9785   // Casts from or to id<P> are allowed when the other side has compatible
9786   // protocols.
9787   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
9788     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
9789   }
9790 
9791   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
9792   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
9793     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
9794   }
9795 
9796   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
9797   if (LHS->isObjCClass() && RHS->isObjCClass()) {
9798     return true;
9799   }
9800 
9801   // If we have 2 user-defined types, fall into that path.
9802   if (LHS->getInterface() && RHS->getInterface()) {
9803     return finish(canAssignObjCInterfaces(LHS, RHS));
9804   }
9805 
9806   return false;
9807 }
9808 
9809 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
9810 /// for providing type-safety for objective-c pointers used to pass/return
9811 /// arguments in block literals. When passed as arguments, passing 'A*' where
9812 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
9813 /// not OK. For the return type, the opposite is not OK.
9814 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
9815                                          const ObjCObjectPointerType *LHSOPT,
9816                                          const ObjCObjectPointerType *RHSOPT,
9817                                          bool BlockReturnType) {
9818 
9819   // Function object that propagates a successful result or handles
9820   // __kindof types.
9821   auto finish = [&](bool succeeded) -> bool {
9822     if (succeeded)
9823       return true;
9824 
9825     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
9826     if (!Expected->isKindOfType())
9827       return false;
9828 
9829     // Strip off __kindof and protocol qualifiers, then check whether
9830     // we can assign the other way.
9831     return canAssignObjCInterfacesInBlockPointer(
9832              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9833              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
9834              BlockReturnType);
9835   };
9836 
9837   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
9838     return true;
9839 
9840   if (LHSOPT->isObjCBuiltinType()) {
9841     return finish(RHSOPT->isObjCBuiltinType() ||
9842                   RHSOPT->isObjCQualifiedIdType());
9843   }
9844 
9845   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
9846     if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
9847       // Use for block parameters previous type checking for compatibility.
9848       return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
9849                     // Or corrected type checking as in non-compat mode.
9850                     (!BlockReturnType &&
9851                      ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
9852     else
9853       return finish(ObjCQualifiedIdTypesAreCompatible(
9854           (BlockReturnType ? LHSOPT : RHSOPT),
9855           (BlockReturnType ? RHSOPT : LHSOPT), false));
9856   }
9857 
9858   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
9859   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
9860   if (LHS && RHS)  { // We have 2 user-defined types.
9861     if (LHS != RHS) {
9862       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
9863         return finish(BlockReturnType);
9864       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
9865         return finish(!BlockReturnType);
9866     }
9867     else
9868       return true;
9869   }
9870   return false;
9871 }
9872 
9873 /// Comparison routine for Objective-C protocols to be used with
9874 /// llvm::array_pod_sort.
9875 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
9876                                       ObjCProtocolDecl * const *rhs) {
9877   return (*lhs)->getName().compare((*rhs)->getName());
9878 }
9879 
9880 /// getIntersectionOfProtocols - This routine finds the intersection of set
9881 /// of protocols inherited from two distinct objective-c pointer objects with
9882 /// the given common base.
9883 /// It is used to build composite qualifier list of the composite type of
9884 /// the conditional expression involving two objective-c pointer objects.
9885 static
9886 void getIntersectionOfProtocols(ASTContext &Context,
9887                                 const ObjCInterfaceDecl *CommonBase,
9888                                 const ObjCObjectPointerType *LHSOPT,
9889                                 const ObjCObjectPointerType *RHSOPT,
9890       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
9891 
9892   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9893   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9894   assert(LHS->getInterface() && "LHS must have an interface base");
9895   assert(RHS->getInterface() && "RHS must have an interface base");
9896 
9897   // Add all of the protocols for the LHS.
9898   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
9899 
9900   // Start with the protocol qualifiers.
9901   for (auto *proto : LHS->quals()) {
9902     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
9903   }
9904 
9905   // Also add the protocols associated with the LHS interface.
9906   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
9907 
9908   // Add all of the protocols for the RHS.
9909   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
9910 
9911   // Start with the protocol qualifiers.
9912   for (auto *proto : RHS->quals()) {
9913     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
9914   }
9915 
9916   // Also add the protocols associated with the RHS interface.
9917   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
9918 
9919   // Compute the intersection of the collected protocol sets.
9920   for (auto *proto : LHSProtocolSet) {
9921     if (RHSProtocolSet.count(proto))
9922       IntersectionSet.push_back(proto);
9923   }
9924 
9925   // Compute the set of protocols that is implied by either the common type or
9926   // the protocols within the intersection.
9927   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
9928   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
9929 
9930   // Remove any implied protocols from the list of inherited protocols.
9931   if (!ImpliedProtocols.empty()) {
9932     llvm::erase_if(IntersectionSet, [&](ObjCProtocolDecl *proto) -> bool {
9933       return ImpliedProtocols.contains(proto);
9934     });
9935   }
9936 
9937   // Sort the remaining protocols by name.
9938   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
9939                        compareObjCProtocolsByName);
9940 }
9941 
9942 /// Determine whether the first type is a subtype of the second.
9943 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
9944                                      QualType rhs) {
9945   // Common case: two object pointers.
9946   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
9947   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
9948   if (lhsOPT && rhsOPT)
9949     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
9950 
9951   // Two block pointers.
9952   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
9953   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
9954   if (lhsBlock && rhsBlock)
9955     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
9956 
9957   // If either is an unqualified 'id' and the other is a block, it's
9958   // acceptable.
9959   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
9960       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
9961     return true;
9962 
9963   return false;
9964 }
9965 
9966 // Check that the given Objective-C type argument lists are equivalent.
9967 static bool sameObjCTypeArgs(ASTContext &ctx,
9968                              const ObjCInterfaceDecl *iface,
9969                              ArrayRef<QualType> lhsArgs,
9970                              ArrayRef<QualType> rhsArgs,
9971                              bool stripKindOf) {
9972   if (lhsArgs.size() != rhsArgs.size())
9973     return false;
9974 
9975   ObjCTypeParamList *typeParams = iface->getTypeParamList();
9976   if (!typeParams)
9977     return false;
9978 
9979   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
9980     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
9981       continue;
9982 
9983     switch (typeParams->begin()[i]->getVariance()) {
9984     case ObjCTypeParamVariance::Invariant:
9985       if (!stripKindOf ||
9986           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
9987                            rhsArgs[i].stripObjCKindOfType(ctx))) {
9988         return false;
9989       }
9990       break;
9991 
9992     case ObjCTypeParamVariance::Covariant:
9993       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
9994         return false;
9995       break;
9996 
9997     case ObjCTypeParamVariance::Contravariant:
9998       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
9999         return false;
10000       break;
10001     }
10002   }
10003 
10004   return true;
10005 }
10006 
10007 QualType ASTContext::areCommonBaseCompatible(
10008            const ObjCObjectPointerType *Lptr,
10009            const ObjCObjectPointerType *Rptr) {
10010   const ObjCObjectType *LHS = Lptr->getObjectType();
10011   const ObjCObjectType *RHS = Rptr->getObjectType();
10012   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
10013   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
10014 
10015   if (!LDecl || !RDecl)
10016     return {};
10017 
10018   // When either LHS or RHS is a kindof type, we should return a kindof type.
10019   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
10020   // kindof(A).
10021   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
10022 
10023   // Follow the left-hand side up the class hierarchy until we either hit a
10024   // root or find the RHS. Record the ancestors in case we don't find it.
10025   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
10026     LHSAncestors;
10027   while (true) {
10028     // Record this ancestor. We'll need this if the common type isn't in the
10029     // path from the LHS to the root.
10030     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
10031 
10032     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
10033       // Get the type arguments.
10034       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
10035       bool anyChanges = false;
10036       if (LHS->isSpecialized() && RHS->isSpecialized()) {
10037         // Both have type arguments, compare them.
10038         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
10039                               LHS->getTypeArgs(), RHS->getTypeArgs(),
10040                               /*stripKindOf=*/true))
10041           return {};
10042       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
10043         // If only one has type arguments, the result will not have type
10044         // arguments.
10045         LHSTypeArgs = {};
10046         anyChanges = true;
10047       }
10048 
10049       // Compute the intersection of protocols.
10050       SmallVector<ObjCProtocolDecl *, 8> Protocols;
10051       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
10052                                  Protocols);
10053       if (!Protocols.empty())
10054         anyChanges = true;
10055 
10056       // If anything in the LHS will have changed, build a new result type.
10057       // If we need to return a kindof type but LHS is not a kindof type, we
10058       // build a new result type.
10059       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
10060         QualType Result = getObjCInterfaceType(LHS->getInterface());
10061         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
10062                                    anyKindOf || LHS->isKindOfType());
10063         return getObjCObjectPointerType(Result);
10064       }
10065 
10066       return getObjCObjectPointerType(QualType(LHS, 0));
10067     }
10068 
10069     // Find the superclass.
10070     QualType LHSSuperType = LHS->getSuperClassType();
10071     if (LHSSuperType.isNull())
10072       break;
10073 
10074     LHS = LHSSuperType->castAs<ObjCObjectType>();
10075   }
10076 
10077   // We didn't find anything by following the LHS to its root; now check
10078   // the RHS against the cached set of ancestors.
10079   while (true) {
10080     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
10081     if (KnownLHS != LHSAncestors.end()) {
10082       LHS = KnownLHS->second;
10083 
10084       // Get the type arguments.
10085       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
10086       bool anyChanges = false;
10087       if (LHS->isSpecialized() && RHS->isSpecialized()) {
10088         // Both have type arguments, compare them.
10089         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
10090                               LHS->getTypeArgs(), RHS->getTypeArgs(),
10091                               /*stripKindOf=*/true))
10092           return {};
10093       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
10094         // If only one has type arguments, the result will not have type
10095         // arguments.
10096         RHSTypeArgs = {};
10097         anyChanges = true;
10098       }
10099 
10100       // Compute the intersection of protocols.
10101       SmallVector<ObjCProtocolDecl *, 8> Protocols;
10102       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
10103                                  Protocols);
10104       if (!Protocols.empty())
10105         anyChanges = true;
10106 
10107       // If we need to return a kindof type but RHS is not a kindof type, we
10108       // build a new result type.
10109       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
10110         QualType Result = getObjCInterfaceType(RHS->getInterface());
10111         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
10112                                    anyKindOf || RHS->isKindOfType());
10113         return getObjCObjectPointerType(Result);
10114       }
10115 
10116       return getObjCObjectPointerType(QualType(RHS, 0));
10117     }
10118 
10119     // Find the superclass of the RHS.
10120     QualType RHSSuperType = RHS->getSuperClassType();
10121     if (RHSSuperType.isNull())
10122       break;
10123 
10124     RHS = RHSSuperType->castAs<ObjCObjectType>();
10125   }
10126 
10127   return {};
10128 }
10129 
10130 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
10131                                          const ObjCObjectType *RHS) {
10132   assert(LHS->getInterface() && "LHS is not an interface type");
10133   assert(RHS->getInterface() && "RHS is not an interface type");
10134 
10135   // Verify that the base decls are compatible: the RHS must be a subclass of
10136   // the LHS.
10137   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
10138   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
10139   if (!IsSuperClass)
10140     return false;
10141 
10142   // If the LHS has protocol qualifiers, determine whether all of them are
10143   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
10144   // LHS).
10145   if (LHS->getNumProtocols() > 0) {
10146     // OK if conversion of LHS to SuperClass results in narrowing of types
10147     // ; i.e., SuperClass may implement at least one of the protocols
10148     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
10149     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
10150     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
10151     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
10152     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
10153     // qualifiers.
10154     for (auto *RHSPI : RHS->quals())
10155       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
10156     // If there is no protocols associated with RHS, it is not a match.
10157     if (SuperClassInheritedProtocols.empty())
10158       return false;
10159 
10160     for (const auto *LHSProto : LHS->quals()) {
10161       bool SuperImplementsProtocol = false;
10162       for (auto *SuperClassProto : SuperClassInheritedProtocols)
10163         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
10164           SuperImplementsProtocol = true;
10165           break;
10166         }
10167       if (!SuperImplementsProtocol)
10168         return false;
10169     }
10170   }
10171 
10172   // If the LHS is specialized, we may need to check type arguments.
10173   if (LHS->isSpecialized()) {
10174     // Follow the superclass chain until we've matched the LHS class in the
10175     // hierarchy. This substitutes type arguments through.
10176     const ObjCObjectType *RHSSuper = RHS;
10177     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
10178       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
10179 
10180     // If the RHS is specializd, compare type arguments.
10181     if (RHSSuper->isSpecialized() &&
10182         !sameObjCTypeArgs(*this, LHS->getInterface(),
10183                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
10184                           /*stripKindOf=*/true)) {
10185       return false;
10186     }
10187   }
10188 
10189   return true;
10190 }
10191 
10192 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
10193   // get the "pointed to" types
10194   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
10195   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
10196 
10197   if (!LHSOPT || !RHSOPT)
10198     return false;
10199 
10200   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
10201          canAssignObjCInterfaces(RHSOPT, LHSOPT);
10202 }
10203 
10204 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
10205   return canAssignObjCInterfaces(
10206       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
10207       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
10208 }
10209 
10210 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
10211 /// both shall have the identically qualified version of a compatible type.
10212 /// C99 6.2.7p1: Two types have compatible types if their types are the
10213 /// same. See 6.7.[2,3,5] for additional rules.
10214 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
10215                                     bool CompareUnqualified) {
10216   if (getLangOpts().CPlusPlus)
10217     return hasSameType(LHS, RHS);
10218 
10219   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
10220 }
10221 
10222 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
10223   return typesAreCompatible(LHS, RHS);
10224 }
10225 
10226 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
10227   return !mergeTypes(LHS, RHS, true).isNull();
10228 }
10229 
10230 /// mergeTransparentUnionType - if T is a transparent union type and a member
10231 /// of T is compatible with SubType, return the merged type, else return
10232 /// QualType()
10233 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
10234                                                bool OfBlockPointer,
10235                                                bool Unqualified) {
10236   if (const RecordType *UT = T->getAsUnionType()) {
10237     RecordDecl *UD = UT->getDecl();
10238     if (UD->hasAttr<TransparentUnionAttr>()) {
10239       for (const auto *I : UD->fields()) {
10240         QualType ET = I->getType().getUnqualifiedType();
10241         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
10242         if (!MT.isNull())
10243           return MT;
10244       }
10245     }
10246   }
10247 
10248   return {};
10249 }
10250 
10251 /// mergeFunctionParameterTypes - merge two types which appear as function
10252 /// parameter types
10253 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
10254                                                  bool OfBlockPointer,
10255                                                  bool Unqualified) {
10256   // GNU extension: two types are compatible if they appear as a function
10257   // argument, one of the types is a transparent union type and the other
10258   // type is compatible with a union member
10259   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
10260                                               Unqualified);
10261   if (!lmerge.isNull())
10262     return lmerge;
10263 
10264   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
10265                                               Unqualified);
10266   if (!rmerge.isNull())
10267     return rmerge;
10268 
10269   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
10270 }
10271 
10272 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
10273                                         bool OfBlockPointer, bool Unqualified,
10274                                         bool AllowCXX,
10275                                         bool IsConditionalOperator) {
10276   const auto *lbase = lhs->castAs<FunctionType>();
10277   const auto *rbase = rhs->castAs<FunctionType>();
10278   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
10279   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
10280   bool allLTypes = true;
10281   bool allRTypes = true;
10282 
10283   // Check return type
10284   QualType retType;
10285   if (OfBlockPointer) {
10286     QualType RHS = rbase->getReturnType();
10287     QualType LHS = lbase->getReturnType();
10288     bool UnqualifiedResult = Unqualified;
10289     if (!UnqualifiedResult)
10290       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
10291     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
10292   }
10293   else
10294     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
10295                          Unqualified);
10296   if (retType.isNull())
10297     return {};
10298 
10299   if (Unqualified)
10300     retType = retType.getUnqualifiedType();
10301 
10302   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
10303   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
10304   if (Unqualified) {
10305     LRetType = LRetType.getUnqualifiedType();
10306     RRetType = RRetType.getUnqualifiedType();
10307   }
10308 
10309   if (getCanonicalType(retType) != LRetType)
10310     allLTypes = false;
10311   if (getCanonicalType(retType) != RRetType)
10312     allRTypes = false;
10313 
10314   // FIXME: double check this
10315   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
10316   //                           rbase->getRegParmAttr() != 0 &&
10317   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
10318   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
10319   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
10320 
10321   // Compatible functions must have compatible calling conventions
10322   if (lbaseInfo.getCC() != rbaseInfo.getCC())
10323     return {};
10324 
10325   // Regparm is part of the calling convention.
10326   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
10327     return {};
10328   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
10329     return {};
10330 
10331   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
10332     return {};
10333   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
10334     return {};
10335   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
10336     return {};
10337 
10338   // When merging declarations, it's common for supplemental information like
10339   // attributes to only be present in one of the declarations, and we generally
10340   // want type merging to preserve the union of information.  So a merged
10341   // function type should be noreturn if it was noreturn in *either* operand
10342   // type.
10343   //
10344   // But for the conditional operator, this is backwards.  The result of the
10345   // operator could be either operand, and its type should conservatively
10346   // reflect that.  So a function type in a composite type is noreturn only
10347   // if it's noreturn in *both* operand types.
10348   //
10349   // Arguably, noreturn is a kind of subtype, and the conditional operator
10350   // ought to produce the most specific common supertype of its operand types.
10351   // That would differ from this rule in contravariant positions.  However,
10352   // neither C nor C++ generally uses this kind of subtype reasoning.  Also,
10353   // as a practical matter, it would only affect C code that does abstraction of
10354   // higher-order functions (taking noreturn callbacks!), which is uncommon to
10355   // say the least.  So we use the simpler rule.
10356   bool NoReturn = IsConditionalOperator
10357                       ? lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn()
10358                       : lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
10359   if (lbaseInfo.getNoReturn() != NoReturn)
10360     allLTypes = false;
10361   if (rbaseInfo.getNoReturn() != NoReturn)
10362     allRTypes = false;
10363 
10364   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
10365 
10366   if (lproto && rproto) { // two C99 style function prototypes
10367     assert((AllowCXX ||
10368             (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
10369            "C++ shouldn't be here");
10370     // Compatible functions must have the same number of parameters
10371     if (lproto->getNumParams() != rproto->getNumParams())
10372       return {};
10373 
10374     // Variadic and non-variadic functions aren't compatible
10375     if (lproto->isVariadic() != rproto->isVariadic())
10376       return {};
10377 
10378     if (lproto->getMethodQuals() != rproto->getMethodQuals())
10379       return {};
10380 
10381     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
10382     bool canUseLeft, canUseRight;
10383     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
10384                                newParamInfos))
10385       return {};
10386 
10387     if (!canUseLeft)
10388       allLTypes = false;
10389     if (!canUseRight)
10390       allRTypes = false;
10391 
10392     // Check parameter type compatibility
10393     SmallVector<QualType, 10> types;
10394     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
10395       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
10396       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
10397       QualType paramType = mergeFunctionParameterTypes(
10398           lParamType, rParamType, OfBlockPointer, Unqualified);
10399       if (paramType.isNull())
10400         return {};
10401 
10402       if (Unqualified)
10403         paramType = paramType.getUnqualifiedType();
10404 
10405       types.push_back(paramType);
10406       if (Unqualified) {
10407         lParamType = lParamType.getUnqualifiedType();
10408         rParamType = rParamType.getUnqualifiedType();
10409       }
10410 
10411       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
10412         allLTypes = false;
10413       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
10414         allRTypes = false;
10415     }
10416 
10417     if (allLTypes) return lhs;
10418     if (allRTypes) return rhs;
10419 
10420     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
10421     EPI.ExtInfo = einfo;
10422     EPI.ExtParameterInfos =
10423         newParamInfos.empty() ? nullptr : newParamInfos.data();
10424     return getFunctionType(retType, types, EPI);
10425   }
10426 
10427   if (lproto) allRTypes = false;
10428   if (rproto) allLTypes = false;
10429 
10430   const FunctionProtoType *proto = lproto ? lproto : rproto;
10431   if (proto) {
10432     assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
10433     if (proto->isVariadic())
10434       return {};
10435     // Check that the types are compatible with the types that
10436     // would result from default argument promotions (C99 6.7.5.3p15).
10437     // The only types actually affected are promotable integer
10438     // types and floats, which would be passed as a different
10439     // type depending on whether the prototype is visible.
10440     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
10441       QualType paramTy = proto->getParamType(i);
10442 
10443       // Look at the converted type of enum types, since that is the type used
10444       // to pass enum values.
10445       if (const auto *Enum = paramTy->getAs<EnumType>()) {
10446         paramTy = Enum->getDecl()->getIntegerType();
10447         if (paramTy.isNull())
10448           return {};
10449       }
10450 
10451       if (isPromotableIntegerType(paramTy) ||
10452           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
10453         return {};
10454     }
10455 
10456     if (allLTypes) return lhs;
10457     if (allRTypes) return rhs;
10458 
10459     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
10460     EPI.ExtInfo = einfo;
10461     return getFunctionType(retType, proto->getParamTypes(), EPI);
10462   }
10463 
10464   if (allLTypes) return lhs;
10465   if (allRTypes) return rhs;
10466   return getFunctionNoProtoType(retType, einfo);
10467 }
10468 
10469 /// Given that we have an enum type and a non-enum type, try to merge them.
10470 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
10471                                      QualType other, bool isBlockReturnType) {
10472   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
10473   // a signed integer type, or an unsigned integer type.
10474   // Compatibility is based on the underlying type, not the promotion
10475   // type.
10476   QualType underlyingType = ET->getDecl()->getIntegerType();
10477   if (underlyingType.isNull())
10478     return {};
10479   if (Context.hasSameType(underlyingType, other))
10480     return other;
10481 
10482   // In block return types, we're more permissive and accept any
10483   // integral type of the same size.
10484   if (isBlockReturnType && other->isIntegerType() &&
10485       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
10486     return other;
10487 
10488   return {};
10489 }
10490 
10491 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, bool OfBlockPointer,
10492                                 bool Unqualified, bool BlockReturnType,
10493                                 bool IsConditionalOperator) {
10494   // For C++ we will not reach this code with reference types (see below),
10495   // for OpenMP variant call overloading we might.
10496   //
10497   // C++ [expr]: If an expression initially has the type "reference to T", the
10498   // type is adjusted to "T" prior to any further analysis, the expression
10499   // designates the object or function denoted by the reference, and the
10500   // expression is an lvalue unless the reference is an rvalue reference and
10501   // the expression is a function call (possibly inside parentheses).
10502   auto *LHSRefTy = LHS->getAs<ReferenceType>();
10503   auto *RHSRefTy = RHS->getAs<ReferenceType>();
10504   if (LangOpts.OpenMP && LHSRefTy && RHSRefTy &&
10505       LHS->getTypeClass() == RHS->getTypeClass())
10506     return mergeTypes(LHSRefTy->getPointeeType(), RHSRefTy->getPointeeType(),
10507                       OfBlockPointer, Unqualified, BlockReturnType);
10508   if (LHSRefTy || RHSRefTy)
10509     return {};
10510 
10511   if (Unqualified) {
10512     LHS = LHS.getUnqualifiedType();
10513     RHS = RHS.getUnqualifiedType();
10514   }
10515 
10516   QualType LHSCan = getCanonicalType(LHS),
10517            RHSCan = getCanonicalType(RHS);
10518 
10519   // If two types are identical, they are compatible.
10520   if (LHSCan == RHSCan)
10521     return LHS;
10522 
10523   // If the qualifiers are different, the types aren't compatible... mostly.
10524   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10525   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10526   if (LQuals != RQuals) {
10527     // If any of these qualifiers are different, we have a type
10528     // mismatch.
10529     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10530         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
10531         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
10532         LQuals.hasUnaligned() != RQuals.hasUnaligned())
10533       return {};
10534 
10535     // Exactly one GC qualifier difference is allowed: __strong is
10536     // okay if the other type has no GC qualifier but is an Objective
10537     // C object pointer (i.e. implicitly strong by default).  We fix
10538     // this by pretending that the unqualified type was actually
10539     // qualified __strong.
10540     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10541     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10542     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10543 
10544     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10545       return {};
10546 
10547     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
10548       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
10549     }
10550     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
10551       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
10552     }
10553     return {};
10554   }
10555 
10556   // Okay, qualifiers are equal.
10557 
10558   Type::TypeClass LHSClass = LHSCan->getTypeClass();
10559   Type::TypeClass RHSClass = RHSCan->getTypeClass();
10560 
10561   // We want to consider the two function types to be the same for these
10562   // comparisons, just force one to the other.
10563   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
10564   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
10565 
10566   // Same as above for arrays
10567   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
10568     LHSClass = Type::ConstantArray;
10569   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
10570     RHSClass = Type::ConstantArray;
10571 
10572   // ObjCInterfaces are just specialized ObjCObjects.
10573   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
10574   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
10575 
10576   // Canonicalize ExtVector -> Vector.
10577   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
10578   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
10579 
10580   // If the canonical type classes don't match.
10581   if (LHSClass != RHSClass) {
10582     // Note that we only have special rules for turning block enum
10583     // returns into block int returns, not vice-versa.
10584     if (const auto *ETy = LHS->getAs<EnumType>()) {
10585       return mergeEnumWithInteger(*this, ETy, RHS, false);
10586     }
10587     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
10588       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
10589     }
10590     // allow block pointer type to match an 'id' type.
10591     if (OfBlockPointer && !BlockReturnType) {
10592        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
10593          return LHS;
10594       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
10595         return RHS;
10596     }
10597     // Allow __auto_type to match anything; it merges to the type with more
10598     // information.
10599     if (const auto *AT = LHS->getAs<AutoType>()) {
10600       if (!AT->isDeduced() && AT->isGNUAutoType())
10601         return RHS;
10602     }
10603     if (const auto *AT = RHS->getAs<AutoType>()) {
10604       if (!AT->isDeduced() && AT->isGNUAutoType())
10605         return LHS;
10606     }
10607     return {};
10608   }
10609 
10610   // The canonical type classes match.
10611   switch (LHSClass) {
10612 #define TYPE(Class, Base)
10613 #define ABSTRACT_TYPE(Class, Base)
10614 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
10615 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
10616 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
10617 #include "clang/AST/TypeNodes.inc"
10618     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
10619 
10620   case Type::Auto:
10621   case Type::DeducedTemplateSpecialization:
10622   case Type::LValueReference:
10623   case Type::RValueReference:
10624   case Type::MemberPointer:
10625     llvm_unreachable("C++ should never be in mergeTypes");
10626 
10627   case Type::ObjCInterface:
10628   case Type::IncompleteArray:
10629   case Type::VariableArray:
10630   case Type::FunctionProto:
10631   case Type::ExtVector:
10632     llvm_unreachable("Types are eliminated above");
10633 
10634   case Type::Pointer:
10635   {
10636     // Merge two pointer types, while trying to preserve typedef info
10637     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
10638     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
10639     if (Unqualified) {
10640       LHSPointee = LHSPointee.getUnqualifiedType();
10641       RHSPointee = RHSPointee.getUnqualifiedType();
10642     }
10643     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
10644                                      Unqualified);
10645     if (ResultType.isNull())
10646       return {};
10647     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10648       return LHS;
10649     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10650       return RHS;
10651     return getPointerType(ResultType);
10652   }
10653   case Type::BlockPointer:
10654   {
10655     // Merge two block pointer types, while trying to preserve typedef info
10656     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
10657     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
10658     if (Unqualified) {
10659       LHSPointee = LHSPointee.getUnqualifiedType();
10660       RHSPointee = RHSPointee.getUnqualifiedType();
10661     }
10662     if (getLangOpts().OpenCL) {
10663       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
10664       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
10665       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
10666       // 6.12.5) thus the following check is asymmetric.
10667       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
10668         return {};
10669       LHSPteeQual.removeAddressSpace();
10670       RHSPteeQual.removeAddressSpace();
10671       LHSPointee =
10672           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
10673       RHSPointee =
10674           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
10675     }
10676     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
10677                                      Unqualified);
10678     if (ResultType.isNull())
10679       return {};
10680     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10681       return LHS;
10682     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10683       return RHS;
10684     return getBlockPointerType(ResultType);
10685   }
10686   case Type::Atomic:
10687   {
10688     // Merge two pointer types, while trying to preserve typedef info
10689     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
10690     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
10691     if (Unqualified) {
10692       LHSValue = LHSValue.getUnqualifiedType();
10693       RHSValue = RHSValue.getUnqualifiedType();
10694     }
10695     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
10696                                      Unqualified);
10697     if (ResultType.isNull())
10698       return {};
10699     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
10700       return LHS;
10701     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
10702       return RHS;
10703     return getAtomicType(ResultType);
10704   }
10705   case Type::ConstantArray:
10706   {
10707     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
10708     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
10709     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
10710       return {};
10711 
10712     QualType LHSElem = getAsArrayType(LHS)->getElementType();
10713     QualType RHSElem = getAsArrayType(RHS)->getElementType();
10714     if (Unqualified) {
10715       LHSElem = LHSElem.getUnqualifiedType();
10716       RHSElem = RHSElem.getUnqualifiedType();
10717     }
10718 
10719     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
10720     if (ResultType.isNull())
10721       return {};
10722 
10723     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
10724     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
10725 
10726     // If either side is a variable array, and both are complete, check whether
10727     // the current dimension is definite.
10728     if (LVAT || RVAT) {
10729       auto SizeFetch = [this](const VariableArrayType* VAT,
10730           const ConstantArrayType* CAT)
10731           -> std::pair<bool,llvm::APInt> {
10732         if (VAT) {
10733           std::optional<llvm::APSInt> TheInt;
10734           Expr *E = VAT->getSizeExpr();
10735           if (E && (TheInt = E->getIntegerConstantExpr(*this)))
10736             return std::make_pair(true, *TheInt);
10737           return std::make_pair(false, llvm::APSInt());
10738         }
10739         if (CAT)
10740           return std::make_pair(true, CAT->getSize());
10741         return std::make_pair(false, llvm::APInt());
10742       };
10743 
10744       bool HaveLSize, HaveRSize;
10745       llvm::APInt LSize, RSize;
10746       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
10747       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
10748       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
10749         return {}; // Definite, but unequal, array dimension
10750     }
10751 
10752     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10753       return LHS;
10754     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10755       return RHS;
10756     if (LCAT)
10757       return getConstantArrayType(ResultType, LCAT->getSize(),
10758                                   LCAT->getSizeExpr(), ArraySizeModifier(), 0);
10759     if (RCAT)
10760       return getConstantArrayType(ResultType, RCAT->getSize(),
10761                                   RCAT->getSizeExpr(), ArraySizeModifier(), 0);
10762     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10763       return LHS;
10764     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10765       return RHS;
10766     if (LVAT) {
10767       // FIXME: This isn't correct! But tricky to implement because
10768       // the array's size has to be the size of LHS, but the type
10769       // has to be different.
10770       return LHS;
10771     }
10772     if (RVAT) {
10773       // FIXME: This isn't correct! But tricky to implement because
10774       // the array's size has to be the size of RHS, but the type
10775       // has to be different.
10776       return RHS;
10777     }
10778     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
10779     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
10780     return getIncompleteArrayType(ResultType, ArraySizeModifier(), 0);
10781   }
10782   case Type::FunctionNoProto:
10783     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified,
10784                               /*AllowCXX=*/false, IsConditionalOperator);
10785   case Type::Record:
10786   case Type::Enum:
10787     return {};
10788   case Type::Builtin:
10789     // Only exactly equal builtin types are compatible, which is tested above.
10790     return {};
10791   case Type::Complex:
10792     // Distinct complex types are incompatible.
10793     return {};
10794   case Type::Vector:
10795     // FIXME: The merged type should be an ExtVector!
10796     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
10797                              RHSCan->castAs<VectorType>()))
10798       return LHS;
10799     return {};
10800   case Type::ConstantMatrix:
10801     if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
10802                              RHSCan->castAs<ConstantMatrixType>()))
10803       return LHS;
10804     return {};
10805   case Type::ObjCObject: {
10806     // Check if the types are assignment compatible.
10807     // FIXME: This should be type compatibility, e.g. whether
10808     // "LHS x; RHS x;" at global scope is legal.
10809     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
10810                                 RHS->castAs<ObjCObjectType>()))
10811       return LHS;
10812     return {};
10813   }
10814   case Type::ObjCObjectPointer:
10815     if (OfBlockPointer) {
10816       if (canAssignObjCInterfacesInBlockPointer(
10817               LHS->castAs<ObjCObjectPointerType>(),
10818               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
10819         return LHS;
10820       return {};
10821     }
10822     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
10823                                 RHS->castAs<ObjCObjectPointerType>()))
10824       return LHS;
10825     return {};
10826   case Type::Pipe:
10827     assert(LHS != RHS &&
10828            "Equivalent pipe types should have already been handled!");
10829     return {};
10830   case Type::BitInt: {
10831     // Merge two bit-precise int types, while trying to preserve typedef info.
10832     bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned();
10833     bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned();
10834     unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits();
10835     unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits();
10836 
10837     // Like unsigned/int, shouldn't have a type if they don't match.
10838     if (LHSUnsigned != RHSUnsigned)
10839       return {};
10840 
10841     if (LHSBits != RHSBits)
10842       return {};
10843     return LHS;
10844   }
10845   }
10846 
10847   llvm_unreachable("Invalid Type::Class!");
10848 }
10849 
10850 bool ASTContext::mergeExtParameterInfo(
10851     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
10852     bool &CanUseFirst, bool &CanUseSecond,
10853     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
10854   assert(NewParamInfos.empty() && "param info list not empty");
10855   CanUseFirst = CanUseSecond = true;
10856   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
10857   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
10858 
10859   // Fast path: if the first type doesn't have ext parameter infos,
10860   // we match if and only if the second type also doesn't have them.
10861   if (!FirstHasInfo && !SecondHasInfo)
10862     return true;
10863 
10864   bool NeedParamInfo = false;
10865   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
10866                           : SecondFnType->getExtParameterInfos().size();
10867 
10868   for (size_t I = 0; I < E; ++I) {
10869     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
10870     if (FirstHasInfo)
10871       FirstParam = FirstFnType->getExtParameterInfo(I);
10872     if (SecondHasInfo)
10873       SecondParam = SecondFnType->getExtParameterInfo(I);
10874 
10875     // Cannot merge unless everything except the noescape flag matches.
10876     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
10877       return false;
10878 
10879     bool FirstNoEscape = FirstParam.isNoEscape();
10880     bool SecondNoEscape = SecondParam.isNoEscape();
10881     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
10882     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
10883     if (NewParamInfos.back().getOpaqueValue())
10884       NeedParamInfo = true;
10885     if (FirstNoEscape != IsNoEscape)
10886       CanUseFirst = false;
10887     if (SecondNoEscape != IsNoEscape)
10888       CanUseSecond = false;
10889   }
10890 
10891   if (!NeedParamInfo)
10892     NewParamInfos.clear();
10893 
10894   return true;
10895 }
10896 
10897 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
10898   ObjCLayouts[CD] = nullptr;
10899 }
10900 
10901 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
10902 /// 'RHS' attributes and returns the merged version; including for function
10903 /// return types.
10904 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
10905   QualType LHSCan = getCanonicalType(LHS),
10906   RHSCan = getCanonicalType(RHS);
10907   // If two types are identical, they are compatible.
10908   if (LHSCan == RHSCan)
10909     return LHS;
10910   if (RHSCan->isFunctionType()) {
10911     if (!LHSCan->isFunctionType())
10912       return {};
10913     QualType OldReturnType =
10914         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
10915     QualType NewReturnType =
10916         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
10917     QualType ResReturnType =
10918       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
10919     if (ResReturnType.isNull())
10920       return {};
10921     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
10922       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
10923       // In either case, use OldReturnType to build the new function type.
10924       const auto *F = LHS->castAs<FunctionType>();
10925       if (const auto *FPT = cast<FunctionProtoType>(F)) {
10926         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10927         EPI.ExtInfo = getFunctionExtInfo(LHS);
10928         QualType ResultType =
10929             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
10930         return ResultType;
10931       }
10932     }
10933     return {};
10934   }
10935 
10936   // If the qualifiers are different, the types can still be merged.
10937   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10938   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10939   if (LQuals != RQuals) {
10940     // If any of these qualifiers are different, we have a type mismatch.
10941     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10942         LQuals.getAddressSpace() != RQuals.getAddressSpace())
10943       return {};
10944 
10945     // Exactly one GC qualifier difference is allowed: __strong is
10946     // okay if the other type has no GC qualifier but is an Objective
10947     // C object pointer (i.e. implicitly strong by default).  We fix
10948     // this by pretending that the unqualified type was actually
10949     // qualified __strong.
10950     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10951     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10952     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10953 
10954     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10955       return {};
10956 
10957     if (GC_L == Qualifiers::Strong)
10958       return LHS;
10959     if (GC_R == Qualifiers::Strong)
10960       return RHS;
10961     return {};
10962   }
10963 
10964   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
10965     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10966     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10967     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
10968     if (ResQT == LHSBaseQT)
10969       return LHS;
10970     if (ResQT == RHSBaseQT)
10971       return RHS;
10972   }
10973   return {};
10974 }
10975 
10976 //===----------------------------------------------------------------------===//
10977 //                         Integer Predicates
10978 //===----------------------------------------------------------------------===//
10979 
10980 unsigned ASTContext::getIntWidth(QualType T) const {
10981   if (const auto *ET = T->getAs<EnumType>())
10982     T = ET->getDecl()->getIntegerType();
10983   if (T->isBooleanType())
10984     return 1;
10985   if (const auto *EIT = T->getAs<BitIntType>())
10986     return EIT->getNumBits();
10987   // For builtin types, just use the standard type sizing method
10988   return (unsigned)getTypeSize(T);
10989 }
10990 
10991 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
10992   assert((T->hasIntegerRepresentation() || T->isEnumeralType() ||
10993           T->isFixedPointType()) &&
10994          "Unexpected type");
10995 
10996   // Turn <4 x signed int> -> <4 x unsigned int>
10997   if (const auto *VTy = T->getAs<VectorType>())
10998     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
10999                          VTy->getNumElements(), VTy->getVectorKind());
11000 
11001   // For _BitInt, return an unsigned _BitInt with same width.
11002   if (const auto *EITy = T->getAs<BitIntType>())
11003     return getBitIntType(/*Unsigned=*/true, EITy->getNumBits());
11004 
11005   // For enums, get the underlying integer type of the enum, and let the general
11006   // integer type signchanging code handle it.
11007   if (const auto *ETy = T->getAs<EnumType>())
11008     T = ETy->getDecl()->getIntegerType();
11009 
11010   switch (T->castAs<BuiltinType>()->getKind()) {
11011   case BuiltinType::Char_U:
11012     // Plain `char` is mapped to `unsigned char` even if it's already unsigned
11013   case BuiltinType::Char_S:
11014   case BuiltinType::SChar:
11015   case BuiltinType::Char8:
11016     return UnsignedCharTy;
11017   case BuiltinType::Short:
11018     return UnsignedShortTy;
11019   case BuiltinType::Int:
11020     return UnsignedIntTy;
11021   case BuiltinType::Long:
11022     return UnsignedLongTy;
11023   case BuiltinType::LongLong:
11024     return UnsignedLongLongTy;
11025   case BuiltinType::Int128:
11026     return UnsignedInt128Ty;
11027   // wchar_t is special. It is either signed or not, but when it's signed,
11028   // there's no matching "unsigned wchar_t". Therefore we return the unsigned
11029   // version of its underlying type instead.
11030   case BuiltinType::WChar_S:
11031     return getUnsignedWCharType();
11032 
11033   case BuiltinType::ShortAccum:
11034     return UnsignedShortAccumTy;
11035   case BuiltinType::Accum:
11036     return UnsignedAccumTy;
11037   case BuiltinType::LongAccum:
11038     return UnsignedLongAccumTy;
11039   case BuiltinType::SatShortAccum:
11040     return SatUnsignedShortAccumTy;
11041   case BuiltinType::SatAccum:
11042     return SatUnsignedAccumTy;
11043   case BuiltinType::SatLongAccum:
11044     return SatUnsignedLongAccumTy;
11045   case BuiltinType::ShortFract:
11046     return UnsignedShortFractTy;
11047   case BuiltinType::Fract:
11048     return UnsignedFractTy;
11049   case BuiltinType::LongFract:
11050     return UnsignedLongFractTy;
11051   case BuiltinType::SatShortFract:
11052     return SatUnsignedShortFractTy;
11053   case BuiltinType::SatFract:
11054     return SatUnsignedFractTy;
11055   case BuiltinType::SatLongFract:
11056     return SatUnsignedLongFractTy;
11057   default:
11058     assert((T->hasUnsignedIntegerRepresentation() ||
11059             T->isUnsignedFixedPointType()) &&
11060            "Unexpected signed integer or fixed point type");
11061     return T;
11062   }
11063 }
11064 
11065 QualType ASTContext::getCorrespondingSignedType(QualType T) const {
11066   assert((T->hasIntegerRepresentation() || T->isEnumeralType() ||
11067           T->isFixedPointType()) &&
11068          "Unexpected type");
11069 
11070   // Turn <4 x unsigned int> -> <4 x signed int>
11071   if (const auto *VTy = T->getAs<VectorType>())
11072     return getVectorType(getCorrespondingSignedType(VTy->getElementType()),
11073                          VTy->getNumElements(), VTy->getVectorKind());
11074 
11075   // For _BitInt, return a signed _BitInt with same width.
11076   if (const auto *EITy = T->getAs<BitIntType>())
11077     return getBitIntType(/*Unsigned=*/false, EITy->getNumBits());
11078 
11079   // For enums, get the underlying integer type of the enum, and let the general
11080   // integer type signchanging code handle it.
11081   if (const auto *ETy = T->getAs<EnumType>())
11082     T = ETy->getDecl()->getIntegerType();
11083 
11084   switch (T->castAs<BuiltinType>()->getKind()) {
11085   case BuiltinType::Char_S:
11086     // Plain `char` is mapped to `signed char` even if it's already signed
11087   case BuiltinType::Char_U:
11088   case BuiltinType::UChar:
11089   case BuiltinType::Char8:
11090     return SignedCharTy;
11091   case BuiltinType::UShort:
11092     return ShortTy;
11093   case BuiltinType::UInt:
11094     return IntTy;
11095   case BuiltinType::ULong:
11096     return LongTy;
11097   case BuiltinType::ULongLong:
11098     return LongLongTy;
11099   case BuiltinType::UInt128:
11100     return Int128Ty;
11101   // wchar_t is special. It is either unsigned or not, but when it's unsigned,
11102   // there's no matching "signed wchar_t". Therefore we return the signed
11103   // version of its underlying type instead.
11104   case BuiltinType::WChar_U:
11105     return getSignedWCharType();
11106 
11107   case BuiltinType::UShortAccum:
11108     return ShortAccumTy;
11109   case BuiltinType::UAccum:
11110     return AccumTy;
11111   case BuiltinType::ULongAccum:
11112     return LongAccumTy;
11113   case BuiltinType::SatUShortAccum:
11114     return SatShortAccumTy;
11115   case BuiltinType::SatUAccum:
11116     return SatAccumTy;
11117   case BuiltinType::SatULongAccum:
11118     return SatLongAccumTy;
11119   case BuiltinType::UShortFract:
11120     return ShortFractTy;
11121   case BuiltinType::UFract:
11122     return FractTy;
11123   case BuiltinType::ULongFract:
11124     return LongFractTy;
11125   case BuiltinType::SatUShortFract:
11126     return SatShortFractTy;
11127   case BuiltinType::SatUFract:
11128     return SatFractTy;
11129   case BuiltinType::SatULongFract:
11130     return SatLongFractTy;
11131   default:
11132     assert(
11133         (T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
11134         "Unexpected signed integer or fixed point type");
11135     return T;
11136   }
11137 }
11138 
11139 ASTMutationListener::~ASTMutationListener() = default;
11140 
11141 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
11142                                             QualType ReturnType) {}
11143 
11144 //===----------------------------------------------------------------------===//
11145 //                          Builtin Type Computation
11146 //===----------------------------------------------------------------------===//
11147 
11148 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
11149 /// pointer over the consumed characters.  This returns the resultant type.  If
11150 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
11151 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
11152 /// a vector of "i*".
11153 ///
11154 /// RequiresICE is filled in on return to indicate whether the value is required
11155 /// to be an Integer Constant Expression.
11156 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
11157                                   ASTContext::GetBuiltinTypeError &Error,
11158                                   bool &RequiresICE,
11159                                   bool AllowTypeModifiers) {
11160   // Modifiers.
11161   int HowLong = 0;
11162   bool Signed = false, Unsigned = false;
11163   RequiresICE = false;
11164 
11165   // Read the prefixed modifiers first.
11166   bool Done = false;
11167   #ifndef NDEBUG
11168   bool IsSpecial = false;
11169   #endif
11170   while (!Done) {
11171     switch (*Str++) {
11172     default: Done = true; --Str; break;
11173     case 'I':
11174       RequiresICE = true;
11175       break;
11176     case 'S':
11177       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
11178       assert(!Signed && "Can't use 'S' modifier multiple times!");
11179       Signed = true;
11180       break;
11181     case 'U':
11182       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
11183       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
11184       Unsigned = true;
11185       break;
11186     case 'L':
11187       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
11188       assert(HowLong <= 2 && "Can't have LLLL modifier");
11189       ++HowLong;
11190       break;
11191     case 'N':
11192       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
11193       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11194       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
11195       #ifndef NDEBUG
11196       IsSpecial = true;
11197       #endif
11198       if (Context.getTargetInfo().getLongWidth() == 32)
11199         ++HowLong;
11200       break;
11201     case 'W':
11202       // This modifier represents int64 type.
11203       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11204       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
11205       #ifndef NDEBUG
11206       IsSpecial = true;
11207       #endif
11208       switch (Context.getTargetInfo().getInt64Type()) {
11209       default:
11210         llvm_unreachable("Unexpected integer type");
11211       case TargetInfo::SignedLong:
11212         HowLong = 1;
11213         break;
11214       case TargetInfo::SignedLongLong:
11215         HowLong = 2;
11216         break;
11217       }
11218       break;
11219     case 'Z':
11220       // This modifier represents int32 type.
11221       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11222       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
11223       #ifndef NDEBUG
11224       IsSpecial = true;
11225       #endif
11226       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
11227       default:
11228         llvm_unreachable("Unexpected integer type");
11229       case TargetInfo::SignedInt:
11230         HowLong = 0;
11231         break;
11232       case TargetInfo::SignedLong:
11233         HowLong = 1;
11234         break;
11235       case TargetInfo::SignedLongLong:
11236         HowLong = 2;
11237         break;
11238       }
11239       break;
11240     case 'O':
11241       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11242       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
11243       #ifndef NDEBUG
11244       IsSpecial = true;
11245       #endif
11246       if (Context.getLangOpts().OpenCL)
11247         HowLong = 1;
11248       else
11249         HowLong = 2;
11250       break;
11251     }
11252   }
11253 
11254   QualType Type;
11255 
11256   // Read the base type.
11257   switch (*Str++) {
11258   default: llvm_unreachable("Unknown builtin type letter!");
11259   case 'x':
11260     assert(HowLong == 0 && !Signed && !Unsigned &&
11261            "Bad modifiers used with 'x'!");
11262     Type = Context.Float16Ty;
11263     break;
11264   case 'y':
11265     assert(HowLong == 0 && !Signed && !Unsigned &&
11266            "Bad modifiers used with 'y'!");
11267     Type = Context.BFloat16Ty;
11268     break;
11269   case 'v':
11270     assert(HowLong == 0 && !Signed && !Unsigned &&
11271            "Bad modifiers used with 'v'!");
11272     Type = Context.VoidTy;
11273     break;
11274   case 'h':
11275     assert(HowLong == 0 && !Signed && !Unsigned &&
11276            "Bad modifiers used with 'h'!");
11277     Type = Context.HalfTy;
11278     break;
11279   case 'f':
11280     assert(HowLong == 0 && !Signed && !Unsigned &&
11281            "Bad modifiers used with 'f'!");
11282     Type = Context.FloatTy;
11283     break;
11284   case 'd':
11285     assert(HowLong < 3 && !Signed && !Unsigned &&
11286            "Bad modifiers used with 'd'!");
11287     if (HowLong == 1)
11288       Type = Context.LongDoubleTy;
11289     else if (HowLong == 2)
11290       Type = Context.Float128Ty;
11291     else
11292       Type = Context.DoubleTy;
11293     break;
11294   case 's':
11295     assert(HowLong == 0 && "Bad modifiers used with 's'!");
11296     if (Unsigned)
11297       Type = Context.UnsignedShortTy;
11298     else
11299       Type = Context.ShortTy;
11300     break;
11301   case 'i':
11302     if (HowLong == 3)
11303       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
11304     else if (HowLong == 2)
11305       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
11306     else if (HowLong == 1)
11307       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
11308     else
11309       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
11310     break;
11311   case 'c':
11312     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
11313     if (Signed)
11314       Type = Context.SignedCharTy;
11315     else if (Unsigned)
11316       Type = Context.UnsignedCharTy;
11317     else
11318       Type = Context.CharTy;
11319     break;
11320   case 'b': // boolean
11321     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
11322     Type = Context.BoolTy;
11323     break;
11324   case 'z':  // size_t.
11325     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
11326     Type = Context.getSizeType();
11327     break;
11328   case 'w':  // wchar_t.
11329     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
11330     Type = Context.getWideCharType();
11331     break;
11332   case 'F':
11333     Type = Context.getCFConstantStringType();
11334     break;
11335   case 'G':
11336     Type = Context.getObjCIdType();
11337     break;
11338   case 'H':
11339     Type = Context.getObjCSelType();
11340     break;
11341   case 'M':
11342     Type = Context.getObjCSuperType();
11343     break;
11344   case 'a':
11345     Type = Context.getBuiltinVaListType();
11346     assert(!Type.isNull() && "builtin va list type not initialized!");
11347     break;
11348   case 'A':
11349     // This is a "reference" to a va_list; however, what exactly
11350     // this means depends on how va_list is defined. There are two
11351     // different kinds of va_list: ones passed by value, and ones
11352     // passed by reference.  An example of a by-value va_list is
11353     // x86, where va_list is a char*. An example of by-ref va_list
11354     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
11355     // we want this argument to be a char*&; for x86-64, we want
11356     // it to be a __va_list_tag*.
11357     Type = Context.getBuiltinVaListType();
11358     assert(!Type.isNull() && "builtin va list type not initialized!");
11359     if (Type->isArrayType())
11360       Type = Context.getArrayDecayedType(Type);
11361     else
11362       Type = Context.getLValueReferenceType(Type);
11363     break;
11364   case 'q': {
11365     char *End;
11366     unsigned NumElements = strtoul(Str, &End, 10);
11367     assert(End != Str && "Missing vector size");
11368     Str = End;
11369 
11370     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11371                                              RequiresICE, false);
11372     assert(!RequiresICE && "Can't require vector ICE");
11373 
11374     Type = Context.getScalableVectorType(ElementType, NumElements);
11375     break;
11376   }
11377   case 'Q': {
11378     switch (*Str++) {
11379     case 'a': {
11380       Type = Context.SveCountTy;
11381       break;
11382     }
11383     default:
11384       llvm_unreachable("Unexpected target builtin type");
11385     }
11386     break;
11387   }
11388   case 'V': {
11389     char *End;
11390     unsigned NumElements = strtoul(Str, &End, 10);
11391     assert(End != Str && "Missing vector size");
11392     Str = End;
11393 
11394     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11395                                              RequiresICE, false);
11396     assert(!RequiresICE && "Can't require vector ICE");
11397 
11398     // TODO: No way to make AltiVec vectors in builtins yet.
11399     Type = Context.getVectorType(ElementType, NumElements, VectorKind::Generic);
11400     break;
11401   }
11402   case 'E': {
11403     char *End;
11404 
11405     unsigned NumElements = strtoul(Str, &End, 10);
11406     assert(End != Str && "Missing vector size");
11407 
11408     Str = End;
11409 
11410     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11411                                              false);
11412     Type = Context.getExtVectorType(ElementType, NumElements);
11413     break;
11414   }
11415   case 'X': {
11416     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11417                                              false);
11418     assert(!RequiresICE && "Can't require complex ICE");
11419     Type = Context.getComplexType(ElementType);
11420     break;
11421   }
11422   case 'Y':
11423     Type = Context.getPointerDiffType();
11424     break;
11425   case 'P':
11426     Type = Context.getFILEType();
11427     if (Type.isNull()) {
11428       Error = ASTContext::GE_Missing_stdio;
11429       return {};
11430     }
11431     break;
11432   case 'J':
11433     if (Signed)
11434       Type = Context.getsigjmp_bufType();
11435     else
11436       Type = Context.getjmp_bufType();
11437 
11438     if (Type.isNull()) {
11439       Error = ASTContext::GE_Missing_setjmp;
11440       return {};
11441     }
11442     break;
11443   case 'K':
11444     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
11445     Type = Context.getucontext_tType();
11446 
11447     if (Type.isNull()) {
11448       Error = ASTContext::GE_Missing_ucontext;
11449       return {};
11450     }
11451     break;
11452   case 'p':
11453     Type = Context.getProcessIDType();
11454     break;
11455   }
11456 
11457   // If there are modifiers and if we're allowed to parse them, go for it.
11458   Done = !AllowTypeModifiers;
11459   while (!Done) {
11460     switch (char c = *Str++) {
11461     default: Done = true; --Str; break;
11462     case '*':
11463     case '&': {
11464       // Both pointers and references can have their pointee types
11465       // qualified with an address space.
11466       char *End;
11467       unsigned AddrSpace = strtoul(Str, &End, 10);
11468       if (End != Str) {
11469         // Note AddrSpace == 0 is not the same as an unspecified address space.
11470         Type = Context.getAddrSpaceQualType(
11471           Type,
11472           Context.getLangASForBuiltinAddressSpace(AddrSpace));
11473         Str = End;
11474       }
11475       if (c == '*')
11476         Type = Context.getPointerType(Type);
11477       else
11478         Type = Context.getLValueReferenceType(Type);
11479       break;
11480     }
11481     // FIXME: There's no way to have a built-in with an rvalue ref arg.
11482     case 'C':
11483       Type = Type.withConst();
11484       break;
11485     case 'D':
11486       Type = Context.getVolatileType(Type);
11487       break;
11488     case 'R':
11489       Type = Type.withRestrict();
11490       break;
11491     }
11492   }
11493 
11494   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
11495          "Integer constant 'I' type must be an integer");
11496 
11497   return Type;
11498 }
11499 
11500 // On some targets such as PowerPC, some of the builtins are defined with custom
11501 // type descriptors for target-dependent types. These descriptors are decoded in
11502 // other functions, but it may be useful to be able to fall back to default
11503 // descriptor decoding to define builtins mixing target-dependent and target-
11504 // independent types. This function allows decoding one type descriptor with
11505 // default decoding.
11506 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
11507                                    GetBuiltinTypeError &Error, bool &RequireICE,
11508                                    bool AllowTypeModifiers) const {
11509   return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
11510 }
11511 
11512 /// GetBuiltinType - Return the type for the specified builtin.
11513 QualType ASTContext::GetBuiltinType(unsigned Id,
11514                                     GetBuiltinTypeError &Error,
11515                                     unsigned *IntegerConstantArgs) const {
11516   const char *TypeStr = BuiltinInfo.getTypeString(Id);
11517   if (TypeStr[0] == '\0') {
11518     Error = GE_Missing_type;
11519     return {};
11520   }
11521 
11522   SmallVector<QualType, 8> ArgTypes;
11523 
11524   bool RequiresICE = false;
11525   Error = GE_None;
11526   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
11527                                        RequiresICE, true);
11528   if (Error != GE_None)
11529     return {};
11530 
11531   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
11532 
11533   while (TypeStr[0] && TypeStr[0] != '.') {
11534     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
11535     if (Error != GE_None)
11536       return {};
11537 
11538     // If this argument is required to be an IntegerConstantExpression and the
11539     // caller cares, fill in the bitmask we return.
11540     if (RequiresICE && IntegerConstantArgs)
11541       *IntegerConstantArgs |= 1 << ArgTypes.size();
11542 
11543     // Do array -> pointer decay.  The builtin should use the decayed type.
11544     if (Ty->isArrayType())
11545       Ty = getArrayDecayedType(Ty);
11546 
11547     ArgTypes.push_back(Ty);
11548   }
11549 
11550   if (Id == Builtin::BI__GetExceptionInfo)
11551     return {};
11552 
11553   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
11554          "'.' should only occur at end of builtin type list!");
11555 
11556   bool Variadic = (TypeStr[0] == '.');
11557 
11558   FunctionType::ExtInfo EI(getDefaultCallingConvention(
11559       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
11560   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
11561 
11562 
11563   // We really shouldn't be making a no-proto type here.
11564   if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes())
11565     return getFunctionNoProtoType(ResType, EI);
11566 
11567   FunctionProtoType::ExtProtoInfo EPI;
11568   EPI.ExtInfo = EI;
11569   EPI.Variadic = Variadic;
11570   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
11571     EPI.ExceptionSpec.Type =
11572         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
11573 
11574   return getFunctionType(ResType, ArgTypes, EPI);
11575 }
11576 
11577 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
11578                                              const FunctionDecl *FD) {
11579   if (!FD->isExternallyVisible())
11580     return GVA_Internal;
11581 
11582   // Non-user-provided functions get emitted as weak definitions with every
11583   // use, no matter whether they've been explicitly instantiated etc.
11584   if (!FD->isUserProvided())
11585     return GVA_DiscardableODR;
11586 
11587   GVALinkage External;
11588   switch (FD->getTemplateSpecializationKind()) {
11589   case TSK_Undeclared:
11590   case TSK_ExplicitSpecialization:
11591     External = GVA_StrongExternal;
11592     break;
11593 
11594   case TSK_ExplicitInstantiationDefinition:
11595     return GVA_StrongODR;
11596 
11597   // C++11 [temp.explicit]p10:
11598   //   [ Note: The intent is that an inline function that is the subject of
11599   //   an explicit instantiation declaration will still be implicitly
11600   //   instantiated when used so that the body can be considered for
11601   //   inlining, but that no out-of-line copy of the inline function would be
11602   //   generated in the translation unit. -- end note ]
11603   case TSK_ExplicitInstantiationDeclaration:
11604     return GVA_AvailableExternally;
11605 
11606   case TSK_ImplicitInstantiation:
11607     External = GVA_DiscardableODR;
11608     break;
11609   }
11610 
11611   if (!FD->isInlined())
11612     return External;
11613 
11614   if ((!Context.getLangOpts().CPlusPlus &&
11615        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11616        !FD->hasAttr<DLLExportAttr>()) ||
11617       FD->hasAttr<GNUInlineAttr>()) {
11618     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
11619 
11620     // GNU or C99 inline semantics. Determine whether this symbol should be
11621     // externally visible.
11622     if (FD->isInlineDefinitionExternallyVisible())
11623       return External;
11624 
11625     // C99 inline semantics, where the symbol is not externally visible.
11626     return GVA_AvailableExternally;
11627   }
11628 
11629   // Functions specified with extern and inline in -fms-compatibility mode
11630   // forcibly get emitted.  While the body of the function cannot be later
11631   // replaced, the function definition cannot be discarded.
11632   if (FD->isMSExternInline())
11633     return GVA_StrongODR;
11634 
11635   if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11636       isa<CXXConstructorDecl>(FD) &&
11637       cast<CXXConstructorDecl>(FD)->isInheritingConstructor())
11638     // Our approach to inheriting constructors is fundamentally different from
11639     // that used by the MS ABI, so keep our inheriting constructor thunks
11640     // internal rather than trying to pick an unambiguous mangling for them.
11641     return GVA_Internal;
11642 
11643   return GVA_DiscardableODR;
11644 }
11645 
11646 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
11647                                                 const Decl *D, GVALinkage L) {
11648   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
11649   // dllexport/dllimport on inline functions.
11650   if (D->hasAttr<DLLImportAttr>()) {
11651     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
11652       return GVA_AvailableExternally;
11653   } else if (D->hasAttr<DLLExportAttr>()) {
11654     if (L == GVA_DiscardableODR)
11655       return GVA_StrongODR;
11656   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
11657     // Device-side functions with __global__ attribute must always be
11658     // visible externally so they can be launched from host.
11659     if (D->hasAttr<CUDAGlobalAttr>() &&
11660         (L == GVA_DiscardableODR || L == GVA_Internal))
11661       return GVA_StrongODR;
11662     // Single source offloading languages like CUDA/HIP need to be able to
11663     // access static device variables from host code of the same compilation
11664     // unit. This is done by externalizing the static variable with a shared
11665     // name between the host and device compilation which is the same for the
11666     // same compilation unit whereas different among different compilation
11667     // units.
11668     if (Context.shouldExternalize(D))
11669       return GVA_StrongExternal;
11670   }
11671   return L;
11672 }
11673 
11674 /// Adjust the GVALinkage for a declaration based on what an external AST source
11675 /// knows about whether there can be other definitions of this declaration.
11676 static GVALinkage
11677 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
11678                                           GVALinkage L) {
11679   ExternalASTSource *Source = Ctx.getExternalSource();
11680   if (!Source)
11681     return L;
11682 
11683   switch (Source->hasExternalDefinitions(D)) {
11684   case ExternalASTSource::EK_Never:
11685     // Other translation units rely on us to provide the definition.
11686     if (L == GVA_DiscardableODR)
11687       return GVA_StrongODR;
11688     break;
11689 
11690   case ExternalASTSource::EK_Always:
11691     return GVA_AvailableExternally;
11692 
11693   case ExternalASTSource::EK_ReplyHazy:
11694     break;
11695   }
11696   return L;
11697 }
11698 
11699 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
11700   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
11701            adjustGVALinkageForAttributes(*this, FD,
11702              basicGVALinkageForFunction(*this, FD)));
11703 }
11704 
11705 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
11706                                              const VarDecl *VD) {
11707   // As an extension for interactive REPLs, make sure constant variables are
11708   // only emitted once instead of LinkageComputer::getLVForNamespaceScopeDecl
11709   // marking them as internal.
11710   if (Context.getLangOpts().CPlusPlus &&
11711       Context.getLangOpts().IncrementalExtensions &&
11712       VD->getType().isConstQualified() &&
11713       !VD->getType().isVolatileQualified() && !VD->isInline() &&
11714       !isa<VarTemplateSpecializationDecl>(VD) && !VD->getDescribedVarTemplate())
11715     return GVA_DiscardableODR;
11716 
11717   if (!VD->isExternallyVisible())
11718     return GVA_Internal;
11719 
11720   if (VD->isStaticLocal()) {
11721     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
11722     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
11723       LexicalContext = LexicalContext->getLexicalParent();
11724 
11725     // ObjC Blocks can create local variables that don't have a FunctionDecl
11726     // LexicalContext.
11727     if (!LexicalContext)
11728       return GVA_DiscardableODR;
11729 
11730     // Otherwise, let the static local variable inherit its linkage from the
11731     // nearest enclosing function.
11732     auto StaticLocalLinkage =
11733         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
11734 
11735     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
11736     // be emitted in any object with references to the symbol for the object it
11737     // contains, whether inline or out-of-line."
11738     // Similar behavior is observed with MSVC. An alternative ABI could use
11739     // StrongODR/AvailableExternally to match the function, but none are
11740     // known/supported currently.
11741     if (StaticLocalLinkage == GVA_StrongODR ||
11742         StaticLocalLinkage == GVA_AvailableExternally)
11743       return GVA_DiscardableODR;
11744     return StaticLocalLinkage;
11745   }
11746 
11747   // MSVC treats in-class initialized static data members as definitions.
11748   // By giving them non-strong linkage, out-of-line definitions won't
11749   // cause link errors.
11750   if (Context.isMSStaticDataMemberInlineDefinition(VD))
11751     return GVA_DiscardableODR;
11752 
11753   // Most non-template variables have strong linkage; inline variables are
11754   // linkonce_odr or (occasionally, for compatibility) weak_odr.
11755   GVALinkage StrongLinkage;
11756   switch (Context.getInlineVariableDefinitionKind(VD)) {
11757   case ASTContext::InlineVariableDefinitionKind::None:
11758     StrongLinkage = GVA_StrongExternal;
11759     break;
11760   case ASTContext::InlineVariableDefinitionKind::Weak:
11761   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
11762     StrongLinkage = GVA_DiscardableODR;
11763     break;
11764   case ASTContext::InlineVariableDefinitionKind::Strong:
11765     StrongLinkage = GVA_StrongODR;
11766     break;
11767   }
11768 
11769   switch (VD->getTemplateSpecializationKind()) {
11770   case TSK_Undeclared:
11771     return StrongLinkage;
11772 
11773   case TSK_ExplicitSpecialization:
11774     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11775                    VD->isStaticDataMember()
11776                ? GVA_StrongODR
11777                : StrongLinkage;
11778 
11779   case TSK_ExplicitInstantiationDefinition:
11780     return GVA_StrongODR;
11781 
11782   case TSK_ExplicitInstantiationDeclaration:
11783     return GVA_AvailableExternally;
11784 
11785   case TSK_ImplicitInstantiation:
11786     return GVA_DiscardableODR;
11787   }
11788 
11789   llvm_unreachable("Invalid Linkage!");
11790 }
11791 
11792 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) const {
11793   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
11794            adjustGVALinkageForAttributes(*this, VD,
11795              basicGVALinkageForVariable(*this, VD)));
11796 }
11797 
11798 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
11799   if (const auto *VD = dyn_cast<VarDecl>(D)) {
11800     if (!VD->isFileVarDecl())
11801       return false;
11802     // Global named register variables (GNU extension) are never emitted.
11803     if (VD->getStorageClass() == SC_Register)
11804       return false;
11805     if (VD->getDescribedVarTemplate() ||
11806         isa<VarTemplatePartialSpecializationDecl>(VD))
11807       return false;
11808   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11809     // We never need to emit an uninstantiated function template.
11810     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11811       return false;
11812   } else if (isa<PragmaCommentDecl>(D))
11813     return true;
11814   else if (isa<PragmaDetectMismatchDecl>(D))
11815     return true;
11816   else if (isa<OMPRequiresDecl>(D))
11817     return true;
11818   else if (isa<OMPThreadPrivateDecl>(D))
11819     return !D->getDeclContext()->isDependentContext();
11820   else if (isa<OMPAllocateDecl>(D))
11821     return !D->getDeclContext()->isDependentContext();
11822   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
11823     return !D->getDeclContext()->isDependentContext();
11824   else if (isa<ImportDecl>(D))
11825     return true;
11826   else
11827     return false;
11828 
11829   // If this is a member of a class template, we do not need to emit it.
11830   if (D->getDeclContext()->isDependentContext())
11831     return false;
11832 
11833   // Weak references don't produce any output by themselves.
11834   if (D->hasAttr<WeakRefAttr>())
11835     return false;
11836 
11837   // Aliases and used decls are required.
11838   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
11839     return true;
11840 
11841   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11842     // Forward declarations aren't required.
11843     if (!FD->doesThisDeclarationHaveABody())
11844       return FD->doesDeclarationForceExternallyVisibleDefinition();
11845 
11846     // Constructors and destructors are required.
11847     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
11848       return true;
11849 
11850     // The key function for a class is required.  This rule only comes
11851     // into play when inline functions can be key functions, though.
11852     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11853       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11854         const CXXRecordDecl *RD = MD->getParent();
11855         if (MD->isOutOfLine() && RD->isDynamicClass()) {
11856           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
11857           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
11858             return true;
11859         }
11860       }
11861     }
11862 
11863     GVALinkage Linkage = GetGVALinkageForFunction(FD);
11864 
11865     // static, static inline, always_inline, and extern inline functions can
11866     // always be deferred.  Normal inline functions can be deferred in C99/C++.
11867     // Implicit template instantiations can also be deferred in C++.
11868     return !isDiscardableGVALinkage(Linkage);
11869   }
11870 
11871   const auto *VD = cast<VarDecl>(D);
11872   assert(VD->isFileVarDecl() && "Expected file scoped var");
11873 
11874   // If the decl is marked as `declare target to`, it should be emitted for the
11875   // host and for the device.
11876   if (LangOpts.OpenMP &&
11877       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
11878     return true;
11879 
11880   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
11881       !isMSStaticDataMemberInlineDefinition(VD))
11882     return false;
11883 
11884   // Variables in other module units shouldn't be forced to be emitted.
11885   if (VD->isInAnotherModuleUnit())
11886     return false;
11887 
11888   // Variables that can be needed in other TUs are required.
11889   auto Linkage = GetGVALinkageForVariable(VD);
11890   if (!isDiscardableGVALinkage(Linkage))
11891     return true;
11892 
11893   // We never need to emit a variable that is available in another TU.
11894   if (Linkage == GVA_AvailableExternally)
11895     return false;
11896 
11897   // Variables that have destruction with side-effects are required.
11898   if (VD->needsDestruction(*this))
11899     return true;
11900 
11901   // Variables that have initialization with side-effects are required.
11902   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
11903       // We can get a value-dependent initializer during error recovery.
11904       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
11905     return true;
11906 
11907   // Likewise, variables with tuple-like bindings are required if their
11908   // bindings have side-effects.
11909   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
11910     for (const auto *BD : DD->bindings())
11911       if (const auto *BindingVD = BD->getHoldingVar())
11912         if (DeclMustBeEmitted(BindingVD))
11913           return true;
11914 
11915   return false;
11916 }
11917 
11918 void ASTContext::forEachMultiversionedFunctionVersion(
11919     const FunctionDecl *FD,
11920     llvm::function_ref<void(FunctionDecl *)> Pred) const {
11921   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
11922   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
11923   FD = FD->getMostRecentDecl();
11924   // FIXME: The order of traversal here matters and depends on the order of
11925   // lookup results, which happens to be (mostly) oldest-to-newest, but we
11926   // shouldn't rely on that.
11927   for (auto *CurDecl :
11928        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
11929     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
11930     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
11931         !SeenDecls.contains(CurFD)) {
11932       SeenDecls.insert(CurFD);
11933       Pred(CurFD);
11934     }
11935   }
11936 }
11937 
11938 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
11939                                                     bool IsCXXMethod,
11940                                                     bool IsBuiltin) const {
11941   // Pass through to the C++ ABI object
11942   if (IsCXXMethod)
11943     return ABI->getDefaultMethodCallConv(IsVariadic);
11944 
11945   // Builtins ignore user-specified default calling convention and remain the
11946   // Target's default calling convention.
11947   if (!IsBuiltin) {
11948     switch (LangOpts.getDefaultCallingConv()) {
11949     case LangOptions::DCC_None:
11950       break;
11951     case LangOptions::DCC_CDecl:
11952       return CC_C;
11953     case LangOptions::DCC_FastCall:
11954       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
11955         return CC_X86FastCall;
11956       break;
11957     case LangOptions::DCC_StdCall:
11958       if (!IsVariadic)
11959         return CC_X86StdCall;
11960       break;
11961     case LangOptions::DCC_VectorCall:
11962       // __vectorcall cannot be applied to variadic functions.
11963       if (!IsVariadic)
11964         return CC_X86VectorCall;
11965       break;
11966     case LangOptions::DCC_RegCall:
11967       // __regcall cannot be applied to variadic functions.
11968       if (!IsVariadic)
11969         return CC_X86RegCall;
11970       break;
11971     case LangOptions::DCC_RtdCall:
11972       if (!IsVariadic)
11973         return CC_M68kRTD;
11974       break;
11975     }
11976   }
11977   return Target->getDefaultCallingConv();
11978 }
11979 
11980 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
11981   // Pass through to the C++ ABI object
11982   return ABI->isNearlyEmpty(RD);
11983 }
11984 
11985 VTableContextBase *ASTContext::getVTableContext() {
11986   if (!VTContext.get()) {
11987     auto ABI = Target->getCXXABI();
11988     if (ABI.isMicrosoft())
11989       VTContext.reset(new MicrosoftVTableContext(*this));
11990     else {
11991       auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
11992                                  ? ItaniumVTableContext::Relative
11993                                  : ItaniumVTableContext::Pointer;
11994       VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
11995     }
11996   }
11997   return VTContext.get();
11998 }
11999 
12000 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
12001   if (!T)
12002     T = Target;
12003   switch (T->getCXXABI().getKind()) {
12004   case TargetCXXABI::AppleARM64:
12005   case TargetCXXABI::Fuchsia:
12006   case TargetCXXABI::GenericAArch64:
12007   case TargetCXXABI::GenericItanium:
12008   case TargetCXXABI::GenericARM:
12009   case TargetCXXABI::GenericMIPS:
12010   case TargetCXXABI::iOS:
12011   case TargetCXXABI::WebAssembly:
12012   case TargetCXXABI::WatchOS:
12013   case TargetCXXABI::XL:
12014     return ItaniumMangleContext::create(*this, getDiagnostics());
12015   case TargetCXXABI::Microsoft:
12016     return MicrosoftMangleContext::create(*this, getDiagnostics());
12017   }
12018   llvm_unreachable("Unsupported ABI");
12019 }
12020 
12021 MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) {
12022   assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft &&
12023          "Device mangle context does not support Microsoft mangling.");
12024   switch (T.getCXXABI().getKind()) {
12025   case TargetCXXABI::AppleARM64:
12026   case TargetCXXABI::Fuchsia:
12027   case TargetCXXABI::GenericAArch64:
12028   case TargetCXXABI::GenericItanium:
12029   case TargetCXXABI::GenericARM:
12030   case TargetCXXABI::GenericMIPS:
12031   case TargetCXXABI::iOS:
12032   case TargetCXXABI::WebAssembly:
12033   case TargetCXXABI::WatchOS:
12034   case TargetCXXABI::XL:
12035     return ItaniumMangleContext::create(
12036         *this, getDiagnostics(),
12037         [](ASTContext &, const NamedDecl *ND) -> std::optional<unsigned> {
12038           if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
12039             return RD->getDeviceLambdaManglingNumber();
12040           return std::nullopt;
12041         },
12042         /*IsAux=*/true);
12043   case TargetCXXABI::Microsoft:
12044     return MicrosoftMangleContext::create(*this, getDiagnostics(),
12045                                           /*IsAux=*/true);
12046   }
12047   llvm_unreachable("Unsupported ABI");
12048 }
12049 
12050 CXXABI::~CXXABI() = default;
12051 
12052 size_t ASTContext::getSideTableAllocatedMemory() const {
12053   return ASTRecordLayouts.getMemorySize() +
12054          llvm::capacity_in_bytes(ObjCLayouts) +
12055          llvm::capacity_in_bytes(KeyFunctions) +
12056          llvm::capacity_in_bytes(ObjCImpls) +
12057          llvm::capacity_in_bytes(BlockVarCopyInits) +
12058          llvm::capacity_in_bytes(DeclAttrs) +
12059          llvm::capacity_in_bytes(TemplateOrInstantiation) +
12060          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
12061          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
12062          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
12063          llvm::capacity_in_bytes(OverriddenMethods) +
12064          llvm::capacity_in_bytes(Types) +
12065          llvm::capacity_in_bytes(VariableArrayTypes);
12066 }
12067 
12068 /// getIntTypeForBitwidth -
12069 /// sets integer QualTy according to specified details:
12070 /// bitwidth, signed/unsigned.
12071 /// Returns empty type if there is no appropriate target types.
12072 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
12073                                            unsigned Signed) const {
12074   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
12075   CanQualType QualTy = getFromTargetType(Ty);
12076   if (!QualTy && DestWidth == 128)
12077     return Signed ? Int128Ty : UnsignedInt128Ty;
12078   return QualTy;
12079 }
12080 
12081 /// getRealTypeForBitwidth -
12082 /// sets floating point QualTy according to specified bitwidth.
12083 /// Returns empty type if there is no appropriate target types.
12084 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
12085                                             FloatModeKind ExplicitType) const {
12086   FloatModeKind Ty =
12087       getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitType);
12088   switch (Ty) {
12089   case FloatModeKind::Half:
12090     return HalfTy;
12091   case FloatModeKind::Float:
12092     return FloatTy;
12093   case FloatModeKind::Double:
12094     return DoubleTy;
12095   case FloatModeKind::LongDouble:
12096     return LongDoubleTy;
12097   case FloatModeKind::Float128:
12098     return Float128Ty;
12099   case FloatModeKind::Ibm128:
12100     return Ibm128Ty;
12101   case FloatModeKind::NoFloat:
12102     return {};
12103   }
12104 
12105   llvm_unreachable("Unhandled TargetInfo::RealType value");
12106 }
12107 
12108 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
12109   if (Number > 1)
12110     MangleNumbers[ND] = Number;
12111 }
12112 
12113 unsigned ASTContext::getManglingNumber(const NamedDecl *ND,
12114                                        bool ForAuxTarget) const {
12115   auto I = MangleNumbers.find(ND);
12116   unsigned Res = I != MangleNumbers.end() ? I->second : 1;
12117   // CUDA/HIP host compilation encodes host and device mangling numbers
12118   // as lower and upper half of 32 bit integer.
12119   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) {
12120     Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF;
12121   } else {
12122     assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling "
12123                             "number for aux target");
12124   }
12125   return Res > 1 ? Res : 1;
12126 }
12127 
12128 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
12129   if (Number > 1)
12130     StaticLocalNumbers[VD] = Number;
12131 }
12132 
12133 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
12134   auto I = StaticLocalNumbers.find(VD);
12135   return I != StaticLocalNumbers.end() ? I->second : 1;
12136 }
12137 
12138 MangleNumberingContext &
12139 ASTContext::getManglingNumberContext(const DeclContext *DC) {
12140   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
12141   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
12142   if (!MCtx)
12143     MCtx = createMangleNumberingContext();
12144   return *MCtx;
12145 }
12146 
12147 MangleNumberingContext &
12148 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
12149   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
12150   std::unique_ptr<MangleNumberingContext> &MCtx =
12151       ExtraMangleNumberingContexts[D];
12152   if (!MCtx)
12153     MCtx = createMangleNumberingContext();
12154   return *MCtx;
12155 }
12156 
12157 std::unique_ptr<MangleNumberingContext>
12158 ASTContext::createMangleNumberingContext() const {
12159   return ABI->createMangleNumberingContext();
12160 }
12161 
12162 const CXXConstructorDecl *
12163 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
12164   return ABI->getCopyConstructorForExceptionObject(
12165       cast<CXXRecordDecl>(RD->getFirstDecl()));
12166 }
12167 
12168 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
12169                                                       CXXConstructorDecl *CD) {
12170   return ABI->addCopyConstructorForExceptionObject(
12171       cast<CXXRecordDecl>(RD->getFirstDecl()),
12172       cast<CXXConstructorDecl>(CD->getFirstDecl()));
12173 }
12174 
12175 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
12176                                                  TypedefNameDecl *DD) {
12177   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
12178 }
12179 
12180 TypedefNameDecl *
12181 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
12182   return ABI->getTypedefNameForUnnamedTagDecl(TD);
12183 }
12184 
12185 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
12186                                                 DeclaratorDecl *DD) {
12187   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
12188 }
12189 
12190 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
12191   return ABI->getDeclaratorForUnnamedTagDecl(TD);
12192 }
12193 
12194 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
12195   ParamIndices[D] = index;
12196 }
12197 
12198 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
12199   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
12200   assert(I != ParamIndices.end() &&
12201          "ParmIndices lacks entry set by ParmVarDecl");
12202   return I->second;
12203 }
12204 
12205 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
12206                                                unsigned Length) const {
12207   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
12208   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
12209     EltTy = EltTy.withConst();
12210 
12211   EltTy = adjustStringLiteralBaseType(EltTy);
12212 
12213   // Get an array type for the string, according to C99 6.4.5. This includes
12214   // the null terminator character.
12215   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
12216                               ArraySizeModifier::Normal, /*IndexTypeQuals*/ 0);
12217 }
12218 
12219 StringLiteral *
12220 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
12221   StringLiteral *&Result = StringLiteralCache[Key];
12222   if (!Result)
12223     Result = StringLiteral::Create(
12224         *this, Key, StringLiteralKind::Ordinary,
12225         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
12226         SourceLocation());
12227   return Result;
12228 }
12229 
12230 MSGuidDecl *
12231 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
12232   assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
12233 
12234   llvm::FoldingSetNodeID ID;
12235   MSGuidDecl::Profile(ID, Parts);
12236 
12237   void *InsertPos;
12238   if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
12239     return Existing;
12240 
12241   QualType GUIDType = getMSGuidType().withConst();
12242   MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
12243   MSGuidDecls.InsertNode(New, InsertPos);
12244   return New;
12245 }
12246 
12247 UnnamedGlobalConstantDecl *
12248 ASTContext::getUnnamedGlobalConstantDecl(QualType Ty,
12249                                          const APValue &APVal) const {
12250   llvm::FoldingSetNodeID ID;
12251   UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal);
12252 
12253   void *InsertPos;
12254   if (UnnamedGlobalConstantDecl *Existing =
12255           UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos))
12256     return Existing;
12257 
12258   UnnamedGlobalConstantDecl *New =
12259       UnnamedGlobalConstantDecl::Create(*this, Ty, APVal);
12260   UnnamedGlobalConstantDecls.InsertNode(New, InsertPos);
12261   return New;
12262 }
12263 
12264 TemplateParamObjectDecl *
12265 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
12266   assert(T->isRecordType() && "template param object of unexpected type");
12267 
12268   // C++ [temp.param]p8:
12269   //   [...] a static storage duration object of type 'const T' [...]
12270   T.addConst();
12271 
12272   llvm::FoldingSetNodeID ID;
12273   TemplateParamObjectDecl::Profile(ID, T, V);
12274 
12275   void *InsertPos;
12276   if (TemplateParamObjectDecl *Existing =
12277           TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
12278     return Existing;
12279 
12280   TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
12281   TemplateParamObjectDecls.InsertNode(New, InsertPos);
12282   return New;
12283 }
12284 
12285 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
12286   const llvm::Triple &T = getTargetInfo().getTriple();
12287   if (!T.isOSDarwin())
12288     return false;
12289 
12290   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
12291       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
12292     return false;
12293 
12294   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
12295   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
12296   uint64_t Size = sizeChars.getQuantity();
12297   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
12298   unsigned Align = alignChars.getQuantity();
12299   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
12300   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
12301 }
12302 
12303 bool
12304 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
12305                                 const ObjCMethodDecl *MethodImpl) {
12306   // No point trying to match an unavailable/deprecated mothod.
12307   if (MethodDecl->hasAttr<UnavailableAttr>()
12308       || MethodDecl->hasAttr<DeprecatedAttr>())
12309     return false;
12310   if (MethodDecl->getObjCDeclQualifier() !=
12311       MethodImpl->getObjCDeclQualifier())
12312     return false;
12313   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
12314     return false;
12315 
12316   if (MethodDecl->param_size() != MethodImpl->param_size())
12317     return false;
12318 
12319   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
12320        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
12321        EF = MethodDecl->param_end();
12322        IM != EM && IF != EF; ++IM, ++IF) {
12323     const ParmVarDecl *DeclVar = (*IF);
12324     const ParmVarDecl *ImplVar = (*IM);
12325     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
12326       return false;
12327     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
12328       return false;
12329   }
12330 
12331   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
12332 }
12333 
12334 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
12335   LangAS AS;
12336   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
12337     AS = LangAS::Default;
12338   else
12339     AS = QT->getPointeeType().getAddressSpace();
12340 
12341   return getTargetInfo().getNullPointerValue(AS);
12342 }
12343 
12344 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
12345   return getTargetInfo().getTargetAddressSpace(AS);
12346 }
12347 
12348 bool ASTContext::hasSameExpr(const Expr *X, const Expr *Y) const {
12349   if (X == Y)
12350     return true;
12351   if (!X || !Y)
12352     return false;
12353   llvm::FoldingSetNodeID IDX, IDY;
12354   X->Profile(IDX, *this, /*Canonical=*/true);
12355   Y->Profile(IDY, *this, /*Canonical=*/true);
12356   return IDX == IDY;
12357 }
12358 
12359 // The getCommon* helpers return, for given 'same' X and Y entities given as
12360 // inputs, another entity which is also the 'same' as the inputs, but which
12361 // is closer to the canonical form of the inputs, each according to a given
12362 // criteria.
12363 // The getCommon*Checked variants are 'null inputs not-allowed' equivalents of
12364 // the regular ones.
12365 
12366 static Decl *getCommonDecl(Decl *X, Decl *Y) {
12367   if (!declaresSameEntity(X, Y))
12368     return nullptr;
12369   for (const Decl *DX : X->redecls()) {
12370     // If we reach Y before reaching the first decl, that means X is older.
12371     if (DX == Y)
12372       return X;
12373     // If we reach the first decl, then Y is older.
12374     if (DX->isFirstDecl())
12375       return Y;
12376   }
12377   llvm_unreachable("Corrupt redecls chain");
12378 }
12379 
12380 template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true>
12381 static T *getCommonDecl(T *X, T *Y) {
12382   return cast_or_null<T>(
12383       getCommonDecl(const_cast<Decl *>(cast_or_null<Decl>(X)),
12384                     const_cast<Decl *>(cast_or_null<Decl>(Y))));
12385 }
12386 
12387 template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true>
12388 static T *getCommonDeclChecked(T *X, T *Y) {
12389   return cast<T>(getCommonDecl(const_cast<Decl *>(cast<Decl>(X)),
12390                                const_cast<Decl *>(cast<Decl>(Y))));
12391 }
12392 
12393 static TemplateName getCommonTemplateName(ASTContext &Ctx, TemplateName X,
12394                                           TemplateName Y) {
12395   if (X.getAsVoidPointer() == Y.getAsVoidPointer())
12396     return X;
12397   // FIXME: There are cases here where we could find a common template name
12398   //        with more sugar. For example one could be a SubstTemplateTemplate*
12399   //        replacing the other.
12400   TemplateName CX = Ctx.getCanonicalTemplateName(X);
12401   if (CX.getAsVoidPointer() !=
12402       Ctx.getCanonicalTemplateName(Y).getAsVoidPointer())
12403     return TemplateName();
12404   return CX;
12405 }
12406 
12407 static TemplateName
12408 getCommonTemplateNameChecked(ASTContext &Ctx, TemplateName X, TemplateName Y) {
12409   TemplateName R = getCommonTemplateName(Ctx, X, Y);
12410   assert(R.getAsVoidPointer() != nullptr);
12411   return R;
12412 }
12413 
12414 static auto getCommonTypes(ASTContext &Ctx, ArrayRef<QualType> Xs,
12415                            ArrayRef<QualType> Ys, bool Unqualified = false) {
12416   assert(Xs.size() == Ys.size());
12417   SmallVector<QualType, 8> Rs(Xs.size());
12418   for (size_t I = 0; I < Rs.size(); ++I)
12419     Rs[I] = Ctx.getCommonSugaredType(Xs[I], Ys[I], Unqualified);
12420   return Rs;
12421 }
12422 
12423 template <class T>
12424 static SourceLocation getCommonAttrLoc(const T *X, const T *Y) {
12425   return X->getAttributeLoc() == Y->getAttributeLoc() ? X->getAttributeLoc()
12426                                                       : SourceLocation();
12427 }
12428 
12429 static TemplateArgument getCommonTemplateArgument(ASTContext &Ctx,
12430                                                   const TemplateArgument &X,
12431                                                   const TemplateArgument &Y) {
12432   if (X.getKind() != Y.getKind())
12433     return TemplateArgument();
12434 
12435   switch (X.getKind()) {
12436   case TemplateArgument::ArgKind::Type:
12437     if (!Ctx.hasSameType(X.getAsType(), Y.getAsType()))
12438       return TemplateArgument();
12439     return TemplateArgument(
12440         Ctx.getCommonSugaredType(X.getAsType(), Y.getAsType()));
12441   case TemplateArgument::ArgKind::NullPtr:
12442     if (!Ctx.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
12443       return TemplateArgument();
12444     return TemplateArgument(
12445         Ctx.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()),
12446         /*Unqualified=*/true);
12447   case TemplateArgument::ArgKind::Expression:
12448     if (!Ctx.hasSameType(X.getAsExpr()->getType(), Y.getAsExpr()->getType()))
12449       return TemplateArgument();
12450     // FIXME: Try to keep the common sugar.
12451     return X;
12452   case TemplateArgument::ArgKind::Template: {
12453     TemplateName TX = X.getAsTemplate(), TY = Y.getAsTemplate();
12454     TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY);
12455     if (!CTN.getAsVoidPointer())
12456       return TemplateArgument();
12457     return TemplateArgument(CTN);
12458   }
12459   case TemplateArgument::ArgKind::TemplateExpansion: {
12460     TemplateName TX = X.getAsTemplateOrTemplatePattern(),
12461                  TY = Y.getAsTemplateOrTemplatePattern();
12462     TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY);
12463     if (!CTN.getAsVoidPointer())
12464       return TemplateName();
12465     auto NExpX = X.getNumTemplateExpansions();
12466     assert(NExpX == Y.getNumTemplateExpansions());
12467     return TemplateArgument(CTN, NExpX);
12468   }
12469   default:
12470     // FIXME: Handle the other argument kinds.
12471     return X;
12472   }
12473 }
12474 
12475 static bool getCommonTemplateArguments(ASTContext &Ctx,
12476                                        SmallVectorImpl<TemplateArgument> &R,
12477                                        ArrayRef<TemplateArgument> Xs,
12478                                        ArrayRef<TemplateArgument> Ys) {
12479   if (Xs.size() != Ys.size())
12480     return true;
12481   R.resize(Xs.size());
12482   for (size_t I = 0; I < R.size(); ++I) {
12483     R[I] = getCommonTemplateArgument(Ctx, Xs[I], Ys[I]);
12484     if (R[I].isNull())
12485       return true;
12486   }
12487   return false;
12488 }
12489 
12490 static auto getCommonTemplateArguments(ASTContext &Ctx,
12491                                        ArrayRef<TemplateArgument> Xs,
12492                                        ArrayRef<TemplateArgument> Ys) {
12493   SmallVector<TemplateArgument, 8> R;
12494   bool Different = getCommonTemplateArguments(Ctx, R, Xs, Ys);
12495   assert(!Different);
12496   (void)Different;
12497   return R;
12498 }
12499 
12500 template <class T>
12501 static ElaboratedTypeKeyword getCommonTypeKeyword(const T *X, const T *Y) {
12502   return X->getKeyword() == Y->getKeyword() ? X->getKeyword()
12503                                             : ElaboratedTypeKeyword::None;
12504 }
12505 
12506 template <class T>
12507 static NestedNameSpecifier *getCommonNNS(ASTContext &Ctx, const T *X,
12508                                          const T *Y) {
12509   // FIXME: Try to keep the common NNS sugar.
12510   return X->getQualifier() == Y->getQualifier()
12511              ? X->getQualifier()
12512              : Ctx.getCanonicalNestedNameSpecifier(X->getQualifier());
12513 }
12514 
12515 template <class T>
12516 static QualType getCommonElementType(ASTContext &Ctx, const T *X, const T *Y) {
12517   return Ctx.getCommonSugaredType(X->getElementType(), Y->getElementType());
12518 }
12519 
12520 template <class T>
12521 static QualType getCommonArrayElementType(ASTContext &Ctx, const T *X,
12522                                           Qualifiers &QX, const T *Y,
12523                                           Qualifiers &QY) {
12524   QualType EX = X->getElementType(), EY = Y->getElementType();
12525   QualType R = Ctx.getCommonSugaredType(EX, EY,
12526                                         /*Unqualified=*/true);
12527   Qualifiers RQ = R.getQualifiers();
12528   QX += EX.getQualifiers() - RQ;
12529   QY += EY.getQualifiers() - RQ;
12530   return R;
12531 }
12532 
12533 template <class T>
12534 static QualType getCommonPointeeType(ASTContext &Ctx, const T *X, const T *Y) {
12535   return Ctx.getCommonSugaredType(X->getPointeeType(), Y->getPointeeType());
12536 }
12537 
12538 template <class T> static auto *getCommonSizeExpr(ASTContext &Ctx, T *X, T *Y) {
12539   assert(Ctx.hasSameExpr(X->getSizeExpr(), Y->getSizeExpr()));
12540   return X->getSizeExpr();
12541 }
12542 
12543 static auto getCommonSizeModifier(const ArrayType *X, const ArrayType *Y) {
12544   assert(X->getSizeModifier() == Y->getSizeModifier());
12545   return X->getSizeModifier();
12546 }
12547 
12548 static auto getCommonIndexTypeCVRQualifiers(const ArrayType *X,
12549                                             const ArrayType *Y) {
12550   assert(X->getIndexTypeCVRQualifiers() == Y->getIndexTypeCVRQualifiers());
12551   return X->getIndexTypeCVRQualifiers();
12552 }
12553 
12554 // Merges two type lists such that the resulting vector will contain
12555 // each type (in a canonical sense) only once, in the order they appear
12556 // from X to Y. If they occur in both X and Y, the result will contain
12557 // the common sugared type between them.
12558 static void mergeTypeLists(ASTContext &Ctx, SmallVectorImpl<QualType> &Out,
12559                            ArrayRef<QualType> X, ArrayRef<QualType> Y) {
12560   llvm::DenseMap<QualType, unsigned> Found;
12561   for (auto Ts : {X, Y}) {
12562     for (QualType T : Ts) {
12563       auto Res = Found.try_emplace(Ctx.getCanonicalType(T), Out.size());
12564       if (!Res.second) {
12565         QualType &U = Out[Res.first->second];
12566         U = Ctx.getCommonSugaredType(U, T);
12567       } else {
12568         Out.emplace_back(T);
12569       }
12570     }
12571   }
12572 }
12573 
12574 FunctionProtoType::ExceptionSpecInfo
12575 ASTContext::mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1,
12576                                 FunctionProtoType::ExceptionSpecInfo ESI2,
12577                                 SmallVectorImpl<QualType> &ExceptionTypeStorage,
12578                                 bool AcceptDependent) {
12579   ExceptionSpecificationType EST1 = ESI1.Type, EST2 = ESI2.Type;
12580 
12581   // If either of them can throw anything, that is the result.
12582   for (auto I : {EST_None, EST_MSAny, EST_NoexceptFalse}) {
12583     if (EST1 == I)
12584       return ESI1;
12585     if (EST2 == I)
12586       return ESI2;
12587   }
12588 
12589   // If either of them is non-throwing, the result is the other.
12590   for (auto I :
12591        {EST_NoThrow, EST_DynamicNone, EST_BasicNoexcept, EST_NoexceptTrue}) {
12592     if (EST1 == I)
12593       return ESI2;
12594     if (EST2 == I)
12595       return ESI1;
12596   }
12597 
12598   // If we're left with value-dependent computed noexcept expressions, we're
12599   // stuck. Before C++17, we can just drop the exception specification entirely,
12600   // since it's not actually part of the canonical type. And this should never
12601   // happen in C++17, because it would mean we were computing the composite
12602   // pointer type of dependent types, which should never happen.
12603   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
12604     assert(AcceptDependent &&
12605            "computing composite pointer type of dependent types");
12606     return FunctionProtoType::ExceptionSpecInfo();
12607   }
12608 
12609   // Switch over the possibilities so that people adding new values know to
12610   // update this function.
12611   switch (EST1) {
12612   case EST_None:
12613   case EST_DynamicNone:
12614   case EST_MSAny:
12615   case EST_BasicNoexcept:
12616   case EST_DependentNoexcept:
12617   case EST_NoexceptFalse:
12618   case EST_NoexceptTrue:
12619   case EST_NoThrow:
12620     llvm_unreachable("These ESTs should be handled above");
12621 
12622   case EST_Dynamic: {
12623     // This is the fun case: both exception specifications are dynamic. Form
12624     // the union of the two lists.
12625     assert(EST2 == EST_Dynamic && "other cases should already be handled");
12626     mergeTypeLists(*this, ExceptionTypeStorage, ESI1.Exceptions,
12627                    ESI2.Exceptions);
12628     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
12629     Result.Exceptions = ExceptionTypeStorage;
12630     return Result;
12631   }
12632 
12633   case EST_Unevaluated:
12634   case EST_Uninstantiated:
12635   case EST_Unparsed:
12636     llvm_unreachable("shouldn't see unresolved exception specifications here");
12637   }
12638 
12639   llvm_unreachable("invalid ExceptionSpecificationType");
12640 }
12641 
12642 static QualType getCommonNonSugarTypeNode(ASTContext &Ctx, const Type *X,
12643                                           Qualifiers &QX, const Type *Y,
12644                                           Qualifiers &QY) {
12645   Type::TypeClass TC = X->getTypeClass();
12646   assert(TC == Y->getTypeClass());
12647   switch (TC) {
12648 #define UNEXPECTED_TYPE(Class, Kind)                                           \
12649   case Type::Class:                                                            \
12650     llvm_unreachable("Unexpected " Kind ": " #Class);
12651 
12652 #define NON_CANONICAL_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "non-canonical")
12653 #define TYPE(Class, Base)
12654 #include "clang/AST/TypeNodes.inc"
12655 
12656 #define SUGAR_FREE_TYPE(Class) UNEXPECTED_TYPE(Class, "sugar-free")
12657     SUGAR_FREE_TYPE(Builtin)
12658     SUGAR_FREE_TYPE(DeducedTemplateSpecialization)
12659     SUGAR_FREE_TYPE(DependentBitInt)
12660     SUGAR_FREE_TYPE(Enum)
12661     SUGAR_FREE_TYPE(BitInt)
12662     SUGAR_FREE_TYPE(ObjCInterface)
12663     SUGAR_FREE_TYPE(Record)
12664     SUGAR_FREE_TYPE(SubstTemplateTypeParmPack)
12665     SUGAR_FREE_TYPE(UnresolvedUsing)
12666 #undef SUGAR_FREE_TYPE
12667 #define NON_UNIQUE_TYPE(Class) UNEXPECTED_TYPE(Class, "non-unique")
12668     NON_UNIQUE_TYPE(TypeOfExpr)
12669     NON_UNIQUE_TYPE(VariableArray)
12670 #undef NON_UNIQUE_TYPE
12671 
12672     UNEXPECTED_TYPE(TypeOf, "sugar")
12673 
12674 #undef UNEXPECTED_TYPE
12675 
12676   case Type::Auto: {
12677     const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y);
12678     assert(AX->getDeducedType().isNull());
12679     assert(AY->getDeducedType().isNull());
12680     assert(AX->getKeyword() == AY->getKeyword());
12681     assert(AX->isInstantiationDependentType() ==
12682            AY->isInstantiationDependentType());
12683     auto As = getCommonTemplateArguments(Ctx, AX->getTypeConstraintArguments(),
12684                                          AY->getTypeConstraintArguments());
12685     return Ctx.getAutoType(QualType(), AX->getKeyword(),
12686                            AX->isInstantiationDependentType(),
12687                            AX->containsUnexpandedParameterPack(),
12688                            getCommonDeclChecked(AX->getTypeConstraintConcept(),
12689                                                 AY->getTypeConstraintConcept()),
12690                            As);
12691   }
12692   case Type::IncompleteArray: {
12693     const auto *AX = cast<IncompleteArrayType>(X),
12694                *AY = cast<IncompleteArrayType>(Y);
12695     return Ctx.getIncompleteArrayType(
12696         getCommonArrayElementType(Ctx, AX, QX, AY, QY),
12697         getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY));
12698   }
12699   case Type::DependentSizedArray: {
12700     const auto *AX = cast<DependentSizedArrayType>(X),
12701                *AY = cast<DependentSizedArrayType>(Y);
12702     return Ctx.getDependentSizedArrayType(
12703         getCommonArrayElementType(Ctx, AX, QX, AY, QY),
12704         getCommonSizeExpr(Ctx, AX, AY), getCommonSizeModifier(AX, AY),
12705         getCommonIndexTypeCVRQualifiers(AX, AY),
12706         AX->getBracketsRange() == AY->getBracketsRange()
12707             ? AX->getBracketsRange()
12708             : SourceRange());
12709   }
12710   case Type::ConstantArray: {
12711     const auto *AX = cast<ConstantArrayType>(X),
12712                *AY = cast<ConstantArrayType>(Y);
12713     assert(AX->getSize() == AY->getSize());
12714     const Expr *SizeExpr = Ctx.hasSameExpr(AX->getSizeExpr(), AY->getSizeExpr())
12715                                ? AX->getSizeExpr()
12716                                : nullptr;
12717     return Ctx.getConstantArrayType(
12718         getCommonArrayElementType(Ctx, AX, QX, AY, QY), AX->getSize(), SizeExpr,
12719         getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY));
12720   }
12721   case Type::Atomic: {
12722     const auto *AX = cast<AtomicType>(X), *AY = cast<AtomicType>(Y);
12723     return Ctx.getAtomicType(
12724         Ctx.getCommonSugaredType(AX->getValueType(), AY->getValueType()));
12725   }
12726   case Type::Complex: {
12727     const auto *CX = cast<ComplexType>(X), *CY = cast<ComplexType>(Y);
12728     return Ctx.getComplexType(getCommonArrayElementType(Ctx, CX, QX, CY, QY));
12729   }
12730   case Type::Pointer: {
12731     const auto *PX = cast<PointerType>(X), *PY = cast<PointerType>(Y);
12732     return Ctx.getPointerType(getCommonPointeeType(Ctx, PX, PY));
12733   }
12734   case Type::BlockPointer: {
12735     const auto *PX = cast<BlockPointerType>(X), *PY = cast<BlockPointerType>(Y);
12736     return Ctx.getBlockPointerType(getCommonPointeeType(Ctx, PX, PY));
12737   }
12738   case Type::ObjCObjectPointer: {
12739     const auto *PX = cast<ObjCObjectPointerType>(X),
12740                *PY = cast<ObjCObjectPointerType>(Y);
12741     return Ctx.getObjCObjectPointerType(getCommonPointeeType(Ctx, PX, PY));
12742   }
12743   case Type::MemberPointer: {
12744     const auto *PX = cast<MemberPointerType>(X),
12745                *PY = cast<MemberPointerType>(Y);
12746     return Ctx.getMemberPointerType(
12747         getCommonPointeeType(Ctx, PX, PY),
12748         Ctx.getCommonSugaredType(QualType(PX->getClass(), 0),
12749                                  QualType(PY->getClass(), 0))
12750             .getTypePtr());
12751   }
12752   case Type::LValueReference: {
12753     const auto *PX = cast<LValueReferenceType>(X),
12754                *PY = cast<LValueReferenceType>(Y);
12755     // FIXME: Preserve PointeeTypeAsWritten.
12756     return Ctx.getLValueReferenceType(getCommonPointeeType(Ctx, PX, PY),
12757                                       PX->isSpelledAsLValue() ||
12758                                           PY->isSpelledAsLValue());
12759   }
12760   case Type::RValueReference: {
12761     const auto *PX = cast<RValueReferenceType>(X),
12762                *PY = cast<RValueReferenceType>(Y);
12763     // FIXME: Preserve PointeeTypeAsWritten.
12764     return Ctx.getRValueReferenceType(getCommonPointeeType(Ctx, PX, PY));
12765   }
12766   case Type::DependentAddressSpace: {
12767     const auto *PX = cast<DependentAddressSpaceType>(X),
12768                *PY = cast<DependentAddressSpaceType>(Y);
12769     assert(Ctx.hasSameExpr(PX->getAddrSpaceExpr(), PY->getAddrSpaceExpr()));
12770     return Ctx.getDependentAddressSpaceType(getCommonPointeeType(Ctx, PX, PY),
12771                                             PX->getAddrSpaceExpr(),
12772                                             getCommonAttrLoc(PX, PY));
12773   }
12774   case Type::FunctionNoProto: {
12775     const auto *FX = cast<FunctionNoProtoType>(X),
12776                *FY = cast<FunctionNoProtoType>(Y);
12777     assert(FX->getExtInfo() == FY->getExtInfo());
12778     return Ctx.getFunctionNoProtoType(
12779         Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType()),
12780         FX->getExtInfo());
12781   }
12782   case Type::FunctionProto: {
12783     const auto *FX = cast<FunctionProtoType>(X),
12784                *FY = cast<FunctionProtoType>(Y);
12785     FunctionProtoType::ExtProtoInfo EPIX = FX->getExtProtoInfo(),
12786                                     EPIY = FY->getExtProtoInfo();
12787     assert(EPIX.ExtInfo == EPIY.ExtInfo);
12788     assert(EPIX.ExtParameterInfos == EPIY.ExtParameterInfos);
12789     assert(EPIX.RefQualifier == EPIY.RefQualifier);
12790     assert(EPIX.TypeQuals == EPIY.TypeQuals);
12791     assert(EPIX.Variadic == EPIY.Variadic);
12792 
12793     // FIXME: Can we handle an empty EllipsisLoc?
12794     //        Use emtpy EllipsisLoc if X and Y differ.
12795 
12796     EPIX.HasTrailingReturn = EPIX.HasTrailingReturn && EPIY.HasTrailingReturn;
12797 
12798     QualType R =
12799         Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType());
12800     auto P = getCommonTypes(Ctx, FX->param_types(), FY->param_types(),
12801                             /*Unqualified=*/true);
12802 
12803     SmallVector<QualType, 8> Exceptions;
12804     EPIX.ExceptionSpec = Ctx.mergeExceptionSpecs(
12805         EPIX.ExceptionSpec, EPIY.ExceptionSpec, Exceptions, true);
12806     return Ctx.getFunctionType(R, P, EPIX);
12807   }
12808   case Type::ObjCObject: {
12809     const auto *OX = cast<ObjCObjectType>(X), *OY = cast<ObjCObjectType>(Y);
12810     assert(
12811         std::equal(OX->getProtocols().begin(), OX->getProtocols().end(),
12812                    OY->getProtocols().begin(), OY->getProtocols().end(),
12813                    [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) {
12814                      return P0->getCanonicalDecl() == P1->getCanonicalDecl();
12815                    }) &&
12816         "protocol lists must be the same");
12817     auto TAs = getCommonTypes(Ctx, OX->getTypeArgsAsWritten(),
12818                               OY->getTypeArgsAsWritten());
12819     return Ctx.getObjCObjectType(
12820         Ctx.getCommonSugaredType(OX->getBaseType(), OY->getBaseType()), TAs,
12821         OX->getProtocols(),
12822         OX->isKindOfTypeAsWritten() && OY->isKindOfTypeAsWritten());
12823   }
12824   case Type::ConstantMatrix: {
12825     const auto *MX = cast<ConstantMatrixType>(X),
12826                *MY = cast<ConstantMatrixType>(Y);
12827     assert(MX->getNumRows() == MY->getNumRows());
12828     assert(MX->getNumColumns() == MY->getNumColumns());
12829     return Ctx.getConstantMatrixType(getCommonElementType(Ctx, MX, MY),
12830                                      MX->getNumRows(), MX->getNumColumns());
12831   }
12832   case Type::DependentSizedMatrix: {
12833     const auto *MX = cast<DependentSizedMatrixType>(X),
12834                *MY = cast<DependentSizedMatrixType>(Y);
12835     assert(Ctx.hasSameExpr(MX->getRowExpr(), MY->getRowExpr()));
12836     assert(Ctx.hasSameExpr(MX->getColumnExpr(), MY->getColumnExpr()));
12837     return Ctx.getDependentSizedMatrixType(
12838         getCommonElementType(Ctx, MX, MY), MX->getRowExpr(),
12839         MX->getColumnExpr(), getCommonAttrLoc(MX, MY));
12840   }
12841   case Type::Vector: {
12842     const auto *VX = cast<VectorType>(X), *VY = cast<VectorType>(Y);
12843     assert(VX->getNumElements() == VY->getNumElements());
12844     assert(VX->getVectorKind() == VY->getVectorKind());
12845     return Ctx.getVectorType(getCommonElementType(Ctx, VX, VY),
12846                              VX->getNumElements(), VX->getVectorKind());
12847   }
12848   case Type::ExtVector: {
12849     const auto *VX = cast<ExtVectorType>(X), *VY = cast<ExtVectorType>(Y);
12850     assert(VX->getNumElements() == VY->getNumElements());
12851     return Ctx.getExtVectorType(getCommonElementType(Ctx, VX, VY),
12852                                 VX->getNumElements());
12853   }
12854   case Type::DependentSizedExtVector: {
12855     const auto *VX = cast<DependentSizedExtVectorType>(X),
12856                *VY = cast<DependentSizedExtVectorType>(Y);
12857     return Ctx.getDependentSizedExtVectorType(getCommonElementType(Ctx, VX, VY),
12858                                               getCommonSizeExpr(Ctx, VX, VY),
12859                                               getCommonAttrLoc(VX, VY));
12860   }
12861   case Type::DependentVector: {
12862     const auto *VX = cast<DependentVectorType>(X),
12863                *VY = cast<DependentVectorType>(Y);
12864     assert(VX->getVectorKind() == VY->getVectorKind());
12865     return Ctx.getDependentVectorType(
12866         getCommonElementType(Ctx, VX, VY), getCommonSizeExpr(Ctx, VX, VY),
12867         getCommonAttrLoc(VX, VY), VX->getVectorKind());
12868   }
12869   case Type::InjectedClassName: {
12870     const auto *IX = cast<InjectedClassNameType>(X),
12871                *IY = cast<InjectedClassNameType>(Y);
12872     return Ctx.getInjectedClassNameType(
12873         getCommonDeclChecked(IX->getDecl(), IY->getDecl()),
12874         Ctx.getCommonSugaredType(IX->getInjectedSpecializationType(),
12875                                  IY->getInjectedSpecializationType()));
12876   }
12877   case Type::TemplateSpecialization: {
12878     const auto *TX = cast<TemplateSpecializationType>(X),
12879                *TY = cast<TemplateSpecializationType>(Y);
12880     auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(),
12881                                          TY->template_arguments());
12882     return Ctx.getTemplateSpecializationType(
12883         ::getCommonTemplateNameChecked(Ctx, TX->getTemplateName(),
12884                                        TY->getTemplateName()),
12885         As, X->getCanonicalTypeInternal());
12886   }
12887   case Type::Decltype: {
12888     const auto *DX = cast<DecltypeType>(X);
12889     [[maybe_unused]] const auto *DY = cast<DecltypeType>(Y);
12890     assert(DX->isDependentType());
12891     assert(DY->isDependentType());
12892     assert(Ctx.hasSameExpr(DX->getUnderlyingExpr(), DY->getUnderlyingExpr()));
12893     // As Decltype is not uniqued, building a common type would be wasteful.
12894     return QualType(DX, 0);
12895   }
12896   case Type::DependentName: {
12897     const auto *NX = cast<DependentNameType>(X),
12898                *NY = cast<DependentNameType>(Y);
12899     assert(NX->getIdentifier() == NY->getIdentifier());
12900     return Ctx.getDependentNameType(
12901         getCommonTypeKeyword(NX, NY), getCommonNNS(Ctx, NX, NY),
12902         NX->getIdentifier(), NX->getCanonicalTypeInternal());
12903   }
12904   case Type::DependentTemplateSpecialization: {
12905     const auto *TX = cast<DependentTemplateSpecializationType>(X),
12906                *TY = cast<DependentTemplateSpecializationType>(Y);
12907     assert(TX->getIdentifier() == TY->getIdentifier());
12908     auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(),
12909                                          TY->template_arguments());
12910     return Ctx.getDependentTemplateSpecializationType(
12911         getCommonTypeKeyword(TX, TY), getCommonNNS(Ctx, TX, TY),
12912         TX->getIdentifier(), As);
12913   }
12914   case Type::UnaryTransform: {
12915     const auto *TX = cast<UnaryTransformType>(X),
12916                *TY = cast<UnaryTransformType>(Y);
12917     assert(TX->getUTTKind() == TY->getUTTKind());
12918     return Ctx.getUnaryTransformType(
12919         Ctx.getCommonSugaredType(TX->getBaseType(), TY->getBaseType()),
12920         Ctx.getCommonSugaredType(TX->getUnderlyingType(),
12921                                  TY->getUnderlyingType()),
12922         TX->getUTTKind());
12923   }
12924   case Type::PackExpansion: {
12925     const auto *PX = cast<PackExpansionType>(X),
12926                *PY = cast<PackExpansionType>(Y);
12927     assert(PX->getNumExpansions() == PY->getNumExpansions());
12928     return Ctx.getPackExpansionType(
12929         Ctx.getCommonSugaredType(PX->getPattern(), PY->getPattern()),
12930         PX->getNumExpansions(), false);
12931   }
12932   case Type::Pipe: {
12933     const auto *PX = cast<PipeType>(X), *PY = cast<PipeType>(Y);
12934     assert(PX->isReadOnly() == PY->isReadOnly());
12935     auto MP = PX->isReadOnly() ? &ASTContext::getReadPipeType
12936                                : &ASTContext::getWritePipeType;
12937     return (Ctx.*MP)(getCommonElementType(Ctx, PX, PY));
12938   }
12939   case Type::TemplateTypeParm: {
12940     const auto *TX = cast<TemplateTypeParmType>(X),
12941                *TY = cast<TemplateTypeParmType>(Y);
12942     assert(TX->getDepth() == TY->getDepth());
12943     assert(TX->getIndex() == TY->getIndex());
12944     assert(TX->isParameterPack() == TY->isParameterPack());
12945     return Ctx.getTemplateTypeParmType(
12946         TX->getDepth(), TX->getIndex(), TX->isParameterPack(),
12947         getCommonDecl(TX->getDecl(), TY->getDecl()));
12948   }
12949   }
12950   llvm_unreachable("Unknown Type Class");
12951 }
12952 
12953 static QualType getCommonSugarTypeNode(ASTContext &Ctx, const Type *X,
12954                                        const Type *Y,
12955                                        SplitQualType Underlying) {
12956   Type::TypeClass TC = X->getTypeClass();
12957   if (TC != Y->getTypeClass())
12958     return QualType();
12959   switch (TC) {
12960 #define UNEXPECTED_TYPE(Class, Kind)                                           \
12961   case Type::Class:                                                            \
12962     llvm_unreachable("Unexpected " Kind ": " #Class);
12963 #define TYPE(Class, Base)
12964 #define DEPENDENT_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "dependent")
12965 #include "clang/AST/TypeNodes.inc"
12966 
12967 #define CANONICAL_TYPE(Class) UNEXPECTED_TYPE(Class, "canonical")
12968     CANONICAL_TYPE(Atomic)
12969     CANONICAL_TYPE(BitInt)
12970     CANONICAL_TYPE(BlockPointer)
12971     CANONICAL_TYPE(Builtin)
12972     CANONICAL_TYPE(Complex)
12973     CANONICAL_TYPE(ConstantArray)
12974     CANONICAL_TYPE(ConstantMatrix)
12975     CANONICAL_TYPE(Enum)
12976     CANONICAL_TYPE(ExtVector)
12977     CANONICAL_TYPE(FunctionNoProto)
12978     CANONICAL_TYPE(FunctionProto)
12979     CANONICAL_TYPE(IncompleteArray)
12980     CANONICAL_TYPE(LValueReference)
12981     CANONICAL_TYPE(MemberPointer)
12982     CANONICAL_TYPE(ObjCInterface)
12983     CANONICAL_TYPE(ObjCObject)
12984     CANONICAL_TYPE(ObjCObjectPointer)
12985     CANONICAL_TYPE(Pipe)
12986     CANONICAL_TYPE(Pointer)
12987     CANONICAL_TYPE(Record)
12988     CANONICAL_TYPE(RValueReference)
12989     CANONICAL_TYPE(VariableArray)
12990     CANONICAL_TYPE(Vector)
12991 #undef CANONICAL_TYPE
12992 
12993 #undef UNEXPECTED_TYPE
12994 
12995   case Type::Adjusted: {
12996     const auto *AX = cast<AdjustedType>(X), *AY = cast<AdjustedType>(Y);
12997     QualType OX = AX->getOriginalType(), OY = AY->getOriginalType();
12998     if (!Ctx.hasSameType(OX, OY))
12999       return QualType();
13000     // FIXME: It's inefficient to have to unify the original types.
13001     return Ctx.getAdjustedType(Ctx.getCommonSugaredType(OX, OY),
13002                                Ctx.getQualifiedType(Underlying));
13003   }
13004   case Type::Decayed: {
13005     const auto *DX = cast<DecayedType>(X), *DY = cast<DecayedType>(Y);
13006     QualType OX = DX->getOriginalType(), OY = DY->getOriginalType();
13007     if (!Ctx.hasSameType(OX, OY))
13008       return QualType();
13009     // FIXME: It's inefficient to have to unify the original types.
13010     return Ctx.getDecayedType(Ctx.getCommonSugaredType(OX, OY),
13011                               Ctx.getQualifiedType(Underlying));
13012   }
13013   case Type::Attributed: {
13014     const auto *AX = cast<AttributedType>(X), *AY = cast<AttributedType>(Y);
13015     AttributedType::Kind Kind = AX->getAttrKind();
13016     if (Kind != AY->getAttrKind())
13017       return QualType();
13018     QualType MX = AX->getModifiedType(), MY = AY->getModifiedType();
13019     if (!Ctx.hasSameType(MX, MY))
13020       return QualType();
13021     // FIXME: It's inefficient to have to unify the modified types.
13022     return Ctx.getAttributedType(Kind, Ctx.getCommonSugaredType(MX, MY),
13023                                  Ctx.getQualifiedType(Underlying));
13024   }
13025   case Type::BTFTagAttributed: {
13026     const auto *BX = cast<BTFTagAttributedType>(X);
13027     const BTFTypeTagAttr *AX = BX->getAttr();
13028     // The attribute is not uniqued, so just compare the tag.
13029     if (AX->getBTFTypeTag() !=
13030         cast<BTFTagAttributedType>(Y)->getAttr()->getBTFTypeTag())
13031       return QualType();
13032     return Ctx.getBTFTagAttributedType(AX, Ctx.getQualifiedType(Underlying));
13033   }
13034   case Type::Auto: {
13035     const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y);
13036 
13037     AutoTypeKeyword KW = AX->getKeyword();
13038     if (KW != AY->getKeyword())
13039       return QualType();
13040 
13041     ConceptDecl *CD = ::getCommonDecl(AX->getTypeConstraintConcept(),
13042                                       AY->getTypeConstraintConcept());
13043     SmallVector<TemplateArgument, 8> As;
13044     if (CD &&
13045         getCommonTemplateArguments(Ctx, As, AX->getTypeConstraintArguments(),
13046                                    AY->getTypeConstraintArguments())) {
13047       CD = nullptr; // The arguments differ, so make it unconstrained.
13048       As.clear();
13049     }
13050 
13051     // Both auto types can't be dependent, otherwise they wouldn't have been
13052     // sugar. This implies they can't contain unexpanded packs either.
13053     return Ctx.getAutoType(Ctx.getQualifiedType(Underlying), AX->getKeyword(),
13054                            /*IsDependent=*/false, /*IsPack=*/false, CD, As);
13055   }
13056   case Type::Decltype:
13057     return QualType();
13058   case Type::DeducedTemplateSpecialization:
13059     // FIXME: Try to merge these.
13060     return QualType();
13061 
13062   case Type::Elaborated: {
13063     const auto *EX = cast<ElaboratedType>(X), *EY = cast<ElaboratedType>(Y);
13064     return Ctx.getElaboratedType(
13065         ::getCommonTypeKeyword(EX, EY), ::getCommonNNS(Ctx, EX, EY),
13066         Ctx.getQualifiedType(Underlying),
13067         ::getCommonDecl(EX->getOwnedTagDecl(), EY->getOwnedTagDecl()));
13068   }
13069   case Type::MacroQualified: {
13070     const auto *MX = cast<MacroQualifiedType>(X),
13071                *MY = cast<MacroQualifiedType>(Y);
13072     const IdentifierInfo *IX = MX->getMacroIdentifier();
13073     if (IX != MY->getMacroIdentifier())
13074       return QualType();
13075     return Ctx.getMacroQualifiedType(Ctx.getQualifiedType(Underlying), IX);
13076   }
13077   case Type::SubstTemplateTypeParm: {
13078     const auto *SX = cast<SubstTemplateTypeParmType>(X),
13079                *SY = cast<SubstTemplateTypeParmType>(Y);
13080     Decl *CD =
13081         ::getCommonDecl(SX->getAssociatedDecl(), SY->getAssociatedDecl());
13082     if (!CD)
13083       return QualType();
13084     unsigned Index = SX->getIndex();
13085     if (Index != SY->getIndex())
13086       return QualType();
13087     auto PackIndex = SX->getPackIndex();
13088     if (PackIndex != SY->getPackIndex())
13089       return QualType();
13090     return Ctx.getSubstTemplateTypeParmType(Ctx.getQualifiedType(Underlying),
13091                                             CD, Index, PackIndex);
13092   }
13093   case Type::ObjCTypeParam:
13094     // FIXME: Try to merge these.
13095     return QualType();
13096   case Type::Paren:
13097     return Ctx.getParenType(Ctx.getQualifiedType(Underlying));
13098 
13099   case Type::TemplateSpecialization: {
13100     const auto *TX = cast<TemplateSpecializationType>(X),
13101                *TY = cast<TemplateSpecializationType>(Y);
13102     TemplateName CTN = ::getCommonTemplateName(Ctx, TX->getTemplateName(),
13103                                                TY->getTemplateName());
13104     if (!CTN.getAsVoidPointer())
13105       return QualType();
13106     SmallVector<TemplateArgument, 8> Args;
13107     if (getCommonTemplateArguments(Ctx, Args, TX->template_arguments(),
13108                                    TY->template_arguments()))
13109       return QualType();
13110     return Ctx.getTemplateSpecializationType(CTN, Args,
13111                                              Ctx.getQualifiedType(Underlying));
13112   }
13113   case Type::Typedef: {
13114     const auto *TX = cast<TypedefType>(X), *TY = cast<TypedefType>(Y);
13115     const TypedefNameDecl *CD = ::getCommonDecl(TX->getDecl(), TY->getDecl());
13116     if (!CD)
13117       return QualType();
13118     return Ctx.getTypedefType(CD, Ctx.getQualifiedType(Underlying));
13119   }
13120   case Type::TypeOf: {
13121     // The common sugar between two typeof expressions, where one is
13122     // potentially a typeof_unqual and the other is not, we unify to the
13123     // qualified type as that retains the most information along with the type.
13124     // We only return a typeof_unqual type when both types are unqual types.
13125     TypeOfKind Kind = TypeOfKind::Qualified;
13126     if (cast<TypeOfType>(X)->getKind() == cast<TypeOfType>(Y)->getKind() &&
13127         cast<TypeOfType>(X)->getKind() == TypeOfKind::Unqualified)
13128       Kind = TypeOfKind::Unqualified;
13129     return Ctx.getTypeOfType(Ctx.getQualifiedType(Underlying), Kind);
13130   }
13131   case Type::TypeOfExpr:
13132     return QualType();
13133 
13134   case Type::UnaryTransform: {
13135     const auto *UX = cast<UnaryTransformType>(X),
13136                *UY = cast<UnaryTransformType>(Y);
13137     UnaryTransformType::UTTKind KX = UX->getUTTKind();
13138     if (KX != UY->getUTTKind())
13139       return QualType();
13140     QualType BX = UX->getBaseType(), BY = UY->getBaseType();
13141     if (!Ctx.hasSameType(BX, BY))
13142       return QualType();
13143     // FIXME: It's inefficient to have to unify the base types.
13144     return Ctx.getUnaryTransformType(Ctx.getCommonSugaredType(BX, BY),
13145                                      Ctx.getQualifiedType(Underlying), KX);
13146   }
13147   case Type::Using: {
13148     const auto *UX = cast<UsingType>(X), *UY = cast<UsingType>(Y);
13149     const UsingShadowDecl *CD =
13150         ::getCommonDecl(UX->getFoundDecl(), UY->getFoundDecl());
13151     if (!CD)
13152       return QualType();
13153     return Ctx.getUsingType(CD, Ctx.getQualifiedType(Underlying));
13154   }
13155   }
13156   llvm_unreachable("Unhandled Type Class");
13157 }
13158 
13159 static auto unwrapSugar(SplitQualType &T, Qualifiers &QTotal) {
13160   SmallVector<SplitQualType, 8> R;
13161   while (true) {
13162     QTotal.addConsistentQualifiers(T.Quals);
13163     QualType NT = T.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
13164     if (NT == QualType(T.Ty, 0))
13165       break;
13166     R.push_back(T);
13167     T = NT.split();
13168   }
13169   return R;
13170 }
13171 
13172 QualType ASTContext::getCommonSugaredType(QualType X, QualType Y,
13173                                           bool Unqualified) {
13174   assert(Unqualified ? hasSameUnqualifiedType(X, Y) : hasSameType(X, Y));
13175   if (X == Y)
13176     return X;
13177   if (!Unqualified) {
13178     if (X.isCanonical())
13179       return X;
13180     if (Y.isCanonical())
13181       return Y;
13182   }
13183 
13184   SplitQualType SX = X.split(), SY = Y.split();
13185   Qualifiers QX, QY;
13186   // Desugar SX and SY, setting the sugar and qualifiers aside into Xs and Ys,
13187   // until we reach their underlying "canonical nodes". Note these are not
13188   // necessarily canonical types, as they may still have sugared properties.
13189   // QX and QY will store the sum of all qualifiers in Xs and Ys respectively.
13190   auto Xs = ::unwrapSugar(SX, QX), Ys = ::unwrapSugar(SY, QY);
13191   if (SX.Ty != SY.Ty) {
13192     // The canonical nodes differ. Build a common canonical node out of the two,
13193     // unifying their sugar. This may recurse back here.
13194     SX.Ty =
13195         ::getCommonNonSugarTypeNode(*this, SX.Ty, QX, SY.Ty, QY).getTypePtr();
13196   } else {
13197     // The canonical nodes were identical: We may have desugared too much.
13198     // Add any common sugar back in.
13199     while (!Xs.empty() && !Ys.empty() && Xs.back().Ty == Ys.back().Ty) {
13200       QX -= SX.Quals;
13201       QY -= SY.Quals;
13202       SX = Xs.pop_back_val();
13203       SY = Ys.pop_back_val();
13204     }
13205   }
13206   if (Unqualified)
13207     QX = Qualifiers::removeCommonQualifiers(QX, QY);
13208   else
13209     assert(QX == QY);
13210 
13211   // Even though the remaining sugar nodes in Xs and Ys differ, some may be
13212   // related. Walk up these nodes, unifying them and adding the result.
13213   while (!Xs.empty() && !Ys.empty()) {
13214     auto Underlying = SplitQualType(
13215         SX.Ty, Qualifiers::removeCommonQualifiers(SX.Quals, SY.Quals));
13216     SX = Xs.pop_back_val();
13217     SY = Ys.pop_back_val();
13218     SX.Ty = ::getCommonSugarTypeNode(*this, SX.Ty, SY.Ty, Underlying)
13219                 .getTypePtrOrNull();
13220     // Stop at the first pair which is unrelated.
13221     if (!SX.Ty) {
13222       SX.Ty = Underlying.Ty;
13223       break;
13224     }
13225     QX -= Underlying.Quals;
13226   };
13227 
13228   // Add back the missing accumulated qualifiers, which were stripped off
13229   // with the sugar nodes we could not unify.
13230   QualType R = getQualifiedType(SX.Ty, QX);
13231   assert(Unqualified ? hasSameUnqualifiedType(R, X) : hasSameType(R, X));
13232   return R;
13233 }
13234 
13235 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
13236   assert(Ty->isFixedPointType());
13237 
13238   if (Ty->isSaturatedFixedPointType()) return Ty;
13239 
13240   switch (Ty->castAs<BuiltinType>()->getKind()) {
13241     default:
13242       llvm_unreachable("Not a fixed point type!");
13243     case BuiltinType::ShortAccum:
13244       return SatShortAccumTy;
13245     case BuiltinType::Accum:
13246       return SatAccumTy;
13247     case BuiltinType::LongAccum:
13248       return SatLongAccumTy;
13249     case BuiltinType::UShortAccum:
13250       return SatUnsignedShortAccumTy;
13251     case BuiltinType::UAccum:
13252       return SatUnsignedAccumTy;
13253     case BuiltinType::ULongAccum:
13254       return SatUnsignedLongAccumTy;
13255     case BuiltinType::ShortFract:
13256       return SatShortFractTy;
13257     case BuiltinType::Fract:
13258       return SatFractTy;
13259     case BuiltinType::LongFract:
13260       return SatLongFractTy;
13261     case BuiltinType::UShortFract:
13262       return SatUnsignedShortFractTy;
13263     case BuiltinType::UFract:
13264       return SatUnsignedFractTy;
13265     case BuiltinType::ULongFract:
13266       return SatUnsignedLongFractTy;
13267   }
13268 }
13269 
13270 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
13271   if (LangOpts.OpenCL)
13272     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
13273 
13274   if (LangOpts.CUDA)
13275     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
13276 
13277   return getLangASFromTargetAS(AS);
13278 }
13279 
13280 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
13281 // doesn't include ASTContext.h
13282 template
13283 clang::LazyGenerationalUpdatePtr<
13284     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
13285 clang::LazyGenerationalUpdatePtr<
13286     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
13287         const clang::ASTContext &Ctx, Decl *Value);
13288 
13289 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
13290   assert(Ty->isFixedPointType());
13291 
13292   const TargetInfo &Target = getTargetInfo();
13293   switch (Ty->castAs<BuiltinType>()->getKind()) {
13294     default:
13295       llvm_unreachable("Not a fixed point type!");
13296     case BuiltinType::ShortAccum:
13297     case BuiltinType::SatShortAccum:
13298       return Target.getShortAccumScale();
13299     case BuiltinType::Accum:
13300     case BuiltinType::SatAccum:
13301       return Target.getAccumScale();
13302     case BuiltinType::LongAccum:
13303     case BuiltinType::SatLongAccum:
13304       return Target.getLongAccumScale();
13305     case BuiltinType::UShortAccum:
13306     case BuiltinType::SatUShortAccum:
13307       return Target.getUnsignedShortAccumScale();
13308     case BuiltinType::UAccum:
13309     case BuiltinType::SatUAccum:
13310       return Target.getUnsignedAccumScale();
13311     case BuiltinType::ULongAccum:
13312     case BuiltinType::SatULongAccum:
13313       return Target.getUnsignedLongAccumScale();
13314     case BuiltinType::ShortFract:
13315     case BuiltinType::SatShortFract:
13316       return Target.getShortFractScale();
13317     case BuiltinType::Fract:
13318     case BuiltinType::SatFract:
13319       return Target.getFractScale();
13320     case BuiltinType::LongFract:
13321     case BuiltinType::SatLongFract:
13322       return Target.getLongFractScale();
13323     case BuiltinType::UShortFract:
13324     case BuiltinType::SatUShortFract:
13325       return Target.getUnsignedShortFractScale();
13326     case BuiltinType::UFract:
13327     case BuiltinType::SatUFract:
13328       return Target.getUnsignedFractScale();
13329     case BuiltinType::ULongFract:
13330     case BuiltinType::SatULongFract:
13331       return Target.getUnsignedLongFractScale();
13332   }
13333 }
13334 
13335 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
13336   assert(Ty->isFixedPointType());
13337 
13338   const TargetInfo &Target = getTargetInfo();
13339   switch (Ty->castAs<BuiltinType>()->getKind()) {
13340     default:
13341       llvm_unreachable("Not a fixed point type!");
13342     case BuiltinType::ShortAccum:
13343     case BuiltinType::SatShortAccum:
13344       return Target.getShortAccumIBits();
13345     case BuiltinType::Accum:
13346     case BuiltinType::SatAccum:
13347       return Target.getAccumIBits();
13348     case BuiltinType::LongAccum:
13349     case BuiltinType::SatLongAccum:
13350       return Target.getLongAccumIBits();
13351     case BuiltinType::UShortAccum:
13352     case BuiltinType::SatUShortAccum:
13353       return Target.getUnsignedShortAccumIBits();
13354     case BuiltinType::UAccum:
13355     case BuiltinType::SatUAccum:
13356       return Target.getUnsignedAccumIBits();
13357     case BuiltinType::ULongAccum:
13358     case BuiltinType::SatULongAccum:
13359       return Target.getUnsignedLongAccumIBits();
13360     case BuiltinType::ShortFract:
13361     case BuiltinType::SatShortFract:
13362     case BuiltinType::Fract:
13363     case BuiltinType::SatFract:
13364     case BuiltinType::LongFract:
13365     case BuiltinType::SatLongFract:
13366     case BuiltinType::UShortFract:
13367     case BuiltinType::SatUShortFract:
13368     case BuiltinType::UFract:
13369     case BuiltinType::SatUFract:
13370     case BuiltinType::ULongFract:
13371     case BuiltinType::SatULongFract:
13372       return 0;
13373   }
13374 }
13375 
13376 llvm::FixedPointSemantics
13377 ASTContext::getFixedPointSemantics(QualType Ty) const {
13378   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
13379          "Can only get the fixed point semantics for a "
13380          "fixed point or integer type.");
13381   if (Ty->isIntegerType())
13382     return llvm::FixedPointSemantics::GetIntegerSemantics(
13383         getIntWidth(Ty), Ty->isSignedIntegerType());
13384 
13385   bool isSigned = Ty->isSignedFixedPointType();
13386   return llvm::FixedPointSemantics(
13387       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
13388       Ty->isSaturatedFixedPointType(),
13389       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
13390 }
13391 
13392 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
13393   assert(Ty->isFixedPointType());
13394   return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
13395 }
13396 
13397 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
13398   assert(Ty->isFixedPointType());
13399   return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
13400 }
13401 
13402 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
13403   assert(Ty->isUnsignedFixedPointType() &&
13404          "Expected unsigned fixed point type");
13405 
13406   switch (Ty->castAs<BuiltinType>()->getKind()) {
13407   case BuiltinType::UShortAccum:
13408     return ShortAccumTy;
13409   case BuiltinType::UAccum:
13410     return AccumTy;
13411   case BuiltinType::ULongAccum:
13412     return LongAccumTy;
13413   case BuiltinType::SatUShortAccum:
13414     return SatShortAccumTy;
13415   case BuiltinType::SatUAccum:
13416     return SatAccumTy;
13417   case BuiltinType::SatULongAccum:
13418     return SatLongAccumTy;
13419   case BuiltinType::UShortFract:
13420     return ShortFractTy;
13421   case BuiltinType::UFract:
13422     return FractTy;
13423   case BuiltinType::ULongFract:
13424     return LongFractTy;
13425   case BuiltinType::SatUShortFract:
13426     return SatShortFractTy;
13427   case BuiltinType::SatUFract:
13428     return SatFractTy;
13429   case BuiltinType::SatULongFract:
13430     return SatLongFractTy;
13431   default:
13432     llvm_unreachable("Unexpected unsigned fixed point type");
13433   }
13434 }
13435 
13436 std::vector<std::string> ASTContext::filterFunctionTargetVersionAttrs(
13437     const TargetVersionAttr *TV) const {
13438   assert(TV != nullptr);
13439   llvm::SmallVector<StringRef, 8> Feats;
13440   std::vector<std::string> ResFeats;
13441   TV->getFeatures(Feats);
13442   for (auto &Feature : Feats)
13443     if (Target->validateCpuSupports(Feature.str()))
13444       // Use '?' to mark features that came from TargetVersion.
13445       ResFeats.push_back("?" + Feature.str());
13446   return ResFeats;
13447 }
13448 
13449 ParsedTargetAttr
13450 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
13451   assert(TD != nullptr);
13452   ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(TD->getFeaturesStr());
13453 
13454   llvm::erase_if(ParsedAttr.Features, [&](const std::string &Feat) {
13455     return !Target->isValidFeatureName(StringRef{Feat}.substr(1));
13456   });
13457   return ParsedAttr;
13458 }
13459 
13460 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
13461                                        const FunctionDecl *FD) const {
13462   if (FD)
13463     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
13464   else
13465     Target->initFeatureMap(FeatureMap, getDiagnostics(),
13466                            Target->getTargetOpts().CPU,
13467                            Target->getTargetOpts().Features);
13468 }
13469 
13470 // Fills in the supplied string map with the set of target features for the
13471 // passed in function.
13472 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
13473                                        GlobalDecl GD) const {
13474   StringRef TargetCPU = Target->getTargetOpts().CPU;
13475   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
13476   if (const auto *TD = FD->getAttr<TargetAttr>()) {
13477     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
13478 
13479     // Make a copy of the features as passed on the command line into the
13480     // beginning of the additional features from the function to override.
13481     ParsedAttr.Features.insert(
13482         ParsedAttr.Features.begin(),
13483         Target->getTargetOpts().FeaturesAsWritten.begin(),
13484         Target->getTargetOpts().FeaturesAsWritten.end());
13485 
13486     if (ParsedAttr.CPU != "" && Target->isValidCPUName(ParsedAttr.CPU))
13487       TargetCPU = ParsedAttr.CPU;
13488 
13489     // Now populate the feature map, first with the TargetCPU which is either
13490     // the default or a new one from the target attribute string. Then we'll use
13491     // the passed in features (FeaturesAsWritten) along with the new ones from
13492     // the attribute.
13493     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
13494                            ParsedAttr.Features);
13495   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
13496     llvm::SmallVector<StringRef, 32> FeaturesTmp;
13497     Target->getCPUSpecificCPUDispatchFeatures(
13498         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
13499     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
13500     Features.insert(Features.begin(),
13501                     Target->getTargetOpts().FeaturesAsWritten.begin(),
13502                     Target->getTargetOpts().FeaturesAsWritten.end());
13503     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
13504   } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) {
13505     std::vector<std::string> Features;
13506     StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex());
13507     if (Target->getTriple().isAArch64()) {
13508       // TargetClones for AArch64
13509       if (VersionStr != "default") {
13510         SmallVector<StringRef, 1> VersionFeatures;
13511         VersionStr.split(VersionFeatures, "+");
13512         for (auto &VFeature : VersionFeatures) {
13513           VFeature = VFeature.trim();
13514           // Use '?' to mark features that came from AArch64 TargetClones.
13515           Features.push_back((StringRef{"?"} + VFeature).str());
13516         }
13517       }
13518       Features.insert(Features.begin(),
13519                       Target->getTargetOpts().FeaturesAsWritten.begin(),
13520                       Target->getTargetOpts().FeaturesAsWritten.end());
13521     } else {
13522       if (VersionStr.starts_with("arch="))
13523         TargetCPU = VersionStr.drop_front(sizeof("arch=") - 1);
13524       else if (VersionStr != "default")
13525         Features.push_back((StringRef{"+"} + VersionStr).str());
13526     }
13527     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
13528   } else if (const auto *TV = FD->getAttr<TargetVersionAttr>()) {
13529     std::vector<std::string> Feats = filterFunctionTargetVersionAttrs(TV);
13530     Feats.insert(Feats.begin(),
13531                  Target->getTargetOpts().FeaturesAsWritten.begin(),
13532                  Target->getTargetOpts().FeaturesAsWritten.end());
13533     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Feats);
13534   } else {
13535     FeatureMap = Target->getTargetOpts().FeatureMap;
13536   }
13537 }
13538 
13539 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
13540   OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
13541   return *OMPTraitInfoVector.back();
13542 }
13543 
13544 const StreamingDiagnostic &clang::
13545 operator<<(const StreamingDiagnostic &DB,
13546            const ASTContext::SectionInfo &Section) {
13547   if (Section.Decl)
13548     return DB << Section.Decl;
13549   return DB << "a prior #pragma section";
13550 }
13551 
13552 bool ASTContext::mayExternalize(const Decl *D) const {
13553   bool IsInternalVar =
13554       isa<VarDecl>(D) &&
13555       basicGVALinkageForVariable(*this, cast<VarDecl>(D)) == GVA_Internal;
13556   bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() &&
13557                               !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
13558                              (D->hasAttr<CUDAConstantAttr>() &&
13559                               !D->getAttr<CUDAConstantAttr>()->isImplicit());
13560   // CUDA/HIP: managed variables need to be externalized since it is
13561   // a declaration in IR, therefore cannot have internal linkage. Kernels in
13562   // anonymous name space needs to be externalized to avoid duplicate symbols.
13563   return (IsInternalVar &&
13564           (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) ||
13565          (D->hasAttr<CUDAGlobalAttr>() &&
13566           basicGVALinkageForFunction(*this, cast<FunctionDecl>(D)) ==
13567               GVA_Internal);
13568 }
13569 
13570 bool ASTContext::shouldExternalize(const Decl *D) const {
13571   return mayExternalize(D) &&
13572          (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() ||
13573           CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D)));
13574 }
13575 
13576 StringRef ASTContext::getCUIDHash() const {
13577   if (!CUIDHash.empty())
13578     return CUIDHash;
13579   if (LangOpts.CUID.empty())
13580     return StringRef();
13581   CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true);
13582   return CUIDHash;
13583 }
13584