xref: /freebsd-src/contrib/llvm-project/clang/lib/AST/ASTContext.cpp (revision 46c59ea9b61755455ff6bf9f3e7b834e1af634ea)
1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/DependenceFlags.h"
33 #include "clang/AST/Expr.h"
34 #include "clang/AST/ExprCXX.h"
35 #include "clang/AST/ExprConcepts.h"
36 #include "clang/AST/ExternalASTSource.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/MangleNumberingContext.h"
39 #include "clang/AST/NestedNameSpecifier.h"
40 #include "clang/AST/ParentMapContext.h"
41 #include "clang/AST/RawCommentList.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/Stmt.h"
44 #include "clang/AST/TemplateBase.h"
45 #include "clang/AST/TemplateName.h"
46 #include "clang/AST/Type.h"
47 #include "clang/AST/TypeLoc.h"
48 #include "clang/AST/UnresolvedSet.h"
49 #include "clang/AST/VTableBuilder.h"
50 #include "clang/Basic/AddressSpaces.h"
51 #include "clang/Basic/Builtins.h"
52 #include "clang/Basic/CommentOptions.h"
53 #include "clang/Basic/ExceptionSpecificationType.h"
54 #include "clang/Basic/IdentifierTable.h"
55 #include "clang/Basic/LLVM.h"
56 #include "clang/Basic/LangOptions.h"
57 #include "clang/Basic/Linkage.h"
58 #include "clang/Basic/Module.h"
59 #include "clang/Basic/NoSanitizeList.h"
60 #include "clang/Basic/ObjCRuntime.h"
61 #include "clang/Basic/ProfileList.h"
62 #include "clang/Basic/SourceLocation.h"
63 #include "clang/Basic/SourceManager.h"
64 #include "clang/Basic/Specifiers.h"
65 #include "clang/Basic/TargetCXXABI.h"
66 #include "clang/Basic/TargetInfo.h"
67 #include "clang/Basic/XRayLists.h"
68 #include "llvm/ADT/APFixedPoint.h"
69 #include "llvm/ADT/APInt.h"
70 #include "llvm/ADT/APSInt.h"
71 #include "llvm/ADT/ArrayRef.h"
72 #include "llvm/ADT/DenseMap.h"
73 #include "llvm/ADT/DenseSet.h"
74 #include "llvm/ADT/FoldingSet.h"
75 #include "llvm/ADT/PointerUnion.h"
76 #include "llvm/ADT/STLExtras.h"
77 #include "llvm/ADT/SmallPtrSet.h"
78 #include "llvm/ADT/SmallVector.h"
79 #include "llvm/ADT/StringExtras.h"
80 #include "llvm/ADT/StringRef.h"
81 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
82 #include "llvm/Support/Capacity.h"
83 #include "llvm/Support/Casting.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/MD5.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/TargetParser/Triple.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstddef>
93 #include <cstdint>
94 #include <cstdlib>
95 #include <map>
96 #include <memory>
97 #include <optional>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101 
102 using namespace clang;
103 
104 enum FloatingRank {
105   BFloat16Rank,
106   Float16Rank,
107   HalfRank,
108   FloatRank,
109   DoubleRank,
110   LongDoubleRank,
111   Float128Rank,
112   Ibm128Rank
113 };
114 
115 /// \returns The locations that are relevant when searching for Doc comments
116 /// related to \p D.
117 static SmallVector<SourceLocation, 2>
118 getDeclLocsForCommentSearch(const Decl *D, SourceManager &SourceMgr) {
119   assert(D);
120 
121   // User can not attach documentation to implicit declarations.
122   if (D->isImplicit())
123     return {};
124 
125   // User can not attach documentation to implicit instantiations.
126   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
127     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
128       return {};
129   }
130 
131   if (const auto *VD = dyn_cast<VarDecl>(D)) {
132     if (VD->isStaticDataMember() &&
133         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
134       return {};
135   }
136 
137   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
138     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
139       return {};
140   }
141 
142   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
143     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
144     if (TSK == TSK_ImplicitInstantiation ||
145         TSK == TSK_Undeclared)
146       return {};
147   }
148 
149   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
150     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
151       return {};
152   }
153   if (const auto *TD = dyn_cast<TagDecl>(D)) {
154     // When tag declaration (but not definition!) is part of the
155     // decl-specifier-seq of some other declaration, it doesn't get comment
156     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
157       return {};
158   }
159   // TODO: handle comments for function parameters properly.
160   if (isa<ParmVarDecl>(D))
161     return {};
162 
163   // TODO: we could look up template parameter documentation in the template
164   // documentation.
165   if (isa<TemplateTypeParmDecl>(D) ||
166       isa<NonTypeTemplateParmDecl>(D) ||
167       isa<TemplateTemplateParmDecl>(D))
168     return {};
169 
170   SmallVector<SourceLocation, 2> Locations;
171   // Find declaration location.
172   // For Objective-C declarations we generally don't expect to have multiple
173   // declarators, thus use declaration starting location as the "declaration
174   // location".
175   // For all other declarations multiple declarators are used quite frequently,
176   // so we use the location of the identifier as the "declaration location".
177   SourceLocation BaseLocation;
178   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
179       isa<ObjCPropertyDecl>(D) || isa<RedeclarableTemplateDecl>(D) ||
180       isa<ClassTemplateSpecializationDecl>(D) ||
181       // Allow association with Y across {} in `typedef struct X {} Y`.
182       isa<TypedefDecl>(D))
183     BaseLocation = D->getBeginLoc();
184   else
185     BaseLocation = D->getLocation();
186 
187   if (!D->getLocation().isMacroID()) {
188     Locations.emplace_back(BaseLocation);
189   } else {
190     const auto *DeclCtx = D->getDeclContext();
191 
192     // When encountering definitions generated from a macro (that are not
193     // contained by another declaration in the macro) we need to try and find
194     // the comment at the location of the expansion but if there is no comment
195     // there we should retry to see if there is a comment inside the macro as
196     // well. To this end we return first BaseLocation to first look at the
197     // expansion site, the second value is the spelling location of the
198     // beginning of the declaration defined inside the macro.
199     if (!(DeclCtx &&
200           Decl::castFromDeclContext(DeclCtx)->getLocation().isMacroID())) {
201       Locations.emplace_back(SourceMgr.getExpansionLoc(BaseLocation));
202     }
203 
204     // We use Decl::getBeginLoc() and not just BaseLocation here to ensure that
205     // we don't refer to the macro argument location at the expansion site (this
206     // can happen if the name's spelling is provided via macro argument), and
207     // always to the declaration itself.
208     Locations.emplace_back(SourceMgr.getSpellingLoc(D->getBeginLoc()));
209   }
210 
211   return Locations;
212 }
213 
214 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
215     const Decl *D, const SourceLocation RepresentativeLocForDecl,
216     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
217   // If the declaration doesn't map directly to a location in a file, we
218   // can't find the comment.
219   if (RepresentativeLocForDecl.isInvalid() ||
220       !RepresentativeLocForDecl.isFileID())
221     return nullptr;
222 
223   // If there are no comments anywhere, we won't find anything.
224   if (CommentsInTheFile.empty())
225     return nullptr;
226 
227   // Decompose the location for the declaration and find the beginning of the
228   // file buffer.
229   const std::pair<FileID, unsigned> DeclLocDecomp =
230       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
231 
232   // Slow path.
233   auto OffsetCommentBehindDecl =
234       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
235 
236   // First check whether we have a trailing comment.
237   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
238     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
239     if ((CommentBehindDecl->isDocumentation() ||
240          LangOpts.CommentOpts.ParseAllComments) &&
241         CommentBehindDecl->isTrailingComment() &&
242         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
243          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
244 
245       // Check that Doxygen trailing comment comes after the declaration, starts
246       // on the same line and in the same file as the declaration.
247       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
248           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
249                                        OffsetCommentBehindDecl->first)) {
250         return CommentBehindDecl;
251       }
252     }
253   }
254 
255   // The comment just after the declaration was not a trailing comment.
256   // Let's look at the previous comment.
257   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
258     return nullptr;
259 
260   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
261   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
262 
263   // Check that we actually have a non-member Doxygen comment.
264   if (!(CommentBeforeDecl->isDocumentation() ||
265         LangOpts.CommentOpts.ParseAllComments) ||
266       CommentBeforeDecl->isTrailingComment())
267     return nullptr;
268 
269   // Decompose the end of the comment.
270   const unsigned CommentEndOffset =
271       Comments.getCommentEndOffset(CommentBeforeDecl);
272 
273   // Get the corresponding buffer.
274   bool Invalid = false;
275   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
276                                                &Invalid).data();
277   if (Invalid)
278     return nullptr;
279 
280   // Extract text between the comment and declaration.
281   StringRef Text(Buffer + CommentEndOffset,
282                  DeclLocDecomp.second - CommentEndOffset);
283 
284   // There should be no other declarations or preprocessor directives between
285   // comment and declaration.
286   if (Text.find_last_of(";{}#@") != StringRef::npos)
287     return nullptr;
288 
289   return CommentBeforeDecl;
290 }
291 
292 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
293   const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr);
294 
295   for (const auto DeclLoc : DeclLocs) {
296     // If the declaration doesn't map directly to a location in a file, we
297     // can't find the comment.
298     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
299       continue;
300 
301     if (ExternalSource && !CommentsLoaded) {
302       ExternalSource->ReadComments();
303       CommentsLoaded = true;
304     }
305 
306     if (Comments.empty())
307       continue;
308 
309     const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
310     if (!File.isValid())
311       continue;
312 
313     const auto CommentsInThisFile = Comments.getCommentsInFile(File);
314     if (!CommentsInThisFile || CommentsInThisFile->empty())
315       continue;
316 
317     if (RawComment *Comment =
318             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile))
319       return Comment;
320   }
321 
322   return nullptr;
323 }
324 
325 void ASTContext::addComment(const RawComment &RC) {
326   assert(LangOpts.RetainCommentsFromSystemHeaders ||
327          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
328   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
329 }
330 
331 /// If we have a 'templated' declaration for a template, adjust 'D' to
332 /// refer to the actual template.
333 /// If we have an implicit instantiation, adjust 'D' to refer to template.
334 static const Decl &adjustDeclToTemplate(const Decl &D) {
335   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
336     // Is this function declaration part of a function template?
337     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
338       return *FTD;
339 
340     // Nothing to do if function is not an implicit instantiation.
341     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
342       return D;
343 
344     // Function is an implicit instantiation of a function template?
345     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
346       return *FTD;
347 
348     // Function is instantiated from a member definition of a class template?
349     if (const FunctionDecl *MemberDecl =
350             FD->getInstantiatedFromMemberFunction())
351       return *MemberDecl;
352 
353     return D;
354   }
355   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
356     // Static data member is instantiated from a member definition of a class
357     // template?
358     if (VD->isStaticDataMember())
359       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
360         return *MemberDecl;
361 
362     return D;
363   }
364   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
365     // Is this class declaration part of a class template?
366     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
367       return *CTD;
368 
369     // Class is an implicit instantiation of a class template or partial
370     // specialization?
371     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
372       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
373         return D;
374       llvm::PointerUnion<ClassTemplateDecl *,
375                          ClassTemplatePartialSpecializationDecl *>
376           PU = CTSD->getSpecializedTemplateOrPartial();
377       return PU.is<ClassTemplateDecl *>()
378                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
379                  : *static_cast<const Decl *>(
380                        PU.get<ClassTemplatePartialSpecializationDecl *>());
381     }
382 
383     // Class is instantiated from a member definition of a class template?
384     if (const MemberSpecializationInfo *Info =
385             CRD->getMemberSpecializationInfo())
386       return *Info->getInstantiatedFrom();
387 
388     return D;
389   }
390   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
391     // Enum is instantiated from a member definition of a class template?
392     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
393       return *MemberDecl;
394 
395     return D;
396   }
397   // FIXME: Adjust alias templates?
398   return D;
399 }
400 
401 const RawComment *ASTContext::getRawCommentForAnyRedecl(
402                                                 const Decl *D,
403                                                 const Decl **OriginalDecl) const {
404   if (!D) {
405     if (OriginalDecl)
406       OriginalDecl = nullptr;
407     return nullptr;
408   }
409 
410   D = &adjustDeclToTemplate(*D);
411 
412   // Any comment directly attached to D?
413   {
414     auto DeclComment = DeclRawComments.find(D);
415     if (DeclComment != DeclRawComments.end()) {
416       if (OriginalDecl)
417         *OriginalDecl = D;
418       return DeclComment->second;
419     }
420   }
421 
422   // Any comment attached to any redeclaration of D?
423   const Decl *CanonicalD = D->getCanonicalDecl();
424   if (!CanonicalD)
425     return nullptr;
426 
427   {
428     auto RedeclComment = RedeclChainComments.find(CanonicalD);
429     if (RedeclComment != RedeclChainComments.end()) {
430       if (OriginalDecl)
431         *OriginalDecl = RedeclComment->second;
432       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
433       assert(CommentAtRedecl != DeclRawComments.end() &&
434              "This decl is supposed to have comment attached.");
435       return CommentAtRedecl->second;
436     }
437   }
438 
439   // Any redeclarations of D that we haven't checked for comments yet?
440   // We can't use DenseMap::iterator directly since it'd get invalid.
441   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
442     return CommentlessRedeclChains.lookup(CanonicalD);
443   }();
444 
445   for (const auto Redecl : D->redecls()) {
446     assert(Redecl);
447     // Skip all redeclarations that have been checked previously.
448     if (LastCheckedRedecl) {
449       if (LastCheckedRedecl == Redecl) {
450         LastCheckedRedecl = nullptr;
451       }
452       continue;
453     }
454     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
455     if (RedeclComment) {
456       cacheRawCommentForDecl(*Redecl, *RedeclComment);
457       if (OriginalDecl)
458         *OriginalDecl = Redecl;
459       return RedeclComment;
460     }
461     CommentlessRedeclChains[CanonicalD] = Redecl;
462   }
463 
464   if (OriginalDecl)
465     *OriginalDecl = nullptr;
466   return nullptr;
467 }
468 
469 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
470                                         const RawComment &Comment) const {
471   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
472   DeclRawComments.try_emplace(&OriginalD, &Comment);
473   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
474   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
475   CommentlessRedeclChains.erase(CanonicalDecl);
476 }
477 
478 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
479                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
480   const DeclContext *DC = ObjCMethod->getDeclContext();
481   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
482     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
483     if (!ID)
484       return;
485     // Add redeclared method here.
486     for (const auto *Ext : ID->known_extensions()) {
487       if (ObjCMethodDecl *RedeclaredMethod =
488             Ext->getMethod(ObjCMethod->getSelector(),
489                                   ObjCMethod->isInstanceMethod()))
490         Redeclared.push_back(RedeclaredMethod);
491     }
492   }
493 }
494 
495 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
496                                                  const Preprocessor *PP) {
497   if (Comments.empty() || Decls.empty())
498     return;
499 
500   FileID File;
501   for (Decl *D : Decls) {
502     SourceLocation Loc = D->getLocation();
503     if (Loc.isValid()) {
504       // See if there are any new comments that are not attached to a decl.
505       // The location doesn't have to be precise - we care only about the file.
506       File = SourceMgr.getDecomposedLoc(Loc).first;
507       break;
508     }
509   }
510 
511   if (File.isInvalid())
512     return;
513 
514   auto CommentsInThisFile = Comments.getCommentsInFile(File);
515   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
516       CommentsInThisFile->rbegin()->second->isAttached())
517     return;
518 
519   // There is at least one comment not attached to a decl.
520   // Maybe it should be attached to one of Decls?
521   //
522   // Note that this way we pick up not only comments that precede the
523   // declaration, but also comments that *follow* the declaration -- thanks to
524   // the lookahead in the lexer: we've consumed the semicolon and looked
525   // ahead through comments.
526   for (const Decl *D : Decls) {
527     assert(D);
528     if (D->isInvalidDecl())
529       continue;
530 
531     D = &adjustDeclToTemplate(*D);
532 
533     if (DeclRawComments.count(D) > 0)
534       continue;
535 
536     const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr);
537 
538     for (const auto DeclLoc : DeclLocs) {
539       if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
540         continue;
541 
542       if (RawComment *const DocComment = getRawCommentForDeclNoCacheImpl(
543               D, DeclLoc, *CommentsInThisFile)) {
544         cacheRawCommentForDecl(*D, *DocComment);
545         comments::FullComment *FC = DocComment->parse(*this, PP, D);
546         ParsedComments[D->getCanonicalDecl()] = FC;
547         break;
548       }
549     }
550   }
551 }
552 
553 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
554                                                     const Decl *D) const {
555   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
556   ThisDeclInfo->CommentDecl = D;
557   ThisDeclInfo->IsFilled = false;
558   ThisDeclInfo->fill();
559   ThisDeclInfo->CommentDecl = FC->getDecl();
560   if (!ThisDeclInfo->TemplateParameters)
561     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
562   comments::FullComment *CFC =
563     new (*this) comments::FullComment(FC->getBlocks(),
564                                       ThisDeclInfo);
565   return CFC;
566 }
567 
568 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
569   const RawComment *RC = getRawCommentForDeclNoCache(D);
570   return RC ? RC->parse(*this, nullptr, D) : nullptr;
571 }
572 
573 comments::FullComment *ASTContext::getCommentForDecl(
574                                               const Decl *D,
575                                               const Preprocessor *PP) const {
576   if (!D || D->isInvalidDecl())
577     return nullptr;
578   D = &adjustDeclToTemplate(*D);
579 
580   const Decl *Canonical = D->getCanonicalDecl();
581   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
582       ParsedComments.find(Canonical);
583 
584   if (Pos != ParsedComments.end()) {
585     if (Canonical != D) {
586       comments::FullComment *FC = Pos->second;
587       comments::FullComment *CFC = cloneFullComment(FC, D);
588       return CFC;
589     }
590     return Pos->second;
591   }
592 
593   const Decl *OriginalDecl = nullptr;
594 
595   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
596   if (!RC) {
597     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
598       SmallVector<const NamedDecl*, 8> Overridden;
599       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
600       if (OMD && OMD->isPropertyAccessor())
601         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
602           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
603             return cloneFullComment(FC, D);
604       if (OMD)
605         addRedeclaredMethods(OMD, Overridden);
606       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
607       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
608         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
609           return cloneFullComment(FC, D);
610     }
611     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
612       // Attach any tag type's documentation to its typedef if latter
613       // does not have one of its own.
614       QualType QT = TD->getUnderlyingType();
615       if (const auto *TT = QT->getAs<TagType>())
616         if (const Decl *TD = TT->getDecl())
617           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
618             return cloneFullComment(FC, D);
619     }
620     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
621       while (IC->getSuperClass()) {
622         IC = IC->getSuperClass();
623         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
624           return cloneFullComment(FC, D);
625       }
626     }
627     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
628       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
629         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
630           return cloneFullComment(FC, D);
631     }
632     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
633       if (!(RD = RD->getDefinition()))
634         return nullptr;
635       // Check non-virtual bases.
636       for (const auto &I : RD->bases()) {
637         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
638           continue;
639         QualType Ty = I.getType();
640         if (Ty.isNull())
641           continue;
642         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
643           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
644             continue;
645 
646           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
647             return cloneFullComment(FC, D);
648         }
649       }
650       // Check virtual bases.
651       for (const auto &I : RD->vbases()) {
652         if (I.getAccessSpecifier() != AS_public)
653           continue;
654         QualType Ty = I.getType();
655         if (Ty.isNull())
656           continue;
657         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
658           if (!(VirtualBase= VirtualBase->getDefinition()))
659             continue;
660           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
661             return cloneFullComment(FC, D);
662         }
663       }
664     }
665     return nullptr;
666   }
667 
668   // If the RawComment was attached to other redeclaration of this Decl, we
669   // should parse the comment in context of that other Decl.  This is important
670   // because comments can contain references to parameter names which can be
671   // different across redeclarations.
672   if (D != OriginalDecl && OriginalDecl)
673     return getCommentForDecl(OriginalDecl, PP);
674 
675   comments::FullComment *FC = RC->parse(*this, PP, D);
676   ParsedComments[Canonical] = FC;
677   return FC;
678 }
679 
680 void
681 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
682                                                    const ASTContext &C,
683                                                TemplateTemplateParmDecl *Parm) {
684   ID.AddInteger(Parm->getDepth());
685   ID.AddInteger(Parm->getPosition());
686   ID.AddBoolean(Parm->isParameterPack());
687 
688   TemplateParameterList *Params = Parm->getTemplateParameters();
689   ID.AddInteger(Params->size());
690   for (TemplateParameterList::const_iterator P = Params->begin(),
691                                           PEnd = Params->end();
692        P != PEnd; ++P) {
693     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
694       ID.AddInteger(0);
695       ID.AddBoolean(TTP->isParameterPack());
696       if (TTP->isExpandedParameterPack()) {
697         ID.AddBoolean(true);
698         ID.AddInteger(TTP->getNumExpansionParameters());
699       } else
700         ID.AddBoolean(false);
701       continue;
702     }
703 
704     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
705       ID.AddInteger(1);
706       ID.AddBoolean(NTTP->isParameterPack());
707       ID.AddPointer(C.getUnconstrainedType(C.getCanonicalType(NTTP->getType()))
708                         .getAsOpaquePtr());
709       if (NTTP->isExpandedParameterPack()) {
710         ID.AddBoolean(true);
711         ID.AddInteger(NTTP->getNumExpansionTypes());
712         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
713           QualType T = NTTP->getExpansionType(I);
714           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
715         }
716       } else
717         ID.AddBoolean(false);
718       continue;
719     }
720 
721     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
722     ID.AddInteger(2);
723     Profile(ID, C, TTP);
724   }
725 }
726 
727 TemplateTemplateParmDecl *
728 ASTContext::getCanonicalTemplateTemplateParmDecl(
729                                           TemplateTemplateParmDecl *TTP) const {
730   // Check if we already have a canonical template template parameter.
731   llvm::FoldingSetNodeID ID;
732   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
733   void *InsertPos = nullptr;
734   CanonicalTemplateTemplateParm *Canonical
735     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
736   if (Canonical)
737     return Canonical->getParam();
738 
739   // Build a canonical template parameter list.
740   TemplateParameterList *Params = TTP->getTemplateParameters();
741   SmallVector<NamedDecl *, 4> CanonParams;
742   CanonParams.reserve(Params->size());
743   for (TemplateParameterList::const_iterator P = Params->begin(),
744                                           PEnd = Params->end();
745        P != PEnd; ++P) {
746     // Note that, per C++20 [temp.over.link]/6, when determining whether
747     // template-parameters are equivalent, constraints are ignored.
748     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
749       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(
750           *this, getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
751           TTP->getDepth(), TTP->getIndex(), nullptr, false,
752           TTP->isParameterPack(), /*HasTypeConstraint=*/false,
753           TTP->isExpandedParameterPack()
754               ? std::optional<unsigned>(TTP->getNumExpansionParameters())
755               : std::nullopt);
756       CanonParams.push_back(NewTTP);
757     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
758       QualType T = getUnconstrainedType(getCanonicalType(NTTP->getType()));
759       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
760       NonTypeTemplateParmDecl *Param;
761       if (NTTP->isExpandedParameterPack()) {
762         SmallVector<QualType, 2> ExpandedTypes;
763         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
764         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
765           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
766           ExpandedTInfos.push_back(
767                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
768         }
769 
770         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
771                                                 SourceLocation(),
772                                                 SourceLocation(),
773                                                 NTTP->getDepth(),
774                                                 NTTP->getPosition(), nullptr,
775                                                 T,
776                                                 TInfo,
777                                                 ExpandedTypes,
778                                                 ExpandedTInfos);
779       } else {
780         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
781                                                 SourceLocation(),
782                                                 SourceLocation(),
783                                                 NTTP->getDepth(),
784                                                 NTTP->getPosition(), nullptr,
785                                                 T,
786                                                 NTTP->isParameterPack(),
787                                                 TInfo);
788       }
789       CanonParams.push_back(Param);
790     } else
791       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
792                                            cast<TemplateTemplateParmDecl>(*P)));
793   }
794 
795   TemplateTemplateParmDecl *CanonTTP = TemplateTemplateParmDecl::Create(
796       *this, getTranslationUnitDecl(), SourceLocation(), TTP->getDepth(),
797       TTP->getPosition(), TTP->isParameterPack(), nullptr,
798       TemplateParameterList::Create(*this, SourceLocation(), SourceLocation(),
799                                     CanonParams, SourceLocation(),
800                                     /*RequiresClause=*/nullptr));
801 
802   // Get the new insert position for the node we care about.
803   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
804   assert(!Canonical && "Shouldn't be in the map!");
805   (void)Canonical;
806 
807   // Create the canonical template template parameter entry.
808   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
809   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
810   return CanonTTP;
811 }
812 
813 TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
814   auto Kind = getTargetInfo().getCXXABI().getKind();
815   return getLangOpts().CXXABI.value_or(Kind);
816 }
817 
818 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
819   if (!LangOpts.CPlusPlus) return nullptr;
820 
821   switch (getCXXABIKind()) {
822   case TargetCXXABI::AppleARM64:
823   case TargetCXXABI::Fuchsia:
824   case TargetCXXABI::GenericARM: // Same as Itanium at this level
825   case TargetCXXABI::iOS:
826   case TargetCXXABI::WatchOS:
827   case TargetCXXABI::GenericAArch64:
828   case TargetCXXABI::GenericMIPS:
829   case TargetCXXABI::GenericItanium:
830   case TargetCXXABI::WebAssembly:
831   case TargetCXXABI::XL:
832     return CreateItaniumCXXABI(*this);
833   case TargetCXXABI::Microsoft:
834     return CreateMicrosoftCXXABI(*this);
835   }
836   llvm_unreachable("Invalid CXXABI type!");
837 }
838 
839 interp::Context &ASTContext::getInterpContext() {
840   if (!InterpContext) {
841     InterpContext.reset(new interp::Context(*this));
842   }
843   return *InterpContext.get();
844 }
845 
846 ParentMapContext &ASTContext::getParentMapContext() {
847   if (!ParentMapCtx)
848     ParentMapCtx.reset(new ParentMapContext(*this));
849   return *ParentMapCtx.get();
850 }
851 
852 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
853                                           const LangOptions &LangOpts) {
854   switch (LangOpts.getAddressSpaceMapMangling()) {
855   case LangOptions::ASMM_Target:
856     return TI.useAddressSpaceMapMangling();
857   case LangOptions::ASMM_On:
858     return true;
859   case LangOptions::ASMM_Off:
860     return false;
861   }
862   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
863 }
864 
865 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
866                        IdentifierTable &idents, SelectorTable &sels,
867                        Builtin::Context &builtins, TranslationUnitKind TUKind)
868     : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize),
869       DependentSizedArrayTypes(this_()), DependentSizedExtVectorTypes(this_()),
870       DependentAddressSpaceTypes(this_()), DependentVectorTypes(this_()),
871       DependentSizedMatrixTypes(this_()),
872       FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize),
873       DependentTypeOfExprTypes(this_()), DependentDecltypeTypes(this_()),
874       TemplateSpecializationTypes(this_()),
875       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
876       DependentBitIntTypes(this_()), SubstTemplateTemplateParmPacks(this_()),
877       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
878       NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
879       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
880                                         LangOpts.XRayNeverInstrumentFiles,
881                                         LangOpts.XRayAttrListFiles, SM)),
882       ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
883       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
884       BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this),
885       Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
886       CompCategories(this_()), LastSDM(nullptr, 0) {
887   addTranslationUnitDecl();
888 }
889 
890 void ASTContext::cleanup() {
891   // Release the DenseMaps associated with DeclContext objects.
892   // FIXME: Is this the ideal solution?
893   ReleaseDeclContextMaps();
894 
895   // Call all of the deallocation functions on all of their targets.
896   for (auto &Pair : Deallocations)
897     (Pair.first)(Pair.second);
898   Deallocations.clear();
899 
900   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
901   // because they can contain DenseMaps.
902   for (llvm::DenseMap<const ObjCContainerDecl*,
903        const ASTRecordLayout*>::iterator
904        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
905     // Increment in loop to prevent using deallocated memory.
906     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
907       R->Destroy(*this);
908   ObjCLayouts.clear();
909 
910   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
911        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
912     // Increment in loop to prevent using deallocated memory.
913     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
914       R->Destroy(*this);
915   }
916   ASTRecordLayouts.clear();
917 
918   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
919                                                     AEnd = DeclAttrs.end();
920        A != AEnd; ++A)
921     A->second->~AttrVec();
922   DeclAttrs.clear();
923 
924   for (const auto &Value : ModuleInitializers)
925     Value.second->~PerModuleInitializers();
926   ModuleInitializers.clear();
927 }
928 
929 ASTContext::~ASTContext() { cleanup(); }
930 
931 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
932   TraversalScope = TopLevelDecls;
933   getParentMapContext().clear();
934 }
935 
936 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
937   Deallocations.push_back({Callback, Data});
938 }
939 
940 void
941 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
942   ExternalSource = std::move(Source);
943 }
944 
945 void ASTContext::PrintStats() const {
946   llvm::errs() << "\n*** AST Context Stats:\n";
947   llvm::errs() << "  " << Types.size() << " types total.\n";
948 
949   unsigned counts[] = {
950 #define TYPE(Name, Parent) 0,
951 #define ABSTRACT_TYPE(Name, Parent)
952 #include "clang/AST/TypeNodes.inc"
953     0 // Extra
954   };
955 
956   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
957     Type *T = Types[i];
958     counts[(unsigned)T->getTypeClass()]++;
959   }
960 
961   unsigned Idx = 0;
962   unsigned TotalBytes = 0;
963 #define TYPE(Name, Parent)                                              \
964   if (counts[Idx])                                                      \
965     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
966                  << " types, " << sizeof(Name##Type) << " each "        \
967                  << "(" << counts[Idx] * sizeof(Name##Type)             \
968                  << " bytes)\n";                                        \
969   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
970   ++Idx;
971 #define ABSTRACT_TYPE(Name, Parent)
972 #include "clang/AST/TypeNodes.inc"
973 
974   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
975 
976   // Implicit special member functions.
977   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
978                << NumImplicitDefaultConstructors
979                << " implicit default constructors created\n";
980   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
981                << NumImplicitCopyConstructors
982                << " implicit copy constructors created\n";
983   if (getLangOpts().CPlusPlus)
984     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
985                  << NumImplicitMoveConstructors
986                  << " implicit move constructors created\n";
987   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
988                << NumImplicitCopyAssignmentOperators
989                << " implicit copy assignment operators created\n";
990   if (getLangOpts().CPlusPlus)
991     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
992                  << NumImplicitMoveAssignmentOperators
993                  << " implicit move assignment operators created\n";
994   llvm::errs() << NumImplicitDestructorsDeclared << "/"
995                << NumImplicitDestructors
996                << " implicit destructors created\n";
997 
998   if (ExternalSource) {
999     llvm::errs() << "\n";
1000     ExternalSource->PrintStats();
1001   }
1002 
1003   BumpAlloc.PrintStats();
1004 }
1005 
1006 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1007                                            bool NotifyListeners) {
1008   if (NotifyListeners)
1009     if (auto *Listener = getASTMutationListener())
1010       Listener->RedefinedHiddenDefinition(ND, M);
1011 
1012   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1013 }
1014 
1015 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1016   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1017   if (It == MergedDefModules.end())
1018     return;
1019 
1020   auto &Merged = It->second;
1021   llvm::DenseSet<Module*> Found;
1022   for (Module *&M : Merged)
1023     if (!Found.insert(M).second)
1024       M = nullptr;
1025   llvm::erase(Merged, nullptr);
1026 }
1027 
1028 ArrayRef<Module *>
1029 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1030   auto MergedIt =
1031       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1032   if (MergedIt == MergedDefModules.end())
1033     return std::nullopt;
1034   return MergedIt->second;
1035 }
1036 
1037 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1038   if (LazyInitializers.empty())
1039     return;
1040 
1041   auto *Source = Ctx.getExternalSource();
1042   assert(Source && "lazy initializers but no external source");
1043 
1044   auto LazyInits = std::move(LazyInitializers);
1045   LazyInitializers.clear();
1046 
1047   for (auto ID : LazyInits)
1048     Initializers.push_back(Source->GetExternalDecl(ID));
1049 
1050   assert(LazyInitializers.empty() &&
1051          "GetExternalDecl for lazy module initializer added more inits");
1052 }
1053 
1054 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1055   // One special case: if we add a module initializer that imports another
1056   // module, and that module's only initializer is an ImportDecl, simplify.
1057   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1058     auto It = ModuleInitializers.find(ID->getImportedModule());
1059 
1060     // Maybe the ImportDecl does nothing at all. (Common case.)
1061     if (It == ModuleInitializers.end())
1062       return;
1063 
1064     // Maybe the ImportDecl only imports another ImportDecl.
1065     auto &Imported = *It->second;
1066     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1067       Imported.resolve(*this);
1068       auto *OnlyDecl = Imported.Initializers.front();
1069       if (isa<ImportDecl>(OnlyDecl))
1070         D = OnlyDecl;
1071     }
1072   }
1073 
1074   auto *&Inits = ModuleInitializers[M];
1075   if (!Inits)
1076     Inits = new (*this) PerModuleInitializers;
1077   Inits->Initializers.push_back(D);
1078 }
1079 
1080 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1081   auto *&Inits = ModuleInitializers[M];
1082   if (!Inits)
1083     Inits = new (*this) PerModuleInitializers;
1084   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1085                                  IDs.begin(), IDs.end());
1086 }
1087 
1088 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1089   auto It = ModuleInitializers.find(M);
1090   if (It == ModuleInitializers.end())
1091     return std::nullopt;
1092 
1093   auto *Inits = It->second;
1094   Inits->resolve(*this);
1095   return Inits->Initializers;
1096 }
1097 
1098 void ASTContext::setCurrentNamedModule(Module *M) {
1099   assert(M->isNamedModule());
1100   assert(!CurrentCXXNamedModule &&
1101          "We should set named module for ASTContext for only once");
1102   CurrentCXXNamedModule = M;
1103 }
1104 
1105 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1106   if (!ExternCContext)
1107     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1108 
1109   return ExternCContext;
1110 }
1111 
1112 BuiltinTemplateDecl *
1113 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1114                                      const IdentifierInfo *II) const {
1115   auto *BuiltinTemplate =
1116       BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK);
1117   BuiltinTemplate->setImplicit();
1118   getTranslationUnitDecl()->addDecl(BuiltinTemplate);
1119 
1120   return BuiltinTemplate;
1121 }
1122 
1123 BuiltinTemplateDecl *
1124 ASTContext::getMakeIntegerSeqDecl() const {
1125   if (!MakeIntegerSeqDecl)
1126     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1127                                                   getMakeIntegerSeqName());
1128   return MakeIntegerSeqDecl;
1129 }
1130 
1131 BuiltinTemplateDecl *
1132 ASTContext::getTypePackElementDecl() const {
1133   if (!TypePackElementDecl)
1134     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1135                                                    getTypePackElementName());
1136   return TypePackElementDecl;
1137 }
1138 
1139 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1140                                             RecordDecl::TagKind TK) const {
1141   SourceLocation Loc;
1142   RecordDecl *NewDecl;
1143   if (getLangOpts().CPlusPlus)
1144     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1145                                     Loc, &Idents.get(Name));
1146   else
1147     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1148                                  &Idents.get(Name));
1149   NewDecl->setImplicit();
1150   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1151       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1152   return NewDecl;
1153 }
1154 
1155 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1156                                               StringRef Name) const {
1157   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1158   TypedefDecl *NewDecl = TypedefDecl::Create(
1159       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1160       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1161   NewDecl->setImplicit();
1162   return NewDecl;
1163 }
1164 
1165 TypedefDecl *ASTContext::getInt128Decl() const {
1166   if (!Int128Decl)
1167     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1168   return Int128Decl;
1169 }
1170 
1171 TypedefDecl *ASTContext::getUInt128Decl() const {
1172   if (!UInt128Decl)
1173     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1174   return UInt128Decl;
1175 }
1176 
1177 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1178   auto *Ty = new (*this, alignof(BuiltinType)) BuiltinType(K);
1179   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1180   Types.push_back(Ty);
1181 }
1182 
1183 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1184                                   const TargetInfo *AuxTarget) {
1185   assert((!this->Target || this->Target == &Target) &&
1186          "Incorrect target reinitialization");
1187   assert(VoidTy.isNull() && "Context reinitialized?");
1188 
1189   this->Target = &Target;
1190   this->AuxTarget = AuxTarget;
1191 
1192   ABI.reset(createCXXABI(Target));
1193   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1194 
1195   // C99 6.2.5p19.
1196   InitBuiltinType(VoidTy,              BuiltinType::Void);
1197 
1198   // C99 6.2.5p2.
1199   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1200   // C99 6.2.5p3.
1201   if (LangOpts.CharIsSigned)
1202     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1203   else
1204     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1205   // C99 6.2.5p4.
1206   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1207   InitBuiltinType(ShortTy,             BuiltinType::Short);
1208   InitBuiltinType(IntTy,               BuiltinType::Int);
1209   InitBuiltinType(LongTy,              BuiltinType::Long);
1210   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1211 
1212   // C99 6.2.5p6.
1213   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1214   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1215   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1216   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1217   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1218 
1219   // C99 6.2.5p10.
1220   InitBuiltinType(FloatTy,             BuiltinType::Float);
1221   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1222   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1223 
1224   // GNU extension, __float128 for IEEE quadruple precision
1225   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1226 
1227   // __ibm128 for IBM extended precision
1228   InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128);
1229 
1230   // C11 extension ISO/IEC TS 18661-3
1231   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1232 
1233   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1234   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1235   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1236   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1237   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1238   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1239   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1240   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1241   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1242   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1243   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1244   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1245   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1246   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1247   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1248   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1249   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1250   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1251   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1252   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1253   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1254   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1255   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1256   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1257   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1258 
1259   // GNU extension, 128-bit integers.
1260   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1261   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1262 
1263   // C++ 3.9.1p5
1264   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1265     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1266   else  // -fshort-wchar makes wchar_t be unsigned.
1267     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1268   if (LangOpts.CPlusPlus && LangOpts.WChar)
1269     WideCharTy = WCharTy;
1270   else {
1271     // C99 (or C++ using -fno-wchar).
1272     WideCharTy = getFromTargetType(Target.getWCharType());
1273   }
1274 
1275   WIntTy = getFromTargetType(Target.getWIntType());
1276 
1277   // C++20 (proposed)
1278   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1279 
1280   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1281     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1282   else // C99
1283     Char16Ty = getFromTargetType(Target.getChar16Type());
1284 
1285   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1286     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1287   else // C99
1288     Char32Ty = getFromTargetType(Target.getChar32Type());
1289 
1290   // Placeholder type for type-dependent expressions whose type is
1291   // completely unknown. No code should ever check a type against
1292   // DependentTy and users should never see it; however, it is here to
1293   // help diagnose failures to properly check for type-dependent
1294   // expressions.
1295   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1296 
1297   // Placeholder type for functions.
1298   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1299 
1300   // Placeholder type for bound members.
1301   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1302 
1303   // Placeholder type for pseudo-objects.
1304   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1305 
1306   // "any" type; useful for debugger-like clients.
1307   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1308 
1309   // Placeholder type for unbridged ARC casts.
1310   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1311 
1312   // Placeholder type for builtin functions.
1313   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1314 
1315   // Placeholder type for OMP array sections.
1316   if (LangOpts.OpenMP) {
1317     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1318     InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1319     InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1320   }
1321   // Placeholder type for OpenACC array sections.
1322   if (LangOpts.OpenACC) {
1323     // FIXME: Once we implement OpenACC array sections in Sema, this will either
1324     // be combined with the OpenMP type, or given its own type. In the meantime,
1325     // just use the OpenMP type so that parsing can work.
1326     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1327   }
1328   if (LangOpts.MatrixTypes)
1329     InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1330 
1331   // Builtin types for 'id', 'Class', and 'SEL'.
1332   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1333   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1334   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1335 
1336   if (LangOpts.OpenCL) {
1337 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1338     InitBuiltinType(SingletonId, BuiltinType::Id);
1339 #include "clang/Basic/OpenCLImageTypes.def"
1340 
1341     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1342     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1343     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1344     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1345     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1346 
1347 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1348     InitBuiltinType(Id##Ty, BuiltinType::Id);
1349 #include "clang/Basic/OpenCLExtensionTypes.def"
1350   }
1351 
1352   if (Target.hasAArch64SVETypes()) {
1353 #define SVE_TYPE(Name, Id, SingletonId) \
1354     InitBuiltinType(SingletonId, BuiltinType::Id);
1355 #include "clang/Basic/AArch64SVEACLETypes.def"
1356   }
1357 
1358   if (Target.getTriple().isPPC64()) {
1359 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
1360       InitBuiltinType(Id##Ty, BuiltinType::Id);
1361 #include "clang/Basic/PPCTypes.def"
1362 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
1363     InitBuiltinType(Id##Ty, BuiltinType::Id);
1364 #include "clang/Basic/PPCTypes.def"
1365   }
1366 
1367   if (Target.hasRISCVVTypes()) {
1368 #define RVV_TYPE(Name, Id, SingletonId)                                        \
1369   InitBuiltinType(SingletonId, BuiltinType::Id);
1370 #include "clang/Basic/RISCVVTypes.def"
1371   }
1372 
1373   if (Target.getTriple().isWasm() && Target.hasFeature("reference-types")) {
1374 #define WASM_TYPE(Name, Id, SingletonId)                                       \
1375   InitBuiltinType(SingletonId, BuiltinType::Id);
1376 #include "clang/Basic/WebAssemblyReferenceTypes.def"
1377   }
1378 
1379   // Builtin type for __objc_yes and __objc_no
1380   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1381                        SignedCharTy : BoolTy);
1382 
1383   ObjCConstantStringType = QualType();
1384 
1385   ObjCSuperType = QualType();
1386 
1387   // void * type
1388   if (LangOpts.OpenCLGenericAddressSpace) {
1389     auto Q = VoidTy.getQualifiers();
1390     Q.setAddressSpace(LangAS::opencl_generic);
1391     VoidPtrTy = getPointerType(getCanonicalType(
1392         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1393   } else {
1394     VoidPtrTy = getPointerType(VoidTy);
1395   }
1396 
1397   // nullptr type (C++0x 2.14.7)
1398   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1399 
1400   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1401   InitBuiltinType(HalfTy, BuiltinType::Half);
1402 
1403   InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1404 
1405   // Builtin type used to help define __builtin_va_list.
1406   VaListTagDecl = nullptr;
1407 
1408   // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1409   if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1410     MSGuidTagDecl = buildImplicitRecord("_GUID");
1411     getTranslationUnitDecl()->addDecl(MSGuidTagDecl);
1412   }
1413 }
1414 
1415 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1416   return SourceMgr.getDiagnostics();
1417 }
1418 
1419 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1420   AttrVec *&Result = DeclAttrs[D];
1421   if (!Result) {
1422     void *Mem = Allocate(sizeof(AttrVec));
1423     Result = new (Mem) AttrVec;
1424   }
1425 
1426   return *Result;
1427 }
1428 
1429 /// Erase the attributes corresponding to the given declaration.
1430 void ASTContext::eraseDeclAttrs(const Decl *D) {
1431   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1432   if (Pos != DeclAttrs.end()) {
1433     Pos->second->~AttrVec();
1434     DeclAttrs.erase(Pos);
1435   }
1436 }
1437 
1438 // FIXME: Remove ?
1439 MemberSpecializationInfo *
1440 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1441   assert(Var->isStaticDataMember() && "Not a static data member");
1442   return getTemplateOrSpecializationInfo(Var)
1443       .dyn_cast<MemberSpecializationInfo *>();
1444 }
1445 
1446 ASTContext::TemplateOrSpecializationInfo
1447 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1448   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1449       TemplateOrInstantiation.find(Var);
1450   if (Pos == TemplateOrInstantiation.end())
1451     return {};
1452 
1453   return Pos->second;
1454 }
1455 
1456 void
1457 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1458                                                 TemplateSpecializationKind TSK,
1459                                           SourceLocation PointOfInstantiation) {
1460   assert(Inst->isStaticDataMember() && "Not a static data member");
1461   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1462   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1463                                             Tmpl, TSK, PointOfInstantiation));
1464 }
1465 
1466 void
1467 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1468                                             TemplateOrSpecializationInfo TSI) {
1469   assert(!TemplateOrInstantiation[Inst] &&
1470          "Already noted what the variable was instantiated from");
1471   TemplateOrInstantiation[Inst] = TSI;
1472 }
1473 
1474 NamedDecl *
1475 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1476   return InstantiatedFromUsingDecl.lookup(UUD);
1477 }
1478 
1479 void
1480 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1481   assert((isa<UsingDecl>(Pattern) ||
1482           isa<UnresolvedUsingValueDecl>(Pattern) ||
1483           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1484          "pattern decl is not a using decl");
1485   assert((isa<UsingDecl>(Inst) ||
1486           isa<UnresolvedUsingValueDecl>(Inst) ||
1487           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1488          "instantiation did not produce a using decl");
1489   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1490   InstantiatedFromUsingDecl[Inst] = Pattern;
1491 }
1492 
1493 UsingEnumDecl *
1494 ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) {
1495   return InstantiatedFromUsingEnumDecl.lookup(UUD);
1496 }
1497 
1498 void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
1499                                                   UsingEnumDecl *Pattern) {
1500   assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists");
1501   InstantiatedFromUsingEnumDecl[Inst] = Pattern;
1502 }
1503 
1504 UsingShadowDecl *
1505 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1506   return InstantiatedFromUsingShadowDecl.lookup(Inst);
1507 }
1508 
1509 void
1510 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1511                                                UsingShadowDecl *Pattern) {
1512   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1513   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1514 }
1515 
1516 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1517   return InstantiatedFromUnnamedFieldDecl.lookup(Field);
1518 }
1519 
1520 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1521                                                      FieldDecl *Tmpl) {
1522   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1523   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1524   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1525          "Already noted what unnamed field was instantiated from");
1526 
1527   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1528 }
1529 
1530 ASTContext::overridden_cxx_method_iterator
1531 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1532   return overridden_methods(Method).begin();
1533 }
1534 
1535 ASTContext::overridden_cxx_method_iterator
1536 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1537   return overridden_methods(Method).end();
1538 }
1539 
1540 unsigned
1541 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1542   auto Range = overridden_methods(Method);
1543   return Range.end() - Range.begin();
1544 }
1545 
1546 ASTContext::overridden_method_range
1547 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1548   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1549       OverriddenMethods.find(Method->getCanonicalDecl());
1550   if (Pos == OverriddenMethods.end())
1551     return overridden_method_range(nullptr, nullptr);
1552   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1553 }
1554 
1555 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1556                                      const CXXMethodDecl *Overridden) {
1557   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1558   OverriddenMethods[Method].push_back(Overridden);
1559 }
1560 
1561 void ASTContext::getOverriddenMethods(
1562                       const NamedDecl *D,
1563                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1564   assert(D);
1565 
1566   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1567     Overridden.append(overridden_methods_begin(CXXMethod),
1568                       overridden_methods_end(CXXMethod));
1569     return;
1570   }
1571 
1572   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1573   if (!Method)
1574     return;
1575 
1576   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1577   Method->getOverriddenMethods(OverDecls);
1578   Overridden.append(OverDecls.begin(), OverDecls.end());
1579 }
1580 
1581 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1582   assert(!Import->getNextLocalImport() &&
1583          "Import declaration already in the chain");
1584   assert(!Import->isFromASTFile() && "Non-local import declaration");
1585   if (!FirstLocalImport) {
1586     FirstLocalImport = Import;
1587     LastLocalImport = Import;
1588     return;
1589   }
1590 
1591   LastLocalImport->setNextLocalImport(Import);
1592   LastLocalImport = Import;
1593 }
1594 
1595 //===----------------------------------------------------------------------===//
1596 //                         Type Sizing and Analysis
1597 //===----------------------------------------------------------------------===//
1598 
1599 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1600 /// scalar floating point type.
1601 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1602   switch (T->castAs<BuiltinType>()->getKind()) {
1603   default:
1604     llvm_unreachable("Not a floating point type!");
1605   case BuiltinType::BFloat16:
1606     return Target->getBFloat16Format();
1607   case BuiltinType::Float16:
1608     return Target->getHalfFormat();
1609   case BuiltinType::Half:
1610     // For HLSL, when the native half type is disabled, half will be treat as
1611     // float.
1612     if (getLangOpts().HLSL)
1613       if (getLangOpts().NativeHalfType)
1614         return Target->getHalfFormat();
1615       else
1616         return Target->getFloatFormat();
1617     else
1618       return Target->getHalfFormat();
1619   case BuiltinType::Float:      return Target->getFloatFormat();
1620   case BuiltinType::Double:     return Target->getDoubleFormat();
1621   case BuiltinType::Ibm128:
1622     return Target->getIbm128Format();
1623   case BuiltinType::LongDouble:
1624     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice)
1625       return AuxTarget->getLongDoubleFormat();
1626     return Target->getLongDoubleFormat();
1627   case BuiltinType::Float128:
1628     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice)
1629       return AuxTarget->getFloat128Format();
1630     return Target->getFloat128Format();
1631   }
1632 }
1633 
1634 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1635   unsigned Align = Target->getCharWidth();
1636 
1637   const unsigned AlignFromAttr = D->getMaxAlignment();
1638   if (AlignFromAttr)
1639     Align = AlignFromAttr;
1640 
1641   // __attribute__((aligned)) can increase or decrease alignment
1642   // *except* on a struct or struct member, where it only increases
1643   // alignment unless 'packed' is also specified.
1644   //
1645   // It is an error for alignas to decrease alignment, so we can
1646   // ignore that possibility;  Sema should diagnose it.
1647   bool UseAlignAttrOnly;
1648   if (const FieldDecl *FD = dyn_cast<FieldDecl>(D))
1649     UseAlignAttrOnly =
1650         FD->hasAttr<PackedAttr>() || FD->getParent()->hasAttr<PackedAttr>();
1651   else
1652     UseAlignAttrOnly = AlignFromAttr != 0;
1653   // If we're using the align attribute only, just ignore everything
1654   // else about the declaration and its type.
1655   if (UseAlignAttrOnly) {
1656     // do nothing
1657   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1658     QualType T = VD->getType();
1659     if (const auto *RT = T->getAs<ReferenceType>()) {
1660       if (ForAlignof)
1661         T = RT->getPointeeType();
1662       else
1663         T = getPointerType(RT->getPointeeType());
1664     }
1665     QualType BaseT = getBaseElementType(T);
1666     if (T->isFunctionType())
1667       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1668     else if (!BaseT->isIncompleteType()) {
1669       // Adjust alignments of declarations with array type by the
1670       // large-array alignment on the target.
1671       if (const ArrayType *arrayType = getAsArrayType(T)) {
1672         unsigned MinWidth = Target->getLargeArrayMinWidth();
1673         if (!ForAlignof && MinWidth) {
1674           if (isa<VariableArrayType>(arrayType))
1675             Align = std::max(Align, Target->getLargeArrayAlign());
1676           else if (isa<ConstantArrayType>(arrayType) &&
1677                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1678             Align = std::max(Align, Target->getLargeArrayAlign());
1679         }
1680       }
1681       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1682       if (BaseT.getQualifiers().hasUnaligned())
1683         Align = Target->getCharWidth();
1684     }
1685 
1686     // Ensure miminum alignment for global variables.
1687     if (const auto *VD = dyn_cast<VarDecl>(D))
1688       if (VD->hasGlobalStorage() && !ForAlignof) {
1689         uint64_t TypeSize =
1690             !BaseT->isIncompleteType() ? getTypeSize(T.getTypePtr()) : 0;
1691         Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1692       }
1693 
1694     // Fields can be subject to extra alignment constraints, like if
1695     // the field is packed, the struct is packed, or the struct has a
1696     // a max-field-alignment constraint (#pragma pack).  So calculate
1697     // the actual alignment of the field within the struct, and then
1698     // (as we're expected to) constrain that by the alignment of the type.
1699     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1700       const RecordDecl *Parent = Field->getParent();
1701       // We can only produce a sensible answer if the record is valid.
1702       if (!Parent->isInvalidDecl()) {
1703         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1704 
1705         // Start with the record's overall alignment.
1706         unsigned FieldAlign = toBits(Layout.getAlignment());
1707 
1708         // Use the GCD of that and the offset within the record.
1709         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1710         if (Offset > 0) {
1711           // Alignment is always a power of 2, so the GCD will be a power of 2,
1712           // which means we get to do this crazy thing instead of Euclid's.
1713           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1714           if (LowBitOfOffset < FieldAlign)
1715             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1716         }
1717 
1718         Align = std::min(Align, FieldAlign);
1719       }
1720     }
1721   }
1722 
1723   // Some targets have hard limitation on the maximum requestable alignment in
1724   // aligned attribute for static variables.
1725   const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
1726   const auto *VD = dyn_cast<VarDecl>(D);
1727   if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
1728     Align = std::min(Align, MaxAlignedAttr);
1729 
1730   return toCharUnitsFromBits(Align);
1731 }
1732 
1733 CharUnits ASTContext::getExnObjectAlignment() const {
1734   return toCharUnitsFromBits(Target->getExnObjectAlignment());
1735 }
1736 
1737 // getTypeInfoDataSizeInChars - Return the size of a type, in
1738 // chars. If the type is a record, its data size is returned.  This is
1739 // the size of the memcpy that's performed when assigning this type
1740 // using a trivial copy/move assignment operator.
1741 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1742   TypeInfoChars Info = getTypeInfoInChars(T);
1743 
1744   // In C++, objects can sometimes be allocated into the tail padding
1745   // of a base-class subobject.  We decide whether that's possible
1746   // during class layout, so here we can just trust the layout results.
1747   if (getLangOpts().CPlusPlus) {
1748     if (const auto *RT = T->getAs<RecordType>()) {
1749       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1750       Info.Width = layout.getDataSize();
1751     }
1752   }
1753 
1754   return Info;
1755 }
1756 
1757 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1758 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1759 TypeInfoChars
1760 static getConstantArrayInfoInChars(const ASTContext &Context,
1761                                    const ConstantArrayType *CAT) {
1762   TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1763   uint64_t Size = CAT->getSize().getZExtValue();
1764   assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
1765               (uint64_t)(-1)/Size) &&
1766          "Overflow in array type char size evaluation");
1767   uint64_t Width = EltInfo.Width.getQuantity() * Size;
1768   unsigned Align = EltInfo.Align.getQuantity();
1769   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1770       Context.getTargetInfo().getPointerWidth(LangAS::Default) == 64)
1771     Width = llvm::alignTo(Width, Align);
1772   return TypeInfoChars(CharUnits::fromQuantity(Width),
1773                        CharUnits::fromQuantity(Align),
1774                        EltInfo.AlignRequirement);
1775 }
1776 
1777 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1778   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1779     return getConstantArrayInfoInChars(*this, CAT);
1780   TypeInfo Info = getTypeInfo(T);
1781   return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1782                        toCharUnitsFromBits(Info.Align), Info.AlignRequirement);
1783 }
1784 
1785 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1786   return getTypeInfoInChars(T.getTypePtr());
1787 }
1788 
1789 bool ASTContext::isPromotableIntegerType(QualType T) const {
1790   // HLSL doesn't promote all small integer types to int, it
1791   // just uses the rank-based promotion rules for all types.
1792   if (getLangOpts().HLSL)
1793     return false;
1794 
1795   if (const auto *BT = T->getAs<BuiltinType>())
1796     switch (BT->getKind()) {
1797     case BuiltinType::Bool:
1798     case BuiltinType::Char_S:
1799     case BuiltinType::Char_U:
1800     case BuiltinType::SChar:
1801     case BuiltinType::UChar:
1802     case BuiltinType::Short:
1803     case BuiltinType::UShort:
1804     case BuiltinType::WChar_S:
1805     case BuiltinType::WChar_U:
1806     case BuiltinType::Char8:
1807     case BuiltinType::Char16:
1808     case BuiltinType::Char32:
1809       return true;
1810     default:
1811       return false;
1812     }
1813 
1814   // Enumerated types are promotable to their compatible integer types
1815   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1816   if (const auto *ET = T->getAs<EnumType>()) {
1817     if (T->isDependentType() || ET->getDecl()->getPromotionType().isNull() ||
1818         ET->getDecl()->isScoped())
1819       return false;
1820 
1821     return true;
1822   }
1823 
1824   return false;
1825 }
1826 
1827 bool ASTContext::isAlignmentRequired(const Type *T) const {
1828   return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None;
1829 }
1830 
1831 bool ASTContext::isAlignmentRequired(QualType T) const {
1832   return isAlignmentRequired(T.getTypePtr());
1833 }
1834 
1835 unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1836                                          bool NeedsPreferredAlignment) const {
1837   // An alignment on a typedef overrides anything else.
1838   if (const auto *TT = T->getAs<TypedefType>())
1839     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1840       return Align;
1841 
1842   // If we have an (array of) complete type, we're done.
1843   T = getBaseElementType(T);
1844   if (!T->isIncompleteType())
1845     return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1846 
1847   // If we had an array type, its element type might be a typedef
1848   // type with an alignment attribute.
1849   if (const auto *TT = T->getAs<TypedefType>())
1850     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1851       return Align;
1852 
1853   // Otherwise, see if the declaration of the type had an attribute.
1854   if (const auto *TT = T->getAs<TagType>())
1855     return TT->getDecl()->getMaxAlignment();
1856 
1857   return 0;
1858 }
1859 
1860 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1861   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1862   if (I != MemoizedTypeInfo.end())
1863     return I->second;
1864 
1865   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1866   TypeInfo TI = getTypeInfoImpl(T);
1867   MemoizedTypeInfo[T] = TI;
1868   return TI;
1869 }
1870 
1871 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1872 /// method does not work on incomplete types.
1873 ///
1874 /// FIXME: Pointers into different addr spaces could have different sizes and
1875 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1876 /// should take a QualType, &c.
1877 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1878   uint64_t Width = 0;
1879   unsigned Align = 8;
1880   AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1881   LangAS AS = LangAS::Default;
1882   switch (T->getTypeClass()) {
1883 #define TYPE(Class, Base)
1884 #define ABSTRACT_TYPE(Class, Base)
1885 #define NON_CANONICAL_TYPE(Class, Base)
1886 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1887 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1888   case Type::Class:                                                            \
1889   assert(!T->isDependentType() && "should not see dependent types here");      \
1890   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1891 #include "clang/AST/TypeNodes.inc"
1892     llvm_unreachable("Should not see dependent types");
1893 
1894   case Type::FunctionNoProto:
1895   case Type::FunctionProto:
1896     // GCC extension: alignof(function) = 32 bits
1897     Width = 0;
1898     Align = 32;
1899     break;
1900 
1901   case Type::IncompleteArray:
1902   case Type::VariableArray:
1903   case Type::ConstantArray: {
1904     // Model non-constant sized arrays as size zero, but track the alignment.
1905     uint64_t Size = 0;
1906     if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1907       Size = CAT->getSize().getZExtValue();
1908 
1909     TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1910     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1911            "Overflow in array type bit size evaluation");
1912     Width = EltInfo.Width * Size;
1913     Align = EltInfo.Align;
1914     AlignRequirement = EltInfo.AlignRequirement;
1915     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1916         getTargetInfo().getPointerWidth(LangAS::Default) == 64)
1917       Width = llvm::alignTo(Width, Align);
1918     break;
1919   }
1920 
1921   case Type::ExtVector:
1922   case Type::Vector: {
1923     const auto *VT = cast<VectorType>(T);
1924     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1925     Width = VT->isExtVectorBoolType() ? VT->getNumElements()
1926                                       : EltInfo.Width * VT->getNumElements();
1927     // Enforce at least byte size and alignment.
1928     Width = std::max<unsigned>(8, Width);
1929     Align = std::max<unsigned>(8, Width);
1930 
1931     // If the alignment is not a power of 2, round up to the next power of 2.
1932     // This happens for non-power-of-2 length vectors.
1933     if (Align & (Align-1)) {
1934       Align = llvm::bit_ceil(Align);
1935       Width = llvm::alignTo(Width, Align);
1936     }
1937     // Adjust the alignment based on the target max.
1938     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1939     if (TargetVectorAlign && TargetVectorAlign < Align)
1940       Align = TargetVectorAlign;
1941     if (VT->getVectorKind() == VectorKind::SveFixedLengthData)
1942       // Adjust the alignment for fixed-length SVE vectors. This is important
1943       // for non-power-of-2 vector lengths.
1944       Align = 128;
1945     else if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate)
1946       // Adjust the alignment for fixed-length SVE predicates.
1947       Align = 16;
1948     else if (VT->getVectorKind() == VectorKind::RVVFixedLengthData)
1949       // Adjust the alignment for fixed-length RVV vectors.
1950       Align = std::min<unsigned>(64, Width);
1951     break;
1952   }
1953 
1954   case Type::ConstantMatrix: {
1955     const auto *MT = cast<ConstantMatrixType>(T);
1956     TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
1957     // The internal layout of a matrix value is implementation defined.
1958     // Initially be ABI compatible with arrays with respect to alignment and
1959     // size.
1960     Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
1961     Align = ElementInfo.Align;
1962     break;
1963   }
1964 
1965   case Type::Builtin:
1966     switch (cast<BuiltinType>(T)->getKind()) {
1967     default: llvm_unreachable("Unknown builtin type!");
1968     case BuiltinType::Void:
1969       // GCC extension: alignof(void) = 8 bits.
1970       Width = 0;
1971       Align = 8;
1972       break;
1973     case BuiltinType::Bool:
1974       Width = Target->getBoolWidth();
1975       Align = Target->getBoolAlign();
1976       break;
1977     case BuiltinType::Char_S:
1978     case BuiltinType::Char_U:
1979     case BuiltinType::UChar:
1980     case BuiltinType::SChar:
1981     case BuiltinType::Char8:
1982       Width = Target->getCharWidth();
1983       Align = Target->getCharAlign();
1984       break;
1985     case BuiltinType::WChar_S:
1986     case BuiltinType::WChar_U:
1987       Width = Target->getWCharWidth();
1988       Align = Target->getWCharAlign();
1989       break;
1990     case BuiltinType::Char16:
1991       Width = Target->getChar16Width();
1992       Align = Target->getChar16Align();
1993       break;
1994     case BuiltinType::Char32:
1995       Width = Target->getChar32Width();
1996       Align = Target->getChar32Align();
1997       break;
1998     case BuiltinType::UShort:
1999     case BuiltinType::Short:
2000       Width = Target->getShortWidth();
2001       Align = Target->getShortAlign();
2002       break;
2003     case BuiltinType::UInt:
2004     case BuiltinType::Int:
2005       Width = Target->getIntWidth();
2006       Align = Target->getIntAlign();
2007       break;
2008     case BuiltinType::ULong:
2009     case BuiltinType::Long:
2010       Width = Target->getLongWidth();
2011       Align = Target->getLongAlign();
2012       break;
2013     case BuiltinType::ULongLong:
2014     case BuiltinType::LongLong:
2015       Width = Target->getLongLongWidth();
2016       Align = Target->getLongLongAlign();
2017       break;
2018     case BuiltinType::Int128:
2019     case BuiltinType::UInt128:
2020       Width = 128;
2021       Align = Target->getInt128Align();
2022       break;
2023     case BuiltinType::ShortAccum:
2024     case BuiltinType::UShortAccum:
2025     case BuiltinType::SatShortAccum:
2026     case BuiltinType::SatUShortAccum:
2027       Width = Target->getShortAccumWidth();
2028       Align = Target->getShortAccumAlign();
2029       break;
2030     case BuiltinType::Accum:
2031     case BuiltinType::UAccum:
2032     case BuiltinType::SatAccum:
2033     case BuiltinType::SatUAccum:
2034       Width = Target->getAccumWidth();
2035       Align = Target->getAccumAlign();
2036       break;
2037     case BuiltinType::LongAccum:
2038     case BuiltinType::ULongAccum:
2039     case BuiltinType::SatLongAccum:
2040     case BuiltinType::SatULongAccum:
2041       Width = Target->getLongAccumWidth();
2042       Align = Target->getLongAccumAlign();
2043       break;
2044     case BuiltinType::ShortFract:
2045     case BuiltinType::UShortFract:
2046     case BuiltinType::SatShortFract:
2047     case BuiltinType::SatUShortFract:
2048       Width = Target->getShortFractWidth();
2049       Align = Target->getShortFractAlign();
2050       break;
2051     case BuiltinType::Fract:
2052     case BuiltinType::UFract:
2053     case BuiltinType::SatFract:
2054     case BuiltinType::SatUFract:
2055       Width = Target->getFractWidth();
2056       Align = Target->getFractAlign();
2057       break;
2058     case BuiltinType::LongFract:
2059     case BuiltinType::ULongFract:
2060     case BuiltinType::SatLongFract:
2061     case BuiltinType::SatULongFract:
2062       Width = Target->getLongFractWidth();
2063       Align = Target->getLongFractAlign();
2064       break;
2065     case BuiltinType::BFloat16:
2066       if (Target->hasBFloat16Type()) {
2067         Width = Target->getBFloat16Width();
2068         Align = Target->getBFloat16Align();
2069       } else if ((getLangOpts().SYCLIsDevice ||
2070                   (getLangOpts().OpenMP &&
2071                    getLangOpts().OpenMPIsTargetDevice)) &&
2072                  AuxTarget->hasBFloat16Type()) {
2073         Width = AuxTarget->getBFloat16Width();
2074         Align = AuxTarget->getBFloat16Align();
2075       }
2076       break;
2077     case BuiltinType::Float16:
2078     case BuiltinType::Half:
2079       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2080           !getLangOpts().OpenMPIsTargetDevice) {
2081         Width = Target->getHalfWidth();
2082         Align = Target->getHalfAlign();
2083       } else {
2084         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
2085                "Expected OpenMP device compilation.");
2086         Width = AuxTarget->getHalfWidth();
2087         Align = AuxTarget->getHalfAlign();
2088       }
2089       break;
2090     case BuiltinType::Float:
2091       Width = Target->getFloatWidth();
2092       Align = Target->getFloatAlign();
2093       break;
2094     case BuiltinType::Double:
2095       Width = Target->getDoubleWidth();
2096       Align = Target->getDoubleAlign();
2097       break;
2098     case BuiltinType::Ibm128:
2099       Width = Target->getIbm128Width();
2100       Align = Target->getIbm128Align();
2101       break;
2102     case BuiltinType::LongDouble:
2103       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
2104           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2105            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2106         Width = AuxTarget->getLongDoubleWidth();
2107         Align = AuxTarget->getLongDoubleAlign();
2108       } else {
2109         Width = Target->getLongDoubleWidth();
2110         Align = Target->getLongDoubleAlign();
2111       }
2112       break;
2113     case BuiltinType::Float128:
2114       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2115           !getLangOpts().OpenMPIsTargetDevice) {
2116         Width = Target->getFloat128Width();
2117         Align = Target->getFloat128Align();
2118       } else {
2119         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
2120                "Expected OpenMP device compilation.");
2121         Width = AuxTarget->getFloat128Width();
2122         Align = AuxTarget->getFloat128Align();
2123       }
2124       break;
2125     case BuiltinType::NullPtr:
2126       // C++ 3.9.1p11: sizeof(nullptr_t) == sizeof(void*)
2127       Width = Target->getPointerWidth(LangAS::Default);
2128       Align = Target->getPointerAlign(LangAS::Default);
2129       break;
2130     case BuiltinType::ObjCId:
2131     case BuiltinType::ObjCClass:
2132     case BuiltinType::ObjCSel:
2133       Width = Target->getPointerWidth(LangAS::Default);
2134       Align = Target->getPointerAlign(LangAS::Default);
2135       break;
2136     case BuiltinType::OCLSampler:
2137     case BuiltinType::OCLEvent:
2138     case BuiltinType::OCLClkEvent:
2139     case BuiltinType::OCLQueue:
2140     case BuiltinType::OCLReserveID:
2141 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2142     case BuiltinType::Id:
2143 #include "clang/Basic/OpenCLImageTypes.def"
2144 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2145   case BuiltinType::Id:
2146 #include "clang/Basic/OpenCLExtensionTypes.def"
2147       AS = Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
2148       Width = Target->getPointerWidth(AS);
2149       Align = Target->getPointerAlign(AS);
2150       break;
2151     // The SVE types are effectively target-specific.  The length of an
2152     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2153     // of 128 bits.  There is one predicate bit for each vector byte, so the
2154     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2155     //
2156     // Because the length is only known at runtime, we use a dummy value
2157     // of 0 for the static length.  The alignment values are those defined
2158     // by the Procedure Call Standard for the Arm Architecture.
2159 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
2160                         IsSigned, IsFP, IsBF)                                  \
2161   case BuiltinType::Id:                                                        \
2162     Width = 0;                                                                 \
2163     Align = 128;                                                               \
2164     break;
2165 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
2166   case BuiltinType::Id:                                                        \
2167     Width = 0;                                                                 \
2168     Align = 16;                                                                \
2169     break;
2170 #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId)                    \
2171   case BuiltinType::Id:                                                        \
2172     Width = 0;                                                                 \
2173     Align = 16;                                                                \
2174     break;
2175 #include "clang/Basic/AArch64SVEACLETypes.def"
2176 #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \
2177   case BuiltinType::Id:                                                        \
2178     Width = Size;                                                              \
2179     Align = Size;                                                              \
2180     break;
2181 #include "clang/Basic/PPCTypes.def"
2182 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \
2183                         IsFP, IsBF)                                            \
2184   case BuiltinType::Id:                                                        \
2185     Width = 0;                                                                 \
2186     Align = ElBits;                                                            \
2187     break;
2188 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \
2189   case BuiltinType::Id:                                                        \
2190     Width = 0;                                                                 \
2191     Align = 8;                                                                 \
2192     break;
2193 #include "clang/Basic/RISCVVTypes.def"
2194 #define WASM_TYPE(Name, Id, SingletonId)                                       \
2195   case BuiltinType::Id:                                                        \
2196     Width = 0;                                                                 \
2197     Align = 8;                                                                 \
2198     break;
2199 #include "clang/Basic/WebAssemblyReferenceTypes.def"
2200     }
2201     break;
2202   case Type::ObjCObjectPointer:
2203     Width = Target->getPointerWidth(LangAS::Default);
2204     Align = Target->getPointerAlign(LangAS::Default);
2205     break;
2206   case Type::BlockPointer:
2207     AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
2208     Width = Target->getPointerWidth(AS);
2209     Align = Target->getPointerAlign(AS);
2210     break;
2211   case Type::LValueReference:
2212   case Type::RValueReference:
2213     // alignof and sizeof should never enter this code path here, so we go
2214     // the pointer route.
2215     AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
2216     Width = Target->getPointerWidth(AS);
2217     Align = Target->getPointerAlign(AS);
2218     break;
2219   case Type::Pointer:
2220     AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
2221     Width = Target->getPointerWidth(AS);
2222     Align = Target->getPointerAlign(AS);
2223     break;
2224   case Type::MemberPointer: {
2225     const auto *MPT = cast<MemberPointerType>(T);
2226     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2227     Width = MPI.Width;
2228     Align = MPI.Align;
2229     break;
2230   }
2231   case Type::Complex: {
2232     // Complex types have the same alignment as their elements, but twice the
2233     // size.
2234     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2235     Width = EltInfo.Width * 2;
2236     Align = EltInfo.Align;
2237     break;
2238   }
2239   case Type::ObjCObject:
2240     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2241   case Type::Adjusted:
2242   case Type::Decayed:
2243     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2244   case Type::ObjCInterface: {
2245     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2246     if (ObjCI->getDecl()->isInvalidDecl()) {
2247       Width = 8;
2248       Align = 8;
2249       break;
2250     }
2251     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2252     Width = toBits(Layout.getSize());
2253     Align = toBits(Layout.getAlignment());
2254     break;
2255   }
2256   case Type::BitInt: {
2257     const auto *EIT = cast<BitIntType>(T);
2258     Align = std::clamp<unsigned>(llvm::PowerOf2Ceil(EIT->getNumBits()),
2259                                  getCharWidth(), Target->getLongLongAlign());
2260     Width = llvm::alignTo(EIT->getNumBits(), Align);
2261     break;
2262   }
2263   case Type::Record:
2264   case Type::Enum: {
2265     const auto *TT = cast<TagType>(T);
2266 
2267     if (TT->getDecl()->isInvalidDecl()) {
2268       Width = 8;
2269       Align = 8;
2270       break;
2271     }
2272 
2273     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2274       const EnumDecl *ED = ET->getDecl();
2275       TypeInfo Info =
2276           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2277       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2278         Info.Align = AttrAlign;
2279         Info.AlignRequirement = AlignRequirementKind::RequiredByEnum;
2280       }
2281       return Info;
2282     }
2283 
2284     const auto *RT = cast<RecordType>(TT);
2285     const RecordDecl *RD = RT->getDecl();
2286     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2287     Width = toBits(Layout.getSize());
2288     Align = toBits(Layout.getAlignment());
2289     AlignRequirement = RD->hasAttr<AlignedAttr>()
2290                            ? AlignRequirementKind::RequiredByRecord
2291                            : AlignRequirementKind::None;
2292     break;
2293   }
2294 
2295   case Type::SubstTemplateTypeParm:
2296     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2297                        getReplacementType().getTypePtr());
2298 
2299   case Type::Auto:
2300   case Type::DeducedTemplateSpecialization: {
2301     const auto *A = cast<DeducedType>(T);
2302     assert(!A->getDeducedType().isNull() &&
2303            "cannot request the size of an undeduced or dependent auto type");
2304     return getTypeInfo(A->getDeducedType().getTypePtr());
2305   }
2306 
2307   case Type::Paren:
2308     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2309 
2310   case Type::MacroQualified:
2311     return getTypeInfo(
2312         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2313 
2314   case Type::ObjCTypeParam:
2315     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2316 
2317   case Type::Using:
2318     return getTypeInfo(cast<UsingType>(T)->desugar().getTypePtr());
2319 
2320   case Type::Typedef: {
2321     const auto *TT = cast<TypedefType>(T);
2322     TypeInfo Info = getTypeInfo(TT->desugar().getTypePtr());
2323     // If the typedef has an aligned attribute on it, it overrides any computed
2324     // alignment we have.  This violates the GCC documentation (which says that
2325     // attribute(aligned) can only round up) but matches its implementation.
2326     if (unsigned AttrAlign = TT->getDecl()->getMaxAlignment()) {
2327       Align = AttrAlign;
2328       AlignRequirement = AlignRequirementKind::RequiredByTypedef;
2329     } else {
2330       Align = Info.Align;
2331       AlignRequirement = Info.AlignRequirement;
2332     }
2333     Width = Info.Width;
2334     break;
2335   }
2336 
2337   case Type::Elaborated:
2338     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2339 
2340   case Type::Attributed:
2341     return getTypeInfo(
2342                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2343 
2344   case Type::BTFTagAttributed:
2345     return getTypeInfo(
2346         cast<BTFTagAttributedType>(T)->getWrappedType().getTypePtr());
2347 
2348   case Type::Atomic: {
2349     // Start with the base type information.
2350     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2351     Width = Info.Width;
2352     Align = Info.Align;
2353 
2354     if (!Width) {
2355       // An otherwise zero-sized type should still generate an
2356       // atomic operation.
2357       Width = Target->getCharWidth();
2358       assert(Align);
2359     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2360       // If the size of the type doesn't exceed the platform's max
2361       // atomic promotion width, make the size and alignment more
2362       // favorable to atomic operations:
2363 
2364       // Round the size up to a power of 2.
2365       Width = llvm::bit_ceil(Width);
2366 
2367       // Set the alignment equal to the size.
2368       Align = static_cast<unsigned>(Width);
2369     }
2370   }
2371   break;
2372 
2373   case Type::Pipe:
2374     Width = Target->getPointerWidth(LangAS::opencl_global);
2375     Align = Target->getPointerAlign(LangAS::opencl_global);
2376     break;
2377   }
2378 
2379   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2380   return TypeInfo(Width, Align, AlignRequirement);
2381 }
2382 
2383 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2384   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2385   if (I != MemoizedUnadjustedAlign.end())
2386     return I->second;
2387 
2388   unsigned UnadjustedAlign;
2389   if (const auto *RT = T->getAs<RecordType>()) {
2390     const RecordDecl *RD = RT->getDecl();
2391     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2392     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2393   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2394     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2395     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2396   } else {
2397     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2398   }
2399 
2400   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2401   return UnadjustedAlign;
2402 }
2403 
2404 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2405   unsigned SimdAlign = llvm::OpenMPIRBuilder::getOpenMPDefaultSimdAlign(
2406       getTargetInfo().getTriple(), Target->getTargetOpts().FeatureMap);
2407   return SimdAlign;
2408 }
2409 
2410 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2411 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2412   return CharUnits::fromQuantity(BitSize / getCharWidth());
2413 }
2414 
2415 /// toBits - Convert a size in characters to a size in characters.
2416 int64_t ASTContext::toBits(CharUnits CharSize) const {
2417   return CharSize.getQuantity() * getCharWidth();
2418 }
2419 
2420 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2421 /// This method does not work on incomplete types.
2422 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2423   return getTypeInfoInChars(T).Width;
2424 }
2425 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2426   return getTypeInfoInChars(T).Width;
2427 }
2428 
2429 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2430 /// characters. This method does not work on incomplete types.
2431 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2432   return toCharUnitsFromBits(getTypeAlign(T));
2433 }
2434 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2435   return toCharUnitsFromBits(getTypeAlign(T));
2436 }
2437 
2438 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2439 /// type, in characters, before alignment adjustments. This method does
2440 /// not work on incomplete types.
2441 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2442   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2443 }
2444 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2445   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2446 }
2447 
2448 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2449 /// type for the current target in bits.  This can be different than the ABI
2450 /// alignment in cases where it is beneficial for performance or backwards
2451 /// compatibility preserving to overalign a data type. (Note: despite the name,
2452 /// the preferred alignment is ABI-impacting, and not an optimization.)
2453 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2454   TypeInfo TI = getTypeInfo(T);
2455   unsigned ABIAlign = TI.Align;
2456 
2457   T = T->getBaseElementTypeUnsafe();
2458 
2459   // The preferred alignment of member pointers is that of a pointer.
2460   if (T->isMemberPointerType())
2461     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2462 
2463   if (!Target->allowsLargerPreferedTypeAlignment())
2464     return ABIAlign;
2465 
2466   if (const auto *RT = T->getAs<RecordType>()) {
2467     const RecordDecl *RD = RT->getDecl();
2468 
2469     // When used as part of a typedef, or together with a 'packed' attribute,
2470     // the 'aligned' attribute can be used to decrease alignment. Note that the
2471     // 'packed' case is already taken into consideration when computing the
2472     // alignment, we only need to handle the typedef case here.
2473     if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
2474         RD->isInvalidDecl())
2475       return ABIAlign;
2476 
2477     unsigned PreferredAlign = static_cast<unsigned>(
2478         toBits(getASTRecordLayout(RD).PreferredAlignment));
2479     assert(PreferredAlign >= ABIAlign &&
2480            "PreferredAlign should be at least as large as ABIAlign.");
2481     return PreferredAlign;
2482   }
2483 
2484   // Double (and, for targets supporting AIX `power` alignment, long double) and
2485   // long long should be naturally aligned (despite requiring less alignment) if
2486   // possible.
2487   if (const auto *CT = T->getAs<ComplexType>())
2488     T = CT->getElementType().getTypePtr();
2489   if (const auto *ET = T->getAs<EnumType>())
2490     T = ET->getDecl()->getIntegerType().getTypePtr();
2491   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2492       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2493       T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2494       (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2495        Target->defaultsToAIXPowerAlignment()))
2496     // Don't increase the alignment if an alignment attribute was specified on a
2497     // typedef declaration.
2498     if (!TI.isAlignRequired())
2499       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2500 
2501   return ABIAlign;
2502 }
2503 
2504 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2505 /// for __attribute__((aligned)) on this target, to be used if no alignment
2506 /// value is specified.
2507 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2508   return getTargetInfo().getDefaultAlignForAttributeAligned();
2509 }
2510 
2511 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2512 /// to a global variable of the specified type.
2513 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2514   uint64_t TypeSize = getTypeSize(T.getTypePtr());
2515   return std::max(getPreferredTypeAlign(T),
2516                   getTargetInfo().getMinGlobalAlign(TypeSize));
2517 }
2518 
2519 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2520 /// should be given to a global variable of the specified type.
2521 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2522   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2523 }
2524 
2525 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2526   CharUnits Offset = CharUnits::Zero();
2527   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2528   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2529     Offset += Layout->getBaseClassOffset(Base);
2530     Layout = &getASTRecordLayout(Base);
2531   }
2532   return Offset;
2533 }
2534 
2535 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2536   const ValueDecl *MPD = MP.getMemberPointerDecl();
2537   CharUnits ThisAdjustment = CharUnits::Zero();
2538   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2539   bool DerivedMember = MP.isMemberPointerToDerivedMember();
2540   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2541   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2542     const CXXRecordDecl *Base = RD;
2543     const CXXRecordDecl *Derived = Path[I];
2544     if (DerivedMember)
2545       std::swap(Base, Derived);
2546     ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2547     RD = Path[I];
2548   }
2549   if (DerivedMember)
2550     ThisAdjustment = -ThisAdjustment;
2551   return ThisAdjustment;
2552 }
2553 
2554 /// DeepCollectObjCIvars -
2555 /// This routine first collects all declared, but not synthesized, ivars in
2556 /// super class and then collects all ivars, including those synthesized for
2557 /// current class. This routine is used for implementation of current class
2558 /// when all ivars, declared and synthesized are known.
2559 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2560                                       bool leafClass,
2561                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2562   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2563     DeepCollectObjCIvars(SuperClass, false, Ivars);
2564   if (!leafClass) {
2565     llvm::append_range(Ivars, OI->ivars());
2566   } else {
2567     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2568     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2569          Iv= Iv->getNextIvar())
2570       Ivars.push_back(Iv);
2571   }
2572 }
2573 
2574 /// CollectInheritedProtocols - Collect all protocols in current class and
2575 /// those inherited by it.
2576 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2577                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2578   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2579     // We can use protocol_iterator here instead of
2580     // all_referenced_protocol_iterator since we are walking all categories.
2581     for (auto *Proto : OI->all_referenced_protocols()) {
2582       CollectInheritedProtocols(Proto, Protocols);
2583     }
2584 
2585     // Categories of this Interface.
2586     for (const auto *Cat : OI->visible_categories())
2587       CollectInheritedProtocols(Cat, Protocols);
2588 
2589     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2590       while (SD) {
2591         CollectInheritedProtocols(SD, Protocols);
2592         SD = SD->getSuperClass();
2593       }
2594   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2595     for (auto *Proto : OC->protocols()) {
2596       CollectInheritedProtocols(Proto, Protocols);
2597     }
2598   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2599     // Insert the protocol.
2600     if (!Protocols.insert(
2601           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2602       return;
2603 
2604     for (auto *Proto : OP->protocols())
2605       CollectInheritedProtocols(Proto, Protocols);
2606   }
2607 }
2608 
2609 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2610                                                 const RecordDecl *RD,
2611                                                 bool CheckIfTriviallyCopyable) {
2612   assert(RD->isUnion() && "Must be union type");
2613   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2614 
2615   for (const auto *Field : RD->fields()) {
2616     if (!Context.hasUniqueObjectRepresentations(Field->getType(),
2617                                                 CheckIfTriviallyCopyable))
2618       return false;
2619     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2620     if (FieldSize != UnionSize)
2621       return false;
2622   }
2623   return !RD->field_empty();
2624 }
2625 
2626 static int64_t getSubobjectOffset(const FieldDecl *Field,
2627                                   const ASTContext &Context,
2628                                   const clang::ASTRecordLayout & /*Layout*/) {
2629   return Context.getFieldOffset(Field);
2630 }
2631 
2632 static int64_t getSubobjectOffset(const CXXRecordDecl *RD,
2633                                   const ASTContext &Context,
2634                                   const clang::ASTRecordLayout &Layout) {
2635   return Context.toBits(Layout.getBaseClassOffset(RD));
2636 }
2637 
2638 static std::optional<int64_t>
2639 structHasUniqueObjectRepresentations(const ASTContext &Context,
2640                                      const RecordDecl *RD,
2641                                      bool CheckIfTriviallyCopyable);
2642 
2643 static std::optional<int64_t>
2644 getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context,
2645                        bool CheckIfTriviallyCopyable) {
2646   if (Field->getType()->isRecordType()) {
2647     const RecordDecl *RD = Field->getType()->getAsRecordDecl();
2648     if (!RD->isUnion())
2649       return structHasUniqueObjectRepresentations(Context, RD,
2650                                                   CheckIfTriviallyCopyable);
2651   }
2652 
2653   // A _BitInt type may not be unique if it has padding bits
2654   // but if it is a bitfield the padding bits are not used.
2655   bool IsBitIntType = Field->getType()->isBitIntType();
2656   if (!Field->getType()->isReferenceType() && !IsBitIntType &&
2657       !Context.hasUniqueObjectRepresentations(Field->getType(),
2658                                               CheckIfTriviallyCopyable))
2659     return std::nullopt;
2660 
2661   int64_t FieldSizeInBits =
2662       Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2663   if (Field->isBitField()) {
2664     // If we have explicit padding bits, they don't contribute bits
2665     // to the actual object representation, so return 0.
2666     if (Field->isUnnamedBitfield())
2667       return 0;
2668 
2669     int64_t BitfieldSize = Field->getBitWidthValue(Context);
2670     if (IsBitIntType) {
2671       if ((unsigned)BitfieldSize >
2672           cast<BitIntType>(Field->getType())->getNumBits())
2673         return std::nullopt;
2674     } else if (BitfieldSize > FieldSizeInBits) {
2675       return std::nullopt;
2676     }
2677     FieldSizeInBits = BitfieldSize;
2678   } else if (IsBitIntType && !Context.hasUniqueObjectRepresentations(
2679                                  Field->getType(), CheckIfTriviallyCopyable)) {
2680     return std::nullopt;
2681   }
2682   return FieldSizeInBits;
2683 }
2684 
2685 static std::optional<int64_t>
2686 getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context,
2687                        bool CheckIfTriviallyCopyable) {
2688   return structHasUniqueObjectRepresentations(Context, RD,
2689                                               CheckIfTriviallyCopyable);
2690 }
2691 
2692 template <typename RangeT>
2693 static std::optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations(
2694     const RangeT &Subobjects, int64_t CurOffsetInBits,
2695     const ASTContext &Context, const clang::ASTRecordLayout &Layout,
2696     bool CheckIfTriviallyCopyable) {
2697   for (const auto *Subobject : Subobjects) {
2698     std::optional<int64_t> SizeInBits =
2699         getSubobjectSizeInBits(Subobject, Context, CheckIfTriviallyCopyable);
2700     if (!SizeInBits)
2701       return std::nullopt;
2702     if (*SizeInBits != 0) {
2703       int64_t Offset = getSubobjectOffset(Subobject, Context, Layout);
2704       if (Offset != CurOffsetInBits)
2705         return std::nullopt;
2706       CurOffsetInBits += *SizeInBits;
2707     }
2708   }
2709   return CurOffsetInBits;
2710 }
2711 
2712 static std::optional<int64_t>
2713 structHasUniqueObjectRepresentations(const ASTContext &Context,
2714                                      const RecordDecl *RD,
2715                                      bool CheckIfTriviallyCopyable) {
2716   assert(!RD->isUnion() && "Must be struct/class type");
2717   const auto &Layout = Context.getASTRecordLayout(RD);
2718 
2719   int64_t CurOffsetInBits = 0;
2720   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2721     if (ClassDecl->isDynamicClass())
2722       return std::nullopt;
2723 
2724     SmallVector<CXXRecordDecl *, 4> Bases;
2725     for (const auto &Base : ClassDecl->bases()) {
2726       // Empty types can be inherited from, and non-empty types can potentially
2727       // have tail padding, so just make sure there isn't an error.
2728       Bases.emplace_back(Base.getType()->getAsCXXRecordDecl());
2729     }
2730 
2731     llvm::sort(Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
2732       return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
2733     });
2734 
2735     std::optional<int64_t> OffsetAfterBases =
2736         structSubobjectsHaveUniqueObjectRepresentations(
2737             Bases, CurOffsetInBits, Context, Layout, CheckIfTriviallyCopyable);
2738     if (!OffsetAfterBases)
2739       return std::nullopt;
2740     CurOffsetInBits = *OffsetAfterBases;
2741   }
2742 
2743   std::optional<int64_t> OffsetAfterFields =
2744       structSubobjectsHaveUniqueObjectRepresentations(
2745           RD->fields(), CurOffsetInBits, Context, Layout,
2746           CheckIfTriviallyCopyable);
2747   if (!OffsetAfterFields)
2748     return std::nullopt;
2749   CurOffsetInBits = *OffsetAfterFields;
2750 
2751   return CurOffsetInBits;
2752 }
2753 
2754 bool ASTContext::hasUniqueObjectRepresentations(
2755     QualType Ty, bool CheckIfTriviallyCopyable) const {
2756   // C++17 [meta.unary.prop]:
2757   //   The predicate condition for a template specialization
2758   //   has_unique_object_representations<T> shall be satisfied if and only if:
2759   //     (9.1) - T is trivially copyable, and
2760   //     (9.2) - any two objects of type T with the same value have the same
2761   //     object representation, where:
2762   //     - two objects of array or non-union class type are considered to have
2763   //       the same value if their respective sequences of direct subobjects
2764   //       have the same values, and
2765   //     - two objects of union type are considered to have the same value if
2766   //       they have the same active member and the corresponding members have
2767   //       the same value.
2768   //   The set of scalar types for which this condition holds is
2769   //   implementation-defined. [ Note: If a type has padding bits, the condition
2770   //   does not hold; otherwise, the condition holds true for unsigned integral
2771   //   types. -- end note ]
2772   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2773 
2774   // Arrays are unique only if their element type is unique.
2775   if (Ty->isArrayType())
2776     return hasUniqueObjectRepresentations(getBaseElementType(Ty),
2777                                           CheckIfTriviallyCopyable);
2778 
2779   // (9.1) - T is trivially copyable...
2780   if (CheckIfTriviallyCopyable && !Ty.isTriviallyCopyableType(*this))
2781     return false;
2782 
2783   // All integrals and enums are unique.
2784   if (Ty->isIntegralOrEnumerationType()) {
2785     // Except _BitInt types that have padding bits.
2786     if (const auto *BIT = Ty->getAs<BitIntType>())
2787       return getTypeSize(BIT) == BIT->getNumBits();
2788 
2789     return true;
2790   }
2791 
2792   // All other pointers are unique.
2793   if (Ty->isPointerType())
2794     return true;
2795 
2796   if (const auto *MPT = Ty->getAs<MemberPointerType>())
2797     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2798 
2799   if (Ty->isRecordType()) {
2800     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2801 
2802     if (Record->isInvalidDecl())
2803       return false;
2804 
2805     if (Record->isUnion())
2806       return unionHasUniqueObjectRepresentations(*this, Record,
2807                                                  CheckIfTriviallyCopyable);
2808 
2809     std::optional<int64_t> StructSize = structHasUniqueObjectRepresentations(
2810         *this, Record, CheckIfTriviallyCopyable);
2811 
2812     return StructSize && *StructSize == static_cast<int64_t>(getTypeSize(Ty));
2813   }
2814 
2815   // FIXME: More cases to handle here (list by rsmith):
2816   // vectors (careful about, eg, vector of 3 foo)
2817   // _Complex int and friends
2818   // _Atomic T
2819   // Obj-C block pointers
2820   // Obj-C object pointers
2821   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2822   // clk_event_t, queue_t, reserve_id_t)
2823   // There're also Obj-C class types and the Obj-C selector type, but I think it
2824   // makes sense for those to return false here.
2825 
2826   return false;
2827 }
2828 
2829 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2830   unsigned count = 0;
2831   // Count ivars declared in class extension.
2832   for (const auto *Ext : OI->known_extensions())
2833     count += Ext->ivar_size();
2834 
2835   // Count ivar defined in this class's implementation.  This
2836   // includes synthesized ivars.
2837   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2838     count += ImplDecl->ivar_size();
2839 
2840   return count;
2841 }
2842 
2843 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2844   if (!E)
2845     return false;
2846 
2847   // nullptr_t is always treated as null.
2848   if (E->getType()->isNullPtrType()) return true;
2849 
2850   if (E->getType()->isAnyPointerType() &&
2851       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2852                                                 Expr::NPC_ValueDependentIsNull))
2853     return true;
2854 
2855   // Unfortunately, __null has type 'int'.
2856   if (isa<GNUNullExpr>(E)) return true;
2857 
2858   return false;
2859 }
2860 
2861 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2862 /// exists.
2863 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2864   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2865     I = ObjCImpls.find(D);
2866   if (I != ObjCImpls.end())
2867     return cast<ObjCImplementationDecl>(I->second);
2868   return nullptr;
2869 }
2870 
2871 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2872 /// exists.
2873 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2874   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2875     I = ObjCImpls.find(D);
2876   if (I != ObjCImpls.end())
2877     return cast<ObjCCategoryImplDecl>(I->second);
2878   return nullptr;
2879 }
2880 
2881 /// Set the implementation of ObjCInterfaceDecl.
2882 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2883                            ObjCImplementationDecl *ImplD) {
2884   assert(IFaceD && ImplD && "Passed null params");
2885   ObjCImpls[IFaceD] = ImplD;
2886 }
2887 
2888 /// Set the implementation of ObjCCategoryDecl.
2889 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2890                            ObjCCategoryImplDecl *ImplD) {
2891   assert(CatD && ImplD && "Passed null params");
2892   ObjCImpls[CatD] = ImplD;
2893 }
2894 
2895 const ObjCMethodDecl *
2896 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2897   return ObjCMethodRedecls.lookup(MD);
2898 }
2899 
2900 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2901                                             const ObjCMethodDecl *Redecl) {
2902   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2903   ObjCMethodRedecls[MD] = Redecl;
2904 }
2905 
2906 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2907                                               const NamedDecl *ND) const {
2908   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2909     return ID;
2910   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2911     return CD->getClassInterface();
2912   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2913     return IMD->getClassInterface();
2914 
2915   return nullptr;
2916 }
2917 
2918 /// Get the copy initialization expression of VarDecl, or nullptr if
2919 /// none exists.
2920 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2921   assert(VD && "Passed null params");
2922   assert(VD->hasAttr<BlocksAttr>() &&
2923          "getBlockVarCopyInits - not __block var");
2924   auto I = BlockVarCopyInits.find(VD);
2925   if (I != BlockVarCopyInits.end())
2926     return I->second;
2927   return {nullptr, false};
2928 }
2929 
2930 /// Set the copy initialization expression of a block var decl.
2931 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2932                                      bool CanThrow) {
2933   assert(VD && CopyExpr && "Passed null params");
2934   assert(VD->hasAttr<BlocksAttr>() &&
2935          "setBlockVarCopyInits - not __block var");
2936   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2937 }
2938 
2939 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2940                                                  unsigned DataSize) const {
2941   if (!DataSize)
2942     DataSize = TypeLoc::getFullDataSizeForType(T);
2943   else
2944     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2945            "incorrect data size provided to CreateTypeSourceInfo!");
2946 
2947   auto *TInfo =
2948     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2949   new (TInfo) TypeSourceInfo(T, DataSize);
2950   return TInfo;
2951 }
2952 
2953 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2954                                                      SourceLocation L) const {
2955   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2956   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2957   return DI;
2958 }
2959 
2960 const ASTRecordLayout &
2961 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2962   return getObjCLayout(D, nullptr);
2963 }
2964 
2965 const ASTRecordLayout &
2966 ASTContext::getASTObjCImplementationLayout(
2967                                         const ObjCImplementationDecl *D) const {
2968   return getObjCLayout(D->getClassInterface(), D);
2969 }
2970 
2971 static auto getCanonicalTemplateArguments(const ASTContext &C,
2972                                           ArrayRef<TemplateArgument> Args,
2973                                           bool &AnyNonCanonArgs) {
2974   SmallVector<TemplateArgument, 16> CanonArgs(Args);
2975   for (auto &Arg : CanonArgs) {
2976     TemplateArgument OrigArg = Arg;
2977     Arg = C.getCanonicalTemplateArgument(Arg);
2978     AnyNonCanonArgs |= !Arg.structurallyEquals(OrigArg);
2979   }
2980   return CanonArgs;
2981 }
2982 
2983 //===----------------------------------------------------------------------===//
2984 //                   Type creation/memoization methods
2985 //===----------------------------------------------------------------------===//
2986 
2987 QualType
2988 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2989   unsigned fastQuals = quals.getFastQualifiers();
2990   quals.removeFastQualifiers();
2991 
2992   // Check if we've already instantiated this type.
2993   llvm::FoldingSetNodeID ID;
2994   ExtQuals::Profile(ID, baseType, quals);
2995   void *insertPos = nullptr;
2996   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2997     assert(eq->getQualifiers() == quals);
2998     return QualType(eq, fastQuals);
2999   }
3000 
3001   // If the base type is not canonical, make the appropriate canonical type.
3002   QualType canon;
3003   if (!baseType->isCanonicalUnqualified()) {
3004     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
3005     canonSplit.Quals.addConsistentQualifiers(quals);
3006     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
3007 
3008     // Re-find the insert position.
3009     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
3010   }
3011 
3012   auto *eq = new (*this, alignof(ExtQuals)) ExtQuals(baseType, canon, quals);
3013   ExtQualNodes.InsertNode(eq, insertPos);
3014   return QualType(eq, fastQuals);
3015 }
3016 
3017 QualType ASTContext::getAddrSpaceQualType(QualType T,
3018                                           LangAS AddressSpace) const {
3019   QualType CanT = getCanonicalType(T);
3020   if (CanT.getAddressSpace() == AddressSpace)
3021     return T;
3022 
3023   // If we are composing extended qualifiers together, merge together
3024   // into one ExtQuals node.
3025   QualifierCollector Quals;
3026   const Type *TypeNode = Quals.strip(T);
3027 
3028   // If this type already has an address space specified, it cannot get
3029   // another one.
3030   assert(!Quals.hasAddressSpace() &&
3031          "Type cannot be in multiple addr spaces!");
3032   Quals.addAddressSpace(AddressSpace);
3033 
3034   return getExtQualType(TypeNode, Quals);
3035 }
3036 
3037 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
3038   // If the type is not qualified with an address space, just return it
3039   // immediately.
3040   if (!T.hasAddressSpace())
3041     return T;
3042 
3043   // If we are composing extended qualifiers together, merge together
3044   // into one ExtQuals node.
3045   QualifierCollector Quals;
3046   const Type *TypeNode;
3047 
3048   while (T.hasAddressSpace()) {
3049     TypeNode = Quals.strip(T);
3050 
3051     // If the type no longer has an address space after stripping qualifiers,
3052     // jump out.
3053     if (!QualType(TypeNode, 0).hasAddressSpace())
3054       break;
3055 
3056     // There might be sugar in the way. Strip it and try again.
3057     T = T.getSingleStepDesugaredType(*this);
3058   }
3059 
3060   Quals.removeAddressSpace();
3061 
3062   // Removal of the address space can mean there are no longer any
3063   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
3064   // or required.
3065   if (Quals.hasNonFastQualifiers())
3066     return getExtQualType(TypeNode, Quals);
3067   else
3068     return QualType(TypeNode, Quals.getFastQualifiers());
3069 }
3070 
3071 QualType ASTContext::getObjCGCQualType(QualType T,
3072                                        Qualifiers::GC GCAttr) const {
3073   QualType CanT = getCanonicalType(T);
3074   if (CanT.getObjCGCAttr() == GCAttr)
3075     return T;
3076 
3077   if (const auto *ptr = T->getAs<PointerType>()) {
3078     QualType Pointee = ptr->getPointeeType();
3079     if (Pointee->isAnyPointerType()) {
3080       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
3081       return getPointerType(ResultType);
3082     }
3083   }
3084 
3085   // If we are composing extended qualifiers together, merge together
3086   // into one ExtQuals node.
3087   QualifierCollector Quals;
3088   const Type *TypeNode = Quals.strip(T);
3089 
3090   // If this type already has an ObjCGC specified, it cannot get
3091   // another one.
3092   assert(!Quals.hasObjCGCAttr() &&
3093          "Type cannot have multiple ObjCGCs!");
3094   Quals.addObjCGCAttr(GCAttr);
3095 
3096   return getExtQualType(TypeNode, Quals);
3097 }
3098 
3099 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
3100   if (const PointerType *Ptr = T->getAs<PointerType>()) {
3101     QualType Pointee = Ptr->getPointeeType();
3102     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
3103       return getPointerType(removeAddrSpaceQualType(Pointee));
3104     }
3105   }
3106   return T;
3107 }
3108 
3109 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
3110                                                    FunctionType::ExtInfo Info) {
3111   if (T->getExtInfo() == Info)
3112     return T;
3113 
3114   QualType Result;
3115   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
3116     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
3117   } else {
3118     const auto *FPT = cast<FunctionProtoType>(T);
3119     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3120     EPI.ExtInfo = Info;
3121     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3122   }
3123 
3124   return cast<FunctionType>(Result.getTypePtr());
3125 }
3126 
3127 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3128                                                  QualType ResultType) {
3129   FD = FD->getMostRecentDecl();
3130   while (true) {
3131     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3132     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3133     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3134     if (FunctionDecl *Next = FD->getPreviousDecl())
3135       FD = Next;
3136     else
3137       break;
3138   }
3139   if (ASTMutationListener *L = getASTMutationListener())
3140     L->DeducedReturnType(FD, ResultType);
3141 }
3142 
3143 /// Get a function type and produce the equivalent function type with the
3144 /// specified exception specification. Type sugar that can be present on a
3145 /// declaration of a function with an exception specification is permitted
3146 /// and preserved. Other type sugar (for instance, typedefs) is not.
3147 QualType ASTContext::getFunctionTypeWithExceptionSpec(
3148     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const {
3149   // Might have some parens.
3150   if (const auto *PT = dyn_cast<ParenType>(Orig))
3151     return getParenType(
3152         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3153 
3154   // Might be wrapped in a macro qualified type.
3155   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3156     return getMacroQualifiedType(
3157         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3158         MQT->getMacroIdentifier());
3159 
3160   // Might have a calling-convention attribute.
3161   if (const auto *AT = dyn_cast<AttributedType>(Orig))
3162     return getAttributedType(
3163         AT->getAttrKind(),
3164         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3165         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3166 
3167   // Anything else must be a function type. Rebuild it with the new exception
3168   // specification.
3169   const auto *Proto = Orig->castAs<FunctionProtoType>();
3170   return getFunctionType(
3171       Proto->getReturnType(), Proto->getParamTypes(),
3172       Proto->getExtProtoInfo().withExceptionSpec(ESI));
3173 }
3174 
3175 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3176                                                           QualType U) const {
3177   return hasSameType(T, U) ||
3178          (getLangOpts().CPlusPlus17 &&
3179           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3180                       getFunctionTypeWithExceptionSpec(U, EST_None)));
3181 }
3182 
3183 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3184   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3185     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3186     SmallVector<QualType, 16> Args(Proto->param_types().size());
3187     for (unsigned i = 0, n = Args.size(); i != n; ++i)
3188       Args[i] = removePtrSizeAddrSpace(Proto->param_types()[i]);
3189     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3190   }
3191 
3192   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3193     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3194     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3195   }
3196 
3197   return T;
3198 }
3199 
3200 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3201   return hasSameType(T, U) ||
3202          hasSameType(getFunctionTypeWithoutPtrSizes(T),
3203                      getFunctionTypeWithoutPtrSizes(U));
3204 }
3205 
3206 void ASTContext::adjustExceptionSpec(
3207     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3208     bool AsWritten) {
3209   // Update the type.
3210   QualType Updated =
3211       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3212   FD->setType(Updated);
3213 
3214   if (!AsWritten)
3215     return;
3216 
3217   // Update the type in the type source information too.
3218   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3219     // If the type and the type-as-written differ, we may need to update
3220     // the type-as-written too.
3221     if (TSInfo->getType() != FD->getType())
3222       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3223 
3224     // FIXME: When we get proper type location information for exceptions,
3225     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3226     // up the TypeSourceInfo;
3227     assert(TypeLoc::getFullDataSizeForType(Updated) ==
3228                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3229            "TypeLoc size mismatch from updating exception specification");
3230     TSInfo->overrideType(Updated);
3231   }
3232 }
3233 
3234 /// getComplexType - Return the uniqued reference to the type for a complex
3235 /// number with the specified element type.
3236 QualType ASTContext::getComplexType(QualType T) const {
3237   // Unique pointers, to guarantee there is only one pointer of a particular
3238   // structure.
3239   llvm::FoldingSetNodeID ID;
3240   ComplexType::Profile(ID, T);
3241 
3242   void *InsertPos = nullptr;
3243   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3244     return QualType(CT, 0);
3245 
3246   // If the pointee type isn't canonical, this won't be a canonical type either,
3247   // so fill in the canonical type field.
3248   QualType Canonical;
3249   if (!T.isCanonical()) {
3250     Canonical = getComplexType(getCanonicalType(T));
3251 
3252     // Get the new insert position for the node we care about.
3253     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3254     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3255   }
3256   auto *New = new (*this, alignof(ComplexType)) ComplexType(T, Canonical);
3257   Types.push_back(New);
3258   ComplexTypes.InsertNode(New, InsertPos);
3259   return QualType(New, 0);
3260 }
3261 
3262 /// getPointerType - Return the uniqued reference to the type for a pointer to
3263 /// the specified type.
3264 QualType ASTContext::getPointerType(QualType T) const {
3265   // Unique pointers, to guarantee there is only one pointer of a particular
3266   // structure.
3267   llvm::FoldingSetNodeID ID;
3268   PointerType::Profile(ID, T);
3269 
3270   void *InsertPos = nullptr;
3271   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3272     return QualType(PT, 0);
3273 
3274   // If the pointee type isn't canonical, this won't be a canonical type either,
3275   // so fill in the canonical type field.
3276   QualType Canonical;
3277   if (!T.isCanonical()) {
3278     Canonical = getPointerType(getCanonicalType(T));
3279 
3280     // Get the new insert position for the node we care about.
3281     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3282     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3283   }
3284   auto *New = new (*this, alignof(PointerType)) PointerType(T, Canonical);
3285   Types.push_back(New);
3286   PointerTypes.InsertNode(New, InsertPos);
3287   return QualType(New, 0);
3288 }
3289 
3290 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3291   llvm::FoldingSetNodeID ID;
3292   AdjustedType::Profile(ID, Orig, New);
3293   void *InsertPos = nullptr;
3294   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3295   if (AT)
3296     return QualType(AT, 0);
3297 
3298   QualType Canonical = getCanonicalType(New);
3299 
3300   // Get the new insert position for the node we care about.
3301   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3302   assert(!AT && "Shouldn't be in the map!");
3303 
3304   AT = new (*this, alignof(AdjustedType))
3305       AdjustedType(Type::Adjusted, Orig, New, Canonical);
3306   Types.push_back(AT);
3307   AdjustedTypes.InsertNode(AT, InsertPos);
3308   return QualType(AT, 0);
3309 }
3310 
3311 QualType ASTContext::getDecayedType(QualType Orig, QualType Decayed) const {
3312   llvm::FoldingSetNodeID ID;
3313   AdjustedType::Profile(ID, Orig, Decayed);
3314   void *InsertPos = nullptr;
3315   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3316   if (AT)
3317     return QualType(AT, 0);
3318 
3319   QualType Canonical = getCanonicalType(Decayed);
3320 
3321   // Get the new insert position for the node we care about.
3322   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3323   assert(!AT && "Shouldn't be in the map!");
3324 
3325   AT = new (*this, alignof(DecayedType)) DecayedType(Orig, Decayed, Canonical);
3326   Types.push_back(AT);
3327   AdjustedTypes.InsertNode(AT, InsertPos);
3328   return QualType(AT, 0);
3329 }
3330 
3331 QualType ASTContext::getDecayedType(QualType T) const {
3332   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3333 
3334   QualType Decayed;
3335 
3336   // C99 6.7.5.3p7:
3337   //   A declaration of a parameter as "array of type" shall be
3338   //   adjusted to "qualified pointer to type", where the type
3339   //   qualifiers (if any) are those specified within the [ and ] of
3340   //   the array type derivation.
3341   if (T->isArrayType())
3342     Decayed = getArrayDecayedType(T);
3343 
3344   // C99 6.7.5.3p8:
3345   //   A declaration of a parameter as "function returning type"
3346   //   shall be adjusted to "pointer to function returning type", as
3347   //   in 6.3.2.1.
3348   if (T->isFunctionType())
3349     Decayed = getPointerType(T);
3350 
3351   return getDecayedType(T, Decayed);
3352 }
3353 
3354 /// getBlockPointerType - Return the uniqued reference to the type for
3355 /// a pointer to the specified block.
3356 QualType ASTContext::getBlockPointerType(QualType T) const {
3357   assert(T->isFunctionType() && "block of function types only");
3358   // Unique pointers, to guarantee there is only one block of a particular
3359   // structure.
3360   llvm::FoldingSetNodeID ID;
3361   BlockPointerType::Profile(ID, T);
3362 
3363   void *InsertPos = nullptr;
3364   if (BlockPointerType *PT =
3365         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3366     return QualType(PT, 0);
3367 
3368   // If the block pointee type isn't canonical, this won't be a canonical
3369   // type either so fill in the canonical type field.
3370   QualType Canonical;
3371   if (!T.isCanonical()) {
3372     Canonical = getBlockPointerType(getCanonicalType(T));
3373 
3374     // Get the new insert position for the node we care about.
3375     BlockPointerType *NewIP =
3376       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3377     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3378   }
3379   auto *New =
3380       new (*this, alignof(BlockPointerType)) BlockPointerType(T, Canonical);
3381   Types.push_back(New);
3382   BlockPointerTypes.InsertNode(New, InsertPos);
3383   return QualType(New, 0);
3384 }
3385 
3386 /// getLValueReferenceType - Return the uniqued reference to the type for an
3387 /// lvalue reference to the specified type.
3388 QualType
3389 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3390   assert((!T->isPlaceholderType() ||
3391           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3392          "Unresolved placeholder type");
3393 
3394   // Unique pointers, to guarantee there is only one pointer of a particular
3395   // structure.
3396   llvm::FoldingSetNodeID ID;
3397   ReferenceType::Profile(ID, T, SpelledAsLValue);
3398 
3399   void *InsertPos = nullptr;
3400   if (LValueReferenceType *RT =
3401         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3402     return QualType(RT, 0);
3403 
3404   const auto *InnerRef = T->getAs<ReferenceType>();
3405 
3406   // If the referencee type isn't canonical, this won't be a canonical type
3407   // either, so fill in the canonical type field.
3408   QualType Canonical;
3409   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3410     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3411     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3412 
3413     // Get the new insert position for the node we care about.
3414     LValueReferenceType *NewIP =
3415       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3416     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3417   }
3418 
3419   auto *New = new (*this, alignof(LValueReferenceType))
3420       LValueReferenceType(T, Canonical, SpelledAsLValue);
3421   Types.push_back(New);
3422   LValueReferenceTypes.InsertNode(New, InsertPos);
3423 
3424   return QualType(New, 0);
3425 }
3426 
3427 /// getRValueReferenceType - Return the uniqued reference to the type for an
3428 /// rvalue reference to the specified type.
3429 QualType ASTContext::getRValueReferenceType(QualType T) const {
3430   assert((!T->isPlaceholderType() ||
3431           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3432          "Unresolved placeholder type");
3433 
3434   // Unique pointers, to guarantee there is only one pointer of a particular
3435   // structure.
3436   llvm::FoldingSetNodeID ID;
3437   ReferenceType::Profile(ID, T, false);
3438 
3439   void *InsertPos = nullptr;
3440   if (RValueReferenceType *RT =
3441         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3442     return QualType(RT, 0);
3443 
3444   const auto *InnerRef = T->getAs<ReferenceType>();
3445 
3446   // If the referencee type isn't canonical, this won't be a canonical type
3447   // either, so fill in the canonical type field.
3448   QualType Canonical;
3449   if (InnerRef || !T.isCanonical()) {
3450     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3451     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3452 
3453     // Get the new insert position for the node we care about.
3454     RValueReferenceType *NewIP =
3455       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3456     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3457   }
3458 
3459   auto *New = new (*this, alignof(RValueReferenceType))
3460       RValueReferenceType(T, Canonical);
3461   Types.push_back(New);
3462   RValueReferenceTypes.InsertNode(New, InsertPos);
3463   return QualType(New, 0);
3464 }
3465 
3466 /// getMemberPointerType - Return the uniqued reference to the type for a
3467 /// member pointer to the specified type, in the specified class.
3468 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3469   // Unique pointers, to guarantee there is only one pointer of a particular
3470   // structure.
3471   llvm::FoldingSetNodeID ID;
3472   MemberPointerType::Profile(ID, T, Cls);
3473 
3474   void *InsertPos = nullptr;
3475   if (MemberPointerType *PT =
3476       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3477     return QualType(PT, 0);
3478 
3479   // If the pointee or class type isn't canonical, this won't be a canonical
3480   // type either, so fill in the canonical type field.
3481   QualType Canonical;
3482   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3483     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3484 
3485     // Get the new insert position for the node we care about.
3486     MemberPointerType *NewIP =
3487       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3488     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3489   }
3490   auto *New = new (*this, alignof(MemberPointerType))
3491       MemberPointerType(T, Cls, Canonical);
3492   Types.push_back(New);
3493   MemberPointerTypes.InsertNode(New, InsertPos);
3494   return QualType(New, 0);
3495 }
3496 
3497 /// getConstantArrayType - Return the unique reference to the type for an
3498 /// array of the specified element type.
3499 QualType ASTContext::getConstantArrayType(QualType EltTy,
3500                                           const llvm::APInt &ArySizeIn,
3501                                           const Expr *SizeExpr,
3502                                           ArraySizeModifier ASM,
3503                                           unsigned IndexTypeQuals) const {
3504   assert((EltTy->isDependentType() ||
3505           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3506          "Constant array of VLAs is illegal!");
3507 
3508   // We only need the size as part of the type if it's instantiation-dependent.
3509   if (SizeExpr && !SizeExpr->isInstantiationDependent())
3510     SizeExpr = nullptr;
3511 
3512   // Convert the array size into a canonical width matching the pointer size for
3513   // the target.
3514   llvm::APInt ArySize(ArySizeIn);
3515   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3516 
3517   llvm::FoldingSetNodeID ID;
3518   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3519                              IndexTypeQuals);
3520 
3521   void *InsertPos = nullptr;
3522   if (ConstantArrayType *ATP =
3523       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3524     return QualType(ATP, 0);
3525 
3526   // If the element type isn't canonical or has qualifiers, or the array bound
3527   // is instantiation-dependent, this won't be a canonical type either, so fill
3528   // in the canonical type field.
3529   QualType Canon;
3530   // FIXME: Check below should look for qualifiers behind sugar.
3531   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3532     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3533     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3534                                  ASM, IndexTypeQuals);
3535     Canon = getQualifiedType(Canon, canonSplit.Quals);
3536 
3537     // Get the new insert position for the node we care about.
3538     ConstantArrayType *NewIP =
3539       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3540     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3541   }
3542 
3543   void *Mem = Allocate(
3544       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3545       alignof(ConstantArrayType));
3546   auto *New = new (Mem)
3547     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3548   ConstantArrayTypes.InsertNode(New, InsertPos);
3549   Types.push_back(New);
3550   return QualType(New, 0);
3551 }
3552 
3553 /// getVariableArrayDecayedType - Turns the given type, which may be
3554 /// variably-modified, into the corresponding type with all the known
3555 /// sizes replaced with [*].
3556 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3557   // Vastly most common case.
3558   if (!type->isVariablyModifiedType()) return type;
3559 
3560   QualType result;
3561 
3562   SplitQualType split = type.getSplitDesugaredType();
3563   const Type *ty = split.Ty;
3564   switch (ty->getTypeClass()) {
3565 #define TYPE(Class, Base)
3566 #define ABSTRACT_TYPE(Class, Base)
3567 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3568 #include "clang/AST/TypeNodes.inc"
3569     llvm_unreachable("didn't desugar past all non-canonical types?");
3570 
3571   // These types should never be variably-modified.
3572   case Type::Builtin:
3573   case Type::Complex:
3574   case Type::Vector:
3575   case Type::DependentVector:
3576   case Type::ExtVector:
3577   case Type::DependentSizedExtVector:
3578   case Type::ConstantMatrix:
3579   case Type::DependentSizedMatrix:
3580   case Type::DependentAddressSpace:
3581   case Type::ObjCObject:
3582   case Type::ObjCInterface:
3583   case Type::ObjCObjectPointer:
3584   case Type::Record:
3585   case Type::Enum:
3586   case Type::UnresolvedUsing:
3587   case Type::TypeOfExpr:
3588   case Type::TypeOf:
3589   case Type::Decltype:
3590   case Type::UnaryTransform:
3591   case Type::DependentName:
3592   case Type::InjectedClassName:
3593   case Type::TemplateSpecialization:
3594   case Type::DependentTemplateSpecialization:
3595   case Type::TemplateTypeParm:
3596   case Type::SubstTemplateTypeParmPack:
3597   case Type::Auto:
3598   case Type::DeducedTemplateSpecialization:
3599   case Type::PackExpansion:
3600   case Type::BitInt:
3601   case Type::DependentBitInt:
3602     llvm_unreachable("type should never be variably-modified");
3603 
3604   // These types can be variably-modified but should never need to
3605   // further decay.
3606   case Type::FunctionNoProto:
3607   case Type::FunctionProto:
3608   case Type::BlockPointer:
3609   case Type::MemberPointer:
3610   case Type::Pipe:
3611     return type;
3612 
3613   // These types can be variably-modified.  All these modifications
3614   // preserve structure except as noted by comments.
3615   // TODO: if we ever care about optimizing VLAs, there are no-op
3616   // optimizations available here.
3617   case Type::Pointer:
3618     result = getPointerType(getVariableArrayDecayedType(
3619                               cast<PointerType>(ty)->getPointeeType()));
3620     break;
3621 
3622   case Type::LValueReference: {
3623     const auto *lv = cast<LValueReferenceType>(ty);
3624     result = getLValueReferenceType(
3625                  getVariableArrayDecayedType(lv->getPointeeType()),
3626                                     lv->isSpelledAsLValue());
3627     break;
3628   }
3629 
3630   case Type::RValueReference: {
3631     const auto *lv = cast<RValueReferenceType>(ty);
3632     result = getRValueReferenceType(
3633                  getVariableArrayDecayedType(lv->getPointeeType()));
3634     break;
3635   }
3636 
3637   case Type::Atomic: {
3638     const auto *at = cast<AtomicType>(ty);
3639     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3640     break;
3641   }
3642 
3643   case Type::ConstantArray: {
3644     const auto *cat = cast<ConstantArrayType>(ty);
3645     result = getConstantArrayType(
3646                  getVariableArrayDecayedType(cat->getElementType()),
3647                                   cat->getSize(),
3648                                   cat->getSizeExpr(),
3649                                   cat->getSizeModifier(),
3650                                   cat->getIndexTypeCVRQualifiers());
3651     break;
3652   }
3653 
3654   case Type::DependentSizedArray: {
3655     const auto *dat = cast<DependentSizedArrayType>(ty);
3656     result = getDependentSizedArrayType(
3657                  getVariableArrayDecayedType(dat->getElementType()),
3658                                         dat->getSizeExpr(),
3659                                         dat->getSizeModifier(),
3660                                         dat->getIndexTypeCVRQualifiers(),
3661                                         dat->getBracketsRange());
3662     break;
3663   }
3664 
3665   // Turn incomplete types into [*] types.
3666   case Type::IncompleteArray: {
3667     const auto *iat = cast<IncompleteArrayType>(ty);
3668     result =
3669         getVariableArrayType(getVariableArrayDecayedType(iat->getElementType()),
3670                              /*size*/ nullptr, ArraySizeModifier::Normal,
3671                              iat->getIndexTypeCVRQualifiers(), SourceRange());
3672     break;
3673   }
3674 
3675   // Turn VLA types into [*] types.
3676   case Type::VariableArray: {
3677     const auto *vat = cast<VariableArrayType>(ty);
3678     result = getVariableArrayType(
3679         getVariableArrayDecayedType(vat->getElementType()),
3680         /*size*/ nullptr, ArraySizeModifier::Star,
3681         vat->getIndexTypeCVRQualifiers(), vat->getBracketsRange());
3682     break;
3683   }
3684   }
3685 
3686   // Apply the top-level qualifiers from the original.
3687   return getQualifiedType(result, split.Quals);
3688 }
3689 
3690 /// getVariableArrayType - Returns a non-unique reference to the type for a
3691 /// variable array of the specified element type.
3692 QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
3693                                           ArraySizeModifier ASM,
3694                                           unsigned IndexTypeQuals,
3695                                           SourceRange Brackets) const {
3696   // Since we don't unique expressions, it isn't possible to unique VLA's
3697   // that have an expression provided for their size.
3698   QualType Canon;
3699 
3700   // Be sure to pull qualifiers off the element type.
3701   // FIXME: Check below should look for qualifiers behind sugar.
3702   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3703     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3704     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3705                                  IndexTypeQuals, Brackets);
3706     Canon = getQualifiedType(Canon, canonSplit.Quals);
3707   }
3708 
3709   auto *New = new (*this, alignof(VariableArrayType))
3710       VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3711 
3712   VariableArrayTypes.push_back(New);
3713   Types.push_back(New);
3714   return QualType(New, 0);
3715 }
3716 
3717 /// getDependentSizedArrayType - Returns a non-unique reference to
3718 /// the type for a dependently-sized array of the specified element
3719 /// type.
3720 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3721                                                 Expr *numElements,
3722                                                 ArraySizeModifier ASM,
3723                                                 unsigned elementTypeQuals,
3724                                                 SourceRange brackets) const {
3725   assert((!numElements || numElements->isTypeDependent() ||
3726           numElements->isValueDependent()) &&
3727          "Size must be type- or value-dependent!");
3728 
3729   // Dependently-sized array types that do not have a specified number
3730   // of elements will have their sizes deduced from a dependent
3731   // initializer.  We do no canonicalization here at all, which is okay
3732   // because they can't be used in most locations.
3733   if (!numElements) {
3734     auto *newType = new (*this, alignof(DependentSizedArrayType))
3735         DependentSizedArrayType(elementType, QualType(), numElements, ASM,
3736                                 elementTypeQuals, brackets);
3737     Types.push_back(newType);
3738     return QualType(newType, 0);
3739   }
3740 
3741   // Otherwise, we actually build a new type every time, but we
3742   // also build a canonical type.
3743 
3744   SplitQualType canonElementType = getCanonicalType(elementType).split();
3745 
3746   void *insertPos = nullptr;
3747   llvm::FoldingSetNodeID ID;
3748   DependentSizedArrayType::Profile(ID, *this,
3749                                    QualType(canonElementType.Ty, 0),
3750                                    ASM, elementTypeQuals, numElements);
3751 
3752   // Look for an existing type with these properties.
3753   DependentSizedArrayType *canonTy =
3754     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3755 
3756   // If we don't have one, build one.
3757   if (!canonTy) {
3758     canonTy = new (*this, alignof(DependentSizedArrayType))
3759         DependentSizedArrayType(QualType(canonElementType.Ty, 0), QualType(),
3760                                 numElements, ASM, elementTypeQuals, brackets);
3761     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3762     Types.push_back(canonTy);
3763   }
3764 
3765   // Apply qualifiers from the element type to the array.
3766   QualType canon = getQualifiedType(QualType(canonTy,0),
3767                                     canonElementType.Quals);
3768 
3769   // If we didn't need extra canonicalization for the element type or the size
3770   // expression, then just use that as our result.
3771   if (QualType(canonElementType.Ty, 0) == elementType &&
3772       canonTy->getSizeExpr() == numElements)
3773     return canon;
3774 
3775   // Otherwise, we need to build a type which follows the spelling
3776   // of the element type.
3777   auto *sugaredType = new (*this, alignof(DependentSizedArrayType))
3778       DependentSizedArrayType(elementType, canon, numElements, ASM,
3779                               elementTypeQuals, brackets);
3780   Types.push_back(sugaredType);
3781   return QualType(sugaredType, 0);
3782 }
3783 
3784 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3785                                             ArraySizeModifier ASM,
3786                                             unsigned elementTypeQuals) const {
3787   llvm::FoldingSetNodeID ID;
3788   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3789 
3790   void *insertPos = nullptr;
3791   if (IncompleteArrayType *iat =
3792        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3793     return QualType(iat, 0);
3794 
3795   // If the element type isn't canonical, this won't be a canonical type
3796   // either, so fill in the canonical type field.  We also have to pull
3797   // qualifiers off the element type.
3798   QualType canon;
3799 
3800   // FIXME: Check below should look for qualifiers behind sugar.
3801   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3802     SplitQualType canonSplit = getCanonicalType(elementType).split();
3803     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3804                                    ASM, elementTypeQuals);
3805     canon = getQualifiedType(canon, canonSplit.Quals);
3806 
3807     // Get the new insert position for the node we care about.
3808     IncompleteArrayType *existing =
3809       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3810     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3811   }
3812 
3813   auto *newType = new (*this, alignof(IncompleteArrayType))
3814       IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3815 
3816   IncompleteArrayTypes.InsertNode(newType, insertPos);
3817   Types.push_back(newType);
3818   return QualType(newType, 0);
3819 }
3820 
3821 ASTContext::BuiltinVectorTypeInfo
3822 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3823 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
3824   {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3825    NUMVECTORS};
3826 
3827 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
3828   {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3829 
3830   switch (Ty->getKind()) {
3831   default:
3832     llvm_unreachable("Unsupported builtin vector type");
3833   case BuiltinType::SveInt8:
3834     return SVE_INT_ELTTY(8, 16, true, 1);
3835   case BuiltinType::SveUint8:
3836     return SVE_INT_ELTTY(8, 16, false, 1);
3837   case BuiltinType::SveInt8x2:
3838     return SVE_INT_ELTTY(8, 16, true, 2);
3839   case BuiltinType::SveUint8x2:
3840     return SVE_INT_ELTTY(8, 16, false, 2);
3841   case BuiltinType::SveInt8x3:
3842     return SVE_INT_ELTTY(8, 16, true, 3);
3843   case BuiltinType::SveUint8x3:
3844     return SVE_INT_ELTTY(8, 16, false, 3);
3845   case BuiltinType::SveInt8x4:
3846     return SVE_INT_ELTTY(8, 16, true, 4);
3847   case BuiltinType::SveUint8x4:
3848     return SVE_INT_ELTTY(8, 16, false, 4);
3849   case BuiltinType::SveInt16:
3850     return SVE_INT_ELTTY(16, 8, true, 1);
3851   case BuiltinType::SveUint16:
3852     return SVE_INT_ELTTY(16, 8, false, 1);
3853   case BuiltinType::SveInt16x2:
3854     return SVE_INT_ELTTY(16, 8, true, 2);
3855   case BuiltinType::SveUint16x2:
3856     return SVE_INT_ELTTY(16, 8, false, 2);
3857   case BuiltinType::SveInt16x3:
3858     return SVE_INT_ELTTY(16, 8, true, 3);
3859   case BuiltinType::SveUint16x3:
3860     return SVE_INT_ELTTY(16, 8, false, 3);
3861   case BuiltinType::SveInt16x4:
3862     return SVE_INT_ELTTY(16, 8, true, 4);
3863   case BuiltinType::SveUint16x4:
3864     return SVE_INT_ELTTY(16, 8, false, 4);
3865   case BuiltinType::SveInt32:
3866     return SVE_INT_ELTTY(32, 4, true, 1);
3867   case BuiltinType::SveUint32:
3868     return SVE_INT_ELTTY(32, 4, false, 1);
3869   case BuiltinType::SveInt32x2:
3870     return SVE_INT_ELTTY(32, 4, true, 2);
3871   case BuiltinType::SveUint32x2:
3872     return SVE_INT_ELTTY(32, 4, false, 2);
3873   case BuiltinType::SveInt32x3:
3874     return SVE_INT_ELTTY(32, 4, true, 3);
3875   case BuiltinType::SveUint32x3:
3876     return SVE_INT_ELTTY(32, 4, false, 3);
3877   case BuiltinType::SveInt32x4:
3878     return SVE_INT_ELTTY(32, 4, true, 4);
3879   case BuiltinType::SveUint32x4:
3880     return SVE_INT_ELTTY(32, 4, false, 4);
3881   case BuiltinType::SveInt64:
3882     return SVE_INT_ELTTY(64, 2, true, 1);
3883   case BuiltinType::SveUint64:
3884     return SVE_INT_ELTTY(64, 2, false, 1);
3885   case BuiltinType::SveInt64x2:
3886     return SVE_INT_ELTTY(64, 2, true, 2);
3887   case BuiltinType::SveUint64x2:
3888     return SVE_INT_ELTTY(64, 2, false, 2);
3889   case BuiltinType::SveInt64x3:
3890     return SVE_INT_ELTTY(64, 2, true, 3);
3891   case BuiltinType::SveUint64x3:
3892     return SVE_INT_ELTTY(64, 2, false, 3);
3893   case BuiltinType::SveInt64x4:
3894     return SVE_INT_ELTTY(64, 2, true, 4);
3895   case BuiltinType::SveUint64x4:
3896     return SVE_INT_ELTTY(64, 2, false, 4);
3897   case BuiltinType::SveBool:
3898     return SVE_ELTTY(BoolTy, 16, 1);
3899   case BuiltinType::SveBoolx2:
3900     return SVE_ELTTY(BoolTy, 16, 2);
3901   case BuiltinType::SveBoolx4:
3902     return SVE_ELTTY(BoolTy, 16, 4);
3903   case BuiltinType::SveFloat16:
3904     return SVE_ELTTY(HalfTy, 8, 1);
3905   case BuiltinType::SveFloat16x2:
3906     return SVE_ELTTY(HalfTy, 8, 2);
3907   case BuiltinType::SveFloat16x3:
3908     return SVE_ELTTY(HalfTy, 8, 3);
3909   case BuiltinType::SveFloat16x4:
3910     return SVE_ELTTY(HalfTy, 8, 4);
3911   case BuiltinType::SveFloat32:
3912     return SVE_ELTTY(FloatTy, 4, 1);
3913   case BuiltinType::SveFloat32x2:
3914     return SVE_ELTTY(FloatTy, 4, 2);
3915   case BuiltinType::SveFloat32x3:
3916     return SVE_ELTTY(FloatTy, 4, 3);
3917   case BuiltinType::SveFloat32x4:
3918     return SVE_ELTTY(FloatTy, 4, 4);
3919   case BuiltinType::SveFloat64:
3920     return SVE_ELTTY(DoubleTy, 2, 1);
3921   case BuiltinType::SveFloat64x2:
3922     return SVE_ELTTY(DoubleTy, 2, 2);
3923   case BuiltinType::SveFloat64x3:
3924     return SVE_ELTTY(DoubleTy, 2, 3);
3925   case BuiltinType::SveFloat64x4:
3926     return SVE_ELTTY(DoubleTy, 2, 4);
3927   case BuiltinType::SveBFloat16:
3928     return SVE_ELTTY(BFloat16Ty, 8, 1);
3929   case BuiltinType::SveBFloat16x2:
3930     return SVE_ELTTY(BFloat16Ty, 8, 2);
3931   case BuiltinType::SveBFloat16x3:
3932     return SVE_ELTTY(BFloat16Ty, 8, 3);
3933   case BuiltinType::SveBFloat16x4:
3934     return SVE_ELTTY(BFloat16Ty, 8, 4);
3935 #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \
3936                             IsSigned)                                          \
3937   case BuiltinType::Id:                                                        \
3938     return {getIntTypeForBitwidth(ElBits, IsSigned),                           \
3939             llvm::ElementCount::getScalable(NumEls), NF};
3940 #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \
3941   case BuiltinType::Id:                                                        \
3942     return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy),    \
3943             llvm::ElementCount::getScalable(NumEls), NF};
3944 #define RVV_VECTOR_TYPE_BFLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)      \
3945   case BuiltinType::Id:                                                        \
3946     return {BFloat16Ty, llvm::ElementCount::getScalable(NumEls), NF};
3947 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3948   case BuiltinType::Id:                                                        \
3949     return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1};
3950 #include "clang/Basic/RISCVVTypes.def"
3951   }
3952 }
3953 
3954 /// getExternrefType - Return a WebAssembly externref type, which represents an
3955 /// opaque reference to a host value.
3956 QualType ASTContext::getWebAssemblyExternrefType() const {
3957   if (Target->getTriple().isWasm() && Target->hasFeature("reference-types")) {
3958 #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS)                  \
3959   if (BuiltinType::Id == BuiltinType::WasmExternRef)                           \
3960     return SingletonId;
3961 #include "clang/Basic/WebAssemblyReferenceTypes.def"
3962   }
3963   llvm_unreachable(
3964       "shouldn't try to generate type externref outside WebAssembly target");
3965 }
3966 
3967 /// getScalableVectorType - Return the unique reference to a scalable vector
3968 /// type of the specified element type and size. VectorType must be a built-in
3969 /// type.
3970 QualType ASTContext::getScalableVectorType(QualType EltTy, unsigned NumElts,
3971                                            unsigned NumFields) const {
3972   if (Target->hasAArch64SVETypes()) {
3973     uint64_t EltTySize = getTypeSize(EltTy);
3974 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
3975                         IsSigned, IsFP, IsBF)                                  \
3976   if (!EltTy->isBooleanType() &&                                               \
3977       ((EltTy->hasIntegerRepresentation() &&                                   \
3978         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
3979        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
3980         IsFP && !IsBF) ||                                                      \
3981        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
3982         IsBF && !IsFP)) &&                                                     \
3983       EltTySize == ElBits && NumElts == NumEls) {                              \
3984     return SingletonId;                                                        \
3985   }
3986 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
3987   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
3988     return SingletonId;
3989 #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingleTonId)
3990 #include "clang/Basic/AArch64SVEACLETypes.def"
3991   } else if (Target->hasRISCVVTypes()) {
3992     uint64_t EltTySize = getTypeSize(EltTy);
3993 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \
3994                         IsFP, IsBF)                                            \
3995   if (!EltTy->isBooleanType() &&                                               \
3996       ((EltTy->hasIntegerRepresentation() &&                                   \
3997         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
3998        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
3999         IsFP && !IsBF) ||                                                      \
4000        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
4001         IsBF && !IsFP)) &&                                                     \
4002       EltTySize == ElBits && NumElts == NumEls && NumFields == NF)             \
4003     return SingletonId;
4004 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
4005   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
4006     return SingletonId;
4007 #include "clang/Basic/RISCVVTypes.def"
4008   }
4009   return QualType();
4010 }
4011 
4012 /// getVectorType - Return the unique reference to a vector type of
4013 /// the specified element type and size. VectorType must be a built-in type.
4014 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
4015                                    VectorKind VecKind) const {
4016   assert(vecType->isBuiltinType() ||
4017          (vecType->isBitIntType() &&
4018           // Only support _BitInt elements with byte-sized power of 2 NumBits.
4019           llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()) &&
4020           vecType->castAs<BitIntType>()->getNumBits() >= 8));
4021 
4022   // Check if we've already instantiated a vector of this type.
4023   llvm::FoldingSetNodeID ID;
4024   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
4025 
4026   void *InsertPos = nullptr;
4027   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4028     return QualType(VTP, 0);
4029 
4030   // If the element type isn't canonical, this won't be a canonical type either,
4031   // so fill in the canonical type field.
4032   QualType Canonical;
4033   if (!vecType.isCanonical()) {
4034     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
4035 
4036     // Get the new insert position for the node we care about.
4037     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4038     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4039   }
4040   auto *New = new (*this, alignof(VectorType))
4041       VectorType(vecType, NumElts, Canonical, VecKind);
4042   VectorTypes.InsertNode(New, InsertPos);
4043   Types.push_back(New);
4044   return QualType(New, 0);
4045 }
4046 
4047 QualType ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
4048                                             SourceLocation AttrLoc,
4049                                             VectorKind VecKind) const {
4050   llvm::FoldingSetNodeID ID;
4051   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
4052                                VecKind);
4053   void *InsertPos = nullptr;
4054   DependentVectorType *Canon =
4055       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4056   DependentVectorType *New;
4057 
4058   if (Canon) {
4059     New = new (*this, alignof(DependentVectorType)) DependentVectorType(
4060         VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
4061   } else {
4062     QualType CanonVecTy = getCanonicalType(VecType);
4063     if (CanonVecTy == VecType) {
4064       New = new (*this, alignof(DependentVectorType))
4065           DependentVectorType(VecType, QualType(), SizeExpr, AttrLoc, VecKind);
4066 
4067       DependentVectorType *CanonCheck =
4068           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4069       assert(!CanonCheck &&
4070              "Dependent-sized vector_size canonical type broken");
4071       (void)CanonCheck;
4072       DependentVectorTypes.InsertNode(New, InsertPos);
4073     } else {
4074       QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
4075                                                 SourceLocation(), VecKind);
4076       New = new (*this, alignof(DependentVectorType))
4077           DependentVectorType(VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
4078     }
4079   }
4080 
4081   Types.push_back(New);
4082   return QualType(New, 0);
4083 }
4084 
4085 /// getExtVectorType - Return the unique reference to an extended vector type of
4086 /// the specified element type and size. VectorType must be a built-in type.
4087 QualType ASTContext::getExtVectorType(QualType vecType,
4088                                       unsigned NumElts) const {
4089   assert(vecType->isBuiltinType() || vecType->isDependentType() ||
4090          (vecType->isBitIntType() &&
4091           // Only support _BitInt elements with byte-sized power of 2 NumBits.
4092           llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()) &&
4093           vecType->castAs<BitIntType>()->getNumBits() >= 8));
4094 
4095   // Check if we've already instantiated a vector of this type.
4096   llvm::FoldingSetNodeID ID;
4097   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
4098                       VectorKind::Generic);
4099   void *InsertPos = nullptr;
4100   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4101     return QualType(VTP, 0);
4102 
4103   // If the element type isn't canonical, this won't be a canonical type either,
4104   // so fill in the canonical type field.
4105   QualType Canonical;
4106   if (!vecType.isCanonical()) {
4107     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
4108 
4109     // Get the new insert position for the node we care about.
4110     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4111     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4112   }
4113   auto *New = new (*this, alignof(ExtVectorType))
4114       ExtVectorType(vecType, NumElts, Canonical);
4115   VectorTypes.InsertNode(New, InsertPos);
4116   Types.push_back(New);
4117   return QualType(New, 0);
4118 }
4119 
4120 QualType
4121 ASTContext::getDependentSizedExtVectorType(QualType vecType,
4122                                            Expr *SizeExpr,
4123                                            SourceLocation AttrLoc) const {
4124   llvm::FoldingSetNodeID ID;
4125   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
4126                                        SizeExpr);
4127 
4128   void *InsertPos = nullptr;
4129   DependentSizedExtVectorType *Canon
4130     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4131   DependentSizedExtVectorType *New;
4132   if (Canon) {
4133     // We already have a canonical version of this array type; use it as
4134     // the canonical type for a newly-built type.
4135     New = new (*this, alignof(DependentSizedExtVectorType))
4136         DependentSizedExtVectorType(vecType, QualType(Canon, 0), SizeExpr,
4137                                     AttrLoc);
4138   } else {
4139     QualType CanonVecTy = getCanonicalType(vecType);
4140     if (CanonVecTy == vecType) {
4141       New = new (*this, alignof(DependentSizedExtVectorType))
4142           DependentSizedExtVectorType(vecType, QualType(), SizeExpr, AttrLoc);
4143 
4144       DependentSizedExtVectorType *CanonCheck
4145         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4146       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
4147       (void)CanonCheck;
4148       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
4149     } else {
4150       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
4151                                                            SourceLocation());
4152       New = new (*this, alignof(DependentSizedExtVectorType))
4153           DependentSizedExtVectorType(vecType, CanonExtTy, SizeExpr, AttrLoc);
4154     }
4155   }
4156 
4157   Types.push_back(New);
4158   return QualType(New, 0);
4159 }
4160 
4161 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
4162                                            unsigned NumColumns) const {
4163   llvm::FoldingSetNodeID ID;
4164   ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
4165                               Type::ConstantMatrix);
4166 
4167   assert(MatrixType::isValidElementType(ElementTy) &&
4168          "need a valid element type");
4169   assert(ConstantMatrixType::isDimensionValid(NumRows) &&
4170          ConstantMatrixType::isDimensionValid(NumColumns) &&
4171          "need valid matrix dimensions");
4172   void *InsertPos = nullptr;
4173   if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
4174     return QualType(MTP, 0);
4175 
4176   QualType Canonical;
4177   if (!ElementTy.isCanonical()) {
4178     Canonical =
4179         getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
4180 
4181     ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4182     assert(!NewIP && "Matrix type shouldn't already exist in the map");
4183     (void)NewIP;
4184   }
4185 
4186   auto *New = new (*this, alignof(ConstantMatrixType))
4187       ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4188   MatrixTypes.InsertNode(New, InsertPos);
4189   Types.push_back(New);
4190   return QualType(New, 0);
4191 }
4192 
4193 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4194                                                  Expr *RowExpr,
4195                                                  Expr *ColumnExpr,
4196                                                  SourceLocation AttrLoc) const {
4197   QualType CanonElementTy = getCanonicalType(ElementTy);
4198   llvm::FoldingSetNodeID ID;
4199   DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4200                                     ColumnExpr);
4201 
4202   void *InsertPos = nullptr;
4203   DependentSizedMatrixType *Canon =
4204       DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4205 
4206   if (!Canon) {
4207     Canon = new (*this, alignof(DependentSizedMatrixType))
4208         DependentSizedMatrixType(CanonElementTy, QualType(), RowExpr,
4209                                  ColumnExpr, AttrLoc);
4210 #ifndef NDEBUG
4211     DependentSizedMatrixType *CanonCheck =
4212         DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4213     assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
4214 #endif
4215     DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4216     Types.push_back(Canon);
4217   }
4218 
4219   // Already have a canonical version of the matrix type
4220   //
4221   // If it exactly matches the requested type, use it directly.
4222   if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4223       Canon->getRowExpr() == ColumnExpr)
4224     return QualType(Canon, 0);
4225 
4226   // Use Canon as the canonical type for newly-built type.
4227   DependentSizedMatrixType *New = new (*this, alignof(DependentSizedMatrixType))
4228       DependentSizedMatrixType(ElementTy, QualType(Canon, 0), RowExpr,
4229                                ColumnExpr, AttrLoc);
4230   Types.push_back(New);
4231   return QualType(New, 0);
4232 }
4233 
4234 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4235                                                   Expr *AddrSpaceExpr,
4236                                                   SourceLocation AttrLoc) const {
4237   assert(AddrSpaceExpr->isInstantiationDependent());
4238 
4239   QualType canonPointeeType = getCanonicalType(PointeeType);
4240 
4241   void *insertPos = nullptr;
4242   llvm::FoldingSetNodeID ID;
4243   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4244                                      AddrSpaceExpr);
4245 
4246   DependentAddressSpaceType *canonTy =
4247     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4248 
4249   if (!canonTy) {
4250     canonTy = new (*this, alignof(DependentAddressSpaceType))
4251         DependentAddressSpaceType(canonPointeeType, QualType(), AddrSpaceExpr,
4252                                   AttrLoc);
4253     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4254     Types.push_back(canonTy);
4255   }
4256 
4257   if (canonPointeeType == PointeeType &&
4258       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4259     return QualType(canonTy, 0);
4260 
4261   auto *sugaredType = new (*this, alignof(DependentAddressSpaceType))
4262       DependentAddressSpaceType(PointeeType, QualType(canonTy, 0),
4263                                 AddrSpaceExpr, AttrLoc);
4264   Types.push_back(sugaredType);
4265   return QualType(sugaredType, 0);
4266 }
4267 
4268 /// Determine whether \p T is canonical as the result type of a function.
4269 static bool isCanonicalResultType(QualType T) {
4270   return T.isCanonical() &&
4271          (T.getObjCLifetime() == Qualifiers::OCL_None ||
4272           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4273 }
4274 
4275 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4276 QualType
4277 ASTContext::getFunctionNoProtoType(QualType ResultTy,
4278                                    const FunctionType::ExtInfo &Info) const {
4279   // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter
4280   // functionality creates a function without a prototype regardless of
4281   // language mode (so it makes them even in C++). Once the rewriter has been
4282   // fixed, this assertion can be enabled again.
4283   //assert(!LangOpts.requiresStrictPrototypes() &&
4284   //       "strict prototypes are disabled");
4285 
4286   // Unique functions, to guarantee there is only one function of a particular
4287   // structure.
4288   llvm::FoldingSetNodeID ID;
4289   FunctionNoProtoType::Profile(ID, ResultTy, Info);
4290 
4291   void *InsertPos = nullptr;
4292   if (FunctionNoProtoType *FT =
4293         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4294     return QualType(FT, 0);
4295 
4296   QualType Canonical;
4297   if (!isCanonicalResultType(ResultTy)) {
4298     Canonical =
4299       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4300 
4301     // Get the new insert position for the node we care about.
4302     FunctionNoProtoType *NewIP =
4303       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4304     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4305   }
4306 
4307   auto *New = new (*this, alignof(FunctionNoProtoType))
4308       FunctionNoProtoType(ResultTy, Canonical, Info);
4309   Types.push_back(New);
4310   FunctionNoProtoTypes.InsertNode(New, InsertPos);
4311   return QualType(New, 0);
4312 }
4313 
4314 CanQualType
4315 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4316   CanQualType CanResultType = getCanonicalType(ResultType);
4317 
4318   // Canonical result types do not have ARC lifetime qualifiers.
4319   if (CanResultType.getQualifiers().hasObjCLifetime()) {
4320     Qualifiers Qs = CanResultType.getQualifiers();
4321     Qs.removeObjCLifetime();
4322     return CanQualType::CreateUnsafe(
4323              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4324   }
4325 
4326   return CanResultType;
4327 }
4328 
4329 static bool isCanonicalExceptionSpecification(
4330     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4331   if (ESI.Type == EST_None)
4332     return true;
4333   if (!NoexceptInType)
4334     return false;
4335 
4336   // C++17 onwards: exception specification is part of the type, as a simple
4337   // boolean "can this function type throw".
4338   if (ESI.Type == EST_BasicNoexcept)
4339     return true;
4340 
4341   // A noexcept(expr) specification is (possibly) canonical if expr is
4342   // value-dependent.
4343   if (ESI.Type == EST_DependentNoexcept)
4344     return true;
4345 
4346   // A dynamic exception specification is canonical if it only contains pack
4347   // expansions (so we can't tell whether it's non-throwing) and all its
4348   // contained types are canonical.
4349   if (ESI.Type == EST_Dynamic) {
4350     bool AnyPackExpansions = false;
4351     for (QualType ET : ESI.Exceptions) {
4352       if (!ET.isCanonical())
4353         return false;
4354       if (ET->getAs<PackExpansionType>())
4355         AnyPackExpansions = true;
4356     }
4357     return AnyPackExpansions;
4358   }
4359 
4360   return false;
4361 }
4362 
4363 QualType ASTContext::getFunctionTypeInternal(
4364     QualType ResultTy, ArrayRef<QualType> ArgArray,
4365     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4366   size_t NumArgs = ArgArray.size();
4367 
4368   // Unique functions, to guarantee there is only one function of a particular
4369   // structure.
4370   llvm::FoldingSetNodeID ID;
4371   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4372                              *this, true);
4373 
4374   QualType Canonical;
4375   bool Unique = false;
4376 
4377   void *InsertPos = nullptr;
4378   if (FunctionProtoType *FPT =
4379         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4380     QualType Existing = QualType(FPT, 0);
4381 
4382     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4383     // it so long as our exception specification doesn't contain a dependent
4384     // noexcept expression, or we're just looking for a canonical type.
4385     // Otherwise, we're going to need to create a type
4386     // sugar node to hold the concrete expression.
4387     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4388         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4389       return Existing;
4390 
4391     // We need a new type sugar node for this one, to hold the new noexcept
4392     // expression. We do no canonicalization here, but that's OK since we don't
4393     // expect to see the same noexcept expression much more than once.
4394     Canonical = getCanonicalType(Existing);
4395     Unique = true;
4396   }
4397 
4398   bool NoexceptInType = getLangOpts().CPlusPlus17;
4399   bool IsCanonicalExceptionSpec =
4400       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4401 
4402   // Determine whether the type being created is already canonical or not.
4403   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4404                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4405   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4406     if (!ArgArray[i].isCanonicalAsParam())
4407       isCanonical = false;
4408 
4409   if (OnlyWantCanonical)
4410     assert(isCanonical &&
4411            "given non-canonical parameters constructing canonical type");
4412 
4413   // If this type isn't canonical, get the canonical version of it if we don't
4414   // already have it. The exception spec is only partially part of the
4415   // canonical type, and only in C++17 onwards.
4416   if (!isCanonical && Canonical.isNull()) {
4417     SmallVector<QualType, 16> CanonicalArgs;
4418     CanonicalArgs.reserve(NumArgs);
4419     for (unsigned i = 0; i != NumArgs; ++i)
4420       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4421 
4422     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4423     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4424     CanonicalEPI.HasTrailingReturn = false;
4425 
4426     if (IsCanonicalExceptionSpec) {
4427       // Exception spec is already OK.
4428     } else if (NoexceptInType) {
4429       switch (EPI.ExceptionSpec.Type) {
4430       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4431         // We don't know yet. It shouldn't matter what we pick here; no-one
4432         // should ever look at this.
4433         [[fallthrough]];
4434       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4435         CanonicalEPI.ExceptionSpec.Type = EST_None;
4436         break;
4437 
4438         // A dynamic exception specification is almost always "not noexcept",
4439         // with the exception that a pack expansion might expand to no types.
4440       case EST_Dynamic: {
4441         bool AnyPacks = false;
4442         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4443           if (ET->getAs<PackExpansionType>())
4444             AnyPacks = true;
4445           ExceptionTypeStorage.push_back(getCanonicalType(ET));
4446         }
4447         if (!AnyPacks)
4448           CanonicalEPI.ExceptionSpec.Type = EST_None;
4449         else {
4450           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4451           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4452         }
4453         break;
4454       }
4455 
4456       case EST_DynamicNone:
4457       case EST_BasicNoexcept:
4458       case EST_NoexceptTrue:
4459       case EST_NoThrow:
4460         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4461         break;
4462 
4463       case EST_DependentNoexcept:
4464         llvm_unreachable("dependent noexcept is already canonical");
4465       }
4466     } else {
4467       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4468     }
4469 
4470     // Adjust the canonical function result type.
4471     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4472     Canonical =
4473         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4474 
4475     // Get the new insert position for the node we care about.
4476     FunctionProtoType *NewIP =
4477       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4478     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4479   }
4480 
4481   // Compute the needed size to hold this FunctionProtoType and the
4482   // various trailing objects.
4483   auto ESH = FunctionProtoType::getExceptionSpecSize(
4484       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4485   size_t Size = FunctionProtoType::totalSizeToAlloc<
4486       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4487       FunctionType::ExceptionType, Expr *, FunctionDecl *,
4488       FunctionProtoType::ExtParameterInfo, Qualifiers>(
4489       NumArgs, EPI.Variadic, EPI.requiresFunctionProtoTypeExtraBitfields(),
4490       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4491       EPI.ExtParameterInfos ? NumArgs : 0,
4492       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4493 
4494   auto *FTP = (FunctionProtoType *)Allocate(Size, alignof(FunctionProtoType));
4495   FunctionProtoType::ExtProtoInfo newEPI = EPI;
4496   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4497   Types.push_back(FTP);
4498   if (!Unique)
4499     FunctionProtoTypes.InsertNode(FTP, InsertPos);
4500   return QualType(FTP, 0);
4501 }
4502 
4503 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4504   llvm::FoldingSetNodeID ID;
4505   PipeType::Profile(ID, T, ReadOnly);
4506 
4507   void *InsertPos = nullptr;
4508   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4509     return QualType(PT, 0);
4510 
4511   // If the pipe element type isn't canonical, this won't be a canonical type
4512   // either, so fill in the canonical type field.
4513   QualType Canonical;
4514   if (!T.isCanonical()) {
4515     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4516 
4517     // Get the new insert position for the node we care about.
4518     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4519     assert(!NewIP && "Shouldn't be in the map!");
4520     (void)NewIP;
4521   }
4522   auto *New = new (*this, alignof(PipeType)) PipeType(T, Canonical, ReadOnly);
4523   Types.push_back(New);
4524   PipeTypes.InsertNode(New, InsertPos);
4525   return QualType(New, 0);
4526 }
4527 
4528 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4529   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4530   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4531                          : Ty;
4532 }
4533 
4534 QualType ASTContext::getReadPipeType(QualType T) const {
4535   return getPipeType(T, true);
4536 }
4537 
4538 QualType ASTContext::getWritePipeType(QualType T) const {
4539   return getPipeType(T, false);
4540 }
4541 
4542 QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const {
4543   llvm::FoldingSetNodeID ID;
4544   BitIntType::Profile(ID, IsUnsigned, NumBits);
4545 
4546   void *InsertPos = nullptr;
4547   if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4548     return QualType(EIT, 0);
4549 
4550   auto *New = new (*this, alignof(BitIntType)) BitIntType(IsUnsigned, NumBits);
4551   BitIntTypes.InsertNode(New, InsertPos);
4552   Types.push_back(New);
4553   return QualType(New, 0);
4554 }
4555 
4556 QualType ASTContext::getDependentBitIntType(bool IsUnsigned,
4557                                             Expr *NumBitsExpr) const {
4558   assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4559   llvm::FoldingSetNodeID ID;
4560   DependentBitIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4561 
4562   void *InsertPos = nullptr;
4563   if (DependentBitIntType *Existing =
4564           DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4565     return QualType(Existing, 0);
4566 
4567   auto *New = new (*this, alignof(DependentBitIntType))
4568       DependentBitIntType(IsUnsigned, NumBitsExpr);
4569   DependentBitIntTypes.InsertNode(New, InsertPos);
4570 
4571   Types.push_back(New);
4572   return QualType(New, 0);
4573 }
4574 
4575 #ifndef NDEBUG
4576 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4577   if (!isa<CXXRecordDecl>(D)) return false;
4578   const auto *RD = cast<CXXRecordDecl>(D);
4579   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4580     return true;
4581   if (RD->getDescribedClassTemplate() &&
4582       !isa<ClassTemplateSpecializationDecl>(RD))
4583     return true;
4584   return false;
4585 }
4586 #endif
4587 
4588 /// getInjectedClassNameType - Return the unique reference to the
4589 /// injected class name type for the specified templated declaration.
4590 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4591                                               QualType TST) const {
4592   assert(NeedsInjectedClassNameType(Decl));
4593   if (Decl->TypeForDecl) {
4594     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4595   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4596     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4597     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4598     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4599   } else {
4600     Type *newType = new (*this, alignof(InjectedClassNameType))
4601         InjectedClassNameType(Decl, TST);
4602     Decl->TypeForDecl = newType;
4603     Types.push_back(newType);
4604   }
4605   return QualType(Decl->TypeForDecl, 0);
4606 }
4607 
4608 /// getTypeDeclType - Return the unique reference to the type for the
4609 /// specified type declaration.
4610 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4611   assert(Decl && "Passed null for Decl param");
4612   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4613 
4614   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4615     return getTypedefType(Typedef);
4616 
4617   assert(!isa<TemplateTypeParmDecl>(Decl) &&
4618          "Template type parameter types are always available.");
4619 
4620   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4621     assert(Record->isFirstDecl() && "struct/union has previous declaration");
4622     assert(!NeedsInjectedClassNameType(Record));
4623     return getRecordType(Record);
4624   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4625     assert(Enum->isFirstDecl() && "enum has previous declaration");
4626     return getEnumType(Enum);
4627   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4628     return getUnresolvedUsingType(Using);
4629   } else
4630     llvm_unreachable("TypeDecl without a type?");
4631 
4632   return QualType(Decl->TypeForDecl, 0);
4633 }
4634 
4635 /// getTypedefType - Return the unique reference to the type for the
4636 /// specified typedef name decl.
4637 QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4638                                     QualType Underlying) const {
4639   if (!Decl->TypeForDecl) {
4640     if (Underlying.isNull())
4641       Underlying = Decl->getUnderlyingType();
4642     auto *NewType = new (*this, alignof(TypedefType)) TypedefType(
4643         Type::Typedef, Decl, QualType(), getCanonicalType(Underlying));
4644     Decl->TypeForDecl = NewType;
4645     Types.push_back(NewType);
4646     return QualType(NewType, 0);
4647   }
4648   if (Underlying.isNull() || Decl->getUnderlyingType() == Underlying)
4649     return QualType(Decl->TypeForDecl, 0);
4650   assert(hasSameType(Decl->getUnderlyingType(), Underlying));
4651 
4652   llvm::FoldingSetNodeID ID;
4653   TypedefType::Profile(ID, Decl, Underlying);
4654 
4655   void *InsertPos = nullptr;
4656   if (TypedefType *T = TypedefTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4657     assert(!T->typeMatchesDecl() &&
4658            "non-divergent case should be handled with TypeDecl");
4659     return QualType(T, 0);
4660   }
4661 
4662   void *Mem = Allocate(TypedefType::totalSizeToAlloc<QualType>(true),
4663                        alignof(TypedefType));
4664   auto *NewType = new (Mem) TypedefType(Type::Typedef, Decl, Underlying,
4665                                         getCanonicalType(Underlying));
4666   TypedefTypes.InsertNode(NewType, InsertPos);
4667   Types.push_back(NewType);
4668   return QualType(NewType, 0);
4669 }
4670 
4671 QualType ASTContext::getUsingType(const UsingShadowDecl *Found,
4672                                   QualType Underlying) const {
4673   llvm::FoldingSetNodeID ID;
4674   UsingType::Profile(ID, Found, Underlying);
4675 
4676   void *InsertPos = nullptr;
4677   if (UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos))
4678     return QualType(T, 0);
4679 
4680   const Type *TypeForDecl =
4681       cast<TypeDecl>(Found->getTargetDecl())->getTypeForDecl();
4682 
4683   assert(!Underlying.hasLocalQualifiers());
4684   QualType Canon = Underlying->getCanonicalTypeInternal();
4685   assert(TypeForDecl->getCanonicalTypeInternal() == Canon);
4686 
4687   if (Underlying.getTypePtr() == TypeForDecl)
4688     Underlying = QualType();
4689   void *Mem =
4690       Allocate(UsingType::totalSizeToAlloc<QualType>(!Underlying.isNull()),
4691                alignof(UsingType));
4692   UsingType *NewType = new (Mem) UsingType(Found, Underlying, Canon);
4693   Types.push_back(NewType);
4694   UsingTypes.InsertNode(NewType, InsertPos);
4695   return QualType(NewType, 0);
4696 }
4697 
4698 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4699   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4700 
4701   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4702     if (PrevDecl->TypeForDecl)
4703       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4704 
4705   auto *newType = new (*this, alignof(RecordType)) RecordType(Decl);
4706   Decl->TypeForDecl = newType;
4707   Types.push_back(newType);
4708   return QualType(newType, 0);
4709 }
4710 
4711 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4712   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4713 
4714   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4715     if (PrevDecl->TypeForDecl)
4716       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4717 
4718   auto *newType = new (*this, alignof(EnumType)) EnumType(Decl);
4719   Decl->TypeForDecl = newType;
4720   Types.push_back(newType);
4721   return QualType(newType, 0);
4722 }
4723 
4724 QualType ASTContext::getUnresolvedUsingType(
4725     const UnresolvedUsingTypenameDecl *Decl) const {
4726   if (Decl->TypeForDecl)
4727     return QualType(Decl->TypeForDecl, 0);
4728 
4729   if (const UnresolvedUsingTypenameDecl *CanonicalDecl =
4730           Decl->getCanonicalDecl())
4731     if (CanonicalDecl->TypeForDecl)
4732       return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0);
4733 
4734   Type *newType =
4735       new (*this, alignof(UnresolvedUsingType)) UnresolvedUsingType(Decl);
4736   Decl->TypeForDecl = newType;
4737   Types.push_back(newType);
4738   return QualType(newType, 0);
4739 }
4740 
4741 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4742                                        QualType modifiedType,
4743                                        QualType equivalentType) const {
4744   llvm::FoldingSetNodeID id;
4745   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4746 
4747   void *insertPos = nullptr;
4748   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4749   if (type) return QualType(type, 0);
4750 
4751   QualType canon = getCanonicalType(equivalentType);
4752   type = new (*this, alignof(AttributedType))
4753       AttributedType(canon, attrKind, modifiedType, equivalentType);
4754 
4755   Types.push_back(type);
4756   AttributedTypes.InsertNode(type, insertPos);
4757 
4758   return QualType(type, 0);
4759 }
4760 
4761 QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
4762                                              QualType Wrapped) {
4763   llvm::FoldingSetNodeID ID;
4764   BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr);
4765 
4766   void *InsertPos = nullptr;
4767   BTFTagAttributedType *Ty =
4768       BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos);
4769   if (Ty)
4770     return QualType(Ty, 0);
4771 
4772   QualType Canon = getCanonicalType(Wrapped);
4773   Ty = new (*this, alignof(BTFTagAttributedType))
4774       BTFTagAttributedType(Canon, Wrapped, BTFAttr);
4775 
4776   Types.push_back(Ty);
4777   BTFTagAttributedTypes.InsertNode(Ty, InsertPos);
4778 
4779   return QualType(Ty, 0);
4780 }
4781 
4782 /// Retrieve a substitution-result type.
4783 QualType ASTContext::getSubstTemplateTypeParmType(
4784     QualType Replacement, Decl *AssociatedDecl, unsigned Index,
4785     std::optional<unsigned> PackIndex) const {
4786   llvm::FoldingSetNodeID ID;
4787   SubstTemplateTypeParmType::Profile(ID, Replacement, AssociatedDecl, Index,
4788                                      PackIndex);
4789   void *InsertPos = nullptr;
4790   SubstTemplateTypeParmType *SubstParm =
4791       SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4792 
4793   if (!SubstParm) {
4794     void *Mem = Allocate(SubstTemplateTypeParmType::totalSizeToAlloc<QualType>(
4795                              !Replacement.isCanonical()),
4796                          alignof(SubstTemplateTypeParmType));
4797     SubstParm = new (Mem) SubstTemplateTypeParmType(Replacement, AssociatedDecl,
4798                                                     Index, PackIndex);
4799     Types.push_back(SubstParm);
4800     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4801   }
4802 
4803   return QualType(SubstParm, 0);
4804 }
4805 
4806 /// Retrieve a
4807 QualType
4808 ASTContext::getSubstTemplateTypeParmPackType(Decl *AssociatedDecl,
4809                                              unsigned Index, bool Final,
4810                                              const TemplateArgument &ArgPack) {
4811 #ifndef NDEBUG
4812   for (const auto &P : ArgPack.pack_elements())
4813     assert(P.getKind() == TemplateArgument::Type && "Pack contains a non-type");
4814 #endif
4815 
4816   llvm::FoldingSetNodeID ID;
4817   SubstTemplateTypeParmPackType::Profile(ID, AssociatedDecl, Index, Final,
4818                                          ArgPack);
4819   void *InsertPos = nullptr;
4820   if (SubstTemplateTypeParmPackType *SubstParm =
4821           SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4822     return QualType(SubstParm, 0);
4823 
4824   QualType Canon;
4825   {
4826     TemplateArgument CanonArgPack = getCanonicalTemplateArgument(ArgPack);
4827     if (!AssociatedDecl->isCanonicalDecl() ||
4828         !CanonArgPack.structurallyEquals(ArgPack)) {
4829       Canon = getSubstTemplateTypeParmPackType(
4830           AssociatedDecl->getCanonicalDecl(), Index, Final, CanonArgPack);
4831       [[maybe_unused]] const auto *Nothing =
4832           SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4833       assert(!Nothing);
4834     }
4835   }
4836 
4837   auto *SubstParm = new (*this, alignof(SubstTemplateTypeParmPackType))
4838       SubstTemplateTypeParmPackType(Canon, AssociatedDecl, Index, Final,
4839                                     ArgPack);
4840   Types.push_back(SubstParm);
4841   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4842   return QualType(SubstParm, 0);
4843 }
4844 
4845 /// Retrieve the template type parameter type for a template
4846 /// parameter or parameter pack with the given depth, index, and (optionally)
4847 /// name.
4848 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4849                                              bool ParameterPack,
4850                                              TemplateTypeParmDecl *TTPDecl) const {
4851   llvm::FoldingSetNodeID ID;
4852   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4853   void *InsertPos = nullptr;
4854   TemplateTypeParmType *TypeParm
4855     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4856 
4857   if (TypeParm)
4858     return QualType(TypeParm, 0);
4859 
4860   if (TTPDecl) {
4861     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4862     TypeParm = new (*this, alignof(TemplateTypeParmType))
4863         TemplateTypeParmType(TTPDecl, Canon);
4864 
4865     TemplateTypeParmType *TypeCheck
4866       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4867     assert(!TypeCheck && "Template type parameter canonical type broken");
4868     (void)TypeCheck;
4869   } else
4870     TypeParm = new (*this, alignof(TemplateTypeParmType))
4871         TemplateTypeParmType(Depth, Index, ParameterPack);
4872 
4873   Types.push_back(TypeParm);
4874   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4875 
4876   return QualType(TypeParm, 0);
4877 }
4878 
4879 TypeSourceInfo *
4880 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4881                                               SourceLocation NameLoc,
4882                                         const TemplateArgumentListInfo &Args,
4883                                               QualType Underlying) const {
4884   assert(!Name.getAsDependentTemplateName() &&
4885          "No dependent template names here!");
4886   QualType TST =
4887       getTemplateSpecializationType(Name, Args.arguments(), Underlying);
4888 
4889   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4890   TemplateSpecializationTypeLoc TL =
4891       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4892   TL.setTemplateKeywordLoc(SourceLocation());
4893   TL.setTemplateNameLoc(NameLoc);
4894   TL.setLAngleLoc(Args.getLAngleLoc());
4895   TL.setRAngleLoc(Args.getRAngleLoc());
4896   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4897     TL.setArgLocInfo(i, Args[i].getLocInfo());
4898   return DI;
4899 }
4900 
4901 QualType
4902 ASTContext::getTemplateSpecializationType(TemplateName Template,
4903                                           ArrayRef<TemplateArgumentLoc> Args,
4904                                           QualType Underlying) const {
4905   assert(!Template.getAsDependentTemplateName() &&
4906          "No dependent template names here!");
4907 
4908   SmallVector<TemplateArgument, 4> ArgVec;
4909   ArgVec.reserve(Args.size());
4910   for (const TemplateArgumentLoc &Arg : Args)
4911     ArgVec.push_back(Arg.getArgument());
4912 
4913   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4914 }
4915 
4916 #ifndef NDEBUG
4917 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4918   for (const TemplateArgument &Arg : Args)
4919     if (Arg.isPackExpansion())
4920       return true;
4921 
4922   return true;
4923 }
4924 #endif
4925 
4926 QualType
4927 ASTContext::getTemplateSpecializationType(TemplateName Template,
4928                                           ArrayRef<TemplateArgument> Args,
4929                                           QualType Underlying) const {
4930   assert(!Template.getAsDependentTemplateName() &&
4931          "No dependent template names here!");
4932   // Look through qualified template names.
4933   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4934     Template = QTN->getUnderlyingTemplate();
4935 
4936   const auto *TD = Template.getAsTemplateDecl();
4937   bool IsTypeAlias = TD && TD->isTypeAlias();
4938   QualType CanonType;
4939   if (!Underlying.isNull())
4940     CanonType = getCanonicalType(Underlying);
4941   else {
4942     // We can get here with an alias template when the specialization contains
4943     // a pack expansion that does not match up with a parameter pack.
4944     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4945            "Caller must compute aliased type");
4946     IsTypeAlias = false;
4947     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4948   }
4949 
4950   // Allocate the (non-canonical) template specialization type, but don't
4951   // try to unique it: these types typically have location information that
4952   // we don't unique and don't want to lose.
4953   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4954                            sizeof(TemplateArgument) * Args.size() +
4955                            (IsTypeAlias ? sizeof(QualType) : 0),
4956                        alignof(TemplateSpecializationType));
4957   auto *Spec
4958     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4959                                          IsTypeAlias ? Underlying : QualType());
4960 
4961   Types.push_back(Spec);
4962   return QualType(Spec, 0);
4963 }
4964 
4965 QualType ASTContext::getCanonicalTemplateSpecializationType(
4966     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4967   assert(!Template.getAsDependentTemplateName() &&
4968          "No dependent template names here!");
4969 
4970   // Look through qualified template names.
4971   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4972     Template = TemplateName(QTN->getUnderlyingTemplate());
4973 
4974   // Build the canonical template specialization type.
4975   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4976   bool AnyNonCanonArgs = false;
4977   auto CanonArgs =
4978       ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs);
4979 
4980   // Determine whether this canonical template specialization type already
4981   // exists.
4982   llvm::FoldingSetNodeID ID;
4983   TemplateSpecializationType::Profile(ID, CanonTemplate,
4984                                       CanonArgs, *this);
4985 
4986   void *InsertPos = nullptr;
4987   TemplateSpecializationType *Spec
4988     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4989 
4990   if (!Spec) {
4991     // Allocate a new canonical template specialization type.
4992     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4993                           sizeof(TemplateArgument) * CanonArgs.size()),
4994                          alignof(TemplateSpecializationType));
4995     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4996                                                 CanonArgs,
4997                                                 QualType(), QualType());
4998     Types.push_back(Spec);
4999     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
5000   }
5001 
5002   assert(Spec->isDependentType() &&
5003          "Non-dependent template-id type must have a canonical type");
5004   return QualType(Spec, 0);
5005 }
5006 
5007 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
5008                                        NestedNameSpecifier *NNS,
5009                                        QualType NamedType,
5010                                        TagDecl *OwnedTagDecl) const {
5011   llvm::FoldingSetNodeID ID;
5012   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
5013 
5014   void *InsertPos = nullptr;
5015   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
5016   if (T)
5017     return QualType(T, 0);
5018 
5019   QualType Canon = NamedType;
5020   if (!Canon.isCanonical()) {
5021     Canon = getCanonicalType(NamedType);
5022     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
5023     assert(!CheckT && "Elaborated canonical type broken");
5024     (void)CheckT;
5025   }
5026 
5027   void *Mem =
5028       Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
5029                alignof(ElaboratedType));
5030   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
5031 
5032   Types.push_back(T);
5033   ElaboratedTypes.InsertNode(T, InsertPos);
5034   return QualType(T, 0);
5035 }
5036 
5037 QualType
5038 ASTContext::getParenType(QualType InnerType) const {
5039   llvm::FoldingSetNodeID ID;
5040   ParenType::Profile(ID, InnerType);
5041 
5042   void *InsertPos = nullptr;
5043   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5044   if (T)
5045     return QualType(T, 0);
5046 
5047   QualType Canon = InnerType;
5048   if (!Canon.isCanonical()) {
5049     Canon = getCanonicalType(InnerType);
5050     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5051     assert(!CheckT && "Paren canonical type broken");
5052     (void)CheckT;
5053   }
5054 
5055   T = new (*this, alignof(ParenType)) ParenType(InnerType, Canon);
5056   Types.push_back(T);
5057   ParenTypes.InsertNode(T, InsertPos);
5058   return QualType(T, 0);
5059 }
5060 
5061 QualType
5062 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
5063                                   const IdentifierInfo *MacroII) const {
5064   QualType Canon = UnderlyingTy;
5065   if (!Canon.isCanonical())
5066     Canon = getCanonicalType(UnderlyingTy);
5067 
5068   auto *newType = new (*this, alignof(MacroQualifiedType))
5069       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
5070   Types.push_back(newType);
5071   return QualType(newType, 0);
5072 }
5073 
5074 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
5075                                           NestedNameSpecifier *NNS,
5076                                           const IdentifierInfo *Name,
5077                                           QualType Canon) const {
5078   if (Canon.isNull()) {
5079     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5080     if (CanonNNS != NNS)
5081       Canon = getDependentNameType(Keyword, CanonNNS, Name);
5082   }
5083 
5084   llvm::FoldingSetNodeID ID;
5085   DependentNameType::Profile(ID, Keyword, NNS, Name);
5086 
5087   void *InsertPos = nullptr;
5088   DependentNameType *T
5089     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
5090   if (T)
5091     return QualType(T, 0);
5092 
5093   T = new (*this, alignof(DependentNameType))
5094       DependentNameType(Keyword, NNS, Name, Canon);
5095   Types.push_back(T);
5096   DependentNameTypes.InsertNode(T, InsertPos);
5097   return QualType(T, 0);
5098 }
5099 
5100 QualType ASTContext::getDependentTemplateSpecializationType(
5101     ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5102     const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const {
5103   // TODO: avoid this copy
5104   SmallVector<TemplateArgument, 16> ArgCopy;
5105   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5106     ArgCopy.push_back(Args[I].getArgument());
5107   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
5108 }
5109 
5110 QualType
5111 ASTContext::getDependentTemplateSpecializationType(
5112                                  ElaboratedTypeKeyword Keyword,
5113                                  NestedNameSpecifier *NNS,
5114                                  const IdentifierInfo *Name,
5115                                  ArrayRef<TemplateArgument> Args) const {
5116   assert((!NNS || NNS->isDependent()) &&
5117          "nested-name-specifier must be dependent");
5118 
5119   llvm::FoldingSetNodeID ID;
5120   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
5121                                                Name, Args);
5122 
5123   void *InsertPos = nullptr;
5124   DependentTemplateSpecializationType *T
5125     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5126   if (T)
5127     return QualType(T, 0);
5128 
5129   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5130 
5131   ElaboratedTypeKeyword CanonKeyword = Keyword;
5132   if (Keyword == ElaboratedTypeKeyword::None)
5133     CanonKeyword = ElaboratedTypeKeyword::Typename;
5134 
5135   bool AnyNonCanonArgs = false;
5136   auto CanonArgs =
5137       ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs);
5138 
5139   QualType Canon;
5140   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
5141     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
5142                                                    Name,
5143                                                    CanonArgs);
5144 
5145     // Find the insert position again.
5146     [[maybe_unused]] auto *Nothing =
5147         DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5148     assert(!Nothing && "canonical type broken");
5149   }
5150 
5151   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
5152                         sizeof(TemplateArgument) * Args.size()),
5153                        alignof(DependentTemplateSpecializationType));
5154   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
5155                                                     Name, Args, Canon);
5156   Types.push_back(T);
5157   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
5158   return QualType(T, 0);
5159 }
5160 
5161 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
5162   TemplateArgument Arg;
5163   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5164     QualType ArgType = getTypeDeclType(TTP);
5165     if (TTP->isParameterPack())
5166       ArgType = getPackExpansionType(ArgType, std::nullopt);
5167 
5168     Arg = TemplateArgument(ArgType);
5169   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5170     QualType T =
5171         NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
5172     // For class NTTPs, ensure we include the 'const' so the type matches that
5173     // of a real template argument.
5174     // FIXME: It would be more faithful to model this as something like an
5175     // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
5176     if (T->isRecordType())
5177       T.addConst();
5178     Expr *E = new (*this) DeclRefExpr(
5179         *this, NTTP, /*RefersToEnclosingVariableOrCapture*/ false, T,
5180         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
5181 
5182     if (NTTP->isParameterPack())
5183       E = new (*this)
5184           PackExpansionExpr(DependentTy, E, NTTP->getLocation(), std::nullopt);
5185     Arg = TemplateArgument(E);
5186   } else {
5187     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
5188     if (TTP->isParameterPack())
5189       Arg = TemplateArgument(TemplateName(TTP), std::optional<unsigned>());
5190     else
5191       Arg = TemplateArgument(TemplateName(TTP));
5192   }
5193 
5194   if (Param->isTemplateParameterPack())
5195     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
5196 
5197   return Arg;
5198 }
5199 
5200 void
5201 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
5202                                     SmallVectorImpl<TemplateArgument> &Args) {
5203   Args.reserve(Args.size() + Params->size());
5204 
5205   for (NamedDecl *Param : *Params)
5206     Args.push_back(getInjectedTemplateArg(Param));
5207 }
5208 
5209 QualType ASTContext::getPackExpansionType(QualType Pattern,
5210                                           std::optional<unsigned> NumExpansions,
5211                                           bool ExpectPackInType) {
5212   assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
5213          "Pack expansions must expand one or more parameter packs");
5214 
5215   llvm::FoldingSetNodeID ID;
5216   PackExpansionType::Profile(ID, Pattern, NumExpansions);
5217 
5218   void *InsertPos = nullptr;
5219   PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5220   if (T)
5221     return QualType(T, 0);
5222 
5223   QualType Canon;
5224   if (!Pattern.isCanonical()) {
5225     Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
5226                                  /*ExpectPackInType=*/false);
5227 
5228     // Find the insert position again, in case we inserted an element into
5229     // PackExpansionTypes and invalidated our insert position.
5230     PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5231   }
5232 
5233   T = new (*this, alignof(PackExpansionType))
5234       PackExpansionType(Pattern, Canon, NumExpansions);
5235   Types.push_back(T);
5236   PackExpansionTypes.InsertNode(T, InsertPos);
5237   return QualType(T, 0);
5238 }
5239 
5240 /// CmpProtocolNames - Comparison predicate for sorting protocols
5241 /// alphabetically.
5242 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
5243                             ObjCProtocolDecl *const *RHS) {
5244   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
5245 }
5246 
5247 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
5248   if (Protocols.empty()) return true;
5249 
5250   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
5251     return false;
5252 
5253   for (unsigned i = 1; i != Protocols.size(); ++i)
5254     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
5255         Protocols[i]->getCanonicalDecl() != Protocols[i])
5256       return false;
5257   return true;
5258 }
5259 
5260 static void
5261 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
5262   // Sort protocols, keyed by name.
5263   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
5264 
5265   // Canonicalize.
5266   for (ObjCProtocolDecl *&P : Protocols)
5267     P = P->getCanonicalDecl();
5268 
5269   // Remove duplicates.
5270   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
5271   Protocols.erase(ProtocolsEnd, Protocols.end());
5272 }
5273 
5274 QualType ASTContext::getObjCObjectType(QualType BaseType,
5275                                        ObjCProtocolDecl * const *Protocols,
5276                                        unsigned NumProtocols) const {
5277   return getObjCObjectType(BaseType, {},
5278                            llvm::ArrayRef(Protocols, NumProtocols),
5279                            /*isKindOf=*/false);
5280 }
5281 
5282 QualType ASTContext::getObjCObjectType(
5283            QualType baseType,
5284            ArrayRef<QualType> typeArgs,
5285            ArrayRef<ObjCProtocolDecl *> protocols,
5286            bool isKindOf) const {
5287   // If the base type is an interface and there aren't any protocols or
5288   // type arguments to add, then the interface type will do just fine.
5289   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5290       isa<ObjCInterfaceType>(baseType))
5291     return baseType;
5292 
5293   // Look in the folding set for an existing type.
5294   llvm::FoldingSetNodeID ID;
5295   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5296   void *InsertPos = nullptr;
5297   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5298     return QualType(QT, 0);
5299 
5300   // Determine the type arguments to be used for canonicalization,
5301   // which may be explicitly specified here or written on the base
5302   // type.
5303   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5304   if (effectiveTypeArgs.empty()) {
5305     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5306       effectiveTypeArgs = baseObject->getTypeArgs();
5307   }
5308 
5309   // Build the canonical type, which has the canonical base type and a
5310   // sorted-and-uniqued list of protocols and the type arguments
5311   // canonicalized.
5312   QualType canonical;
5313   bool typeArgsAreCanonical = llvm::all_of(
5314       effectiveTypeArgs, [&](QualType type) { return type.isCanonical(); });
5315   bool protocolsSorted = areSortedAndUniqued(protocols);
5316   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5317     // Determine the canonical type arguments.
5318     ArrayRef<QualType> canonTypeArgs;
5319     SmallVector<QualType, 4> canonTypeArgsVec;
5320     if (!typeArgsAreCanonical) {
5321       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5322       for (auto typeArg : effectiveTypeArgs)
5323         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5324       canonTypeArgs = canonTypeArgsVec;
5325     } else {
5326       canonTypeArgs = effectiveTypeArgs;
5327     }
5328 
5329     ArrayRef<ObjCProtocolDecl *> canonProtocols;
5330     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5331     if (!protocolsSorted) {
5332       canonProtocolsVec.append(protocols.begin(), protocols.end());
5333       SortAndUniqueProtocols(canonProtocolsVec);
5334       canonProtocols = canonProtocolsVec;
5335     } else {
5336       canonProtocols = protocols;
5337     }
5338 
5339     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5340                                   canonProtocols, isKindOf);
5341 
5342     // Regenerate InsertPos.
5343     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5344   }
5345 
5346   unsigned size = sizeof(ObjCObjectTypeImpl);
5347   size += typeArgs.size() * sizeof(QualType);
5348   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5349   void *mem = Allocate(size, alignof(ObjCObjectTypeImpl));
5350   auto *T =
5351     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5352                                  isKindOf);
5353 
5354   Types.push_back(T);
5355   ObjCObjectTypes.InsertNode(T, InsertPos);
5356   return QualType(T, 0);
5357 }
5358 
5359 /// Apply Objective-C protocol qualifiers to the given type.
5360 /// If this is for the canonical type of a type parameter, we can apply
5361 /// protocol qualifiers on the ObjCObjectPointerType.
5362 QualType
5363 ASTContext::applyObjCProtocolQualifiers(QualType type,
5364                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5365                   bool allowOnPointerType) const {
5366   hasError = false;
5367 
5368   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5369     return getObjCTypeParamType(objT->getDecl(), protocols);
5370   }
5371 
5372   // Apply protocol qualifiers to ObjCObjectPointerType.
5373   if (allowOnPointerType) {
5374     if (const auto *objPtr =
5375             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5376       const ObjCObjectType *objT = objPtr->getObjectType();
5377       // Merge protocol lists and construct ObjCObjectType.
5378       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5379       protocolsVec.append(objT->qual_begin(),
5380                           objT->qual_end());
5381       protocolsVec.append(protocols.begin(), protocols.end());
5382       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5383       type = getObjCObjectType(
5384              objT->getBaseType(),
5385              objT->getTypeArgsAsWritten(),
5386              protocols,
5387              objT->isKindOfTypeAsWritten());
5388       return getObjCObjectPointerType(type);
5389     }
5390   }
5391 
5392   // Apply protocol qualifiers to ObjCObjectType.
5393   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5394     // FIXME: Check for protocols to which the class type is already
5395     // known to conform.
5396 
5397     return getObjCObjectType(objT->getBaseType(),
5398                              objT->getTypeArgsAsWritten(),
5399                              protocols,
5400                              objT->isKindOfTypeAsWritten());
5401   }
5402 
5403   // If the canonical type is ObjCObjectType, ...
5404   if (type->isObjCObjectType()) {
5405     // Silently overwrite any existing protocol qualifiers.
5406     // TODO: determine whether that's the right thing to do.
5407 
5408     // FIXME: Check for protocols to which the class type is already
5409     // known to conform.
5410     return getObjCObjectType(type, {}, protocols, false);
5411   }
5412 
5413   // id<protocol-list>
5414   if (type->isObjCIdType()) {
5415     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5416     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5417                                  objPtr->isKindOfType());
5418     return getObjCObjectPointerType(type);
5419   }
5420 
5421   // Class<protocol-list>
5422   if (type->isObjCClassType()) {
5423     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5424     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5425                                  objPtr->isKindOfType());
5426     return getObjCObjectPointerType(type);
5427   }
5428 
5429   hasError = true;
5430   return type;
5431 }
5432 
5433 QualType
5434 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5435                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
5436   // Look in the folding set for an existing type.
5437   llvm::FoldingSetNodeID ID;
5438   ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5439   void *InsertPos = nullptr;
5440   if (ObjCTypeParamType *TypeParam =
5441       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5442     return QualType(TypeParam, 0);
5443 
5444   // We canonicalize to the underlying type.
5445   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5446   if (!protocols.empty()) {
5447     // Apply the protocol qualifers.
5448     bool hasError;
5449     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5450         Canonical, protocols, hasError, true /*allowOnPointerType*/));
5451     assert(!hasError && "Error when apply protocol qualifier to bound type");
5452   }
5453 
5454   unsigned size = sizeof(ObjCTypeParamType);
5455   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5456   void *mem = Allocate(size, alignof(ObjCTypeParamType));
5457   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5458 
5459   Types.push_back(newType);
5460   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5461   return QualType(newType, 0);
5462 }
5463 
5464 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5465                                               ObjCTypeParamDecl *New) const {
5466   New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5467   // Update TypeForDecl after updating TypeSourceInfo.
5468   auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5469   SmallVector<ObjCProtocolDecl *, 8> protocols;
5470   protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5471   QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5472   New->setTypeForDecl(UpdatedTy.getTypePtr());
5473 }
5474 
5475 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5476 /// protocol list adopt all protocols in QT's qualified-id protocol
5477 /// list.
5478 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5479                                                 ObjCInterfaceDecl *IC) {
5480   if (!QT->isObjCQualifiedIdType())
5481     return false;
5482 
5483   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5484     // If both the right and left sides have qualifiers.
5485     for (auto *Proto : OPT->quals()) {
5486       if (!IC->ClassImplementsProtocol(Proto, false))
5487         return false;
5488     }
5489     return true;
5490   }
5491   return false;
5492 }
5493 
5494 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5495 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
5496 /// of protocols.
5497 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5498                                                 ObjCInterfaceDecl *IDecl) {
5499   if (!QT->isObjCQualifiedIdType())
5500     return false;
5501   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5502   if (!OPT)
5503     return false;
5504   if (!IDecl->hasDefinition())
5505     return false;
5506   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5507   CollectInheritedProtocols(IDecl, InheritedProtocols);
5508   if (InheritedProtocols.empty())
5509     return false;
5510   // Check that if every protocol in list of id<plist> conforms to a protocol
5511   // of IDecl's, then bridge casting is ok.
5512   bool Conforms = false;
5513   for (auto *Proto : OPT->quals()) {
5514     Conforms = false;
5515     for (auto *PI : InheritedProtocols) {
5516       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5517         Conforms = true;
5518         break;
5519       }
5520     }
5521     if (!Conforms)
5522       break;
5523   }
5524   if (Conforms)
5525     return true;
5526 
5527   for (auto *PI : InheritedProtocols) {
5528     // If both the right and left sides have qualifiers.
5529     bool Adopts = false;
5530     for (auto *Proto : OPT->quals()) {
5531       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5532       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5533         break;
5534     }
5535     if (!Adopts)
5536       return false;
5537   }
5538   return true;
5539 }
5540 
5541 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5542 /// the given object type.
5543 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5544   llvm::FoldingSetNodeID ID;
5545   ObjCObjectPointerType::Profile(ID, ObjectT);
5546 
5547   void *InsertPos = nullptr;
5548   if (ObjCObjectPointerType *QT =
5549               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5550     return QualType(QT, 0);
5551 
5552   // Find the canonical object type.
5553   QualType Canonical;
5554   if (!ObjectT.isCanonical()) {
5555     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5556 
5557     // Regenerate InsertPos.
5558     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5559   }
5560 
5561   // No match.
5562   void *Mem =
5563       Allocate(sizeof(ObjCObjectPointerType), alignof(ObjCObjectPointerType));
5564   auto *QType =
5565     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5566 
5567   Types.push_back(QType);
5568   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5569   return QualType(QType, 0);
5570 }
5571 
5572 /// getObjCInterfaceType - Return the unique reference to the type for the
5573 /// specified ObjC interface decl. The list of protocols is optional.
5574 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5575                                           ObjCInterfaceDecl *PrevDecl) const {
5576   if (Decl->TypeForDecl)
5577     return QualType(Decl->TypeForDecl, 0);
5578 
5579   if (PrevDecl) {
5580     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5581     Decl->TypeForDecl = PrevDecl->TypeForDecl;
5582     return QualType(PrevDecl->TypeForDecl, 0);
5583   }
5584 
5585   // Prefer the definition, if there is one.
5586   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5587     Decl = Def;
5588 
5589   void *Mem = Allocate(sizeof(ObjCInterfaceType), alignof(ObjCInterfaceType));
5590   auto *T = new (Mem) ObjCInterfaceType(Decl);
5591   Decl->TypeForDecl = T;
5592   Types.push_back(T);
5593   return QualType(T, 0);
5594 }
5595 
5596 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5597 /// TypeOfExprType AST's (since expression's are never shared). For example,
5598 /// multiple declarations that refer to "typeof(x)" all contain different
5599 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5600 /// on canonical type's (which are always unique).
5601 QualType ASTContext::getTypeOfExprType(Expr *tofExpr, TypeOfKind Kind) const {
5602   TypeOfExprType *toe;
5603   if (tofExpr->isTypeDependent()) {
5604     llvm::FoldingSetNodeID ID;
5605     DependentTypeOfExprType::Profile(ID, *this, tofExpr,
5606                                      Kind == TypeOfKind::Unqualified);
5607 
5608     void *InsertPos = nullptr;
5609     DependentTypeOfExprType *Canon =
5610         DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5611     if (Canon) {
5612       // We already have a "canonical" version of an identical, dependent
5613       // typeof(expr) type. Use that as our canonical type.
5614       toe = new (*this, alignof(TypeOfExprType))
5615           TypeOfExprType(tofExpr, Kind, QualType((TypeOfExprType *)Canon, 0));
5616     } else {
5617       // Build a new, canonical typeof(expr) type.
5618       Canon = new (*this, alignof(DependentTypeOfExprType))
5619           DependentTypeOfExprType(tofExpr, Kind);
5620       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5621       toe = Canon;
5622     }
5623   } else {
5624     QualType Canonical = getCanonicalType(tofExpr->getType());
5625     toe = new (*this, alignof(TypeOfExprType))
5626         TypeOfExprType(tofExpr, Kind, Canonical);
5627   }
5628   Types.push_back(toe);
5629   return QualType(toe, 0);
5630 }
5631 
5632 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5633 /// TypeOfType nodes. The only motivation to unique these nodes would be
5634 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5635 /// an issue. This doesn't affect the type checker, since it operates
5636 /// on canonical types (which are always unique).
5637 QualType ASTContext::getTypeOfType(QualType tofType, TypeOfKind Kind) const {
5638   QualType Canonical = getCanonicalType(tofType);
5639   auto *tot =
5640       new (*this, alignof(TypeOfType)) TypeOfType(tofType, Canonical, Kind);
5641   Types.push_back(tot);
5642   return QualType(tot, 0);
5643 }
5644 
5645 /// getReferenceQualifiedType - Given an expr, will return the type for
5646 /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions
5647 /// and class member access into account.
5648 QualType ASTContext::getReferenceQualifiedType(const Expr *E) const {
5649   // C++11 [dcl.type.simple]p4:
5650   //   [...]
5651   QualType T = E->getType();
5652   switch (E->getValueKind()) {
5653   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5654   //       type of e;
5655   case VK_XValue:
5656     return getRValueReferenceType(T);
5657   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5658   //       type of e;
5659   case VK_LValue:
5660     return getLValueReferenceType(T);
5661   //  - otherwise, decltype(e) is the type of e.
5662   case VK_PRValue:
5663     return T;
5664   }
5665   llvm_unreachable("Unknown value kind");
5666 }
5667 
5668 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5669 /// nodes. This would never be helpful, since each such type has its own
5670 /// expression, and would not give a significant memory saving, since there
5671 /// is an Expr tree under each such type.
5672 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5673   DecltypeType *dt;
5674 
5675   // C++11 [temp.type]p2:
5676   //   If an expression e involves a template parameter, decltype(e) denotes a
5677   //   unique dependent type. Two such decltype-specifiers refer to the same
5678   //   type only if their expressions are equivalent (14.5.6.1).
5679   if (e->isInstantiationDependent()) {
5680     llvm::FoldingSetNodeID ID;
5681     DependentDecltypeType::Profile(ID, *this, e);
5682 
5683     void *InsertPos = nullptr;
5684     DependentDecltypeType *Canon
5685       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5686     if (!Canon) {
5687       // Build a new, canonical decltype(expr) type.
5688       Canon = new (*this, alignof(DependentDecltypeType))
5689           DependentDecltypeType(e, DependentTy);
5690       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5691     }
5692     dt = new (*this, alignof(DecltypeType))
5693         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5694   } else {
5695     dt = new (*this, alignof(DecltypeType))
5696         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5697   }
5698   Types.push_back(dt);
5699   return QualType(dt, 0);
5700 }
5701 
5702 /// getUnaryTransformationType - We don't unique these, since the memory
5703 /// savings are minimal and these are rare.
5704 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5705                                            QualType UnderlyingType,
5706                                            UnaryTransformType::UTTKind Kind)
5707     const {
5708   UnaryTransformType *ut = nullptr;
5709 
5710   if (BaseType->isDependentType()) {
5711     // Look in the folding set for an existing type.
5712     llvm::FoldingSetNodeID ID;
5713     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5714 
5715     void *InsertPos = nullptr;
5716     DependentUnaryTransformType *Canon
5717       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5718 
5719     if (!Canon) {
5720       // Build a new, canonical __underlying_type(type) type.
5721       Canon = new (*this, alignof(DependentUnaryTransformType))
5722           DependentUnaryTransformType(*this, getCanonicalType(BaseType), Kind);
5723       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5724     }
5725     ut = new (*this, alignof(UnaryTransformType))
5726         UnaryTransformType(BaseType, QualType(), Kind, QualType(Canon, 0));
5727   } else {
5728     QualType CanonType = getCanonicalType(UnderlyingType);
5729     ut = new (*this, alignof(UnaryTransformType))
5730         UnaryTransformType(BaseType, UnderlyingType, Kind, CanonType);
5731   }
5732   Types.push_back(ut);
5733   return QualType(ut, 0);
5734 }
5735 
5736 QualType ASTContext::getAutoTypeInternal(
5737     QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent,
5738     bool IsPack, ConceptDecl *TypeConstraintConcept,
5739     ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const {
5740   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5741       !TypeConstraintConcept && !IsDependent)
5742     return getAutoDeductType();
5743 
5744   // Look in the folding set for an existing type.
5745   void *InsertPos = nullptr;
5746   llvm::FoldingSetNodeID ID;
5747   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5748                     TypeConstraintConcept, TypeConstraintArgs);
5749   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5750     return QualType(AT, 0);
5751 
5752   QualType Canon;
5753   if (!IsCanon) {
5754     if (!DeducedType.isNull()) {
5755       Canon = DeducedType.getCanonicalType();
5756     } else if (TypeConstraintConcept) {
5757       bool AnyNonCanonArgs = false;
5758       ConceptDecl *CanonicalConcept = TypeConstraintConcept->getCanonicalDecl();
5759       auto CanonicalConceptArgs = ::getCanonicalTemplateArguments(
5760           *this, TypeConstraintArgs, AnyNonCanonArgs);
5761       if (CanonicalConcept != TypeConstraintConcept || AnyNonCanonArgs) {
5762         Canon =
5763             getAutoTypeInternal(QualType(), Keyword, IsDependent, IsPack,
5764                                 CanonicalConcept, CanonicalConceptArgs, true);
5765         // Find the insert position again.
5766         [[maybe_unused]] auto *Nothing =
5767             AutoTypes.FindNodeOrInsertPos(ID, InsertPos);
5768         assert(!Nothing && "canonical type broken");
5769       }
5770     }
5771   }
5772 
5773   void *Mem = Allocate(sizeof(AutoType) +
5774                            sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5775                        alignof(AutoType));
5776   auto *AT = new (Mem) AutoType(
5777       DeducedType, Keyword,
5778       (IsDependent ? TypeDependence::DependentInstantiation
5779                    : TypeDependence::None) |
5780           (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5781       Canon, TypeConstraintConcept, TypeConstraintArgs);
5782   Types.push_back(AT);
5783   AutoTypes.InsertNode(AT, InsertPos);
5784   return QualType(AT, 0);
5785 }
5786 
5787 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5788 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5789 /// canonical deduced-but-dependent 'auto' type.
5790 QualType
5791 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5792                         bool IsDependent, bool IsPack,
5793                         ConceptDecl *TypeConstraintConcept,
5794                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5795   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5796   assert((!IsDependent || DeducedType.isNull()) &&
5797          "A dependent auto should be undeduced");
5798   return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack,
5799                              TypeConstraintConcept, TypeConstraintArgs);
5800 }
5801 
5802 QualType ASTContext::getUnconstrainedType(QualType T) const {
5803   QualType CanonT = T.getCanonicalType();
5804 
5805   // Remove a type-constraint from a top-level auto or decltype(auto).
5806   if (auto *AT = CanonT->getAs<AutoType>()) {
5807     if (!AT->isConstrained())
5808       return T;
5809     return getQualifiedType(getAutoType(QualType(), AT->getKeyword(), false,
5810                                         AT->containsUnexpandedParameterPack()),
5811                             T.getQualifiers());
5812   }
5813 
5814   // FIXME: We only support constrained auto at the top level in the type of a
5815   // non-type template parameter at the moment. Once we lift that restriction,
5816   // we'll need to recursively build types containing auto here.
5817   assert(!CanonT->getContainedAutoType() ||
5818          !CanonT->getContainedAutoType()->isConstrained());
5819   return T;
5820 }
5821 
5822 /// Return the uniqued reference to the deduced template specialization type
5823 /// which has been deduced to the given type, or to the canonical undeduced
5824 /// such type, or the canonical deduced-but-dependent such type.
5825 QualType ASTContext::getDeducedTemplateSpecializationType(
5826     TemplateName Template, QualType DeducedType, bool IsDependent) const {
5827   // Look in the folding set for an existing type.
5828   void *InsertPos = nullptr;
5829   llvm::FoldingSetNodeID ID;
5830   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5831                                              IsDependent);
5832   if (DeducedTemplateSpecializationType *DTST =
5833           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5834     return QualType(DTST, 0);
5835 
5836   auto *DTST = new (*this, alignof(DeducedTemplateSpecializationType))
5837       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5838   llvm::FoldingSetNodeID TempID;
5839   DTST->Profile(TempID);
5840   assert(ID == TempID && "ID does not match");
5841   Types.push_back(DTST);
5842   DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5843   return QualType(DTST, 0);
5844 }
5845 
5846 /// getAtomicType - Return the uniqued reference to the atomic type for
5847 /// the given value type.
5848 QualType ASTContext::getAtomicType(QualType T) const {
5849   // Unique pointers, to guarantee there is only one pointer of a particular
5850   // structure.
5851   llvm::FoldingSetNodeID ID;
5852   AtomicType::Profile(ID, T);
5853 
5854   void *InsertPos = nullptr;
5855   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5856     return QualType(AT, 0);
5857 
5858   // If the atomic value type isn't canonical, this won't be a canonical type
5859   // either, so fill in the canonical type field.
5860   QualType Canonical;
5861   if (!T.isCanonical()) {
5862     Canonical = getAtomicType(getCanonicalType(T));
5863 
5864     // Get the new insert position for the node we care about.
5865     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5866     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5867   }
5868   auto *New = new (*this, alignof(AtomicType)) AtomicType(T, Canonical);
5869   Types.push_back(New);
5870   AtomicTypes.InsertNode(New, InsertPos);
5871   return QualType(New, 0);
5872 }
5873 
5874 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
5875 QualType ASTContext::getAutoDeductType() const {
5876   if (AutoDeductTy.isNull())
5877     AutoDeductTy = QualType(new (*this, alignof(AutoType))
5878                                 AutoType(QualType(), AutoTypeKeyword::Auto,
5879                                          TypeDependence::None, QualType(),
5880                                          /*concept*/ nullptr, /*args*/ {}),
5881                             0);
5882   return AutoDeductTy;
5883 }
5884 
5885 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5886 QualType ASTContext::getAutoRRefDeductType() const {
5887   if (AutoRRefDeductTy.isNull())
5888     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5889   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5890   return AutoRRefDeductTy;
5891 }
5892 
5893 /// getTagDeclType - Return the unique reference to the type for the
5894 /// specified TagDecl (struct/union/class/enum) decl.
5895 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5896   assert(Decl);
5897   // FIXME: What is the design on getTagDeclType when it requires casting
5898   // away const?  mutable?
5899   return getTypeDeclType(const_cast<TagDecl*>(Decl));
5900 }
5901 
5902 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5903 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5904 /// needs to agree with the definition in <stddef.h>.
5905 CanQualType ASTContext::getSizeType() const {
5906   return getFromTargetType(Target->getSizeType());
5907 }
5908 
5909 /// Return the unique signed counterpart of the integer type
5910 /// corresponding to size_t.
5911 CanQualType ASTContext::getSignedSizeType() const {
5912   return getFromTargetType(Target->getSignedSizeType());
5913 }
5914 
5915 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5916 CanQualType ASTContext::getIntMaxType() const {
5917   return getFromTargetType(Target->getIntMaxType());
5918 }
5919 
5920 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5921 CanQualType ASTContext::getUIntMaxType() const {
5922   return getFromTargetType(Target->getUIntMaxType());
5923 }
5924 
5925 /// getSignedWCharType - Return the type of "signed wchar_t".
5926 /// Used when in C++, as a GCC extension.
5927 QualType ASTContext::getSignedWCharType() const {
5928   // FIXME: derive from "Target" ?
5929   return WCharTy;
5930 }
5931 
5932 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5933 /// Used when in C++, as a GCC extension.
5934 QualType ASTContext::getUnsignedWCharType() const {
5935   // FIXME: derive from "Target" ?
5936   return UnsignedIntTy;
5937 }
5938 
5939 QualType ASTContext::getIntPtrType() const {
5940   return getFromTargetType(Target->getIntPtrType());
5941 }
5942 
5943 QualType ASTContext::getUIntPtrType() const {
5944   return getCorrespondingUnsignedType(getIntPtrType());
5945 }
5946 
5947 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5948 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5949 QualType ASTContext::getPointerDiffType() const {
5950   return getFromTargetType(Target->getPtrDiffType(LangAS::Default));
5951 }
5952 
5953 /// Return the unique unsigned counterpart of "ptrdiff_t"
5954 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5955 /// in the definition of %tu format specifier.
5956 QualType ASTContext::getUnsignedPointerDiffType() const {
5957   return getFromTargetType(Target->getUnsignedPtrDiffType(LangAS::Default));
5958 }
5959 
5960 /// Return the unique type for "pid_t" defined in
5961 /// <sys/types.h>. We need this to compute the correct type for vfork().
5962 QualType ASTContext::getProcessIDType() const {
5963   return getFromTargetType(Target->getProcessIDType());
5964 }
5965 
5966 //===----------------------------------------------------------------------===//
5967 //                              Type Operators
5968 //===----------------------------------------------------------------------===//
5969 
5970 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5971   // Push qualifiers into arrays, and then discard any remaining
5972   // qualifiers.
5973   T = getCanonicalType(T);
5974   T = getVariableArrayDecayedType(T);
5975   const Type *Ty = T.getTypePtr();
5976   QualType Result;
5977   if (isa<ArrayType>(Ty)) {
5978     Result = getArrayDecayedType(QualType(Ty,0));
5979   } else if (isa<FunctionType>(Ty)) {
5980     Result = getPointerType(QualType(Ty, 0));
5981   } else {
5982     Result = QualType(Ty, 0);
5983   }
5984 
5985   return CanQualType::CreateUnsafe(Result);
5986 }
5987 
5988 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5989                                              Qualifiers &quals) {
5990   SplitQualType splitType = type.getSplitUnqualifiedType();
5991 
5992   // FIXME: getSplitUnqualifiedType() actually walks all the way to
5993   // the unqualified desugared type and then drops it on the floor.
5994   // We then have to strip that sugar back off with
5995   // getUnqualifiedDesugaredType(), which is silly.
5996   const auto *AT =
5997       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5998 
5999   // If we don't have an array, just use the results in splitType.
6000   if (!AT) {
6001     quals = splitType.Quals;
6002     return QualType(splitType.Ty, 0);
6003   }
6004 
6005   // Otherwise, recurse on the array's element type.
6006   QualType elementType = AT->getElementType();
6007   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
6008 
6009   // If that didn't change the element type, AT has no qualifiers, so we
6010   // can just use the results in splitType.
6011   if (elementType == unqualElementType) {
6012     assert(quals.empty()); // from the recursive call
6013     quals = splitType.Quals;
6014     return QualType(splitType.Ty, 0);
6015   }
6016 
6017   // Otherwise, add in the qualifiers from the outermost type, then
6018   // build the type back up.
6019   quals.addConsistentQualifiers(splitType.Quals);
6020 
6021   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
6022     return getConstantArrayType(unqualElementType, CAT->getSize(),
6023                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
6024   }
6025 
6026   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
6027     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
6028   }
6029 
6030   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
6031     return getVariableArrayType(unqualElementType,
6032                                 VAT->getSizeExpr(),
6033                                 VAT->getSizeModifier(),
6034                                 VAT->getIndexTypeCVRQualifiers(),
6035                                 VAT->getBracketsRange());
6036   }
6037 
6038   const auto *DSAT = cast<DependentSizedArrayType>(AT);
6039   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
6040                                     DSAT->getSizeModifier(), 0,
6041                                     SourceRange());
6042 }
6043 
6044 /// Attempt to unwrap two types that may both be array types with the same bound
6045 /// (or both be array types of unknown bound) for the purpose of comparing the
6046 /// cv-decomposition of two types per C++ [conv.qual].
6047 ///
6048 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
6049 ///        C++20 [conv.qual], if permitted by the current language mode.
6050 void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
6051                                          bool AllowPiMismatch) {
6052   while (true) {
6053     auto *AT1 = getAsArrayType(T1);
6054     if (!AT1)
6055       return;
6056 
6057     auto *AT2 = getAsArrayType(T2);
6058     if (!AT2)
6059       return;
6060 
6061     // If we don't have two array types with the same constant bound nor two
6062     // incomplete array types, we've unwrapped everything we can.
6063     // C++20 also permits one type to be a constant array type and the other
6064     // to be an incomplete array type.
6065     // FIXME: Consider also unwrapping array of unknown bound and VLA.
6066     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
6067       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
6068       if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) ||
6069             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6070              isa<IncompleteArrayType>(AT2))))
6071         return;
6072     } else if (isa<IncompleteArrayType>(AT1)) {
6073       if (!(isa<IncompleteArrayType>(AT2) ||
6074             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6075              isa<ConstantArrayType>(AT2))))
6076         return;
6077     } else {
6078       return;
6079     }
6080 
6081     T1 = AT1->getElementType();
6082     T2 = AT2->getElementType();
6083   }
6084 }
6085 
6086 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
6087 ///
6088 /// If T1 and T2 are both pointer types of the same kind, or both array types
6089 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
6090 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
6091 ///
6092 /// This function will typically be called in a loop that successively
6093 /// "unwraps" pointer and pointer-to-member types to compare them at each
6094 /// level.
6095 ///
6096 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
6097 ///        C++20 [conv.qual], if permitted by the current language mode.
6098 ///
6099 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
6100 /// pair of types that can't be unwrapped further.
6101 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2,
6102                                     bool AllowPiMismatch) {
6103   UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch);
6104 
6105   const auto *T1PtrType = T1->getAs<PointerType>();
6106   const auto *T2PtrType = T2->getAs<PointerType>();
6107   if (T1PtrType && T2PtrType) {
6108     T1 = T1PtrType->getPointeeType();
6109     T2 = T2PtrType->getPointeeType();
6110     return true;
6111   }
6112 
6113   const auto *T1MPType = T1->getAs<MemberPointerType>();
6114   const auto *T2MPType = T2->getAs<MemberPointerType>();
6115   if (T1MPType && T2MPType &&
6116       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
6117                              QualType(T2MPType->getClass(), 0))) {
6118     T1 = T1MPType->getPointeeType();
6119     T2 = T2MPType->getPointeeType();
6120     return true;
6121   }
6122 
6123   if (getLangOpts().ObjC) {
6124     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
6125     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
6126     if (T1OPType && T2OPType) {
6127       T1 = T1OPType->getPointeeType();
6128       T2 = T2OPType->getPointeeType();
6129       return true;
6130     }
6131   }
6132 
6133   // FIXME: Block pointers, too?
6134 
6135   return false;
6136 }
6137 
6138 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
6139   while (true) {
6140     Qualifiers Quals;
6141     T1 = getUnqualifiedArrayType(T1, Quals);
6142     T2 = getUnqualifiedArrayType(T2, Quals);
6143     if (hasSameType(T1, T2))
6144       return true;
6145     if (!UnwrapSimilarTypes(T1, T2))
6146       return false;
6147   }
6148 }
6149 
6150 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
6151   while (true) {
6152     Qualifiers Quals1, Quals2;
6153     T1 = getUnqualifiedArrayType(T1, Quals1);
6154     T2 = getUnqualifiedArrayType(T2, Quals2);
6155 
6156     Quals1.removeCVRQualifiers();
6157     Quals2.removeCVRQualifiers();
6158     if (Quals1 != Quals2)
6159       return false;
6160 
6161     if (hasSameType(T1, T2))
6162       return true;
6163 
6164     if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false))
6165       return false;
6166   }
6167 }
6168 
6169 DeclarationNameInfo
6170 ASTContext::getNameForTemplate(TemplateName Name,
6171                                SourceLocation NameLoc) const {
6172   switch (Name.getKind()) {
6173   case TemplateName::QualifiedTemplate:
6174   case TemplateName::Template:
6175     // DNInfo work in progress: CHECKME: what about DNLoc?
6176     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
6177                                NameLoc);
6178 
6179   case TemplateName::OverloadedTemplate: {
6180     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
6181     // DNInfo work in progress: CHECKME: what about DNLoc?
6182     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
6183   }
6184 
6185   case TemplateName::AssumedTemplate: {
6186     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
6187     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
6188   }
6189 
6190   case TemplateName::DependentTemplate: {
6191     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6192     DeclarationName DName;
6193     if (DTN->isIdentifier()) {
6194       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
6195       return DeclarationNameInfo(DName, NameLoc);
6196     } else {
6197       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
6198       // DNInfo work in progress: FIXME: source locations?
6199       DeclarationNameLoc DNLoc =
6200           DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange());
6201       return DeclarationNameInfo(DName, NameLoc, DNLoc);
6202     }
6203   }
6204 
6205   case TemplateName::SubstTemplateTemplateParm: {
6206     SubstTemplateTemplateParmStorage *subst
6207       = Name.getAsSubstTemplateTemplateParm();
6208     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
6209                                NameLoc);
6210   }
6211 
6212   case TemplateName::SubstTemplateTemplateParmPack: {
6213     SubstTemplateTemplateParmPackStorage *subst
6214       = Name.getAsSubstTemplateTemplateParmPack();
6215     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
6216                                NameLoc);
6217   }
6218   case TemplateName::UsingTemplate:
6219     return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(),
6220                                NameLoc);
6221   }
6222 
6223   llvm_unreachable("bad template name kind!");
6224 }
6225 
6226 TemplateName
6227 ASTContext::getCanonicalTemplateName(const TemplateName &Name) const {
6228   switch (Name.getKind()) {
6229   case TemplateName::UsingTemplate:
6230   case TemplateName::QualifiedTemplate:
6231   case TemplateName::Template: {
6232     TemplateDecl *Template = Name.getAsTemplateDecl();
6233     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
6234       Template = getCanonicalTemplateTemplateParmDecl(TTP);
6235 
6236     // The canonical template name is the canonical template declaration.
6237     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
6238   }
6239 
6240   case TemplateName::OverloadedTemplate:
6241   case TemplateName::AssumedTemplate:
6242     llvm_unreachable("cannot canonicalize unresolved template");
6243 
6244   case TemplateName::DependentTemplate: {
6245     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6246     assert(DTN && "Non-dependent template names must refer to template decls.");
6247     return DTN->CanonicalTemplateName;
6248   }
6249 
6250   case TemplateName::SubstTemplateTemplateParm: {
6251     SubstTemplateTemplateParmStorage *subst
6252       = Name.getAsSubstTemplateTemplateParm();
6253     return getCanonicalTemplateName(subst->getReplacement());
6254   }
6255 
6256   case TemplateName::SubstTemplateTemplateParmPack: {
6257     SubstTemplateTemplateParmPackStorage *subst =
6258         Name.getAsSubstTemplateTemplateParmPack();
6259     TemplateArgument canonArgPack =
6260         getCanonicalTemplateArgument(subst->getArgumentPack());
6261     return getSubstTemplateTemplateParmPack(
6262         canonArgPack, subst->getAssociatedDecl()->getCanonicalDecl(),
6263         subst->getFinal(), subst->getIndex());
6264   }
6265   }
6266 
6267   llvm_unreachable("bad template name!");
6268 }
6269 
6270 bool ASTContext::hasSameTemplateName(const TemplateName &X,
6271                                      const TemplateName &Y) const {
6272   return getCanonicalTemplateName(X).getAsVoidPointer() ==
6273          getCanonicalTemplateName(Y).getAsVoidPointer();
6274 }
6275 
6276 bool ASTContext::isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const {
6277   if (!XCE != !YCE)
6278     return false;
6279 
6280   if (!XCE)
6281     return true;
6282 
6283   llvm::FoldingSetNodeID XCEID, YCEID;
6284   XCE->Profile(XCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true);
6285   YCE->Profile(YCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true);
6286   return XCEID == YCEID;
6287 }
6288 
6289 bool ASTContext::isSameTypeConstraint(const TypeConstraint *XTC,
6290                                       const TypeConstraint *YTC) const {
6291   if (!XTC != !YTC)
6292     return false;
6293 
6294   if (!XTC)
6295     return true;
6296 
6297   auto *NCX = XTC->getNamedConcept();
6298   auto *NCY = YTC->getNamedConcept();
6299   if (!NCX || !NCY || !isSameEntity(NCX, NCY))
6300     return false;
6301   if (XTC->getConceptReference()->hasExplicitTemplateArgs() !=
6302       YTC->getConceptReference()->hasExplicitTemplateArgs())
6303     return false;
6304   if (XTC->getConceptReference()->hasExplicitTemplateArgs())
6305     if (XTC->getConceptReference()
6306             ->getTemplateArgsAsWritten()
6307             ->NumTemplateArgs !=
6308         YTC->getConceptReference()->getTemplateArgsAsWritten()->NumTemplateArgs)
6309       return false;
6310 
6311   // Compare slowly by profiling.
6312   //
6313   // We couldn't compare the profiling result for the template
6314   // args here. Consider the following example in different modules:
6315   //
6316   // template <__integer_like _Tp, C<_Tp> Sentinel>
6317   // constexpr _Tp operator()(_Tp &&__t, Sentinel &&last) const {
6318   //   return __t;
6319   // }
6320   //
6321   // When we compare the profiling result for `C<_Tp>` in different
6322   // modules, it will compare the type of `_Tp` in different modules.
6323   // However, the type of `_Tp` in different modules refer to different
6324   // types here naturally. So we couldn't compare the profiling result
6325   // for the template args directly.
6326   return isSameConstraintExpr(XTC->getImmediatelyDeclaredConstraint(),
6327                               YTC->getImmediatelyDeclaredConstraint());
6328 }
6329 
6330 bool ASTContext::isSameTemplateParameter(const NamedDecl *X,
6331                                          const NamedDecl *Y) const {
6332   if (X->getKind() != Y->getKind())
6333     return false;
6334 
6335   if (auto *TX = dyn_cast<TemplateTypeParmDecl>(X)) {
6336     auto *TY = cast<TemplateTypeParmDecl>(Y);
6337     if (TX->isParameterPack() != TY->isParameterPack())
6338       return false;
6339     if (TX->hasTypeConstraint() != TY->hasTypeConstraint())
6340       return false;
6341     return isSameTypeConstraint(TX->getTypeConstraint(),
6342                                 TY->getTypeConstraint());
6343   }
6344 
6345   if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6346     auto *TY = cast<NonTypeTemplateParmDecl>(Y);
6347     return TX->isParameterPack() == TY->isParameterPack() &&
6348            TX->getASTContext().hasSameType(TX->getType(), TY->getType()) &&
6349            isSameConstraintExpr(TX->getPlaceholderTypeConstraint(),
6350                                 TY->getPlaceholderTypeConstraint());
6351   }
6352 
6353   auto *TX = cast<TemplateTemplateParmDecl>(X);
6354   auto *TY = cast<TemplateTemplateParmDecl>(Y);
6355   return TX->isParameterPack() == TY->isParameterPack() &&
6356          isSameTemplateParameterList(TX->getTemplateParameters(),
6357                                      TY->getTemplateParameters());
6358 }
6359 
6360 bool ASTContext::isSameTemplateParameterList(
6361     const TemplateParameterList *X, const TemplateParameterList *Y) const {
6362   if (X->size() != Y->size())
6363     return false;
6364 
6365   for (unsigned I = 0, N = X->size(); I != N; ++I)
6366     if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I)))
6367       return false;
6368 
6369   return isSameConstraintExpr(X->getRequiresClause(), Y->getRequiresClause());
6370 }
6371 
6372 bool ASTContext::isSameDefaultTemplateArgument(const NamedDecl *X,
6373                                                const NamedDecl *Y) const {
6374   // If the type parameter isn't the same already, we don't need to check the
6375   // default argument further.
6376   if (!isSameTemplateParameter(X, Y))
6377     return false;
6378 
6379   if (auto *TTPX = dyn_cast<TemplateTypeParmDecl>(X)) {
6380     auto *TTPY = cast<TemplateTypeParmDecl>(Y);
6381     if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument())
6382       return false;
6383 
6384     return hasSameType(TTPX->getDefaultArgument(), TTPY->getDefaultArgument());
6385   }
6386 
6387   if (auto *NTTPX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6388     auto *NTTPY = cast<NonTypeTemplateParmDecl>(Y);
6389     if (!NTTPX->hasDefaultArgument() || !NTTPY->hasDefaultArgument())
6390       return false;
6391 
6392     Expr *DefaultArgumentX = NTTPX->getDefaultArgument()->IgnoreImpCasts();
6393     Expr *DefaultArgumentY = NTTPY->getDefaultArgument()->IgnoreImpCasts();
6394     llvm::FoldingSetNodeID XID, YID;
6395     DefaultArgumentX->Profile(XID, *this, /*Canonical=*/true);
6396     DefaultArgumentY->Profile(YID, *this, /*Canonical=*/true);
6397     return XID == YID;
6398   }
6399 
6400   auto *TTPX = cast<TemplateTemplateParmDecl>(X);
6401   auto *TTPY = cast<TemplateTemplateParmDecl>(Y);
6402 
6403   if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument())
6404     return false;
6405 
6406   const TemplateArgument &TAX = TTPX->getDefaultArgument().getArgument();
6407   const TemplateArgument &TAY = TTPY->getDefaultArgument().getArgument();
6408   return hasSameTemplateName(TAX.getAsTemplate(), TAY.getAsTemplate());
6409 }
6410 
6411 static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) {
6412   if (auto *NS = X->getAsNamespace())
6413     return NS;
6414   if (auto *NAS = X->getAsNamespaceAlias())
6415     return NAS->getNamespace();
6416   return nullptr;
6417 }
6418 
6419 static bool isSameQualifier(const NestedNameSpecifier *X,
6420                             const NestedNameSpecifier *Y) {
6421   if (auto *NSX = getNamespace(X)) {
6422     auto *NSY = getNamespace(Y);
6423     if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl())
6424       return false;
6425   } else if (X->getKind() != Y->getKind())
6426     return false;
6427 
6428   // FIXME: For namespaces and types, we're permitted to check that the entity
6429   // is named via the same tokens. We should probably do so.
6430   switch (X->getKind()) {
6431   case NestedNameSpecifier::Identifier:
6432     if (X->getAsIdentifier() != Y->getAsIdentifier())
6433       return false;
6434     break;
6435   case NestedNameSpecifier::Namespace:
6436   case NestedNameSpecifier::NamespaceAlias:
6437     // We've already checked that we named the same namespace.
6438     break;
6439   case NestedNameSpecifier::TypeSpec:
6440   case NestedNameSpecifier::TypeSpecWithTemplate:
6441     if (X->getAsType()->getCanonicalTypeInternal() !=
6442         Y->getAsType()->getCanonicalTypeInternal())
6443       return false;
6444     break;
6445   case NestedNameSpecifier::Global:
6446   case NestedNameSpecifier::Super:
6447     return true;
6448   }
6449 
6450   // Recurse into earlier portion of NNS, if any.
6451   auto *PX = X->getPrefix();
6452   auto *PY = Y->getPrefix();
6453   if (PX && PY)
6454     return isSameQualifier(PX, PY);
6455   return !PX && !PY;
6456 }
6457 
6458 /// Determine whether the attributes we can overload on are identical for A and
6459 /// B. Will ignore any overloadable attrs represented in the type of A and B.
6460 static bool hasSameOverloadableAttrs(const FunctionDecl *A,
6461                                      const FunctionDecl *B) {
6462   // Note that pass_object_size attributes are represented in the function's
6463   // ExtParameterInfo, so we don't need to check them here.
6464 
6465   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
6466   auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>();
6467   auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>();
6468 
6469   for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) {
6470     std::optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
6471     std::optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
6472 
6473     // Return false if the number of enable_if attributes is different.
6474     if (!Cand1A || !Cand2A)
6475       return false;
6476 
6477     Cand1ID.clear();
6478     Cand2ID.clear();
6479 
6480     (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true);
6481     (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true);
6482 
6483     // Return false if any of the enable_if expressions of A and B are
6484     // different.
6485     if (Cand1ID != Cand2ID)
6486       return false;
6487   }
6488   return true;
6489 }
6490 
6491 bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) const {
6492   // Caution: this function is called by the AST reader during deserialization,
6493   // so it cannot rely on AST invariants being met. Non-trivial accessors
6494   // should be avoided, along with any traversal of redeclaration chains.
6495 
6496   if (X == Y)
6497     return true;
6498 
6499   if (X->getDeclName() != Y->getDeclName())
6500     return false;
6501 
6502   // Must be in the same context.
6503   //
6504   // Note that we can't use DeclContext::Equals here, because the DeclContexts
6505   // could be two different declarations of the same function. (We will fix the
6506   // semantic DC to refer to the primary definition after merging.)
6507   if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()),
6508                           cast<Decl>(Y->getDeclContext()->getRedeclContext())))
6509     return false;
6510 
6511   // Two typedefs refer to the same entity if they have the same underlying
6512   // type.
6513   if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(X))
6514     if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Y))
6515       return hasSameType(TypedefX->getUnderlyingType(),
6516                          TypedefY->getUnderlyingType());
6517 
6518   // Must have the same kind.
6519   if (X->getKind() != Y->getKind())
6520     return false;
6521 
6522   // Objective-C classes and protocols with the same name always match.
6523   if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X))
6524     return true;
6525 
6526   if (isa<ClassTemplateSpecializationDecl>(X)) {
6527     // No need to handle these here: we merge them when adding them to the
6528     // template.
6529     return false;
6530   }
6531 
6532   // Compatible tags match.
6533   if (const auto *TagX = dyn_cast<TagDecl>(X)) {
6534     const auto *TagY = cast<TagDecl>(Y);
6535     return (TagX->getTagKind() == TagY->getTagKind()) ||
6536            ((TagX->getTagKind() == TagTypeKind::Struct ||
6537              TagX->getTagKind() == TagTypeKind::Class ||
6538              TagX->getTagKind() == TagTypeKind::Interface) &&
6539             (TagY->getTagKind() == TagTypeKind::Struct ||
6540              TagY->getTagKind() == TagTypeKind::Class ||
6541              TagY->getTagKind() == TagTypeKind::Interface));
6542   }
6543 
6544   // Functions with the same type and linkage match.
6545   // FIXME: This needs to cope with merging of prototyped/non-prototyped
6546   // functions, etc.
6547   if (const auto *FuncX = dyn_cast<FunctionDecl>(X)) {
6548     const auto *FuncY = cast<FunctionDecl>(Y);
6549     if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(X)) {
6550       const auto *CtorY = cast<CXXConstructorDecl>(Y);
6551       if (CtorX->getInheritedConstructor() &&
6552           !isSameEntity(CtorX->getInheritedConstructor().getConstructor(),
6553                         CtorY->getInheritedConstructor().getConstructor()))
6554         return false;
6555     }
6556 
6557     if (FuncX->isMultiVersion() != FuncY->isMultiVersion())
6558       return false;
6559 
6560     // Multiversioned functions with different feature strings are represented
6561     // as separate declarations.
6562     if (FuncX->isMultiVersion()) {
6563       const auto *TAX = FuncX->getAttr<TargetAttr>();
6564       const auto *TAY = FuncY->getAttr<TargetAttr>();
6565       assert(TAX && TAY && "Multiversion Function without target attribute");
6566 
6567       if (TAX->getFeaturesStr() != TAY->getFeaturesStr())
6568         return false;
6569     }
6570 
6571     // Per C++20 [temp.over.link]/4, friends in different classes are sometimes
6572     // not the same entity if they are constrained.
6573     if ((FuncX->isMemberLikeConstrainedFriend() ||
6574          FuncY->isMemberLikeConstrainedFriend()) &&
6575         !FuncX->getLexicalDeclContext()->Equals(
6576             FuncY->getLexicalDeclContext())) {
6577       return false;
6578     }
6579 
6580     if (!isSameConstraintExpr(FuncX->getTrailingRequiresClause(),
6581                               FuncY->getTrailingRequiresClause()))
6582       return false;
6583 
6584     auto GetTypeAsWritten = [](const FunctionDecl *FD) {
6585       // Map to the first declaration that we've already merged into this one.
6586       // The TSI of redeclarations might not match (due to calling conventions
6587       // being inherited onto the type but not the TSI), but the TSI type of
6588       // the first declaration of the function should match across modules.
6589       FD = FD->getCanonicalDecl();
6590       return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType()
6591                                      : FD->getType();
6592     };
6593     QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY);
6594     if (!hasSameType(XT, YT)) {
6595       // We can get functions with different types on the redecl chain in C++17
6596       // if they have differing exception specifications and at least one of
6597       // the excpetion specs is unresolved.
6598       auto *XFPT = XT->getAs<FunctionProtoType>();
6599       auto *YFPT = YT->getAs<FunctionProtoType>();
6600       if (getLangOpts().CPlusPlus17 && XFPT && YFPT &&
6601           (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) ||
6602            isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) &&
6603           hasSameFunctionTypeIgnoringExceptionSpec(XT, YT))
6604         return true;
6605       return false;
6606     }
6607 
6608     return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() &&
6609            hasSameOverloadableAttrs(FuncX, FuncY);
6610   }
6611 
6612   // Variables with the same type and linkage match.
6613   if (const auto *VarX = dyn_cast<VarDecl>(X)) {
6614     const auto *VarY = cast<VarDecl>(Y);
6615     if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) {
6616       // During deserialization, we might compare variables before we load
6617       // their types. Assume the types will end up being the same.
6618       if (VarX->getType().isNull() || VarY->getType().isNull())
6619         return true;
6620 
6621       if (hasSameType(VarX->getType(), VarY->getType()))
6622         return true;
6623 
6624       // We can get decls with different types on the redecl chain. Eg.
6625       // template <typename T> struct S { static T Var[]; }; // #1
6626       // template <typename T> T S<T>::Var[sizeof(T)]; // #2
6627       // Only? happens when completing an incomplete array type. In this case
6628       // when comparing #1 and #2 we should go through their element type.
6629       const ArrayType *VarXTy = getAsArrayType(VarX->getType());
6630       const ArrayType *VarYTy = getAsArrayType(VarY->getType());
6631       if (!VarXTy || !VarYTy)
6632         return false;
6633       if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType())
6634         return hasSameType(VarXTy->getElementType(), VarYTy->getElementType());
6635     }
6636     return false;
6637   }
6638 
6639   // Namespaces with the same name and inlinedness match.
6640   if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(X)) {
6641     const auto *NamespaceY = cast<NamespaceDecl>(Y);
6642     return NamespaceX->isInline() == NamespaceY->isInline();
6643   }
6644 
6645   // Identical template names and kinds match if their template parameter lists
6646   // and patterns match.
6647   if (const auto *TemplateX = dyn_cast<TemplateDecl>(X)) {
6648     const auto *TemplateY = cast<TemplateDecl>(Y);
6649 
6650     // ConceptDecl wouldn't be the same if their constraint expression differs.
6651     if (const auto *ConceptX = dyn_cast<ConceptDecl>(X)) {
6652       const auto *ConceptY = cast<ConceptDecl>(Y);
6653       if (!isSameConstraintExpr(ConceptX->getConstraintExpr(),
6654                                 ConceptY->getConstraintExpr()))
6655         return false;
6656     }
6657 
6658     return isSameEntity(TemplateX->getTemplatedDecl(),
6659                         TemplateY->getTemplatedDecl()) &&
6660            isSameTemplateParameterList(TemplateX->getTemplateParameters(),
6661                                        TemplateY->getTemplateParameters());
6662   }
6663 
6664   // Fields with the same name and the same type match.
6665   if (const auto *FDX = dyn_cast<FieldDecl>(X)) {
6666     const auto *FDY = cast<FieldDecl>(Y);
6667     // FIXME: Also check the bitwidth is odr-equivalent, if any.
6668     return hasSameType(FDX->getType(), FDY->getType());
6669   }
6670 
6671   // Indirect fields with the same target field match.
6672   if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) {
6673     const auto *IFDY = cast<IndirectFieldDecl>(Y);
6674     return IFDX->getAnonField()->getCanonicalDecl() ==
6675            IFDY->getAnonField()->getCanonicalDecl();
6676   }
6677 
6678   // Enumerators with the same name match.
6679   if (isa<EnumConstantDecl>(X))
6680     // FIXME: Also check the value is odr-equivalent.
6681     return true;
6682 
6683   // Using shadow declarations with the same target match.
6684   if (const auto *USX = dyn_cast<UsingShadowDecl>(X)) {
6685     const auto *USY = cast<UsingShadowDecl>(Y);
6686     return USX->getTargetDecl() == USY->getTargetDecl();
6687   }
6688 
6689   // Using declarations with the same qualifier match. (We already know that
6690   // the name matches.)
6691   if (const auto *UX = dyn_cast<UsingDecl>(X)) {
6692     const auto *UY = cast<UsingDecl>(Y);
6693     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6694            UX->hasTypename() == UY->hasTypename() &&
6695            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6696   }
6697   if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) {
6698     const auto *UY = cast<UnresolvedUsingValueDecl>(Y);
6699     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6700            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6701   }
6702   if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X)) {
6703     return isSameQualifier(
6704         UX->getQualifier(),
6705         cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier());
6706   }
6707 
6708   // Using-pack declarations are only created by instantiation, and match if
6709   // they're instantiated from matching UnresolvedUsing...Decls.
6710   if (const auto *UX = dyn_cast<UsingPackDecl>(X)) {
6711     return declaresSameEntity(
6712         UX->getInstantiatedFromUsingDecl(),
6713         cast<UsingPackDecl>(Y)->getInstantiatedFromUsingDecl());
6714   }
6715 
6716   // Namespace alias definitions with the same target match.
6717   if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) {
6718     const auto *NAY = cast<NamespaceAliasDecl>(Y);
6719     return NAX->getNamespace()->Equals(NAY->getNamespace());
6720   }
6721 
6722   return false;
6723 }
6724 
6725 TemplateArgument
6726 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
6727   switch (Arg.getKind()) {
6728     case TemplateArgument::Null:
6729       return Arg;
6730 
6731     case TemplateArgument::Expression:
6732       return Arg;
6733 
6734     case TemplateArgument::Declaration: {
6735       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
6736       return TemplateArgument(D, getCanonicalType(Arg.getParamTypeForDecl()),
6737                               Arg.getIsDefaulted());
6738     }
6739 
6740     case TemplateArgument::NullPtr:
6741       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
6742                               /*isNullPtr*/ true, Arg.getIsDefaulted());
6743 
6744     case TemplateArgument::Template:
6745       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()),
6746                               Arg.getIsDefaulted());
6747 
6748     case TemplateArgument::TemplateExpansion:
6749       return TemplateArgument(
6750           getCanonicalTemplateName(Arg.getAsTemplateOrTemplatePattern()),
6751           Arg.getNumTemplateExpansions(), Arg.getIsDefaulted());
6752 
6753     case TemplateArgument::Integral:
6754       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
6755 
6756     case TemplateArgument::Type:
6757       return TemplateArgument(getCanonicalType(Arg.getAsType()),
6758                               /*isNullPtr*/ false, Arg.getIsDefaulted());
6759 
6760     case TemplateArgument::Pack: {
6761       bool AnyNonCanonArgs = false;
6762       auto CanonArgs = ::getCanonicalTemplateArguments(
6763           *this, Arg.pack_elements(), AnyNonCanonArgs);
6764       if (!AnyNonCanonArgs)
6765         return Arg;
6766       return TemplateArgument::CreatePackCopy(const_cast<ASTContext &>(*this),
6767                                               CanonArgs);
6768     }
6769   }
6770 
6771   // Silence GCC warning
6772   llvm_unreachable("Unhandled template argument kind");
6773 }
6774 
6775 NestedNameSpecifier *
6776 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
6777   if (!NNS)
6778     return nullptr;
6779 
6780   switch (NNS->getKind()) {
6781   case NestedNameSpecifier::Identifier:
6782     // Canonicalize the prefix but keep the identifier the same.
6783     return NestedNameSpecifier::Create(*this,
6784                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
6785                                        NNS->getAsIdentifier());
6786 
6787   case NestedNameSpecifier::Namespace:
6788     // A namespace is canonical; build a nested-name-specifier with
6789     // this namespace and no prefix.
6790     return NestedNameSpecifier::Create(*this, nullptr,
6791                                  NNS->getAsNamespace()->getOriginalNamespace());
6792 
6793   case NestedNameSpecifier::NamespaceAlias:
6794     // A namespace is canonical; build a nested-name-specifier with
6795     // this namespace and no prefix.
6796     return NestedNameSpecifier::Create(*this, nullptr,
6797                                     NNS->getAsNamespaceAlias()->getNamespace()
6798                                                       ->getOriginalNamespace());
6799 
6800   // The difference between TypeSpec and TypeSpecWithTemplate is that the
6801   // latter will have the 'template' keyword when printed.
6802   case NestedNameSpecifier::TypeSpec:
6803   case NestedNameSpecifier::TypeSpecWithTemplate: {
6804     const Type *T = getCanonicalType(NNS->getAsType());
6805 
6806     // If we have some kind of dependent-named type (e.g., "typename T::type"),
6807     // break it apart into its prefix and identifier, then reconsititute those
6808     // as the canonical nested-name-specifier. This is required to canonicalize
6809     // a dependent nested-name-specifier involving typedefs of dependent-name
6810     // types, e.g.,
6811     //   typedef typename T::type T1;
6812     //   typedef typename T1::type T2;
6813     if (const auto *DNT = T->getAs<DependentNameType>())
6814       return NestedNameSpecifier::Create(
6815           *this, DNT->getQualifier(),
6816           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
6817     if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>())
6818       return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true,
6819                                          const_cast<Type *>(T));
6820 
6821     // TODO: Set 'Template' parameter to true for other template types.
6822     return NestedNameSpecifier::Create(*this, nullptr, false,
6823                                        const_cast<Type *>(T));
6824   }
6825 
6826   case NestedNameSpecifier::Global:
6827   case NestedNameSpecifier::Super:
6828     // The global specifier and __super specifer are canonical and unique.
6829     return NNS;
6830   }
6831 
6832   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6833 }
6834 
6835 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6836   // Handle the non-qualified case efficiently.
6837   if (!T.hasLocalQualifiers()) {
6838     // Handle the common positive case fast.
6839     if (const auto *AT = dyn_cast<ArrayType>(T))
6840       return AT;
6841   }
6842 
6843   // Handle the common negative case fast.
6844   if (!isa<ArrayType>(T.getCanonicalType()))
6845     return nullptr;
6846 
6847   // Apply any qualifiers from the array type to the element type.  This
6848   // implements C99 6.7.3p8: "If the specification of an array type includes
6849   // any type qualifiers, the element type is so qualified, not the array type."
6850 
6851   // If we get here, we either have type qualifiers on the type, or we have
6852   // sugar such as a typedef in the way.  If we have type qualifiers on the type
6853   // we must propagate them down into the element type.
6854 
6855   SplitQualType split = T.getSplitDesugaredType();
6856   Qualifiers qs = split.Quals;
6857 
6858   // If we have a simple case, just return now.
6859   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6860   if (!ATy || qs.empty())
6861     return ATy;
6862 
6863   // Otherwise, we have an array and we have qualifiers on it.  Push the
6864   // qualifiers into the array element type and return a new array type.
6865   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6866 
6867   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6868     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6869                                                 CAT->getSizeExpr(),
6870                                                 CAT->getSizeModifier(),
6871                                            CAT->getIndexTypeCVRQualifiers()));
6872   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6873     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6874                                                   IAT->getSizeModifier(),
6875                                            IAT->getIndexTypeCVRQualifiers()));
6876 
6877   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6878     return cast<ArrayType>(
6879                      getDependentSizedArrayType(NewEltTy,
6880                                                 DSAT->getSizeExpr(),
6881                                                 DSAT->getSizeModifier(),
6882                                               DSAT->getIndexTypeCVRQualifiers(),
6883                                                 DSAT->getBracketsRange()));
6884 
6885   const auto *VAT = cast<VariableArrayType>(ATy);
6886   return cast<ArrayType>(getVariableArrayType(NewEltTy,
6887                                               VAT->getSizeExpr(),
6888                                               VAT->getSizeModifier(),
6889                                               VAT->getIndexTypeCVRQualifiers(),
6890                                               VAT->getBracketsRange()));
6891 }
6892 
6893 QualType ASTContext::getAdjustedParameterType(QualType T) const {
6894   if (T->isArrayType() || T->isFunctionType())
6895     return getDecayedType(T);
6896   return T;
6897 }
6898 
6899 QualType ASTContext::getSignatureParameterType(QualType T) const {
6900   T = getVariableArrayDecayedType(T);
6901   T = getAdjustedParameterType(T);
6902   return T.getUnqualifiedType();
6903 }
6904 
6905 QualType ASTContext::getExceptionObjectType(QualType T) const {
6906   // C++ [except.throw]p3:
6907   //   A throw-expression initializes a temporary object, called the exception
6908   //   object, the type of which is determined by removing any top-level
6909   //   cv-qualifiers from the static type of the operand of throw and adjusting
6910   //   the type from "array of T" or "function returning T" to "pointer to T"
6911   //   or "pointer to function returning T", [...]
6912   T = getVariableArrayDecayedType(T);
6913   if (T->isArrayType() || T->isFunctionType())
6914     T = getDecayedType(T);
6915   return T.getUnqualifiedType();
6916 }
6917 
6918 /// getArrayDecayedType - Return the properly qualified result of decaying the
6919 /// specified array type to a pointer.  This operation is non-trivial when
6920 /// handling typedefs etc.  The canonical type of "T" must be an array type,
6921 /// this returns a pointer to a properly qualified element of the array.
6922 ///
6923 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
6924 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6925   // Get the element type with 'getAsArrayType' so that we don't lose any
6926   // typedefs in the element type of the array.  This also handles propagation
6927   // of type qualifiers from the array type into the element type if present
6928   // (C99 6.7.3p8).
6929   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6930   assert(PrettyArrayType && "Not an array type!");
6931 
6932   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6933 
6934   // int x[restrict 4] ->  int *restrict
6935   QualType Result = getQualifiedType(PtrTy,
6936                                      PrettyArrayType->getIndexTypeQualifiers());
6937 
6938   // int x[_Nullable] -> int * _Nullable
6939   if (auto Nullability = Ty->getNullability()) {
6940     Result = const_cast<ASTContext *>(this)->getAttributedType(
6941         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6942   }
6943   return Result;
6944 }
6945 
6946 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6947   return getBaseElementType(array->getElementType());
6948 }
6949 
6950 QualType ASTContext::getBaseElementType(QualType type) const {
6951   Qualifiers qs;
6952   while (true) {
6953     SplitQualType split = type.getSplitDesugaredType();
6954     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6955     if (!array) break;
6956 
6957     type = array->getElementType();
6958     qs.addConsistentQualifiers(split.Quals);
6959   }
6960 
6961   return getQualifiedType(type, qs);
6962 }
6963 
6964 /// getConstantArrayElementCount - Returns number of constant array elements.
6965 uint64_t
6966 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
6967   uint64_t ElementCount = 1;
6968   do {
6969     ElementCount *= CA->getSize().getZExtValue();
6970     CA = dyn_cast_or_null<ConstantArrayType>(
6971       CA->getElementType()->getAsArrayTypeUnsafe());
6972   } while (CA);
6973   return ElementCount;
6974 }
6975 
6976 uint64_t ASTContext::getArrayInitLoopExprElementCount(
6977     const ArrayInitLoopExpr *AILE) const {
6978   if (!AILE)
6979     return 0;
6980 
6981   uint64_t ElementCount = 1;
6982 
6983   do {
6984     ElementCount *= AILE->getArraySize().getZExtValue();
6985     AILE = dyn_cast<ArrayInitLoopExpr>(AILE->getSubExpr());
6986   } while (AILE);
6987 
6988   return ElementCount;
6989 }
6990 
6991 /// getFloatingRank - Return a relative rank for floating point types.
6992 /// This routine will assert if passed a built-in type that isn't a float.
6993 static FloatingRank getFloatingRank(QualType T) {
6994   if (const auto *CT = T->getAs<ComplexType>())
6995     return getFloatingRank(CT->getElementType());
6996 
6997   switch (T->castAs<BuiltinType>()->getKind()) {
6998   default: llvm_unreachable("getFloatingRank(): not a floating type");
6999   case BuiltinType::Float16:    return Float16Rank;
7000   case BuiltinType::Half:       return HalfRank;
7001   case BuiltinType::Float:      return FloatRank;
7002   case BuiltinType::Double:     return DoubleRank;
7003   case BuiltinType::LongDouble: return LongDoubleRank;
7004   case BuiltinType::Float128:   return Float128Rank;
7005   case BuiltinType::BFloat16:   return BFloat16Rank;
7006   case BuiltinType::Ibm128:     return Ibm128Rank;
7007   }
7008 }
7009 
7010 /// getFloatingTypeOrder - Compare the rank of the two specified floating
7011 /// point types, ignoring the domain of the type (i.e. 'double' ==
7012 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
7013 /// LHS < RHS, return -1.
7014 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
7015   FloatingRank LHSR = getFloatingRank(LHS);
7016   FloatingRank RHSR = getFloatingRank(RHS);
7017 
7018   if (LHSR == RHSR)
7019     return 0;
7020   if (LHSR > RHSR)
7021     return 1;
7022   return -1;
7023 }
7024 
7025 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
7026   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
7027     return 0;
7028   return getFloatingTypeOrder(LHS, RHS);
7029 }
7030 
7031 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
7032 /// routine will assert if passed a built-in type that isn't an integer or enum,
7033 /// or if it is not canonicalized.
7034 unsigned ASTContext::getIntegerRank(const Type *T) const {
7035   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
7036 
7037   // Results in this 'losing' to any type of the same size, but winning if
7038   // larger.
7039   if (const auto *EIT = dyn_cast<BitIntType>(T))
7040     return 0 + (EIT->getNumBits() << 3);
7041 
7042   switch (cast<BuiltinType>(T)->getKind()) {
7043   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
7044   case BuiltinType::Bool:
7045     return 1 + (getIntWidth(BoolTy) << 3);
7046   case BuiltinType::Char_S:
7047   case BuiltinType::Char_U:
7048   case BuiltinType::SChar:
7049   case BuiltinType::UChar:
7050     return 2 + (getIntWidth(CharTy) << 3);
7051   case BuiltinType::Short:
7052   case BuiltinType::UShort:
7053     return 3 + (getIntWidth(ShortTy) << 3);
7054   case BuiltinType::Int:
7055   case BuiltinType::UInt:
7056     return 4 + (getIntWidth(IntTy) << 3);
7057   case BuiltinType::Long:
7058   case BuiltinType::ULong:
7059     return 5 + (getIntWidth(LongTy) << 3);
7060   case BuiltinType::LongLong:
7061   case BuiltinType::ULongLong:
7062     return 6 + (getIntWidth(LongLongTy) << 3);
7063   case BuiltinType::Int128:
7064   case BuiltinType::UInt128:
7065     return 7 + (getIntWidth(Int128Ty) << 3);
7066 
7067   // "The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of
7068   // their underlying types" [c++20 conv.rank]
7069   case BuiltinType::Char8:
7070     return getIntegerRank(UnsignedCharTy.getTypePtr());
7071   case BuiltinType::Char16:
7072     return getIntegerRank(
7073         getFromTargetType(Target->getChar16Type()).getTypePtr());
7074   case BuiltinType::Char32:
7075     return getIntegerRank(
7076         getFromTargetType(Target->getChar32Type()).getTypePtr());
7077   case BuiltinType::WChar_S:
7078   case BuiltinType::WChar_U:
7079     return getIntegerRank(
7080         getFromTargetType(Target->getWCharType()).getTypePtr());
7081   }
7082 }
7083 
7084 /// Whether this is a promotable bitfield reference according
7085 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
7086 ///
7087 /// \returns the type this bit-field will promote to, or NULL if no
7088 /// promotion occurs.
7089 QualType ASTContext::isPromotableBitField(Expr *E) const {
7090   if (E->isTypeDependent() || E->isValueDependent())
7091     return {};
7092 
7093   // C++ [conv.prom]p5:
7094   //    If the bit-field has an enumerated type, it is treated as any other
7095   //    value of that type for promotion purposes.
7096   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
7097     return {};
7098 
7099   // FIXME: We should not do this unless E->refersToBitField() is true. This
7100   // matters in C where getSourceBitField() will find bit-fields for various
7101   // cases where the source expression is not a bit-field designator.
7102 
7103   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
7104   if (!Field)
7105     return {};
7106 
7107   QualType FT = Field->getType();
7108 
7109   uint64_t BitWidth = Field->getBitWidthValue(*this);
7110   uint64_t IntSize = getTypeSize(IntTy);
7111   // C++ [conv.prom]p5:
7112   //   A prvalue for an integral bit-field can be converted to a prvalue of type
7113   //   int if int can represent all the values of the bit-field; otherwise, it
7114   //   can be converted to unsigned int if unsigned int can represent all the
7115   //   values of the bit-field. If the bit-field is larger yet, no integral
7116   //   promotion applies to it.
7117   // C11 6.3.1.1/2:
7118   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
7119   //   If an int can represent all values of the original type (as restricted by
7120   //   the width, for a bit-field), the value is converted to an int; otherwise,
7121   //   it is converted to an unsigned int.
7122   //
7123   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
7124   //        We perform that promotion here to match GCC and C++.
7125   // FIXME: C does not permit promotion of an enum bit-field whose rank is
7126   //        greater than that of 'int'. We perform that promotion to match GCC.
7127   if (BitWidth < IntSize)
7128     return IntTy;
7129 
7130   if (BitWidth == IntSize)
7131     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
7132 
7133   // Bit-fields wider than int are not subject to promotions, and therefore act
7134   // like the base type. GCC has some weird bugs in this area that we
7135   // deliberately do not follow (GCC follows a pre-standard resolution to
7136   // C's DR315 which treats bit-width as being part of the type, and this leaks
7137   // into their semantics in some cases).
7138   return {};
7139 }
7140 
7141 /// getPromotedIntegerType - Returns the type that Promotable will
7142 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
7143 /// integer type.
7144 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
7145   assert(!Promotable.isNull());
7146   assert(isPromotableIntegerType(Promotable));
7147   if (const auto *ET = Promotable->getAs<EnumType>())
7148     return ET->getDecl()->getPromotionType();
7149 
7150   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
7151     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
7152     // (3.9.1) can be converted to a prvalue of the first of the following
7153     // types that can represent all the values of its underlying type:
7154     // int, unsigned int, long int, unsigned long int, long long int, or
7155     // unsigned long long int [...]
7156     // FIXME: Is there some better way to compute this?
7157     if (BT->getKind() == BuiltinType::WChar_S ||
7158         BT->getKind() == BuiltinType::WChar_U ||
7159         BT->getKind() == BuiltinType::Char8 ||
7160         BT->getKind() == BuiltinType::Char16 ||
7161         BT->getKind() == BuiltinType::Char32) {
7162       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
7163       uint64_t FromSize = getTypeSize(BT);
7164       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
7165                                   LongLongTy, UnsignedLongLongTy };
7166       for (const auto &PT : PromoteTypes) {
7167         uint64_t ToSize = getTypeSize(PT);
7168         if (FromSize < ToSize ||
7169             (FromSize == ToSize && FromIsSigned == PT->isSignedIntegerType()))
7170           return PT;
7171       }
7172       llvm_unreachable("char type should fit into long long");
7173     }
7174   }
7175 
7176   // At this point, we should have a signed or unsigned integer type.
7177   if (Promotable->isSignedIntegerType())
7178     return IntTy;
7179   uint64_t PromotableSize = getIntWidth(Promotable);
7180   uint64_t IntSize = getIntWidth(IntTy);
7181   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
7182   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
7183 }
7184 
7185 /// Recurses in pointer/array types until it finds an objc retainable
7186 /// type and returns its ownership.
7187 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
7188   while (!T.isNull()) {
7189     if (T.getObjCLifetime() != Qualifiers::OCL_None)
7190       return T.getObjCLifetime();
7191     if (T->isArrayType())
7192       T = getBaseElementType(T);
7193     else if (const auto *PT = T->getAs<PointerType>())
7194       T = PT->getPointeeType();
7195     else if (const auto *RT = T->getAs<ReferenceType>())
7196       T = RT->getPointeeType();
7197     else
7198       break;
7199   }
7200 
7201   return Qualifiers::OCL_None;
7202 }
7203 
7204 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
7205   // Incomplete enum types are not treated as integer types.
7206   // FIXME: In C++, enum types are never integer types.
7207   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
7208     return ET->getDecl()->getIntegerType().getTypePtr();
7209   return nullptr;
7210 }
7211 
7212 /// getIntegerTypeOrder - Returns the highest ranked integer type:
7213 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
7214 /// LHS < RHS, return -1.
7215 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
7216   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
7217   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
7218 
7219   // Unwrap enums to their underlying type.
7220   if (const auto *ET = dyn_cast<EnumType>(LHSC))
7221     LHSC = getIntegerTypeForEnum(ET);
7222   if (const auto *ET = dyn_cast<EnumType>(RHSC))
7223     RHSC = getIntegerTypeForEnum(ET);
7224 
7225   if (LHSC == RHSC) return 0;
7226 
7227   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
7228   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
7229 
7230   unsigned LHSRank = getIntegerRank(LHSC);
7231   unsigned RHSRank = getIntegerRank(RHSC);
7232 
7233   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
7234     if (LHSRank == RHSRank) return 0;
7235     return LHSRank > RHSRank ? 1 : -1;
7236   }
7237 
7238   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
7239   if (LHSUnsigned) {
7240     // If the unsigned [LHS] type is larger, return it.
7241     if (LHSRank >= RHSRank)
7242       return 1;
7243 
7244     // If the signed type can represent all values of the unsigned type, it
7245     // wins.  Because we are dealing with 2's complement and types that are
7246     // powers of two larger than each other, this is always safe.
7247     return -1;
7248   }
7249 
7250   // If the unsigned [RHS] type is larger, return it.
7251   if (RHSRank >= LHSRank)
7252     return -1;
7253 
7254   // If the signed type can represent all values of the unsigned type, it
7255   // wins.  Because we are dealing with 2's complement and types that are
7256   // powers of two larger than each other, this is always safe.
7257   return 1;
7258 }
7259 
7260 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
7261   if (CFConstantStringTypeDecl)
7262     return CFConstantStringTypeDecl;
7263 
7264   assert(!CFConstantStringTagDecl &&
7265          "tag and typedef should be initialized together");
7266   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
7267   CFConstantStringTagDecl->startDefinition();
7268 
7269   struct {
7270     QualType Type;
7271     const char *Name;
7272   } Fields[5];
7273   unsigned Count = 0;
7274 
7275   /// Objective-C ABI
7276   ///
7277   ///    typedef struct __NSConstantString_tag {
7278   ///      const int *isa;
7279   ///      int flags;
7280   ///      const char *str;
7281   ///      long length;
7282   ///    } __NSConstantString;
7283   ///
7284   /// Swift ABI (4.1, 4.2)
7285   ///
7286   ///    typedef struct __NSConstantString_tag {
7287   ///      uintptr_t _cfisa;
7288   ///      uintptr_t _swift_rc;
7289   ///      _Atomic(uint64_t) _cfinfoa;
7290   ///      const char *_ptr;
7291   ///      uint32_t _length;
7292   ///    } __NSConstantString;
7293   ///
7294   /// Swift ABI (5.0)
7295   ///
7296   ///    typedef struct __NSConstantString_tag {
7297   ///      uintptr_t _cfisa;
7298   ///      uintptr_t _swift_rc;
7299   ///      _Atomic(uint64_t) _cfinfoa;
7300   ///      const char *_ptr;
7301   ///      uintptr_t _length;
7302   ///    } __NSConstantString;
7303 
7304   const auto CFRuntime = getLangOpts().CFRuntime;
7305   if (static_cast<unsigned>(CFRuntime) <
7306       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
7307     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
7308     Fields[Count++] = { IntTy, "flags" };
7309     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
7310     Fields[Count++] = { LongTy, "length" };
7311   } else {
7312     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
7313     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
7314     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
7315     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
7316     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
7317         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
7318       Fields[Count++] = { IntTy, "_ptr" };
7319     else
7320       Fields[Count++] = { getUIntPtrType(), "_ptr" };
7321   }
7322 
7323   // Create fields
7324   for (unsigned i = 0; i < Count; ++i) {
7325     FieldDecl *Field =
7326         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
7327                           SourceLocation(), &Idents.get(Fields[i].Name),
7328                           Fields[i].Type, /*TInfo=*/nullptr,
7329                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7330     Field->setAccess(AS_public);
7331     CFConstantStringTagDecl->addDecl(Field);
7332   }
7333 
7334   CFConstantStringTagDecl->completeDefinition();
7335   // This type is designed to be compatible with NSConstantString, but cannot
7336   // use the same name, since NSConstantString is an interface.
7337   auto tagType = getTagDeclType(CFConstantStringTagDecl);
7338   CFConstantStringTypeDecl =
7339       buildImplicitTypedef(tagType, "__NSConstantString");
7340 
7341   return CFConstantStringTypeDecl;
7342 }
7343 
7344 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
7345   if (!CFConstantStringTagDecl)
7346     getCFConstantStringDecl(); // Build the tag and the typedef.
7347   return CFConstantStringTagDecl;
7348 }
7349 
7350 // getCFConstantStringType - Return the type used for constant CFStrings.
7351 QualType ASTContext::getCFConstantStringType() const {
7352   return getTypedefType(getCFConstantStringDecl());
7353 }
7354 
7355 QualType ASTContext::getObjCSuperType() const {
7356   if (ObjCSuperType.isNull()) {
7357     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
7358     getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl);
7359     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
7360   }
7361   return ObjCSuperType;
7362 }
7363 
7364 void ASTContext::setCFConstantStringType(QualType T) {
7365   const auto *TD = T->castAs<TypedefType>();
7366   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
7367   const auto *TagType =
7368       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
7369   CFConstantStringTagDecl = TagType->getDecl();
7370 }
7371 
7372 QualType ASTContext::getBlockDescriptorType() const {
7373   if (BlockDescriptorType)
7374     return getTagDeclType(BlockDescriptorType);
7375 
7376   RecordDecl *RD;
7377   // FIXME: Needs the FlagAppleBlock bit.
7378   RD = buildImplicitRecord("__block_descriptor");
7379   RD->startDefinition();
7380 
7381   QualType FieldTypes[] = {
7382     UnsignedLongTy,
7383     UnsignedLongTy,
7384   };
7385 
7386   static const char *const FieldNames[] = {
7387     "reserved",
7388     "Size"
7389   };
7390 
7391   for (size_t i = 0; i < 2; ++i) {
7392     FieldDecl *Field = FieldDecl::Create(
7393         *this, RD, SourceLocation(), SourceLocation(),
7394         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7395         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7396     Field->setAccess(AS_public);
7397     RD->addDecl(Field);
7398   }
7399 
7400   RD->completeDefinition();
7401 
7402   BlockDescriptorType = RD;
7403 
7404   return getTagDeclType(BlockDescriptorType);
7405 }
7406 
7407 QualType ASTContext::getBlockDescriptorExtendedType() const {
7408   if (BlockDescriptorExtendedType)
7409     return getTagDeclType(BlockDescriptorExtendedType);
7410 
7411   RecordDecl *RD;
7412   // FIXME: Needs the FlagAppleBlock bit.
7413   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
7414   RD->startDefinition();
7415 
7416   QualType FieldTypes[] = {
7417     UnsignedLongTy,
7418     UnsignedLongTy,
7419     getPointerType(VoidPtrTy),
7420     getPointerType(VoidPtrTy)
7421   };
7422 
7423   static const char *const FieldNames[] = {
7424     "reserved",
7425     "Size",
7426     "CopyFuncPtr",
7427     "DestroyFuncPtr"
7428   };
7429 
7430   for (size_t i = 0; i < 4; ++i) {
7431     FieldDecl *Field = FieldDecl::Create(
7432         *this, RD, SourceLocation(), SourceLocation(),
7433         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7434         /*BitWidth=*/nullptr,
7435         /*Mutable=*/false, ICIS_NoInit);
7436     Field->setAccess(AS_public);
7437     RD->addDecl(Field);
7438   }
7439 
7440   RD->completeDefinition();
7441 
7442   BlockDescriptorExtendedType = RD;
7443   return getTagDeclType(BlockDescriptorExtendedType);
7444 }
7445 
7446 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
7447   const auto *BT = dyn_cast<BuiltinType>(T);
7448 
7449   if (!BT) {
7450     if (isa<PipeType>(T))
7451       return OCLTK_Pipe;
7452 
7453     return OCLTK_Default;
7454   }
7455 
7456   switch (BT->getKind()) {
7457 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
7458   case BuiltinType::Id:                                                        \
7459     return OCLTK_Image;
7460 #include "clang/Basic/OpenCLImageTypes.def"
7461 
7462   case BuiltinType::OCLClkEvent:
7463     return OCLTK_ClkEvent;
7464 
7465   case BuiltinType::OCLEvent:
7466     return OCLTK_Event;
7467 
7468   case BuiltinType::OCLQueue:
7469     return OCLTK_Queue;
7470 
7471   case BuiltinType::OCLReserveID:
7472     return OCLTK_ReserveID;
7473 
7474   case BuiltinType::OCLSampler:
7475     return OCLTK_Sampler;
7476 
7477   default:
7478     return OCLTK_Default;
7479   }
7480 }
7481 
7482 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
7483   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
7484 }
7485 
7486 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
7487 /// requires copy/dispose. Note that this must match the logic
7488 /// in buildByrefHelpers.
7489 bool ASTContext::BlockRequiresCopying(QualType Ty,
7490                                       const VarDecl *D) {
7491   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
7492     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
7493     if (!copyExpr && record->hasTrivialDestructor()) return false;
7494 
7495     return true;
7496   }
7497 
7498   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
7499   // move or destroy.
7500   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
7501     return true;
7502 
7503   if (!Ty->isObjCRetainableType()) return false;
7504 
7505   Qualifiers qs = Ty.getQualifiers();
7506 
7507   // If we have lifetime, that dominates.
7508   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
7509     switch (lifetime) {
7510       case Qualifiers::OCL_None: llvm_unreachable("impossible");
7511 
7512       // These are just bits as far as the runtime is concerned.
7513       case Qualifiers::OCL_ExplicitNone:
7514       case Qualifiers::OCL_Autoreleasing:
7515         return false;
7516 
7517       // These cases should have been taken care of when checking the type's
7518       // non-triviality.
7519       case Qualifiers::OCL_Weak:
7520       case Qualifiers::OCL_Strong:
7521         llvm_unreachable("impossible");
7522     }
7523     llvm_unreachable("fell out of lifetime switch!");
7524   }
7525   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
7526           Ty->isObjCObjectPointerType());
7527 }
7528 
7529 bool ASTContext::getByrefLifetime(QualType Ty,
7530                               Qualifiers::ObjCLifetime &LifeTime,
7531                               bool &HasByrefExtendedLayout) const {
7532   if (!getLangOpts().ObjC ||
7533       getLangOpts().getGC() != LangOptions::NonGC)
7534     return false;
7535 
7536   HasByrefExtendedLayout = false;
7537   if (Ty->isRecordType()) {
7538     HasByrefExtendedLayout = true;
7539     LifeTime = Qualifiers::OCL_None;
7540   } else if ((LifeTime = Ty.getObjCLifetime())) {
7541     // Honor the ARC qualifiers.
7542   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
7543     // The MRR rule.
7544     LifeTime = Qualifiers::OCL_ExplicitNone;
7545   } else {
7546     LifeTime = Qualifiers::OCL_None;
7547   }
7548   return true;
7549 }
7550 
7551 CanQualType ASTContext::getNSUIntegerType() const {
7552   assert(Target && "Expected target to be initialized");
7553   const llvm::Triple &T = Target->getTriple();
7554   // Windows is LLP64 rather than LP64
7555   if (T.isOSWindows() && T.isArch64Bit())
7556     return UnsignedLongLongTy;
7557   return UnsignedLongTy;
7558 }
7559 
7560 CanQualType ASTContext::getNSIntegerType() const {
7561   assert(Target && "Expected target to be initialized");
7562   const llvm::Triple &T = Target->getTriple();
7563   // Windows is LLP64 rather than LP64
7564   if (T.isOSWindows() && T.isArch64Bit())
7565     return LongLongTy;
7566   return LongTy;
7567 }
7568 
7569 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
7570   if (!ObjCInstanceTypeDecl)
7571     ObjCInstanceTypeDecl =
7572         buildImplicitTypedef(getObjCIdType(), "instancetype");
7573   return ObjCInstanceTypeDecl;
7574 }
7575 
7576 // This returns true if a type has been typedefed to BOOL:
7577 // typedef <type> BOOL;
7578 static bool isTypeTypedefedAsBOOL(QualType T) {
7579   if (const auto *TT = dyn_cast<TypedefType>(T))
7580     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
7581       return II->isStr("BOOL");
7582 
7583   return false;
7584 }
7585 
7586 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
7587 /// purpose.
7588 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
7589   if (!type->isIncompleteArrayType() && type->isIncompleteType())
7590     return CharUnits::Zero();
7591 
7592   CharUnits sz = getTypeSizeInChars(type);
7593 
7594   // Make all integer and enum types at least as large as an int
7595   if (sz.isPositive() && type->isIntegralOrEnumerationType())
7596     sz = std::max(sz, getTypeSizeInChars(IntTy));
7597   // Treat arrays as pointers, since that's how they're passed in.
7598   else if (type->isArrayType())
7599     sz = getTypeSizeInChars(VoidPtrTy);
7600   return sz;
7601 }
7602 
7603 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
7604   return getTargetInfo().getCXXABI().isMicrosoft() &&
7605          VD->isStaticDataMember() &&
7606          VD->getType()->isIntegralOrEnumerationType() &&
7607          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
7608 }
7609 
7610 ASTContext::InlineVariableDefinitionKind
7611 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
7612   if (!VD->isInline())
7613     return InlineVariableDefinitionKind::None;
7614 
7615   // In almost all cases, it's a weak definition.
7616   auto *First = VD->getFirstDecl();
7617   if (First->isInlineSpecified() || !First->isStaticDataMember())
7618     return InlineVariableDefinitionKind::Weak;
7619 
7620   // If there's a file-context declaration in this translation unit, it's a
7621   // non-discardable definition.
7622   for (auto *D : VD->redecls())
7623     if (D->getLexicalDeclContext()->isFileContext() &&
7624         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
7625       return InlineVariableDefinitionKind::Strong;
7626 
7627   // If we've not seen one yet, we don't know.
7628   return InlineVariableDefinitionKind::WeakUnknown;
7629 }
7630 
7631 static std::string charUnitsToString(const CharUnits &CU) {
7632   return llvm::itostr(CU.getQuantity());
7633 }
7634 
7635 /// getObjCEncodingForBlock - Return the encoded type for this block
7636 /// declaration.
7637 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
7638   std::string S;
7639 
7640   const BlockDecl *Decl = Expr->getBlockDecl();
7641   QualType BlockTy =
7642       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
7643   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
7644   // Encode result type.
7645   if (getLangOpts().EncodeExtendedBlockSig)
7646     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
7647                                       true /*Extended*/);
7648   else
7649     getObjCEncodingForType(BlockReturnTy, S);
7650   // Compute size of all parameters.
7651   // Start with computing size of a pointer in number of bytes.
7652   // FIXME: There might(should) be a better way of doing this computation!
7653   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7654   CharUnits ParmOffset = PtrSize;
7655   for (auto *PI : Decl->parameters()) {
7656     QualType PType = PI->getType();
7657     CharUnits sz = getObjCEncodingTypeSize(PType);
7658     if (sz.isZero())
7659       continue;
7660     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
7661     ParmOffset += sz;
7662   }
7663   // Size of the argument frame
7664   S += charUnitsToString(ParmOffset);
7665   // Block pointer and offset.
7666   S += "@?0";
7667 
7668   // Argument types.
7669   ParmOffset = PtrSize;
7670   for (auto *PVDecl : Decl->parameters()) {
7671     QualType PType = PVDecl->getOriginalType();
7672     if (const auto *AT =
7673             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7674       // Use array's original type only if it has known number of
7675       // elements.
7676       if (!isa<ConstantArrayType>(AT))
7677         PType = PVDecl->getType();
7678     } else if (PType->isFunctionType())
7679       PType = PVDecl->getType();
7680     if (getLangOpts().EncodeExtendedBlockSig)
7681       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
7682                                       S, true /*Extended*/);
7683     else
7684       getObjCEncodingForType(PType, S);
7685     S += charUnitsToString(ParmOffset);
7686     ParmOffset += getObjCEncodingTypeSize(PType);
7687   }
7688 
7689   return S;
7690 }
7691 
7692 std::string
7693 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
7694   std::string S;
7695   // Encode result type.
7696   getObjCEncodingForType(Decl->getReturnType(), S);
7697   CharUnits ParmOffset;
7698   // Compute size of all parameters.
7699   for (auto *PI : Decl->parameters()) {
7700     QualType PType = PI->getType();
7701     CharUnits sz = getObjCEncodingTypeSize(PType);
7702     if (sz.isZero())
7703       continue;
7704 
7705     assert(sz.isPositive() &&
7706            "getObjCEncodingForFunctionDecl - Incomplete param type");
7707     ParmOffset += sz;
7708   }
7709   S += charUnitsToString(ParmOffset);
7710   ParmOffset = CharUnits::Zero();
7711 
7712   // Argument types.
7713   for (auto *PVDecl : Decl->parameters()) {
7714     QualType PType = PVDecl->getOriginalType();
7715     if (const auto *AT =
7716             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7717       // Use array's original type only if it has known number of
7718       // elements.
7719       if (!isa<ConstantArrayType>(AT))
7720         PType = PVDecl->getType();
7721     } else if (PType->isFunctionType())
7722       PType = PVDecl->getType();
7723     getObjCEncodingForType(PType, S);
7724     S += charUnitsToString(ParmOffset);
7725     ParmOffset += getObjCEncodingTypeSize(PType);
7726   }
7727 
7728   return S;
7729 }
7730 
7731 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
7732 /// method parameter or return type. If Extended, include class names and
7733 /// block object types.
7734 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
7735                                                    QualType T, std::string& S,
7736                                                    bool Extended) const {
7737   // Encode type qualifier, 'in', 'inout', etc. for the parameter.
7738   getObjCEncodingForTypeQualifier(QT, S);
7739   // Encode parameter type.
7740   ObjCEncOptions Options = ObjCEncOptions()
7741                                .setExpandPointedToStructures()
7742                                .setExpandStructures()
7743                                .setIsOutermostType();
7744   if (Extended)
7745     Options.setEncodeBlockParameters().setEncodeClassNames();
7746   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
7747 }
7748 
7749 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
7750 /// declaration.
7751 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
7752                                                      bool Extended) const {
7753   // FIXME: This is not very efficient.
7754   // Encode return type.
7755   std::string S;
7756   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
7757                                     Decl->getReturnType(), S, Extended);
7758   // Compute size of all parameters.
7759   // Start with computing size of a pointer in number of bytes.
7760   // FIXME: There might(should) be a better way of doing this computation!
7761   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7762   // The first two arguments (self and _cmd) are pointers; account for
7763   // their size.
7764   CharUnits ParmOffset = 2 * PtrSize;
7765   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7766        E = Decl->sel_param_end(); PI != E; ++PI) {
7767     QualType PType = (*PI)->getType();
7768     CharUnits sz = getObjCEncodingTypeSize(PType);
7769     if (sz.isZero())
7770       continue;
7771 
7772     assert(sz.isPositive() &&
7773            "getObjCEncodingForMethodDecl - Incomplete param type");
7774     ParmOffset += sz;
7775   }
7776   S += charUnitsToString(ParmOffset);
7777   S += "@0:";
7778   S += charUnitsToString(PtrSize);
7779 
7780   // Argument types.
7781   ParmOffset = 2 * PtrSize;
7782   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7783        E = Decl->sel_param_end(); PI != E; ++PI) {
7784     const ParmVarDecl *PVDecl = *PI;
7785     QualType PType = PVDecl->getOriginalType();
7786     if (const auto *AT =
7787             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7788       // Use array's original type only if it has known number of
7789       // elements.
7790       if (!isa<ConstantArrayType>(AT))
7791         PType = PVDecl->getType();
7792     } else if (PType->isFunctionType())
7793       PType = PVDecl->getType();
7794     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
7795                                       PType, S, Extended);
7796     S += charUnitsToString(ParmOffset);
7797     ParmOffset += getObjCEncodingTypeSize(PType);
7798   }
7799 
7800   return S;
7801 }
7802 
7803 ObjCPropertyImplDecl *
7804 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
7805                                       const ObjCPropertyDecl *PD,
7806                                       const Decl *Container) const {
7807   if (!Container)
7808     return nullptr;
7809   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
7810     for (auto *PID : CID->property_impls())
7811       if (PID->getPropertyDecl() == PD)
7812         return PID;
7813   } else {
7814     const auto *OID = cast<ObjCImplementationDecl>(Container);
7815     for (auto *PID : OID->property_impls())
7816       if (PID->getPropertyDecl() == PD)
7817         return PID;
7818   }
7819   return nullptr;
7820 }
7821 
7822 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
7823 /// property declaration. If non-NULL, Container must be either an
7824 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7825 /// NULL when getting encodings for protocol properties.
7826 /// Property attributes are stored as a comma-delimited C string. The simple
7827 /// attributes readonly and bycopy are encoded as single characters. The
7828 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
7829 /// encoded as single characters, followed by an identifier. Property types
7830 /// are also encoded as a parametrized attribute. The characters used to encode
7831 /// these attributes are defined by the following enumeration:
7832 /// @code
7833 /// enum PropertyAttributes {
7834 /// kPropertyReadOnly = 'R',   // property is read-only.
7835 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
7836 /// kPropertyByref = '&',  // property is a reference to the value last assigned
7837 /// kPropertyDynamic = 'D',    // property is dynamic
7838 /// kPropertyGetter = 'G',     // followed by getter selector name
7839 /// kPropertySetter = 'S',     // followed by setter selector name
7840 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
7841 /// kPropertyType = 'T'              // followed by old-style type encoding.
7842 /// kPropertyWeak = 'W'              // 'weak' property
7843 /// kPropertyStrong = 'P'            // property GC'able
7844 /// kPropertyNonAtomic = 'N'         // property non-atomic
7845 /// kPropertyOptional = '?'          // property optional
7846 /// };
7847 /// @endcode
7848 std::string
7849 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7850                                            const Decl *Container) const {
7851   // Collect information from the property implementation decl(s).
7852   bool Dynamic = false;
7853   ObjCPropertyImplDecl *SynthesizePID = nullptr;
7854 
7855   if (ObjCPropertyImplDecl *PropertyImpDecl =
7856       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7857     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7858       Dynamic = true;
7859     else
7860       SynthesizePID = PropertyImpDecl;
7861   }
7862 
7863   // FIXME: This is not very efficient.
7864   std::string S = "T";
7865 
7866   // Encode result type.
7867   // GCC has some special rules regarding encoding of properties which
7868   // closely resembles encoding of ivars.
7869   getObjCEncodingForPropertyType(PD->getType(), S);
7870 
7871   if (PD->isOptional())
7872     S += ",?";
7873 
7874   if (PD->isReadOnly()) {
7875     S += ",R";
7876     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7877       S += ",C";
7878     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7879       S += ",&";
7880     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7881       S += ",W";
7882   } else {
7883     switch (PD->getSetterKind()) {
7884     case ObjCPropertyDecl::Assign: break;
7885     case ObjCPropertyDecl::Copy:   S += ",C"; break;
7886     case ObjCPropertyDecl::Retain: S += ",&"; break;
7887     case ObjCPropertyDecl::Weak:   S += ",W"; break;
7888     }
7889   }
7890 
7891   // It really isn't clear at all what this means, since properties
7892   // are "dynamic by default".
7893   if (Dynamic)
7894     S += ",D";
7895 
7896   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7897     S += ",N";
7898 
7899   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7900     S += ",G";
7901     S += PD->getGetterName().getAsString();
7902   }
7903 
7904   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7905     S += ",S";
7906     S += PD->getSetterName().getAsString();
7907   }
7908 
7909   if (SynthesizePID) {
7910     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7911     S += ",V";
7912     S += OID->getNameAsString();
7913   }
7914 
7915   // FIXME: OBJCGC: weak & strong
7916   return S;
7917 }
7918 
7919 /// getLegacyIntegralTypeEncoding -
7920 /// Another legacy compatibility encoding: 32-bit longs are encoded as
7921 /// 'l' or 'L' , but not always.  For typedefs, we need to use
7922 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
7923 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7924   if (PointeeTy->getAs<TypedefType>()) {
7925     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7926       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7927         PointeeTy = UnsignedIntTy;
7928       else
7929         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7930           PointeeTy = IntTy;
7931     }
7932   }
7933 }
7934 
7935 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7936                                         const FieldDecl *Field,
7937                                         QualType *NotEncodedT) const {
7938   // We follow the behavior of gcc, expanding structures which are
7939   // directly pointed to, and expanding embedded structures. Note that
7940   // these rules are sufficient to prevent recursive encoding of the
7941   // same type.
7942   getObjCEncodingForTypeImpl(T, S,
7943                              ObjCEncOptions()
7944                                  .setExpandPointedToStructures()
7945                                  .setExpandStructures()
7946                                  .setIsOutermostType(),
7947                              Field, NotEncodedT);
7948 }
7949 
7950 void ASTContext::getObjCEncodingForPropertyType(QualType T,
7951                                                 std::string& S) const {
7952   // Encode result type.
7953   // GCC has some special rules regarding encoding of properties which
7954   // closely resembles encoding of ivars.
7955   getObjCEncodingForTypeImpl(T, S,
7956                              ObjCEncOptions()
7957                                  .setExpandPointedToStructures()
7958                                  .setExpandStructures()
7959                                  .setIsOutermostType()
7960                                  .setEncodingProperty(),
7961                              /*Field=*/nullptr);
7962 }
7963 
7964 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
7965                                             const BuiltinType *BT) {
7966     BuiltinType::Kind kind = BT->getKind();
7967     switch (kind) {
7968     case BuiltinType::Void:       return 'v';
7969     case BuiltinType::Bool:       return 'B';
7970     case BuiltinType::Char8:
7971     case BuiltinType::Char_U:
7972     case BuiltinType::UChar:      return 'C';
7973     case BuiltinType::Char16:
7974     case BuiltinType::UShort:     return 'S';
7975     case BuiltinType::Char32:
7976     case BuiltinType::UInt:       return 'I';
7977     case BuiltinType::ULong:
7978         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
7979     case BuiltinType::UInt128:    return 'T';
7980     case BuiltinType::ULongLong:  return 'Q';
7981     case BuiltinType::Char_S:
7982     case BuiltinType::SChar:      return 'c';
7983     case BuiltinType::Short:      return 's';
7984     case BuiltinType::WChar_S:
7985     case BuiltinType::WChar_U:
7986     case BuiltinType::Int:        return 'i';
7987     case BuiltinType::Long:
7988       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
7989     case BuiltinType::LongLong:   return 'q';
7990     case BuiltinType::Int128:     return 't';
7991     case BuiltinType::Float:      return 'f';
7992     case BuiltinType::Double:     return 'd';
7993     case BuiltinType::LongDouble: return 'D';
7994     case BuiltinType::NullPtr:    return '*'; // like char*
7995 
7996     case BuiltinType::BFloat16:
7997     case BuiltinType::Float16:
7998     case BuiltinType::Float128:
7999     case BuiltinType::Ibm128:
8000     case BuiltinType::Half:
8001     case BuiltinType::ShortAccum:
8002     case BuiltinType::Accum:
8003     case BuiltinType::LongAccum:
8004     case BuiltinType::UShortAccum:
8005     case BuiltinType::UAccum:
8006     case BuiltinType::ULongAccum:
8007     case BuiltinType::ShortFract:
8008     case BuiltinType::Fract:
8009     case BuiltinType::LongFract:
8010     case BuiltinType::UShortFract:
8011     case BuiltinType::UFract:
8012     case BuiltinType::ULongFract:
8013     case BuiltinType::SatShortAccum:
8014     case BuiltinType::SatAccum:
8015     case BuiltinType::SatLongAccum:
8016     case BuiltinType::SatUShortAccum:
8017     case BuiltinType::SatUAccum:
8018     case BuiltinType::SatULongAccum:
8019     case BuiltinType::SatShortFract:
8020     case BuiltinType::SatFract:
8021     case BuiltinType::SatLongFract:
8022     case BuiltinType::SatUShortFract:
8023     case BuiltinType::SatUFract:
8024     case BuiltinType::SatULongFract:
8025       // FIXME: potentially need @encodes for these!
8026       return ' ';
8027 
8028 #define SVE_TYPE(Name, Id, SingletonId) \
8029     case BuiltinType::Id:
8030 #include "clang/Basic/AArch64SVEACLETypes.def"
8031 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
8032 #include "clang/Basic/RISCVVTypes.def"
8033 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
8034 #include "clang/Basic/WebAssemblyReferenceTypes.def"
8035       {
8036         DiagnosticsEngine &Diags = C->getDiagnostics();
8037         unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
8038                                                 "cannot yet @encode type %0");
8039         Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
8040         return ' ';
8041       }
8042 
8043     case BuiltinType::ObjCId:
8044     case BuiltinType::ObjCClass:
8045     case BuiltinType::ObjCSel:
8046       llvm_unreachable("@encoding ObjC primitive type");
8047 
8048     // OpenCL and placeholder types don't need @encodings.
8049 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8050     case BuiltinType::Id:
8051 #include "clang/Basic/OpenCLImageTypes.def"
8052 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
8053     case BuiltinType::Id:
8054 #include "clang/Basic/OpenCLExtensionTypes.def"
8055     case BuiltinType::OCLEvent:
8056     case BuiltinType::OCLClkEvent:
8057     case BuiltinType::OCLQueue:
8058     case BuiltinType::OCLReserveID:
8059     case BuiltinType::OCLSampler:
8060     case BuiltinType::Dependent:
8061 #define PPC_VECTOR_TYPE(Name, Id, Size) \
8062     case BuiltinType::Id:
8063 #include "clang/Basic/PPCTypes.def"
8064 #define BUILTIN_TYPE(KIND, ID)
8065 #define PLACEHOLDER_TYPE(KIND, ID) \
8066     case BuiltinType::KIND:
8067 #include "clang/AST/BuiltinTypes.def"
8068       llvm_unreachable("invalid builtin type for @encode");
8069     }
8070     llvm_unreachable("invalid BuiltinType::Kind value");
8071 }
8072 
8073 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
8074   EnumDecl *Enum = ET->getDecl();
8075 
8076   // The encoding of an non-fixed enum type is always 'i', regardless of size.
8077   if (!Enum->isFixed())
8078     return 'i';
8079 
8080   // The encoding of a fixed enum type matches its fixed underlying type.
8081   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
8082   return getObjCEncodingForPrimitiveType(C, BT);
8083 }
8084 
8085 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
8086                            QualType T, const FieldDecl *FD) {
8087   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
8088   S += 'b';
8089   // The NeXT runtime encodes bit fields as b followed by the number of bits.
8090   // The GNU runtime requires more information; bitfields are encoded as b,
8091   // then the offset (in bits) of the first element, then the type of the
8092   // bitfield, then the size in bits.  For example, in this structure:
8093   //
8094   // struct
8095   // {
8096   //    int integer;
8097   //    int flags:2;
8098   // };
8099   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
8100   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
8101   // information is not especially sensible, but we're stuck with it for
8102   // compatibility with GCC, although providing it breaks anything that
8103   // actually uses runtime introspection and wants to work on both runtimes...
8104   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
8105     uint64_t Offset;
8106 
8107     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
8108       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
8109                                          IVD);
8110     } else {
8111       const RecordDecl *RD = FD->getParent();
8112       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
8113       Offset = RL.getFieldOffset(FD->getFieldIndex());
8114     }
8115 
8116     S += llvm::utostr(Offset);
8117 
8118     if (const auto *ET = T->getAs<EnumType>())
8119       S += ObjCEncodingForEnumType(Ctx, ET);
8120     else {
8121       const auto *BT = T->castAs<BuiltinType>();
8122       S += getObjCEncodingForPrimitiveType(Ctx, BT);
8123     }
8124   }
8125   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
8126 }
8127 
8128 // Helper function for determining whether the encoded type string would include
8129 // a template specialization type.
8130 static bool hasTemplateSpecializationInEncodedString(const Type *T,
8131                                                      bool VisitBasesAndFields) {
8132   T = T->getBaseElementTypeUnsafe();
8133 
8134   if (auto *PT = T->getAs<PointerType>())
8135     return hasTemplateSpecializationInEncodedString(
8136         PT->getPointeeType().getTypePtr(), false);
8137 
8138   auto *CXXRD = T->getAsCXXRecordDecl();
8139 
8140   if (!CXXRD)
8141     return false;
8142 
8143   if (isa<ClassTemplateSpecializationDecl>(CXXRD))
8144     return true;
8145 
8146   if (!CXXRD->hasDefinition() || !VisitBasesAndFields)
8147     return false;
8148 
8149   for (const auto &B : CXXRD->bases())
8150     if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(),
8151                                                  true))
8152       return true;
8153 
8154   for (auto *FD : CXXRD->fields())
8155     if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(),
8156                                                  true))
8157       return true;
8158 
8159   return false;
8160 }
8161 
8162 // FIXME: Use SmallString for accumulating string.
8163 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
8164                                             const ObjCEncOptions Options,
8165                                             const FieldDecl *FD,
8166                                             QualType *NotEncodedT) const {
8167   CanQualType CT = getCanonicalType(T);
8168   switch (CT->getTypeClass()) {
8169   case Type::Builtin:
8170   case Type::Enum:
8171     if (FD && FD->isBitField())
8172       return EncodeBitField(this, S, T, FD);
8173     if (const auto *BT = dyn_cast<BuiltinType>(CT))
8174       S += getObjCEncodingForPrimitiveType(this, BT);
8175     else
8176       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
8177     return;
8178 
8179   case Type::Complex:
8180     S += 'j';
8181     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
8182                                ObjCEncOptions(),
8183                                /*Field=*/nullptr);
8184     return;
8185 
8186   case Type::Atomic:
8187     S += 'A';
8188     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
8189                                ObjCEncOptions(),
8190                                /*Field=*/nullptr);
8191     return;
8192 
8193   // encoding for pointer or reference types.
8194   case Type::Pointer:
8195   case Type::LValueReference:
8196   case Type::RValueReference: {
8197     QualType PointeeTy;
8198     if (isa<PointerType>(CT)) {
8199       const auto *PT = T->castAs<PointerType>();
8200       if (PT->isObjCSelType()) {
8201         S += ':';
8202         return;
8203       }
8204       PointeeTy = PT->getPointeeType();
8205     } else {
8206       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
8207     }
8208 
8209     bool isReadOnly = false;
8210     // For historical/compatibility reasons, the read-only qualifier of the
8211     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
8212     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
8213     // Also, do not emit the 'r' for anything but the outermost type!
8214     if (T->getAs<TypedefType>()) {
8215       if (Options.IsOutermostType() && T.isConstQualified()) {
8216         isReadOnly = true;
8217         S += 'r';
8218       }
8219     } else if (Options.IsOutermostType()) {
8220       QualType P = PointeeTy;
8221       while (auto PT = P->getAs<PointerType>())
8222         P = PT->getPointeeType();
8223       if (P.isConstQualified()) {
8224         isReadOnly = true;
8225         S += 'r';
8226       }
8227     }
8228     if (isReadOnly) {
8229       // Another legacy compatibility encoding. Some ObjC qualifier and type
8230       // combinations need to be rearranged.
8231       // Rewrite "in const" from "nr" to "rn"
8232       if (StringRef(S).ends_with("nr"))
8233         S.replace(S.end()-2, S.end(), "rn");
8234     }
8235 
8236     if (PointeeTy->isCharType()) {
8237       // char pointer types should be encoded as '*' unless it is a
8238       // type that has been typedef'd to 'BOOL'.
8239       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
8240         S += '*';
8241         return;
8242       }
8243     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
8244       // GCC binary compat: Need to convert "struct objc_class *" to "#".
8245       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
8246         S += '#';
8247         return;
8248       }
8249       // GCC binary compat: Need to convert "struct objc_object *" to "@".
8250       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
8251         S += '@';
8252         return;
8253       }
8254       // If the encoded string for the class includes template names, just emit
8255       // "^v" for pointers to the class.
8256       if (getLangOpts().CPlusPlus &&
8257           (!getLangOpts().EncodeCXXClassTemplateSpec &&
8258            hasTemplateSpecializationInEncodedString(
8259                RTy, Options.ExpandPointedToStructures()))) {
8260         S += "^v";
8261         return;
8262       }
8263       // fall through...
8264     }
8265     S += '^';
8266     getLegacyIntegralTypeEncoding(PointeeTy);
8267 
8268     ObjCEncOptions NewOptions;
8269     if (Options.ExpandPointedToStructures())
8270       NewOptions.setExpandStructures();
8271     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
8272                                /*Field=*/nullptr, NotEncodedT);
8273     return;
8274   }
8275 
8276   case Type::ConstantArray:
8277   case Type::IncompleteArray:
8278   case Type::VariableArray: {
8279     const auto *AT = cast<ArrayType>(CT);
8280 
8281     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
8282       // Incomplete arrays are encoded as a pointer to the array element.
8283       S += '^';
8284 
8285       getObjCEncodingForTypeImpl(
8286           AT->getElementType(), S,
8287           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
8288     } else {
8289       S += '[';
8290 
8291       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
8292         S += llvm::utostr(CAT->getSize().getZExtValue());
8293       else {
8294         //Variable length arrays are encoded as a regular array with 0 elements.
8295         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
8296                "Unknown array type!");
8297         S += '0';
8298       }
8299 
8300       getObjCEncodingForTypeImpl(
8301           AT->getElementType(), S,
8302           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
8303           NotEncodedT);
8304       S += ']';
8305     }
8306     return;
8307   }
8308 
8309   case Type::FunctionNoProto:
8310   case Type::FunctionProto:
8311     S += '?';
8312     return;
8313 
8314   case Type::Record: {
8315     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
8316     S += RDecl->isUnion() ? '(' : '{';
8317     // Anonymous structures print as '?'
8318     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
8319       S += II->getName();
8320       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
8321         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
8322         llvm::raw_string_ostream OS(S);
8323         printTemplateArgumentList(OS, TemplateArgs.asArray(),
8324                                   getPrintingPolicy());
8325       }
8326     } else {
8327       S += '?';
8328     }
8329     if (Options.ExpandStructures()) {
8330       S += '=';
8331       if (!RDecl->isUnion()) {
8332         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
8333       } else {
8334         for (const auto *Field : RDecl->fields()) {
8335           if (FD) {
8336             S += '"';
8337             S += Field->getNameAsString();
8338             S += '"';
8339           }
8340 
8341           // Special case bit-fields.
8342           if (Field->isBitField()) {
8343             getObjCEncodingForTypeImpl(Field->getType(), S,
8344                                        ObjCEncOptions().setExpandStructures(),
8345                                        Field);
8346           } else {
8347             QualType qt = Field->getType();
8348             getLegacyIntegralTypeEncoding(qt);
8349             getObjCEncodingForTypeImpl(
8350                 qt, S,
8351                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
8352                 NotEncodedT);
8353           }
8354         }
8355       }
8356     }
8357     S += RDecl->isUnion() ? ')' : '}';
8358     return;
8359   }
8360 
8361   case Type::BlockPointer: {
8362     const auto *BT = T->castAs<BlockPointerType>();
8363     S += "@?"; // Unlike a pointer-to-function, which is "^?".
8364     if (Options.EncodeBlockParameters()) {
8365       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
8366 
8367       S += '<';
8368       // Block return type
8369       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
8370                                  Options.forComponentType(), FD, NotEncodedT);
8371       // Block self
8372       S += "@?";
8373       // Block parameters
8374       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
8375         for (const auto &I : FPT->param_types())
8376           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
8377                                      NotEncodedT);
8378       }
8379       S += '>';
8380     }
8381     return;
8382   }
8383 
8384   case Type::ObjCObject: {
8385     // hack to match legacy encoding of *id and *Class
8386     QualType Ty = getObjCObjectPointerType(CT);
8387     if (Ty->isObjCIdType()) {
8388       S += "{objc_object=}";
8389       return;
8390     }
8391     else if (Ty->isObjCClassType()) {
8392       S += "{objc_class=}";
8393       return;
8394     }
8395     // TODO: Double check to make sure this intentionally falls through.
8396     [[fallthrough]];
8397   }
8398 
8399   case Type::ObjCInterface: {
8400     // Ignore protocol qualifiers when mangling at this level.
8401     // @encode(class_name)
8402     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
8403     S += '{';
8404     S += OI->getObjCRuntimeNameAsString();
8405     if (Options.ExpandStructures()) {
8406       S += '=';
8407       SmallVector<const ObjCIvarDecl*, 32> Ivars;
8408       DeepCollectObjCIvars(OI, true, Ivars);
8409       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
8410         const FieldDecl *Field = Ivars[i];
8411         if (Field->isBitField())
8412           getObjCEncodingForTypeImpl(Field->getType(), S,
8413                                      ObjCEncOptions().setExpandStructures(),
8414                                      Field);
8415         else
8416           getObjCEncodingForTypeImpl(Field->getType(), S,
8417                                      ObjCEncOptions().setExpandStructures(), FD,
8418                                      NotEncodedT);
8419       }
8420     }
8421     S += '}';
8422     return;
8423   }
8424 
8425   case Type::ObjCObjectPointer: {
8426     const auto *OPT = T->castAs<ObjCObjectPointerType>();
8427     if (OPT->isObjCIdType()) {
8428       S += '@';
8429       return;
8430     }
8431 
8432     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
8433       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
8434       // Since this is a binary compatibility issue, need to consult with
8435       // runtime folks. Fortunately, this is a *very* obscure construct.
8436       S += '#';
8437       return;
8438     }
8439 
8440     if (OPT->isObjCQualifiedIdType()) {
8441       getObjCEncodingForTypeImpl(
8442           getObjCIdType(), S,
8443           Options.keepingOnly(ObjCEncOptions()
8444                                   .setExpandPointedToStructures()
8445                                   .setExpandStructures()),
8446           FD);
8447       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
8448         // Note that we do extended encoding of protocol qualifier list
8449         // Only when doing ivar or property encoding.
8450         S += '"';
8451         for (const auto *I : OPT->quals()) {
8452           S += '<';
8453           S += I->getObjCRuntimeNameAsString();
8454           S += '>';
8455         }
8456         S += '"';
8457       }
8458       return;
8459     }
8460 
8461     S += '@';
8462     if (OPT->getInterfaceDecl() &&
8463         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
8464       S += '"';
8465       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
8466       for (const auto *I : OPT->quals()) {
8467         S += '<';
8468         S += I->getObjCRuntimeNameAsString();
8469         S += '>';
8470       }
8471       S += '"';
8472     }
8473     return;
8474   }
8475 
8476   // gcc just blithely ignores member pointers.
8477   // FIXME: we should do better than that.  'M' is available.
8478   case Type::MemberPointer:
8479   // This matches gcc's encoding, even though technically it is insufficient.
8480   //FIXME. We should do a better job than gcc.
8481   case Type::Vector:
8482   case Type::ExtVector:
8483   // Until we have a coherent encoding of these three types, issue warning.
8484     if (NotEncodedT)
8485       *NotEncodedT = T;
8486     return;
8487 
8488   case Type::ConstantMatrix:
8489     if (NotEncodedT)
8490       *NotEncodedT = T;
8491     return;
8492 
8493   case Type::BitInt:
8494     if (NotEncodedT)
8495       *NotEncodedT = T;
8496     return;
8497 
8498   // We could see an undeduced auto type here during error recovery.
8499   // Just ignore it.
8500   case Type::Auto:
8501   case Type::DeducedTemplateSpecialization:
8502     return;
8503 
8504   case Type::Pipe:
8505 #define ABSTRACT_TYPE(KIND, BASE)
8506 #define TYPE(KIND, BASE)
8507 #define DEPENDENT_TYPE(KIND, BASE) \
8508   case Type::KIND:
8509 #define NON_CANONICAL_TYPE(KIND, BASE) \
8510   case Type::KIND:
8511 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
8512   case Type::KIND:
8513 #include "clang/AST/TypeNodes.inc"
8514     llvm_unreachable("@encode for dependent type!");
8515   }
8516   llvm_unreachable("bad type kind!");
8517 }
8518 
8519 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
8520                                                  std::string &S,
8521                                                  const FieldDecl *FD,
8522                                                  bool includeVBases,
8523                                                  QualType *NotEncodedT) const {
8524   assert(RDecl && "Expected non-null RecordDecl");
8525   assert(!RDecl->isUnion() && "Should not be called for unions");
8526   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
8527     return;
8528 
8529   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
8530   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
8531   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
8532 
8533   if (CXXRec) {
8534     for (const auto &BI : CXXRec->bases()) {
8535       if (!BI.isVirtual()) {
8536         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8537         if (base->isEmpty())
8538           continue;
8539         uint64_t offs = toBits(layout.getBaseClassOffset(base));
8540         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8541                                   std::make_pair(offs, base));
8542       }
8543     }
8544   }
8545 
8546   for (FieldDecl *Field : RDecl->fields()) {
8547     if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
8548       continue;
8549     uint64_t offs = layout.getFieldOffset(Field->getFieldIndex());
8550     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8551                               std::make_pair(offs, Field));
8552   }
8553 
8554   if (CXXRec && includeVBases) {
8555     for (const auto &BI : CXXRec->vbases()) {
8556       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8557       if (base->isEmpty())
8558         continue;
8559       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
8560       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
8561           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
8562         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
8563                                   std::make_pair(offs, base));
8564     }
8565   }
8566 
8567   CharUnits size;
8568   if (CXXRec) {
8569     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
8570   } else {
8571     size = layout.getSize();
8572   }
8573 
8574 #ifndef NDEBUG
8575   uint64_t CurOffs = 0;
8576 #endif
8577   std::multimap<uint64_t, NamedDecl *>::iterator
8578     CurLayObj = FieldOrBaseOffsets.begin();
8579 
8580   if (CXXRec && CXXRec->isDynamicClass() &&
8581       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
8582     if (FD) {
8583       S += "\"_vptr$";
8584       std::string recname = CXXRec->getNameAsString();
8585       if (recname.empty()) recname = "?";
8586       S += recname;
8587       S += '"';
8588     }
8589     S += "^^?";
8590 #ifndef NDEBUG
8591     CurOffs += getTypeSize(VoidPtrTy);
8592 #endif
8593   }
8594 
8595   if (!RDecl->hasFlexibleArrayMember()) {
8596     // Mark the end of the structure.
8597     uint64_t offs = toBits(size);
8598     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8599                               std::make_pair(offs, nullptr));
8600   }
8601 
8602   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
8603 #ifndef NDEBUG
8604     assert(CurOffs <= CurLayObj->first);
8605     if (CurOffs < CurLayObj->first) {
8606       uint64_t padding = CurLayObj->first - CurOffs;
8607       // FIXME: There doesn't seem to be a way to indicate in the encoding that
8608       // packing/alignment of members is different that normal, in which case
8609       // the encoding will be out-of-sync with the real layout.
8610       // If the runtime switches to just consider the size of types without
8611       // taking into account alignment, we could make padding explicit in the
8612       // encoding (e.g. using arrays of chars). The encoding strings would be
8613       // longer then though.
8614       CurOffs += padding;
8615     }
8616 #endif
8617 
8618     NamedDecl *dcl = CurLayObj->second;
8619     if (!dcl)
8620       break; // reached end of structure.
8621 
8622     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
8623       // We expand the bases without their virtual bases since those are going
8624       // in the initial structure. Note that this differs from gcc which
8625       // expands virtual bases each time one is encountered in the hierarchy,
8626       // making the encoding type bigger than it really is.
8627       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
8628                                       NotEncodedT);
8629       assert(!base->isEmpty());
8630 #ifndef NDEBUG
8631       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
8632 #endif
8633     } else {
8634       const auto *field = cast<FieldDecl>(dcl);
8635       if (FD) {
8636         S += '"';
8637         S += field->getNameAsString();
8638         S += '"';
8639       }
8640 
8641       if (field->isBitField()) {
8642         EncodeBitField(this, S, field->getType(), field);
8643 #ifndef NDEBUG
8644         CurOffs += field->getBitWidthValue(*this);
8645 #endif
8646       } else {
8647         QualType qt = field->getType();
8648         getLegacyIntegralTypeEncoding(qt);
8649         getObjCEncodingForTypeImpl(
8650             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
8651             FD, NotEncodedT);
8652 #ifndef NDEBUG
8653         CurOffs += getTypeSize(field->getType());
8654 #endif
8655       }
8656     }
8657   }
8658 }
8659 
8660 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
8661                                                  std::string& S) const {
8662   if (QT & Decl::OBJC_TQ_In)
8663     S += 'n';
8664   if (QT & Decl::OBJC_TQ_Inout)
8665     S += 'N';
8666   if (QT & Decl::OBJC_TQ_Out)
8667     S += 'o';
8668   if (QT & Decl::OBJC_TQ_Bycopy)
8669     S += 'O';
8670   if (QT & Decl::OBJC_TQ_Byref)
8671     S += 'R';
8672   if (QT & Decl::OBJC_TQ_Oneway)
8673     S += 'V';
8674 }
8675 
8676 TypedefDecl *ASTContext::getObjCIdDecl() const {
8677   if (!ObjCIdDecl) {
8678     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
8679     T = getObjCObjectPointerType(T);
8680     ObjCIdDecl = buildImplicitTypedef(T, "id");
8681   }
8682   return ObjCIdDecl;
8683 }
8684 
8685 TypedefDecl *ASTContext::getObjCSelDecl() const {
8686   if (!ObjCSelDecl) {
8687     QualType T = getPointerType(ObjCBuiltinSelTy);
8688     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
8689   }
8690   return ObjCSelDecl;
8691 }
8692 
8693 TypedefDecl *ASTContext::getObjCClassDecl() const {
8694   if (!ObjCClassDecl) {
8695     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
8696     T = getObjCObjectPointerType(T);
8697     ObjCClassDecl = buildImplicitTypedef(T, "Class");
8698   }
8699   return ObjCClassDecl;
8700 }
8701 
8702 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
8703   if (!ObjCProtocolClassDecl) {
8704     ObjCProtocolClassDecl
8705       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
8706                                   SourceLocation(),
8707                                   &Idents.get("Protocol"),
8708                                   /*typeParamList=*/nullptr,
8709                                   /*PrevDecl=*/nullptr,
8710                                   SourceLocation(), true);
8711   }
8712 
8713   return ObjCProtocolClassDecl;
8714 }
8715 
8716 //===----------------------------------------------------------------------===//
8717 // __builtin_va_list Construction Functions
8718 //===----------------------------------------------------------------------===//
8719 
8720 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
8721                                                  StringRef Name) {
8722   // typedef char* __builtin[_ms]_va_list;
8723   QualType T = Context->getPointerType(Context->CharTy);
8724   return Context->buildImplicitTypedef(T, Name);
8725 }
8726 
8727 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
8728   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
8729 }
8730 
8731 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
8732   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
8733 }
8734 
8735 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
8736   // typedef void* __builtin_va_list;
8737   QualType T = Context->getPointerType(Context->VoidTy);
8738   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8739 }
8740 
8741 static TypedefDecl *
8742 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
8743   // struct __va_list
8744   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
8745   if (Context->getLangOpts().CPlusPlus) {
8746     // namespace std { struct __va_list {
8747     auto *NS = NamespaceDecl::Create(
8748         const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(),
8749         /*Inline=*/false, SourceLocation(), SourceLocation(),
8750         &Context->Idents.get("std"),
8751         /*PrevDecl=*/nullptr, /*Nested=*/false);
8752     NS->setImplicit();
8753     VaListTagDecl->setDeclContext(NS);
8754   }
8755 
8756   VaListTagDecl->startDefinition();
8757 
8758   const size_t NumFields = 5;
8759   QualType FieldTypes[NumFields];
8760   const char *FieldNames[NumFields];
8761 
8762   // void *__stack;
8763   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8764   FieldNames[0] = "__stack";
8765 
8766   // void *__gr_top;
8767   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8768   FieldNames[1] = "__gr_top";
8769 
8770   // void *__vr_top;
8771   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8772   FieldNames[2] = "__vr_top";
8773 
8774   // int __gr_offs;
8775   FieldTypes[3] = Context->IntTy;
8776   FieldNames[3] = "__gr_offs";
8777 
8778   // int __vr_offs;
8779   FieldTypes[4] = Context->IntTy;
8780   FieldNames[4] = "__vr_offs";
8781 
8782   // Create fields
8783   for (unsigned i = 0; i < NumFields; ++i) {
8784     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8785                                          VaListTagDecl,
8786                                          SourceLocation(),
8787                                          SourceLocation(),
8788                                          &Context->Idents.get(FieldNames[i]),
8789                                          FieldTypes[i], /*TInfo=*/nullptr,
8790                                          /*BitWidth=*/nullptr,
8791                                          /*Mutable=*/false,
8792                                          ICIS_NoInit);
8793     Field->setAccess(AS_public);
8794     VaListTagDecl->addDecl(Field);
8795   }
8796   VaListTagDecl->completeDefinition();
8797   Context->VaListTagDecl = VaListTagDecl;
8798   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8799 
8800   // } __builtin_va_list;
8801   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
8802 }
8803 
8804 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
8805   // typedef struct __va_list_tag {
8806   RecordDecl *VaListTagDecl;
8807 
8808   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8809   VaListTagDecl->startDefinition();
8810 
8811   const size_t NumFields = 5;
8812   QualType FieldTypes[NumFields];
8813   const char *FieldNames[NumFields];
8814 
8815   //   unsigned char gpr;
8816   FieldTypes[0] = Context->UnsignedCharTy;
8817   FieldNames[0] = "gpr";
8818 
8819   //   unsigned char fpr;
8820   FieldTypes[1] = Context->UnsignedCharTy;
8821   FieldNames[1] = "fpr";
8822 
8823   //   unsigned short reserved;
8824   FieldTypes[2] = Context->UnsignedShortTy;
8825   FieldNames[2] = "reserved";
8826 
8827   //   void* overflow_arg_area;
8828   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8829   FieldNames[3] = "overflow_arg_area";
8830 
8831   //   void* reg_save_area;
8832   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
8833   FieldNames[4] = "reg_save_area";
8834 
8835   // Create fields
8836   for (unsigned i = 0; i < NumFields; ++i) {
8837     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
8838                                          SourceLocation(),
8839                                          SourceLocation(),
8840                                          &Context->Idents.get(FieldNames[i]),
8841                                          FieldTypes[i], /*TInfo=*/nullptr,
8842                                          /*BitWidth=*/nullptr,
8843                                          /*Mutable=*/false,
8844                                          ICIS_NoInit);
8845     Field->setAccess(AS_public);
8846     VaListTagDecl->addDecl(Field);
8847   }
8848   VaListTagDecl->completeDefinition();
8849   Context->VaListTagDecl = VaListTagDecl;
8850   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8851 
8852   // } __va_list_tag;
8853   TypedefDecl *VaListTagTypedefDecl =
8854       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8855 
8856   QualType VaListTagTypedefType =
8857     Context->getTypedefType(VaListTagTypedefDecl);
8858 
8859   // typedef __va_list_tag __builtin_va_list[1];
8860   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8861   QualType VaListTagArrayType = Context->getConstantArrayType(
8862       VaListTagTypedefType, Size, nullptr, ArraySizeModifier::Normal, 0);
8863   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8864 }
8865 
8866 static TypedefDecl *
8867 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
8868   // struct __va_list_tag {
8869   RecordDecl *VaListTagDecl;
8870   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8871   VaListTagDecl->startDefinition();
8872 
8873   const size_t NumFields = 4;
8874   QualType FieldTypes[NumFields];
8875   const char *FieldNames[NumFields];
8876 
8877   //   unsigned gp_offset;
8878   FieldTypes[0] = Context->UnsignedIntTy;
8879   FieldNames[0] = "gp_offset";
8880 
8881   //   unsigned fp_offset;
8882   FieldTypes[1] = Context->UnsignedIntTy;
8883   FieldNames[1] = "fp_offset";
8884 
8885   //   void* overflow_arg_area;
8886   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8887   FieldNames[2] = "overflow_arg_area";
8888 
8889   //   void* reg_save_area;
8890   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8891   FieldNames[3] = "reg_save_area";
8892 
8893   // Create fields
8894   for (unsigned i = 0; i < NumFields; ++i) {
8895     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8896                                          VaListTagDecl,
8897                                          SourceLocation(),
8898                                          SourceLocation(),
8899                                          &Context->Idents.get(FieldNames[i]),
8900                                          FieldTypes[i], /*TInfo=*/nullptr,
8901                                          /*BitWidth=*/nullptr,
8902                                          /*Mutable=*/false,
8903                                          ICIS_NoInit);
8904     Field->setAccess(AS_public);
8905     VaListTagDecl->addDecl(Field);
8906   }
8907   VaListTagDecl->completeDefinition();
8908   Context->VaListTagDecl = VaListTagDecl;
8909   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8910 
8911   // };
8912 
8913   // typedef struct __va_list_tag __builtin_va_list[1];
8914   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8915   QualType VaListTagArrayType = Context->getConstantArrayType(
8916       VaListTagType, Size, nullptr, ArraySizeModifier::Normal, 0);
8917   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8918 }
8919 
8920 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8921   // typedef int __builtin_va_list[4];
8922   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8923   QualType IntArrayType = Context->getConstantArrayType(
8924       Context->IntTy, Size, nullptr, ArraySizeModifier::Normal, 0);
8925   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8926 }
8927 
8928 static TypedefDecl *
8929 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8930   // struct __va_list
8931   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8932   if (Context->getLangOpts().CPlusPlus) {
8933     // namespace std { struct __va_list {
8934     NamespaceDecl *NS;
8935     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8936                                Context->getTranslationUnitDecl(),
8937                                /*Inline=*/false, SourceLocation(),
8938                                SourceLocation(), &Context->Idents.get("std"),
8939                                /*PrevDecl=*/nullptr, /*Nested=*/false);
8940     NS->setImplicit();
8941     VaListDecl->setDeclContext(NS);
8942   }
8943 
8944   VaListDecl->startDefinition();
8945 
8946   // void * __ap;
8947   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8948                                        VaListDecl,
8949                                        SourceLocation(),
8950                                        SourceLocation(),
8951                                        &Context->Idents.get("__ap"),
8952                                        Context->getPointerType(Context->VoidTy),
8953                                        /*TInfo=*/nullptr,
8954                                        /*BitWidth=*/nullptr,
8955                                        /*Mutable=*/false,
8956                                        ICIS_NoInit);
8957   Field->setAccess(AS_public);
8958   VaListDecl->addDecl(Field);
8959 
8960   // };
8961   VaListDecl->completeDefinition();
8962   Context->VaListTagDecl = VaListDecl;
8963 
8964   // typedef struct __va_list __builtin_va_list;
8965   QualType T = Context->getRecordType(VaListDecl);
8966   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8967 }
8968 
8969 static TypedefDecl *
8970 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
8971   // struct __va_list_tag {
8972   RecordDecl *VaListTagDecl;
8973   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8974   VaListTagDecl->startDefinition();
8975 
8976   const size_t NumFields = 4;
8977   QualType FieldTypes[NumFields];
8978   const char *FieldNames[NumFields];
8979 
8980   //   long __gpr;
8981   FieldTypes[0] = Context->LongTy;
8982   FieldNames[0] = "__gpr";
8983 
8984   //   long __fpr;
8985   FieldTypes[1] = Context->LongTy;
8986   FieldNames[1] = "__fpr";
8987 
8988   //   void *__overflow_arg_area;
8989   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8990   FieldNames[2] = "__overflow_arg_area";
8991 
8992   //   void *__reg_save_area;
8993   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8994   FieldNames[3] = "__reg_save_area";
8995 
8996   // Create fields
8997   for (unsigned i = 0; i < NumFields; ++i) {
8998     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8999                                          VaListTagDecl,
9000                                          SourceLocation(),
9001                                          SourceLocation(),
9002                                          &Context->Idents.get(FieldNames[i]),
9003                                          FieldTypes[i], /*TInfo=*/nullptr,
9004                                          /*BitWidth=*/nullptr,
9005                                          /*Mutable=*/false,
9006                                          ICIS_NoInit);
9007     Field->setAccess(AS_public);
9008     VaListTagDecl->addDecl(Field);
9009   }
9010   VaListTagDecl->completeDefinition();
9011   Context->VaListTagDecl = VaListTagDecl;
9012   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
9013 
9014   // };
9015 
9016   // typedef __va_list_tag __builtin_va_list[1];
9017   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
9018   QualType VaListTagArrayType = Context->getConstantArrayType(
9019       VaListTagType, Size, nullptr, ArraySizeModifier::Normal, 0);
9020 
9021   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
9022 }
9023 
9024 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
9025   // typedef struct __va_list_tag {
9026   RecordDecl *VaListTagDecl;
9027   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
9028   VaListTagDecl->startDefinition();
9029 
9030   const size_t NumFields = 3;
9031   QualType FieldTypes[NumFields];
9032   const char *FieldNames[NumFields];
9033 
9034   //   void *CurrentSavedRegisterArea;
9035   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
9036   FieldNames[0] = "__current_saved_reg_area_pointer";
9037 
9038   //   void *SavedRegAreaEnd;
9039   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
9040   FieldNames[1] = "__saved_reg_area_end_pointer";
9041 
9042   //   void *OverflowArea;
9043   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
9044   FieldNames[2] = "__overflow_area_pointer";
9045 
9046   // Create fields
9047   for (unsigned i = 0; i < NumFields; ++i) {
9048     FieldDecl *Field = FieldDecl::Create(
9049         const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
9050         SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
9051         /*TInfo=*/nullptr,
9052         /*BitWidth=*/nullptr,
9053         /*Mutable=*/false, ICIS_NoInit);
9054     Field->setAccess(AS_public);
9055     VaListTagDecl->addDecl(Field);
9056   }
9057   VaListTagDecl->completeDefinition();
9058   Context->VaListTagDecl = VaListTagDecl;
9059   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
9060 
9061   // } __va_list_tag;
9062   TypedefDecl *VaListTagTypedefDecl =
9063       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
9064 
9065   QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
9066 
9067   // typedef __va_list_tag __builtin_va_list[1];
9068   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
9069   QualType VaListTagArrayType = Context->getConstantArrayType(
9070       VaListTagTypedefType, Size, nullptr, ArraySizeModifier::Normal, 0);
9071 
9072   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
9073 }
9074 
9075 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
9076                                      TargetInfo::BuiltinVaListKind Kind) {
9077   switch (Kind) {
9078   case TargetInfo::CharPtrBuiltinVaList:
9079     return CreateCharPtrBuiltinVaListDecl(Context);
9080   case TargetInfo::VoidPtrBuiltinVaList:
9081     return CreateVoidPtrBuiltinVaListDecl(Context);
9082   case TargetInfo::AArch64ABIBuiltinVaList:
9083     return CreateAArch64ABIBuiltinVaListDecl(Context);
9084   case TargetInfo::PowerABIBuiltinVaList:
9085     return CreatePowerABIBuiltinVaListDecl(Context);
9086   case TargetInfo::X86_64ABIBuiltinVaList:
9087     return CreateX86_64ABIBuiltinVaListDecl(Context);
9088   case TargetInfo::PNaClABIBuiltinVaList:
9089     return CreatePNaClABIBuiltinVaListDecl(Context);
9090   case TargetInfo::AAPCSABIBuiltinVaList:
9091     return CreateAAPCSABIBuiltinVaListDecl(Context);
9092   case TargetInfo::SystemZBuiltinVaList:
9093     return CreateSystemZBuiltinVaListDecl(Context);
9094   case TargetInfo::HexagonBuiltinVaList:
9095     return CreateHexagonBuiltinVaListDecl(Context);
9096   }
9097 
9098   llvm_unreachable("Unhandled __builtin_va_list type kind");
9099 }
9100 
9101 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
9102   if (!BuiltinVaListDecl) {
9103     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
9104     assert(BuiltinVaListDecl->isImplicit());
9105   }
9106 
9107   return BuiltinVaListDecl;
9108 }
9109 
9110 Decl *ASTContext::getVaListTagDecl() const {
9111   // Force the creation of VaListTagDecl by building the __builtin_va_list
9112   // declaration.
9113   if (!VaListTagDecl)
9114     (void)getBuiltinVaListDecl();
9115 
9116   return VaListTagDecl;
9117 }
9118 
9119 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
9120   if (!BuiltinMSVaListDecl)
9121     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
9122 
9123   return BuiltinMSVaListDecl;
9124 }
9125 
9126 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
9127   // Allow redecl custom type checking builtin for HLSL.
9128   if (LangOpts.HLSL && FD->getBuiltinID() != Builtin::NotBuiltin &&
9129       BuiltinInfo.hasCustomTypechecking(FD->getBuiltinID()))
9130     return true;
9131   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
9132 }
9133 
9134 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
9135   assert(ObjCConstantStringType.isNull() &&
9136          "'NSConstantString' type already set!");
9137 
9138   ObjCConstantStringType = getObjCInterfaceType(Decl);
9139 }
9140 
9141 /// Retrieve the template name that corresponds to a non-empty
9142 /// lookup.
9143 TemplateName
9144 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
9145                                       UnresolvedSetIterator End) const {
9146   unsigned size = End - Begin;
9147   assert(size > 1 && "set is not overloaded!");
9148 
9149   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
9150                           size * sizeof(FunctionTemplateDecl*));
9151   auto *OT = new (memory) OverloadedTemplateStorage(size);
9152 
9153   NamedDecl **Storage = OT->getStorage();
9154   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
9155     NamedDecl *D = *I;
9156     assert(isa<FunctionTemplateDecl>(D) ||
9157            isa<UnresolvedUsingValueDecl>(D) ||
9158            (isa<UsingShadowDecl>(D) &&
9159             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
9160     *Storage++ = D;
9161   }
9162 
9163   return TemplateName(OT);
9164 }
9165 
9166 /// Retrieve a template name representing an unqualified-id that has been
9167 /// assumed to name a template for ADL purposes.
9168 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
9169   auto *OT = new (*this) AssumedTemplateStorage(Name);
9170   return TemplateName(OT);
9171 }
9172 
9173 /// Retrieve the template name that represents a qualified
9174 /// template name such as \c std::vector.
9175 TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
9176                                                   bool TemplateKeyword,
9177                                                   TemplateName Template) const {
9178   assert(NNS && "Missing nested-name-specifier in qualified template name");
9179 
9180   // FIXME: Canonicalization?
9181   llvm::FoldingSetNodeID ID;
9182   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
9183 
9184   void *InsertPos = nullptr;
9185   QualifiedTemplateName *QTN =
9186     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9187   if (!QTN) {
9188     QTN = new (*this, alignof(QualifiedTemplateName))
9189         QualifiedTemplateName(NNS, TemplateKeyword, Template);
9190     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
9191   }
9192 
9193   return TemplateName(QTN);
9194 }
9195 
9196 /// Retrieve the template name that represents a dependent
9197 /// template name such as \c MetaFun::template apply.
9198 TemplateName
9199 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9200                                      const IdentifierInfo *Name) const {
9201   assert((!NNS || NNS->isDependent()) &&
9202          "Nested name specifier must be dependent");
9203 
9204   llvm::FoldingSetNodeID ID;
9205   DependentTemplateName::Profile(ID, NNS, Name);
9206 
9207   void *InsertPos = nullptr;
9208   DependentTemplateName *QTN =
9209     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9210 
9211   if (QTN)
9212     return TemplateName(QTN);
9213 
9214   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9215   if (CanonNNS == NNS) {
9216     QTN = new (*this, alignof(DependentTemplateName))
9217         DependentTemplateName(NNS, Name);
9218   } else {
9219     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
9220     QTN = new (*this, alignof(DependentTemplateName))
9221         DependentTemplateName(NNS, Name, Canon);
9222     DependentTemplateName *CheckQTN =
9223       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9224     assert(!CheckQTN && "Dependent type name canonicalization broken");
9225     (void)CheckQTN;
9226   }
9227 
9228   DependentTemplateNames.InsertNode(QTN, InsertPos);
9229   return TemplateName(QTN);
9230 }
9231 
9232 /// Retrieve the template name that represents a dependent
9233 /// template name such as \c MetaFun::template operator+.
9234 TemplateName
9235 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9236                                      OverloadedOperatorKind Operator) const {
9237   assert((!NNS || NNS->isDependent()) &&
9238          "Nested name specifier must be dependent");
9239 
9240   llvm::FoldingSetNodeID ID;
9241   DependentTemplateName::Profile(ID, NNS, Operator);
9242 
9243   void *InsertPos = nullptr;
9244   DependentTemplateName *QTN
9245     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9246 
9247   if (QTN)
9248     return TemplateName(QTN);
9249 
9250   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9251   if (CanonNNS == NNS) {
9252     QTN = new (*this, alignof(DependentTemplateName))
9253         DependentTemplateName(NNS, Operator);
9254   } else {
9255     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
9256     QTN = new (*this, alignof(DependentTemplateName))
9257         DependentTemplateName(NNS, Operator, Canon);
9258 
9259     DependentTemplateName *CheckQTN
9260       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9261     assert(!CheckQTN && "Dependent template name canonicalization broken");
9262     (void)CheckQTN;
9263   }
9264 
9265   DependentTemplateNames.InsertNode(QTN, InsertPos);
9266   return TemplateName(QTN);
9267 }
9268 
9269 TemplateName ASTContext::getSubstTemplateTemplateParm(
9270     TemplateName Replacement, Decl *AssociatedDecl, unsigned Index,
9271     std::optional<unsigned> PackIndex) const {
9272   llvm::FoldingSetNodeID ID;
9273   SubstTemplateTemplateParmStorage::Profile(ID, Replacement, AssociatedDecl,
9274                                             Index, PackIndex);
9275 
9276   void *insertPos = nullptr;
9277   SubstTemplateTemplateParmStorage *subst
9278     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
9279 
9280   if (!subst) {
9281     subst = new (*this) SubstTemplateTemplateParmStorage(
9282         Replacement, AssociatedDecl, Index, PackIndex);
9283     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
9284   }
9285 
9286   return TemplateName(subst);
9287 }
9288 
9289 TemplateName
9290 ASTContext::getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack,
9291                                              Decl *AssociatedDecl,
9292                                              unsigned Index, bool Final) const {
9293   auto &Self = const_cast<ASTContext &>(*this);
9294   llvm::FoldingSetNodeID ID;
9295   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, ArgPack,
9296                                                 AssociatedDecl, Index, Final);
9297 
9298   void *InsertPos = nullptr;
9299   SubstTemplateTemplateParmPackStorage *Subst
9300     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
9301 
9302   if (!Subst) {
9303     Subst = new (*this) SubstTemplateTemplateParmPackStorage(
9304         ArgPack.pack_elements(), AssociatedDecl, Index, Final);
9305     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
9306   }
9307 
9308   return TemplateName(Subst);
9309 }
9310 
9311 /// getFromTargetType - Given one of the integer types provided by
9312 /// TargetInfo, produce the corresponding type. The unsigned @p Type
9313 /// is actually a value of type @c TargetInfo::IntType.
9314 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
9315   switch (Type) {
9316   case TargetInfo::NoInt: return {};
9317   case TargetInfo::SignedChar: return SignedCharTy;
9318   case TargetInfo::UnsignedChar: return UnsignedCharTy;
9319   case TargetInfo::SignedShort: return ShortTy;
9320   case TargetInfo::UnsignedShort: return UnsignedShortTy;
9321   case TargetInfo::SignedInt: return IntTy;
9322   case TargetInfo::UnsignedInt: return UnsignedIntTy;
9323   case TargetInfo::SignedLong: return LongTy;
9324   case TargetInfo::UnsignedLong: return UnsignedLongTy;
9325   case TargetInfo::SignedLongLong: return LongLongTy;
9326   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
9327   }
9328 
9329   llvm_unreachable("Unhandled TargetInfo::IntType value");
9330 }
9331 
9332 //===----------------------------------------------------------------------===//
9333 //                        Type Predicates.
9334 //===----------------------------------------------------------------------===//
9335 
9336 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
9337 /// garbage collection attribute.
9338 ///
9339 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
9340   if (getLangOpts().getGC() == LangOptions::NonGC)
9341     return Qualifiers::GCNone;
9342 
9343   assert(getLangOpts().ObjC);
9344   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
9345 
9346   // Default behaviour under objective-C's gc is for ObjC pointers
9347   // (or pointers to them) be treated as though they were declared
9348   // as __strong.
9349   if (GCAttrs == Qualifiers::GCNone) {
9350     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
9351       return Qualifiers::Strong;
9352     else if (Ty->isPointerType())
9353       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
9354   } else {
9355     // It's not valid to set GC attributes on anything that isn't a
9356     // pointer.
9357 #ifndef NDEBUG
9358     QualType CT = Ty->getCanonicalTypeInternal();
9359     while (const auto *AT = dyn_cast<ArrayType>(CT))
9360       CT = AT->getElementType();
9361     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
9362 #endif
9363   }
9364   return GCAttrs;
9365 }
9366 
9367 //===----------------------------------------------------------------------===//
9368 //                        Type Compatibility Testing
9369 //===----------------------------------------------------------------------===//
9370 
9371 /// areCompatVectorTypes - Return true if the two specified vector types are
9372 /// compatible.
9373 static bool areCompatVectorTypes(const VectorType *LHS,
9374                                  const VectorType *RHS) {
9375   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9376   return LHS->getElementType() == RHS->getElementType() &&
9377          LHS->getNumElements() == RHS->getNumElements();
9378 }
9379 
9380 /// areCompatMatrixTypes - Return true if the two specified matrix types are
9381 /// compatible.
9382 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
9383                                  const ConstantMatrixType *RHS) {
9384   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9385   return LHS->getElementType() == RHS->getElementType() &&
9386          LHS->getNumRows() == RHS->getNumRows() &&
9387          LHS->getNumColumns() == RHS->getNumColumns();
9388 }
9389 
9390 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
9391                                           QualType SecondVec) {
9392   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
9393   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
9394 
9395   if (hasSameUnqualifiedType(FirstVec, SecondVec))
9396     return true;
9397 
9398   // Treat Neon vector types and most AltiVec vector types as if they are the
9399   // equivalent GCC vector types.
9400   const auto *First = FirstVec->castAs<VectorType>();
9401   const auto *Second = SecondVec->castAs<VectorType>();
9402   if (First->getNumElements() == Second->getNumElements() &&
9403       hasSameType(First->getElementType(), Second->getElementType()) &&
9404       First->getVectorKind() != VectorKind::AltiVecPixel &&
9405       First->getVectorKind() != VectorKind::AltiVecBool &&
9406       Second->getVectorKind() != VectorKind::AltiVecPixel &&
9407       Second->getVectorKind() != VectorKind::AltiVecBool &&
9408       First->getVectorKind() != VectorKind::SveFixedLengthData &&
9409       First->getVectorKind() != VectorKind::SveFixedLengthPredicate &&
9410       Second->getVectorKind() != VectorKind::SveFixedLengthData &&
9411       Second->getVectorKind() != VectorKind::SveFixedLengthPredicate &&
9412       First->getVectorKind() != VectorKind::RVVFixedLengthData &&
9413       Second->getVectorKind() != VectorKind::RVVFixedLengthData)
9414     return true;
9415 
9416   return false;
9417 }
9418 
9419 /// getSVETypeSize - Return SVE vector or predicate register size.
9420 static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) {
9421   assert(Ty->isSveVLSBuiltinType() && "Invalid SVE Type");
9422   if (Ty->getKind() == BuiltinType::SveBool ||
9423       Ty->getKind() == BuiltinType::SveCount)
9424     return (Context.getLangOpts().VScaleMin * 128) / Context.getCharWidth();
9425   return Context.getLangOpts().VScaleMin * 128;
9426 }
9427 
9428 bool ASTContext::areCompatibleSveTypes(QualType FirstType,
9429                                        QualType SecondType) {
9430   assert(
9431       ((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) ||
9432        (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) &&
9433       "Expected SVE builtin type and vector type!");
9434 
9435   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
9436     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
9437       if (const auto *VT = SecondType->getAs<VectorType>()) {
9438         // Predicates have the same representation as uint8 so we also have to
9439         // check the kind to make these types incompatible.
9440         if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate)
9441           return BT->getKind() == BuiltinType::SveBool;
9442         else if (VT->getVectorKind() == VectorKind::SveFixedLengthData)
9443           return VT->getElementType().getCanonicalType() ==
9444                  FirstType->getSveEltType(*this);
9445         else if (VT->getVectorKind() == VectorKind::Generic)
9446           return getTypeSize(SecondType) == getSVETypeSize(*this, BT) &&
9447                  hasSameType(VT->getElementType(),
9448                              getBuiltinVectorTypeInfo(BT).ElementType);
9449       }
9450     }
9451     return false;
9452   };
9453 
9454   return IsValidCast(FirstType, SecondType) ||
9455          IsValidCast(SecondType, FirstType);
9456 }
9457 
9458 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
9459                                           QualType SecondType) {
9460   assert(
9461       ((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) ||
9462        (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) &&
9463       "Expected SVE builtin type and vector type!");
9464 
9465   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
9466     const auto *BT = FirstType->getAs<BuiltinType>();
9467     if (!BT)
9468       return false;
9469 
9470     const auto *VecTy = SecondType->getAs<VectorType>();
9471     if (VecTy && (VecTy->getVectorKind() == VectorKind::SveFixedLengthData ||
9472                   VecTy->getVectorKind() == VectorKind::Generic)) {
9473       const LangOptions::LaxVectorConversionKind LVCKind =
9474           getLangOpts().getLaxVectorConversions();
9475 
9476       // Can not convert between sve predicates and sve vectors because of
9477       // different size.
9478       if (BT->getKind() == BuiltinType::SveBool &&
9479           VecTy->getVectorKind() == VectorKind::SveFixedLengthData)
9480         return false;
9481 
9482       // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
9483       // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
9484       // converts to VLAT and VLAT implicitly converts to GNUT."
9485       // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
9486       // predicates.
9487       if (VecTy->getVectorKind() == VectorKind::Generic &&
9488           getTypeSize(SecondType) != getSVETypeSize(*this, BT))
9489         return false;
9490 
9491       // If -flax-vector-conversions=all is specified, the types are
9492       // certainly compatible.
9493       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
9494         return true;
9495 
9496       // If -flax-vector-conversions=integer is specified, the types are
9497       // compatible if the elements are integer types.
9498       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
9499         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
9500                FirstType->getSveEltType(*this)->isIntegerType();
9501     }
9502 
9503     return false;
9504   };
9505 
9506   return IsLaxCompatible(FirstType, SecondType) ||
9507          IsLaxCompatible(SecondType, FirstType);
9508 }
9509 
9510 /// getRVVTypeSize - Return RVV vector register size.
9511 static uint64_t getRVVTypeSize(ASTContext &Context, const BuiltinType *Ty) {
9512   assert(Ty->isRVVVLSBuiltinType() && "Invalid RVV Type");
9513   auto VScale = Context.getTargetInfo().getVScaleRange(Context.getLangOpts());
9514   if (!VScale)
9515     return 0;
9516 
9517   ASTContext::BuiltinVectorTypeInfo Info = Context.getBuiltinVectorTypeInfo(Ty);
9518 
9519   uint64_t EltSize = Context.getTypeSize(Info.ElementType);
9520   uint64_t MinElts = Info.EC.getKnownMinValue();
9521   return VScale->first * MinElts * EltSize;
9522 }
9523 
9524 bool ASTContext::areCompatibleRVVTypes(QualType FirstType,
9525                                        QualType SecondType) {
9526   assert(
9527       ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) ||
9528        (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) &&
9529       "Expected RVV builtin type and vector type!");
9530 
9531   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
9532     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
9533       if (const auto *VT = SecondType->getAs<VectorType>()) {
9534         if (VT->getVectorKind() == VectorKind::RVVFixedLengthData ||
9535             VT->getVectorKind() == VectorKind::Generic)
9536           return FirstType->isRVVVLSBuiltinType() &&
9537                  getTypeSize(SecondType) == getRVVTypeSize(*this, BT) &&
9538                  hasSameType(VT->getElementType(),
9539                              getBuiltinVectorTypeInfo(BT).ElementType);
9540       }
9541     }
9542     return false;
9543   };
9544 
9545   return IsValidCast(FirstType, SecondType) ||
9546          IsValidCast(SecondType, FirstType);
9547 }
9548 
9549 bool ASTContext::areLaxCompatibleRVVTypes(QualType FirstType,
9550                                           QualType SecondType) {
9551   assert(
9552       ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) ||
9553        (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) &&
9554       "Expected RVV builtin type and vector type!");
9555 
9556   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
9557     const auto *BT = FirstType->getAs<BuiltinType>();
9558     if (!BT)
9559       return false;
9560 
9561     if (!BT->isRVVVLSBuiltinType())
9562       return false;
9563 
9564     const auto *VecTy = SecondType->getAs<VectorType>();
9565     if (VecTy && VecTy->getVectorKind() == VectorKind::Generic) {
9566       const LangOptions::LaxVectorConversionKind LVCKind =
9567           getLangOpts().getLaxVectorConversions();
9568 
9569       // If __riscv_v_fixed_vlen != N do not allow vector lax conversion.
9570       if (getTypeSize(SecondType) != getRVVTypeSize(*this, BT))
9571         return false;
9572 
9573       // If -flax-vector-conversions=all is specified, the types are
9574       // certainly compatible.
9575       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
9576         return true;
9577 
9578       // If -flax-vector-conversions=integer is specified, the types are
9579       // compatible if the elements are integer types.
9580       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
9581         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
9582                FirstType->getRVVEltType(*this)->isIntegerType();
9583     }
9584 
9585     return false;
9586   };
9587 
9588   return IsLaxCompatible(FirstType, SecondType) ||
9589          IsLaxCompatible(SecondType, FirstType);
9590 }
9591 
9592 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
9593   while (true) {
9594     // __strong id
9595     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
9596       if (Attr->getAttrKind() == attr::ObjCOwnership)
9597         return true;
9598 
9599       Ty = Attr->getModifiedType();
9600 
9601     // X *__strong (...)
9602     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
9603       Ty = Paren->getInnerType();
9604 
9605     // We do not want to look through typedefs, typeof(expr),
9606     // typeof(type), or any other way that the type is somehow
9607     // abstracted.
9608     } else {
9609       return false;
9610     }
9611   }
9612 }
9613 
9614 //===----------------------------------------------------------------------===//
9615 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
9616 //===----------------------------------------------------------------------===//
9617 
9618 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
9619 /// inheritance hierarchy of 'rProto'.
9620 bool
9621 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
9622                                            ObjCProtocolDecl *rProto) const {
9623   if (declaresSameEntity(lProto, rProto))
9624     return true;
9625   for (auto *PI : rProto->protocols())
9626     if (ProtocolCompatibleWithProtocol(lProto, PI))
9627       return true;
9628   return false;
9629 }
9630 
9631 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
9632 /// Class<pr1, ...>.
9633 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
9634     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
9635   for (auto *lhsProto : lhs->quals()) {
9636     bool match = false;
9637     for (auto *rhsProto : rhs->quals()) {
9638       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
9639         match = true;
9640         break;
9641       }
9642     }
9643     if (!match)
9644       return false;
9645   }
9646   return true;
9647 }
9648 
9649 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
9650 /// ObjCQualifiedIDType.
9651 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
9652     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
9653     bool compare) {
9654   // Allow id<P..> and an 'id' in all cases.
9655   if (lhs->isObjCIdType() || rhs->isObjCIdType())
9656     return true;
9657 
9658   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
9659   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
9660       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
9661     return false;
9662 
9663   if (lhs->isObjCQualifiedIdType()) {
9664     if (rhs->qual_empty()) {
9665       // If the RHS is a unqualified interface pointer "NSString*",
9666       // make sure we check the class hierarchy.
9667       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9668         for (auto *I : lhs->quals()) {
9669           // when comparing an id<P> on lhs with a static type on rhs,
9670           // see if static class implements all of id's protocols, directly or
9671           // through its super class and categories.
9672           if (!rhsID->ClassImplementsProtocol(I, true))
9673             return false;
9674         }
9675       }
9676       // If there are no qualifiers and no interface, we have an 'id'.
9677       return true;
9678     }
9679     // Both the right and left sides have qualifiers.
9680     for (auto *lhsProto : lhs->quals()) {
9681       bool match = false;
9682 
9683       // when comparing an id<P> on lhs with a static type on rhs,
9684       // see if static class implements all of id's protocols, directly or
9685       // through its super class and categories.
9686       for (auto *rhsProto : rhs->quals()) {
9687         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9688             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9689           match = true;
9690           break;
9691         }
9692       }
9693       // If the RHS is a qualified interface pointer "NSString<P>*",
9694       // make sure we check the class hierarchy.
9695       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9696         for (auto *I : lhs->quals()) {
9697           // when comparing an id<P> on lhs with a static type on rhs,
9698           // see if static class implements all of id's protocols, directly or
9699           // through its super class and categories.
9700           if (rhsID->ClassImplementsProtocol(I, true)) {
9701             match = true;
9702             break;
9703           }
9704         }
9705       }
9706       if (!match)
9707         return false;
9708     }
9709 
9710     return true;
9711   }
9712 
9713   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
9714 
9715   if (lhs->getInterfaceType()) {
9716     // If both the right and left sides have qualifiers.
9717     for (auto *lhsProto : lhs->quals()) {
9718       bool match = false;
9719 
9720       // when comparing an id<P> on rhs with a static type on lhs,
9721       // see if static class implements all of id's protocols, directly or
9722       // through its super class and categories.
9723       // First, lhs protocols in the qualifier list must be found, direct
9724       // or indirect in rhs's qualifier list or it is a mismatch.
9725       for (auto *rhsProto : rhs->quals()) {
9726         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9727             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9728           match = true;
9729           break;
9730         }
9731       }
9732       if (!match)
9733         return false;
9734     }
9735 
9736     // Static class's protocols, or its super class or category protocols
9737     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
9738     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
9739       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
9740       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
9741       // This is rather dubious but matches gcc's behavior. If lhs has
9742       // no type qualifier and its class has no static protocol(s)
9743       // assume that it is mismatch.
9744       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
9745         return false;
9746       for (auto *lhsProto : LHSInheritedProtocols) {
9747         bool match = false;
9748         for (auto *rhsProto : rhs->quals()) {
9749           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9750               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9751             match = true;
9752             break;
9753           }
9754         }
9755         if (!match)
9756           return false;
9757       }
9758     }
9759     return true;
9760   }
9761   return false;
9762 }
9763 
9764 /// canAssignObjCInterfaces - Return true if the two interface types are
9765 /// compatible for assignment from RHS to LHS.  This handles validation of any
9766 /// protocol qualifiers on the LHS or RHS.
9767 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
9768                                          const ObjCObjectPointerType *RHSOPT) {
9769   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9770   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9771 
9772   // If either type represents the built-in 'id' type, return true.
9773   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
9774     return true;
9775 
9776   // Function object that propagates a successful result or handles
9777   // __kindof types.
9778   auto finish = [&](bool succeeded) -> bool {
9779     if (succeeded)
9780       return true;
9781 
9782     if (!RHS->isKindOfType())
9783       return false;
9784 
9785     // Strip off __kindof and protocol qualifiers, then check whether
9786     // we can assign the other way.
9787     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9788                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
9789   };
9790 
9791   // Casts from or to id<P> are allowed when the other side has compatible
9792   // protocols.
9793   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
9794     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
9795   }
9796 
9797   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
9798   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
9799     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
9800   }
9801 
9802   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
9803   if (LHS->isObjCClass() && RHS->isObjCClass()) {
9804     return true;
9805   }
9806 
9807   // If we have 2 user-defined types, fall into that path.
9808   if (LHS->getInterface() && RHS->getInterface()) {
9809     return finish(canAssignObjCInterfaces(LHS, RHS));
9810   }
9811 
9812   return false;
9813 }
9814 
9815 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
9816 /// for providing type-safety for objective-c pointers used to pass/return
9817 /// arguments in block literals. When passed as arguments, passing 'A*' where
9818 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
9819 /// not OK. For the return type, the opposite is not OK.
9820 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
9821                                          const ObjCObjectPointerType *LHSOPT,
9822                                          const ObjCObjectPointerType *RHSOPT,
9823                                          bool BlockReturnType) {
9824 
9825   // Function object that propagates a successful result or handles
9826   // __kindof types.
9827   auto finish = [&](bool succeeded) -> bool {
9828     if (succeeded)
9829       return true;
9830 
9831     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
9832     if (!Expected->isKindOfType())
9833       return false;
9834 
9835     // Strip off __kindof and protocol qualifiers, then check whether
9836     // we can assign the other way.
9837     return canAssignObjCInterfacesInBlockPointer(
9838              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9839              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
9840              BlockReturnType);
9841   };
9842 
9843   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
9844     return true;
9845 
9846   if (LHSOPT->isObjCBuiltinType()) {
9847     return finish(RHSOPT->isObjCBuiltinType() ||
9848                   RHSOPT->isObjCQualifiedIdType());
9849   }
9850 
9851   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
9852     if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
9853       // Use for block parameters previous type checking for compatibility.
9854       return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
9855                     // Or corrected type checking as in non-compat mode.
9856                     (!BlockReturnType &&
9857                      ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
9858     else
9859       return finish(ObjCQualifiedIdTypesAreCompatible(
9860           (BlockReturnType ? LHSOPT : RHSOPT),
9861           (BlockReturnType ? RHSOPT : LHSOPT), false));
9862   }
9863 
9864   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
9865   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
9866   if (LHS && RHS)  { // We have 2 user-defined types.
9867     if (LHS != RHS) {
9868       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
9869         return finish(BlockReturnType);
9870       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
9871         return finish(!BlockReturnType);
9872     }
9873     else
9874       return true;
9875   }
9876   return false;
9877 }
9878 
9879 /// Comparison routine for Objective-C protocols to be used with
9880 /// llvm::array_pod_sort.
9881 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
9882                                       ObjCProtocolDecl * const *rhs) {
9883   return (*lhs)->getName().compare((*rhs)->getName());
9884 }
9885 
9886 /// getIntersectionOfProtocols - This routine finds the intersection of set
9887 /// of protocols inherited from two distinct objective-c pointer objects with
9888 /// the given common base.
9889 /// It is used to build composite qualifier list of the composite type of
9890 /// the conditional expression involving two objective-c pointer objects.
9891 static
9892 void getIntersectionOfProtocols(ASTContext &Context,
9893                                 const ObjCInterfaceDecl *CommonBase,
9894                                 const ObjCObjectPointerType *LHSOPT,
9895                                 const ObjCObjectPointerType *RHSOPT,
9896       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
9897 
9898   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9899   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9900   assert(LHS->getInterface() && "LHS must have an interface base");
9901   assert(RHS->getInterface() && "RHS must have an interface base");
9902 
9903   // Add all of the protocols for the LHS.
9904   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
9905 
9906   // Start with the protocol qualifiers.
9907   for (auto *proto : LHS->quals()) {
9908     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
9909   }
9910 
9911   // Also add the protocols associated with the LHS interface.
9912   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
9913 
9914   // Add all of the protocols for the RHS.
9915   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
9916 
9917   // Start with the protocol qualifiers.
9918   for (auto *proto : RHS->quals()) {
9919     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
9920   }
9921 
9922   // Also add the protocols associated with the RHS interface.
9923   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
9924 
9925   // Compute the intersection of the collected protocol sets.
9926   for (auto *proto : LHSProtocolSet) {
9927     if (RHSProtocolSet.count(proto))
9928       IntersectionSet.push_back(proto);
9929   }
9930 
9931   // Compute the set of protocols that is implied by either the common type or
9932   // the protocols within the intersection.
9933   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
9934   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
9935 
9936   // Remove any implied protocols from the list of inherited protocols.
9937   if (!ImpliedProtocols.empty()) {
9938     llvm::erase_if(IntersectionSet, [&](ObjCProtocolDecl *proto) -> bool {
9939       return ImpliedProtocols.contains(proto);
9940     });
9941   }
9942 
9943   // Sort the remaining protocols by name.
9944   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
9945                        compareObjCProtocolsByName);
9946 }
9947 
9948 /// Determine whether the first type is a subtype of the second.
9949 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
9950                                      QualType rhs) {
9951   // Common case: two object pointers.
9952   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
9953   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
9954   if (lhsOPT && rhsOPT)
9955     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
9956 
9957   // Two block pointers.
9958   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
9959   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
9960   if (lhsBlock && rhsBlock)
9961     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
9962 
9963   // If either is an unqualified 'id' and the other is a block, it's
9964   // acceptable.
9965   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
9966       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
9967     return true;
9968 
9969   return false;
9970 }
9971 
9972 // Check that the given Objective-C type argument lists are equivalent.
9973 static bool sameObjCTypeArgs(ASTContext &ctx,
9974                              const ObjCInterfaceDecl *iface,
9975                              ArrayRef<QualType> lhsArgs,
9976                              ArrayRef<QualType> rhsArgs,
9977                              bool stripKindOf) {
9978   if (lhsArgs.size() != rhsArgs.size())
9979     return false;
9980 
9981   ObjCTypeParamList *typeParams = iface->getTypeParamList();
9982   if (!typeParams)
9983     return false;
9984 
9985   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
9986     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
9987       continue;
9988 
9989     switch (typeParams->begin()[i]->getVariance()) {
9990     case ObjCTypeParamVariance::Invariant:
9991       if (!stripKindOf ||
9992           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
9993                            rhsArgs[i].stripObjCKindOfType(ctx))) {
9994         return false;
9995       }
9996       break;
9997 
9998     case ObjCTypeParamVariance::Covariant:
9999       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
10000         return false;
10001       break;
10002 
10003     case ObjCTypeParamVariance::Contravariant:
10004       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
10005         return false;
10006       break;
10007     }
10008   }
10009 
10010   return true;
10011 }
10012 
10013 QualType ASTContext::areCommonBaseCompatible(
10014            const ObjCObjectPointerType *Lptr,
10015            const ObjCObjectPointerType *Rptr) {
10016   const ObjCObjectType *LHS = Lptr->getObjectType();
10017   const ObjCObjectType *RHS = Rptr->getObjectType();
10018   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
10019   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
10020 
10021   if (!LDecl || !RDecl)
10022     return {};
10023 
10024   // When either LHS or RHS is a kindof type, we should return a kindof type.
10025   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
10026   // kindof(A).
10027   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
10028 
10029   // Follow the left-hand side up the class hierarchy until we either hit a
10030   // root or find the RHS. Record the ancestors in case we don't find it.
10031   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
10032     LHSAncestors;
10033   while (true) {
10034     // Record this ancestor. We'll need this if the common type isn't in the
10035     // path from the LHS to the root.
10036     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
10037 
10038     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
10039       // Get the type arguments.
10040       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
10041       bool anyChanges = false;
10042       if (LHS->isSpecialized() && RHS->isSpecialized()) {
10043         // Both have type arguments, compare them.
10044         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
10045                               LHS->getTypeArgs(), RHS->getTypeArgs(),
10046                               /*stripKindOf=*/true))
10047           return {};
10048       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
10049         // If only one has type arguments, the result will not have type
10050         // arguments.
10051         LHSTypeArgs = {};
10052         anyChanges = true;
10053       }
10054 
10055       // Compute the intersection of protocols.
10056       SmallVector<ObjCProtocolDecl *, 8> Protocols;
10057       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
10058                                  Protocols);
10059       if (!Protocols.empty())
10060         anyChanges = true;
10061 
10062       // If anything in the LHS will have changed, build a new result type.
10063       // If we need to return a kindof type but LHS is not a kindof type, we
10064       // build a new result type.
10065       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
10066         QualType Result = getObjCInterfaceType(LHS->getInterface());
10067         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
10068                                    anyKindOf || LHS->isKindOfType());
10069         return getObjCObjectPointerType(Result);
10070       }
10071 
10072       return getObjCObjectPointerType(QualType(LHS, 0));
10073     }
10074 
10075     // Find the superclass.
10076     QualType LHSSuperType = LHS->getSuperClassType();
10077     if (LHSSuperType.isNull())
10078       break;
10079 
10080     LHS = LHSSuperType->castAs<ObjCObjectType>();
10081   }
10082 
10083   // We didn't find anything by following the LHS to its root; now check
10084   // the RHS against the cached set of ancestors.
10085   while (true) {
10086     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
10087     if (KnownLHS != LHSAncestors.end()) {
10088       LHS = KnownLHS->second;
10089 
10090       // Get the type arguments.
10091       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
10092       bool anyChanges = false;
10093       if (LHS->isSpecialized() && RHS->isSpecialized()) {
10094         // Both have type arguments, compare them.
10095         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
10096                               LHS->getTypeArgs(), RHS->getTypeArgs(),
10097                               /*stripKindOf=*/true))
10098           return {};
10099       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
10100         // If only one has type arguments, the result will not have type
10101         // arguments.
10102         RHSTypeArgs = {};
10103         anyChanges = true;
10104       }
10105 
10106       // Compute the intersection of protocols.
10107       SmallVector<ObjCProtocolDecl *, 8> Protocols;
10108       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
10109                                  Protocols);
10110       if (!Protocols.empty())
10111         anyChanges = true;
10112 
10113       // If we need to return a kindof type but RHS is not a kindof type, we
10114       // build a new result type.
10115       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
10116         QualType Result = getObjCInterfaceType(RHS->getInterface());
10117         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
10118                                    anyKindOf || RHS->isKindOfType());
10119         return getObjCObjectPointerType(Result);
10120       }
10121 
10122       return getObjCObjectPointerType(QualType(RHS, 0));
10123     }
10124 
10125     // Find the superclass of the RHS.
10126     QualType RHSSuperType = RHS->getSuperClassType();
10127     if (RHSSuperType.isNull())
10128       break;
10129 
10130     RHS = RHSSuperType->castAs<ObjCObjectType>();
10131   }
10132 
10133   return {};
10134 }
10135 
10136 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
10137                                          const ObjCObjectType *RHS) {
10138   assert(LHS->getInterface() && "LHS is not an interface type");
10139   assert(RHS->getInterface() && "RHS is not an interface type");
10140 
10141   // Verify that the base decls are compatible: the RHS must be a subclass of
10142   // the LHS.
10143   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
10144   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
10145   if (!IsSuperClass)
10146     return false;
10147 
10148   // If the LHS has protocol qualifiers, determine whether all of them are
10149   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
10150   // LHS).
10151   if (LHS->getNumProtocols() > 0) {
10152     // OK if conversion of LHS to SuperClass results in narrowing of types
10153     // ; i.e., SuperClass may implement at least one of the protocols
10154     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
10155     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
10156     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
10157     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
10158     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
10159     // qualifiers.
10160     for (auto *RHSPI : RHS->quals())
10161       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
10162     // If there is no protocols associated with RHS, it is not a match.
10163     if (SuperClassInheritedProtocols.empty())
10164       return false;
10165 
10166     for (const auto *LHSProto : LHS->quals()) {
10167       bool SuperImplementsProtocol = false;
10168       for (auto *SuperClassProto : SuperClassInheritedProtocols)
10169         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
10170           SuperImplementsProtocol = true;
10171           break;
10172         }
10173       if (!SuperImplementsProtocol)
10174         return false;
10175     }
10176   }
10177 
10178   // If the LHS is specialized, we may need to check type arguments.
10179   if (LHS->isSpecialized()) {
10180     // Follow the superclass chain until we've matched the LHS class in the
10181     // hierarchy. This substitutes type arguments through.
10182     const ObjCObjectType *RHSSuper = RHS;
10183     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
10184       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
10185 
10186     // If the RHS is specializd, compare type arguments.
10187     if (RHSSuper->isSpecialized() &&
10188         !sameObjCTypeArgs(*this, LHS->getInterface(),
10189                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
10190                           /*stripKindOf=*/true)) {
10191       return false;
10192     }
10193   }
10194 
10195   return true;
10196 }
10197 
10198 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
10199   // get the "pointed to" types
10200   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
10201   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
10202 
10203   if (!LHSOPT || !RHSOPT)
10204     return false;
10205 
10206   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
10207          canAssignObjCInterfaces(RHSOPT, LHSOPT);
10208 }
10209 
10210 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
10211   return canAssignObjCInterfaces(
10212       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
10213       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
10214 }
10215 
10216 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
10217 /// both shall have the identically qualified version of a compatible type.
10218 /// C99 6.2.7p1: Two types have compatible types if their types are the
10219 /// same. See 6.7.[2,3,5] for additional rules.
10220 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
10221                                     bool CompareUnqualified) {
10222   if (getLangOpts().CPlusPlus)
10223     return hasSameType(LHS, RHS);
10224 
10225   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
10226 }
10227 
10228 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
10229   return typesAreCompatible(LHS, RHS);
10230 }
10231 
10232 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
10233   return !mergeTypes(LHS, RHS, true).isNull();
10234 }
10235 
10236 /// mergeTransparentUnionType - if T is a transparent union type and a member
10237 /// of T is compatible with SubType, return the merged type, else return
10238 /// QualType()
10239 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
10240                                                bool OfBlockPointer,
10241                                                bool Unqualified) {
10242   if (const RecordType *UT = T->getAsUnionType()) {
10243     RecordDecl *UD = UT->getDecl();
10244     if (UD->hasAttr<TransparentUnionAttr>()) {
10245       for (const auto *I : UD->fields()) {
10246         QualType ET = I->getType().getUnqualifiedType();
10247         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
10248         if (!MT.isNull())
10249           return MT;
10250       }
10251     }
10252   }
10253 
10254   return {};
10255 }
10256 
10257 /// mergeFunctionParameterTypes - merge two types which appear as function
10258 /// parameter types
10259 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
10260                                                  bool OfBlockPointer,
10261                                                  bool Unqualified) {
10262   // GNU extension: two types are compatible if they appear as a function
10263   // argument, one of the types is a transparent union type and the other
10264   // type is compatible with a union member
10265   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
10266                                               Unqualified);
10267   if (!lmerge.isNull())
10268     return lmerge;
10269 
10270   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
10271                                               Unqualified);
10272   if (!rmerge.isNull())
10273     return rmerge;
10274 
10275   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
10276 }
10277 
10278 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
10279                                         bool OfBlockPointer, bool Unqualified,
10280                                         bool AllowCXX,
10281                                         bool IsConditionalOperator) {
10282   const auto *lbase = lhs->castAs<FunctionType>();
10283   const auto *rbase = rhs->castAs<FunctionType>();
10284   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
10285   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
10286   bool allLTypes = true;
10287   bool allRTypes = true;
10288 
10289   // Check return type
10290   QualType retType;
10291   if (OfBlockPointer) {
10292     QualType RHS = rbase->getReturnType();
10293     QualType LHS = lbase->getReturnType();
10294     bool UnqualifiedResult = Unqualified;
10295     if (!UnqualifiedResult)
10296       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
10297     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
10298   }
10299   else
10300     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
10301                          Unqualified);
10302   if (retType.isNull())
10303     return {};
10304 
10305   if (Unqualified)
10306     retType = retType.getUnqualifiedType();
10307 
10308   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
10309   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
10310   if (Unqualified) {
10311     LRetType = LRetType.getUnqualifiedType();
10312     RRetType = RRetType.getUnqualifiedType();
10313   }
10314 
10315   if (getCanonicalType(retType) != LRetType)
10316     allLTypes = false;
10317   if (getCanonicalType(retType) != RRetType)
10318     allRTypes = false;
10319 
10320   // FIXME: double check this
10321   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
10322   //                           rbase->getRegParmAttr() != 0 &&
10323   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
10324   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
10325   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
10326 
10327   // Compatible functions must have compatible calling conventions
10328   if (lbaseInfo.getCC() != rbaseInfo.getCC())
10329     return {};
10330 
10331   // Regparm is part of the calling convention.
10332   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
10333     return {};
10334   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
10335     return {};
10336 
10337   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
10338     return {};
10339   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
10340     return {};
10341   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
10342     return {};
10343 
10344   // When merging declarations, it's common for supplemental information like
10345   // attributes to only be present in one of the declarations, and we generally
10346   // want type merging to preserve the union of information.  So a merged
10347   // function type should be noreturn if it was noreturn in *either* operand
10348   // type.
10349   //
10350   // But for the conditional operator, this is backwards.  The result of the
10351   // operator could be either operand, and its type should conservatively
10352   // reflect that.  So a function type in a composite type is noreturn only
10353   // if it's noreturn in *both* operand types.
10354   //
10355   // Arguably, noreturn is a kind of subtype, and the conditional operator
10356   // ought to produce the most specific common supertype of its operand types.
10357   // That would differ from this rule in contravariant positions.  However,
10358   // neither C nor C++ generally uses this kind of subtype reasoning.  Also,
10359   // as a practical matter, it would only affect C code that does abstraction of
10360   // higher-order functions (taking noreturn callbacks!), which is uncommon to
10361   // say the least.  So we use the simpler rule.
10362   bool NoReturn = IsConditionalOperator
10363                       ? lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn()
10364                       : lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
10365   if (lbaseInfo.getNoReturn() != NoReturn)
10366     allLTypes = false;
10367   if (rbaseInfo.getNoReturn() != NoReturn)
10368     allRTypes = false;
10369 
10370   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
10371 
10372   if (lproto && rproto) { // two C99 style function prototypes
10373     assert((AllowCXX ||
10374             (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
10375            "C++ shouldn't be here");
10376     // Compatible functions must have the same number of parameters
10377     if (lproto->getNumParams() != rproto->getNumParams())
10378       return {};
10379 
10380     // Variadic and non-variadic functions aren't compatible
10381     if (lproto->isVariadic() != rproto->isVariadic())
10382       return {};
10383 
10384     if (lproto->getMethodQuals() != rproto->getMethodQuals())
10385       return {};
10386 
10387     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
10388     bool canUseLeft, canUseRight;
10389     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
10390                                newParamInfos))
10391       return {};
10392 
10393     if (!canUseLeft)
10394       allLTypes = false;
10395     if (!canUseRight)
10396       allRTypes = false;
10397 
10398     // Check parameter type compatibility
10399     SmallVector<QualType, 10> types;
10400     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
10401       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
10402       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
10403       QualType paramType = mergeFunctionParameterTypes(
10404           lParamType, rParamType, OfBlockPointer, Unqualified);
10405       if (paramType.isNull())
10406         return {};
10407 
10408       if (Unqualified)
10409         paramType = paramType.getUnqualifiedType();
10410 
10411       types.push_back(paramType);
10412       if (Unqualified) {
10413         lParamType = lParamType.getUnqualifiedType();
10414         rParamType = rParamType.getUnqualifiedType();
10415       }
10416 
10417       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
10418         allLTypes = false;
10419       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
10420         allRTypes = false;
10421     }
10422 
10423     if (allLTypes) return lhs;
10424     if (allRTypes) return rhs;
10425 
10426     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
10427     EPI.ExtInfo = einfo;
10428     EPI.ExtParameterInfos =
10429         newParamInfos.empty() ? nullptr : newParamInfos.data();
10430     return getFunctionType(retType, types, EPI);
10431   }
10432 
10433   if (lproto) allRTypes = false;
10434   if (rproto) allLTypes = false;
10435 
10436   const FunctionProtoType *proto = lproto ? lproto : rproto;
10437   if (proto) {
10438     assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
10439     if (proto->isVariadic())
10440       return {};
10441     // Check that the types are compatible with the types that
10442     // would result from default argument promotions (C99 6.7.5.3p15).
10443     // The only types actually affected are promotable integer
10444     // types and floats, which would be passed as a different
10445     // type depending on whether the prototype is visible.
10446     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
10447       QualType paramTy = proto->getParamType(i);
10448 
10449       // Look at the converted type of enum types, since that is the type used
10450       // to pass enum values.
10451       if (const auto *Enum = paramTy->getAs<EnumType>()) {
10452         paramTy = Enum->getDecl()->getIntegerType();
10453         if (paramTy.isNull())
10454           return {};
10455       }
10456 
10457       if (isPromotableIntegerType(paramTy) ||
10458           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
10459         return {};
10460     }
10461 
10462     if (allLTypes) return lhs;
10463     if (allRTypes) return rhs;
10464 
10465     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
10466     EPI.ExtInfo = einfo;
10467     return getFunctionType(retType, proto->getParamTypes(), EPI);
10468   }
10469 
10470   if (allLTypes) return lhs;
10471   if (allRTypes) return rhs;
10472   return getFunctionNoProtoType(retType, einfo);
10473 }
10474 
10475 /// Given that we have an enum type and a non-enum type, try to merge them.
10476 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
10477                                      QualType other, bool isBlockReturnType) {
10478   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
10479   // a signed integer type, or an unsigned integer type.
10480   // Compatibility is based on the underlying type, not the promotion
10481   // type.
10482   QualType underlyingType = ET->getDecl()->getIntegerType();
10483   if (underlyingType.isNull())
10484     return {};
10485   if (Context.hasSameType(underlyingType, other))
10486     return other;
10487 
10488   // In block return types, we're more permissive and accept any
10489   // integral type of the same size.
10490   if (isBlockReturnType && other->isIntegerType() &&
10491       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
10492     return other;
10493 
10494   return {};
10495 }
10496 
10497 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, bool OfBlockPointer,
10498                                 bool Unqualified, bool BlockReturnType,
10499                                 bool IsConditionalOperator) {
10500   // For C++ we will not reach this code with reference types (see below),
10501   // for OpenMP variant call overloading we might.
10502   //
10503   // C++ [expr]: If an expression initially has the type "reference to T", the
10504   // type is adjusted to "T" prior to any further analysis, the expression
10505   // designates the object or function denoted by the reference, and the
10506   // expression is an lvalue unless the reference is an rvalue reference and
10507   // the expression is a function call (possibly inside parentheses).
10508   auto *LHSRefTy = LHS->getAs<ReferenceType>();
10509   auto *RHSRefTy = RHS->getAs<ReferenceType>();
10510   if (LangOpts.OpenMP && LHSRefTy && RHSRefTy &&
10511       LHS->getTypeClass() == RHS->getTypeClass())
10512     return mergeTypes(LHSRefTy->getPointeeType(), RHSRefTy->getPointeeType(),
10513                       OfBlockPointer, Unqualified, BlockReturnType);
10514   if (LHSRefTy || RHSRefTy)
10515     return {};
10516 
10517   if (Unqualified) {
10518     LHS = LHS.getUnqualifiedType();
10519     RHS = RHS.getUnqualifiedType();
10520   }
10521 
10522   QualType LHSCan = getCanonicalType(LHS),
10523            RHSCan = getCanonicalType(RHS);
10524 
10525   // If two types are identical, they are compatible.
10526   if (LHSCan == RHSCan)
10527     return LHS;
10528 
10529   // If the qualifiers are different, the types aren't compatible... mostly.
10530   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10531   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10532   if (LQuals != RQuals) {
10533     // If any of these qualifiers are different, we have a type
10534     // mismatch.
10535     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10536         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
10537         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
10538         LQuals.hasUnaligned() != RQuals.hasUnaligned())
10539       return {};
10540 
10541     // Exactly one GC qualifier difference is allowed: __strong is
10542     // okay if the other type has no GC qualifier but is an Objective
10543     // C object pointer (i.e. implicitly strong by default).  We fix
10544     // this by pretending that the unqualified type was actually
10545     // qualified __strong.
10546     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10547     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10548     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10549 
10550     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10551       return {};
10552 
10553     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
10554       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
10555     }
10556     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
10557       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
10558     }
10559     return {};
10560   }
10561 
10562   // Okay, qualifiers are equal.
10563 
10564   Type::TypeClass LHSClass = LHSCan->getTypeClass();
10565   Type::TypeClass RHSClass = RHSCan->getTypeClass();
10566 
10567   // We want to consider the two function types to be the same for these
10568   // comparisons, just force one to the other.
10569   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
10570   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
10571 
10572   // Same as above for arrays
10573   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
10574     LHSClass = Type::ConstantArray;
10575   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
10576     RHSClass = Type::ConstantArray;
10577 
10578   // ObjCInterfaces are just specialized ObjCObjects.
10579   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
10580   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
10581 
10582   // Canonicalize ExtVector -> Vector.
10583   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
10584   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
10585 
10586   // If the canonical type classes don't match.
10587   if (LHSClass != RHSClass) {
10588     // Note that we only have special rules for turning block enum
10589     // returns into block int returns, not vice-versa.
10590     if (const auto *ETy = LHS->getAs<EnumType>()) {
10591       return mergeEnumWithInteger(*this, ETy, RHS, false);
10592     }
10593     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
10594       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
10595     }
10596     // allow block pointer type to match an 'id' type.
10597     if (OfBlockPointer && !BlockReturnType) {
10598        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
10599          return LHS;
10600       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
10601         return RHS;
10602     }
10603     // Allow __auto_type to match anything; it merges to the type with more
10604     // information.
10605     if (const auto *AT = LHS->getAs<AutoType>()) {
10606       if (!AT->isDeduced() && AT->isGNUAutoType())
10607         return RHS;
10608     }
10609     if (const auto *AT = RHS->getAs<AutoType>()) {
10610       if (!AT->isDeduced() && AT->isGNUAutoType())
10611         return LHS;
10612     }
10613     return {};
10614   }
10615 
10616   // The canonical type classes match.
10617   switch (LHSClass) {
10618 #define TYPE(Class, Base)
10619 #define ABSTRACT_TYPE(Class, Base)
10620 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
10621 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
10622 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
10623 #include "clang/AST/TypeNodes.inc"
10624     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
10625 
10626   case Type::Auto:
10627   case Type::DeducedTemplateSpecialization:
10628   case Type::LValueReference:
10629   case Type::RValueReference:
10630   case Type::MemberPointer:
10631     llvm_unreachable("C++ should never be in mergeTypes");
10632 
10633   case Type::ObjCInterface:
10634   case Type::IncompleteArray:
10635   case Type::VariableArray:
10636   case Type::FunctionProto:
10637   case Type::ExtVector:
10638     llvm_unreachable("Types are eliminated above");
10639 
10640   case Type::Pointer:
10641   {
10642     // Merge two pointer types, while trying to preserve typedef info
10643     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
10644     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
10645     if (Unqualified) {
10646       LHSPointee = LHSPointee.getUnqualifiedType();
10647       RHSPointee = RHSPointee.getUnqualifiedType();
10648     }
10649     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
10650                                      Unqualified);
10651     if (ResultType.isNull())
10652       return {};
10653     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10654       return LHS;
10655     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10656       return RHS;
10657     return getPointerType(ResultType);
10658   }
10659   case Type::BlockPointer:
10660   {
10661     // Merge two block pointer types, while trying to preserve typedef info
10662     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
10663     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
10664     if (Unqualified) {
10665       LHSPointee = LHSPointee.getUnqualifiedType();
10666       RHSPointee = RHSPointee.getUnqualifiedType();
10667     }
10668     if (getLangOpts().OpenCL) {
10669       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
10670       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
10671       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
10672       // 6.12.5) thus the following check is asymmetric.
10673       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
10674         return {};
10675       LHSPteeQual.removeAddressSpace();
10676       RHSPteeQual.removeAddressSpace();
10677       LHSPointee =
10678           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
10679       RHSPointee =
10680           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
10681     }
10682     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
10683                                      Unqualified);
10684     if (ResultType.isNull())
10685       return {};
10686     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10687       return LHS;
10688     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10689       return RHS;
10690     return getBlockPointerType(ResultType);
10691   }
10692   case Type::Atomic:
10693   {
10694     // Merge two pointer types, while trying to preserve typedef info
10695     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
10696     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
10697     if (Unqualified) {
10698       LHSValue = LHSValue.getUnqualifiedType();
10699       RHSValue = RHSValue.getUnqualifiedType();
10700     }
10701     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
10702                                      Unqualified);
10703     if (ResultType.isNull())
10704       return {};
10705     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
10706       return LHS;
10707     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
10708       return RHS;
10709     return getAtomicType(ResultType);
10710   }
10711   case Type::ConstantArray:
10712   {
10713     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
10714     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
10715     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
10716       return {};
10717 
10718     QualType LHSElem = getAsArrayType(LHS)->getElementType();
10719     QualType RHSElem = getAsArrayType(RHS)->getElementType();
10720     if (Unqualified) {
10721       LHSElem = LHSElem.getUnqualifiedType();
10722       RHSElem = RHSElem.getUnqualifiedType();
10723     }
10724 
10725     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
10726     if (ResultType.isNull())
10727       return {};
10728 
10729     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
10730     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
10731 
10732     // If either side is a variable array, and both are complete, check whether
10733     // the current dimension is definite.
10734     if (LVAT || RVAT) {
10735       auto SizeFetch = [this](const VariableArrayType* VAT,
10736           const ConstantArrayType* CAT)
10737           -> std::pair<bool,llvm::APInt> {
10738         if (VAT) {
10739           std::optional<llvm::APSInt> TheInt;
10740           Expr *E = VAT->getSizeExpr();
10741           if (E && (TheInt = E->getIntegerConstantExpr(*this)))
10742             return std::make_pair(true, *TheInt);
10743           return std::make_pair(false, llvm::APSInt());
10744         }
10745         if (CAT)
10746           return std::make_pair(true, CAT->getSize());
10747         return std::make_pair(false, llvm::APInt());
10748       };
10749 
10750       bool HaveLSize, HaveRSize;
10751       llvm::APInt LSize, RSize;
10752       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
10753       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
10754       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
10755         return {}; // Definite, but unequal, array dimension
10756     }
10757 
10758     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10759       return LHS;
10760     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10761       return RHS;
10762     if (LCAT)
10763       return getConstantArrayType(ResultType, LCAT->getSize(),
10764                                   LCAT->getSizeExpr(), ArraySizeModifier(), 0);
10765     if (RCAT)
10766       return getConstantArrayType(ResultType, RCAT->getSize(),
10767                                   RCAT->getSizeExpr(), ArraySizeModifier(), 0);
10768     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10769       return LHS;
10770     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10771       return RHS;
10772     if (LVAT) {
10773       // FIXME: This isn't correct! But tricky to implement because
10774       // the array's size has to be the size of LHS, but the type
10775       // has to be different.
10776       return LHS;
10777     }
10778     if (RVAT) {
10779       // FIXME: This isn't correct! But tricky to implement because
10780       // the array's size has to be the size of RHS, but the type
10781       // has to be different.
10782       return RHS;
10783     }
10784     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
10785     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
10786     return getIncompleteArrayType(ResultType, ArraySizeModifier(), 0);
10787   }
10788   case Type::FunctionNoProto:
10789     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified,
10790                               /*AllowCXX=*/false, IsConditionalOperator);
10791   case Type::Record:
10792   case Type::Enum:
10793     return {};
10794   case Type::Builtin:
10795     // Only exactly equal builtin types are compatible, which is tested above.
10796     return {};
10797   case Type::Complex:
10798     // Distinct complex types are incompatible.
10799     return {};
10800   case Type::Vector:
10801     // FIXME: The merged type should be an ExtVector!
10802     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
10803                              RHSCan->castAs<VectorType>()))
10804       return LHS;
10805     return {};
10806   case Type::ConstantMatrix:
10807     if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
10808                              RHSCan->castAs<ConstantMatrixType>()))
10809       return LHS;
10810     return {};
10811   case Type::ObjCObject: {
10812     // Check if the types are assignment compatible.
10813     // FIXME: This should be type compatibility, e.g. whether
10814     // "LHS x; RHS x;" at global scope is legal.
10815     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
10816                                 RHS->castAs<ObjCObjectType>()))
10817       return LHS;
10818     return {};
10819   }
10820   case Type::ObjCObjectPointer:
10821     if (OfBlockPointer) {
10822       if (canAssignObjCInterfacesInBlockPointer(
10823               LHS->castAs<ObjCObjectPointerType>(),
10824               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
10825         return LHS;
10826       return {};
10827     }
10828     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
10829                                 RHS->castAs<ObjCObjectPointerType>()))
10830       return LHS;
10831     return {};
10832   case Type::Pipe:
10833     assert(LHS != RHS &&
10834            "Equivalent pipe types should have already been handled!");
10835     return {};
10836   case Type::BitInt: {
10837     // Merge two bit-precise int types, while trying to preserve typedef info.
10838     bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned();
10839     bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned();
10840     unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits();
10841     unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits();
10842 
10843     // Like unsigned/int, shouldn't have a type if they don't match.
10844     if (LHSUnsigned != RHSUnsigned)
10845       return {};
10846 
10847     if (LHSBits != RHSBits)
10848       return {};
10849     return LHS;
10850   }
10851   }
10852 
10853   llvm_unreachable("Invalid Type::Class!");
10854 }
10855 
10856 bool ASTContext::mergeExtParameterInfo(
10857     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
10858     bool &CanUseFirst, bool &CanUseSecond,
10859     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
10860   assert(NewParamInfos.empty() && "param info list not empty");
10861   CanUseFirst = CanUseSecond = true;
10862   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
10863   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
10864 
10865   // Fast path: if the first type doesn't have ext parameter infos,
10866   // we match if and only if the second type also doesn't have them.
10867   if (!FirstHasInfo && !SecondHasInfo)
10868     return true;
10869 
10870   bool NeedParamInfo = false;
10871   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
10872                           : SecondFnType->getExtParameterInfos().size();
10873 
10874   for (size_t I = 0; I < E; ++I) {
10875     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
10876     if (FirstHasInfo)
10877       FirstParam = FirstFnType->getExtParameterInfo(I);
10878     if (SecondHasInfo)
10879       SecondParam = SecondFnType->getExtParameterInfo(I);
10880 
10881     // Cannot merge unless everything except the noescape flag matches.
10882     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
10883       return false;
10884 
10885     bool FirstNoEscape = FirstParam.isNoEscape();
10886     bool SecondNoEscape = SecondParam.isNoEscape();
10887     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
10888     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
10889     if (NewParamInfos.back().getOpaqueValue())
10890       NeedParamInfo = true;
10891     if (FirstNoEscape != IsNoEscape)
10892       CanUseFirst = false;
10893     if (SecondNoEscape != IsNoEscape)
10894       CanUseSecond = false;
10895   }
10896 
10897   if (!NeedParamInfo)
10898     NewParamInfos.clear();
10899 
10900   return true;
10901 }
10902 
10903 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
10904   ObjCLayouts[CD] = nullptr;
10905 }
10906 
10907 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
10908 /// 'RHS' attributes and returns the merged version; including for function
10909 /// return types.
10910 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
10911   QualType LHSCan = getCanonicalType(LHS),
10912   RHSCan = getCanonicalType(RHS);
10913   // If two types are identical, they are compatible.
10914   if (LHSCan == RHSCan)
10915     return LHS;
10916   if (RHSCan->isFunctionType()) {
10917     if (!LHSCan->isFunctionType())
10918       return {};
10919     QualType OldReturnType =
10920         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
10921     QualType NewReturnType =
10922         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
10923     QualType ResReturnType =
10924       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
10925     if (ResReturnType.isNull())
10926       return {};
10927     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
10928       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
10929       // In either case, use OldReturnType to build the new function type.
10930       const auto *F = LHS->castAs<FunctionType>();
10931       if (const auto *FPT = cast<FunctionProtoType>(F)) {
10932         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10933         EPI.ExtInfo = getFunctionExtInfo(LHS);
10934         QualType ResultType =
10935             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
10936         return ResultType;
10937       }
10938     }
10939     return {};
10940   }
10941 
10942   // If the qualifiers are different, the types can still be merged.
10943   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10944   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10945   if (LQuals != RQuals) {
10946     // If any of these qualifiers are different, we have a type mismatch.
10947     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10948         LQuals.getAddressSpace() != RQuals.getAddressSpace())
10949       return {};
10950 
10951     // Exactly one GC qualifier difference is allowed: __strong is
10952     // okay if the other type has no GC qualifier but is an Objective
10953     // C object pointer (i.e. implicitly strong by default).  We fix
10954     // this by pretending that the unqualified type was actually
10955     // qualified __strong.
10956     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10957     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10958     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10959 
10960     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10961       return {};
10962 
10963     if (GC_L == Qualifiers::Strong)
10964       return LHS;
10965     if (GC_R == Qualifiers::Strong)
10966       return RHS;
10967     return {};
10968   }
10969 
10970   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
10971     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10972     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10973     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
10974     if (ResQT == LHSBaseQT)
10975       return LHS;
10976     if (ResQT == RHSBaseQT)
10977       return RHS;
10978   }
10979   return {};
10980 }
10981 
10982 //===----------------------------------------------------------------------===//
10983 //                         Integer Predicates
10984 //===----------------------------------------------------------------------===//
10985 
10986 unsigned ASTContext::getIntWidth(QualType T) const {
10987   if (const auto *ET = T->getAs<EnumType>())
10988     T = ET->getDecl()->getIntegerType();
10989   if (T->isBooleanType())
10990     return 1;
10991   if (const auto *EIT = T->getAs<BitIntType>())
10992     return EIT->getNumBits();
10993   // For builtin types, just use the standard type sizing method
10994   return (unsigned)getTypeSize(T);
10995 }
10996 
10997 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
10998   assert((T->hasIntegerRepresentation() || T->isEnumeralType() ||
10999           T->isFixedPointType()) &&
11000          "Unexpected type");
11001 
11002   // Turn <4 x signed int> -> <4 x unsigned int>
11003   if (const auto *VTy = T->getAs<VectorType>())
11004     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
11005                          VTy->getNumElements(), VTy->getVectorKind());
11006 
11007   // For _BitInt, return an unsigned _BitInt with same width.
11008   if (const auto *EITy = T->getAs<BitIntType>())
11009     return getBitIntType(/*Unsigned=*/true, EITy->getNumBits());
11010 
11011   // For enums, get the underlying integer type of the enum, and let the general
11012   // integer type signchanging code handle it.
11013   if (const auto *ETy = T->getAs<EnumType>())
11014     T = ETy->getDecl()->getIntegerType();
11015 
11016   switch (T->castAs<BuiltinType>()->getKind()) {
11017   case BuiltinType::Char_U:
11018     // Plain `char` is mapped to `unsigned char` even if it's already unsigned
11019   case BuiltinType::Char_S:
11020   case BuiltinType::SChar:
11021   case BuiltinType::Char8:
11022     return UnsignedCharTy;
11023   case BuiltinType::Short:
11024     return UnsignedShortTy;
11025   case BuiltinType::Int:
11026     return UnsignedIntTy;
11027   case BuiltinType::Long:
11028     return UnsignedLongTy;
11029   case BuiltinType::LongLong:
11030     return UnsignedLongLongTy;
11031   case BuiltinType::Int128:
11032     return UnsignedInt128Ty;
11033   // wchar_t is special. It is either signed or not, but when it's signed,
11034   // there's no matching "unsigned wchar_t". Therefore we return the unsigned
11035   // version of its underlying type instead.
11036   case BuiltinType::WChar_S:
11037     return getUnsignedWCharType();
11038 
11039   case BuiltinType::ShortAccum:
11040     return UnsignedShortAccumTy;
11041   case BuiltinType::Accum:
11042     return UnsignedAccumTy;
11043   case BuiltinType::LongAccum:
11044     return UnsignedLongAccumTy;
11045   case BuiltinType::SatShortAccum:
11046     return SatUnsignedShortAccumTy;
11047   case BuiltinType::SatAccum:
11048     return SatUnsignedAccumTy;
11049   case BuiltinType::SatLongAccum:
11050     return SatUnsignedLongAccumTy;
11051   case BuiltinType::ShortFract:
11052     return UnsignedShortFractTy;
11053   case BuiltinType::Fract:
11054     return UnsignedFractTy;
11055   case BuiltinType::LongFract:
11056     return UnsignedLongFractTy;
11057   case BuiltinType::SatShortFract:
11058     return SatUnsignedShortFractTy;
11059   case BuiltinType::SatFract:
11060     return SatUnsignedFractTy;
11061   case BuiltinType::SatLongFract:
11062     return SatUnsignedLongFractTy;
11063   default:
11064     assert((T->hasUnsignedIntegerRepresentation() ||
11065             T->isUnsignedFixedPointType()) &&
11066            "Unexpected signed integer or fixed point type");
11067     return T;
11068   }
11069 }
11070 
11071 QualType ASTContext::getCorrespondingSignedType(QualType T) const {
11072   assert((T->hasIntegerRepresentation() || T->isEnumeralType() ||
11073           T->isFixedPointType()) &&
11074          "Unexpected type");
11075 
11076   // Turn <4 x unsigned int> -> <4 x signed int>
11077   if (const auto *VTy = T->getAs<VectorType>())
11078     return getVectorType(getCorrespondingSignedType(VTy->getElementType()),
11079                          VTy->getNumElements(), VTy->getVectorKind());
11080 
11081   // For _BitInt, return a signed _BitInt with same width.
11082   if (const auto *EITy = T->getAs<BitIntType>())
11083     return getBitIntType(/*Unsigned=*/false, EITy->getNumBits());
11084 
11085   // For enums, get the underlying integer type of the enum, and let the general
11086   // integer type signchanging code handle it.
11087   if (const auto *ETy = T->getAs<EnumType>())
11088     T = ETy->getDecl()->getIntegerType();
11089 
11090   switch (T->castAs<BuiltinType>()->getKind()) {
11091   case BuiltinType::Char_S:
11092     // Plain `char` is mapped to `signed char` even if it's already signed
11093   case BuiltinType::Char_U:
11094   case BuiltinType::UChar:
11095   case BuiltinType::Char8:
11096     return SignedCharTy;
11097   case BuiltinType::UShort:
11098     return ShortTy;
11099   case BuiltinType::UInt:
11100     return IntTy;
11101   case BuiltinType::ULong:
11102     return LongTy;
11103   case BuiltinType::ULongLong:
11104     return LongLongTy;
11105   case BuiltinType::UInt128:
11106     return Int128Ty;
11107   // wchar_t is special. It is either unsigned or not, but when it's unsigned,
11108   // there's no matching "signed wchar_t". Therefore we return the signed
11109   // version of its underlying type instead.
11110   case BuiltinType::WChar_U:
11111     return getSignedWCharType();
11112 
11113   case BuiltinType::UShortAccum:
11114     return ShortAccumTy;
11115   case BuiltinType::UAccum:
11116     return AccumTy;
11117   case BuiltinType::ULongAccum:
11118     return LongAccumTy;
11119   case BuiltinType::SatUShortAccum:
11120     return SatShortAccumTy;
11121   case BuiltinType::SatUAccum:
11122     return SatAccumTy;
11123   case BuiltinType::SatULongAccum:
11124     return SatLongAccumTy;
11125   case BuiltinType::UShortFract:
11126     return ShortFractTy;
11127   case BuiltinType::UFract:
11128     return FractTy;
11129   case BuiltinType::ULongFract:
11130     return LongFractTy;
11131   case BuiltinType::SatUShortFract:
11132     return SatShortFractTy;
11133   case BuiltinType::SatUFract:
11134     return SatFractTy;
11135   case BuiltinType::SatULongFract:
11136     return SatLongFractTy;
11137   default:
11138     assert(
11139         (T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
11140         "Unexpected signed integer or fixed point type");
11141     return T;
11142   }
11143 }
11144 
11145 ASTMutationListener::~ASTMutationListener() = default;
11146 
11147 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
11148                                             QualType ReturnType) {}
11149 
11150 //===----------------------------------------------------------------------===//
11151 //                          Builtin Type Computation
11152 //===----------------------------------------------------------------------===//
11153 
11154 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
11155 /// pointer over the consumed characters.  This returns the resultant type.  If
11156 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
11157 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
11158 /// a vector of "i*".
11159 ///
11160 /// RequiresICE is filled in on return to indicate whether the value is required
11161 /// to be an Integer Constant Expression.
11162 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
11163                                   ASTContext::GetBuiltinTypeError &Error,
11164                                   bool &RequiresICE,
11165                                   bool AllowTypeModifiers) {
11166   // Modifiers.
11167   int HowLong = 0;
11168   bool Signed = false, Unsigned = false;
11169   RequiresICE = false;
11170 
11171   // Read the prefixed modifiers first.
11172   bool Done = false;
11173   #ifndef NDEBUG
11174   bool IsSpecial = false;
11175   #endif
11176   while (!Done) {
11177     switch (*Str++) {
11178     default: Done = true; --Str; break;
11179     case 'I':
11180       RequiresICE = true;
11181       break;
11182     case 'S':
11183       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
11184       assert(!Signed && "Can't use 'S' modifier multiple times!");
11185       Signed = true;
11186       break;
11187     case 'U':
11188       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
11189       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
11190       Unsigned = true;
11191       break;
11192     case 'L':
11193       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
11194       assert(HowLong <= 2 && "Can't have LLLL modifier");
11195       ++HowLong;
11196       break;
11197     case 'N':
11198       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
11199       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11200       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
11201       #ifndef NDEBUG
11202       IsSpecial = true;
11203       #endif
11204       if (Context.getTargetInfo().getLongWidth() == 32)
11205         ++HowLong;
11206       break;
11207     case 'W':
11208       // This modifier represents int64 type.
11209       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11210       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
11211       #ifndef NDEBUG
11212       IsSpecial = true;
11213       #endif
11214       switch (Context.getTargetInfo().getInt64Type()) {
11215       default:
11216         llvm_unreachable("Unexpected integer type");
11217       case TargetInfo::SignedLong:
11218         HowLong = 1;
11219         break;
11220       case TargetInfo::SignedLongLong:
11221         HowLong = 2;
11222         break;
11223       }
11224       break;
11225     case 'Z':
11226       // This modifier represents int32 type.
11227       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11228       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
11229       #ifndef NDEBUG
11230       IsSpecial = true;
11231       #endif
11232       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
11233       default:
11234         llvm_unreachable("Unexpected integer type");
11235       case TargetInfo::SignedInt:
11236         HowLong = 0;
11237         break;
11238       case TargetInfo::SignedLong:
11239         HowLong = 1;
11240         break;
11241       case TargetInfo::SignedLongLong:
11242         HowLong = 2;
11243         break;
11244       }
11245       break;
11246     case 'O':
11247       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11248       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
11249       #ifndef NDEBUG
11250       IsSpecial = true;
11251       #endif
11252       if (Context.getLangOpts().OpenCL)
11253         HowLong = 1;
11254       else
11255         HowLong = 2;
11256       break;
11257     }
11258   }
11259 
11260   QualType Type;
11261 
11262   // Read the base type.
11263   switch (*Str++) {
11264   default: llvm_unreachable("Unknown builtin type letter!");
11265   case 'x':
11266     assert(HowLong == 0 && !Signed && !Unsigned &&
11267            "Bad modifiers used with 'x'!");
11268     Type = Context.Float16Ty;
11269     break;
11270   case 'y':
11271     assert(HowLong == 0 && !Signed && !Unsigned &&
11272            "Bad modifiers used with 'y'!");
11273     Type = Context.BFloat16Ty;
11274     break;
11275   case 'v':
11276     assert(HowLong == 0 && !Signed && !Unsigned &&
11277            "Bad modifiers used with 'v'!");
11278     Type = Context.VoidTy;
11279     break;
11280   case 'h':
11281     assert(HowLong == 0 && !Signed && !Unsigned &&
11282            "Bad modifiers used with 'h'!");
11283     Type = Context.HalfTy;
11284     break;
11285   case 'f':
11286     assert(HowLong == 0 && !Signed && !Unsigned &&
11287            "Bad modifiers used with 'f'!");
11288     Type = Context.FloatTy;
11289     break;
11290   case 'd':
11291     assert(HowLong < 3 && !Signed && !Unsigned &&
11292            "Bad modifiers used with 'd'!");
11293     if (HowLong == 1)
11294       Type = Context.LongDoubleTy;
11295     else if (HowLong == 2)
11296       Type = Context.Float128Ty;
11297     else
11298       Type = Context.DoubleTy;
11299     break;
11300   case 's':
11301     assert(HowLong == 0 && "Bad modifiers used with 's'!");
11302     if (Unsigned)
11303       Type = Context.UnsignedShortTy;
11304     else
11305       Type = Context.ShortTy;
11306     break;
11307   case 'i':
11308     if (HowLong == 3)
11309       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
11310     else if (HowLong == 2)
11311       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
11312     else if (HowLong == 1)
11313       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
11314     else
11315       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
11316     break;
11317   case 'c':
11318     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
11319     if (Signed)
11320       Type = Context.SignedCharTy;
11321     else if (Unsigned)
11322       Type = Context.UnsignedCharTy;
11323     else
11324       Type = Context.CharTy;
11325     break;
11326   case 'b': // boolean
11327     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
11328     Type = Context.BoolTy;
11329     break;
11330   case 'z':  // size_t.
11331     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
11332     Type = Context.getSizeType();
11333     break;
11334   case 'w':  // wchar_t.
11335     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
11336     Type = Context.getWideCharType();
11337     break;
11338   case 'F':
11339     Type = Context.getCFConstantStringType();
11340     break;
11341   case 'G':
11342     Type = Context.getObjCIdType();
11343     break;
11344   case 'H':
11345     Type = Context.getObjCSelType();
11346     break;
11347   case 'M':
11348     Type = Context.getObjCSuperType();
11349     break;
11350   case 'a':
11351     Type = Context.getBuiltinVaListType();
11352     assert(!Type.isNull() && "builtin va list type not initialized!");
11353     break;
11354   case 'A':
11355     // This is a "reference" to a va_list; however, what exactly
11356     // this means depends on how va_list is defined. There are two
11357     // different kinds of va_list: ones passed by value, and ones
11358     // passed by reference.  An example of a by-value va_list is
11359     // x86, where va_list is a char*. An example of by-ref va_list
11360     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
11361     // we want this argument to be a char*&; for x86-64, we want
11362     // it to be a __va_list_tag*.
11363     Type = Context.getBuiltinVaListType();
11364     assert(!Type.isNull() && "builtin va list type not initialized!");
11365     if (Type->isArrayType())
11366       Type = Context.getArrayDecayedType(Type);
11367     else
11368       Type = Context.getLValueReferenceType(Type);
11369     break;
11370   case 'q': {
11371     char *End;
11372     unsigned NumElements = strtoul(Str, &End, 10);
11373     assert(End != Str && "Missing vector size");
11374     Str = End;
11375 
11376     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11377                                              RequiresICE, false);
11378     assert(!RequiresICE && "Can't require vector ICE");
11379 
11380     Type = Context.getScalableVectorType(ElementType, NumElements);
11381     break;
11382   }
11383   case 'Q': {
11384     switch (*Str++) {
11385     case 'a': {
11386       Type = Context.SveCountTy;
11387       break;
11388     }
11389     default:
11390       llvm_unreachable("Unexpected target builtin type");
11391     }
11392     break;
11393   }
11394   case 'V': {
11395     char *End;
11396     unsigned NumElements = strtoul(Str, &End, 10);
11397     assert(End != Str && "Missing vector size");
11398     Str = End;
11399 
11400     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11401                                              RequiresICE, false);
11402     assert(!RequiresICE && "Can't require vector ICE");
11403 
11404     // TODO: No way to make AltiVec vectors in builtins yet.
11405     Type = Context.getVectorType(ElementType, NumElements, VectorKind::Generic);
11406     break;
11407   }
11408   case 'E': {
11409     char *End;
11410 
11411     unsigned NumElements = strtoul(Str, &End, 10);
11412     assert(End != Str && "Missing vector size");
11413 
11414     Str = End;
11415 
11416     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11417                                              false);
11418     Type = Context.getExtVectorType(ElementType, NumElements);
11419     break;
11420   }
11421   case 'X': {
11422     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11423                                              false);
11424     assert(!RequiresICE && "Can't require complex ICE");
11425     Type = Context.getComplexType(ElementType);
11426     break;
11427   }
11428   case 'Y':
11429     Type = Context.getPointerDiffType();
11430     break;
11431   case 'P':
11432     Type = Context.getFILEType();
11433     if (Type.isNull()) {
11434       Error = ASTContext::GE_Missing_stdio;
11435       return {};
11436     }
11437     break;
11438   case 'J':
11439     if (Signed)
11440       Type = Context.getsigjmp_bufType();
11441     else
11442       Type = Context.getjmp_bufType();
11443 
11444     if (Type.isNull()) {
11445       Error = ASTContext::GE_Missing_setjmp;
11446       return {};
11447     }
11448     break;
11449   case 'K':
11450     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
11451     Type = Context.getucontext_tType();
11452 
11453     if (Type.isNull()) {
11454       Error = ASTContext::GE_Missing_ucontext;
11455       return {};
11456     }
11457     break;
11458   case 'p':
11459     Type = Context.getProcessIDType();
11460     break;
11461   }
11462 
11463   // If there are modifiers and if we're allowed to parse them, go for it.
11464   Done = !AllowTypeModifiers;
11465   while (!Done) {
11466     switch (char c = *Str++) {
11467     default: Done = true; --Str; break;
11468     case '*':
11469     case '&': {
11470       // Both pointers and references can have their pointee types
11471       // qualified with an address space.
11472       char *End;
11473       unsigned AddrSpace = strtoul(Str, &End, 10);
11474       if (End != Str) {
11475         // Note AddrSpace == 0 is not the same as an unspecified address space.
11476         Type = Context.getAddrSpaceQualType(
11477           Type,
11478           Context.getLangASForBuiltinAddressSpace(AddrSpace));
11479         Str = End;
11480       }
11481       if (c == '*')
11482         Type = Context.getPointerType(Type);
11483       else
11484         Type = Context.getLValueReferenceType(Type);
11485       break;
11486     }
11487     // FIXME: There's no way to have a built-in with an rvalue ref arg.
11488     case 'C':
11489       Type = Type.withConst();
11490       break;
11491     case 'D':
11492       Type = Context.getVolatileType(Type);
11493       break;
11494     case 'R':
11495       Type = Type.withRestrict();
11496       break;
11497     }
11498   }
11499 
11500   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
11501          "Integer constant 'I' type must be an integer");
11502 
11503   return Type;
11504 }
11505 
11506 // On some targets such as PowerPC, some of the builtins are defined with custom
11507 // type descriptors for target-dependent types. These descriptors are decoded in
11508 // other functions, but it may be useful to be able to fall back to default
11509 // descriptor decoding to define builtins mixing target-dependent and target-
11510 // independent types. This function allows decoding one type descriptor with
11511 // default decoding.
11512 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
11513                                    GetBuiltinTypeError &Error, bool &RequireICE,
11514                                    bool AllowTypeModifiers) const {
11515   return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
11516 }
11517 
11518 /// GetBuiltinType - Return the type for the specified builtin.
11519 QualType ASTContext::GetBuiltinType(unsigned Id,
11520                                     GetBuiltinTypeError &Error,
11521                                     unsigned *IntegerConstantArgs) const {
11522   const char *TypeStr = BuiltinInfo.getTypeString(Id);
11523   if (TypeStr[0] == '\0') {
11524     Error = GE_Missing_type;
11525     return {};
11526   }
11527 
11528   SmallVector<QualType, 8> ArgTypes;
11529 
11530   bool RequiresICE = false;
11531   Error = GE_None;
11532   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
11533                                        RequiresICE, true);
11534   if (Error != GE_None)
11535     return {};
11536 
11537   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
11538 
11539   while (TypeStr[0] && TypeStr[0] != '.') {
11540     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
11541     if (Error != GE_None)
11542       return {};
11543 
11544     // If this argument is required to be an IntegerConstantExpression and the
11545     // caller cares, fill in the bitmask we return.
11546     if (RequiresICE && IntegerConstantArgs)
11547       *IntegerConstantArgs |= 1 << ArgTypes.size();
11548 
11549     // Do array -> pointer decay.  The builtin should use the decayed type.
11550     if (Ty->isArrayType())
11551       Ty = getArrayDecayedType(Ty);
11552 
11553     ArgTypes.push_back(Ty);
11554   }
11555 
11556   if (Id == Builtin::BI__GetExceptionInfo)
11557     return {};
11558 
11559   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
11560          "'.' should only occur at end of builtin type list!");
11561 
11562   bool Variadic = (TypeStr[0] == '.');
11563 
11564   FunctionType::ExtInfo EI(getDefaultCallingConvention(
11565       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
11566   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
11567 
11568 
11569   // We really shouldn't be making a no-proto type here.
11570   if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes())
11571     return getFunctionNoProtoType(ResType, EI);
11572 
11573   FunctionProtoType::ExtProtoInfo EPI;
11574   EPI.ExtInfo = EI;
11575   EPI.Variadic = Variadic;
11576   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
11577     EPI.ExceptionSpec.Type =
11578         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
11579 
11580   return getFunctionType(ResType, ArgTypes, EPI);
11581 }
11582 
11583 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
11584                                              const FunctionDecl *FD) {
11585   if (!FD->isExternallyVisible())
11586     return GVA_Internal;
11587 
11588   // Non-user-provided functions get emitted as weak definitions with every
11589   // use, no matter whether they've been explicitly instantiated etc.
11590   if (!FD->isUserProvided())
11591     return GVA_DiscardableODR;
11592 
11593   GVALinkage External;
11594   switch (FD->getTemplateSpecializationKind()) {
11595   case TSK_Undeclared:
11596   case TSK_ExplicitSpecialization:
11597     External = GVA_StrongExternal;
11598     break;
11599 
11600   case TSK_ExplicitInstantiationDefinition:
11601     return GVA_StrongODR;
11602 
11603   // C++11 [temp.explicit]p10:
11604   //   [ Note: The intent is that an inline function that is the subject of
11605   //   an explicit instantiation declaration will still be implicitly
11606   //   instantiated when used so that the body can be considered for
11607   //   inlining, but that no out-of-line copy of the inline function would be
11608   //   generated in the translation unit. -- end note ]
11609   case TSK_ExplicitInstantiationDeclaration:
11610     return GVA_AvailableExternally;
11611 
11612   case TSK_ImplicitInstantiation:
11613     External = GVA_DiscardableODR;
11614     break;
11615   }
11616 
11617   if (!FD->isInlined())
11618     return External;
11619 
11620   if ((!Context.getLangOpts().CPlusPlus &&
11621        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11622        !FD->hasAttr<DLLExportAttr>()) ||
11623       FD->hasAttr<GNUInlineAttr>()) {
11624     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
11625 
11626     // GNU or C99 inline semantics. Determine whether this symbol should be
11627     // externally visible.
11628     if (FD->isInlineDefinitionExternallyVisible())
11629       return External;
11630 
11631     // C99 inline semantics, where the symbol is not externally visible.
11632     return GVA_AvailableExternally;
11633   }
11634 
11635   // Functions specified with extern and inline in -fms-compatibility mode
11636   // forcibly get emitted.  While the body of the function cannot be later
11637   // replaced, the function definition cannot be discarded.
11638   if (FD->isMSExternInline())
11639     return GVA_StrongODR;
11640 
11641   if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11642       isa<CXXConstructorDecl>(FD) &&
11643       cast<CXXConstructorDecl>(FD)->isInheritingConstructor())
11644     // Our approach to inheriting constructors is fundamentally different from
11645     // that used by the MS ABI, so keep our inheriting constructor thunks
11646     // internal rather than trying to pick an unambiguous mangling for them.
11647     return GVA_Internal;
11648 
11649   return GVA_DiscardableODR;
11650 }
11651 
11652 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
11653                                                 const Decl *D, GVALinkage L) {
11654   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
11655   // dllexport/dllimport on inline functions.
11656   if (D->hasAttr<DLLImportAttr>()) {
11657     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
11658       return GVA_AvailableExternally;
11659   } else if (D->hasAttr<DLLExportAttr>()) {
11660     if (L == GVA_DiscardableODR)
11661       return GVA_StrongODR;
11662   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
11663     // Device-side functions with __global__ attribute must always be
11664     // visible externally so they can be launched from host.
11665     if (D->hasAttr<CUDAGlobalAttr>() &&
11666         (L == GVA_DiscardableODR || L == GVA_Internal))
11667       return GVA_StrongODR;
11668     // Single source offloading languages like CUDA/HIP need to be able to
11669     // access static device variables from host code of the same compilation
11670     // unit. This is done by externalizing the static variable with a shared
11671     // name between the host and device compilation which is the same for the
11672     // same compilation unit whereas different among different compilation
11673     // units.
11674     if (Context.shouldExternalize(D))
11675       return GVA_StrongExternal;
11676   }
11677   return L;
11678 }
11679 
11680 /// Adjust the GVALinkage for a declaration based on what an external AST source
11681 /// knows about whether there can be other definitions of this declaration.
11682 static GVALinkage
11683 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
11684                                           GVALinkage L) {
11685   ExternalASTSource *Source = Ctx.getExternalSource();
11686   if (!Source)
11687     return L;
11688 
11689   switch (Source->hasExternalDefinitions(D)) {
11690   case ExternalASTSource::EK_Never:
11691     // Other translation units rely on us to provide the definition.
11692     if (L == GVA_DiscardableODR)
11693       return GVA_StrongODR;
11694     break;
11695 
11696   case ExternalASTSource::EK_Always:
11697     return GVA_AvailableExternally;
11698 
11699   case ExternalASTSource::EK_ReplyHazy:
11700     break;
11701   }
11702   return L;
11703 }
11704 
11705 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
11706   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
11707            adjustGVALinkageForAttributes(*this, FD,
11708              basicGVALinkageForFunction(*this, FD)));
11709 }
11710 
11711 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
11712                                              const VarDecl *VD) {
11713   // As an extension for interactive REPLs, make sure constant variables are
11714   // only emitted once instead of LinkageComputer::getLVForNamespaceScopeDecl
11715   // marking them as internal.
11716   if (Context.getLangOpts().CPlusPlus &&
11717       Context.getLangOpts().IncrementalExtensions &&
11718       VD->getType().isConstQualified() &&
11719       !VD->getType().isVolatileQualified() && !VD->isInline() &&
11720       !isa<VarTemplateSpecializationDecl>(VD) && !VD->getDescribedVarTemplate())
11721     return GVA_DiscardableODR;
11722 
11723   if (!VD->isExternallyVisible())
11724     return GVA_Internal;
11725 
11726   if (VD->isStaticLocal()) {
11727     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
11728     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
11729       LexicalContext = LexicalContext->getLexicalParent();
11730 
11731     // ObjC Blocks can create local variables that don't have a FunctionDecl
11732     // LexicalContext.
11733     if (!LexicalContext)
11734       return GVA_DiscardableODR;
11735 
11736     // Otherwise, let the static local variable inherit its linkage from the
11737     // nearest enclosing function.
11738     auto StaticLocalLinkage =
11739         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
11740 
11741     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
11742     // be emitted in any object with references to the symbol for the object it
11743     // contains, whether inline or out-of-line."
11744     // Similar behavior is observed with MSVC. An alternative ABI could use
11745     // StrongODR/AvailableExternally to match the function, but none are
11746     // known/supported currently.
11747     if (StaticLocalLinkage == GVA_StrongODR ||
11748         StaticLocalLinkage == GVA_AvailableExternally)
11749       return GVA_DiscardableODR;
11750     return StaticLocalLinkage;
11751   }
11752 
11753   // MSVC treats in-class initialized static data members as definitions.
11754   // By giving them non-strong linkage, out-of-line definitions won't
11755   // cause link errors.
11756   if (Context.isMSStaticDataMemberInlineDefinition(VD))
11757     return GVA_DiscardableODR;
11758 
11759   // Most non-template variables have strong linkage; inline variables are
11760   // linkonce_odr or (occasionally, for compatibility) weak_odr.
11761   GVALinkage StrongLinkage;
11762   switch (Context.getInlineVariableDefinitionKind(VD)) {
11763   case ASTContext::InlineVariableDefinitionKind::None:
11764     StrongLinkage = GVA_StrongExternal;
11765     break;
11766   case ASTContext::InlineVariableDefinitionKind::Weak:
11767   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
11768     StrongLinkage = GVA_DiscardableODR;
11769     break;
11770   case ASTContext::InlineVariableDefinitionKind::Strong:
11771     StrongLinkage = GVA_StrongODR;
11772     break;
11773   }
11774 
11775   switch (VD->getTemplateSpecializationKind()) {
11776   case TSK_Undeclared:
11777     return StrongLinkage;
11778 
11779   case TSK_ExplicitSpecialization:
11780     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11781                    VD->isStaticDataMember()
11782                ? GVA_StrongODR
11783                : StrongLinkage;
11784 
11785   case TSK_ExplicitInstantiationDefinition:
11786     return GVA_StrongODR;
11787 
11788   case TSK_ExplicitInstantiationDeclaration:
11789     return GVA_AvailableExternally;
11790 
11791   case TSK_ImplicitInstantiation:
11792     return GVA_DiscardableODR;
11793   }
11794 
11795   llvm_unreachable("Invalid Linkage!");
11796 }
11797 
11798 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) const {
11799   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
11800            adjustGVALinkageForAttributes(*this, VD,
11801              basicGVALinkageForVariable(*this, VD)));
11802 }
11803 
11804 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
11805   if (const auto *VD = dyn_cast<VarDecl>(D)) {
11806     if (!VD->isFileVarDecl())
11807       return false;
11808     // Global named register variables (GNU extension) are never emitted.
11809     if (VD->getStorageClass() == SC_Register)
11810       return false;
11811     if (VD->getDescribedVarTemplate() ||
11812         isa<VarTemplatePartialSpecializationDecl>(VD))
11813       return false;
11814   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11815     // We never need to emit an uninstantiated function template.
11816     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11817       return false;
11818   } else if (isa<PragmaCommentDecl>(D))
11819     return true;
11820   else if (isa<PragmaDetectMismatchDecl>(D))
11821     return true;
11822   else if (isa<OMPRequiresDecl>(D))
11823     return true;
11824   else if (isa<OMPThreadPrivateDecl>(D))
11825     return !D->getDeclContext()->isDependentContext();
11826   else if (isa<OMPAllocateDecl>(D))
11827     return !D->getDeclContext()->isDependentContext();
11828   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
11829     return !D->getDeclContext()->isDependentContext();
11830   else if (isa<ImportDecl>(D))
11831     return true;
11832   else
11833     return false;
11834 
11835   // If this is a member of a class template, we do not need to emit it.
11836   if (D->getDeclContext()->isDependentContext())
11837     return false;
11838 
11839   // Weak references don't produce any output by themselves.
11840   if (D->hasAttr<WeakRefAttr>())
11841     return false;
11842 
11843   // Aliases and used decls are required.
11844   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
11845     return true;
11846 
11847   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11848     // Forward declarations aren't required.
11849     if (!FD->doesThisDeclarationHaveABody())
11850       return FD->doesDeclarationForceExternallyVisibleDefinition();
11851 
11852     // Constructors and destructors are required.
11853     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
11854       return true;
11855 
11856     // The key function for a class is required.  This rule only comes
11857     // into play when inline functions can be key functions, though.
11858     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11859       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11860         const CXXRecordDecl *RD = MD->getParent();
11861         if (MD->isOutOfLine() && RD->isDynamicClass()) {
11862           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
11863           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
11864             return true;
11865         }
11866       }
11867     }
11868 
11869     GVALinkage Linkage = GetGVALinkageForFunction(FD);
11870 
11871     // static, static inline, always_inline, and extern inline functions can
11872     // always be deferred.  Normal inline functions can be deferred in C99/C++.
11873     // Implicit template instantiations can also be deferred in C++.
11874     return !isDiscardableGVALinkage(Linkage);
11875   }
11876 
11877   const auto *VD = cast<VarDecl>(D);
11878   assert(VD->isFileVarDecl() && "Expected file scoped var");
11879 
11880   // If the decl is marked as `declare target to`, it should be emitted for the
11881   // host and for the device.
11882   if (LangOpts.OpenMP &&
11883       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
11884     return true;
11885 
11886   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
11887       !isMSStaticDataMemberInlineDefinition(VD))
11888     return false;
11889 
11890   // Variables in other module units shouldn't be forced to be emitted.
11891   if (VD->isInAnotherModuleUnit())
11892     return false;
11893 
11894   // Variables that can be needed in other TUs are required.
11895   auto Linkage = GetGVALinkageForVariable(VD);
11896   if (!isDiscardableGVALinkage(Linkage))
11897     return true;
11898 
11899   // We never need to emit a variable that is available in another TU.
11900   if (Linkage == GVA_AvailableExternally)
11901     return false;
11902 
11903   // Variables that have destruction with side-effects are required.
11904   if (VD->needsDestruction(*this))
11905     return true;
11906 
11907   // Variables that have initialization with side-effects are required.
11908   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
11909       // We can get a value-dependent initializer during error recovery.
11910       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
11911     return true;
11912 
11913   // Likewise, variables with tuple-like bindings are required if their
11914   // bindings have side-effects.
11915   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
11916     for (const auto *BD : DD->bindings())
11917       if (const auto *BindingVD = BD->getHoldingVar())
11918         if (DeclMustBeEmitted(BindingVD))
11919           return true;
11920 
11921   return false;
11922 }
11923 
11924 void ASTContext::forEachMultiversionedFunctionVersion(
11925     const FunctionDecl *FD,
11926     llvm::function_ref<void(FunctionDecl *)> Pred) const {
11927   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
11928   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
11929   FD = FD->getMostRecentDecl();
11930   // FIXME: The order of traversal here matters and depends on the order of
11931   // lookup results, which happens to be (mostly) oldest-to-newest, but we
11932   // shouldn't rely on that.
11933   for (auto *CurDecl :
11934        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
11935     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
11936     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
11937         !SeenDecls.contains(CurFD)) {
11938       SeenDecls.insert(CurFD);
11939       Pred(CurFD);
11940     }
11941   }
11942 }
11943 
11944 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
11945                                                     bool IsCXXMethod,
11946                                                     bool IsBuiltin) const {
11947   // Pass through to the C++ ABI object
11948   if (IsCXXMethod)
11949     return ABI->getDefaultMethodCallConv(IsVariadic);
11950 
11951   // Builtins ignore user-specified default calling convention and remain the
11952   // Target's default calling convention.
11953   if (!IsBuiltin) {
11954     switch (LangOpts.getDefaultCallingConv()) {
11955     case LangOptions::DCC_None:
11956       break;
11957     case LangOptions::DCC_CDecl:
11958       return CC_C;
11959     case LangOptions::DCC_FastCall:
11960       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
11961         return CC_X86FastCall;
11962       break;
11963     case LangOptions::DCC_StdCall:
11964       if (!IsVariadic)
11965         return CC_X86StdCall;
11966       break;
11967     case LangOptions::DCC_VectorCall:
11968       // __vectorcall cannot be applied to variadic functions.
11969       if (!IsVariadic)
11970         return CC_X86VectorCall;
11971       break;
11972     case LangOptions::DCC_RegCall:
11973       // __regcall cannot be applied to variadic functions.
11974       if (!IsVariadic)
11975         return CC_X86RegCall;
11976       break;
11977     case LangOptions::DCC_RtdCall:
11978       if (!IsVariadic)
11979         return CC_M68kRTD;
11980       break;
11981     }
11982   }
11983   return Target->getDefaultCallingConv();
11984 }
11985 
11986 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
11987   // Pass through to the C++ ABI object
11988   return ABI->isNearlyEmpty(RD);
11989 }
11990 
11991 VTableContextBase *ASTContext::getVTableContext() {
11992   if (!VTContext.get()) {
11993     auto ABI = Target->getCXXABI();
11994     if (ABI.isMicrosoft())
11995       VTContext.reset(new MicrosoftVTableContext(*this));
11996     else {
11997       auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
11998                                  ? ItaniumVTableContext::Relative
11999                                  : ItaniumVTableContext::Pointer;
12000       VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
12001     }
12002   }
12003   return VTContext.get();
12004 }
12005 
12006 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
12007   if (!T)
12008     T = Target;
12009   switch (T->getCXXABI().getKind()) {
12010   case TargetCXXABI::AppleARM64:
12011   case TargetCXXABI::Fuchsia:
12012   case TargetCXXABI::GenericAArch64:
12013   case TargetCXXABI::GenericItanium:
12014   case TargetCXXABI::GenericARM:
12015   case TargetCXXABI::GenericMIPS:
12016   case TargetCXXABI::iOS:
12017   case TargetCXXABI::WebAssembly:
12018   case TargetCXXABI::WatchOS:
12019   case TargetCXXABI::XL:
12020     return ItaniumMangleContext::create(*this, getDiagnostics());
12021   case TargetCXXABI::Microsoft:
12022     return MicrosoftMangleContext::create(*this, getDiagnostics());
12023   }
12024   llvm_unreachable("Unsupported ABI");
12025 }
12026 
12027 MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) {
12028   assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft &&
12029          "Device mangle context does not support Microsoft mangling.");
12030   switch (T.getCXXABI().getKind()) {
12031   case TargetCXXABI::AppleARM64:
12032   case TargetCXXABI::Fuchsia:
12033   case TargetCXXABI::GenericAArch64:
12034   case TargetCXXABI::GenericItanium:
12035   case TargetCXXABI::GenericARM:
12036   case TargetCXXABI::GenericMIPS:
12037   case TargetCXXABI::iOS:
12038   case TargetCXXABI::WebAssembly:
12039   case TargetCXXABI::WatchOS:
12040   case TargetCXXABI::XL:
12041     return ItaniumMangleContext::create(
12042         *this, getDiagnostics(),
12043         [](ASTContext &, const NamedDecl *ND) -> std::optional<unsigned> {
12044           if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
12045             return RD->getDeviceLambdaManglingNumber();
12046           return std::nullopt;
12047         },
12048         /*IsAux=*/true);
12049   case TargetCXXABI::Microsoft:
12050     return MicrosoftMangleContext::create(*this, getDiagnostics(),
12051                                           /*IsAux=*/true);
12052   }
12053   llvm_unreachable("Unsupported ABI");
12054 }
12055 
12056 CXXABI::~CXXABI() = default;
12057 
12058 size_t ASTContext::getSideTableAllocatedMemory() const {
12059   return ASTRecordLayouts.getMemorySize() +
12060          llvm::capacity_in_bytes(ObjCLayouts) +
12061          llvm::capacity_in_bytes(KeyFunctions) +
12062          llvm::capacity_in_bytes(ObjCImpls) +
12063          llvm::capacity_in_bytes(BlockVarCopyInits) +
12064          llvm::capacity_in_bytes(DeclAttrs) +
12065          llvm::capacity_in_bytes(TemplateOrInstantiation) +
12066          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
12067          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
12068          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
12069          llvm::capacity_in_bytes(OverriddenMethods) +
12070          llvm::capacity_in_bytes(Types) +
12071          llvm::capacity_in_bytes(VariableArrayTypes);
12072 }
12073 
12074 /// getIntTypeForBitwidth -
12075 /// sets integer QualTy according to specified details:
12076 /// bitwidth, signed/unsigned.
12077 /// Returns empty type if there is no appropriate target types.
12078 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
12079                                            unsigned Signed) const {
12080   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
12081   CanQualType QualTy = getFromTargetType(Ty);
12082   if (!QualTy && DestWidth == 128)
12083     return Signed ? Int128Ty : UnsignedInt128Ty;
12084   return QualTy;
12085 }
12086 
12087 /// getRealTypeForBitwidth -
12088 /// sets floating point QualTy according to specified bitwidth.
12089 /// Returns empty type if there is no appropriate target types.
12090 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
12091                                             FloatModeKind ExplicitType) const {
12092   FloatModeKind Ty =
12093       getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitType);
12094   switch (Ty) {
12095   case FloatModeKind::Half:
12096     return HalfTy;
12097   case FloatModeKind::Float:
12098     return FloatTy;
12099   case FloatModeKind::Double:
12100     return DoubleTy;
12101   case FloatModeKind::LongDouble:
12102     return LongDoubleTy;
12103   case FloatModeKind::Float128:
12104     return Float128Ty;
12105   case FloatModeKind::Ibm128:
12106     return Ibm128Ty;
12107   case FloatModeKind::NoFloat:
12108     return {};
12109   }
12110 
12111   llvm_unreachable("Unhandled TargetInfo::RealType value");
12112 }
12113 
12114 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
12115   if (Number > 1)
12116     MangleNumbers[ND] = Number;
12117 }
12118 
12119 unsigned ASTContext::getManglingNumber(const NamedDecl *ND,
12120                                        bool ForAuxTarget) const {
12121   auto I = MangleNumbers.find(ND);
12122   unsigned Res = I != MangleNumbers.end() ? I->second : 1;
12123   // CUDA/HIP host compilation encodes host and device mangling numbers
12124   // as lower and upper half of 32 bit integer.
12125   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) {
12126     Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF;
12127   } else {
12128     assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling "
12129                             "number for aux target");
12130   }
12131   return Res > 1 ? Res : 1;
12132 }
12133 
12134 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
12135   if (Number > 1)
12136     StaticLocalNumbers[VD] = Number;
12137 }
12138 
12139 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
12140   auto I = StaticLocalNumbers.find(VD);
12141   return I != StaticLocalNumbers.end() ? I->second : 1;
12142 }
12143 
12144 MangleNumberingContext &
12145 ASTContext::getManglingNumberContext(const DeclContext *DC) {
12146   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
12147   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
12148   if (!MCtx)
12149     MCtx = createMangleNumberingContext();
12150   return *MCtx;
12151 }
12152 
12153 MangleNumberingContext &
12154 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
12155   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
12156   std::unique_ptr<MangleNumberingContext> &MCtx =
12157       ExtraMangleNumberingContexts[D];
12158   if (!MCtx)
12159     MCtx = createMangleNumberingContext();
12160   return *MCtx;
12161 }
12162 
12163 std::unique_ptr<MangleNumberingContext>
12164 ASTContext::createMangleNumberingContext() const {
12165   return ABI->createMangleNumberingContext();
12166 }
12167 
12168 const CXXConstructorDecl *
12169 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
12170   return ABI->getCopyConstructorForExceptionObject(
12171       cast<CXXRecordDecl>(RD->getFirstDecl()));
12172 }
12173 
12174 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
12175                                                       CXXConstructorDecl *CD) {
12176   return ABI->addCopyConstructorForExceptionObject(
12177       cast<CXXRecordDecl>(RD->getFirstDecl()),
12178       cast<CXXConstructorDecl>(CD->getFirstDecl()));
12179 }
12180 
12181 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
12182                                                  TypedefNameDecl *DD) {
12183   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
12184 }
12185 
12186 TypedefNameDecl *
12187 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
12188   return ABI->getTypedefNameForUnnamedTagDecl(TD);
12189 }
12190 
12191 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
12192                                                 DeclaratorDecl *DD) {
12193   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
12194 }
12195 
12196 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
12197   return ABI->getDeclaratorForUnnamedTagDecl(TD);
12198 }
12199 
12200 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
12201   ParamIndices[D] = index;
12202 }
12203 
12204 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
12205   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
12206   assert(I != ParamIndices.end() &&
12207          "ParmIndices lacks entry set by ParmVarDecl");
12208   return I->second;
12209 }
12210 
12211 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
12212                                                unsigned Length) const {
12213   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
12214   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
12215     EltTy = EltTy.withConst();
12216 
12217   EltTy = adjustStringLiteralBaseType(EltTy);
12218 
12219   // Get an array type for the string, according to C99 6.4.5. This includes
12220   // the null terminator character.
12221   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
12222                               ArraySizeModifier::Normal, /*IndexTypeQuals*/ 0);
12223 }
12224 
12225 StringLiteral *
12226 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
12227   StringLiteral *&Result = StringLiteralCache[Key];
12228   if (!Result)
12229     Result = StringLiteral::Create(
12230         *this, Key, StringLiteralKind::Ordinary,
12231         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
12232         SourceLocation());
12233   return Result;
12234 }
12235 
12236 MSGuidDecl *
12237 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
12238   assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
12239 
12240   llvm::FoldingSetNodeID ID;
12241   MSGuidDecl::Profile(ID, Parts);
12242 
12243   void *InsertPos;
12244   if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
12245     return Existing;
12246 
12247   QualType GUIDType = getMSGuidType().withConst();
12248   MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
12249   MSGuidDecls.InsertNode(New, InsertPos);
12250   return New;
12251 }
12252 
12253 UnnamedGlobalConstantDecl *
12254 ASTContext::getUnnamedGlobalConstantDecl(QualType Ty,
12255                                          const APValue &APVal) const {
12256   llvm::FoldingSetNodeID ID;
12257   UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal);
12258 
12259   void *InsertPos;
12260   if (UnnamedGlobalConstantDecl *Existing =
12261           UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos))
12262     return Existing;
12263 
12264   UnnamedGlobalConstantDecl *New =
12265       UnnamedGlobalConstantDecl::Create(*this, Ty, APVal);
12266   UnnamedGlobalConstantDecls.InsertNode(New, InsertPos);
12267   return New;
12268 }
12269 
12270 TemplateParamObjectDecl *
12271 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
12272   assert(T->isRecordType() && "template param object of unexpected type");
12273 
12274   // C++ [temp.param]p8:
12275   //   [...] a static storage duration object of type 'const T' [...]
12276   T.addConst();
12277 
12278   llvm::FoldingSetNodeID ID;
12279   TemplateParamObjectDecl::Profile(ID, T, V);
12280 
12281   void *InsertPos;
12282   if (TemplateParamObjectDecl *Existing =
12283           TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
12284     return Existing;
12285 
12286   TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
12287   TemplateParamObjectDecls.InsertNode(New, InsertPos);
12288   return New;
12289 }
12290 
12291 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
12292   const llvm::Triple &T = getTargetInfo().getTriple();
12293   if (!T.isOSDarwin())
12294     return false;
12295 
12296   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
12297       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
12298     return false;
12299 
12300   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
12301   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
12302   uint64_t Size = sizeChars.getQuantity();
12303   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
12304   unsigned Align = alignChars.getQuantity();
12305   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
12306   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
12307 }
12308 
12309 bool
12310 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
12311                                 const ObjCMethodDecl *MethodImpl) {
12312   // No point trying to match an unavailable/deprecated mothod.
12313   if (MethodDecl->hasAttr<UnavailableAttr>()
12314       || MethodDecl->hasAttr<DeprecatedAttr>())
12315     return false;
12316   if (MethodDecl->getObjCDeclQualifier() !=
12317       MethodImpl->getObjCDeclQualifier())
12318     return false;
12319   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
12320     return false;
12321 
12322   if (MethodDecl->param_size() != MethodImpl->param_size())
12323     return false;
12324 
12325   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
12326        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
12327        EF = MethodDecl->param_end();
12328        IM != EM && IF != EF; ++IM, ++IF) {
12329     const ParmVarDecl *DeclVar = (*IF);
12330     const ParmVarDecl *ImplVar = (*IM);
12331     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
12332       return false;
12333     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
12334       return false;
12335   }
12336 
12337   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
12338 }
12339 
12340 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
12341   LangAS AS;
12342   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
12343     AS = LangAS::Default;
12344   else
12345     AS = QT->getPointeeType().getAddressSpace();
12346 
12347   return getTargetInfo().getNullPointerValue(AS);
12348 }
12349 
12350 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
12351   return getTargetInfo().getTargetAddressSpace(AS);
12352 }
12353 
12354 bool ASTContext::hasSameExpr(const Expr *X, const Expr *Y) const {
12355   if (X == Y)
12356     return true;
12357   if (!X || !Y)
12358     return false;
12359   llvm::FoldingSetNodeID IDX, IDY;
12360   X->Profile(IDX, *this, /*Canonical=*/true);
12361   Y->Profile(IDY, *this, /*Canonical=*/true);
12362   return IDX == IDY;
12363 }
12364 
12365 // The getCommon* helpers return, for given 'same' X and Y entities given as
12366 // inputs, another entity which is also the 'same' as the inputs, but which
12367 // is closer to the canonical form of the inputs, each according to a given
12368 // criteria.
12369 // The getCommon*Checked variants are 'null inputs not-allowed' equivalents of
12370 // the regular ones.
12371 
12372 static Decl *getCommonDecl(Decl *X, Decl *Y) {
12373   if (!declaresSameEntity(X, Y))
12374     return nullptr;
12375   for (const Decl *DX : X->redecls()) {
12376     // If we reach Y before reaching the first decl, that means X is older.
12377     if (DX == Y)
12378       return X;
12379     // If we reach the first decl, then Y is older.
12380     if (DX->isFirstDecl())
12381       return Y;
12382   }
12383   llvm_unreachable("Corrupt redecls chain");
12384 }
12385 
12386 template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true>
12387 static T *getCommonDecl(T *X, T *Y) {
12388   return cast_or_null<T>(
12389       getCommonDecl(const_cast<Decl *>(cast_or_null<Decl>(X)),
12390                     const_cast<Decl *>(cast_or_null<Decl>(Y))));
12391 }
12392 
12393 template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true>
12394 static T *getCommonDeclChecked(T *X, T *Y) {
12395   return cast<T>(getCommonDecl(const_cast<Decl *>(cast<Decl>(X)),
12396                                const_cast<Decl *>(cast<Decl>(Y))));
12397 }
12398 
12399 static TemplateName getCommonTemplateName(ASTContext &Ctx, TemplateName X,
12400                                           TemplateName Y) {
12401   if (X.getAsVoidPointer() == Y.getAsVoidPointer())
12402     return X;
12403   // FIXME: There are cases here where we could find a common template name
12404   //        with more sugar. For example one could be a SubstTemplateTemplate*
12405   //        replacing the other.
12406   TemplateName CX = Ctx.getCanonicalTemplateName(X);
12407   if (CX.getAsVoidPointer() !=
12408       Ctx.getCanonicalTemplateName(Y).getAsVoidPointer())
12409     return TemplateName();
12410   return CX;
12411 }
12412 
12413 static TemplateName
12414 getCommonTemplateNameChecked(ASTContext &Ctx, TemplateName X, TemplateName Y) {
12415   TemplateName R = getCommonTemplateName(Ctx, X, Y);
12416   assert(R.getAsVoidPointer() != nullptr);
12417   return R;
12418 }
12419 
12420 static auto getCommonTypes(ASTContext &Ctx, ArrayRef<QualType> Xs,
12421                            ArrayRef<QualType> Ys, bool Unqualified = false) {
12422   assert(Xs.size() == Ys.size());
12423   SmallVector<QualType, 8> Rs(Xs.size());
12424   for (size_t I = 0; I < Rs.size(); ++I)
12425     Rs[I] = Ctx.getCommonSugaredType(Xs[I], Ys[I], Unqualified);
12426   return Rs;
12427 }
12428 
12429 template <class T>
12430 static SourceLocation getCommonAttrLoc(const T *X, const T *Y) {
12431   return X->getAttributeLoc() == Y->getAttributeLoc() ? X->getAttributeLoc()
12432                                                       : SourceLocation();
12433 }
12434 
12435 static TemplateArgument getCommonTemplateArgument(ASTContext &Ctx,
12436                                                   const TemplateArgument &X,
12437                                                   const TemplateArgument &Y) {
12438   if (X.getKind() != Y.getKind())
12439     return TemplateArgument();
12440 
12441   switch (X.getKind()) {
12442   case TemplateArgument::ArgKind::Type:
12443     if (!Ctx.hasSameType(X.getAsType(), Y.getAsType()))
12444       return TemplateArgument();
12445     return TemplateArgument(
12446         Ctx.getCommonSugaredType(X.getAsType(), Y.getAsType()));
12447   case TemplateArgument::ArgKind::NullPtr:
12448     if (!Ctx.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
12449       return TemplateArgument();
12450     return TemplateArgument(
12451         Ctx.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()),
12452         /*Unqualified=*/true);
12453   case TemplateArgument::ArgKind::Expression:
12454     if (!Ctx.hasSameType(X.getAsExpr()->getType(), Y.getAsExpr()->getType()))
12455       return TemplateArgument();
12456     // FIXME: Try to keep the common sugar.
12457     return X;
12458   case TemplateArgument::ArgKind::Template: {
12459     TemplateName TX = X.getAsTemplate(), TY = Y.getAsTemplate();
12460     TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY);
12461     if (!CTN.getAsVoidPointer())
12462       return TemplateArgument();
12463     return TemplateArgument(CTN);
12464   }
12465   case TemplateArgument::ArgKind::TemplateExpansion: {
12466     TemplateName TX = X.getAsTemplateOrTemplatePattern(),
12467                  TY = Y.getAsTemplateOrTemplatePattern();
12468     TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY);
12469     if (!CTN.getAsVoidPointer())
12470       return TemplateName();
12471     auto NExpX = X.getNumTemplateExpansions();
12472     assert(NExpX == Y.getNumTemplateExpansions());
12473     return TemplateArgument(CTN, NExpX);
12474   }
12475   default:
12476     // FIXME: Handle the other argument kinds.
12477     return X;
12478   }
12479 }
12480 
12481 static bool getCommonTemplateArguments(ASTContext &Ctx,
12482                                        SmallVectorImpl<TemplateArgument> &R,
12483                                        ArrayRef<TemplateArgument> Xs,
12484                                        ArrayRef<TemplateArgument> Ys) {
12485   if (Xs.size() != Ys.size())
12486     return true;
12487   R.resize(Xs.size());
12488   for (size_t I = 0; I < R.size(); ++I) {
12489     R[I] = getCommonTemplateArgument(Ctx, Xs[I], Ys[I]);
12490     if (R[I].isNull())
12491       return true;
12492   }
12493   return false;
12494 }
12495 
12496 static auto getCommonTemplateArguments(ASTContext &Ctx,
12497                                        ArrayRef<TemplateArgument> Xs,
12498                                        ArrayRef<TemplateArgument> Ys) {
12499   SmallVector<TemplateArgument, 8> R;
12500   bool Different = getCommonTemplateArguments(Ctx, R, Xs, Ys);
12501   assert(!Different);
12502   (void)Different;
12503   return R;
12504 }
12505 
12506 template <class T>
12507 static ElaboratedTypeKeyword getCommonTypeKeyword(const T *X, const T *Y) {
12508   return X->getKeyword() == Y->getKeyword() ? X->getKeyword()
12509                                             : ElaboratedTypeKeyword::None;
12510 }
12511 
12512 template <class T>
12513 static NestedNameSpecifier *getCommonNNS(ASTContext &Ctx, const T *X,
12514                                          const T *Y) {
12515   // FIXME: Try to keep the common NNS sugar.
12516   return X->getQualifier() == Y->getQualifier()
12517              ? X->getQualifier()
12518              : Ctx.getCanonicalNestedNameSpecifier(X->getQualifier());
12519 }
12520 
12521 template <class T>
12522 static QualType getCommonElementType(ASTContext &Ctx, const T *X, const T *Y) {
12523   return Ctx.getCommonSugaredType(X->getElementType(), Y->getElementType());
12524 }
12525 
12526 template <class T>
12527 static QualType getCommonArrayElementType(ASTContext &Ctx, const T *X,
12528                                           Qualifiers &QX, const T *Y,
12529                                           Qualifiers &QY) {
12530   QualType EX = X->getElementType(), EY = Y->getElementType();
12531   QualType R = Ctx.getCommonSugaredType(EX, EY,
12532                                         /*Unqualified=*/true);
12533   Qualifiers RQ = R.getQualifiers();
12534   QX += EX.getQualifiers() - RQ;
12535   QY += EY.getQualifiers() - RQ;
12536   return R;
12537 }
12538 
12539 template <class T>
12540 static QualType getCommonPointeeType(ASTContext &Ctx, const T *X, const T *Y) {
12541   return Ctx.getCommonSugaredType(X->getPointeeType(), Y->getPointeeType());
12542 }
12543 
12544 template <class T> static auto *getCommonSizeExpr(ASTContext &Ctx, T *X, T *Y) {
12545   assert(Ctx.hasSameExpr(X->getSizeExpr(), Y->getSizeExpr()));
12546   return X->getSizeExpr();
12547 }
12548 
12549 static auto getCommonSizeModifier(const ArrayType *X, const ArrayType *Y) {
12550   assert(X->getSizeModifier() == Y->getSizeModifier());
12551   return X->getSizeModifier();
12552 }
12553 
12554 static auto getCommonIndexTypeCVRQualifiers(const ArrayType *X,
12555                                             const ArrayType *Y) {
12556   assert(X->getIndexTypeCVRQualifiers() == Y->getIndexTypeCVRQualifiers());
12557   return X->getIndexTypeCVRQualifiers();
12558 }
12559 
12560 // Merges two type lists such that the resulting vector will contain
12561 // each type (in a canonical sense) only once, in the order they appear
12562 // from X to Y. If they occur in both X and Y, the result will contain
12563 // the common sugared type between them.
12564 static void mergeTypeLists(ASTContext &Ctx, SmallVectorImpl<QualType> &Out,
12565                            ArrayRef<QualType> X, ArrayRef<QualType> Y) {
12566   llvm::DenseMap<QualType, unsigned> Found;
12567   for (auto Ts : {X, Y}) {
12568     for (QualType T : Ts) {
12569       auto Res = Found.try_emplace(Ctx.getCanonicalType(T), Out.size());
12570       if (!Res.second) {
12571         QualType &U = Out[Res.first->second];
12572         U = Ctx.getCommonSugaredType(U, T);
12573       } else {
12574         Out.emplace_back(T);
12575       }
12576     }
12577   }
12578 }
12579 
12580 FunctionProtoType::ExceptionSpecInfo
12581 ASTContext::mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1,
12582                                 FunctionProtoType::ExceptionSpecInfo ESI2,
12583                                 SmallVectorImpl<QualType> &ExceptionTypeStorage,
12584                                 bool AcceptDependent) {
12585   ExceptionSpecificationType EST1 = ESI1.Type, EST2 = ESI2.Type;
12586 
12587   // If either of them can throw anything, that is the result.
12588   for (auto I : {EST_None, EST_MSAny, EST_NoexceptFalse}) {
12589     if (EST1 == I)
12590       return ESI1;
12591     if (EST2 == I)
12592       return ESI2;
12593   }
12594 
12595   // If either of them is non-throwing, the result is the other.
12596   for (auto I :
12597        {EST_NoThrow, EST_DynamicNone, EST_BasicNoexcept, EST_NoexceptTrue}) {
12598     if (EST1 == I)
12599       return ESI2;
12600     if (EST2 == I)
12601       return ESI1;
12602   }
12603 
12604   // If we're left with value-dependent computed noexcept expressions, we're
12605   // stuck. Before C++17, we can just drop the exception specification entirely,
12606   // since it's not actually part of the canonical type. And this should never
12607   // happen in C++17, because it would mean we were computing the composite
12608   // pointer type of dependent types, which should never happen.
12609   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
12610     assert(AcceptDependent &&
12611            "computing composite pointer type of dependent types");
12612     return FunctionProtoType::ExceptionSpecInfo();
12613   }
12614 
12615   // Switch over the possibilities so that people adding new values know to
12616   // update this function.
12617   switch (EST1) {
12618   case EST_None:
12619   case EST_DynamicNone:
12620   case EST_MSAny:
12621   case EST_BasicNoexcept:
12622   case EST_DependentNoexcept:
12623   case EST_NoexceptFalse:
12624   case EST_NoexceptTrue:
12625   case EST_NoThrow:
12626     llvm_unreachable("These ESTs should be handled above");
12627 
12628   case EST_Dynamic: {
12629     // This is the fun case: both exception specifications are dynamic. Form
12630     // the union of the two lists.
12631     assert(EST2 == EST_Dynamic && "other cases should already be handled");
12632     mergeTypeLists(*this, ExceptionTypeStorage, ESI1.Exceptions,
12633                    ESI2.Exceptions);
12634     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
12635     Result.Exceptions = ExceptionTypeStorage;
12636     return Result;
12637   }
12638 
12639   case EST_Unevaluated:
12640   case EST_Uninstantiated:
12641   case EST_Unparsed:
12642     llvm_unreachable("shouldn't see unresolved exception specifications here");
12643   }
12644 
12645   llvm_unreachable("invalid ExceptionSpecificationType");
12646 }
12647 
12648 static QualType getCommonNonSugarTypeNode(ASTContext &Ctx, const Type *X,
12649                                           Qualifiers &QX, const Type *Y,
12650                                           Qualifiers &QY) {
12651   Type::TypeClass TC = X->getTypeClass();
12652   assert(TC == Y->getTypeClass());
12653   switch (TC) {
12654 #define UNEXPECTED_TYPE(Class, Kind)                                           \
12655   case Type::Class:                                                            \
12656     llvm_unreachable("Unexpected " Kind ": " #Class);
12657 
12658 #define NON_CANONICAL_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "non-canonical")
12659 #define TYPE(Class, Base)
12660 #include "clang/AST/TypeNodes.inc"
12661 
12662 #define SUGAR_FREE_TYPE(Class) UNEXPECTED_TYPE(Class, "sugar-free")
12663     SUGAR_FREE_TYPE(Builtin)
12664     SUGAR_FREE_TYPE(DeducedTemplateSpecialization)
12665     SUGAR_FREE_TYPE(DependentBitInt)
12666     SUGAR_FREE_TYPE(Enum)
12667     SUGAR_FREE_TYPE(BitInt)
12668     SUGAR_FREE_TYPE(ObjCInterface)
12669     SUGAR_FREE_TYPE(Record)
12670     SUGAR_FREE_TYPE(SubstTemplateTypeParmPack)
12671     SUGAR_FREE_TYPE(UnresolvedUsing)
12672 #undef SUGAR_FREE_TYPE
12673 #define NON_UNIQUE_TYPE(Class) UNEXPECTED_TYPE(Class, "non-unique")
12674     NON_UNIQUE_TYPE(TypeOfExpr)
12675     NON_UNIQUE_TYPE(VariableArray)
12676 #undef NON_UNIQUE_TYPE
12677 
12678     UNEXPECTED_TYPE(TypeOf, "sugar")
12679 
12680 #undef UNEXPECTED_TYPE
12681 
12682   case Type::Auto: {
12683     const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y);
12684     assert(AX->getDeducedType().isNull());
12685     assert(AY->getDeducedType().isNull());
12686     assert(AX->getKeyword() == AY->getKeyword());
12687     assert(AX->isInstantiationDependentType() ==
12688            AY->isInstantiationDependentType());
12689     auto As = getCommonTemplateArguments(Ctx, AX->getTypeConstraintArguments(),
12690                                          AY->getTypeConstraintArguments());
12691     return Ctx.getAutoType(QualType(), AX->getKeyword(),
12692                            AX->isInstantiationDependentType(),
12693                            AX->containsUnexpandedParameterPack(),
12694                            getCommonDeclChecked(AX->getTypeConstraintConcept(),
12695                                                 AY->getTypeConstraintConcept()),
12696                            As);
12697   }
12698   case Type::IncompleteArray: {
12699     const auto *AX = cast<IncompleteArrayType>(X),
12700                *AY = cast<IncompleteArrayType>(Y);
12701     return Ctx.getIncompleteArrayType(
12702         getCommonArrayElementType(Ctx, AX, QX, AY, QY),
12703         getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY));
12704   }
12705   case Type::DependentSizedArray: {
12706     const auto *AX = cast<DependentSizedArrayType>(X),
12707                *AY = cast<DependentSizedArrayType>(Y);
12708     return Ctx.getDependentSizedArrayType(
12709         getCommonArrayElementType(Ctx, AX, QX, AY, QY),
12710         getCommonSizeExpr(Ctx, AX, AY), getCommonSizeModifier(AX, AY),
12711         getCommonIndexTypeCVRQualifiers(AX, AY),
12712         AX->getBracketsRange() == AY->getBracketsRange()
12713             ? AX->getBracketsRange()
12714             : SourceRange());
12715   }
12716   case Type::ConstantArray: {
12717     const auto *AX = cast<ConstantArrayType>(X),
12718                *AY = cast<ConstantArrayType>(Y);
12719     assert(AX->getSize() == AY->getSize());
12720     const Expr *SizeExpr = Ctx.hasSameExpr(AX->getSizeExpr(), AY->getSizeExpr())
12721                                ? AX->getSizeExpr()
12722                                : nullptr;
12723     return Ctx.getConstantArrayType(
12724         getCommonArrayElementType(Ctx, AX, QX, AY, QY), AX->getSize(), SizeExpr,
12725         getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY));
12726   }
12727   case Type::Atomic: {
12728     const auto *AX = cast<AtomicType>(X), *AY = cast<AtomicType>(Y);
12729     return Ctx.getAtomicType(
12730         Ctx.getCommonSugaredType(AX->getValueType(), AY->getValueType()));
12731   }
12732   case Type::Complex: {
12733     const auto *CX = cast<ComplexType>(X), *CY = cast<ComplexType>(Y);
12734     return Ctx.getComplexType(getCommonArrayElementType(Ctx, CX, QX, CY, QY));
12735   }
12736   case Type::Pointer: {
12737     const auto *PX = cast<PointerType>(X), *PY = cast<PointerType>(Y);
12738     return Ctx.getPointerType(getCommonPointeeType(Ctx, PX, PY));
12739   }
12740   case Type::BlockPointer: {
12741     const auto *PX = cast<BlockPointerType>(X), *PY = cast<BlockPointerType>(Y);
12742     return Ctx.getBlockPointerType(getCommonPointeeType(Ctx, PX, PY));
12743   }
12744   case Type::ObjCObjectPointer: {
12745     const auto *PX = cast<ObjCObjectPointerType>(X),
12746                *PY = cast<ObjCObjectPointerType>(Y);
12747     return Ctx.getObjCObjectPointerType(getCommonPointeeType(Ctx, PX, PY));
12748   }
12749   case Type::MemberPointer: {
12750     const auto *PX = cast<MemberPointerType>(X),
12751                *PY = cast<MemberPointerType>(Y);
12752     return Ctx.getMemberPointerType(
12753         getCommonPointeeType(Ctx, PX, PY),
12754         Ctx.getCommonSugaredType(QualType(PX->getClass(), 0),
12755                                  QualType(PY->getClass(), 0))
12756             .getTypePtr());
12757   }
12758   case Type::LValueReference: {
12759     const auto *PX = cast<LValueReferenceType>(X),
12760                *PY = cast<LValueReferenceType>(Y);
12761     // FIXME: Preserve PointeeTypeAsWritten.
12762     return Ctx.getLValueReferenceType(getCommonPointeeType(Ctx, PX, PY),
12763                                       PX->isSpelledAsLValue() ||
12764                                           PY->isSpelledAsLValue());
12765   }
12766   case Type::RValueReference: {
12767     const auto *PX = cast<RValueReferenceType>(X),
12768                *PY = cast<RValueReferenceType>(Y);
12769     // FIXME: Preserve PointeeTypeAsWritten.
12770     return Ctx.getRValueReferenceType(getCommonPointeeType(Ctx, PX, PY));
12771   }
12772   case Type::DependentAddressSpace: {
12773     const auto *PX = cast<DependentAddressSpaceType>(X),
12774                *PY = cast<DependentAddressSpaceType>(Y);
12775     assert(Ctx.hasSameExpr(PX->getAddrSpaceExpr(), PY->getAddrSpaceExpr()));
12776     return Ctx.getDependentAddressSpaceType(getCommonPointeeType(Ctx, PX, PY),
12777                                             PX->getAddrSpaceExpr(),
12778                                             getCommonAttrLoc(PX, PY));
12779   }
12780   case Type::FunctionNoProto: {
12781     const auto *FX = cast<FunctionNoProtoType>(X),
12782                *FY = cast<FunctionNoProtoType>(Y);
12783     assert(FX->getExtInfo() == FY->getExtInfo());
12784     return Ctx.getFunctionNoProtoType(
12785         Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType()),
12786         FX->getExtInfo());
12787   }
12788   case Type::FunctionProto: {
12789     const auto *FX = cast<FunctionProtoType>(X),
12790                *FY = cast<FunctionProtoType>(Y);
12791     FunctionProtoType::ExtProtoInfo EPIX = FX->getExtProtoInfo(),
12792                                     EPIY = FY->getExtProtoInfo();
12793     assert(EPIX.ExtInfo == EPIY.ExtInfo);
12794     assert(EPIX.ExtParameterInfos == EPIY.ExtParameterInfos);
12795     assert(EPIX.RefQualifier == EPIY.RefQualifier);
12796     assert(EPIX.TypeQuals == EPIY.TypeQuals);
12797     assert(EPIX.Variadic == EPIY.Variadic);
12798 
12799     // FIXME: Can we handle an empty EllipsisLoc?
12800     //        Use emtpy EllipsisLoc if X and Y differ.
12801 
12802     EPIX.HasTrailingReturn = EPIX.HasTrailingReturn && EPIY.HasTrailingReturn;
12803 
12804     QualType R =
12805         Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType());
12806     auto P = getCommonTypes(Ctx, FX->param_types(), FY->param_types(),
12807                             /*Unqualified=*/true);
12808 
12809     SmallVector<QualType, 8> Exceptions;
12810     EPIX.ExceptionSpec = Ctx.mergeExceptionSpecs(
12811         EPIX.ExceptionSpec, EPIY.ExceptionSpec, Exceptions, true);
12812     return Ctx.getFunctionType(R, P, EPIX);
12813   }
12814   case Type::ObjCObject: {
12815     const auto *OX = cast<ObjCObjectType>(X), *OY = cast<ObjCObjectType>(Y);
12816     assert(
12817         std::equal(OX->getProtocols().begin(), OX->getProtocols().end(),
12818                    OY->getProtocols().begin(), OY->getProtocols().end(),
12819                    [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) {
12820                      return P0->getCanonicalDecl() == P1->getCanonicalDecl();
12821                    }) &&
12822         "protocol lists must be the same");
12823     auto TAs = getCommonTypes(Ctx, OX->getTypeArgsAsWritten(),
12824                               OY->getTypeArgsAsWritten());
12825     return Ctx.getObjCObjectType(
12826         Ctx.getCommonSugaredType(OX->getBaseType(), OY->getBaseType()), TAs,
12827         OX->getProtocols(),
12828         OX->isKindOfTypeAsWritten() && OY->isKindOfTypeAsWritten());
12829   }
12830   case Type::ConstantMatrix: {
12831     const auto *MX = cast<ConstantMatrixType>(X),
12832                *MY = cast<ConstantMatrixType>(Y);
12833     assert(MX->getNumRows() == MY->getNumRows());
12834     assert(MX->getNumColumns() == MY->getNumColumns());
12835     return Ctx.getConstantMatrixType(getCommonElementType(Ctx, MX, MY),
12836                                      MX->getNumRows(), MX->getNumColumns());
12837   }
12838   case Type::DependentSizedMatrix: {
12839     const auto *MX = cast<DependentSizedMatrixType>(X),
12840                *MY = cast<DependentSizedMatrixType>(Y);
12841     assert(Ctx.hasSameExpr(MX->getRowExpr(), MY->getRowExpr()));
12842     assert(Ctx.hasSameExpr(MX->getColumnExpr(), MY->getColumnExpr()));
12843     return Ctx.getDependentSizedMatrixType(
12844         getCommonElementType(Ctx, MX, MY), MX->getRowExpr(),
12845         MX->getColumnExpr(), getCommonAttrLoc(MX, MY));
12846   }
12847   case Type::Vector: {
12848     const auto *VX = cast<VectorType>(X), *VY = cast<VectorType>(Y);
12849     assert(VX->getNumElements() == VY->getNumElements());
12850     assert(VX->getVectorKind() == VY->getVectorKind());
12851     return Ctx.getVectorType(getCommonElementType(Ctx, VX, VY),
12852                              VX->getNumElements(), VX->getVectorKind());
12853   }
12854   case Type::ExtVector: {
12855     const auto *VX = cast<ExtVectorType>(X), *VY = cast<ExtVectorType>(Y);
12856     assert(VX->getNumElements() == VY->getNumElements());
12857     return Ctx.getExtVectorType(getCommonElementType(Ctx, VX, VY),
12858                                 VX->getNumElements());
12859   }
12860   case Type::DependentSizedExtVector: {
12861     const auto *VX = cast<DependentSizedExtVectorType>(X),
12862                *VY = cast<DependentSizedExtVectorType>(Y);
12863     return Ctx.getDependentSizedExtVectorType(getCommonElementType(Ctx, VX, VY),
12864                                               getCommonSizeExpr(Ctx, VX, VY),
12865                                               getCommonAttrLoc(VX, VY));
12866   }
12867   case Type::DependentVector: {
12868     const auto *VX = cast<DependentVectorType>(X),
12869                *VY = cast<DependentVectorType>(Y);
12870     assert(VX->getVectorKind() == VY->getVectorKind());
12871     return Ctx.getDependentVectorType(
12872         getCommonElementType(Ctx, VX, VY), getCommonSizeExpr(Ctx, VX, VY),
12873         getCommonAttrLoc(VX, VY), VX->getVectorKind());
12874   }
12875   case Type::InjectedClassName: {
12876     const auto *IX = cast<InjectedClassNameType>(X),
12877                *IY = cast<InjectedClassNameType>(Y);
12878     return Ctx.getInjectedClassNameType(
12879         getCommonDeclChecked(IX->getDecl(), IY->getDecl()),
12880         Ctx.getCommonSugaredType(IX->getInjectedSpecializationType(),
12881                                  IY->getInjectedSpecializationType()));
12882   }
12883   case Type::TemplateSpecialization: {
12884     const auto *TX = cast<TemplateSpecializationType>(X),
12885                *TY = cast<TemplateSpecializationType>(Y);
12886     auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(),
12887                                          TY->template_arguments());
12888     return Ctx.getTemplateSpecializationType(
12889         ::getCommonTemplateNameChecked(Ctx, TX->getTemplateName(),
12890                                        TY->getTemplateName()),
12891         As, X->getCanonicalTypeInternal());
12892   }
12893   case Type::Decltype: {
12894     const auto *DX = cast<DecltypeType>(X);
12895     [[maybe_unused]] const auto *DY = cast<DecltypeType>(Y);
12896     assert(DX->isDependentType());
12897     assert(DY->isDependentType());
12898     assert(Ctx.hasSameExpr(DX->getUnderlyingExpr(), DY->getUnderlyingExpr()));
12899     // As Decltype is not uniqued, building a common type would be wasteful.
12900     return QualType(DX, 0);
12901   }
12902   case Type::DependentName: {
12903     const auto *NX = cast<DependentNameType>(X),
12904                *NY = cast<DependentNameType>(Y);
12905     assert(NX->getIdentifier() == NY->getIdentifier());
12906     return Ctx.getDependentNameType(
12907         getCommonTypeKeyword(NX, NY), getCommonNNS(Ctx, NX, NY),
12908         NX->getIdentifier(), NX->getCanonicalTypeInternal());
12909   }
12910   case Type::DependentTemplateSpecialization: {
12911     const auto *TX = cast<DependentTemplateSpecializationType>(X),
12912                *TY = cast<DependentTemplateSpecializationType>(Y);
12913     assert(TX->getIdentifier() == TY->getIdentifier());
12914     auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(),
12915                                          TY->template_arguments());
12916     return Ctx.getDependentTemplateSpecializationType(
12917         getCommonTypeKeyword(TX, TY), getCommonNNS(Ctx, TX, TY),
12918         TX->getIdentifier(), As);
12919   }
12920   case Type::UnaryTransform: {
12921     const auto *TX = cast<UnaryTransformType>(X),
12922                *TY = cast<UnaryTransformType>(Y);
12923     assert(TX->getUTTKind() == TY->getUTTKind());
12924     return Ctx.getUnaryTransformType(
12925         Ctx.getCommonSugaredType(TX->getBaseType(), TY->getBaseType()),
12926         Ctx.getCommonSugaredType(TX->getUnderlyingType(),
12927                                  TY->getUnderlyingType()),
12928         TX->getUTTKind());
12929   }
12930   case Type::PackExpansion: {
12931     const auto *PX = cast<PackExpansionType>(X),
12932                *PY = cast<PackExpansionType>(Y);
12933     assert(PX->getNumExpansions() == PY->getNumExpansions());
12934     return Ctx.getPackExpansionType(
12935         Ctx.getCommonSugaredType(PX->getPattern(), PY->getPattern()),
12936         PX->getNumExpansions(), false);
12937   }
12938   case Type::Pipe: {
12939     const auto *PX = cast<PipeType>(X), *PY = cast<PipeType>(Y);
12940     assert(PX->isReadOnly() == PY->isReadOnly());
12941     auto MP = PX->isReadOnly() ? &ASTContext::getReadPipeType
12942                                : &ASTContext::getWritePipeType;
12943     return (Ctx.*MP)(getCommonElementType(Ctx, PX, PY));
12944   }
12945   case Type::TemplateTypeParm: {
12946     const auto *TX = cast<TemplateTypeParmType>(X),
12947                *TY = cast<TemplateTypeParmType>(Y);
12948     assert(TX->getDepth() == TY->getDepth());
12949     assert(TX->getIndex() == TY->getIndex());
12950     assert(TX->isParameterPack() == TY->isParameterPack());
12951     return Ctx.getTemplateTypeParmType(
12952         TX->getDepth(), TX->getIndex(), TX->isParameterPack(),
12953         getCommonDecl(TX->getDecl(), TY->getDecl()));
12954   }
12955   }
12956   llvm_unreachable("Unknown Type Class");
12957 }
12958 
12959 static QualType getCommonSugarTypeNode(ASTContext &Ctx, const Type *X,
12960                                        const Type *Y,
12961                                        SplitQualType Underlying) {
12962   Type::TypeClass TC = X->getTypeClass();
12963   if (TC != Y->getTypeClass())
12964     return QualType();
12965   switch (TC) {
12966 #define UNEXPECTED_TYPE(Class, Kind)                                           \
12967   case Type::Class:                                                            \
12968     llvm_unreachable("Unexpected " Kind ": " #Class);
12969 #define TYPE(Class, Base)
12970 #define DEPENDENT_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "dependent")
12971 #include "clang/AST/TypeNodes.inc"
12972 
12973 #define CANONICAL_TYPE(Class) UNEXPECTED_TYPE(Class, "canonical")
12974     CANONICAL_TYPE(Atomic)
12975     CANONICAL_TYPE(BitInt)
12976     CANONICAL_TYPE(BlockPointer)
12977     CANONICAL_TYPE(Builtin)
12978     CANONICAL_TYPE(Complex)
12979     CANONICAL_TYPE(ConstantArray)
12980     CANONICAL_TYPE(ConstantMatrix)
12981     CANONICAL_TYPE(Enum)
12982     CANONICAL_TYPE(ExtVector)
12983     CANONICAL_TYPE(FunctionNoProto)
12984     CANONICAL_TYPE(FunctionProto)
12985     CANONICAL_TYPE(IncompleteArray)
12986     CANONICAL_TYPE(LValueReference)
12987     CANONICAL_TYPE(MemberPointer)
12988     CANONICAL_TYPE(ObjCInterface)
12989     CANONICAL_TYPE(ObjCObject)
12990     CANONICAL_TYPE(ObjCObjectPointer)
12991     CANONICAL_TYPE(Pipe)
12992     CANONICAL_TYPE(Pointer)
12993     CANONICAL_TYPE(Record)
12994     CANONICAL_TYPE(RValueReference)
12995     CANONICAL_TYPE(VariableArray)
12996     CANONICAL_TYPE(Vector)
12997 #undef CANONICAL_TYPE
12998 
12999 #undef UNEXPECTED_TYPE
13000 
13001   case Type::Adjusted: {
13002     const auto *AX = cast<AdjustedType>(X), *AY = cast<AdjustedType>(Y);
13003     QualType OX = AX->getOriginalType(), OY = AY->getOriginalType();
13004     if (!Ctx.hasSameType(OX, OY))
13005       return QualType();
13006     // FIXME: It's inefficient to have to unify the original types.
13007     return Ctx.getAdjustedType(Ctx.getCommonSugaredType(OX, OY),
13008                                Ctx.getQualifiedType(Underlying));
13009   }
13010   case Type::Decayed: {
13011     const auto *DX = cast<DecayedType>(X), *DY = cast<DecayedType>(Y);
13012     QualType OX = DX->getOriginalType(), OY = DY->getOriginalType();
13013     if (!Ctx.hasSameType(OX, OY))
13014       return QualType();
13015     // FIXME: It's inefficient to have to unify the original types.
13016     return Ctx.getDecayedType(Ctx.getCommonSugaredType(OX, OY),
13017                               Ctx.getQualifiedType(Underlying));
13018   }
13019   case Type::Attributed: {
13020     const auto *AX = cast<AttributedType>(X), *AY = cast<AttributedType>(Y);
13021     AttributedType::Kind Kind = AX->getAttrKind();
13022     if (Kind != AY->getAttrKind())
13023       return QualType();
13024     QualType MX = AX->getModifiedType(), MY = AY->getModifiedType();
13025     if (!Ctx.hasSameType(MX, MY))
13026       return QualType();
13027     // FIXME: It's inefficient to have to unify the modified types.
13028     return Ctx.getAttributedType(Kind, Ctx.getCommonSugaredType(MX, MY),
13029                                  Ctx.getQualifiedType(Underlying));
13030   }
13031   case Type::BTFTagAttributed: {
13032     const auto *BX = cast<BTFTagAttributedType>(X);
13033     const BTFTypeTagAttr *AX = BX->getAttr();
13034     // The attribute is not uniqued, so just compare the tag.
13035     if (AX->getBTFTypeTag() !=
13036         cast<BTFTagAttributedType>(Y)->getAttr()->getBTFTypeTag())
13037       return QualType();
13038     return Ctx.getBTFTagAttributedType(AX, Ctx.getQualifiedType(Underlying));
13039   }
13040   case Type::Auto: {
13041     const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y);
13042 
13043     AutoTypeKeyword KW = AX->getKeyword();
13044     if (KW != AY->getKeyword())
13045       return QualType();
13046 
13047     ConceptDecl *CD = ::getCommonDecl(AX->getTypeConstraintConcept(),
13048                                       AY->getTypeConstraintConcept());
13049     SmallVector<TemplateArgument, 8> As;
13050     if (CD &&
13051         getCommonTemplateArguments(Ctx, As, AX->getTypeConstraintArguments(),
13052                                    AY->getTypeConstraintArguments())) {
13053       CD = nullptr; // The arguments differ, so make it unconstrained.
13054       As.clear();
13055     }
13056 
13057     // Both auto types can't be dependent, otherwise they wouldn't have been
13058     // sugar. This implies they can't contain unexpanded packs either.
13059     return Ctx.getAutoType(Ctx.getQualifiedType(Underlying), AX->getKeyword(),
13060                            /*IsDependent=*/false, /*IsPack=*/false, CD, As);
13061   }
13062   case Type::Decltype:
13063     return QualType();
13064   case Type::DeducedTemplateSpecialization:
13065     // FIXME: Try to merge these.
13066     return QualType();
13067 
13068   case Type::Elaborated: {
13069     const auto *EX = cast<ElaboratedType>(X), *EY = cast<ElaboratedType>(Y);
13070     return Ctx.getElaboratedType(
13071         ::getCommonTypeKeyword(EX, EY), ::getCommonNNS(Ctx, EX, EY),
13072         Ctx.getQualifiedType(Underlying),
13073         ::getCommonDecl(EX->getOwnedTagDecl(), EY->getOwnedTagDecl()));
13074   }
13075   case Type::MacroQualified: {
13076     const auto *MX = cast<MacroQualifiedType>(X),
13077                *MY = cast<MacroQualifiedType>(Y);
13078     const IdentifierInfo *IX = MX->getMacroIdentifier();
13079     if (IX != MY->getMacroIdentifier())
13080       return QualType();
13081     return Ctx.getMacroQualifiedType(Ctx.getQualifiedType(Underlying), IX);
13082   }
13083   case Type::SubstTemplateTypeParm: {
13084     const auto *SX = cast<SubstTemplateTypeParmType>(X),
13085                *SY = cast<SubstTemplateTypeParmType>(Y);
13086     Decl *CD =
13087         ::getCommonDecl(SX->getAssociatedDecl(), SY->getAssociatedDecl());
13088     if (!CD)
13089       return QualType();
13090     unsigned Index = SX->getIndex();
13091     if (Index != SY->getIndex())
13092       return QualType();
13093     auto PackIndex = SX->getPackIndex();
13094     if (PackIndex != SY->getPackIndex())
13095       return QualType();
13096     return Ctx.getSubstTemplateTypeParmType(Ctx.getQualifiedType(Underlying),
13097                                             CD, Index, PackIndex);
13098   }
13099   case Type::ObjCTypeParam:
13100     // FIXME: Try to merge these.
13101     return QualType();
13102   case Type::Paren:
13103     return Ctx.getParenType(Ctx.getQualifiedType(Underlying));
13104 
13105   case Type::TemplateSpecialization: {
13106     const auto *TX = cast<TemplateSpecializationType>(X),
13107                *TY = cast<TemplateSpecializationType>(Y);
13108     TemplateName CTN = ::getCommonTemplateName(Ctx, TX->getTemplateName(),
13109                                                TY->getTemplateName());
13110     if (!CTN.getAsVoidPointer())
13111       return QualType();
13112     SmallVector<TemplateArgument, 8> Args;
13113     if (getCommonTemplateArguments(Ctx, Args, TX->template_arguments(),
13114                                    TY->template_arguments()))
13115       return QualType();
13116     return Ctx.getTemplateSpecializationType(CTN, Args,
13117                                              Ctx.getQualifiedType(Underlying));
13118   }
13119   case Type::Typedef: {
13120     const auto *TX = cast<TypedefType>(X), *TY = cast<TypedefType>(Y);
13121     const TypedefNameDecl *CD = ::getCommonDecl(TX->getDecl(), TY->getDecl());
13122     if (!CD)
13123       return QualType();
13124     return Ctx.getTypedefType(CD, Ctx.getQualifiedType(Underlying));
13125   }
13126   case Type::TypeOf: {
13127     // The common sugar between two typeof expressions, where one is
13128     // potentially a typeof_unqual and the other is not, we unify to the
13129     // qualified type as that retains the most information along with the type.
13130     // We only return a typeof_unqual type when both types are unqual types.
13131     TypeOfKind Kind = TypeOfKind::Qualified;
13132     if (cast<TypeOfType>(X)->getKind() == cast<TypeOfType>(Y)->getKind() &&
13133         cast<TypeOfType>(X)->getKind() == TypeOfKind::Unqualified)
13134       Kind = TypeOfKind::Unqualified;
13135     return Ctx.getTypeOfType(Ctx.getQualifiedType(Underlying), Kind);
13136   }
13137   case Type::TypeOfExpr:
13138     return QualType();
13139 
13140   case Type::UnaryTransform: {
13141     const auto *UX = cast<UnaryTransformType>(X),
13142                *UY = cast<UnaryTransformType>(Y);
13143     UnaryTransformType::UTTKind KX = UX->getUTTKind();
13144     if (KX != UY->getUTTKind())
13145       return QualType();
13146     QualType BX = UX->getBaseType(), BY = UY->getBaseType();
13147     if (!Ctx.hasSameType(BX, BY))
13148       return QualType();
13149     // FIXME: It's inefficient to have to unify the base types.
13150     return Ctx.getUnaryTransformType(Ctx.getCommonSugaredType(BX, BY),
13151                                      Ctx.getQualifiedType(Underlying), KX);
13152   }
13153   case Type::Using: {
13154     const auto *UX = cast<UsingType>(X), *UY = cast<UsingType>(Y);
13155     const UsingShadowDecl *CD =
13156         ::getCommonDecl(UX->getFoundDecl(), UY->getFoundDecl());
13157     if (!CD)
13158       return QualType();
13159     return Ctx.getUsingType(CD, Ctx.getQualifiedType(Underlying));
13160   }
13161   }
13162   llvm_unreachable("Unhandled Type Class");
13163 }
13164 
13165 static auto unwrapSugar(SplitQualType &T, Qualifiers &QTotal) {
13166   SmallVector<SplitQualType, 8> R;
13167   while (true) {
13168     QTotal.addConsistentQualifiers(T.Quals);
13169     QualType NT = T.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
13170     if (NT == QualType(T.Ty, 0))
13171       break;
13172     R.push_back(T);
13173     T = NT.split();
13174   }
13175   return R;
13176 }
13177 
13178 QualType ASTContext::getCommonSugaredType(QualType X, QualType Y,
13179                                           bool Unqualified) {
13180   assert(Unqualified ? hasSameUnqualifiedType(X, Y) : hasSameType(X, Y));
13181   if (X == Y)
13182     return X;
13183   if (!Unqualified) {
13184     if (X.isCanonical())
13185       return X;
13186     if (Y.isCanonical())
13187       return Y;
13188   }
13189 
13190   SplitQualType SX = X.split(), SY = Y.split();
13191   Qualifiers QX, QY;
13192   // Desugar SX and SY, setting the sugar and qualifiers aside into Xs and Ys,
13193   // until we reach their underlying "canonical nodes". Note these are not
13194   // necessarily canonical types, as they may still have sugared properties.
13195   // QX and QY will store the sum of all qualifiers in Xs and Ys respectively.
13196   auto Xs = ::unwrapSugar(SX, QX), Ys = ::unwrapSugar(SY, QY);
13197   if (SX.Ty != SY.Ty) {
13198     // The canonical nodes differ. Build a common canonical node out of the two,
13199     // unifying their sugar. This may recurse back here.
13200     SX.Ty =
13201         ::getCommonNonSugarTypeNode(*this, SX.Ty, QX, SY.Ty, QY).getTypePtr();
13202   } else {
13203     // The canonical nodes were identical: We may have desugared too much.
13204     // Add any common sugar back in.
13205     while (!Xs.empty() && !Ys.empty() && Xs.back().Ty == Ys.back().Ty) {
13206       QX -= SX.Quals;
13207       QY -= SY.Quals;
13208       SX = Xs.pop_back_val();
13209       SY = Ys.pop_back_val();
13210     }
13211   }
13212   if (Unqualified)
13213     QX = Qualifiers::removeCommonQualifiers(QX, QY);
13214   else
13215     assert(QX == QY);
13216 
13217   // Even though the remaining sugar nodes in Xs and Ys differ, some may be
13218   // related. Walk up these nodes, unifying them and adding the result.
13219   while (!Xs.empty() && !Ys.empty()) {
13220     auto Underlying = SplitQualType(
13221         SX.Ty, Qualifiers::removeCommonQualifiers(SX.Quals, SY.Quals));
13222     SX = Xs.pop_back_val();
13223     SY = Ys.pop_back_val();
13224     SX.Ty = ::getCommonSugarTypeNode(*this, SX.Ty, SY.Ty, Underlying)
13225                 .getTypePtrOrNull();
13226     // Stop at the first pair which is unrelated.
13227     if (!SX.Ty) {
13228       SX.Ty = Underlying.Ty;
13229       break;
13230     }
13231     QX -= Underlying.Quals;
13232   };
13233 
13234   // Add back the missing accumulated qualifiers, which were stripped off
13235   // with the sugar nodes we could not unify.
13236   QualType R = getQualifiedType(SX.Ty, QX);
13237   assert(Unqualified ? hasSameUnqualifiedType(R, X) : hasSameType(R, X));
13238   return R;
13239 }
13240 
13241 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
13242   assert(Ty->isFixedPointType());
13243 
13244   if (Ty->isSaturatedFixedPointType()) return Ty;
13245 
13246   switch (Ty->castAs<BuiltinType>()->getKind()) {
13247     default:
13248       llvm_unreachable("Not a fixed point type!");
13249     case BuiltinType::ShortAccum:
13250       return SatShortAccumTy;
13251     case BuiltinType::Accum:
13252       return SatAccumTy;
13253     case BuiltinType::LongAccum:
13254       return SatLongAccumTy;
13255     case BuiltinType::UShortAccum:
13256       return SatUnsignedShortAccumTy;
13257     case BuiltinType::UAccum:
13258       return SatUnsignedAccumTy;
13259     case BuiltinType::ULongAccum:
13260       return SatUnsignedLongAccumTy;
13261     case BuiltinType::ShortFract:
13262       return SatShortFractTy;
13263     case BuiltinType::Fract:
13264       return SatFractTy;
13265     case BuiltinType::LongFract:
13266       return SatLongFractTy;
13267     case BuiltinType::UShortFract:
13268       return SatUnsignedShortFractTy;
13269     case BuiltinType::UFract:
13270       return SatUnsignedFractTy;
13271     case BuiltinType::ULongFract:
13272       return SatUnsignedLongFractTy;
13273   }
13274 }
13275 
13276 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
13277   if (LangOpts.OpenCL)
13278     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
13279 
13280   if (LangOpts.CUDA)
13281     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
13282 
13283   return getLangASFromTargetAS(AS);
13284 }
13285 
13286 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
13287 // doesn't include ASTContext.h
13288 template
13289 clang::LazyGenerationalUpdatePtr<
13290     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
13291 clang::LazyGenerationalUpdatePtr<
13292     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
13293         const clang::ASTContext &Ctx, Decl *Value);
13294 
13295 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
13296   assert(Ty->isFixedPointType());
13297 
13298   const TargetInfo &Target = getTargetInfo();
13299   switch (Ty->castAs<BuiltinType>()->getKind()) {
13300     default:
13301       llvm_unreachable("Not a fixed point type!");
13302     case BuiltinType::ShortAccum:
13303     case BuiltinType::SatShortAccum:
13304       return Target.getShortAccumScale();
13305     case BuiltinType::Accum:
13306     case BuiltinType::SatAccum:
13307       return Target.getAccumScale();
13308     case BuiltinType::LongAccum:
13309     case BuiltinType::SatLongAccum:
13310       return Target.getLongAccumScale();
13311     case BuiltinType::UShortAccum:
13312     case BuiltinType::SatUShortAccum:
13313       return Target.getUnsignedShortAccumScale();
13314     case BuiltinType::UAccum:
13315     case BuiltinType::SatUAccum:
13316       return Target.getUnsignedAccumScale();
13317     case BuiltinType::ULongAccum:
13318     case BuiltinType::SatULongAccum:
13319       return Target.getUnsignedLongAccumScale();
13320     case BuiltinType::ShortFract:
13321     case BuiltinType::SatShortFract:
13322       return Target.getShortFractScale();
13323     case BuiltinType::Fract:
13324     case BuiltinType::SatFract:
13325       return Target.getFractScale();
13326     case BuiltinType::LongFract:
13327     case BuiltinType::SatLongFract:
13328       return Target.getLongFractScale();
13329     case BuiltinType::UShortFract:
13330     case BuiltinType::SatUShortFract:
13331       return Target.getUnsignedShortFractScale();
13332     case BuiltinType::UFract:
13333     case BuiltinType::SatUFract:
13334       return Target.getUnsignedFractScale();
13335     case BuiltinType::ULongFract:
13336     case BuiltinType::SatULongFract:
13337       return Target.getUnsignedLongFractScale();
13338   }
13339 }
13340 
13341 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
13342   assert(Ty->isFixedPointType());
13343 
13344   const TargetInfo &Target = getTargetInfo();
13345   switch (Ty->castAs<BuiltinType>()->getKind()) {
13346     default:
13347       llvm_unreachable("Not a fixed point type!");
13348     case BuiltinType::ShortAccum:
13349     case BuiltinType::SatShortAccum:
13350       return Target.getShortAccumIBits();
13351     case BuiltinType::Accum:
13352     case BuiltinType::SatAccum:
13353       return Target.getAccumIBits();
13354     case BuiltinType::LongAccum:
13355     case BuiltinType::SatLongAccum:
13356       return Target.getLongAccumIBits();
13357     case BuiltinType::UShortAccum:
13358     case BuiltinType::SatUShortAccum:
13359       return Target.getUnsignedShortAccumIBits();
13360     case BuiltinType::UAccum:
13361     case BuiltinType::SatUAccum:
13362       return Target.getUnsignedAccumIBits();
13363     case BuiltinType::ULongAccum:
13364     case BuiltinType::SatULongAccum:
13365       return Target.getUnsignedLongAccumIBits();
13366     case BuiltinType::ShortFract:
13367     case BuiltinType::SatShortFract:
13368     case BuiltinType::Fract:
13369     case BuiltinType::SatFract:
13370     case BuiltinType::LongFract:
13371     case BuiltinType::SatLongFract:
13372     case BuiltinType::UShortFract:
13373     case BuiltinType::SatUShortFract:
13374     case BuiltinType::UFract:
13375     case BuiltinType::SatUFract:
13376     case BuiltinType::ULongFract:
13377     case BuiltinType::SatULongFract:
13378       return 0;
13379   }
13380 }
13381 
13382 llvm::FixedPointSemantics
13383 ASTContext::getFixedPointSemantics(QualType Ty) const {
13384   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
13385          "Can only get the fixed point semantics for a "
13386          "fixed point or integer type.");
13387   if (Ty->isIntegerType())
13388     return llvm::FixedPointSemantics::GetIntegerSemantics(
13389         getIntWidth(Ty), Ty->isSignedIntegerType());
13390 
13391   bool isSigned = Ty->isSignedFixedPointType();
13392   return llvm::FixedPointSemantics(
13393       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
13394       Ty->isSaturatedFixedPointType(),
13395       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
13396 }
13397 
13398 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
13399   assert(Ty->isFixedPointType());
13400   return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
13401 }
13402 
13403 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
13404   assert(Ty->isFixedPointType());
13405   return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
13406 }
13407 
13408 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
13409   assert(Ty->isUnsignedFixedPointType() &&
13410          "Expected unsigned fixed point type");
13411 
13412   switch (Ty->castAs<BuiltinType>()->getKind()) {
13413   case BuiltinType::UShortAccum:
13414     return ShortAccumTy;
13415   case BuiltinType::UAccum:
13416     return AccumTy;
13417   case BuiltinType::ULongAccum:
13418     return LongAccumTy;
13419   case BuiltinType::SatUShortAccum:
13420     return SatShortAccumTy;
13421   case BuiltinType::SatUAccum:
13422     return SatAccumTy;
13423   case BuiltinType::SatULongAccum:
13424     return SatLongAccumTy;
13425   case BuiltinType::UShortFract:
13426     return ShortFractTy;
13427   case BuiltinType::UFract:
13428     return FractTy;
13429   case BuiltinType::ULongFract:
13430     return LongFractTy;
13431   case BuiltinType::SatUShortFract:
13432     return SatShortFractTy;
13433   case BuiltinType::SatUFract:
13434     return SatFractTy;
13435   case BuiltinType::SatULongFract:
13436     return SatLongFractTy;
13437   default:
13438     llvm_unreachable("Unexpected unsigned fixed point type");
13439   }
13440 }
13441 
13442 std::vector<std::string> ASTContext::filterFunctionTargetVersionAttrs(
13443     const TargetVersionAttr *TV) const {
13444   assert(TV != nullptr);
13445   llvm::SmallVector<StringRef, 8> Feats;
13446   std::vector<std::string> ResFeats;
13447   TV->getFeatures(Feats);
13448   for (auto &Feature : Feats)
13449     if (Target->validateCpuSupports(Feature.str()))
13450       // Use '?' to mark features that came from TargetVersion.
13451       ResFeats.push_back("?" + Feature.str());
13452   return ResFeats;
13453 }
13454 
13455 ParsedTargetAttr
13456 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
13457   assert(TD != nullptr);
13458   ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(TD->getFeaturesStr());
13459 
13460   llvm::erase_if(ParsedAttr.Features, [&](const std::string &Feat) {
13461     return !Target->isValidFeatureName(StringRef{Feat}.substr(1));
13462   });
13463   return ParsedAttr;
13464 }
13465 
13466 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
13467                                        const FunctionDecl *FD) const {
13468   if (FD)
13469     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
13470   else
13471     Target->initFeatureMap(FeatureMap, getDiagnostics(),
13472                            Target->getTargetOpts().CPU,
13473                            Target->getTargetOpts().Features);
13474 }
13475 
13476 // Fills in the supplied string map with the set of target features for the
13477 // passed in function.
13478 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
13479                                        GlobalDecl GD) const {
13480   StringRef TargetCPU = Target->getTargetOpts().CPU;
13481   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
13482   if (const auto *TD = FD->getAttr<TargetAttr>()) {
13483     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
13484 
13485     // Make a copy of the features as passed on the command line into the
13486     // beginning of the additional features from the function to override.
13487     ParsedAttr.Features.insert(
13488         ParsedAttr.Features.begin(),
13489         Target->getTargetOpts().FeaturesAsWritten.begin(),
13490         Target->getTargetOpts().FeaturesAsWritten.end());
13491 
13492     if (ParsedAttr.CPU != "" && Target->isValidCPUName(ParsedAttr.CPU))
13493       TargetCPU = ParsedAttr.CPU;
13494 
13495     // Now populate the feature map, first with the TargetCPU which is either
13496     // the default or a new one from the target attribute string. Then we'll use
13497     // the passed in features (FeaturesAsWritten) along with the new ones from
13498     // the attribute.
13499     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
13500                            ParsedAttr.Features);
13501   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
13502     llvm::SmallVector<StringRef, 32> FeaturesTmp;
13503     Target->getCPUSpecificCPUDispatchFeatures(
13504         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
13505     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
13506     Features.insert(Features.begin(),
13507                     Target->getTargetOpts().FeaturesAsWritten.begin(),
13508                     Target->getTargetOpts().FeaturesAsWritten.end());
13509     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
13510   } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) {
13511     std::vector<std::string> Features;
13512     StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex());
13513     if (Target->getTriple().isAArch64()) {
13514       // TargetClones for AArch64
13515       if (VersionStr != "default") {
13516         SmallVector<StringRef, 1> VersionFeatures;
13517         VersionStr.split(VersionFeatures, "+");
13518         for (auto &VFeature : VersionFeatures) {
13519           VFeature = VFeature.trim();
13520           // Use '?' to mark features that came from AArch64 TargetClones.
13521           Features.push_back((StringRef{"?"} + VFeature).str());
13522         }
13523       }
13524       Features.insert(Features.begin(),
13525                       Target->getTargetOpts().FeaturesAsWritten.begin(),
13526                       Target->getTargetOpts().FeaturesAsWritten.end());
13527     } else {
13528       if (VersionStr.starts_with("arch="))
13529         TargetCPU = VersionStr.drop_front(sizeof("arch=") - 1);
13530       else if (VersionStr != "default")
13531         Features.push_back((StringRef{"+"} + VersionStr).str());
13532     }
13533     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
13534   } else if (const auto *TV = FD->getAttr<TargetVersionAttr>()) {
13535     std::vector<std::string> Feats = filterFunctionTargetVersionAttrs(TV);
13536     Feats.insert(Feats.begin(),
13537                  Target->getTargetOpts().FeaturesAsWritten.begin(),
13538                  Target->getTargetOpts().FeaturesAsWritten.end());
13539     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Feats);
13540   } else {
13541     FeatureMap = Target->getTargetOpts().FeatureMap;
13542   }
13543 }
13544 
13545 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
13546   OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
13547   return *OMPTraitInfoVector.back();
13548 }
13549 
13550 const StreamingDiagnostic &clang::
13551 operator<<(const StreamingDiagnostic &DB,
13552            const ASTContext::SectionInfo &Section) {
13553   if (Section.Decl)
13554     return DB << Section.Decl;
13555   return DB << "a prior #pragma section";
13556 }
13557 
13558 bool ASTContext::mayExternalize(const Decl *D) const {
13559   bool IsInternalVar =
13560       isa<VarDecl>(D) &&
13561       basicGVALinkageForVariable(*this, cast<VarDecl>(D)) == GVA_Internal;
13562   bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() &&
13563                               !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
13564                              (D->hasAttr<CUDAConstantAttr>() &&
13565                               !D->getAttr<CUDAConstantAttr>()->isImplicit());
13566   // CUDA/HIP: managed variables need to be externalized since it is
13567   // a declaration in IR, therefore cannot have internal linkage. Kernels in
13568   // anonymous name space needs to be externalized to avoid duplicate symbols.
13569   return (IsInternalVar &&
13570           (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) ||
13571          (D->hasAttr<CUDAGlobalAttr>() &&
13572           basicGVALinkageForFunction(*this, cast<FunctionDecl>(D)) ==
13573               GVA_Internal);
13574 }
13575 
13576 bool ASTContext::shouldExternalize(const Decl *D) const {
13577   return mayExternalize(D) &&
13578          (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() ||
13579           CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D)));
13580 }
13581 
13582 StringRef ASTContext::getCUIDHash() const {
13583   if (!CUIDHash.empty())
13584     return CUIDHash;
13585   if (LangOpts.CUID.empty())
13586     return StringRef();
13587   CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true);
13588   return CUIDHash;
13589 }
13590