xref: /freebsd-src/contrib/arm-optimized-routines/math/tools/v_exp.sollya (revision 072a4ba82a01476eaee33781ccd241033eefcf0b)
131914882SAlex Richardson// polynomial for approximating e^x
231914882SAlex Richardson//
331914882SAlex Richardson// Copyright (c) 2019, Arm Limited.
4*072a4ba8SAndrew Turner// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
531914882SAlex Richardson
631914882SAlex Richardsondeg = 4; // poly degree
731914882SAlex RichardsonN = 128; // table entries
831914882SAlex Richardsonb = log(2)/(2*N);  // interval
931914882SAlex Richardsona = -b;
1031914882SAlex Richardson
1131914882SAlex Richardson// find polynomial with minimal abs error
1231914882SAlex Richardson
1331914882SAlex Richardson// return p that minimizes |exp(x) - poly(x) - x^d*p(x)|
1431914882SAlex Richardsonapprox = proc(poly,d) {
1531914882SAlex Richardson  return remez(exp(x)-poly(x), deg-d, [a;b], x^d, 1e-10);
1631914882SAlex Richardson};
1731914882SAlex Richardson
1831914882SAlex Richardson// first 2 coeffs are fixed, iteratively find optimal double prec coeffs
1931914882SAlex Richardsonpoly = 1 + x;
2031914882SAlex Richardsonfor i from 2 to deg do {
2131914882SAlex Richardson  p = roundcoefficients(approx(poly,i), [|D ...|]);
2231914882SAlex Richardson  poly = poly + x^i*coeff(p,0);
2331914882SAlex Richardson};
2431914882SAlex Richardson
2531914882SAlex Richardsondisplay = hexadecimal;
2631914882SAlex Richardsonprint("rel error:", accurateinfnorm(1-poly(x)/exp(x), [a;b], 30));
2731914882SAlex Richardsonprint("abs error:", accurateinfnorm(exp(x)-poly(x), [a;b], 30));
2831914882SAlex Richardsonprint("in [",a,b,"]");
2931914882SAlex Richardsonprint("coeffs:");
3031914882SAlex Richardsonfor i from 0 to deg do coeff(poly,i);
31