1*f3087befSAndrew Turner// polynomial for approximating double precision tan(x) 2*f3087befSAndrew Turner// 3*f3087befSAndrew Turner// Copyright (c) 2023-2024, Arm Limited. 4*f3087befSAndrew Turner// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception 5*f3087befSAndrew Turner 6*f3087befSAndrew Turnerdeg = 8; 7*f3087befSAndrew Turner 8*f3087befSAndrew Turner// interval bounds 9*f3087befSAndrew Turnera = 0x1.0p-126; 10*f3087befSAndrew Turnerb = pi / 8; 11*f3087befSAndrew Turner 12*f3087befSAndrew Turnerdisplay = hexadecimal; 13*f3087befSAndrew Turner 14*f3087befSAndrew Turnerf = (tan(sqrt(x))-sqrt(x))/x^(3/2); 15*f3087befSAndrew Turnerpoly = fpminimax(f, deg, [|double ...|], [a*a;b*b]); 16*f3087befSAndrew Turner 17*f3087befSAndrew Turner//print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); 18*f3087befSAndrew Turnerprint("in [",a,b,"]"); 19*f3087befSAndrew Turnerprint("coeffs:"); 20*f3087befSAndrew Turnerfor i from 0 to deg do coeff(poly,i); 21