xref: /freebsd-src/contrib/arm-optimized-routines/math/tools/sinpi.sollya (revision f3087bef11543b42e0d69b708f367097a4118d24)
1*f3087befSAndrew Turner// polynomial for approximating sinpi(x)
2*f3087befSAndrew Turner//
3*f3087befSAndrew Turner// Copyright (c) 2023-2024, Arm Limited.
4*f3087befSAndrew Turner// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
5*f3087befSAndrew Turner
6*f3087befSAndrew Turnerdeg = 19;  // polynomial degree
7*f3087befSAndrew Turnera = -1/2; // interval
8*f3087befSAndrew Turnerb = 1/2;
9*f3087befSAndrew Turner
10*f3087befSAndrew Turner// find even polynomial with minimal abs error compared to sinpi(x)
11*f3087befSAndrew Turner
12*f3087befSAndrew Turner// f = sin(pi* x);
13*f3087befSAndrew Turnerf = pi*x;
14*f3087befSAndrew Turnerc = 1;
15*f3087befSAndrew Turnerfor i from 1 to 80 do { c = 2*i*(2*i + 1)*c; f = f + (-1)^i*(pi*x)^(2*i+1)/c; };
16*f3087befSAndrew Turner
17*f3087befSAndrew Turner// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
18*f3087befSAndrew Turnerapprox = proc(poly,d) {
19*f3087befSAndrew Turner  return remez(f(x)-poly(x), deg-d, [a;b], x^d, 1e-10);
20*f3087befSAndrew Turner};
21*f3087befSAndrew Turner
22*f3087befSAndrew Turner// first coeff is predefine, iteratively find optimal double prec coeffs
23*f3087befSAndrew Turnerpoly = pi*x;
24*f3087befSAndrew Turnerfor i from 0 to (deg-1)/2 do {
25*f3087befSAndrew Turner  p = roundcoefficients(approx(poly,2*i+1), [|D ...|]);
26*f3087befSAndrew Turner  poly = poly + x^(2*i+1)*coeff(p,0);
27*f3087befSAndrew Turner};
28*f3087befSAndrew Turner
29*f3087befSAndrew Turnerdisplay = hexadecimal;
30*f3087befSAndrew Turnerprint("abs error:", accurateinfnorm(sin(pi*x)-poly(x), [a;b], 30));
31*f3087befSAndrew Turnerprint("in [",a,b,"]");
32*f3087befSAndrew Turnerprint("coeffs:");
33*f3087befSAndrew Turnerfor i from 0 to deg do coeff(poly,i);
34