xref: /freebsd-src/contrib/arm-optimized-routines/math/tools/sin.sollya (revision 072a4ba82a01476eaee33781ccd241033eefcf0b)
131914882SAlex Richardson// polynomial for approximating sin(x)
231914882SAlex Richardson//
331914882SAlex Richardson// Copyright (c) 2019, Arm Limited.
4*072a4ba8SAndrew Turner// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
531914882SAlex Richardson
631914882SAlex Richardsondeg = 7;   // polynomial degree
731914882SAlex Richardsona = -pi/4; // interval
831914882SAlex Richardsonb = pi/4;
931914882SAlex Richardson
1031914882SAlex Richardson// find even polynomial with minimal abs error compared to sin(x)/x
1131914882SAlex Richardson
1231914882SAlex Richardson// account for /x
1331914882SAlex Richardsondeg = deg-1;
1431914882SAlex Richardson
1531914882SAlex Richardson// f = sin(x)/x;
1631914882SAlex Richardsonf = 1;
1731914882SAlex Richardsonc = 1;
1831914882SAlex Richardsonfor i from 1 to 60 do { c = 2*i*(2*i + 1)*c; f = f + (-1)^i*x^(2*i)/c; };
1931914882SAlex Richardson
2031914882SAlex Richardson// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
2131914882SAlex Richardsonapprox = proc(poly,d) {
2231914882SAlex Richardson  return remez(f(x)-poly(x), deg-d, [a;b], x^d, 1e-10);
2331914882SAlex Richardson};
2431914882SAlex Richardson
2531914882SAlex Richardson// first coeff is fixed, iteratively find optimal double prec coeffs
2631914882SAlex Richardsonpoly = 1;
2731914882SAlex Richardsonfor i from 1 to deg/2 do {
2831914882SAlex Richardson  p = roundcoefficients(approx(poly,2*i), [|D ...|]);
2931914882SAlex Richardson  poly = poly + x^(2*i)*coeff(p,0);
3031914882SAlex Richardson};
3131914882SAlex Richardson
3231914882SAlex Richardsondisplay = hexadecimal;
3331914882SAlex Richardsonprint("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
3431914882SAlex Richardsonprint("abs error:", accurateinfnorm(sin(x)-x*poly(x), [a;b], 30));
3531914882SAlex Richardsonprint("in [",a,b,"]");
3631914882SAlex Richardsonprint("coeffs:");
3731914882SAlex Richardsonfor i from 0 to deg do coeff(poly,i);
38