xref: /freebsd-src/contrib/arm-optimized-routines/math/tools/log2_abs.sollya (revision 31914882fca502069810b9e9ddea4bcd8136a4f4)
1*31914882SAlex Richardson// polynomial for approximating log2(1+x)
2*31914882SAlex Richardson//
3*31914882SAlex Richardson// Copyright (c) 2019, Arm Limited.
4*31914882SAlex Richardson// SPDX-License-Identifier: MIT
5*31914882SAlex Richardson
6*31914882SAlex Richardsondeg = 7; // poly degree
7*31914882SAlex Richardson// interval ~= 1/(2*N), where N is the table entries
8*31914882SAlex Richardsona= -0x1.f45p-8;
9*31914882SAlex Richardsonb=  0x1.f45p-8;
10*31914882SAlex Richardson
11*31914882SAlex Richardsonln2 = evaluate(log(2),0);
12*31914882SAlex Richardsoninvln2hi = double(1/ln2 + 0x1p21) - 0x1p21; // round away last 21 bits
13*31914882SAlex Richardsoninvln2lo = double(1/ln2 - invln2hi);
14*31914882SAlex Richardson
15*31914882SAlex Richardson// find log2(1+x) polynomial with minimal absolute error
16*31914882SAlex Richardsonf = log(1+x)/ln2;
17*31914882SAlex Richardson
18*31914882SAlex Richardson// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
19*31914882SAlex Richardsonapprox = proc(poly,d) {
20*31914882SAlex Richardson  return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10);
21*31914882SAlex Richardson};
22*31914882SAlex Richardson
23*31914882SAlex Richardson// first coeff is fixed, iteratively find optimal double prec coeffs
24*31914882SAlex Richardsonpoly = x*(invln2lo + invln2hi);
25*31914882SAlex Richardsonfor i from 2 to deg do {
26*31914882SAlex Richardson  p = roundcoefficients(approx(poly,i), [|D ...|]);
27*31914882SAlex Richardson  poly = poly + x^i*coeff(p,0);
28*31914882SAlex Richardson};
29*31914882SAlex Richardson
30*31914882SAlex Richardsondisplay = hexadecimal;
31*31914882SAlex Richardsonprint("invln2hi:", invln2hi);
32*31914882SAlex Richardsonprint("invln2lo:", invln2lo);
33*31914882SAlex Richardsonprint("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30));
34*31914882SAlex Richardson//// relative error computation fails if f(0)==0
35*31914882SAlex Richardson//// g = f(x)/x = log2(1+x)/x; using taylor series
36*31914882SAlex Richardson//g = 0;
37*31914882SAlex Richardson//for i from 0 to 60 do { g = g + (-x)^i/(i+1)/ln2; };
38*31914882SAlex Richardson//print("rel error:", accurateinfnorm(1-(poly(x)/x)/g(x), [a;b], 30));
39*31914882SAlex Richardsonprint("in [",a,b,"]");
40*31914882SAlex Richardsonprint("coeffs:");
41*31914882SAlex Richardsonfor i from 0 to deg do coeff(poly,i);
42