1*f3087befSAndrew Turner// polynomial for approximating log10f(1+x) 2*f3087befSAndrew Turner// 3*f3087befSAndrew Turner// Copyright (c) 2019-2024, Arm Limited. 4*f3087befSAndrew Turner// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception 5*f3087befSAndrew Turner 6*f3087befSAndrew Turner// Computation of log10f(1+x) will be carried out in double precision 7*f3087befSAndrew Turner 8*f3087befSAndrew Turnerdeg = 4; // poly degree 9*f3087befSAndrew Turner// [OFF; 2*OFF] is divided in 2^4 intervals with OFF~0.7 10*f3087befSAndrew Turnera = -0.04375; 11*f3087befSAndrew Turnerb = 0.04375; 12*f3087befSAndrew Turner 13*f3087befSAndrew Turner// find log(1+x)/x polynomial with minimal relative error 14*f3087befSAndrew Turner// (minimal relative error polynomial for log(1+x) is the same * x) 15*f3087befSAndrew Turnerdeg = deg-1; // because of /x 16*f3087befSAndrew Turner 17*f3087befSAndrew Turner// f = log(1+x)/x; using taylor series 18*f3087befSAndrew Turnerf = 0; 19*f3087befSAndrew Turnerfor i from 0 to 60 do { f = f + (-x)^i/(i+1); }; 20*f3087befSAndrew Turner 21*f3087befSAndrew Turner// return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| 22*f3087befSAndrew Turnerapprox = proc(poly,d) { 23*f3087befSAndrew Turner return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); 24*f3087befSAndrew Turner}; 25*f3087befSAndrew Turner 26*f3087befSAndrew Turner// first coeff is fixed, iteratively find optimal double prec coeffs 27*f3087befSAndrew Turnerpoly = 1; 28*f3087befSAndrew Turnerfor i from 1 to deg do { 29*f3087befSAndrew Turner p = roundcoefficients(approx(poly,i), [|D ...|]); 30*f3087befSAndrew Turner poly = poly + x^i*coeff(p,0); 31*f3087befSAndrew Turner}; 32*f3087befSAndrew Turner 33*f3087befSAndrew Turnerdisplay = hexadecimal; 34*f3087befSAndrew Turnerprint("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); 35*f3087befSAndrew Turnerprint("in [",a,b,"]"); 36*f3087befSAndrew Turnerprint("coeffs:"); 37*f3087befSAndrew Turnerfor i from 0 to deg do double(coeff(poly,i)); 38