xref: /freebsd-src/contrib/arm-optimized-routines/math/tools/cos.sollya (revision 072a4ba82a01476eaee33781ccd241033eefcf0b)
131914882SAlex Richardson// polynomial for approximating cos(x)
231914882SAlex Richardson//
331914882SAlex Richardson// Copyright (c) 2019, Arm Limited.
4*072a4ba8SAndrew Turner// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
531914882SAlex Richardson
631914882SAlex Richardsondeg = 8;   // polynomial degree
731914882SAlex Richardsona = -pi/4; // interval
831914882SAlex Richardsonb = pi/4;
931914882SAlex Richardson
1031914882SAlex Richardson// find even polynomial with minimal abs error compared to cos(x)
1131914882SAlex Richardson
1231914882SAlex Richardsonf = cos(x);
1331914882SAlex Richardson
1431914882SAlex Richardson// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
1531914882SAlex Richardsonapprox = proc(poly,d) {
1631914882SAlex Richardson  return remez(f(x)-poly(x), deg-d, [a;b], x^d, 1e-10);
1731914882SAlex Richardson};
1831914882SAlex Richardson
1931914882SAlex Richardson// first coeff is fixed, iteratively find optimal double prec coeffs
2031914882SAlex Richardsonpoly = 1;
2131914882SAlex Richardsonfor i from 1 to deg/2 do {
2231914882SAlex Richardson  p = roundcoefficients(approx(poly,2*i), [|D ...|]);
2331914882SAlex Richardson  poly = poly + x^(2*i)*coeff(p,0);
2431914882SAlex Richardson};
2531914882SAlex Richardson
2631914882SAlex Richardsondisplay = hexadecimal;
2731914882SAlex Richardsonprint("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
2831914882SAlex Richardsonprint("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30));
2931914882SAlex Richardsonprint("in [",a,b,"]");
3031914882SAlex Richardsonprint("coeffs:");
3131914882SAlex Richardsonfor i from 0 to deg do coeff(poly,i);
32