1*f3087befSAndrew Turner /* 2*f3087befSAndrew Turner * Single-precision vector tan(x) function. 3*f3087befSAndrew Turner * 4*f3087befSAndrew Turner * Copyright (c) 2021-2024, Arm Limited. 5*f3087befSAndrew Turner * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception 6*f3087befSAndrew Turner */ 7*f3087befSAndrew Turner 8*f3087befSAndrew Turner #include "v_math.h" 9*f3087befSAndrew Turner #include "v_poly_f32.h" 10*f3087befSAndrew Turner #include "test_sig.h" 11*f3087befSAndrew Turner #include "test_defs.h" 12*f3087befSAndrew Turner 13*f3087befSAndrew Turner static const struct data 14*f3087befSAndrew Turner { 15*f3087befSAndrew Turner float32x4_t poly[6]; 16*f3087befSAndrew Turner float pi_consts[4]; 17*f3087befSAndrew Turner float32x4_t shift; 18*f3087befSAndrew Turner #if !WANT_SIMD_EXCEPT 19*f3087befSAndrew Turner float32x4_t range_val; 20*f3087befSAndrew Turner #endif 21*f3087befSAndrew Turner } data = { 22*f3087befSAndrew Turner /* Coefficients generated using FPMinimax. */ 23*f3087befSAndrew Turner .poly = { V4 (0x1.55555p-2f), V4 (0x1.11166p-3f), V4 (0x1.b88a78p-5f), 24*f3087befSAndrew Turner V4 (0x1.7b5756p-6f), V4 (0x1.4ef4cep-8f), V4 (0x1.0e1e74p-7f) }, 25*f3087befSAndrew Turner /* Stores constants: (-pi/2)_high, (-pi/2)_mid, (-pi/2)_low, and 2/pi. */ 26*f3087befSAndrew Turner .pi_consts 27*f3087befSAndrew Turner = { -0x1.921fb6p+0f, 0x1.777a5cp-25f, 0x1.ee59dap-50f, 0x1.45f306p-1f }, 28*f3087befSAndrew Turner .shift = V4 (0x1.8p+23f), 29*f3087befSAndrew Turner #if !WANT_SIMD_EXCEPT 30*f3087befSAndrew Turner .range_val = V4 (0x1p15f), 31*f3087befSAndrew Turner #endif 32*f3087befSAndrew Turner }; 33*f3087befSAndrew Turner 34*f3087befSAndrew Turner #define RangeVal v_u32 (0x47000000) /* asuint32(0x1p15f). */ 35*f3087befSAndrew Turner #define TinyBound v_u32 (0x30000000) /* asuint32 (0x1p-31f). */ 36*f3087befSAndrew Turner #define Thresh v_u32 (0x16000000) /* asuint32(RangeVal) - TinyBound. */ 37*f3087befSAndrew Turner 38*f3087befSAndrew Turner /* Special cases (fall back to scalar calls). */ 39*f3087befSAndrew Turner static float32x4_t VPCS_ATTR NOINLINE 40*f3087befSAndrew Turner special_case (float32x4_t x, float32x4_t y, uint32x4_t cmp) 41*f3087befSAndrew Turner { 42*f3087befSAndrew Turner return v_call_f32 (tanf, x, y, cmp); 43*f3087befSAndrew Turner } 44*f3087befSAndrew Turner 45*f3087befSAndrew Turner /* Use a full Estrin scheme to evaluate polynomial. */ 46*f3087befSAndrew Turner static inline float32x4_t 47*f3087befSAndrew Turner eval_poly (float32x4_t z, const struct data *d) 48*f3087befSAndrew Turner { 49*f3087befSAndrew Turner float32x4_t z2 = vmulq_f32 (z, z); 50*f3087befSAndrew Turner #if WANT_SIMD_EXCEPT 51*f3087befSAndrew Turner /* Tiny z (<= 0x1p-31) will underflow when calculating z^4. 52*f3087befSAndrew Turner If fp exceptions are to be triggered correctly, 53*f3087befSAndrew Turner sidestep this by fixing such lanes to 0. */ 54*f3087befSAndrew Turner uint32x4_t will_uflow 55*f3087befSAndrew Turner = vcleq_u32 (vreinterpretq_u32_f32 (vabsq_f32 (z)), TinyBound); 56*f3087befSAndrew Turner if (unlikely (v_any_u32 (will_uflow))) 57*f3087befSAndrew Turner z2 = vbslq_f32 (will_uflow, v_f32 (0), z2); 58*f3087befSAndrew Turner #endif 59*f3087befSAndrew Turner float32x4_t z4 = vmulq_f32 (z2, z2); 60*f3087befSAndrew Turner return v_estrin_5_f32 (z, z2, z4, d->poly); 61*f3087befSAndrew Turner } 62*f3087befSAndrew Turner 63*f3087befSAndrew Turner /* Fast implementation of AdvSIMD tanf. 64*f3087befSAndrew Turner Maximum error is 3.45 ULP: 65*f3087befSAndrew Turner __v_tanf(-0x1.e5f0cap+13) got 0x1.ff9856p-1 66*f3087befSAndrew Turner want 0x1.ff9850p-1. */ 67*f3087befSAndrew Turner float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (tan) (float32x4_t x) 68*f3087befSAndrew Turner { 69*f3087befSAndrew Turner const struct data *d = ptr_barrier (&data); 70*f3087befSAndrew Turner float32x4_t special_arg = x; 71*f3087befSAndrew Turner 72*f3087befSAndrew Turner /* iax >= RangeVal means x, if not inf or NaN, is too large to perform fast 73*f3087befSAndrew Turner regression. */ 74*f3087befSAndrew Turner #if WANT_SIMD_EXCEPT 75*f3087befSAndrew Turner uint32x4_t iax = vreinterpretq_u32_f32 (vabsq_f32 (x)); 76*f3087befSAndrew Turner /* If fp exceptions are to be triggered correctly, also special-case tiny 77*f3087befSAndrew Turner input, as this will load to overflow later. Fix any special lanes to 1 to 78*f3087befSAndrew Turner prevent any exceptions being triggered. */ 79*f3087befSAndrew Turner uint32x4_t special = vcgeq_u32 (vsubq_u32 (iax, TinyBound), Thresh); 80*f3087befSAndrew Turner if (unlikely (v_any_u32 (special))) 81*f3087befSAndrew Turner x = vbslq_f32 (special, v_f32 (1.0f), x); 82*f3087befSAndrew Turner #else 83*f3087befSAndrew Turner /* Otherwise, special-case large and special values. */ 84*f3087befSAndrew Turner uint32x4_t special = vcageq_f32 (x, d->range_val); 85*f3087befSAndrew Turner #endif 86*f3087befSAndrew Turner 87*f3087befSAndrew Turner /* n = rint(x/(pi/2)). */ 88*f3087befSAndrew Turner float32x4_t pi_consts = vld1q_f32 (d->pi_consts); 89*f3087befSAndrew Turner float32x4_t q = vfmaq_laneq_f32 (d->shift, x, pi_consts, 3); 90*f3087befSAndrew Turner float32x4_t n = vsubq_f32 (q, d->shift); 91*f3087befSAndrew Turner /* Determine if x lives in an interval, where |tan(x)| grows to infinity. */ 92*f3087befSAndrew Turner uint32x4_t pred_alt = vtstq_u32 (vreinterpretq_u32_f32 (q), v_u32 (1)); 93*f3087befSAndrew Turner 94*f3087befSAndrew Turner /* r = x - n * (pi/2) (range reduction into -pi./4 .. pi/4). */ 95*f3087befSAndrew Turner float32x4_t r; 96*f3087befSAndrew Turner r = vfmaq_laneq_f32 (x, n, pi_consts, 0); 97*f3087befSAndrew Turner r = vfmaq_laneq_f32 (r, n, pi_consts, 1); 98*f3087befSAndrew Turner r = vfmaq_laneq_f32 (r, n, pi_consts, 2); 99*f3087befSAndrew Turner 100*f3087befSAndrew Turner /* If x lives in an interval, where |tan(x)| 101*f3087befSAndrew Turner - is finite, then use a polynomial approximation of the form 102*f3087befSAndrew Turner tan(r) ~ r + r^3 * P(r^2) = r + r * r^2 * P(r^2). 103*f3087befSAndrew Turner - grows to infinity then use symmetries of tangent and the identity 104*f3087befSAndrew Turner tan(r) = cotan(pi/2 - r) to express tan(x) as 1/tan(-r). Finally, use 105*f3087befSAndrew Turner the same polynomial approximation of tan as above. */ 106*f3087befSAndrew Turner 107*f3087befSAndrew Turner /* Invert sign of r if odd quadrant. */ 108*f3087befSAndrew Turner float32x4_t z = vmulq_f32 (r, vbslq_f32 (pred_alt, v_f32 (-1), v_f32 (1))); 109*f3087befSAndrew Turner 110*f3087befSAndrew Turner /* Evaluate polynomial approximation of tangent on [-pi/4, pi/4]. */ 111*f3087befSAndrew Turner float32x4_t z2 = vmulq_f32 (r, r); 112*f3087befSAndrew Turner float32x4_t p = eval_poly (z2, d); 113*f3087befSAndrew Turner float32x4_t y = vfmaq_f32 (z, vmulq_f32 (z, z2), p); 114*f3087befSAndrew Turner 115*f3087befSAndrew Turner /* Compute reciprocal and apply if required. */ 116*f3087befSAndrew Turner float32x4_t inv_y = vdivq_f32 (v_f32 (1.0f), y); 117*f3087befSAndrew Turner 118*f3087befSAndrew Turner if (unlikely (v_any_u32 (special))) 119*f3087befSAndrew Turner return special_case (special_arg, vbslq_f32 (pred_alt, inv_y, y), special); 120*f3087befSAndrew Turner return vbslq_f32 (pred_alt, inv_y, y); 121*f3087befSAndrew Turner } 122*f3087befSAndrew Turner 123*f3087befSAndrew Turner HALF_WIDTH_ALIAS_F1 (tan) 124*f3087befSAndrew Turner 125*f3087befSAndrew Turner TEST_SIG (V, F, 1, tan, -3.1, 3.1) 126*f3087befSAndrew Turner TEST_ULP (V_NAME_F1 (tan), 2.96) 127*f3087befSAndrew Turner TEST_DISABLE_FENV_IF_NOT (V_NAME_F1 (tan), WANT_SIMD_EXCEPT) 128*f3087befSAndrew Turner TEST_SYM_INTERVAL (V_NAME_F1 (tan), 0, 0x1p-31, 5000) 129*f3087befSAndrew Turner TEST_SYM_INTERVAL (V_NAME_F1 (tan), 0x1p-31, 0x1p15, 500000) 130*f3087befSAndrew Turner TEST_SYM_INTERVAL (V_NAME_F1 (tan), 0x1p15, inf, 5000) 131