xref: /freebsd-src/contrib/arm-optimized-routines/math/aarch64/advsimd/tan.c (revision f3087bef11543b42e0d69b708f367097a4118d24)
1*f3087befSAndrew Turner /*
2*f3087befSAndrew Turner  * Double-precision vector tan(x) function.
3*f3087befSAndrew Turner  *
4*f3087befSAndrew Turner  * Copyright (c) 2023-2024, Arm Limited.
5*f3087befSAndrew Turner  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*f3087befSAndrew Turner  */
7*f3087befSAndrew Turner 
8*f3087befSAndrew Turner #include "v_math.h"
9*f3087befSAndrew Turner #include "v_poly_f64.h"
10*f3087befSAndrew Turner #include "test_sig.h"
11*f3087befSAndrew Turner #include "test_defs.h"
12*f3087befSAndrew Turner 
13*f3087befSAndrew Turner static const struct data
14*f3087befSAndrew Turner {
15*f3087befSAndrew Turner   float64x2_t poly[9];
16*f3087befSAndrew Turner   double half_pi[2];
17*f3087befSAndrew Turner   float64x2_t two_over_pi, shift;
18*f3087befSAndrew Turner #if !WANT_SIMD_EXCEPT
19*f3087befSAndrew Turner   float64x2_t range_val;
20*f3087befSAndrew Turner #endif
21*f3087befSAndrew Turner } data = {
22*f3087befSAndrew Turner   /* Coefficients generated using FPMinimax.  */
23*f3087befSAndrew Turner   .poly = { V2 (0x1.5555555555556p-2), V2 (0x1.1111111110a63p-3),
24*f3087befSAndrew Turner 	    V2 (0x1.ba1ba1bb46414p-5), V2 (0x1.664f47e5b5445p-6),
25*f3087befSAndrew Turner 	    V2 (0x1.226e5e5ecdfa3p-7), V2 (0x1.d6c7ddbf87047p-9),
26*f3087befSAndrew Turner 	    V2 (0x1.7ea75d05b583ep-10), V2 (0x1.289f22964a03cp-11),
27*f3087befSAndrew Turner 	    V2 (0x1.4e4fd14147622p-12) },
28*f3087befSAndrew Turner   .half_pi = { 0x1.921fb54442d18p0, 0x1.1a62633145c07p-54 },
29*f3087befSAndrew Turner   .two_over_pi = V2 (0x1.45f306dc9c883p-1),
30*f3087befSAndrew Turner   .shift = V2 (0x1.8p52),
31*f3087befSAndrew Turner #if !WANT_SIMD_EXCEPT
32*f3087befSAndrew Turner   .range_val = V2 (0x1p23),
33*f3087befSAndrew Turner #endif
34*f3087befSAndrew Turner };
35*f3087befSAndrew Turner 
36*f3087befSAndrew Turner #define RangeVal 0x4160000000000000  /* asuint64(0x1p23).  */
37*f3087befSAndrew Turner #define TinyBound 0x3e50000000000000 /* asuint64(2^-26).  */
38*f3087befSAndrew Turner #define Thresh 0x310000000000000     /* RangeVal - TinyBound.  */
39*f3087befSAndrew Turner 
40*f3087befSAndrew Turner /* Special cases (fall back to scalar calls).  */
41*f3087befSAndrew Turner static float64x2_t VPCS_ATTR NOINLINE
42*f3087befSAndrew Turner special_case (float64x2_t x)
43*f3087befSAndrew Turner {
44*f3087befSAndrew Turner   return v_call_f64 (tan, x, x, v_u64 (-1));
45*f3087befSAndrew Turner }
46*f3087befSAndrew Turner 
47*f3087befSAndrew Turner /* Vector approximation for double-precision tan.
48*f3087befSAndrew Turner    Maximum measured error is 3.48 ULP:
49*f3087befSAndrew Turner    _ZGVnN2v_tan(0x1.4457047ef78d8p+20) got -0x1.f6ccd8ecf7dedp+37
50*f3087befSAndrew Turner 				      want -0x1.f6ccd8ecf7deap+37.  */
51*f3087befSAndrew Turner float64x2_t VPCS_ATTR V_NAME_D1 (tan) (float64x2_t x)
52*f3087befSAndrew Turner {
53*f3087befSAndrew Turner   const struct data *dat = ptr_barrier (&data);
54*f3087befSAndrew Turner   /* Our argument reduction cannot calculate q with sufficient accuracy for
55*f3087befSAndrew Turner      very large inputs. Fall back to scalar routine for all lanes if any are
56*f3087befSAndrew Turner      too large, or Inf/NaN. If fenv exceptions are expected, also fall back for
57*f3087befSAndrew Turner      tiny input to avoid underflow.  */
58*f3087befSAndrew Turner #if WANT_SIMD_EXCEPT
59*f3087befSAndrew Turner   uint64x2_t iax = vreinterpretq_u64_f64 (vabsq_f64 (x));
60*f3087befSAndrew Turner   /* iax - tiny_bound > range_val - tiny_bound.  */
61*f3087befSAndrew Turner   uint64x2_t special
62*f3087befSAndrew Turner       = vcgtq_u64 (vsubq_u64 (iax, v_u64 (TinyBound)), v_u64 (Thresh));
63*f3087befSAndrew Turner   if (unlikely (v_any_u64 (special)))
64*f3087befSAndrew Turner     return special_case (x);
65*f3087befSAndrew Turner #endif
66*f3087befSAndrew Turner 
67*f3087befSAndrew Turner   /* q = nearest integer to 2 * x / pi.  */
68*f3087befSAndrew Turner   float64x2_t q
69*f3087befSAndrew Turner       = vsubq_f64 (vfmaq_f64 (dat->shift, x, dat->two_over_pi), dat->shift);
70*f3087befSAndrew Turner   int64x2_t qi = vcvtq_s64_f64 (q);
71*f3087befSAndrew Turner 
72*f3087befSAndrew Turner   /* Use q to reduce x to r in [-pi/4, pi/4], by:
73*f3087befSAndrew Turner      r = x - q * pi/2, in extended precision.  */
74*f3087befSAndrew Turner   float64x2_t r = x;
75*f3087befSAndrew Turner   float64x2_t half_pi = vld1q_f64 (dat->half_pi);
76*f3087befSAndrew Turner   r = vfmsq_laneq_f64 (r, q, half_pi, 0);
77*f3087befSAndrew Turner   r = vfmsq_laneq_f64 (r, q, half_pi, 1);
78*f3087befSAndrew Turner   /* Further reduce r to [-pi/8, pi/8], to be reconstructed using double angle
79*f3087befSAndrew Turner      formula.  */
80*f3087befSAndrew Turner   r = vmulq_n_f64 (r, 0.5);
81*f3087befSAndrew Turner 
82*f3087befSAndrew Turner   /* Approximate tan(r) using order 8 polynomial.
83*f3087befSAndrew Turner      tan(x) is odd, so polynomial has the form:
84*f3087befSAndrew Turner      tan(x) ~= x + C0 * x^3 + C1 * x^5 + C3 * x^7 + ...
85*f3087befSAndrew Turner      Hence we first approximate P(r) = C1 + C2 * r^2 + C3 * r^4 + ...
86*f3087befSAndrew Turner      Then compute the approximation by:
87*f3087befSAndrew Turner      tan(r) ~= r + r^3 * (C0 + r^2 * P(r)).  */
88*f3087befSAndrew Turner   float64x2_t r2 = vmulq_f64 (r, r), r4 = vmulq_f64 (r2, r2),
89*f3087befSAndrew Turner 	      r8 = vmulq_f64 (r4, r4);
90*f3087befSAndrew Turner   /* Offset coefficients to evaluate from C1 onwards.  */
91*f3087befSAndrew Turner   float64x2_t p = v_estrin_7_f64 (r2, r4, r8, dat->poly + 1);
92*f3087befSAndrew Turner   p = vfmaq_f64 (dat->poly[0], p, r2);
93*f3087befSAndrew Turner   p = vfmaq_f64 (r, r2, vmulq_f64 (p, r));
94*f3087befSAndrew Turner 
95*f3087befSAndrew Turner   /* Recombination uses double-angle formula:
96*f3087befSAndrew Turner      tan(2x) = 2 * tan(x) / (1 - (tan(x))^2)
97*f3087befSAndrew Turner      and reciprocity around pi/2:
98*f3087befSAndrew Turner      tan(x) = 1 / (tan(pi/2 - x))
99*f3087befSAndrew Turner      to assemble result using change-of-sign and conditional selection of
100*f3087befSAndrew Turner      numerator/denominator, dependent on odd/even-ness of q (hence quadrant).
101*f3087befSAndrew Turner    */
102*f3087befSAndrew Turner   float64x2_t n = vfmaq_f64 (v_f64 (-1), p, p);
103*f3087befSAndrew Turner   float64x2_t d = vaddq_f64 (p, p);
104*f3087befSAndrew Turner 
105*f3087befSAndrew Turner   uint64x2_t no_recip = vtstq_u64 (vreinterpretq_u64_s64 (qi), v_u64 (1));
106*f3087befSAndrew Turner 
107*f3087befSAndrew Turner #if !WANT_SIMD_EXCEPT
108*f3087befSAndrew Turner   uint64x2_t special = vcageq_f64 (x, dat->range_val);
109*f3087befSAndrew Turner   if (unlikely (v_any_u64 (special)))
110*f3087befSAndrew Turner     return special_case (x);
111*f3087befSAndrew Turner #endif
112*f3087befSAndrew Turner 
113*f3087befSAndrew Turner   return vdivq_f64 (vbslq_f64 (no_recip, n, vnegq_f64 (d)),
114*f3087befSAndrew Turner 		    vbslq_f64 (no_recip, d, n));
115*f3087befSAndrew Turner }
116*f3087befSAndrew Turner 
117*f3087befSAndrew Turner TEST_SIG (V, D, 1, tan, -3.1, 3.1)
118*f3087befSAndrew Turner TEST_ULP (V_NAME_D1 (tan), 2.99)
119*f3087befSAndrew Turner TEST_DISABLE_FENV_IF_NOT (V_NAME_D1 (tan), WANT_SIMD_EXCEPT)
120*f3087befSAndrew Turner TEST_SYM_INTERVAL (V_NAME_D1 (tan), 0, TinyBound, 5000)
121*f3087befSAndrew Turner TEST_SYM_INTERVAL (V_NAME_D1 (tan), TinyBound, RangeVal, 100000)
122*f3087befSAndrew Turner TEST_SYM_INTERVAL (V_NAME_D1 (tan), RangeVal, inf, 5000)
123