1*f3087befSAndrew Turner /* 2*f3087befSAndrew Turner * Double-precision x^y function. 3*f3087befSAndrew Turner * 4*f3087befSAndrew Turner * Copyright (c) 2018-2024, Arm Limited. 5*f3087befSAndrew Turner * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception 6*f3087befSAndrew Turner */ 7*f3087befSAndrew Turner 8*f3087befSAndrew Turner #include "math_config.h" 9*f3087befSAndrew Turner 10*f3087befSAndrew Turner /* Scalar version of pow used for fallbacks in vector implementations. */ 11*f3087befSAndrew Turner 12*f3087befSAndrew Turner /* Data is defined in v_pow_log_data.c. */ 13*f3087befSAndrew Turner #define N_LOG (1 << V_POW_LOG_TABLE_BITS) 14*f3087befSAndrew Turner #define Off 0x3fe6955500000000 15*f3087befSAndrew Turner #define As __v_pow_log_data.poly 16*f3087befSAndrew Turner 17*f3087befSAndrew Turner /* Data is defined in v_pow_exp_data.c. */ 18*f3087befSAndrew Turner #define N_EXP (1 << V_POW_EXP_TABLE_BITS) 19*f3087befSAndrew Turner #define SignBias (0x800 << V_POW_EXP_TABLE_BITS) 20*f3087befSAndrew Turner #define SmallExp 0x3c9 /* top12(0x1p-54). */ 21*f3087befSAndrew Turner #define BigExp 0x408 /* top12(512.0). */ 22*f3087befSAndrew Turner #define ThresExp 0x03f /* BigExp - SmallExp. */ 23*f3087befSAndrew Turner #define InvLn2N __v_pow_exp_data.n_over_ln2 24*f3087befSAndrew Turner #define Ln2HiN __v_pow_exp_data.ln2_over_n_hi 25*f3087befSAndrew Turner #define Ln2LoN __v_pow_exp_data.ln2_over_n_lo 26*f3087befSAndrew Turner #define SBits __v_pow_exp_data.sbits 27*f3087befSAndrew Turner #define Cs __v_pow_exp_data.poly 28*f3087befSAndrew Turner 29*f3087befSAndrew Turner /* Constants associated with pow. */ 30*f3087befSAndrew Turner #define SmallPowX 0x001 /* top12(0x1p-126). */ 31*f3087befSAndrew Turner #define BigPowX 0x7ff /* top12(INFINITY). */ 32*f3087befSAndrew Turner #define ThresPowX 0x7fe /* BigPowX - SmallPowX. */ 33*f3087befSAndrew Turner #define SmallPowY 0x3be /* top12(0x1.e7b6p-65). */ 34*f3087befSAndrew Turner #define BigPowY 0x43e /* top12(0x1.749p62). */ 35*f3087befSAndrew Turner #define ThresPowY 0x080 /* BigPowY - SmallPowY. */ 36*f3087befSAndrew Turner 37*f3087befSAndrew Turner /* Top 12 bits of a double (sign and exponent bits). */ 38*f3087befSAndrew Turner static inline uint32_t 39*f3087befSAndrew Turner top12 (double x) 40*f3087befSAndrew Turner { 41*f3087befSAndrew Turner return asuint64 (x) >> 52; 42*f3087befSAndrew Turner } 43*f3087befSAndrew Turner 44*f3087befSAndrew Turner /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about 45*f3087befSAndrew Turner additional 15 bits precision. IX is the bit representation of x, but 46*f3087befSAndrew Turner normalized in the subnormal range using the sign bit for the exponent. */ 47*f3087befSAndrew Turner static inline double 48*f3087befSAndrew Turner log_inline (uint64_t ix, double *tail) 49*f3087befSAndrew Turner { 50*f3087befSAndrew Turner /* x = 2^k z; where z is in range [Off,2*Off) and exact. 51*f3087befSAndrew Turner The range is split into N subintervals. 52*f3087befSAndrew Turner The ith subinterval contains z and c is near its center. */ 53*f3087befSAndrew Turner uint64_t tmp = ix - Off; 54*f3087befSAndrew Turner int i = (tmp >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1); 55*f3087befSAndrew Turner int k = (int64_t) tmp >> 52; /* arithmetic shift. */ 56*f3087befSAndrew Turner uint64_t iz = ix - (tmp & 0xfffULL << 52); 57*f3087befSAndrew Turner double z = asdouble (iz); 58*f3087befSAndrew Turner double kd = (double) k; 59*f3087befSAndrew Turner 60*f3087befSAndrew Turner /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */ 61*f3087befSAndrew Turner double invc = __v_pow_log_data.invc[i]; 62*f3087befSAndrew Turner double logc = __v_pow_log_data.logc[i]; 63*f3087befSAndrew Turner double logctail = __v_pow_log_data.logctail[i]; 64*f3087befSAndrew Turner 65*f3087befSAndrew Turner /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and 66*f3087befSAndrew Turner |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */ 67*f3087befSAndrew Turner double r = fma (z, invc, -1.0); 68*f3087befSAndrew Turner 69*f3087befSAndrew Turner /* k*Ln2 + log(c) + r. */ 70*f3087befSAndrew Turner double t1 = kd * __v_pow_log_data.ln2_hi + logc; 71*f3087befSAndrew Turner double t2 = t1 + r; 72*f3087befSAndrew Turner double lo1 = kd * __v_pow_log_data.ln2_lo + logctail; 73*f3087befSAndrew Turner double lo2 = t1 - t2 + r; 74*f3087befSAndrew Turner 75*f3087befSAndrew Turner /* Evaluation is optimized assuming superscalar pipelined execution. */ 76*f3087befSAndrew Turner double ar = As[0] * r; 77*f3087befSAndrew Turner double ar2 = r * ar; 78*f3087befSAndrew Turner double ar3 = r * ar2; 79*f3087befSAndrew Turner /* k*Ln2 + log(c) + r + A[0]*r*r. */ 80*f3087befSAndrew Turner double hi = t2 + ar2; 81*f3087befSAndrew Turner double lo3 = fma (ar, r, -ar2); 82*f3087befSAndrew Turner double lo4 = t2 - hi + ar2; 83*f3087befSAndrew Turner /* p = log1p(r) - r - A[0]*r*r. */ 84*f3087befSAndrew Turner double p = (ar3 85*f3087befSAndrew Turner * (As[1] + r * As[2] 86*f3087befSAndrew Turner + ar2 * (As[3] + r * As[4] + ar2 * (As[5] + r * As[6])))); 87*f3087befSAndrew Turner double lo = lo1 + lo2 + lo3 + lo4 + p; 88*f3087befSAndrew Turner double y = hi + lo; 89*f3087befSAndrew Turner *tail = hi - y + lo; 90*f3087befSAndrew Turner return y; 91*f3087befSAndrew Turner } 92*f3087befSAndrew Turner 93*f3087befSAndrew Turner /* Handle cases that may overflow or underflow when computing the result that 94*f3087befSAndrew Turner is scale*(1+TMP) without intermediate rounding. The bit representation of 95*f3087befSAndrew Turner scale is in SBITS, however it has a computed exponent that may have 96*f3087befSAndrew Turner overflown into the sign bit so that needs to be adjusted before using it as 97*f3087befSAndrew Turner a double. (int32_t)KI is the k used in the argument reduction and exponent 98*f3087befSAndrew Turner adjustment of scale, positive k here means the result may overflow and 99*f3087befSAndrew Turner negative k means the result may underflow. */ 100*f3087befSAndrew Turner static inline double 101*f3087befSAndrew Turner special_case (double tmp, uint64_t sbits, uint64_t ki) 102*f3087befSAndrew Turner { 103*f3087befSAndrew Turner double scale, y; 104*f3087befSAndrew Turner 105*f3087befSAndrew Turner if ((ki & 0x80000000) == 0) 106*f3087befSAndrew Turner { 107*f3087befSAndrew Turner /* k > 0, the exponent of scale might have overflowed by <= 460. */ 108*f3087befSAndrew Turner sbits -= 1009ull << 52; 109*f3087befSAndrew Turner scale = asdouble (sbits); 110*f3087befSAndrew Turner y = 0x1p1009 * (scale + scale * tmp); 111*f3087befSAndrew Turner return y; 112*f3087befSAndrew Turner } 113*f3087befSAndrew Turner /* k < 0, need special care in the subnormal range. */ 114*f3087befSAndrew Turner sbits += 1022ull << 52; 115*f3087befSAndrew Turner /* Note: sbits is signed scale. */ 116*f3087befSAndrew Turner scale = asdouble (sbits); 117*f3087befSAndrew Turner y = scale + scale * tmp; 118*f3087befSAndrew Turner #if WANT_SIMD_EXCEPT 119*f3087befSAndrew Turner if (fabs (y) < 1.0) 120*f3087befSAndrew Turner { 121*f3087befSAndrew Turner /* Round y to the right precision before scaling it into the subnormal 122*f3087befSAndrew Turner range to avoid double rounding that can cause 0.5+E/2 ulp error where 123*f3087befSAndrew Turner E is the worst-case ulp error outside the subnormal range. So this 124*f3087befSAndrew Turner is only useful if the goal is better than 1 ulp worst-case error. */ 125*f3087befSAndrew Turner double hi, lo, one = 1.0; 126*f3087befSAndrew Turner if (y < 0.0) 127*f3087befSAndrew Turner one = -1.0; 128*f3087befSAndrew Turner lo = scale - y + scale * tmp; 129*f3087befSAndrew Turner hi = one + y; 130*f3087befSAndrew Turner lo = one - hi + y + lo; 131*f3087befSAndrew Turner y = (hi + lo) - one; 132*f3087befSAndrew Turner /* Fix the sign of 0. */ 133*f3087befSAndrew Turner if (y == 0.0) 134*f3087befSAndrew Turner y = asdouble (sbits & 0x8000000000000000); 135*f3087befSAndrew Turner /* The underflow exception needs to be signaled explicitly. */ 136*f3087befSAndrew Turner force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022); 137*f3087befSAndrew Turner } 138*f3087befSAndrew Turner #endif 139*f3087befSAndrew Turner y = 0x1p-1022 * y; 140*f3087befSAndrew Turner return y; 141*f3087befSAndrew Turner } 142*f3087befSAndrew Turner 143*f3087befSAndrew Turner /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. 144*f3087befSAndrew Turner The sign_bias argument is SignBias or 0 and sets the sign to -1 or 1. */ 145*f3087befSAndrew Turner static inline double 146*f3087befSAndrew Turner exp_inline (double x, double xtail, uint32_t sign_bias) 147*f3087befSAndrew Turner { 148*f3087befSAndrew Turner uint32_t abstop = top12 (x) & 0x7ff; 149*f3087befSAndrew Turner if (unlikely (abstop - SmallExp >= ThresExp)) 150*f3087befSAndrew Turner { 151*f3087befSAndrew Turner if (abstop - SmallExp >= 0x80000000) 152*f3087befSAndrew Turner { 153*f3087befSAndrew Turner /* Avoid spurious underflow for tiny x. */ 154*f3087befSAndrew Turner /* Note: 0 is common input. */ 155*f3087befSAndrew Turner return sign_bias ? -1.0 : 1.0; 156*f3087befSAndrew Turner } 157*f3087befSAndrew Turner if (abstop >= top12 (1024.0)) 158*f3087befSAndrew Turner { 159*f3087befSAndrew Turner /* Note: inf and nan are already handled. */ 160*f3087befSAndrew Turner /* Skip errno handling. */ 161*f3087befSAndrew Turner #if WANT_SIMD_EXCEPT 162*f3087befSAndrew Turner return asuint64 (x) >> 63 ? __math_uflow (sign_bias) 163*f3087befSAndrew Turner : __math_oflow (sign_bias); 164*f3087befSAndrew Turner #else 165*f3087befSAndrew Turner double res_uoflow = asuint64 (x) >> 63 ? 0.0 : INFINITY; 166*f3087befSAndrew Turner return sign_bias ? -res_uoflow : res_uoflow; 167*f3087befSAndrew Turner #endif 168*f3087befSAndrew Turner } 169*f3087befSAndrew Turner /* Large x is special cased below. */ 170*f3087befSAndrew Turner abstop = 0; 171*f3087befSAndrew Turner } 172*f3087befSAndrew Turner 173*f3087befSAndrew Turner /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ 174*f3087befSAndrew Turner /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ 175*f3087befSAndrew Turner double z = InvLn2N * x; 176*f3087befSAndrew Turner double kd = round (z); 177*f3087befSAndrew Turner uint64_t ki = lround (z); 178*f3087befSAndrew Turner double r = x - kd * Ln2HiN - kd * Ln2LoN; 179*f3087befSAndrew Turner /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ 180*f3087befSAndrew Turner r += xtail; 181*f3087befSAndrew Turner /* 2^(k/N) ~= scale. */ 182*f3087befSAndrew Turner uint64_t idx = ki & (N_EXP - 1); 183*f3087befSAndrew Turner uint64_t top = (ki + sign_bias) << (52 - V_POW_EXP_TABLE_BITS); 184*f3087befSAndrew Turner /* This is only a valid scale when -1023*N < k < 1024*N. */ 185*f3087befSAndrew Turner uint64_t sbits = SBits[idx] + top; 186*f3087befSAndrew Turner /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1). */ 187*f3087befSAndrew Turner /* Evaluation is optimized assuming superscalar pipelined execution. */ 188*f3087befSAndrew Turner double r2 = r * r; 189*f3087befSAndrew Turner double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]); 190*f3087befSAndrew Turner if (unlikely (abstop == 0)) 191*f3087befSAndrew Turner return special_case (tmp, sbits, ki); 192*f3087befSAndrew Turner double scale = asdouble (sbits); 193*f3087befSAndrew Turner /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there 194*f3087befSAndrew Turner is no spurious underflow here even without fma. */ 195*f3087befSAndrew Turner return scale + scale * tmp; 196*f3087befSAndrew Turner } 197*f3087befSAndrew Turner 198*f3087befSAndrew Turner /* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. 199*f3087befSAndrew Turner A version of exp_inline that is not inlined and for which sign_bias is 200*f3087befSAndrew Turner equal to 0. */ 201*f3087befSAndrew Turner static double NOINLINE 202*f3087befSAndrew Turner exp_nosignbias (double x, double xtail) 203*f3087befSAndrew Turner { 204*f3087befSAndrew Turner uint32_t abstop = top12 (x) & 0x7ff; 205*f3087befSAndrew Turner if (unlikely (abstop - SmallExp >= ThresExp)) 206*f3087befSAndrew Turner { 207*f3087befSAndrew Turner /* Avoid spurious underflow for tiny x. */ 208*f3087befSAndrew Turner if (abstop - SmallExp >= 0x80000000) 209*f3087befSAndrew Turner return 1.0; 210*f3087befSAndrew Turner /* Note: inf and nan are already handled. */ 211*f3087befSAndrew Turner if (abstop >= top12 (1024.0)) 212*f3087befSAndrew Turner #if WANT_SIMD_EXCEPT 213*f3087befSAndrew Turner return asuint64 (x) >> 63 ? __math_uflow (0) : __math_oflow (0); 214*f3087befSAndrew Turner #else 215*f3087befSAndrew Turner return asuint64 (x) >> 63 ? 0.0 : INFINITY; 216*f3087befSAndrew Turner #endif 217*f3087befSAndrew Turner /* Large x is special cased below. */ 218*f3087befSAndrew Turner abstop = 0; 219*f3087befSAndrew Turner } 220*f3087befSAndrew Turner 221*f3087befSAndrew Turner /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ 222*f3087befSAndrew Turner /* x = ln2/N*k + r, with k integer and r in [-ln2/2N, ln2/2N]. */ 223*f3087befSAndrew Turner double z = InvLn2N * x; 224*f3087befSAndrew Turner double kd = round (z); 225*f3087befSAndrew Turner uint64_t ki = lround (z); 226*f3087befSAndrew Turner double r = x - kd * Ln2HiN - kd * Ln2LoN; 227*f3087befSAndrew Turner /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ 228*f3087befSAndrew Turner r += xtail; 229*f3087befSAndrew Turner /* 2^(k/N) ~= scale. */ 230*f3087befSAndrew Turner uint64_t idx = ki & (N_EXP - 1); 231*f3087befSAndrew Turner uint64_t top = ki << (52 - V_POW_EXP_TABLE_BITS); 232*f3087befSAndrew Turner /* This is only a valid scale when -1023*N < k < 1024*N. */ 233*f3087befSAndrew Turner uint64_t sbits = SBits[idx] + top; 234*f3087befSAndrew Turner /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ 235*f3087befSAndrew Turner double r2 = r * r; 236*f3087befSAndrew Turner double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]); 237*f3087befSAndrew Turner if (unlikely (abstop == 0)) 238*f3087befSAndrew Turner return special_case (tmp, sbits, ki); 239*f3087befSAndrew Turner double scale = asdouble (sbits); 240*f3087befSAndrew Turner /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there 241*f3087befSAndrew Turner is no spurious underflow here even without fma. */ 242*f3087befSAndrew Turner return scale + scale * tmp; 243*f3087befSAndrew Turner } 244*f3087befSAndrew Turner 245*f3087befSAndrew Turner /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is 246*f3087befSAndrew Turner the bit representation of a non-zero finite floating-point value. */ 247*f3087befSAndrew Turner static inline int 248*f3087befSAndrew Turner checkint (uint64_t iy) 249*f3087befSAndrew Turner { 250*f3087befSAndrew Turner int e = iy >> 52 & 0x7ff; 251*f3087befSAndrew Turner if (e < 0x3ff) 252*f3087befSAndrew Turner return 0; 253*f3087befSAndrew Turner if (e > 0x3ff + 52) 254*f3087befSAndrew Turner return 2; 255*f3087befSAndrew Turner if (iy & ((1ULL << (0x3ff + 52 - e)) - 1)) 256*f3087befSAndrew Turner return 0; 257*f3087befSAndrew Turner if (iy & (1ULL << (0x3ff + 52 - e))) 258*f3087befSAndrew Turner return 1; 259*f3087befSAndrew Turner return 2; 260*f3087befSAndrew Turner } 261*f3087befSAndrew Turner 262*f3087befSAndrew Turner /* Returns 1 if input is the bit representation of 0, infinity or nan. */ 263*f3087befSAndrew Turner static inline int 264*f3087befSAndrew Turner zeroinfnan (uint64_t i) 265*f3087befSAndrew Turner { 266*f3087befSAndrew Turner return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1; 267*f3087befSAndrew Turner } 268*f3087befSAndrew Turner 269*f3087befSAndrew Turner static double NOINLINE 270*f3087befSAndrew Turner pow_scalar_special_case (double x, double y) 271*f3087befSAndrew Turner { 272*f3087befSAndrew Turner uint32_t sign_bias = 0; 273*f3087befSAndrew Turner uint64_t ix, iy; 274*f3087befSAndrew Turner uint32_t topx, topy; 275*f3087befSAndrew Turner 276*f3087befSAndrew Turner ix = asuint64 (x); 277*f3087befSAndrew Turner iy = asuint64 (y); 278*f3087befSAndrew Turner topx = top12 (x); 279*f3087befSAndrew Turner topy = top12 (y); 280*f3087befSAndrew Turner if (unlikely (topx - SmallPowX >= ThresPowX 281*f3087befSAndrew Turner || (topy & 0x7ff) - SmallPowY >= ThresPowY)) 282*f3087befSAndrew Turner { 283*f3087befSAndrew Turner /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0 284*f3087befSAndrew Turner and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */ 285*f3087befSAndrew Turner /* Special cases: (x < 0x1p-126 or inf or nan) or 286*f3087befSAndrew Turner (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */ 287*f3087befSAndrew Turner if (unlikely (zeroinfnan (iy))) 288*f3087befSAndrew Turner { 289*f3087befSAndrew Turner if (2 * iy == 0) 290*f3087befSAndrew Turner return issignaling_inline (x) ? x + y : 1.0; 291*f3087befSAndrew Turner if (ix == asuint64 (1.0)) 292*f3087befSAndrew Turner return issignaling_inline (y) ? x + y : 1.0; 293*f3087befSAndrew Turner if (2 * ix > 2 * asuint64 (INFINITY) 294*f3087befSAndrew Turner || 2 * iy > 2 * asuint64 (INFINITY)) 295*f3087befSAndrew Turner return x + y; 296*f3087befSAndrew Turner if (2 * ix == 2 * asuint64 (1.0)) 297*f3087befSAndrew Turner return 1.0; 298*f3087befSAndrew Turner if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63)) 299*f3087befSAndrew Turner return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ 300*f3087befSAndrew Turner return y * y; 301*f3087befSAndrew Turner } 302*f3087befSAndrew Turner if (unlikely (zeroinfnan (ix))) 303*f3087befSAndrew Turner { 304*f3087befSAndrew Turner double x2 = x * x; 305*f3087befSAndrew Turner if (ix >> 63 && checkint (iy) == 1) 306*f3087befSAndrew Turner { 307*f3087befSAndrew Turner x2 = -x2; 308*f3087befSAndrew Turner sign_bias = 1; 309*f3087befSAndrew Turner } 310*f3087befSAndrew Turner #if WANT_SIMD_EXCEPT 311*f3087befSAndrew Turner if (2 * ix == 0 && iy >> 63) 312*f3087befSAndrew Turner return __math_divzero (sign_bias); 313*f3087befSAndrew Turner #endif 314*f3087befSAndrew Turner return iy >> 63 ? 1 / x2 : x2; 315*f3087befSAndrew Turner } 316*f3087befSAndrew Turner /* Here x and y are non-zero finite. */ 317*f3087befSAndrew Turner if (ix >> 63) 318*f3087befSAndrew Turner { 319*f3087befSAndrew Turner /* Finite x < 0. */ 320*f3087befSAndrew Turner int yint = checkint (iy); 321*f3087befSAndrew Turner if (yint == 0) 322*f3087befSAndrew Turner #if WANT_SIMD_EXCEPT 323*f3087befSAndrew Turner return __math_invalid (x); 324*f3087befSAndrew Turner #else 325*f3087befSAndrew Turner return __builtin_nan (""); 326*f3087befSAndrew Turner #endif 327*f3087befSAndrew Turner if (yint == 1) 328*f3087befSAndrew Turner sign_bias = SignBias; 329*f3087befSAndrew Turner ix &= 0x7fffffffffffffff; 330*f3087befSAndrew Turner topx &= 0x7ff; 331*f3087befSAndrew Turner } 332*f3087befSAndrew Turner if ((topy & 0x7ff) - SmallPowY >= ThresPowY) 333*f3087befSAndrew Turner { 334*f3087befSAndrew Turner /* Note: sign_bias == 0 here because y is not odd. */ 335*f3087befSAndrew Turner if (ix == asuint64 (1.0)) 336*f3087befSAndrew Turner return 1.0; 337*f3087befSAndrew Turner /* |y| < 2^-65, x^y ~= 1 + y*log(x). */ 338*f3087befSAndrew Turner if ((topy & 0x7ff) < SmallPowY) 339*f3087befSAndrew Turner return 1.0; 340*f3087befSAndrew Turner #if WANT_SIMD_EXCEPT 341*f3087befSAndrew Turner return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0) 342*f3087befSAndrew Turner : __math_uflow (0); 343*f3087befSAndrew Turner #else 344*f3087befSAndrew Turner return (ix > asuint64 (1.0)) == (topy < 0x800) ? INFINITY : 0; 345*f3087befSAndrew Turner #endif 346*f3087befSAndrew Turner } 347*f3087befSAndrew Turner if (topx == 0) 348*f3087befSAndrew Turner { 349*f3087befSAndrew Turner /* Normalize subnormal x so exponent becomes negative. */ 350*f3087befSAndrew Turner ix = asuint64 (x * 0x1p52); 351*f3087befSAndrew Turner ix &= 0x7fffffffffffffff; 352*f3087befSAndrew Turner ix -= 52ULL << 52; 353*f3087befSAndrew Turner } 354*f3087befSAndrew Turner } 355*f3087befSAndrew Turner 356*f3087befSAndrew Turner double lo; 357*f3087befSAndrew Turner double hi = log_inline (ix, &lo); 358*f3087befSAndrew Turner double ehi = y * hi; 359*f3087befSAndrew Turner double elo = y * lo + fma (y, hi, -ehi); 360*f3087befSAndrew Turner return exp_inline (ehi, elo, sign_bias); 361*f3087befSAndrew Turner } 362