xref: /freebsd-src/contrib/arm-optimized-routines/math/aarch64/advsimd/acos.c (revision f3087bef11543b42e0d69b708f367097a4118d24)
1*f3087befSAndrew Turner /*
2*f3087befSAndrew Turner  * Double-precision vector acos(x) function.
3*f3087befSAndrew Turner  *
4*f3087befSAndrew Turner  * Copyright (c) 2023-2024, Arm Limited.
5*f3087befSAndrew Turner  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*f3087befSAndrew Turner  */
7*f3087befSAndrew Turner 
8*f3087befSAndrew Turner #include "v_math.h"
9*f3087befSAndrew Turner #include "v_poly_f64.h"
10*f3087befSAndrew Turner #include "test_sig.h"
11*f3087befSAndrew Turner #include "test_defs.h"
12*f3087befSAndrew Turner 
13*f3087befSAndrew Turner static const struct data
14*f3087befSAndrew Turner {
15*f3087befSAndrew Turner   float64x2_t poly[12];
16*f3087befSAndrew Turner   float64x2_t pi, pi_over_2;
17*f3087befSAndrew Turner   uint64x2_t abs_mask;
18*f3087befSAndrew Turner } data = {
19*f3087befSAndrew Turner   /* Polynomial approximation of  (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))
20*f3087befSAndrew Turner      on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57.  */
21*f3087befSAndrew Turner   .poly = { V2 (0x1.555555555554ep-3), V2 (0x1.3333333337233p-4),
22*f3087befSAndrew Turner 	    V2 (0x1.6db6db67f6d9fp-5), V2 (0x1.f1c71fbd29fbbp-6),
23*f3087befSAndrew Turner 	    V2 (0x1.6e8b264d467d6p-6), V2 (0x1.1c5997c357e9dp-6),
24*f3087befSAndrew Turner 	    V2 (0x1.c86a22cd9389dp-7), V2 (0x1.856073c22ebbep-7),
25*f3087befSAndrew Turner 	    V2 (0x1.fd1151acb6bedp-8), V2 (0x1.087182f799c1dp-6),
26*f3087befSAndrew Turner 	    V2 (-0x1.6602748120927p-7), V2 (0x1.cfa0dd1f9478p-6), },
27*f3087befSAndrew Turner   .pi = V2 (0x1.921fb54442d18p+1),
28*f3087befSAndrew Turner   .pi_over_2 = V2 (0x1.921fb54442d18p+0),
29*f3087befSAndrew Turner   .abs_mask = V2 (0x7fffffffffffffff),
30*f3087befSAndrew Turner };
31*f3087befSAndrew Turner 
32*f3087befSAndrew Turner #define AllMask v_u64 (0xffffffffffffffff)
33*f3087befSAndrew Turner #define Oneu 0x3ff0000000000000
34*f3087befSAndrew Turner #define Small 0x3e50000000000000 /* 2^-53.  */
35*f3087befSAndrew Turner 
36*f3087befSAndrew Turner #if WANT_SIMD_EXCEPT
37*f3087befSAndrew Turner static float64x2_t VPCS_ATTR NOINLINE
38*f3087befSAndrew Turner special_case (float64x2_t x, float64x2_t y, uint64x2_t special)
39*f3087befSAndrew Turner {
40*f3087befSAndrew Turner   return v_call_f64 (acos, x, y, special);
41*f3087befSAndrew Turner }
42*f3087befSAndrew Turner #endif
43*f3087befSAndrew Turner 
44*f3087befSAndrew Turner /* Double-precision implementation of vector acos(x).
45*f3087befSAndrew Turner 
46*f3087befSAndrew Turner    For |x| < Small, approximate acos(x) by pi/2 - x. Small = 2^-53 for correct
47*f3087befSAndrew Turner    rounding.
48*f3087befSAndrew Turner    If WANT_SIMD_EXCEPT = 0, Small = 0 and we proceed with the following
49*f3087befSAndrew Turner    approximation.
50*f3087befSAndrew Turner 
51*f3087befSAndrew Turner    For |x| in [Small, 0.5], use an order 11 polynomial P such that the final
52*f3087befSAndrew Turner    approximation of asin is an odd polynomial:
53*f3087befSAndrew Turner 
54*f3087befSAndrew Turner      acos(x) ~ pi/2 - (x + x^3 P(x^2)).
55*f3087befSAndrew Turner 
56*f3087befSAndrew Turner    The largest observed error in this region is 1.18 ulps,
57*f3087befSAndrew Turner    _ZGVnN2v_acos (0x1.fbab0a7c460f6p-2) got 0x1.0d54d1985c068p+0
58*f3087befSAndrew Turner 				       want 0x1.0d54d1985c069p+0.
59*f3087befSAndrew Turner 
60*f3087befSAndrew Turner    For |x| in [0.5, 1.0], use same approximation with a change of variable
61*f3087befSAndrew Turner 
62*f3087befSAndrew Turner      acos(x) = y + y * z * P(z), with  z = (1-x)/2 and y = sqrt(z).
63*f3087befSAndrew Turner 
64*f3087befSAndrew Turner    The largest observed error in this region is 1.52 ulps,
65*f3087befSAndrew Turner    _ZGVnN2v_acos (0x1.23d362722f591p-1) got 0x1.edbbedf8a7d6ep-1
66*f3087befSAndrew Turner 				       want 0x1.edbbedf8a7d6cp-1.  */
67*f3087befSAndrew Turner float64x2_t VPCS_ATTR V_NAME_D1 (acos) (float64x2_t x)
68*f3087befSAndrew Turner {
69*f3087befSAndrew Turner   const struct data *d = ptr_barrier (&data);
70*f3087befSAndrew Turner 
71*f3087befSAndrew Turner   float64x2_t ax = vabsq_f64 (x);
72*f3087befSAndrew Turner 
73*f3087befSAndrew Turner #if WANT_SIMD_EXCEPT
74*f3087befSAndrew Turner   /* A single comparison for One, Small and QNaN.  */
75*f3087befSAndrew Turner   uint64x2_t special
76*f3087befSAndrew Turner       = vcgtq_u64 (vsubq_u64 (vreinterpretq_u64_f64 (ax), v_u64 (Small)),
77*f3087befSAndrew Turner 		   v_u64 (Oneu - Small));
78*f3087befSAndrew Turner   if (unlikely (v_any_u64 (special)))
79*f3087befSAndrew Turner     return special_case (x, x, AllMask);
80*f3087befSAndrew Turner #endif
81*f3087befSAndrew Turner 
82*f3087befSAndrew Turner   uint64x2_t a_le_half = vcleq_f64 (ax, v_f64 (0.5));
83*f3087befSAndrew Turner 
84*f3087befSAndrew Turner   /* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with
85*f3087befSAndrew Turner      z2 = x ^ 2         and z = |x|     , if |x| < 0.5
86*f3087befSAndrew Turner      z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5.  */
87*f3087befSAndrew Turner   float64x2_t z2 = vbslq_f64 (a_le_half, vmulq_f64 (x, x),
88*f3087befSAndrew Turner 			      vfmaq_f64 (v_f64 (0.5), v_f64 (-0.5), ax));
89*f3087befSAndrew Turner   float64x2_t z = vbslq_f64 (a_le_half, ax, vsqrtq_f64 (z2));
90*f3087befSAndrew Turner 
91*f3087befSAndrew Turner   /* Use a single polynomial approximation P for both intervals.  */
92*f3087befSAndrew Turner   float64x2_t z4 = vmulq_f64 (z2, z2);
93*f3087befSAndrew Turner   float64x2_t z8 = vmulq_f64 (z4, z4);
94*f3087befSAndrew Turner   float64x2_t z16 = vmulq_f64 (z8, z8);
95*f3087befSAndrew Turner   float64x2_t p = v_estrin_11_f64 (z2, z4, z8, z16, d->poly);
96*f3087befSAndrew Turner 
97*f3087befSAndrew Turner   /* Finalize polynomial: z + z * z2 * P(z2).  */
98*f3087befSAndrew Turner   p = vfmaq_f64 (z, vmulq_f64 (z, z2), p);
99*f3087befSAndrew Turner 
100*f3087befSAndrew Turner   /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for  |x| < 0.5
101*f3087befSAndrew Turner 	       = 2 Q(|x|)               , for  0.5 < x < 1.0
102*f3087befSAndrew Turner 	       = pi - 2 Q(|x|)          , for -1.0 < x < -0.5.  */
103*f3087befSAndrew Turner   float64x2_t y = vbslq_f64 (d->abs_mask, p, x);
104*f3087befSAndrew Turner 
105*f3087befSAndrew Turner   uint64x2_t is_neg = vcltzq_f64 (x);
106*f3087befSAndrew Turner   float64x2_t off = vreinterpretq_f64_u64 (
107*f3087befSAndrew Turner       vandq_u64 (is_neg, vreinterpretq_u64_f64 (d->pi)));
108*f3087befSAndrew Turner   float64x2_t mul = vbslq_f64 (a_le_half, v_f64 (-1.0), v_f64 (2.0));
109*f3087befSAndrew Turner   float64x2_t add = vbslq_f64 (a_le_half, d->pi_over_2, off);
110*f3087befSAndrew Turner 
111*f3087befSAndrew Turner   return vfmaq_f64 (add, mul, y);
112*f3087befSAndrew Turner }
113*f3087befSAndrew Turner 
114*f3087befSAndrew Turner TEST_SIG (V, D, 1, acos, -1.0, 1.0)
115*f3087befSAndrew Turner TEST_ULP (V_NAME_D1 (acos), 1.02)
116*f3087befSAndrew Turner TEST_DISABLE_FENV_IF_NOT (V_NAME_D1 (acos), WANT_SIMD_EXCEPT)
117*f3087befSAndrew Turner TEST_INTERVAL (V_NAME_D1 (acos), 0, Small, 5000)
118*f3087befSAndrew Turner TEST_INTERVAL (V_NAME_D1 (acos), Small, 0.5, 50000)
119*f3087befSAndrew Turner TEST_INTERVAL (V_NAME_D1 (acos), 0.5, 1.0, 50000)
120*f3087befSAndrew Turner TEST_INTERVAL (V_NAME_D1 (acos), 1.0, 0x1p11, 50000)
121*f3087befSAndrew Turner TEST_INTERVAL (V_NAME_D1 (acos), 0x1p11, inf, 20000)
122*f3087befSAndrew Turner TEST_INTERVAL (V_NAME_D1 (acos), -0, -inf, 20000)
123