1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * This file contains routines that merge one tdata_t tree, called the child, 30 * into another, called the parent. Note that these names are used mainly for 31 * convenience and to represent the direction of the merge. They are not meant 32 * to imply any relationship between the tdata_t graphs prior to the merge. 33 * 34 * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and 35 * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes. Simply 36 * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we 37 * clean up loose ends. 38 * 39 * The algorithm is as follows: 40 * 41 * 1. Mapping iidesc_t nodes 42 * 43 * For each child iidesc_t node, we first try to map its tdesc_t subgraph 44 * against the tdesc_t graph in the parent. For each node in the child subgraph 45 * that exists in the parent, a mapping between the two (between their type IDs) 46 * is established. For the child nodes that cannot be mapped onto existing 47 * parent nodes, a mapping is established between the child node ID and a 48 * newly-allocated ID that the node will use when it is re-created in the 49 * parent. These unmappable nodes are added to the md_tdtba (tdesc_t To Be 50 * Added) hash, which tracks nodes that need to be created in the parent. 51 * 52 * If all of the nodes in the subgraph for an iidesc_t in the child can be 53 * mapped to existing nodes in the parent, then we can try to map the child 54 * iidesc_t onto an iidesc_t in the parent. If we cannot find an equivalent 55 * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s), 56 * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list. This 57 * list tracks iidesc_t nodes that are to be created in the parent. 58 * 59 * While visiting the tdesc_t nodes, we may discover a forward declaration (a 60 * FORWARD tdesc_t) in the parent that is resolved in the child. That is, there 61 * may be a structure or union definition in the child with the same name as the 62 * forward declaration in the parent. If we find such a node, we record an 63 * association in the md_fdida (Forward => Definition ID Association) list 64 * between the parent ID of the forward declaration and the ID that the 65 * definition will use when re-created in the parent. 66 * 67 * 2. Creating new tdesc_t nodes (the md_tdtba hash) 68 * 69 * We have now attempted to map all tdesc_t nodes from the child into the 70 * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be 71 * created (or, as we so wittily call it, conjured) in the parent. We iterate 72 * through this hash, creating the indicated tdesc_t nodes. For a given tdesc_t 73 * node, conjuring requires two steps - the copying of the common tdesc_t data 74 * (name, type, etc) from the child node, and the creation of links from the 75 * newly-created node to the parent equivalents of other tdesc_t nodes pointed 76 * to by node being conjured. Note that in some cases, the targets of these 77 * links will be on the md_tdtba hash themselves, and may not have been created 78 * yet. As such, we can't establish the links from these new nodes into the 79 * parent graph. We therefore conjure them with links to nodes in the *child* 80 * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t 81 * To Be Remapped) hash. For example, a POINTER tdesc_t that could not be 82 * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr. 83 * 84 * 3. Creating new iidesc_t nodes (the md_iitba list) 85 * 86 * When we have completed step 2, all tdesc_t nodes have been created (or 87 * already existed) in the parent. Some of them may have incorrect links (the 88 * members of the md_tdtbr list), but they've all been created. As such, we can 89 * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph 90 * pointers correctly. We create each node, and attach the pointers to the 91 * appropriate parts of the parent tdesc_t graph. 92 * 93 * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list) 94 * 95 * As in step 3, we rely on the fact that all of the tdesc_t nodes have been 96 * created. Each entry in the md_tdtbr list is a pointer to where a link into 97 * the parent will be established. As saved in the md_tdtbr list, these 98 * pointers point into the child tdesc_t subgraph. We can thus get the target 99 * type ID from the child, look at the ID mapping to determine the desired link 100 * target, and redirect the link accordingly. 101 * 102 * 5. Parent => child forward declaration resolution 103 * 104 * If entries were made in the md_fdida list in step 1, we have forward 105 * declarations in the parent that need to be resolved to their definitions 106 * re-created in step 2 from the child. Using the md_fdida list, we can locate 107 * the definition for the forward declaration, and we can redirect all inbound 108 * edges to the forward declaration node to the actual definition. 109 * 110 * A pox on the house of anyone who changes the algorithm without updating 111 * this comment. 112 */ 113 114 #include <stdio.h> 115 #include <strings.h> 116 #include <assert.h> 117 #include <pthread.h> 118 119 #include "ctf_headers.h" 120 #include "ctftools.h" 121 #include "list.h" 122 #include "alist.h" 123 #include "memory.h" 124 #include "traverse.h" 125 126 typedef struct equiv_data equiv_data_t; 127 typedef struct merge_cb_data merge_cb_data_t; 128 129 /* 130 * There are two traversals in this file, for equivalency and for tdesc_t 131 * re-creation, that do not fit into the tdtraverse() framework. We have our 132 * own traversal mechanism and ops vector here for those two cases. 133 */ 134 typedef struct tdesc_ops { 135 const char *name; 136 int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *); 137 tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *); 138 } tdesc_ops_t; 139 extern tdesc_ops_t tdesc_ops[]; 140 141 /* 142 * The workhorse structure of tdata_t merging. Holds all lists of nodes to be 143 * processed during various phases of the merge algorithm. 144 */ 145 struct merge_cb_data { 146 tdata_t *md_parent; 147 tdata_t *md_tgt; 148 alist_t *md_ta; /* Type Association */ 149 alist_t *md_fdida; /* Forward -> Definition ID Association */ 150 list_t **md_iitba; /* iidesc_t nodes To Be Added to the parent */ 151 hash_t *md_tdtba; /* tdesc_t nodes To Be Added to the parent */ 152 list_t **md_tdtbr; /* tdesc_t nodes To Be Remapped */ 153 int md_flags; 154 }; /* merge_cb_data_t */ 155 156 /* 157 * When we first create a tdata_t from stabs data, we will have duplicate nodes. 158 * Normal merges, however, assume that the child tdata_t is already self-unique, 159 * and for speed reasons do not attempt to self-uniquify. If this flag is set, 160 * the merge algorithm will self-uniquify by avoiding the insertion of 161 * duplicates in the md_tdtdba list. 162 */ 163 #define MCD_F_SELFUNIQUIFY 0x1 164 165 /* 166 * When we merge the CTF data for the modules, we don't want it to contain any 167 * data that can be found in the reference module (usually genunix). If this 168 * flag is set, we're doing a merge between the fully merged tdata_t for this 169 * module and the tdata_t for the reference module, with the data unique to this 170 * module ending up in a third tdata_t. It is this third tdata_t that will end 171 * up in the .SUNW_ctf section for the module. 172 */ 173 #define MCD_F_REFMERGE 0x2 174 175 /* 176 * Mapping of child type IDs to parent type IDs 177 */ 178 179 static void 180 add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid) 181 { 182 debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid); 183 184 assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL)); 185 assert(srcid != 0 && tgtid != 0); 186 187 alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid); 188 } 189 190 static tid_t 191 get_mapping(alist_t *ta, int srcid) 192 { 193 void *ltgtid; 194 195 if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)<gtid)) 196 return ((uintptr_t)ltgtid); 197 else 198 return (0); 199 } 200 201 /* 202 * Determining equivalence of tdesc_t subgraphs 203 */ 204 205 struct equiv_data { 206 alist_t *ed_ta; 207 tdesc_t *ed_node; 208 tdesc_t *ed_tgt; 209 210 int ed_clear_mark; 211 int ed_cur_mark; 212 int ed_selfuniquify; 213 }; /* equiv_data_t */ 214 215 static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *); 216 217 /*ARGSUSED2*/ 218 static int 219 equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused) 220 { 221 intr_t *si = stdp->t_intr; 222 intr_t *ti = ttdp->t_intr; 223 224 if (si->intr_type != ti->intr_type || 225 si->intr_signed != ti->intr_signed || 226 si->intr_offset != ti->intr_offset || 227 si->intr_nbits != ti->intr_nbits) 228 return (0); 229 230 if (si->intr_type == INTR_INT && 231 si->intr_iformat != ti->intr_iformat) 232 return (0); 233 else if (si->intr_type == INTR_REAL && 234 si->intr_fformat != ti->intr_fformat) 235 return (0); 236 237 return (1); 238 } 239 240 static int 241 equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 242 { 243 return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed)); 244 } 245 246 static int 247 equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 248 { 249 fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef; 250 int i; 251 252 if (fn1->fn_nargs != fn2->fn_nargs || 253 fn1->fn_vargs != fn2->fn_vargs) 254 return (0); 255 256 if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed)) 257 return (0); 258 259 for (i = 0; i < (int) fn1->fn_nargs; i++) { 260 if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed)) 261 return (0); 262 } 263 264 return (1); 265 } 266 267 static int 268 equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 269 { 270 ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef; 271 272 if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) || 273 !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed)) 274 return (0); 275 276 if (ar1->ad_nelems != ar2->ad_nelems) 277 return (0); 278 279 return (1); 280 } 281 282 static int 283 equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 284 { 285 mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members; 286 287 while (ml1 && ml2) { 288 if (ml1->ml_offset != ml2->ml_offset || 289 strcmp(ml1->ml_name, ml2->ml_name) != 0 || 290 ml1->ml_size != ml2->ml_size || 291 !equiv_node(ml1->ml_type, ml2->ml_type, ed)) 292 return (0); 293 294 ml1 = ml1->ml_next; 295 ml2 = ml2->ml_next; 296 } 297 298 if (ml1 || ml2) 299 return (0); 300 301 return (1); 302 } 303 304 /*ARGSUSED2*/ 305 static int 306 equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused) 307 { 308 elist_t *el1 = stdp->t_emem; 309 elist_t *el2 = ttdp->t_emem; 310 311 while (el1 && el2) { 312 if (el1->el_number != el2->el_number || 313 strcmp(el1->el_name, el2->el_name) != 0) 314 return (0); 315 316 el1 = el1->el_next; 317 el2 = el2->el_next; 318 } 319 320 if (el1 || el2) 321 return (0); 322 323 return (1); 324 } 325 326 /*ARGSUSED*/ 327 static int 328 equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused) 329 { 330 /* foul, evil, and very bad - this is a "shouldn't happen" */ 331 assert(1 == 0); 332 333 return (0); 334 } 335 336 static int 337 fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp) 338 { 339 tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp); 340 341 return (defn->t_type == STRUCT || defn->t_type == UNION || 342 defn->t_type == ENUM); 343 } 344 345 static int 346 equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed) 347 { 348 int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *); 349 int mapping; 350 351 if (ctdp->t_emark > ed->ed_clear_mark && 352 mtdp->t_emark > ed->ed_clear_mark) 353 return (ctdp->t_emark == mtdp->t_emark); 354 355 /* 356 * In normal (non-self-uniquify) mode, we don't want to do equivalency 357 * checking on a subgraph that has already been checked. If a mapping 358 * has already been established for a given child node, we can simply 359 * compare the mapping for the child node with the ID of the parent 360 * node. If we are in self-uniquify mode, then we're comparing two 361 * subgraphs within the child graph, and thus need to ignore any 362 * type mappings that have been created, as they are only valid into the 363 * parent. 364 */ 365 if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 && 366 mapping == mtdp->t_id && !ed->ed_selfuniquify) 367 return (1); 368 369 if (!streq(ctdp->t_name, mtdp->t_name)) 370 return (0); 371 372 if (ctdp->t_type != mtdp->t_type) { 373 if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD) 374 return (fwd_equiv(ctdp, mtdp)); 375 else 376 return (0); 377 } 378 379 ctdp->t_emark = ed->ed_cur_mark; 380 mtdp->t_emark = ed->ed_cur_mark; 381 ed->ed_cur_mark++; 382 383 if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL) 384 return (equiv(ctdp, mtdp, ed)); 385 386 return (1); 387 } 388 389 /* 390 * We perform an equivalency check on two subgraphs by traversing through them 391 * in lockstep. If a given node is equivalent in both the parent and the child, 392 * we mark it in both subgraphs, using the t_emark field, with a monotonically 393 * increasing number. If, in the course of the traversal, we reach a node that 394 * we have visited and numbered during this equivalency check, we have a cycle. 395 * If the previously-visited nodes don't have the same emark, then the edges 396 * that brought us to these nodes are not equivalent, and so the check ends. 397 * If the emarks are the same, the edges are equivalent. We then backtrack and 398 * continue the traversal. If we have exhausted all edges in the subgraph, and 399 * have not found any inequivalent nodes, then the subgraphs are equivalent. 400 */ 401 static int 402 equiv_cb(void *bucket, void *arg) 403 { 404 equiv_data_t *ed = arg; 405 tdesc_t *mtdp = bucket; 406 tdesc_t *ctdp = ed->ed_node; 407 408 ed->ed_clear_mark = ed->ed_cur_mark + 1; 409 ed->ed_cur_mark = ed->ed_clear_mark + 1; 410 411 if (equiv_node(ctdp, mtdp, ed)) { 412 debug(3, "equiv_node matched %d <%x> %d <%x>\n", 413 ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id); 414 ed->ed_tgt = mtdp; 415 /* matched. stop looking */ 416 return (-1); 417 } 418 419 return (0); 420 } 421 422 /*ARGSUSED1*/ 423 static int 424 map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private) 425 { 426 merge_cb_data_t *mcd = private; 427 428 if (get_mapping(mcd->md_ta, ctdp->t_id) > 0) 429 return (0); 430 431 return (1); 432 } 433 434 /*ARGSUSED1*/ 435 static int 436 map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private) 437 { 438 merge_cb_data_t *mcd = private; 439 equiv_data_t ed; 440 441 ed.ed_ta = mcd->md_ta; 442 ed.ed_clear_mark = mcd->md_parent->td_curemark; 443 ed.ed_cur_mark = mcd->md_parent->td_curemark + 1; 444 ed.ed_node = ctdp; 445 ed.ed_selfuniquify = 0; 446 447 debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp)); 448 449 if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp, 450 equiv_cb, &ed) < 0) { 451 /* We found an equivalent node */ 452 if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) { 453 int id = mcd->md_tgt->td_nextid++; 454 455 #ifdef __FreeBSD__ 456 if (CTF_TYPE_ISCHILD(id)) 457 terminate("No room for additional types\n"); 458 #endif 459 debug(3, "Creating new defn type %d <%x>\n", id, id); 460 add_mapping(mcd->md_ta, ctdp->t_id, id); 461 alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt, 462 (void *)(ulong_t)id); 463 hash_add(mcd->md_tdtba, ctdp); 464 } else 465 add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id); 466 467 } else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash, 468 equiv_cb, &ed) < 0) { 469 /* 470 * We didn't find an equivalent node by looking through the 471 * layout hash, but we somehow found it by performing an 472 * exhaustive search through the entire graph. This usually 473 * means that the "name" hash function is broken. 474 */ 475 aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id, 476 tdesc_name(ctdp), ed.ed_tgt->t_id); 477 } else { 478 int id = mcd->md_tgt->td_nextid++; 479 480 #ifdef __FreeBSD__ 481 if (CTF_TYPE_ISCHILD(id)) 482 terminate("No room for additional types\n"); 483 #endif 484 debug(3, "Creating new type %d <%x>\n", id, id); 485 add_mapping(mcd->md_ta, ctdp->t_id, id); 486 hash_add(mcd->md_tdtba, ctdp); 487 } 488 489 mcd->md_parent->td_curemark = ed.ed_cur_mark + 1; 490 491 return (1); 492 } 493 494 /*ARGSUSED1*/ 495 static int 496 map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private) 497 { 498 merge_cb_data_t *mcd = private; 499 equiv_data_t ed; 500 501 ed.ed_ta = mcd->md_ta; 502 ed.ed_clear_mark = mcd->md_parent->td_curemark; 503 ed.ed_cur_mark = mcd->md_parent->td_curemark + 1; 504 ed.ed_node = ctdp; 505 ed.ed_selfuniquify = 1; 506 ed.ed_tgt = NULL; 507 508 if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) { 509 debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id, 510 ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id); 511 add_mapping(mcd->md_ta, ctdp->t_id, 512 get_mapping(mcd->md_ta, ed.ed_tgt->t_id)); 513 } else if (debug_level > 1 && hash_iter(mcd->md_tdtba, 514 equiv_cb, &ed) < 0) { 515 /* 516 * We didn't find an equivalent node using the quick way (going 517 * through the hash normally), but we did find it by iterating 518 * through the entire hash. This usually means that the hash 519 * function is broken. 520 */ 521 aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n", 522 ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id, 523 ed.ed_tgt->t_id); 524 } else { 525 int id = mcd->md_tgt->td_nextid++; 526 527 debug(3, "Creating new type %d <%x>\n", id, id); 528 add_mapping(mcd->md_ta, ctdp->t_id, id); 529 hash_add(mcd->md_tdtba, ctdp); 530 } 531 532 mcd->md_parent->td_curemark = ed.ed_cur_mark + 1; 533 534 return (1); 535 } 536 537 static tdtrav_cb_f map_pre[] = { 538 NULL, 539 map_td_tree_pre, /* intrinsic */ 540 map_td_tree_pre, /* pointer */ 541 map_td_tree_pre, /* array */ 542 map_td_tree_pre, /* function */ 543 map_td_tree_pre, /* struct */ 544 map_td_tree_pre, /* union */ 545 map_td_tree_pre, /* enum */ 546 map_td_tree_pre, /* forward */ 547 map_td_tree_pre, /* typedef */ 548 tdtrav_assert, /* typedef_unres */ 549 map_td_tree_pre, /* volatile */ 550 map_td_tree_pre, /* const */ 551 map_td_tree_pre /* restrict */ 552 }; 553 554 static tdtrav_cb_f map_post[] = { 555 NULL, 556 map_td_tree_post, /* intrinsic */ 557 map_td_tree_post, /* pointer */ 558 map_td_tree_post, /* array */ 559 map_td_tree_post, /* function */ 560 map_td_tree_post, /* struct */ 561 map_td_tree_post, /* union */ 562 map_td_tree_post, /* enum */ 563 map_td_tree_post, /* forward */ 564 map_td_tree_post, /* typedef */ 565 tdtrav_assert, /* typedef_unres */ 566 map_td_tree_post, /* volatile */ 567 map_td_tree_post, /* const */ 568 map_td_tree_post /* restrict */ 569 }; 570 571 static tdtrav_cb_f map_self_post[] = { 572 NULL, 573 map_td_tree_self_post, /* intrinsic */ 574 map_td_tree_self_post, /* pointer */ 575 map_td_tree_self_post, /* array */ 576 map_td_tree_self_post, /* function */ 577 map_td_tree_self_post, /* struct */ 578 map_td_tree_self_post, /* union */ 579 map_td_tree_self_post, /* enum */ 580 map_td_tree_self_post, /* forward */ 581 map_td_tree_self_post, /* typedef */ 582 tdtrav_assert, /* typedef_unres */ 583 map_td_tree_self_post, /* volatile */ 584 map_td_tree_self_post, /* const */ 585 map_td_tree_self_post /* restrict */ 586 }; 587 588 /* 589 * Determining equivalence of iidesc_t nodes 590 */ 591 592 typedef struct iifind_data { 593 iidesc_t *iif_template; 594 alist_t *iif_ta; 595 int iif_newidx; 596 int iif_refmerge; 597 } iifind_data_t; 598 599 /* 600 * Check to see if this iidesc_t (node) - the current one on the list we're 601 * iterating through - matches the target one (iif->iif_template). Return -1 602 * if it matches, to stop the iteration. 603 */ 604 static int 605 iidesc_match(void *data, void *arg) 606 { 607 iidesc_t *node = data; 608 iifind_data_t *iif = arg; 609 int i; 610 611 if (node->ii_type != iif->iif_template->ii_type || 612 !streq(node->ii_name, iif->iif_template->ii_name) || 613 node->ii_dtype->t_id != iif->iif_newidx) 614 return (0); 615 616 if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) && 617 !streq(node->ii_owner, iif->iif_template->ii_owner)) 618 return (0); 619 620 if (node->ii_nargs != iif->iif_template->ii_nargs) 621 return (0); 622 623 for (i = 0; i < node->ii_nargs; i++) { 624 if (get_mapping(iif->iif_ta, 625 iif->iif_template->ii_args[i]->t_id) != 626 node->ii_args[i]->t_id) 627 return (0); 628 } 629 630 if (iif->iif_refmerge) { 631 switch (iif->iif_template->ii_type) { 632 case II_GFUN: 633 case II_SFUN: 634 case II_GVAR: 635 case II_SVAR: 636 debug(3, "suppressing duping of %d %s from %s\n", 637 iif->iif_template->ii_type, 638 iif->iif_template->ii_name, 639 (iif->iif_template->ii_owner ? 640 iif->iif_template->ii_owner : "NULL")); 641 return (0); 642 case II_NOT: 643 case II_PSYM: 644 case II_SOU: 645 case II_TYPE: 646 break; 647 } 648 } 649 650 return (-1); 651 } 652 653 static int 654 merge_type_cb(void *data, void *arg) 655 { 656 iidesc_t *sii = data; 657 merge_cb_data_t *mcd = arg; 658 iifind_data_t iif; 659 tdtrav_cb_f *post; 660 661 post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post); 662 663 /* Map the tdesc nodes */ 664 (void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post, 665 mcd); 666 667 /* Map the iidesc nodes */ 668 iif.iif_template = sii; 669 iif.iif_ta = mcd->md_ta; 670 iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id); 671 iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE); 672 673 if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match, 674 &iif) == 1) 675 /* successfully mapped */ 676 return (1); 677 678 debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"), 679 sii->ii_type); 680 681 list_add(mcd->md_iitba, sii); 682 683 return (0); 684 } 685 686 static int 687 remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself, 688 merge_cb_data_t *mcd) 689 { 690 tdesc_t *tgt = NULL; 691 tdesc_t template; 692 int oldid = oldtgt->t_id; 693 694 if (oldid == selftid) { 695 *tgtp = newself; 696 return (1); 697 } 698 699 if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0) 700 aborterr("failed to get mapping for tid %d <%x>\n", oldid, oldid); 701 702 if (!hash_find(mcd->md_parent->td_idhash, (void *)&template, 703 (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) || 704 !hash_find(mcd->md_tgt->td_idhash, (void *)&template, 705 (void *)&tgt))) { 706 debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id, 707 template.t_id, oldid, oldid); 708 *tgtp = oldtgt; 709 list_add(mcd->md_tdtbr, tgtp); 710 return (0); 711 } 712 713 *tgtp = tgt; 714 return (1); 715 } 716 717 static tdesc_t * 718 conjure_template(tdesc_t *old, int newselfid) 719 { 720 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 721 722 new->t_name = old->t_name ? xstrdup(old->t_name) : NULL; 723 new->t_type = old->t_type; 724 new->t_size = old->t_size; 725 new->t_id = newselfid; 726 new->t_flags = old->t_flags; 727 728 return (new); 729 } 730 731 /*ARGSUSED2*/ 732 static tdesc_t * 733 conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused) 734 { 735 tdesc_t *new = conjure_template(old, newselfid); 736 737 new->t_intr = xmalloc(sizeof (intr_t)); 738 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 739 740 return (new); 741 } 742 743 static tdesc_t * 744 conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 745 { 746 tdesc_t *new = conjure_template(old, newselfid); 747 748 (void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd); 749 750 return (new); 751 } 752 753 static tdesc_t * 754 conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 755 { 756 tdesc_t *new = conjure_template(old, newselfid); 757 fndef_t *nfn = xmalloc(sizeof (fndef_t)); 758 fndef_t *ofn = old->t_fndef; 759 int i; 760 761 (void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd); 762 763 nfn->fn_nargs = ofn->fn_nargs; 764 nfn->fn_vargs = ofn->fn_vargs; 765 766 if (nfn->fn_nargs > 0) 767 nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs); 768 769 for (i = 0; i < (int) ofn->fn_nargs; i++) { 770 (void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id, 771 new, mcd); 772 } 773 774 new->t_fndef = nfn; 775 776 return (new); 777 } 778 779 static tdesc_t * 780 conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 781 { 782 tdesc_t *new = conjure_template(old, newselfid); 783 ardef_t *nar = xmalloc(sizeof (ardef_t)); 784 ardef_t *oar = old->t_ardef; 785 786 (void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new, 787 mcd); 788 (void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new, 789 mcd); 790 791 nar->ad_nelems = oar->ad_nelems; 792 793 new->t_ardef = nar; 794 795 return (new); 796 } 797 798 static tdesc_t * 799 conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 800 { 801 tdesc_t *new = conjure_template(old, newselfid); 802 mlist_t *omem, **nmemp; 803 804 for (omem = old->t_members, nmemp = &new->t_members; 805 omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) { 806 *nmemp = xmalloc(sizeof (mlist_t)); 807 (*nmemp)->ml_offset = omem->ml_offset; 808 (*nmemp)->ml_size = omem->ml_size; 809 (*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name"); 810 (void) remap_node(&((*nmemp)->ml_type), omem->ml_type, 811 old->t_id, new, mcd); 812 } 813 *nmemp = NULL; 814 815 return (new); 816 } 817 818 /*ARGSUSED2*/ 819 static tdesc_t * 820 conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused) 821 { 822 tdesc_t *new = conjure_template(old, newselfid); 823 elist_t *oel, **nelp; 824 825 for (oel = old->t_emem, nelp = &new->t_emem; 826 oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) { 827 *nelp = xmalloc(sizeof (elist_t)); 828 (*nelp)->el_name = xstrdup(oel->el_name); 829 (*nelp)->el_number = oel->el_number; 830 } 831 *nelp = NULL; 832 833 return (new); 834 } 835 836 /*ARGSUSED2*/ 837 static tdesc_t * 838 conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 839 { 840 tdesc_t *new = conjure_template(old, newselfid); 841 842 list_add(&mcd->md_tgt->td_fwdlist, new); 843 844 return (new); 845 } 846 847 /*ARGSUSED*/ 848 static tdesc_t * 849 conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused) 850 { 851 assert(1 == 0); 852 return (NULL); 853 } 854 855 static iidesc_t * 856 conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd) 857 { 858 iidesc_t *new = iidesc_dup(old); 859 int i; 860 861 (void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd); 862 for (i = 0; i < new->ii_nargs; i++) { 863 (void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL, 864 mcd); 865 } 866 867 return (new); 868 } 869 870 static int 871 fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private) 872 { 873 alist_t *map = private; 874 void *defn; 875 876 if (!alist_find(map, (void *)fwd, (void **)&defn)) 877 return (0); 878 879 debug(3, "Redirecting an edge to %s\n", tdesc_name(defn)); 880 881 *fwdp = defn; 882 883 return (1); 884 } 885 886 static tdtrav_cb_f fwd_redir_cbs[] = { 887 NULL, 888 NULL, /* intrinsic */ 889 NULL, /* pointer */ 890 NULL, /* array */ 891 NULL, /* function */ 892 NULL, /* struct */ 893 NULL, /* union */ 894 NULL, /* enum */ 895 fwd_redir, /* forward */ 896 NULL, /* typedef */ 897 tdtrav_assert, /* typedef_unres */ 898 NULL, /* volatile */ 899 NULL, /* const */ 900 NULL /* restrict */ 901 }; 902 903 typedef struct redir_mstr_data { 904 tdata_t *rmd_tgt; 905 alist_t *rmd_map; 906 } redir_mstr_data_t; 907 908 static int 909 redir_mstr_fwd_cb(void *name, void *value, void *arg) 910 { 911 tdesc_t *fwd = name; 912 int defnid = (uintptr_t)value; 913 redir_mstr_data_t *rmd = arg; 914 tdesc_t template; 915 tdesc_t *defn; 916 917 template.t_id = defnid; 918 919 if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template, 920 (void *)&defn)) { 921 aborterr("Couldn't unforward %d (%s)\n", defnid, 922 tdesc_name(defn)); 923 } 924 925 debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn)); 926 927 alist_add(rmd->rmd_map, (void *)fwd, (void *)defn); 928 929 return (1); 930 } 931 932 static void 933 redir_mstr_fwds(merge_cb_data_t *mcd) 934 { 935 redir_mstr_data_t rmd; 936 alist_t *map = alist_new(NULL, NULL); 937 938 rmd.rmd_tgt = mcd->md_tgt; 939 rmd.rmd_map = map; 940 941 if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) { 942 (void) iitraverse_hash(mcd->md_tgt->td_iihash, 943 &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map); 944 } 945 946 alist_free(map); 947 } 948 949 static int 950 add_iitba_cb(void *data, void *private) 951 { 952 merge_cb_data_t *mcd = private; 953 iidesc_t *tba = data; 954 iidesc_t *new; 955 iifind_data_t iif; 956 int newidx; 957 958 newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id); 959 assert(newidx != -1); 960 961 (void) list_remove(mcd->md_iitba, data, NULL, NULL); 962 963 iif.iif_template = tba; 964 iif.iif_ta = mcd->md_ta; 965 iif.iif_newidx = newidx; 966 iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE); 967 968 if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match, 969 &iif) == 1) { 970 debug(3, "iidesc_t %s already exists\n", 971 (tba->ii_name ? tba->ii_name : "(anon)")); 972 return (1); 973 } 974 975 new = conjure_iidesc(tba, mcd); 976 hash_add(mcd->md_tgt->td_iihash, new); 977 978 return (1); 979 } 980 981 static int 982 add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd) 983 { 984 tdesc_t *newtdp; 985 tdesc_t template; 986 987 template.t_id = newid; 988 assert(hash_find(mcd->md_parent->td_idhash, 989 (void *)&template, NULL) == 0); 990 991 debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n", 992 oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id, 993 oldtdp->t_id, newid, newid); 994 995 if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid, 996 mcd)) == NULL) 997 /* couldn't map everything */ 998 return (0); 999 1000 debug(3, "succeeded\n"); 1001 1002 hash_add(mcd->md_tgt->td_idhash, newtdp); 1003 hash_add(mcd->md_tgt->td_layouthash, newtdp); 1004 1005 return (1); 1006 } 1007 1008 static int 1009 add_tdtba_cb(void *data, void *arg) 1010 { 1011 tdesc_t *tdp = data; 1012 merge_cb_data_t *mcd = arg; 1013 int newid; 1014 int rc; 1015 1016 newid = get_mapping(mcd->md_ta, tdp->t_id); 1017 assert(newid != -1); 1018 1019 if ((rc = add_tdesc(tdp, newid, mcd))) 1020 hash_remove(mcd->md_tdtba, (void *)tdp); 1021 1022 return (rc); 1023 } 1024 1025 static int 1026 add_tdtbr_cb(void *data, void *arg) 1027 { 1028 tdesc_t **tdpp = data; 1029 merge_cb_data_t *mcd = arg; 1030 1031 debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id); 1032 1033 if (!remap_node(tdpp, *tdpp, -1, NULL, mcd)) 1034 return (0); 1035 1036 (void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL); 1037 return (1); 1038 } 1039 1040 static void 1041 merge_types(hash_t *src, merge_cb_data_t *mcd) 1042 { 1043 list_t *iitba = NULL; 1044 list_t *tdtbr = NULL; 1045 int iirc, tdrc; 1046 1047 mcd->md_iitba = &iitba; 1048 mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash, 1049 tdesc_layoutcmp); 1050 mcd->md_tdtbr = &tdtbr; 1051 1052 (void) hash_iter(src, merge_type_cb, mcd); 1053 1054 tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd); 1055 debug(3, "add_tdtba_cb added %d items\n", tdrc); 1056 1057 iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd); 1058 debug(3, "add_iitba_cb added %d items\n", iirc); 1059 1060 assert(list_count(*mcd->md_iitba) == 0 && 1061 hash_count(mcd->md_tdtba) == 0); 1062 1063 tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd); 1064 debug(3, "add_tdtbr_cb added %d items\n", tdrc); 1065 1066 if (list_count(*mcd->md_tdtbr) != 0) 1067 aborterr("Couldn't remap all nodes\n"); 1068 1069 /* 1070 * We now have an alist of master forwards and the ids of the new master 1071 * definitions for those forwards in mcd->md_fdida. By this point, 1072 * we're guaranteed that all of the master definitions referenced in 1073 * fdida have been added to the master tree. We now traverse through 1074 * the master tree, redirecting all edges inbound to forwards that have 1075 * definitions to those definitions. 1076 */ 1077 if (mcd->md_parent == mcd->md_tgt) { 1078 redir_mstr_fwds(mcd); 1079 } 1080 } 1081 1082 void 1083 merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify) 1084 { 1085 merge_cb_data_t mcd; 1086 1087 cur->td_ref++; 1088 mstr->td_ref++; 1089 if (tgt) 1090 tgt->td_ref++; 1091 1092 assert(cur->td_ref == 1 && mstr->td_ref == 1 && 1093 (tgt == NULL || tgt->td_ref == 1)); 1094 1095 mcd.md_parent = mstr; 1096 mcd.md_tgt = (tgt ? tgt : mstr); 1097 mcd.md_ta = alist_new(NULL, NULL); 1098 mcd.md_fdida = alist_new(NULL, NULL); 1099 mcd.md_flags = 0; 1100 1101 if (selfuniquify) 1102 mcd.md_flags |= MCD_F_SELFUNIQUIFY; 1103 if (tgt) 1104 mcd.md_flags |= MCD_F_REFMERGE; 1105 1106 mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen); 1107 mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark); 1108 1109 merge_types(cur->td_iihash, &mcd); 1110 1111 if (debug_level >= 3) { 1112 debug(3, "Type association stats\n"); 1113 alist_stats(mcd.md_ta, 0); 1114 debug(3, "Layout hash stats\n"); 1115 hash_stats(mcd.md_tgt->td_layouthash, 1); 1116 } 1117 1118 alist_free(mcd.md_fdida); 1119 alist_free(mcd.md_ta); 1120 1121 cur->td_ref--; 1122 mstr->td_ref--; 1123 if (tgt) 1124 tgt->td_ref--; 1125 } 1126 1127 tdesc_ops_t tdesc_ops[] = { 1128 { "ERROR! BAD tdesc TYPE", NULL, NULL }, 1129 { "intrinsic", equiv_intrinsic, conjure_intrinsic }, 1130 { "pointer", equiv_plain, conjure_plain }, 1131 { "array", equiv_array, conjure_array }, 1132 { "function", equiv_function, conjure_function }, 1133 { "struct", equiv_su, conjure_su }, 1134 { "union", equiv_su, conjure_su }, 1135 { "enum", equiv_enum, conjure_enum }, 1136 { "forward", NULL, conjure_forward }, 1137 { "typedef", equiv_plain, conjure_plain }, 1138 { "typedef_unres", equiv_assert, conjure_assert }, 1139 { "volatile", equiv_plain, conjure_plain }, 1140 { "const", equiv_plain, conjure_plain }, 1141 { "restrict", equiv_plain, conjure_plain } 1142 }; 1143