xref: /freebsd-src/cddl/contrib/opensolaris/tools/ctf/cvt/dwarf.c (revision c7cdfecc89a74be5407ba79d8c10d2257660e2ef)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DWARF to tdata conversion
30  *
31  * For the most part, conversion is straightforward, proceeding in two passes.
32  * On the first pass, we iterate through every die, creating new type nodes as
33  * necessary.  Referenced tdesc_t's are created in an uninitialized state, thus
34  * allowing type reference pointers to be filled in.  If the tdesc_t
35  * corresponding to a given die can be completely filled out (sizes and offsets
36  * calculated, and so forth) without using any referenced types, the tdesc_t is
37  * marked as resolved.  Consider an array type.  If the type corresponding to
38  * the array contents has not yet been processed, we will create a blank tdesc
39  * for the contents type (only the type ID will be filled in, relying upon the
40  * later portion of the first pass to encounter and complete the referenced
41  * type).  We will then attempt to determine the size of the array.  If the
42  * array has a byte size attribute, we will have completely characterized the
43  * array type, and will be able to mark it as resolved.  The lack of a byte
44  * size attribute, on the other hand, will prevent us from fully resolving the
45  * type, as the size will only be calculable with reference to the contents
46  * type, which has not, as yet, been encountered.  The array type will thus be
47  * left without the resolved flag, and the first pass will continue.
48  *
49  * When we begin the second pass, we will have created tdesc_t nodes for every
50  * type in the section.  We will traverse the tree, from the iidescs down,
51  * processing each unresolved node.  As the referenced nodes will have been
52  * populated, the array type used in our example above will be able to use the
53  * size of the referenced types (if available) to determine its own type.  The
54  * traversal will be repeated until all types have been resolved or we have
55  * failed to make progress.  When all tdescs have been resolved, the conversion
56  * is complete.
57  *
58  * There are, as always, a few special cases that are handled during the first
59  * and second passes:
60  *
61  *  1. Empty enums - GCC will occasionally emit an enum without any members.
62  *     Later on in the file, it will emit the same enum type, though this time
63  *     with the full complement of members.  All references to the memberless
64  *     enum need to be redirected to the full definition.  During the first
65  *     pass, each enum is entered in dm_enumhash, along with a pointer to its
66  *     corresponding tdesc_t.  If, during the second pass, we encounter a
67  *     memberless enum, we use the hash to locate the full definition.  All
68  *     tdescs referencing the empty enum are then redirected.
69  *
70  *  2. Forward declarations - If the compiler sees a forward declaration for
71  *     a structure, followed by the definition of that structure, it will emit
72  *     DWARF data for both the forward declaration and the definition.  We need
73  *     to resolve the forward declarations when possible, by redirecting
74  *     forward-referencing tdescs to the actual struct/union definitions.  This
75  *     redirection is done completely within the first pass.  We begin by
76  *     recording all forward declarations in dw_fwdhash.  When we define a
77  *     structure, we check to see if there have been any corresponding forward
78  *     declarations.  If so, we redirect the tdescs which referenced the forward
79  *     declarations to the structure or union definition.
80  *
81  * XXX see if a post traverser will allow the elimination of repeated pass 2
82  * traversals.
83  */
84 
85 #include <stdio.h>
86 #include <stdlib.h>
87 #include <string.h>
88 #include <strings.h>
89 #include <errno.h>
90 #include <libelf.h>
91 #include <libdwarf.h>
92 #include <libgen.h>
93 #include <dwarf.h>
94 
95 #include "ctf_headers.h"
96 #include "ctftools.h"
97 #include "memory.h"
98 #include "list.h"
99 #include "traverse.h"
100 
101 /* The version of DWARF which we support. */
102 #define	DWARF_VERSION	2
103 
104 /*
105  * We need to define a couple of our own intrinsics, to smooth out some of the
106  * differences between the GCC and DevPro DWARF emitters.  See the referenced
107  * routines and the special cases in the file comment for more details.
108  *
109  * Type IDs are 32 bits wide.  We're going to use the top of that field to
110  * indicate types that we've created ourselves.
111  */
112 #define	TID_FILEMAX		0x3fffffff	/* highest tid from file */
113 #define	TID_VOID		0x40000001	/* see die_void() */
114 #define	TID_LONG		0x40000002	/* see die_array() */
115 
116 #define	TID_MFGTID_BASE		0x40000003	/* first mfg'd tid */
117 
118 /*
119  * To reduce the staggering amount of error-handling code that would otherwise
120  * be required, the attribute-retrieval routines handle most of their own
121  * errors.  If the following flag is supplied as the value of the `req'
122  * argument, they will also handle the absence of a requested attribute by
123  * terminating the program.
124  */
125 #define	DW_ATTR_REQ	1
126 
127 #define	TDESC_HASH_BUCKETS	511
128 
129 typedef struct dwarf {
130 	Dwarf_Debug dw_dw;		/* for libdwarf */
131 	Dwarf_Error dw_err;		/* for libdwarf */
132 	Dwarf_Off dw_maxoff;		/* highest legal offset in this cu */
133 	tdata_t *dw_td;			/* root of the tdesc/iidesc tree */
134 	hash_t *dw_tidhash;		/* hash of tdescs by t_id */
135 	hash_t *dw_fwdhash;		/* hash of fwd decls by name */
136 	hash_t *dw_enumhash;		/* hash of memberless enums by name */
137 	tdesc_t *dw_void;		/* manufactured void type */
138 	tdesc_t *dw_long;		/* manufactured long type for arrays */
139 	size_t dw_ptrsz;		/* size of a pointer in this file */
140 	tid_t dw_mfgtid_last;		/* last mfg'd type ID used */
141 	uint_t dw_nunres;		/* count of unresolved types */
142 	char *dw_cuname;		/* name of compilation unit */
143 } dwarf_t;
144 
145 static void die_create_one(dwarf_t *, Dwarf_Die);
146 static void die_create(dwarf_t *, Dwarf_Die);
147 
148 static tid_t
149 mfgtid_next(dwarf_t *dw)
150 {
151 	return (++dw->dw_mfgtid_last);
152 }
153 
154 static void
155 tdesc_add(dwarf_t *dw, tdesc_t *tdp)
156 {
157 	hash_add(dw->dw_tidhash, tdp);
158 }
159 
160 static tdesc_t *
161 tdesc_lookup(dwarf_t *dw, int tid)
162 {
163 	tdesc_t tmpl;
164 	void *tdp;
165 
166 	tmpl.t_id = tid;
167 
168 	if (hash_find(dw->dw_tidhash, &tmpl, &tdp))
169 		return (tdp);
170 	else
171 		return (NULL);
172 }
173 
174 /*
175  * Resolve a tdesc down to a node which should have a size.  Returns the size,
176  * zero if the size hasn't yet been determined.
177  */
178 static size_t
179 tdesc_size(tdesc_t *tdp)
180 {
181 	for (;;) {
182 		switch (tdp->t_type) {
183 		case INTRINSIC:
184 		case POINTER:
185 		case ARRAY:
186 		case FUNCTION:
187 		case STRUCT:
188 		case UNION:
189 		case ENUM:
190 			return (tdp->t_size);
191 
192 		case FORWARD:
193 			return (0);
194 
195 		case TYPEDEF:
196 		case VOLATILE:
197 		case CONST:
198 		case RESTRICT:
199 			tdp = tdp->t_tdesc;
200 			continue;
201 
202 		case 0: /* not yet defined */
203 			return (0);
204 
205 		default:
206 			terminate("tdp %u: tdesc_size on unknown type %d\n",
207 			    tdp->t_id, tdp->t_type);
208 		}
209 	}
210 }
211 
212 static size_t
213 tdesc_bitsize(tdesc_t *tdp)
214 {
215 	for (;;) {
216 		switch (tdp->t_type) {
217 		case INTRINSIC:
218 			return (tdp->t_intr->intr_nbits);
219 
220 		case ARRAY:
221 		case FUNCTION:
222 		case STRUCT:
223 		case UNION:
224 		case ENUM:
225 		case POINTER:
226 			return (tdp->t_size * NBBY);
227 
228 		case FORWARD:
229 			return (0);
230 
231 		case TYPEDEF:
232 		case VOLATILE:
233 		case RESTRICT:
234 		case CONST:
235 			tdp = tdp->t_tdesc;
236 			continue;
237 
238 		case 0: /* not yet defined */
239 			return (0);
240 
241 		default:
242 			terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
243 			    tdp->t_id, tdp->t_type);
244 		}
245 	}
246 }
247 
248 static tdesc_t *
249 tdesc_basetype(tdesc_t *tdp)
250 {
251 	for (;;) {
252 		switch (tdp->t_type) {
253 		case TYPEDEF:
254 		case VOLATILE:
255 		case RESTRICT:
256 		case CONST:
257 			tdp = tdp->t_tdesc;
258 			break;
259 		case 0: /* not yet defined */
260 			return (NULL);
261 		default:
262 			return (tdp);
263 		}
264 	}
265 }
266 
267 static Dwarf_Off
268 die_off(dwarf_t *dw, Dwarf_Die die)
269 {
270 	Dwarf_Off off;
271 
272 	if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
273 		return (off);
274 
275 	terminate("failed to get offset for die: %s\n",
276 	    dwarf_errmsg(&dw->dw_err));
277 	/*NOTREACHED*/
278 	return (0);
279 }
280 
281 static Dwarf_Die
282 die_sibling(dwarf_t *dw, Dwarf_Die die)
283 {
284 	Dwarf_Die sib;
285 	int rc;
286 
287 	if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
288 	    DW_DLV_OK)
289 		return (sib);
290 	else if (rc == DW_DLV_NO_ENTRY)
291 		return (NULL);
292 
293 	terminate("die %llu: failed to find type sibling: %s\n",
294 	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
295 	/*NOTREACHED*/
296 	return (NULL);
297 }
298 
299 static Dwarf_Die
300 die_child(dwarf_t *dw, Dwarf_Die die)
301 {
302 	Dwarf_Die child;
303 	int rc;
304 
305 	if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
306 		return (child);
307 	else if (rc == DW_DLV_NO_ENTRY)
308 		return (NULL);
309 
310 	terminate("die %llu: failed to find type child: %s\n",
311 	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
312 	/*NOTREACHED*/
313 	return (NULL);
314 }
315 
316 static Dwarf_Half
317 die_tag(dwarf_t *dw, Dwarf_Die die)
318 {
319 	Dwarf_Half tag;
320 
321 	if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
322 		return (tag);
323 
324 	terminate("die %llu: failed to get tag for type: %s\n",
325 	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
326 	/*NOTREACHED*/
327 	return (0);
328 }
329 
330 static Dwarf_Attribute
331 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
332 {
333 	Dwarf_Attribute attr;
334 	int rc;
335 
336 	if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
337 		return (attr);
338 	} else if (rc == DW_DLV_NO_ENTRY) {
339 		if (req) {
340 			terminate("die %llu: no attr 0x%x\n", die_off(dw, die),
341 			    name);
342 		} else {
343 			return (NULL);
344 		}
345 	}
346 
347 	terminate("die %llu: failed to get attribute for type: %s\n",
348 	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
349 	/*NOTREACHED*/
350 	return (NULL);
351 }
352 
353 static int
354 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
355     int req)
356 {
357 	*valp = 0;
358 	if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
359 		if (req)
360 			terminate("die %llu: failed to get signed: %s\n",
361 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
362 		return (0);
363 	}
364 
365 	return (1);
366 }
367 
368 static int
369 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
370     int req)
371 {
372 	*valp = 0;
373 	if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
374 		if (req)
375 			terminate("die %llu: failed to get unsigned: %s\n",
376 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
377 		return (0);
378 	}
379 
380 	return (1);
381 }
382 
383 static int
384 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
385 {
386 	*valp = 0;
387 
388 	if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
389 		if (req)
390 			terminate("die %llu: failed to get flag: %s\n",
391 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
392 		return (0);
393 	}
394 
395 	return (1);
396 }
397 
398 static int
399 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
400 {
401 	const char *str = NULL;
402 
403 	if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DWARF_E_NONE ||
404 	    str == NULL) {
405 		if (req)
406 			terminate("die %llu: failed to get string: %s\n",
407 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
408 		else
409 			*strp = NULL;
410 		return (0);
411 	} else
412 		*strp = xstrdup(str);
413 
414 	return (1);
415 }
416 
417 static Dwarf_Off
418 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
419 {
420 	Dwarf_Off off;
421 
422 	if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DWARF_E_NONE) {
423 		terminate("die %llu: failed to get ref: %s\n",
424 		    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
425 	}
426 
427 	return (off);
428 }
429 
430 static char *
431 die_name(dwarf_t *dw, Dwarf_Die die)
432 {
433 	char *str = NULL;
434 
435 	(void) die_string(dw, die, DW_AT_name, &str, 0);
436 
437 	return (str);
438 }
439 
440 static int
441 die_isdecl(dwarf_t *dw, Dwarf_Die die)
442 {
443 	Dwarf_Bool val;
444 
445 	return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
446 }
447 
448 static int
449 die_isglobal(dwarf_t *dw, Dwarf_Die die)
450 {
451 	Dwarf_Signed vis;
452 	Dwarf_Bool ext;
453 
454 	/*
455 	 * Some compilers (gcc) use DW_AT_external to indicate function
456 	 * visibility.  Others (Sun) use DW_AT_visibility.
457 	 */
458 	if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
459 		return (vis == DW_VIS_exported);
460 	else
461 		return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
462 }
463 
464 static tdesc_t *
465 die_add(dwarf_t *dw, Dwarf_Off off)
466 {
467 	tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
468 
469 	tdp->t_id = off;
470 
471 	tdesc_add(dw, tdp);
472 
473 	return (tdp);
474 }
475 
476 static tdesc_t *
477 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
478 {
479 	Dwarf_Off ref = die_attr_ref(dw, die, name);
480 	tdesc_t *tdp;
481 
482 	if ((tdp = tdesc_lookup(dw, ref)) != NULL)
483 		return (tdp);
484 
485 	return (die_add(dw, ref));
486 }
487 
488 static int
489 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
490     Dwarf_Unsigned *valp, int req __unused)
491 {
492 	Dwarf_Locdesc *loc = NULL;
493 	Dwarf_Signed locnum = 0;
494 
495 	if (dwarf_locdesc(die, name, &loc, &locnum, &dw->dw_err) != DW_DLV_OK)
496 		return (0);
497 
498 	if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
499 		terminate("die %llu: cannot parse member offset\n",
500 		    die_off(dw, die));
501 	}
502 
503 	*valp = loc->ld_s->lr_number;
504 
505 	if (loc != NULL)
506 		if (dwarf_locdesc_free(loc, &dw->dw_err) != DW_DLV_OK)
507 			terminate("die %llu: cannot free location descriptor: %s\n",
508 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
509 
510 	return (1);
511 }
512 
513 static tdesc_t *
514 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
515 {
516 	tdesc_t *tdp;
517 	intr_t *intr;
518 
519 	intr = xcalloc(sizeof (intr_t));
520 	intr->intr_type = INTR_INT;
521 	intr->intr_signed = 1;
522 	intr->intr_nbits = sz * NBBY;
523 
524 	tdp = xcalloc(sizeof (tdesc_t));
525 	tdp->t_name = xstrdup(name);
526 	tdp->t_size = sz;
527 	tdp->t_id = tid;
528 	tdp->t_type = INTRINSIC;
529 	tdp->t_intr = intr;
530 	tdp->t_flags = TDESC_F_RESOLVED;
531 
532 	tdesc_add(dw, tdp);
533 
534 	return (tdp);
535 }
536 
537 /*
538  * Manufacture a void type.  Used for gcc-emitted stabs, where the lack of a
539  * type reference implies a reference to a void type.  A void *, for example
540  * will be represented by a pointer die without a DW_AT_type.  CTF requires
541  * that pointer nodes point to something, so we'll create a void for use as
542  * the target.  Note that the DWARF data may already create a void type.  Ours
543  * would then be a duplicate, but it'll be removed in the self-uniquification
544  * merge performed at the completion of DWARF->tdesc conversion.
545  */
546 static tdesc_t *
547 tdesc_intr_void(dwarf_t *dw)
548 {
549 	if (dw->dw_void == NULL)
550 		dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
551 
552 	return (dw->dw_void);
553 }
554 
555 static tdesc_t *
556 tdesc_intr_long(dwarf_t *dw)
557 {
558 	if (dw->dw_long == NULL) {
559 		dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
560 		    dw->dw_ptrsz);
561 	}
562 
563 	return (dw->dw_long);
564 }
565 
566 /*
567  * Used for creating bitfield types.  We create a copy of an existing intrinsic,
568  * adjusting the size of the copy to match what the caller requested.  The
569  * caller can then use the copy as the type for a bitfield structure member.
570  */
571 static tdesc_t *
572 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz)
573 {
574 	tdesc_t *new = xcalloc(sizeof (tdesc_t));
575 
576 	if (!(old->t_flags & TDESC_F_RESOLVED)) {
577 		terminate("tdp %u: attempt to make a bit field from an "
578 		    "unresolved type\n", old->t_id);
579 	}
580 
581 	new->t_name = xstrdup(old->t_name);
582 	new->t_size = old->t_size;
583 	new->t_id = mfgtid_next(dw);
584 	new->t_type = INTRINSIC;
585 	new->t_flags = TDESC_F_RESOLVED;
586 
587 	new->t_intr = xcalloc(sizeof (intr_t));
588 	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
589 	new->t_intr->intr_nbits = bitsz;
590 
591 	tdesc_add(dw, new);
592 
593 	return (new);
594 }
595 
596 static void
597 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
598     tdesc_t *dimtdp)
599 {
600 	Dwarf_Unsigned uval;
601 	Dwarf_Signed sval;
602 	tdesc_t *ctdp = NULL;
603 	Dwarf_Die dim2;
604 	ardef_t *ar;
605 
606 	if ((dim2 = die_sibling(dw, dim)) == NULL) {
607 		ctdp = arrtdp;
608 	} else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
609 		ctdp = xcalloc(sizeof (tdesc_t));
610 		ctdp->t_id = mfgtid_next(dw);
611 		debug(3, "die %llu: creating new type %u for sub-dimension\n",
612 		    die_off(dw, dim2), ctdp->t_id);
613 		tdesc_array_create(dw, dim2, arrtdp, ctdp);
614 	} else {
615 		terminate("die %llu: unexpected non-subrange node in array\n",
616 		    die_off(dw, dim2));
617 	}
618 
619 	dimtdp->t_type = ARRAY;
620 	dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
621 
622 	/*
623 	 * Array bounds can be signed or unsigned, but there are several kinds
624 	 * of signless forms (data1, data2, etc) that take their sign from the
625 	 * routine that is trying to interpret them.  That is, data1 can be
626 	 * either signed or unsigned, depending on whether you use the signed or
627 	 * unsigned accessor function.  GCC will use the signless forms to store
628 	 * unsigned values which have their high bit set, so we need to try to
629 	 * read them first as unsigned to get positive values.  We could also
630 	 * try signed first, falling back to unsigned if we got a negative
631 	 * value.
632 	 */
633 	if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
634 		ar->ad_nelems = uval + 1;
635 	else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
636 		ar->ad_nelems = sval + 1;
637 	else
638 		ar->ad_nelems = 0;
639 
640 	/*
641 	 * Different compilers use different index types.  Force the type to be
642 	 * a common, known value (long).
643 	 */
644 	ar->ad_idxtype = tdesc_intr_long(dw);
645 	ar->ad_contents = ctdp;
646 
647 	if (ar->ad_contents->t_size != 0) {
648 		dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
649 		dimtdp->t_flags |= TDESC_F_RESOLVED;
650 	}
651 }
652 
653 /*
654  * Create a tdesc from an array node.  Some arrays will come with byte size
655  * attributes, and thus can be resolved immediately.  Others don't, and will
656  * need to wait until the second pass for resolution.
657  */
658 static void
659 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
660 {
661 	tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
662 	Dwarf_Unsigned uval;
663 	Dwarf_Die dim;
664 
665 	debug(3, "die %llu <%llx>: creating array\n", off, off);
666 
667 	if ((dim = die_child(dw, arr)) == NULL ||
668 	    die_tag(dw, dim) != DW_TAG_subrange_type)
669 		terminate("die %llu: failed to retrieve array bounds\n", off);
670 
671 	tdesc_array_create(dw, dim, arrtdp, tdp);
672 
673 	if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
674 		tdesc_t *dimtdp;
675 		int flags;
676 
677 		/* Check for bogus gcc DW_AT_byte_size attribute */
678 		if (uval == (unsigned)-1) {
679 			printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
680 			    __func__);
681 			uval = 0;
682 		}
683 
684 		tdp->t_size = uval;
685 
686 		/*
687 		 * Ensure that sub-dimensions have sizes too before marking
688 		 * as resolved.
689 		 */
690 		flags = TDESC_F_RESOLVED;
691 		for (dimtdp = tdp->t_ardef->ad_contents;
692 		    dimtdp->t_type == ARRAY;
693 		    dimtdp = dimtdp->t_ardef->ad_contents) {
694 			if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
695 				flags = 0;
696 				break;
697 			}
698 		}
699 
700 		tdp->t_flags |= flags;
701 	}
702 
703 	debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off,
704 	    tdp->t_ardef->ad_nelems, tdp->t_size);
705 }
706 
707 /*ARGSUSED1*/
708 static int
709 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
710 {
711 	dwarf_t *dw = private;
712 	size_t sz;
713 
714 	if (tdp->t_flags & TDESC_F_RESOLVED)
715 		return (1);
716 
717 	debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id,
718 	    tdp->t_ardef->ad_contents->t_id);
719 
720 	if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) {
721 		debug(3, "unable to resolve array %s (%d) contents %d\n",
722 		    tdesc_name(tdp), tdp->t_id,
723 		    tdp->t_ardef->ad_contents->t_id);
724 
725 		dw->dw_nunres++;
726 		return (1);
727 	}
728 
729 	tdp->t_size = sz * tdp->t_ardef->ad_nelems;
730 	tdp->t_flags |= TDESC_F_RESOLVED;
731 
732 	debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size);
733 
734 	return (1);
735 }
736 
737 /*ARGSUSED1*/
738 static int
739 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
740 {
741 	tdesc_t *cont = tdp->t_ardef->ad_contents;
742 
743 	if (tdp->t_flags & TDESC_F_RESOLVED)
744 		return (1);
745 
746 	fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
747 	    tdp->t_id, tdesc_name(cont), cont->t_id);
748 
749 	return (1);
750 }
751 
752 /*
753  * Most enums (those with members) will be resolved during this first pass.
754  * Others - those without members (see the file comment) - won't be, and will
755  * need to wait until the second pass when they can be matched with their full
756  * definitions.
757  */
758 static void
759 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
760 {
761 	Dwarf_Die mem;
762 	Dwarf_Unsigned uval;
763 	Dwarf_Signed sval;
764 
765 	debug(3, "die %llu: creating enum\n", off);
766 
767 	tdp->t_type = ENUM;
768 
769 	(void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
770 	/* Check for bogus gcc DW_AT_byte_size attribute */
771 	if (uval == (unsigned)-1) {
772 		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
773 		    __func__);
774 		uval = 0;
775 	}
776 	tdp->t_size = uval;
777 
778 	if ((mem = die_child(dw, die)) != NULL) {
779 		elist_t **elastp = &tdp->t_emem;
780 
781 		do {
782 			elist_t *el;
783 
784 			if (die_tag(dw, mem) != DW_TAG_enumerator) {
785 				/* Nested type declaration */
786 				die_create_one(dw, mem);
787 				continue;
788 			}
789 
790 			el = xcalloc(sizeof (elist_t));
791 			el->el_name = die_name(dw, mem);
792 
793 			if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) {
794 				el->el_number = sval;
795 			} else if (die_unsigned(dw, mem, DW_AT_const_value,
796 			    &uval, 0)) {
797 				el->el_number = uval;
798 			} else {
799 				terminate("die %llu: enum %llu: member without "
800 				    "value\n", off, die_off(dw, mem));
801 			}
802 
803 			debug(3, "die %llu: enum %llu: created %s = %d\n", off,
804 			    die_off(dw, mem), el->el_name, el->el_number);
805 
806 			*elastp = el;
807 			elastp = &el->el_next;
808 
809 		} while ((mem = die_sibling(dw, mem)) != NULL);
810 
811 		hash_add(dw->dw_enumhash, tdp);
812 
813 		tdp->t_flags |= TDESC_F_RESOLVED;
814 
815 		if (tdp->t_name != NULL) {
816 			iidesc_t *ii = xcalloc(sizeof (iidesc_t));
817 			ii->ii_type = II_SOU;
818 			ii->ii_name = xstrdup(tdp->t_name);
819 			ii->ii_dtype = tdp;
820 
821 			iidesc_add(dw->dw_td->td_iihash, ii);
822 		}
823 	}
824 }
825 
826 static int
827 die_enum_match(void *arg1, void *arg2)
828 {
829 	tdesc_t *tdp = arg1, **fullp = arg2;
830 
831 	if (tdp->t_emem != NULL) {
832 		*fullp = tdp;
833 		return (-1); /* stop the iteration */
834 	}
835 
836 	return (0);
837 }
838 
839 /*ARGSUSED1*/
840 static int
841 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
842 {
843 	dwarf_t *dw = private;
844 	tdesc_t *full = NULL;
845 
846 	if (tdp->t_flags & TDESC_F_RESOLVED)
847 		return (1);
848 
849 	(void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
850 
851 	/*
852 	 * The answer to this one won't change from iteration to iteration,
853 	 * so don't even try.
854 	 */
855 	if (full == NULL) {
856 		terminate("tdp %u: enum %s has no members\n", tdp->t_id,
857 		    tdesc_name(tdp));
858 	}
859 
860 	debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
861 	    tdesc_name(tdp), full->t_id);
862 
863 	tdp->t_flags |= TDESC_F_RESOLVED;
864 
865 	return (1);
866 }
867 
868 static int
869 die_fwd_map(void *arg1, void *arg2)
870 {
871 	tdesc_t *fwd = arg1, *sou = arg2;
872 
873 	debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
874 	    tdesc_name(fwd), sou->t_id);
875 	fwd->t_tdesc = sou;
876 
877 	return (0);
878 }
879 
880 /*
881  * Structures and unions will never be resolved during the first pass, as we
882  * won't be able to fully determine the member sizes.  The second pass, which
883  * have access to sizing information, will be able to complete the resolution.
884  */
885 static void
886 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
887     int type, const char *typename)
888 {
889 	Dwarf_Unsigned sz, bitsz, bitoff, maxsz=0;
890 	Dwarf_Die mem;
891 	mlist_t *ml, **mlastp;
892 	iidesc_t *ii;
893 
894 	tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
895 
896 	debug(3, "die %llu: creating %s %s\n", off,
897 	    (tdp->t_type == FORWARD ? "forward decl" : typename),
898 	    tdesc_name(tdp));
899 
900 	if (tdp->t_type == FORWARD) {
901 		hash_add(dw->dw_fwdhash, tdp);
902 		return;
903 	}
904 
905 	(void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
906 
907 	(void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
908 	tdp->t_size = sz;
909 
910 	/*
911 	 * GCC allows empty SOUs as an extension.
912 	 */
913 	if ((mem = die_child(dw, str)) == NULL) {
914 		goto out;
915 	}
916 
917 	mlastp = &tdp->t_members;
918 
919 	do {
920 		Dwarf_Off memoff = die_off(dw, mem);
921 		Dwarf_Half tag = die_tag(dw, mem);
922 		Dwarf_Unsigned mloff;
923 
924 		if (tag != DW_TAG_member) {
925 			/* Nested type declaration */
926 			die_create_one(dw, mem);
927 			continue;
928 		}
929 
930 		debug(3, "die %llu: mem %llu: creating member\n", off, memoff);
931 
932 		ml = xcalloc(sizeof (mlist_t));
933 
934 		/*
935 		 * This could be a GCC anon struct/union member, so we'll allow
936 		 * an empty name, even though nothing can really handle them
937 		 * properly.  Note that some versions of GCC miss out debug
938 		 * info for anon structs, though recent versions are fixed (gcc
939 		 * bug 11816).
940 		 */
941 		if ((ml->ml_name = die_name(dw, mem)) == NULL)
942 			ml->ml_name = NULL;
943 
944 		ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
945 		debug(3, "die_sou_create(): ml_type = %p t_id = %d\n",
946 		    ml->ml_type, ml->ml_type->t_id);
947 
948 		if (die_mem_offset(dw, mem, DW_AT_data_member_location,
949 		    &mloff, 0)) {
950 			debug(3, "die %llu: got mloff %llx\n", off,
951 			    (u_longlong_t)mloff);
952 			ml->ml_offset = mloff * 8;
953 		}
954 
955 		if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
956 			ml->ml_size = bitsz;
957 		else
958 			ml->ml_size = tdesc_bitsize(ml->ml_type);
959 
960 		if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
961 #if BYTE_ORDER == _BIG_ENDIAN
962 			ml->ml_offset += bitoff;
963 #else
964 			ml->ml_offset += tdesc_bitsize(ml->ml_type) - bitoff -
965 			    ml->ml_size;
966 #endif
967 		}
968 
969 		debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n",
970 		    off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size);
971 
972 		*mlastp = ml;
973 		mlastp = &ml->ml_next;
974 
975 		/* Find the size of the largest member to work around a gcc
976 		 * bug.  See GCC Bugzilla 35998.
977 		 */
978 		if (maxsz < ml->ml_size)
979 			maxsz = ml->ml_size;
980 
981 	} while ((mem = die_sibling(dw, mem)) != NULL);
982 
983 	/* See if we got a bogus DW_AT_byte_size.  GCC will sometimes
984 	 * emit this.
985 	 */
986 	if (sz == (unsigned)-1) {
987 		 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
988 		     __func__);
989 		 tdp->t_size = maxsz / 8;  /* maxsz is in bits, t_size is bytes */
990 	}
991 
992 	/*
993 	 * GCC will attempt to eliminate unused types, thus decreasing the
994 	 * size of the emitted dwarf.  That is, if you declare a foo_t in your
995 	 * header, include said header in your source file, and neglect to
996 	 * actually use (directly or indirectly) the foo_t in the source file,
997 	 * the foo_t won't make it into the emitted DWARF.  So, at least, goes
998 	 * the theory.
999 	 *
1000 	 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
1001 	 * and then neglect to emit the members.  Strangely, the loner struct
1002 	 * tag will always be followed by a proper nested declaration of
1003 	 * something else.  This is clearly a bug, but we're not going to have
1004 	 * time to get it fixed before this goo goes back, so we'll have to work
1005 	 * around it.  If we see a no-membered struct with a nested declaration
1006 	 * (i.e. die_child of the struct tag won't be null), we'll ignore it.
1007 	 * Being paranoid, we won't simply remove it from the hash.  Instead,
1008 	 * we'll decline to create an iidesc for it, thus ensuring that this
1009 	 * type won't make it into the output file.  To be safe, we'll also
1010 	 * change the name.
1011 	 */
1012 	if (tdp->t_members == NULL) {
1013 		const char *old = tdesc_name(tdp);
1014 		size_t newsz = 7 + strlen(old) + 1;
1015 		char *new = xmalloc(newsz);
1016 		(void) snprintf(new, newsz, "orphan %s", old);
1017 
1018 		debug(3, "die %llu: worked around %s %s\n", off, typename, old);
1019 
1020 		if (tdp->t_name != NULL)
1021 			free(tdp->t_name);
1022 		tdp->t_name = new;
1023 		return;
1024 	}
1025 
1026 out:
1027 	if (tdp->t_name != NULL) {
1028 		ii = xcalloc(sizeof (iidesc_t));
1029 		ii->ii_type = II_SOU;
1030 		ii->ii_name = xstrdup(tdp->t_name);
1031 		ii->ii_dtype = tdp;
1032 
1033 		iidesc_add(dw->dw_td->td_iihash, ii);
1034 	}
1035 }
1036 
1037 static void
1038 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1039 {
1040 	die_sou_create(dw, die, off, tdp, STRUCT, "struct");
1041 }
1042 
1043 static void
1044 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1045 {
1046 	die_sou_create(dw, die, off, tdp, UNION, "union");
1047 }
1048 
1049 /*ARGSUSED1*/
1050 static int
1051 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
1052 {
1053 	dwarf_t *dw = private;
1054 	mlist_t *ml;
1055 	tdesc_t *mt;
1056 
1057 	if (tdp->t_flags & TDESC_F_RESOLVED)
1058 		return (1);
1059 
1060 	debug(3, "resolving sou %s\n", tdesc_name(tdp));
1061 
1062 	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1063 		if (ml->ml_size == 0) {
1064 			mt = tdesc_basetype(ml->ml_type);
1065 
1066 			if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
1067 				continue;
1068 
1069 			/*
1070 			 * For empty members, or GCC/C99 flexible array
1071 			 * members, a size of 0 is correct.
1072 			 */
1073 			if (mt->t_members == NULL)
1074 				continue;
1075 			if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0)
1076 				continue;
1077 
1078 			dw->dw_nunres++;
1079 			return (1);
1080 		}
1081 
1082 		if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
1083 			dw->dw_nunres++;
1084 			return (1);
1085 		}
1086 
1087 		if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
1088 		    mt->t_intr->intr_nbits != (int)ml->ml_size) {
1089 			/*
1090 			 * This member is a bitfield, and needs to reference
1091 			 * an intrinsic type with the same width.  If the
1092 			 * currently-referenced type isn't of the same width,
1093 			 * we'll copy it, adjusting the width of the copy to
1094 			 * the size we'd like.
1095 			 */
1096 			debug(3, "tdp %u: creating bitfield for %d bits\n",
1097 			    tdp->t_id, ml->ml_size);
1098 
1099 			ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size);
1100 		}
1101 	}
1102 
1103 	tdp->t_flags |= TDESC_F_RESOLVED;
1104 
1105 	return (1);
1106 }
1107 
1108 /*ARGSUSED1*/
1109 static int
1110 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
1111 {
1112 	const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
1113 	mlist_t *ml;
1114 
1115 	if (tdp->t_flags & TDESC_F_RESOLVED)
1116 		return (1);
1117 
1118 	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1119 		if (ml->ml_size == 0) {
1120 			fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" "
1121 			    "of type %s (%d <%x>)\n", typename, tdp->t_id,
1122 			    tdp->t_id,
1123 			    ml->ml_name, tdesc_name(ml->ml_type),
1124 			    ml->ml_type->t_id, ml->ml_type->t_id);
1125 		}
1126 	}
1127 
1128 	return (1);
1129 }
1130 
1131 static void
1132 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1133 {
1134 	Dwarf_Attribute attr;
1135 	Dwarf_Half tag;
1136 	Dwarf_Die arg;
1137 	fndef_t *fn;
1138 	int i;
1139 
1140 	debug(3, "die %llu <%llx>: creating function pointer\n", off, off);
1141 
1142 	/*
1143 	 * We'll begin by processing any type definition nodes that may be
1144 	 * lurking underneath this one.
1145 	 */
1146 	for (arg = die_child(dw, die); arg != NULL;
1147 	    arg = die_sibling(dw, arg)) {
1148 		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1149 		    tag != DW_TAG_unspecified_parameters) {
1150 			/* Nested type declaration */
1151 			die_create_one(dw, arg);
1152 		}
1153 	}
1154 
1155 	if (die_isdecl(dw, die)) {
1156 		/*
1157 		 * This is a prototype.  We don't add prototypes to the
1158 		 * tree, so we're going to drop the tdesc.  Unfortunately,
1159 		 * it has already been added to the tree.  Nobody will reference
1160 		 * it, though, and it will be leaked.
1161 		 */
1162 		return;
1163 	}
1164 
1165 	fn = xcalloc(sizeof (fndef_t));
1166 
1167 	tdp->t_type = FUNCTION;
1168 
1169 	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1170 		fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
1171 	} else {
1172 		fn->fn_ret = tdesc_intr_void(dw);
1173 	}
1174 
1175 	/*
1176 	 * Count the arguments to the function, then read them in.
1177 	 */
1178 	for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
1179 	    arg = die_sibling(dw, arg)) {
1180 		if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
1181 			fn->fn_nargs++;
1182 		else if (tag == DW_TAG_unspecified_parameters &&
1183 		    fn->fn_nargs > 0)
1184 			fn->fn_vargs = 1;
1185 	}
1186 
1187 	if (fn->fn_nargs != 0) {
1188 		debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs,
1189 		    (fn->fn_nargs > 1 ? "s" : ""));
1190 
1191 		fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
1192 		for (i = 0, arg = die_child(dw, die);
1193 		    arg != NULL && i < (int) fn->fn_nargs;
1194 		    arg = die_sibling(dw, arg)) {
1195 			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1196 				continue;
1197 
1198 			fn->fn_args[i++] = die_lookup_pass1(dw, arg,
1199 			    DW_AT_type);
1200 		}
1201 	}
1202 
1203 	tdp->t_fndef = fn;
1204 	tdp->t_flags |= TDESC_F_RESOLVED;
1205 }
1206 
1207 /*
1208  * GCC and DevPro use different names for the base types.  While the terms are
1209  * the same, they are arranged in a different order.  Some terms, such as int,
1210  * are implied in one, and explicitly named in the other.  Given a base type
1211  * as input, this routine will return a common name, along with an intr_t
1212  * that reflects said name.
1213  */
1214 static intr_t *
1215 die_base_name_parse(const char *name, char **newp)
1216 {
1217 	char buf[100];
1218 	char const *base;
1219 	char *c;
1220 	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1221 	int sign = 1;
1222 	char fmt = '\0';
1223 	intr_t *intr;
1224 
1225 	if (strlen(name) > sizeof (buf) - 1)
1226 		terminate("base type name \"%s\" is too long\n", name);
1227 
1228 	strncpy(buf, name, sizeof (buf));
1229 
1230 	for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
1231 		if (strcmp(c, "signed") == 0)
1232 			sign = 1;
1233 		else if (strcmp(c, "unsigned") == 0)
1234 			sign = 0;
1235 		else if (strcmp(c, "long") == 0)
1236 			nlong++;
1237 		else if (strcmp(c, "char") == 0) {
1238 			nchar++;
1239 			fmt = 'c';
1240 		} else if (strcmp(c, "short") == 0)
1241 			nshort++;
1242 		else if (strcmp(c, "int") == 0)
1243 			nint++;
1244 		else {
1245 			/*
1246 			 * If we don't recognize any of the tokens, we'll tell
1247 			 * the caller to fall back to the dwarf-provided
1248 			 * encoding information.
1249 			 */
1250 			return (NULL);
1251 		}
1252 	}
1253 
1254 	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1255 		return (NULL);
1256 
1257 	if (nchar > 0) {
1258 		if (nlong > 0 || nshort > 0 || nint > 0)
1259 			return (NULL);
1260 
1261 		base = "char";
1262 
1263 	} else if (nshort > 0) {
1264 		if (nlong > 0)
1265 			return (NULL);
1266 
1267 		base = "short";
1268 
1269 	} else if (nlong > 0) {
1270 		base = "long";
1271 
1272 	} else {
1273 		base = "int";
1274 	}
1275 
1276 	intr = xcalloc(sizeof (intr_t));
1277 	intr->intr_type = INTR_INT;
1278 	intr->intr_signed = sign;
1279 	intr->intr_iformat = fmt;
1280 
1281 	snprintf(buf, sizeof (buf), "%s%s%s",
1282 	    (sign ? "" : "unsigned "),
1283 	    (nlong > 1 ? "long " : ""),
1284 	    base);
1285 
1286 	*newp = xstrdup(buf);
1287 	return (intr);
1288 }
1289 
1290 typedef struct fp_size_map {
1291 	size_t fsm_typesz[2];	/* size of {32,64} type */
1292 	uint_t fsm_enc[3];	/* CTF_FP_* for {bare,cplx,imagry} type */
1293 } fp_size_map_t;
1294 
1295 static const fp_size_map_t fp_encodings[] = {
1296 	{ { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
1297 	{ { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
1298 #ifdef __sparc
1299 	{ { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1300 #else
1301 	{ { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1302 #endif
1303 	{ { 0, 0 }, { 0, 0, 0 } }
1304 };
1305 
1306 static uint_t
1307 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz)
1308 {
1309 	const fp_size_map_t *map = fp_encodings;
1310 	uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
1311 	uint_t mult = 1, col = 0;
1312 
1313 	if (enc == DW_ATE_complex_float) {
1314 		mult = 2;
1315 		col = 1;
1316 	} else if (enc == DW_ATE_imaginary_float
1317 #if defined(sun)
1318 	    || enc == DW_ATE_SUN_imaginary_float
1319 #endif
1320 	    )
1321 		col = 2;
1322 
1323 	while (map->fsm_typesz[szidx] != 0) {
1324 		if (map->fsm_typesz[szidx] * mult == sz)
1325 			return (map->fsm_enc[col]);
1326 		map++;
1327 	}
1328 
1329 	terminate("die %llu: unrecognized real type size %u\n", off, sz);
1330 	/*NOTREACHED*/
1331 	return (0);
1332 }
1333 
1334 static intr_t *
1335 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
1336 {
1337 	intr_t *intr = xcalloc(sizeof (intr_t));
1338 	Dwarf_Signed enc;
1339 
1340 	(void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
1341 
1342 	switch (enc) {
1343 	case DW_ATE_unsigned:
1344 	case DW_ATE_address:
1345 		intr->intr_type = INTR_INT;
1346 		break;
1347 	case DW_ATE_unsigned_char:
1348 		intr->intr_type = INTR_INT;
1349 		intr->intr_iformat = 'c';
1350 		break;
1351 	case DW_ATE_signed:
1352 		intr->intr_type = INTR_INT;
1353 		intr->intr_signed = 1;
1354 		break;
1355 	case DW_ATE_signed_char:
1356 		intr->intr_type = INTR_INT;
1357 		intr->intr_signed = 1;
1358 		intr->intr_iformat = 'c';
1359 		break;
1360 	case DW_ATE_boolean:
1361 		intr->intr_type = INTR_INT;
1362 		intr->intr_signed = 1;
1363 		intr->intr_iformat = 'b';
1364 		break;
1365 	case DW_ATE_float:
1366 	case DW_ATE_complex_float:
1367 	case DW_ATE_imaginary_float:
1368 #if defined(sun)
1369 	case DW_ATE_SUN_imaginary_float:
1370 	case DW_ATE_SUN_interval_float:
1371 #endif
1372 		intr->intr_type = INTR_REAL;
1373 		intr->intr_signed = 1;
1374 		intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
1375 		break;
1376 	default:
1377 		terminate("die %llu: unknown base type encoding 0x%llx\n",
1378 		    off, enc);
1379 	}
1380 
1381 	return (intr);
1382 }
1383 
1384 static void
1385 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
1386 {
1387 	Dwarf_Unsigned sz;
1388 	intr_t *intr;
1389 	char *new;
1390 
1391 	debug(3, "die %llu: creating base type\n", off);
1392 
1393 	/*
1394 	 * The compilers have their own clever (internally inconsistent) ideas
1395 	 * as to what base types should look like.  Some times gcc will, for
1396 	 * example, use DW_ATE_signed_char for char.  Other times, however, it
1397 	 * will use DW_ATE_signed.  Needless to say, this causes some problems
1398 	 * down the road, particularly with merging.  We do, however, use the
1399 	 * DWARF idea of type sizes, as this allows us to avoid caring about
1400 	 * the data model.
1401 	 */
1402 	(void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1403 
1404 	/* Check for bogus gcc DW_AT_byte_size attribute */
1405 	if (sz == (unsigned)-1) {
1406 		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
1407 		    __func__);
1408 		sz = 0;
1409 	}
1410 
1411 	if (tdp->t_name == NULL)
1412 		terminate("die %llu: base type without name\n", off);
1413 
1414 	/* XXX make a name parser for float too */
1415 	if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
1416 		/* Found it.  We'll use the parsed version */
1417 		debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off,
1418 		    tdesc_name(tdp), new);
1419 
1420 		free(tdp->t_name);
1421 		tdp->t_name = new;
1422 	} else {
1423 		/*
1424 		 * We didn't recognize the type, so we'll create an intr_t
1425 		 * based on the DWARF data.
1426 		 */
1427 		debug(3, "die %llu: using dwarf data for base \"%s\"\n", off,
1428 		    tdesc_name(tdp));
1429 
1430 		intr = die_base_from_dwarf(dw, base, off, sz);
1431 	}
1432 
1433 	intr->intr_nbits = sz * 8;
1434 
1435 	tdp->t_type = INTRINSIC;
1436 	tdp->t_intr = intr;
1437 	tdp->t_size = sz;
1438 
1439 	tdp->t_flags |= TDESC_F_RESOLVED;
1440 }
1441 
1442 static void
1443 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
1444     int type, const char *typename)
1445 {
1446 	Dwarf_Attribute attr;
1447 
1448 	debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type);
1449 
1450 	tdp->t_type = type;
1451 
1452 	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1453 		tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
1454 	} else {
1455 		tdp->t_tdesc = tdesc_intr_void(dw);
1456 	}
1457 
1458 	if (type == POINTER)
1459 		tdp->t_size = dw->dw_ptrsz;
1460 
1461 	tdp->t_flags |= TDESC_F_RESOLVED;
1462 
1463 	if (type == TYPEDEF) {
1464 		iidesc_t *ii = xcalloc(sizeof (iidesc_t));
1465 		ii->ii_type = II_TYPE;
1466 		ii->ii_name = xstrdup(tdp->t_name);
1467 		ii->ii_dtype = tdp;
1468 
1469 		iidesc_add(dw->dw_td->td_iihash, ii);
1470 	}
1471 }
1472 
1473 static void
1474 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1475 {
1476 	die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
1477 }
1478 
1479 static void
1480 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1481 {
1482 	die_through_create(dw, die, off, tdp, CONST, "const");
1483 }
1484 
1485 static void
1486 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1487 {
1488 	die_through_create(dw, die, off, tdp, POINTER, "pointer");
1489 }
1490 
1491 static void
1492 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1493 {
1494 	die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
1495 }
1496 
1497 static void
1498 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1499 {
1500 	die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
1501 }
1502 
1503 /*ARGSUSED3*/
1504 static void
1505 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1506 {
1507 	Dwarf_Die arg;
1508 	Dwarf_Half tag;
1509 	iidesc_t *ii;
1510 	char *name;
1511 
1512 	debug(3, "die %llu <%llx>: creating function definition\n", off, off);
1513 
1514 	/*
1515 	 * We'll begin by processing any type definition nodes that may be
1516 	 * lurking underneath this one.
1517 	 */
1518 	for (arg = die_child(dw, die); arg != NULL;
1519 	    arg = die_sibling(dw, arg)) {
1520 		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1521 		    tag != DW_TAG_variable) {
1522 			/* Nested type declaration */
1523 			die_create_one(dw, arg);
1524 		}
1525 	}
1526 
1527 	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
1528 		/*
1529 		 * We process neither prototypes nor subprograms without
1530 		 * names.
1531 		 */
1532 		return;
1533 	}
1534 
1535 	ii = xcalloc(sizeof (iidesc_t));
1536 	ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
1537 	ii->ii_name = name;
1538 	if (ii->ii_type == II_SFUN)
1539 		ii->ii_owner = xstrdup(dw->dw_cuname);
1540 
1541 	debug(3, "die %llu: function %s is %s\n", off, ii->ii_name,
1542 	    (ii->ii_type == II_GFUN ? "global" : "static"));
1543 
1544 	if (die_attr(dw, die, DW_AT_type, 0) != NULL)
1545 		ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1546 	else
1547 		ii->ii_dtype = tdesc_intr_void(dw);
1548 
1549 	for (arg = die_child(dw, die); arg != NULL;
1550 	    arg = die_sibling(dw, arg)) {
1551 		char *name1;
1552 
1553 		debug(3, "die %llu: looking at sub member at %llu\n",
1554 		    off, die_off(dw, die));
1555 
1556 		if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1557 			continue;
1558 
1559 		if ((name1 = die_name(dw, arg)) == NULL) {
1560 			terminate("die %llu: func arg %d has no name\n",
1561 			    off, ii->ii_nargs + 1);
1562 		}
1563 
1564 		if (strcmp(name1, "...") == 0) {
1565 			free(name1);
1566 			ii->ii_vargs = 1;
1567 			continue;
1568 		}
1569 
1570 		ii->ii_nargs++;
1571 	}
1572 
1573 	if (ii->ii_nargs > 0) {
1574 		int i;
1575 
1576 		debug(3, "die %llu: function has %d argument%s\n", off,
1577 		    ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s"));
1578 
1579 		ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
1580 
1581 		for (arg = die_child(dw, die), i = 0;
1582 		    arg != NULL && i < ii->ii_nargs;
1583 		    arg = die_sibling(dw, arg)) {
1584 			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1585 				continue;
1586 
1587 			ii->ii_args[i++] = die_lookup_pass1(dw, arg,
1588 			    DW_AT_type);
1589 		}
1590 	}
1591 
1592 	iidesc_add(dw->dw_td->td_iihash, ii);
1593 }
1594 
1595 /*ARGSUSED3*/
1596 static void
1597 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1598 {
1599 	iidesc_t *ii;
1600 	char *name;
1601 
1602 	debug(3, "die %llu: creating object definition\n", off);
1603 
1604 	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL)
1605 		return; /* skip prototypes and nameless objects */
1606 
1607 	ii = xcalloc(sizeof (iidesc_t));
1608 	ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
1609 	ii->ii_name = name;
1610 	ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1611 	if (ii->ii_type == II_SVAR)
1612 		ii->ii_owner = xstrdup(dw->dw_cuname);
1613 
1614 	iidesc_add(dw->dw_td->td_iihash, ii);
1615 }
1616 
1617 /*ARGSUSED2*/
1618 static int
1619 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused)
1620 {
1621 	if (fwd->t_flags & TDESC_F_RESOLVED)
1622 		return (1);
1623 
1624 	if (fwd->t_tdesc != NULL) {
1625 		debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
1626 		    tdesc_name(fwd));
1627 		*fwdp = fwd->t_tdesc;
1628 	}
1629 
1630 	fwd->t_flags |= TDESC_F_RESOLVED;
1631 
1632 	return (1);
1633 }
1634 
1635 /*ARGSUSED*/
1636 static void
1637 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused)
1638 {
1639 	Dwarf_Die child = die_child(dw, die);
1640 
1641 	if (child != NULL)
1642 		die_create(dw, child);
1643 }
1644 
1645 /*
1646  * Used to map the die to a routine which can parse it, using the tag to do the
1647  * mapping.  While the processing of most tags entails the creation of a tdesc,
1648  * there are a few which don't - primarily those which result in the creation of
1649  * iidescs which refer to existing tdescs.
1650  */
1651 
1652 #define	DW_F_NOTDP	0x1	/* Don't create a tdesc for the creator */
1653 
1654 typedef struct die_creator {
1655 	Dwarf_Half dc_tag;
1656 	uint16_t dc_flags;
1657 	void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
1658 } die_creator_t;
1659 
1660 static const die_creator_t die_creators[] = {
1661 	{ DW_TAG_array_type,		0,		die_array_create },
1662 	{ DW_TAG_enumeration_type,	0,		die_enum_create },
1663 	{ DW_TAG_lexical_block,		DW_F_NOTDP,	die_lexblk_descend },
1664 	{ DW_TAG_pointer_type,		0,		die_pointer_create },
1665 	{ DW_TAG_structure_type,	0,		die_struct_create },
1666 	{ DW_TAG_subroutine_type,	0,		die_funcptr_create },
1667 	{ DW_TAG_typedef,		0,		die_typedef_create },
1668 	{ DW_TAG_union_type,		0,		die_union_create },
1669 	{ DW_TAG_base_type,		0,		die_base_create },
1670 	{ DW_TAG_const_type,		0,		die_const_create },
1671 	{ DW_TAG_subprogram,		DW_F_NOTDP,	die_function_create },
1672 	{ DW_TAG_variable,		DW_F_NOTDP,	die_variable_create },
1673 	{ DW_TAG_volatile_type,		0,		die_volatile_create },
1674 	{ DW_TAG_restrict_type,		0,		die_restrict_create },
1675 	{ 0, 0, NULL }
1676 };
1677 
1678 static const die_creator_t *
1679 die_tag2ctor(Dwarf_Half tag)
1680 {
1681 	const die_creator_t *dc;
1682 
1683 	for (dc = die_creators; dc->dc_create != NULL; dc++) {
1684 		if (dc->dc_tag == tag)
1685 			return (dc);
1686 	}
1687 
1688 	return (NULL);
1689 }
1690 
1691 static void
1692 die_create_one(dwarf_t *dw, Dwarf_Die die)
1693 {
1694 	Dwarf_Off off = die_off(dw, die);
1695 	const die_creator_t *dc;
1696 	Dwarf_Half tag;
1697 	tdesc_t *tdp;
1698 
1699 	debug(3, "die %llu <%llx>: create_one\n", off, off);
1700 
1701 	if (off > dw->dw_maxoff) {
1702 		terminate("illegal die offset %llu (max %llu)\n", off,
1703 		    dw->dw_maxoff);
1704 	}
1705 
1706 	tag = die_tag(dw, die);
1707 
1708 	if ((dc = die_tag2ctor(tag)) == NULL) {
1709 		debug(2, "die %llu: ignoring tag type %x\n", off, tag);
1710 		return;
1711 	}
1712 
1713 	if ((tdp = tdesc_lookup(dw, off)) == NULL &&
1714 	    !(dc->dc_flags & DW_F_NOTDP)) {
1715 		tdp = xcalloc(sizeof (tdesc_t));
1716 		tdp->t_id = off;
1717 		tdesc_add(dw, tdp);
1718 	}
1719 
1720 	if (tdp != NULL)
1721 		tdp->t_name = die_name(dw, die);
1722 
1723 	dc->dc_create(dw, die, off, tdp);
1724 }
1725 
1726 static void
1727 die_create(dwarf_t *dw, Dwarf_Die die)
1728 {
1729 	do {
1730 		die_create_one(dw, die);
1731 	} while ((die = die_sibling(dw, die)) != NULL);
1732 }
1733 
1734 static tdtrav_cb_f die_resolvers[] = {
1735 	NULL,
1736 	NULL,			/* intrinsic */
1737 	NULL,			/* pointer */
1738 	die_array_resolve,	/* array */
1739 	NULL,			/* function */
1740 	die_sou_resolve,	/* struct */
1741 	die_sou_resolve,	/* union */
1742 	die_enum_resolve,	/* enum */
1743 	die_fwd_resolve,	/* forward */
1744 	NULL,			/* typedef */
1745 	NULL,			/* typedef unres */
1746 	NULL,			/* volatile */
1747 	NULL,			/* const */
1748 	NULL,			/* restrict */
1749 };
1750 
1751 static tdtrav_cb_f die_fail_reporters[] = {
1752 	NULL,
1753 	NULL,			/* intrinsic */
1754 	NULL,			/* pointer */
1755 	die_array_failed,	/* array */
1756 	NULL,			/* function */
1757 	die_sou_failed,		/* struct */
1758 	die_sou_failed,		/* union */
1759 	NULL,			/* enum */
1760 	NULL,			/* forward */
1761 	NULL,			/* typedef */
1762 	NULL,			/* typedef unres */
1763 	NULL,			/* volatile */
1764 	NULL,			/* const */
1765 	NULL,			/* restrict */
1766 };
1767 
1768 static void
1769 die_resolve(dwarf_t *dw)
1770 {
1771 	int last = -1;
1772 	int pass = 0;
1773 
1774 	do {
1775 		pass++;
1776 		dw->dw_nunres = 0;
1777 
1778 		(void) iitraverse_hash(dw->dw_td->td_iihash,
1779 		    &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
1780 
1781 		debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
1782 
1783 		if ((int) dw->dw_nunres == last) {
1784 			fprintf(stderr, "%s: failed to resolve the following "
1785 			    "types:\n", progname);
1786 
1787 			(void) iitraverse_hash(dw->dw_td->td_iihash,
1788 			    &dw->dw_td->td_curvgen, NULL, NULL,
1789 			    die_fail_reporters, dw);
1790 
1791 			terminate("failed to resolve types\n");
1792 		}
1793 
1794 		last = dw->dw_nunres;
1795 
1796 	} while (dw->dw_nunres != 0);
1797 }
1798 
1799 /*ARGSUSED*/
1800 int
1801 dw_read(tdata_t *td, Elf *elf, char *filename __unused)
1802 {
1803 	Dwarf_Unsigned abboff, hdrlen, nxthdr;
1804 	Dwarf_Half vers, addrsz;
1805 	Dwarf_Die cu = 0;
1806 	Dwarf_Die child = 0;
1807 	dwarf_t dw;
1808 	char *prod = NULL;
1809 	int rc;
1810 
1811 	bzero(&dw, sizeof (dwarf_t));
1812 	dw.dw_td = td;
1813 	dw.dw_ptrsz = elf_ptrsz(elf);
1814 	dw.dw_mfgtid_last = TID_MFGTID_BASE;
1815 	dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
1816 	dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1817 	    tdesc_namecmp);
1818 	dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1819 	    tdesc_namecmp);
1820 
1821 	if ((rc = dwarf_elf_init(elf, DW_DLC_READ, &dw.dw_dw,
1822 	    &dw.dw_err)) == DW_DLV_NO_ENTRY) {
1823 		errno = ENOENT;
1824 		return (-1);
1825 	} else if (rc != DW_DLV_OK) {
1826 		if (dwarf_errno(&dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
1827 			/*
1828 			 * There's no type data in the DWARF section, but
1829 			 * libdwarf is too clever to handle that properly.
1830 			 */
1831 			return (0);
1832 		}
1833 
1834 		terminate("failed to initialize DWARF: %s\n",
1835 		    dwarf_errmsg(&dw.dw_err));
1836 	}
1837 
1838 	if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
1839 	    &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_OK)
1840 		terminate("rc = %d %s\n", rc, dwarf_errmsg(&dw.dw_err));
1841 
1842 	if ((cu = die_sibling(&dw, NULL)) == NULL)
1843 		terminate("file does not contain dwarf type data "
1844 		    "(try compiling with -g)\n");
1845 
1846 	dw.dw_maxoff = nxthdr - 1;
1847 
1848 	if (dw.dw_maxoff > TID_FILEMAX)
1849 		terminate("file contains too many types\n");
1850 
1851 	debug(1, "DWARF version: %d\n", vers);
1852 	if (vers != DWARF_VERSION) {
1853 		terminate("file contains incompatible version %d DWARF code "
1854 		    "(version 2 required)\n", vers);
1855 	}
1856 
1857 	if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
1858 		debug(1, "DWARF emitter: %s\n", prod);
1859 		free(prod);
1860 	}
1861 
1862 	if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
1863 		char *base = xstrdup(basename(dw.dw_cuname));
1864 		free(dw.dw_cuname);
1865 		dw.dw_cuname = base;
1866 
1867 		debug(1, "CU name: %s\n", dw.dw_cuname);
1868 	}
1869 
1870 	if ((child = die_child(&dw, cu)) != NULL)
1871 		die_create(&dw, child);
1872 
1873 	if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
1874 	    &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
1875 		terminate("multiple compilation units not supported\n");
1876 
1877 	(void) dwarf_finish(&dw.dw_dw, &dw.dw_err);
1878 
1879 	die_resolve(&dw);
1880 
1881 	cvt_fixups(td, dw.dw_ptrsz);
1882 
1883 	/* leak the dwarf_t */
1884 
1885 	return (0);
1886 }
1887