xref: /freebsd-src/cddl/contrib/opensolaris/lib/libdtrace/common/dt_consume.c (revision b2db760808f74bb53c232900091c9da801ebbfcc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <stdlib.h>
27 #include <strings.h>
28 #include <errno.h>
29 #include <unistd.h>
30 #include <limits.h>
31 #include <assert.h>
32 #include <ctype.h>
33 #if defined(sun)
34 #include <alloca.h>
35 #endif
36 #include <dt_impl.h>
37 
38 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
39 
40 /*
41  * We declare this here because (1) we need it and (2) we want to avoid a
42  * dependency on libm in libdtrace.
43  */
44 static long double
45 dt_fabsl(long double x)
46 {
47 	if (x < 0)
48 		return (-x);
49 
50 	return (x);
51 }
52 
53 /*
54  * 128-bit arithmetic functions needed to support the stddev() aggregating
55  * action.
56  */
57 static int
58 dt_gt_128(uint64_t *a, uint64_t *b)
59 {
60 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
61 }
62 
63 static int
64 dt_ge_128(uint64_t *a, uint64_t *b)
65 {
66 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
67 }
68 
69 static int
70 dt_le_128(uint64_t *a, uint64_t *b)
71 {
72 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
73 }
74 
75 /*
76  * Shift the 128-bit value in a by b. If b is positive, shift left.
77  * If b is negative, shift right.
78  */
79 static void
80 dt_shift_128(uint64_t *a, int b)
81 {
82 	uint64_t mask;
83 
84 	if (b == 0)
85 		return;
86 
87 	if (b < 0) {
88 		b = -b;
89 		if (b >= 64) {
90 			a[0] = a[1] >> (b - 64);
91 			a[1] = 0;
92 		} else {
93 			a[0] >>= b;
94 			mask = 1LL << (64 - b);
95 			mask -= 1;
96 			a[0] |= ((a[1] & mask) << (64 - b));
97 			a[1] >>= b;
98 		}
99 	} else {
100 		if (b >= 64) {
101 			a[1] = a[0] << (b - 64);
102 			a[0] = 0;
103 		} else {
104 			a[1] <<= b;
105 			mask = a[0] >> (64 - b);
106 			a[1] |= mask;
107 			a[0] <<= b;
108 		}
109 	}
110 }
111 
112 static int
113 dt_nbits_128(uint64_t *a)
114 {
115 	int nbits = 0;
116 	uint64_t tmp[2];
117 	uint64_t zero[2] = { 0, 0 };
118 
119 	tmp[0] = a[0];
120 	tmp[1] = a[1];
121 
122 	dt_shift_128(tmp, -1);
123 	while (dt_gt_128(tmp, zero)) {
124 		dt_shift_128(tmp, -1);
125 		nbits++;
126 	}
127 
128 	return (nbits);
129 }
130 
131 static void
132 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
133 {
134 	uint64_t result[2];
135 
136 	result[0] = minuend[0] - subtrahend[0];
137 	result[1] = minuend[1] - subtrahend[1] -
138 	    (minuend[0] < subtrahend[0] ? 1 : 0);
139 
140 	difference[0] = result[0];
141 	difference[1] = result[1];
142 }
143 
144 static void
145 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
146 {
147 	uint64_t result[2];
148 
149 	result[0] = addend1[0] + addend2[0];
150 	result[1] = addend1[1] + addend2[1] +
151 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
152 
153 	sum[0] = result[0];
154 	sum[1] = result[1];
155 }
156 
157 /*
158  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
159  * use native multiplication on those, and then re-combine into the
160  * resulting 128-bit value.
161  *
162  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
163  *     hi1 * hi2 << 64 +
164  *     hi1 * lo2 << 32 +
165  *     hi2 * lo1 << 32 +
166  *     lo1 * lo2
167  */
168 static void
169 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
170 {
171 	uint64_t hi1, hi2, lo1, lo2;
172 	uint64_t tmp[2];
173 
174 	hi1 = factor1 >> 32;
175 	hi2 = factor2 >> 32;
176 
177 	lo1 = factor1 & DT_MASK_LO;
178 	lo2 = factor2 & DT_MASK_LO;
179 
180 	product[0] = lo1 * lo2;
181 	product[1] = hi1 * hi2;
182 
183 	tmp[0] = hi1 * lo2;
184 	tmp[1] = 0;
185 	dt_shift_128(tmp, 32);
186 	dt_add_128(product, tmp, product);
187 
188 	tmp[0] = hi2 * lo1;
189 	tmp[1] = 0;
190 	dt_shift_128(tmp, 32);
191 	dt_add_128(product, tmp, product);
192 }
193 
194 /*
195  * This is long-hand division.
196  *
197  * We initialize subtrahend by shifting divisor left as far as possible. We
198  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
199  * subtract and set the appropriate bit in the result.  We then shift
200  * subtrahend right by one bit for the next comparison.
201  */
202 static void
203 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
204 {
205 	uint64_t result[2] = { 0, 0 };
206 	uint64_t remainder[2];
207 	uint64_t subtrahend[2];
208 	uint64_t divisor_128[2];
209 	uint64_t mask[2] = { 1, 0 };
210 	int log = 0;
211 
212 	assert(divisor != 0);
213 
214 	divisor_128[0] = divisor;
215 	divisor_128[1] = 0;
216 
217 	remainder[0] = dividend[0];
218 	remainder[1] = dividend[1];
219 
220 	subtrahend[0] = divisor;
221 	subtrahend[1] = 0;
222 
223 	while (divisor > 0) {
224 		log++;
225 		divisor >>= 1;
226 	}
227 
228 	dt_shift_128(subtrahend, 128 - log);
229 	dt_shift_128(mask, 128 - log);
230 
231 	while (dt_ge_128(remainder, divisor_128)) {
232 		if (dt_ge_128(remainder, subtrahend)) {
233 			dt_subtract_128(remainder, subtrahend, remainder);
234 			result[0] |= mask[0];
235 			result[1] |= mask[1];
236 		}
237 
238 		dt_shift_128(subtrahend, -1);
239 		dt_shift_128(mask, -1);
240 	}
241 
242 	quotient[0] = result[0];
243 	quotient[1] = result[1];
244 }
245 
246 /*
247  * This is the long-hand method of calculating a square root.
248  * The algorithm is as follows:
249  *
250  * 1. Group the digits by 2 from the right.
251  * 2. Over the leftmost group, find the largest single-digit number
252  *    whose square is less than that group.
253  * 3. Subtract the result of the previous step (2 or 4, depending) and
254  *    bring down the next two-digit group.
255  * 4. For the result R we have so far, find the largest single-digit number
256  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
257  *    (Note that this is doubling R and performing a decimal left-shift by 1
258  *    and searching for the appropriate decimal to fill the one's place.)
259  *    The value x is the next digit in the square root.
260  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
261  * dealing with integers, so the above is sufficient.)
262  *
263  * In decimal, the square root of 582,734 would be calculated as so:
264  *
265  *     __7__6__3
266  *    | 58 27 34
267  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
268  *      --
269  *       9 27    (Subtract and bring down the next group.)
270  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
271  *      -----     the square root)
272  *         51 34 (Subtract and bring down the next group.)
273  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
274  *         -----  the square root)
275  *          5 65 (remainder)
276  *
277  * The above algorithm applies similarly in binary, but note that the
278  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
279  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
280  * preceding difference?
281  *
282  * In binary, the square root of 11011011 would be calculated as so:
283  *
284  *     __1__1__1__0
285  *    | 11 01 10 11
286  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
287  *      --
288  *      10 01 10 11
289  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
290  *      -----
291  *       1 00 10 11
292  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
293  *       -------
294  *          1 01 11
295  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
296  *
297  */
298 static uint64_t
299 dt_sqrt_128(uint64_t *square)
300 {
301 	uint64_t result[2] = { 0, 0 };
302 	uint64_t diff[2] = { 0, 0 };
303 	uint64_t one[2] = { 1, 0 };
304 	uint64_t next_pair[2];
305 	uint64_t next_try[2];
306 	uint64_t bit_pairs, pair_shift;
307 	int i;
308 
309 	bit_pairs = dt_nbits_128(square) / 2;
310 	pair_shift = bit_pairs * 2;
311 
312 	for (i = 0; i <= bit_pairs; i++) {
313 		/*
314 		 * Bring down the next pair of bits.
315 		 */
316 		next_pair[0] = square[0];
317 		next_pair[1] = square[1];
318 		dt_shift_128(next_pair, -pair_shift);
319 		next_pair[0] &= 0x3;
320 		next_pair[1] = 0;
321 
322 		dt_shift_128(diff, 2);
323 		dt_add_128(diff, next_pair, diff);
324 
325 		/*
326 		 * next_try = R << 2 + 1
327 		 */
328 		next_try[0] = result[0];
329 		next_try[1] = result[1];
330 		dt_shift_128(next_try, 2);
331 		dt_add_128(next_try, one, next_try);
332 
333 		if (dt_le_128(next_try, diff)) {
334 			dt_subtract_128(diff, next_try, diff);
335 			dt_shift_128(result, 1);
336 			dt_add_128(result, one, result);
337 		} else {
338 			dt_shift_128(result, 1);
339 		}
340 
341 		pair_shift -= 2;
342 	}
343 
344 	assert(result[1] == 0);
345 
346 	return (result[0]);
347 }
348 
349 uint64_t
350 dt_stddev(uint64_t *data, uint64_t normal)
351 {
352 	uint64_t avg_of_squares[2];
353 	uint64_t square_of_avg[2];
354 	int64_t norm_avg;
355 	uint64_t diff[2];
356 
357 	/*
358 	 * The standard approximation for standard deviation is
359 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
360 	 * of the average of the squares minus the square of the average.
361 	 */
362 	dt_divide_128(data + 2, normal, avg_of_squares);
363 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
364 
365 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
366 
367 	if (norm_avg < 0)
368 		norm_avg = -norm_avg;
369 
370 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
371 
372 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
373 
374 	return (dt_sqrt_128(diff));
375 }
376 
377 static int
378 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
379     dtrace_bufdesc_t *buf, size_t offs)
380 {
381 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
382 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
383 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
384 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
385 	const char *str = NULL;
386 	static const char *e_str[2] = { " -> ", " => " };
387 	static const char *r_str[2] = { " <- ", " <= " };
388 	static const char *ent = "entry", *ret = "return";
389 	static int entlen = 0, retlen = 0;
390 	dtrace_epid_t next, id = epd->dtepd_epid;
391 	int rval;
392 
393 	if (entlen == 0) {
394 		assert(retlen == 0);
395 		entlen = strlen(ent);
396 		retlen = strlen(ret);
397 	}
398 
399 	/*
400 	 * If the name of the probe is "entry" or ends with "-entry", we
401 	 * treat it as an entry; if it is "return" or ends with "-return",
402 	 * we treat it as a return.  (This allows application-provided probes
403 	 * like "method-entry" or "function-entry" to participate in flow
404 	 * indentation -- without accidentally misinterpreting popular probe
405 	 * names like "carpentry", "gentry" or "Coventry".)
406 	 */
407 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
408 	    (sub == n || sub[-1] == '-')) {
409 		flow = DTRACEFLOW_ENTRY;
410 		str = e_str[strcmp(p, "syscall") == 0];
411 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
412 	    (sub == n || sub[-1] == '-')) {
413 		flow = DTRACEFLOW_RETURN;
414 		str = r_str[strcmp(p, "syscall") == 0];
415 	}
416 
417 	/*
418 	 * If we're going to indent this, we need to check the ID of our last
419 	 * call.  If we're looking at the same probe ID but a different EPID,
420 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
421 	 * this scheme -- it's a heuristic.)
422 	 */
423 	if (flow == DTRACEFLOW_ENTRY) {
424 		if ((last != DTRACE_EPIDNONE && id != last &&
425 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
426 			flow = DTRACEFLOW_NONE;
427 	}
428 
429 	/*
430 	 * If we're going to unindent this, it's more difficult to see if
431 	 * we don't actually want to unindent it -- we need to look at the
432 	 * _next_ EPID.
433 	 */
434 	if (flow == DTRACEFLOW_RETURN) {
435 		offs += epd->dtepd_size;
436 
437 		do {
438 			if (offs >= buf->dtbd_size) {
439 				/*
440 				 * We're at the end -- maybe.  If the oldest
441 				 * record is non-zero, we need to wrap.
442 				 */
443 				if (buf->dtbd_oldest != 0) {
444 					offs = 0;
445 				} else {
446 					goto out;
447 				}
448 			}
449 
450 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
451 
452 			if (next == DTRACE_EPIDNONE)
453 				offs += sizeof (id);
454 		} while (next == DTRACE_EPIDNONE);
455 
456 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
457 			return (rval);
458 
459 		if (next != id && npd->dtpd_id == pd->dtpd_id)
460 			flow = DTRACEFLOW_NONE;
461 	}
462 
463 out:
464 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
465 		data->dtpda_prefix = str;
466 	} else {
467 		data->dtpda_prefix = "| ";
468 	}
469 
470 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
471 		data->dtpda_indent -= 2;
472 
473 	data->dtpda_flow = flow;
474 
475 	return (0);
476 }
477 
478 static int
479 dt_nullprobe()
480 {
481 	return (DTRACE_CONSUME_THIS);
482 }
483 
484 static int
485 dt_nullrec()
486 {
487 	return (DTRACE_CONSUME_NEXT);
488 }
489 
490 int
491 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
492     uint64_t normal, long double total, char positives, char negatives)
493 {
494 	long double f;
495 	uint_t depth, len = 40;
496 
497 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
498 	const char *spaces = "                                        ";
499 
500 	assert(strlen(ats) == len && strlen(spaces) == len);
501 	assert(!(total == 0 && (positives || negatives)));
502 	assert(!(val < 0 && !negatives));
503 	assert(!(val > 0 && !positives));
504 	assert(!(val != 0 && total == 0));
505 
506 	if (!negatives) {
507 		if (positives) {
508 			f = (dt_fabsl((long double)val) * len) / total;
509 			depth = (uint_t)(f + 0.5);
510 		} else {
511 			depth = 0;
512 		}
513 
514 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
515 		    spaces + depth, (long long)val / normal));
516 	}
517 
518 	if (!positives) {
519 		f = (dt_fabsl((long double)val) * len) / total;
520 		depth = (uint_t)(f + 0.5);
521 
522 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
523 		    ats + len - depth, (long long)val / normal));
524 	}
525 
526 	/*
527 	 * If we're here, we have both positive and negative bucket values.
528 	 * To express this graphically, we're going to generate both positive
529 	 * and negative bars separated by a centerline.  These bars are half
530 	 * the size of normal quantize()/lquantize() bars, so we divide the
531 	 * length in half before calculating the bar length.
532 	 */
533 	len /= 2;
534 	ats = &ats[len];
535 	spaces = &spaces[len];
536 
537 	f = (dt_fabsl((long double)val) * len) / total;
538 	depth = (uint_t)(f + 0.5);
539 
540 	if (val <= 0) {
541 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
542 		    ats + len - depth, len, "", (long long)val / normal));
543 	} else {
544 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
545 		    ats + len - depth, spaces + depth,
546 		    (long long)val / normal));
547 	}
548 }
549 
550 int
551 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
552     size_t size, uint64_t normal)
553 {
554 	const int64_t *data = addr;
555 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
556 	long double total = 0;
557 	char positives = 0, negatives = 0;
558 
559 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
560 		return (dt_set_errno(dtp, EDT_DMISMATCH));
561 
562 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
563 		first_bin++;
564 
565 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
566 		/*
567 		 * There isn't any data.  This is possible if (and only if)
568 		 * negative increment values have been used.  In this case,
569 		 * we'll print the buckets around 0.
570 		 */
571 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
572 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
573 	} else {
574 		if (first_bin > 0)
575 			first_bin--;
576 
577 		while (last_bin > 0 && data[last_bin] == 0)
578 			last_bin--;
579 
580 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
581 			last_bin++;
582 	}
583 
584 	for (i = first_bin; i <= last_bin; i++) {
585 		positives |= (data[i] > 0);
586 		negatives |= (data[i] < 0);
587 		total += dt_fabsl((long double)data[i]);
588 	}
589 
590 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
591 	    "------------- Distribution -------------", "count") < 0)
592 		return (-1);
593 
594 	for (i = first_bin; i <= last_bin; i++) {
595 		if (dt_printf(dtp, fp, "%16lld ",
596 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
597 			return (-1);
598 
599 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
600 		    positives, negatives) < 0)
601 			return (-1);
602 	}
603 
604 	return (0);
605 }
606 
607 int
608 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
609     size_t size, uint64_t normal)
610 {
611 	const int64_t *data = addr;
612 	int i, first_bin, last_bin, base;
613 	uint64_t arg;
614 	long double total = 0;
615 	uint16_t step, levels;
616 	char positives = 0, negatives = 0;
617 
618 	if (size < sizeof (uint64_t))
619 		return (dt_set_errno(dtp, EDT_DMISMATCH));
620 
621 	arg = *data++;
622 	size -= sizeof (uint64_t);
623 
624 	base = DTRACE_LQUANTIZE_BASE(arg);
625 	step = DTRACE_LQUANTIZE_STEP(arg);
626 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
627 
628 	first_bin = 0;
629 	last_bin = levels + 1;
630 
631 	if (size != sizeof (uint64_t) * (levels + 2))
632 		return (dt_set_errno(dtp, EDT_DMISMATCH));
633 
634 	while (first_bin <= levels + 1 && data[first_bin] == 0)
635 		first_bin++;
636 
637 	if (first_bin > levels + 1) {
638 		first_bin = 0;
639 		last_bin = 2;
640 	} else {
641 		if (first_bin > 0)
642 			first_bin--;
643 
644 		while (last_bin > 0 && data[last_bin] == 0)
645 			last_bin--;
646 
647 		if (last_bin < levels + 1)
648 			last_bin++;
649 	}
650 
651 	for (i = first_bin; i <= last_bin; i++) {
652 		positives |= (data[i] > 0);
653 		negatives |= (data[i] < 0);
654 		total += dt_fabsl((long double)data[i]);
655 	}
656 
657 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
658 	    "------------- Distribution -------------", "count") < 0)
659 		return (-1);
660 
661 	for (i = first_bin; i <= last_bin; i++) {
662 		char c[32];
663 		int err;
664 
665 		if (i == 0) {
666 			(void) snprintf(c, sizeof (c), "< %d",
667 			    base / (uint32_t)normal);
668 			err = dt_printf(dtp, fp, "%16s ", c);
669 		} else if (i == levels + 1) {
670 			(void) snprintf(c, sizeof (c), ">= %d",
671 			    base + (levels * step));
672 			err = dt_printf(dtp, fp, "%16s ", c);
673 		} else {
674 			err = dt_printf(dtp, fp, "%16d ",
675 			    base + (i - 1) * step);
676 		}
677 
678 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
679 		    total, positives, negatives) < 0)
680 			return (-1);
681 	}
682 
683 	return (0);
684 }
685 
686 /*ARGSUSED*/
687 static int
688 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
689     size_t size, uint64_t normal)
690 {
691 	/* LINTED - alignment */
692 	int64_t *data = (int64_t *)addr;
693 
694 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
695 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
696 }
697 
698 /*ARGSUSED*/
699 static int
700 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
701     size_t size, uint64_t normal)
702 {
703 	/* LINTED - alignment */
704 	uint64_t *data = (uint64_t *)addr;
705 
706 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
707 	    (unsigned long long) dt_stddev(data, normal) : 0));
708 }
709 
710 /*ARGSUSED*/
711 int
712 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
713     size_t nbytes, int width, int quiet, int raw)
714 {
715 	/*
716 	 * If the byte stream is a series of printable characters, followed by
717 	 * a terminating byte, we print it out as a string.  Otherwise, we
718 	 * assume that it's something else and just print the bytes.
719 	 */
720 	int i, j, margin = 5;
721 	char *c = (char *)addr;
722 
723 	if (nbytes == 0)
724 		return (0);
725 
726 	if (raw || dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
727 		goto raw;
728 
729 	for (i = 0; i < nbytes; i++) {
730 		/*
731 		 * We define a "printable character" to be one for which
732 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
733 		 * or a character which is either backspace or the bell.
734 		 * Backspace and the bell are regrettably special because
735 		 * they fail the first two tests -- and yet they are entirely
736 		 * printable.  These are the only two control characters that
737 		 * have meaning for the terminal and for which isprint(3C) and
738 		 * isspace(3C) return 0.
739 		 */
740 		if (isprint(c[i]) || isspace(c[i]) ||
741 		    c[i] == '\b' || c[i] == '\a')
742 			continue;
743 
744 		if (c[i] == '\0' && i > 0) {
745 			/*
746 			 * This looks like it might be a string.  Before we
747 			 * assume that it is indeed a string, check the
748 			 * remainder of the byte range; if it contains
749 			 * additional non-nul characters, we'll assume that
750 			 * it's a binary stream that just happens to look like
751 			 * a string, and we'll print out the individual bytes.
752 			 */
753 			for (j = i + 1; j < nbytes; j++) {
754 				if (c[j] != '\0')
755 					break;
756 			}
757 
758 			if (j != nbytes)
759 				break;
760 
761 			if (quiet)
762 				return (dt_printf(dtp, fp, "%s", c));
763 			else
764 				return (dt_printf(dtp, fp, "  %-*s", width, c));
765 		}
766 
767 		break;
768 	}
769 
770 	if (i == nbytes) {
771 		/*
772 		 * The byte range is all printable characters, but there is
773 		 * no trailing nul byte.  We'll assume that it's a string and
774 		 * print it as such.
775 		 */
776 		char *s = alloca(nbytes + 1);
777 		bcopy(c, s, nbytes);
778 		s[nbytes] = '\0';
779 		return (dt_printf(dtp, fp, "  %-*s", width, s));
780 	}
781 
782 raw:
783 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
784 		return (-1);
785 
786 	for (i = 0; i < 16; i++)
787 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
788 			return (-1);
789 
790 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
791 		return (-1);
792 
793 
794 	for (i = 0; i < nbytes; i += 16) {
795 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
796 			return (-1);
797 
798 		for (j = i; j < i + 16 && j < nbytes; j++) {
799 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
800 				return (-1);
801 		}
802 
803 		while (j++ % 16) {
804 			if (dt_printf(dtp, fp, "   ") < 0)
805 				return (-1);
806 		}
807 
808 		if (dt_printf(dtp, fp, "  ") < 0)
809 			return (-1);
810 
811 		for (j = i; j < i + 16 && j < nbytes; j++) {
812 			if (dt_printf(dtp, fp, "%c",
813 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
814 				return (-1);
815 		}
816 
817 		if (dt_printf(dtp, fp, "\n") < 0)
818 			return (-1);
819 	}
820 
821 	return (0);
822 }
823 
824 int
825 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
826     caddr_t addr, int depth, int size)
827 {
828 	dtrace_syminfo_t dts;
829 	GElf_Sym sym;
830 	int i, indent;
831 	char c[PATH_MAX * 2];
832 	uint64_t pc;
833 
834 	if (dt_printf(dtp, fp, "\n") < 0)
835 		return (-1);
836 
837 	if (format == NULL)
838 		format = "%s";
839 
840 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
841 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
842 	else
843 		indent = _dtrace_stkindent;
844 
845 	for (i = 0; i < depth; i++) {
846 		switch (size) {
847 		case sizeof (uint32_t):
848 			/* LINTED - alignment */
849 			pc = *((uint32_t *)addr);
850 			break;
851 
852 		case sizeof (uint64_t):
853 			/* LINTED - alignment */
854 			pc = *((uint64_t *)addr);
855 			break;
856 
857 		default:
858 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
859 		}
860 
861 		if (pc == 0)
862 			break;
863 
864 		addr += size;
865 
866 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
867 			return (-1);
868 
869 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
870 			if (pc > sym.st_value) {
871 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
872 				    dts.dts_object, dts.dts_name,
873 				    pc - sym.st_value);
874 			} else {
875 				(void) snprintf(c, sizeof (c), "%s`%s",
876 				    dts.dts_object, dts.dts_name);
877 			}
878 		} else {
879 			/*
880 			 * We'll repeat the lookup, but this time we'll specify
881 			 * a NULL GElf_Sym -- indicating that we're only
882 			 * interested in the containing module.
883 			 */
884 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
885 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
886 				    dts.dts_object, pc);
887 			} else {
888 				(void) snprintf(c, sizeof (c), "0x%llx", pc);
889 			}
890 		}
891 
892 		if (dt_printf(dtp, fp, format, c) < 0)
893 			return (-1);
894 
895 		if (dt_printf(dtp, fp, "\n") < 0)
896 			return (-1);
897 	}
898 
899 	return (0);
900 }
901 
902 int
903 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
904     caddr_t addr, uint64_t arg)
905 {
906 	/* LINTED - alignment */
907 	uint64_t *pc = (uint64_t *)addr;
908 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
909 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
910 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
911 	const char *str = strsize ? strbase : NULL;
912 	int err = 0;
913 
914 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
915 	struct ps_prochandle *P;
916 	GElf_Sym sym;
917 	int i, indent;
918 	pid_t pid;
919 
920 	if (depth == 0)
921 		return (0);
922 
923 	pid = (pid_t)*pc++;
924 
925 	if (dt_printf(dtp, fp, "\n") < 0)
926 		return (-1);
927 
928 	if (format == NULL)
929 		format = "%s";
930 
931 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
932 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
933 	else
934 		indent = _dtrace_stkindent;
935 
936 	/*
937 	 * Ultimately, we need to add an entry point in the library vector for
938 	 * determining <symbol, offset> from <pid, address>.  For now, if
939 	 * this is a vector open, we just print the raw address or string.
940 	 */
941 	if (dtp->dt_vector == NULL)
942 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
943 	else
944 		P = NULL;
945 
946 	if (P != NULL)
947 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
948 
949 	for (i = 0; i < depth && pc[i] != 0; i++) {
950 		const prmap_t *map;
951 
952 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
953 			break;
954 
955 #if defined(sun)
956 		if (P != NULL && Plookup_by_addr(P, pc[i],
957 #else
958 		if (P != NULL && proc_addr2sym(P, pc[i],
959 #endif
960 		    name, sizeof (name), &sym) == 0) {
961 #if defined(sun)
962 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
963 #else
964 			(void) proc_objname(P, pc[i], objname, sizeof (objname));
965 #endif
966 
967 			if (pc[i] > sym.st_value) {
968 				(void) snprintf(c, sizeof (c),
969 				    "%s`%s+0x%llx", dt_basename(objname), name,
970 				    (u_longlong_t)(pc[i] - sym.st_value));
971 			} else {
972 				(void) snprintf(c, sizeof (c),
973 				    "%s`%s", dt_basename(objname), name);
974 			}
975 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
976 #if defined(sun)
977 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
978 		    (map->pr_mflags & MA_WRITE)))) {
979 #else
980 		    (P != NULL && ((map = proc_addr2map(P, pc[i])) == NULL))) {
981 #endif
982 			/*
983 			 * If the current string pointer in the string table
984 			 * does not point to an empty string _and_ the program
985 			 * counter falls in a writable region, we'll use the
986 			 * string from the string table instead of the raw
987 			 * address.  This last condition is necessary because
988 			 * some (broken) ustack helpers will return a string
989 			 * even for a program counter that they can't
990 			 * identify.  If we have a string for a program
991 			 * counter that falls in a segment that isn't
992 			 * writable, we assume that we have fallen into this
993 			 * case and we refuse to use the string.
994 			 */
995 			(void) snprintf(c, sizeof (c), "%s", str);
996 		} else {
997 #if defined(sun)
998 			if (P != NULL && Pobjname(P, pc[i], objname,
999 #else
1000 			if (P != NULL && proc_objname(P, pc[i], objname,
1001 #endif
1002 			    sizeof (objname)) != 0) {
1003 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1004 				    dt_basename(objname), (u_longlong_t)pc[i]);
1005 			} else {
1006 				(void) snprintf(c, sizeof (c), "0x%llx",
1007 				    (u_longlong_t)pc[i]);
1008 			}
1009 		}
1010 
1011 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1012 			break;
1013 
1014 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1015 			break;
1016 
1017 		if (str != NULL && str[0] == '@') {
1018 			/*
1019 			 * If the first character of the string is an "at" sign,
1020 			 * then the string is inferred to be an annotation --
1021 			 * and it is printed out beneath the frame and offset
1022 			 * with brackets.
1023 			 */
1024 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1025 				break;
1026 
1027 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1028 
1029 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1030 				break;
1031 
1032 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1033 				break;
1034 		}
1035 
1036 		if (str != NULL) {
1037 			str += strlen(str) + 1;
1038 			if (str - strbase >= strsize)
1039 				str = NULL;
1040 		}
1041 	}
1042 
1043 	if (P != NULL) {
1044 		dt_proc_unlock(dtp, P);
1045 		dt_proc_release(dtp, P);
1046 	}
1047 
1048 	return (err);
1049 }
1050 
1051 static int
1052 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1053 {
1054 	/* LINTED - alignment */
1055 	uint64_t pid = ((uint64_t *)addr)[0];
1056 	/* LINTED - alignment */
1057 	uint64_t pc = ((uint64_t *)addr)[1];
1058 	const char *format = "  %-50s";
1059 	char *s;
1060 	int n, len = 256;
1061 
1062 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1063 		struct ps_prochandle *P;
1064 
1065 		if ((P = dt_proc_grab(dtp, pid,
1066 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1067 			GElf_Sym sym;
1068 
1069 			dt_proc_lock(dtp, P);
1070 
1071 #if defined(sun)
1072 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1073 #else
1074 			if (proc_addr2sym(P, pc, NULL, 0, &sym) == 0)
1075 #endif
1076 				pc = sym.st_value;
1077 
1078 			dt_proc_unlock(dtp, P);
1079 			dt_proc_release(dtp, P);
1080 		}
1081 	}
1082 
1083 	do {
1084 		n = len;
1085 		s = alloca(n);
1086 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1087 
1088 	return (dt_printf(dtp, fp, format, s));
1089 }
1090 
1091 int
1092 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1093 {
1094 	/* LINTED - alignment */
1095 	uint64_t pid = ((uint64_t *)addr)[0];
1096 	/* LINTED - alignment */
1097 	uint64_t pc = ((uint64_t *)addr)[1];
1098 	int err = 0;
1099 
1100 	char objname[PATH_MAX], c[PATH_MAX * 2];
1101 	struct ps_prochandle *P;
1102 
1103 	if (format == NULL)
1104 		format = "  %-50s";
1105 
1106 	/*
1107 	 * See the comment in dt_print_ustack() for the rationale for
1108 	 * printing raw addresses in the vectored case.
1109 	 */
1110 	if (dtp->dt_vector == NULL)
1111 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1112 	else
1113 		P = NULL;
1114 
1115 	if (P != NULL)
1116 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1117 
1118 #if defined(sun)
1119 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1120 #else
1121 	if (P != NULL && proc_objname(P, pc, objname, sizeof (objname)) != 0) {
1122 #endif
1123 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1124 	} else {
1125 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1126 	}
1127 
1128 	err = dt_printf(dtp, fp, format, c);
1129 
1130 	if (P != NULL) {
1131 		dt_proc_unlock(dtp, P);
1132 		dt_proc_release(dtp, P);
1133 	}
1134 
1135 	return (err);
1136 }
1137 
1138 int
1139 dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1140 {
1141 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1142 	size_t nbytes = *((uintptr_t *) addr);
1143 
1144 	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1145 	    nbytes, 50, quiet, 1));
1146 }
1147 
1148 typedef struct dt_type_cbdata {
1149 	dtrace_hdl_t		*dtp;
1150 	dtrace_typeinfo_t	dtt;
1151 	caddr_t			addr;
1152 	caddr_t			addrend;
1153 	const char		*name;
1154 	int			f_type;
1155 	int			indent;
1156 	int			type_width;
1157 	int			name_width;
1158 	FILE			*fp;
1159 } dt_type_cbdata_t;
1160 
1161 static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1162 
1163 static int
1164 dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1165 {
1166 	dt_type_cbdata_t cbdata;
1167 	dt_type_cbdata_t *cbdatap = arg;
1168 	ssize_t ssz;
1169 
1170 	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1171 		return (0);
1172 
1173 	off /= 8;
1174 
1175 	cbdata = *cbdatap;
1176 	cbdata.name = name;
1177 	cbdata.addr += off;
1178 	cbdata.addrend = cbdata.addr + ssz;
1179 
1180 	return (dt_print_type_data(&cbdata, type));
1181 }
1182 
1183 static int
1184 dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1185 {
1186 	char buf[DT_TYPE_NAMELEN];
1187 	char *p;
1188 	dt_type_cbdata_t *cbdatap = arg;
1189 	size_t sz = strlen(name);
1190 
1191 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1192 
1193 	if ((p = strchr(buf, '[')) != NULL)
1194 		p[-1] = '\0';
1195 	else
1196 		p = "";
1197 
1198 	sz += strlen(p);
1199 
1200 	if (sz > cbdatap->name_width)
1201 		cbdatap->name_width = sz;
1202 
1203 	sz = strlen(buf);
1204 
1205 	if (sz > cbdatap->type_width)
1206 		cbdatap->type_width = sz;
1207 
1208 	return (0);
1209 }
1210 
1211 static int
1212 dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1213 {
1214 	caddr_t addr = cbdatap->addr;
1215 	caddr_t addrend = cbdatap->addrend;
1216 	char buf[DT_TYPE_NAMELEN];
1217 	char *p;
1218 	int cnt = 0;
1219 	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1220 	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1221 
1222 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1223 
1224 	if ((p = strchr(buf, '[')) != NULL)
1225 		p[-1] = '\0';
1226 	else
1227 		p = "";
1228 
1229 	if (cbdatap->f_type) {
1230 		int type_width = roundup(cbdatap->type_width + 1, 4);
1231 		int name_width = roundup(cbdatap->name_width + 1, 4);
1232 
1233 		name_width -= strlen(cbdatap->name);
1234 
1235 		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1236 	}
1237 
1238 	while (addr < addrend) {
1239 		dt_type_cbdata_t cbdata;
1240 		ctf_arinfo_t arinfo;
1241 		ctf_encoding_t cte;
1242 		uintptr_t *up;
1243 		void *vp = addr;
1244 		cbdata = *cbdatap;
1245 		cbdata.name = "";
1246 		cbdata.addr = addr;
1247 		cbdata.addrend = addr + ssz;
1248 		cbdata.f_type = 0;
1249 		cbdata.indent++;
1250 		cbdata.type_width = 0;
1251 		cbdata.name_width = 0;
1252 
1253 		if (cnt > 0)
1254 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1255 
1256 		switch (kind) {
1257 		case CTF_K_INTEGER:
1258 			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1259 				return (-1);
1260 			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1261 				switch (cte.cte_bits) {
1262 				case 8:
1263 					if (isprint(*((char *) vp)))
1264 						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1265 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1266 					break;
1267 				case 16:
1268 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1269 					break;
1270 				case 32:
1271 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1272 					break;
1273 				case 64:
1274 					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1275 					break;
1276 				default:
1277 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1278 					break;
1279 				}
1280 			else
1281 				switch (cte.cte_bits) {
1282 				case 8:
1283 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1284 					break;
1285 				case 16:
1286 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1287 					break;
1288 				case 32:
1289 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1290 					break;
1291 				case 64:
1292 					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1293 					break;
1294 				default:
1295 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1296 					break;
1297 				}
1298 			break;
1299 		case CTF_K_FLOAT:
1300 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1301 			break;
1302 		case CTF_K_POINTER:
1303 			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1304 			break;
1305 		case CTF_K_ARRAY:
1306 			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1307 				return (-1);
1308 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1309 			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1310 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1311 			break;
1312 		case CTF_K_FUNCTION:
1313 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1314 			break;
1315 		case CTF_K_STRUCT:
1316 			cbdata.f_type = 1;
1317 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1318 			    dt_print_type_width, &cbdata) != 0)
1319 				return (-1);
1320 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1321 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1322 			    dt_print_type_member, &cbdata) != 0)
1323 				return (-1);
1324 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1325 			break;
1326 		case CTF_K_UNION:
1327 			cbdata.f_type = 1;
1328 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1329 			    dt_print_type_width, &cbdata) != 0)
1330 				return (-1);
1331 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1332 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1333 			    dt_print_type_member, &cbdata) != 0)
1334 				return (-1);
1335 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1336 			break;
1337 		case CTF_K_ENUM:
1338 			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1339 			break;
1340 		case CTF_K_TYPEDEF:
1341 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1342 			break;
1343 		case CTF_K_VOLATILE:
1344 			if (cbdatap->f_type)
1345 				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1346 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1347 			break;
1348 		case CTF_K_CONST:
1349 			if (cbdatap->f_type)
1350 				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1351 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1352 			break;
1353 		case CTF_K_RESTRICT:
1354 			if (cbdatap->f_type)
1355 				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1356 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1357 			break;
1358 		default:
1359 			break;
1360 		}
1361 
1362 		addr += ssz;
1363 		cnt++;
1364 	}
1365 
1366 	return (0);
1367 }
1368 
1369 static int
1370 dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1371 {
1372 	caddr_t addrend;
1373 	char *p;
1374 	dtrace_typeinfo_t dtt;
1375 	dt_type_cbdata_t cbdata;
1376 	int num = 0;
1377 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1378 	ssize_t ssz;
1379 
1380 	if (!quiet)
1381 		dt_printf(dtp, fp, "\n");
1382 
1383 	/* Get the total number of bytes of data buffered. */
1384 	size_t nbytes = *((uintptr_t *) addr);
1385 	addr += sizeof(uintptr_t);
1386 
1387 	/*
1388 	 * Get the size of the type so that we can check that it matches
1389 	 * the CTF data we look up and so that we can figure out how many
1390 	 * type elements are buffered.
1391 	 */
1392 	size_t typs = *((uintptr_t *) addr);
1393 	addr += sizeof(uintptr_t);
1394 
1395 	/*
1396 	 * Point to the type string in the buffer. Get it's string
1397 	 * length and round it up to become the offset to the start
1398 	 * of the buffered type data which we would like to be aligned
1399 	 * for easy access.
1400 	 */
1401 	char *strp = (char *) addr;
1402 	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1403 
1404 	/*
1405 	 * The type string might have a format such as 'int [20]'.
1406 	 * Check if there is an array dimension present.
1407 	 */
1408 	if ((p = strchr(strp, '[')) != NULL) {
1409 		/* Strip off the array dimension. */
1410 		*p++ = '\0';
1411 
1412 		for (; *p != '\0' && *p != ']'; p++)
1413 			num = num * 10 + *p - '0';
1414 	} else
1415 		/* No array dimension, so default. */
1416 		num = 1;
1417 
1418 	/* Lookup the CTF type from the type string. */
1419 	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1420 		return (-1);
1421 
1422 	/* Offset the buffer address to the start of the data... */
1423 	addr += offset;
1424 
1425 	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1426 
1427 	if (typs != ssz) {
1428 		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1429 		return (-1);
1430 	}
1431 
1432 	cbdata.dtp = dtp;
1433 	cbdata.dtt = dtt;
1434 	cbdata.name = "";
1435 	cbdata.addr = addr;
1436 	cbdata.addrend = addr + nbytes;
1437 	cbdata.indent = 1;
1438 	cbdata.f_type = 1;
1439 	cbdata.type_width = 0;
1440 	cbdata.name_width = 0;
1441 	cbdata.fp = fp;
1442 
1443 	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1444 }
1445 
1446 static int
1447 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1448 {
1449 	/* LINTED - alignment */
1450 	uint64_t pc = *((uint64_t *)addr);
1451 	dtrace_syminfo_t dts;
1452 	GElf_Sym sym;
1453 	char c[PATH_MAX * 2];
1454 
1455 	if (format == NULL)
1456 		format = "  %-50s";
1457 
1458 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1459 		(void) snprintf(c, sizeof (c), "%s`%s",
1460 		    dts.dts_object, dts.dts_name);
1461 	} else {
1462 		/*
1463 		 * We'll repeat the lookup, but this time we'll specify a
1464 		 * NULL GElf_Sym -- indicating that we're only interested in
1465 		 * the containing module.
1466 		 */
1467 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1468 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1469 			    dts.dts_object, (u_longlong_t)pc);
1470 		} else {
1471 			(void) snprintf(c, sizeof (c), "0x%llx",
1472 			    (u_longlong_t)pc);
1473 		}
1474 	}
1475 
1476 	if (dt_printf(dtp, fp, format, c) < 0)
1477 		return (-1);
1478 
1479 	return (0);
1480 }
1481 
1482 int
1483 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1484 {
1485 	/* LINTED - alignment */
1486 	uint64_t pc = *((uint64_t *)addr);
1487 	dtrace_syminfo_t dts;
1488 	char c[PATH_MAX * 2];
1489 
1490 	if (format == NULL)
1491 		format = "  %-50s";
1492 
1493 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1494 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1495 	} else {
1496 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1497 	}
1498 
1499 	if (dt_printf(dtp, fp, format, c) < 0)
1500 		return (-1);
1501 
1502 	return (0);
1503 }
1504 
1505 typedef struct dt_normal {
1506 	dtrace_aggvarid_t dtnd_id;
1507 	uint64_t dtnd_normal;
1508 } dt_normal_t;
1509 
1510 static int
1511 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1512 {
1513 	dt_normal_t *normal = arg;
1514 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1515 	dtrace_aggvarid_t id = normal->dtnd_id;
1516 
1517 	if (agg->dtagd_nrecs == 0)
1518 		return (DTRACE_AGGWALK_NEXT);
1519 
1520 	if (agg->dtagd_varid != id)
1521 		return (DTRACE_AGGWALK_NEXT);
1522 
1523 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1524 	return (DTRACE_AGGWALK_NORMALIZE);
1525 }
1526 
1527 static int
1528 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1529 {
1530 	dt_normal_t normal;
1531 	caddr_t addr;
1532 
1533 	/*
1534 	 * We (should) have two records:  the aggregation ID followed by the
1535 	 * normalization value.
1536 	 */
1537 	addr = base + rec->dtrd_offset;
1538 
1539 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1540 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1541 
1542 	/* LINTED - alignment */
1543 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1544 	rec++;
1545 
1546 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1547 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1548 
1549 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1550 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1551 
1552 	addr = base + rec->dtrd_offset;
1553 
1554 	switch (rec->dtrd_size) {
1555 	case sizeof (uint64_t):
1556 		/* LINTED - alignment */
1557 		normal.dtnd_normal = *((uint64_t *)addr);
1558 		break;
1559 	case sizeof (uint32_t):
1560 		/* LINTED - alignment */
1561 		normal.dtnd_normal = *((uint32_t *)addr);
1562 		break;
1563 	case sizeof (uint16_t):
1564 		/* LINTED - alignment */
1565 		normal.dtnd_normal = *((uint16_t *)addr);
1566 		break;
1567 	case sizeof (uint8_t):
1568 		normal.dtnd_normal = *((uint8_t *)addr);
1569 		break;
1570 	default:
1571 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1572 	}
1573 
1574 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1575 
1576 	return (0);
1577 }
1578 
1579 static int
1580 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1581 {
1582 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1583 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1584 
1585 	if (agg->dtagd_nrecs == 0)
1586 		return (DTRACE_AGGWALK_NEXT);
1587 
1588 	if (agg->dtagd_varid != id)
1589 		return (DTRACE_AGGWALK_NEXT);
1590 
1591 	return (DTRACE_AGGWALK_DENORMALIZE);
1592 }
1593 
1594 static int
1595 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1596 {
1597 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1598 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1599 
1600 	if (agg->dtagd_nrecs == 0)
1601 		return (DTRACE_AGGWALK_NEXT);
1602 
1603 	if (agg->dtagd_varid != id)
1604 		return (DTRACE_AGGWALK_NEXT);
1605 
1606 	return (DTRACE_AGGWALK_CLEAR);
1607 }
1608 
1609 typedef struct dt_trunc {
1610 	dtrace_aggvarid_t dttd_id;
1611 	uint64_t dttd_remaining;
1612 } dt_trunc_t;
1613 
1614 static int
1615 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1616 {
1617 	dt_trunc_t *trunc = arg;
1618 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1619 	dtrace_aggvarid_t id = trunc->dttd_id;
1620 
1621 	if (agg->dtagd_nrecs == 0)
1622 		return (DTRACE_AGGWALK_NEXT);
1623 
1624 	if (agg->dtagd_varid != id)
1625 		return (DTRACE_AGGWALK_NEXT);
1626 
1627 	if (trunc->dttd_remaining == 0)
1628 		return (DTRACE_AGGWALK_REMOVE);
1629 
1630 	trunc->dttd_remaining--;
1631 	return (DTRACE_AGGWALK_NEXT);
1632 }
1633 
1634 static int
1635 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1636 {
1637 	dt_trunc_t trunc;
1638 	caddr_t addr;
1639 	int64_t remaining;
1640 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1641 
1642 	/*
1643 	 * We (should) have two records:  the aggregation ID followed by the
1644 	 * number of aggregation entries after which the aggregation is to be
1645 	 * truncated.
1646 	 */
1647 	addr = base + rec->dtrd_offset;
1648 
1649 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1650 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1651 
1652 	/* LINTED - alignment */
1653 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1654 	rec++;
1655 
1656 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1657 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1658 
1659 	if (rec->dtrd_arg != DT_ACT_TRUNC)
1660 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1661 
1662 	addr = base + rec->dtrd_offset;
1663 
1664 	switch (rec->dtrd_size) {
1665 	case sizeof (uint64_t):
1666 		/* LINTED - alignment */
1667 		remaining = *((int64_t *)addr);
1668 		break;
1669 	case sizeof (uint32_t):
1670 		/* LINTED - alignment */
1671 		remaining = *((int32_t *)addr);
1672 		break;
1673 	case sizeof (uint16_t):
1674 		/* LINTED - alignment */
1675 		remaining = *((int16_t *)addr);
1676 		break;
1677 	case sizeof (uint8_t):
1678 		remaining = *((int8_t *)addr);
1679 		break;
1680 	default:
1681 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1682 	}
1683 
1684 	if (remaining < 0) {
1685 		func = dtrace_aggregate_walk_valsorted;
1686 		remaining = -remaining;
1687 	} else {
1688 		func = dtrace_aggregate_walk_valrevsorted;
1689 	}
1690 
1691 	assert(remaining >= 0);
1692 	trunc.dttd_remaining = remaining;
1693 
1694 	(void) func(dtp, dt_trunc_agg, &trunc);
1695 
1696 	return (0);
1697 }
1698 
1699 static int
1700 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1701     caddr_t addr, size_t size, uint64_t normal)
1702 {
1703 	int err;
1704 	dtrace_actkind_t act = rec->dtrd_action;
1705 
1706 	switch (act) {
1707 	case DTRACEACT_STACK:
1708 		return (dt_print_stack(dtp, fp, NULL, addr,
1709 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1710 
1711 	case DTRACEACT_USTACK:
1712 	case DTRACEACT_JSTACK:
1713 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1714 
1715 	case DTRACEACT_USYM:
1716 	case DTRACEACT_UADDR:
1717 		return (dt_print_usym(dtp, fp, addr, act));
1718 
1719 	case DTRACEACT_UMOD:
1720 		return (dt_print_umod(dtp, fp, NULL, addr));
1721 
1722 	case DTRACEACT_SYM:
1723 		return (dt_print_sym(dtp, fp, NULL, addr));
1724 
1725 	case DTRACEACT_MOD:
1726 		return (dt_print_mod(dtp, fp, NULL, addr));
1727 
1728 	case DTRACEAGG_QUANTIZE:
1729 		return (dt_print_quantize(dtp, fp, addr, size, normal));
1730 
1731 	case DTRACEAGG_LQUANTIZE:
1732 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1733 
1734 	case DTRACEAGG_AVG:
1735 		return (dt_print_average(dtp, fp, addr, size, normal));
1736 
1737 	case DTRACEAGG_STDDEV:
1738 		return (dt_print_stddev(dtp, fp, addr, size, normal));
1739 
1740 	default:
1741 		break;
1742 	}
1743 
1744 	switch (size) {
1745 	case sizeof (uint64_t):
1746 		err = dt_printf(dtp, fp, " %16lld",
1747 		    /* LINTED - alignment */
1748 		    (long long)*((uint64_t *)addr) / normal);
1749 		break;
1750 	case sizeof (uint32_t):
1751 		/* LINTED - alignment */
1752 		err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1753 		    (uint32_t)normal);
1754 		break;
1755 	case sizeof (uint16_t):
1756 		/* LINTED - alignment */
1757 		err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1758 		    (uint32_t)normal);
1759 		break;
1760 	case sizeof (uint8_t):
1761 		err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1762 		    (uint32_t)normal);
1763 		break;
1764 	default:
1765 		err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1766 		break;
1767 	}
1768 
1769 	return (err);
1770 }
1771 
1772 int
1773 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1774 {
1775 	int i, aggact = 0;
1776 	dt_print_aggdata_t *pd = arg;
1777 	const dtrace_aggdata_t *aggdata = aggsdata[0];
1778 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1779 	FILE *fp = pd->dtpa_fp;
1780 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1781 	dtrace_recdesc_t *rec;
1782 	dtrace_actkind_t act;
1783 	caddr_t addr;
1784 	size_t size;
1785 
1786 	/*
1787 	 * Iterate over each record description in the key, printing the traced
1788 	 * data, skipping the first datum (the tuple member created by the
1789 	 * compiler).
1790 	 */
1791 	for (i = 1; i < agg->dtagd_nrecs; i++) {
1792 		rec = &agg->dtagd_rec[i];
1793 		act = rec->dtrd_action;
1794 		addr = aggdata->dtada_data + rec->dtrd_offset;
1795 		size = rec->dtrd_size;
1796 
1797 		if (DTRACEACT_ISAGG(act)) {
1798 			aggact = i;
1799 			break;
1800 		}
1801 
1802 		if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1803 			return (-1);
1804 
1805 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1806 		    DTRACE_BUFDATA_AGGKEY) < 0)
1807 			return (-1);
1808 	}
1809 
1810 	assert(aggact != 0);
1811 
1812 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1813 		uint64_t normal;
1814 
1815 		aggdata = aggsdata[i];
1816 		agg = aggdata->dtada_desc;
1817 		rec = &agg->dtagd_rec[aggact];
1818 		act = rec->dtrd_action;
1819 		addr = aggdata->dtada_data + rec->dtrd_offset;
1820 		size = rec->dtrd_size;
1821 
1822 		assert(DTRACEACT_ISAGG(act));
1823 		normal = aggdata->dtada_normal;
1824 
1825 		if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1826 			return (-1);
1827 
1828 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1829 		    DTRACE_BUFDATA_AGGVAL) < 0)
1830 			return (-1);
1831 
1832 		if (!pd->dtpa_allunprint)
1833 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1834 	}
1835 
1836 	if (dt_printf(dtp, fp, "\n") < 0)
1837 		return (-1);
1838 
1839 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1840 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1841 		return (-1);
1842 
1843 	return (0);
1844 }
1845 
1846 int
1847 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1848 {
1849 	dt_print_aggdata_t *pd = arg;
1850 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1851 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1852 
1853 	if (pd->dtpa_allunprint) {
1854 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1855 			return (0);
1856 	} else {
1857 		/*
1858 		 * If we're not printing all unprinted aggregations, then the
1859 		 * aggregation variable ID denotes a specific aggregation
1860 		 * variable that we should print -- skip any other aggregations
1861 		 * that we encounter.
1862 		 */
1863 		if (agg->dtagd_nrecs == 0)
1864 			return (0);
1865 
1866 		if (aggvarid != agg->dtagd_varid)
1867 			return (0);
1868 	}
1869 
1870 	return (dt_print_aggs(&aggdata, 1, arg));
1871 }
1872 
1873 int
1874 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1875     const char *option, const char *value)
1876 {
1877 	int len, rval;
1878 	char *msg;
1879 	const char *errstr;
1880 	dtrace_setoptdata_t optdata;
1881 
1882 	bzero(&optdata, sizeof (optdata));
1883 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1884 
1885 	if (dtrace_setopt(dtp, option, value) == 0) {
1886 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1887 		optdata.dtsda_probe = data;
1888 		optdata.dtsda_option = option;
1889 		optdata.dtsda_handle = dtp;
1890 
1891 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1892 			return (rval);
1893 
1894 		return (0);
1895 	}
1896 
1897 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1898 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1899 	msg = alloca(len);
1900 
1901 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
1902 	    option, value, errstr);
1903 
1904 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
1905 		return (0);
1906 
1907 	return (rval);
1908 }
1909 
1910 static int
1911 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
1912     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
1913 {
1914 	dtrace_epid_t id;
1915 	size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
1916 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
1917 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1918 	int rval, i, n;
1919 	dtrace_epid_t last = DTRACE_EPIDNONE;
1920 	dtrace_probedata_t data;
1921 	uint64_t drops;
1922 	caddr_t addr;
1923 
1924 	bzero(&data, sizeof (data));
1925 	data.dtpda_handle = dtp;
1926 	data.dtpda_cpu = cpu;
1927 
1928 again:
1929 	for (offs = start; offs < end; ) {
1930 		dtrace_eprobedesc_t *epd;
1931 
1932 		/*
1933 		 * We're guaranteed to have an ID.
1934 		 */
1935 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
1936 
1937 		if (id == DTRACE_EPIDNONE) {
1938 			/*
1939 			 * This is filler to assure proper alignment of the
1940 			 * next record; we simply ignore it.
1941 			 */
1942 			offs += sizeof (id);
1943 			continue;
1944 		}
1945 
1946 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
1947 		    &data.dtpda_pdesc)) != 0)
1948 			return (rval);
1949 
1950 		epd = data.dtpda_edesc;
1951 		data.dtpda_data = buf->dtbd_data + offs;
1952 
1953 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
1954 			rval = dt_handle(dtp, &data);
1955 
1956 			if (rval == DTRACE_CONSUME_NEXT)
1957 				goto nextepid;
1958 
1959 			if (rval == DTRACE_CONSUME_ERROR)
1960 				return (-1);
1961 		}
1962 
1963 		if (flow)
1964 			(void) dt_flowindent(dtp, &data, last, buf, offs);
1965 
1966 		rval = (*efunc)(&data, arg);
1967 
1968 		if (flow) {
1969 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
1970 				data.dtpda_indent += 2;
1971 		}
1972 
1973 		if (rval == DTRACE_CONSUME_NEXT)
1974 			goto nextepid;
1975 
1976 		if (rval == DTRACE_CONSUME_ABORT)
1977 			return (dt_set_errno(dtp, EDT_DIRABORT));
1978 
1979 		if (rval != DTRACE_CONSUME_THIS)
1980 			return (dt_set_errno(dtp, EDT_BADRVAL));
1981 
1982 		for (i = 0; i < epd->dtepd_nrecs; i++) {
1983 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
1984 			dtrace_actkind_t act = rec->dtrd_action;
1985 
1986 			data.dtpda_data = buf->dtbd_data + offs +
1987 			    rec->dtrd_offset;
1988 			addr = data.dtpda_data;
1989 
1990 			if (act == DTRACEACT_LIBACT) {
1991 				uint64_t arg = rec->dtrd_arg;
1992 				dtrace_aggvarid_t id;
1993 
1994 				switch (arg) {
1995 				case DT_ACT_CLEAR:
1996 					/* LINTED - alignment */
1997 					id = *((dtrace_aggvarid_t *)addr);
1998 					(void) dtrace_aggregate_walk(dtp,
1999 					    dt_clear_agg, &id);
2000 					continue;
2001 
2002 				case DT_ACT_DENORMALIZE:
2003 					/* LINTED - alignment */
2004 					id = *((dtrace_aggvarid_t *)addr);
2005 					(void) dtrace_aggregate_walk(dtp,
2006 					    dt_denormalize_agg, &id);
2007 					continue;
2008 
2009 				case DT_ACT_FTRUNCATE:
2010 					if (fp == NULL)
2011 						continue;
2012 
2013 					(void) fflush(fp);
2014 					(void) ftruncate(fileno(fp), 0);
2015 					(void) fseeko(fp, 0, SEEK_SET);
2016 					continue;
2017 
2018 				case DT_ACT_NORMALIZE:
2019 					if (i == epd->dtepd_nrecs - 1)
2020 						return (dt_set_errno(dtp,
2021 						    EDT_BADNORMAL));
2022 
2023 					if (dt_normalize(dtp,
2024 					    buf->dtbd_data + offs, rec) != 0)
2025 						return (-1);
2026 
2027 					i++;
2028 					continue;
2029 
2030 				case DT_ACT_SETOPT: {
2031 					uint64_t *opts = dtp->dt_options;
2032 					dtrace_recdesc_t *valrec;
2033 					uint32_t valsize;
2034 					caddr_t val;
2035 					int rv;
2036 
2037 					if (i == epd->dtepd_nrecs - 1) {
2038 						return (dt_set_errno(dtp,
2039 						    EDT_BADSETOPT));
2040 					}
2041 
2042 					valrec = &epd->dtepd_rec[++i];
2043 					valsize = valrec->dtrd_size;
2044 
2045 					if (valrec->dtrd_action != act ||
2046 					    valrec->dtrd_arg != arg) {
2047 						return (dt_set_errno(dtp,
2048 						    EDT_BADSETOPT));
2049 					}
2050 
2051 					if (valsize > sizeof (uint64_t)) {
2052 						val = buf->dtbd_data + offs +
2053 						    valrec->dtrd_offset;
2054 					} else {
2055 						val = "1";
2056 					}
2057 
2058 					rv = dt_setopt(dtp, &data, addr, val);
2059 
2060 					if (rv != 0)
2061 						return (-1);
2062 
2063 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2064 					    DTRACEOPT_UNSET);
2065 					quiet = (opts[DTRACEOPT_QUIET] !=
2066 					    DTRACEOPT_UNSET);
2067 
2068 					continue;
2069 				}
2070 
2071 				case DT_ACT_TRUNC:
2072 					if (i == epd->dtepd_nrecs - 1)
2073 						return (dt_set_errno(dtp,
2074 						    EDT_BADTRUNC));
2075 
2076 					if (dt_trunc(dtp,
2077 					    buf->dtbd_data + offs, rec) != 0)
2078 						return (-1);
2079 
2080 					i++;
2081 					continue;
2082 
2083 				default:
2084 					continue;
2085 				}
2086 			}
2087 
2088 			rval = (*rfunc)(&data, rec, arg);
2089 
2090 			if (rval == DTRACE_CONSUME_NEXT)
2091 				continue;
2092 
2093 			if (rval == DTRACE_CONSUME_ABORT)
2094 				return (dt_set_errno(dtp, EDT_DIRABORT));
2095 
2096 			if (rval != DTRACE_CONSUME_THIS)
2097 				return (dt_set_errno(dtp, EDT_BADRVAL));
2098 
2099 			if (act == DTRACEACT_STACK) {
2100 				int depth = rec->dtrd_arg;
2101 
2102 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2103 				    rec->dtrd_size / depth) < 0)
2104 					return (-1);
2105 				goto nextrec;
2106 			}
2107 
2108 			if (act == DTRACEACT_USTACK ||
2109 			    act == DTRACEACT_JSTACK) {
2110 				if (dt_print_ustack(dtp, fp, NULL,
2111 				    addr, rec->dtrd_arg) < 0)
2112 					return (-1);
2113 				goto nextrec;
2114 			}
2115 
2116 			if (act == DTRACEACT_SYM) {
2117 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2118 					return (-1);
2119 				goto nextrec;
2120 			}
2121 
2122 			if (act == DTRACEACT_MOD) {
2123 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2124 					return (-1);
2125 				goto nextrec;
2126 			}
2127 
2128 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2129 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2130 					return (-1);
2131 				goto nextrec;
2132 			}
2133 
2134 			if (act == DTRACEACT_UMOD) {
2135 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2136 					return (-1);
2137 				goto nextrec;
2138 			}
2139 
2140 			if (act == DTRACEACT_PRINTM) {
2141 				if (dt_print_memory(dtp, fp, addr) < 0)
2142 					return (-1);
2143 				goto nextrec;
2144 			}
2145 
2146 			if (act == DTRACEACT_PRINTT) {
2147 				if (dt_print_type(dtp, fp, addr) < 0)
2148 					return (-1);
2149 				goto nextrec;
2150 			}
2151 
2152 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2153 				void *fmtdata;
2154 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2155 				    const dtrace_probedata_t *,
2156 				    const dtrace_recdesc_t *, uint_t,
2157 				    const void *buf, size_t);
2158 
2159 				if ((fmtdata = dt_format_lookup(dtp,
2160 				    rec->dtrd_format)) == NULL)
2161 					goto nofmt;
2162 
2163 				switch (act) {
2164 				case DTRACEACT_PRINTF:
2165 					func = dtrace_fprintf;
2166 					break;
2167 				case DTRACEACT_PRINTA:
2168 					func = dtrace_fprinta;
2169 					break;
2170 				case DTRACEACT_SYSTEM:
2171 					func = dtrace_system;
2172 					break;
2173 				case DTRACEACT_FREOPEN:
2174 					func = dtrace_freopen;
2175 					break;
2176 				}
2177 
2178 				n = (*func)(dtp, fp, fmtdata, &data,
2179 				    rec, epd->dtepd_nrecs - i,
2180 				    (uchar_t *)buf->dtbd_data + offs,
2181 				    buf->dtbd_size - offs);
2182 
2183 				if (n < 0)
2184 					return (-1); /* errno is set for us */
2185 
2186 				if (n > 0)
2187 					i += n - 1;
2188 				goto nextrec;
2189 			}
2190 
2191 nofmt:
2192 			if (act == DTRACEACT_PRINTA) {
2193 				dt_print_aggdata_t pd;
2194 				dtrace_aggvarid_t *aggvars;
2195 				int j, naggvars = 0;
2196 				size_t size = ((epd->dtepd_nrecs - i) *
2197 				    sizeof (dtrace_aggvarid_t));
2198 
2199 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2200 					return (-1);
2201 
2202 				/*
2203 				 * This might be a printa() with multiple
2204 				 * aggregation variables.  We need to scan
2205 				 * forward through the records until we find
2206 				 * a record from a different statement.
2207 				 */
2208 				for (j = i; j < epd->dtepd_nrecs; j++) {
2209 					dtrace_recdesc_t *nrec;
2210 					caddr_t naddr;
2211 
2212 					nrec = &epd->dtepd_rec[j];
2213 
2214 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2215 						break;
2216 
2217 					if (nrec->dtrd_action != act) {
2218 						return (dt_set_errno(dtp,
2219 						    EDT_BADAGG));
2220 					}
2221 
2222 					naddr = buf->dtbd_data + offs +
2223 					    nrec->dtrd_offset;
2224 
2225 					aggvars[naggvars++] =
2226 					    /* LINTED - alignment */
2227 					    *((dtrace_aggvarid_t *)naddr);
2228 				}
2229 
2230 				i = j - 1;
2231 				bzero(&pd, sizeof (pd));
2232 				pd.dtpa_dtp = dtp;
2233 				pd.dtpa_fp = fp;
2234 
2235 				assert(naggvars >= 1);
2236 
2237 				if (naggvars == 1) {
2238 					pd.dtpa_id = aggvars[0];
2239 					dt_free(dtp, aggvars);
2240 
2241 					if (dt_printf(dtp, fp, "\n") < 0 ||
2242 					    dtrace_aggregate_walk_sorted(dtp,
2243 					    dt_print_agg, &pd) < 0)
2244 						return (-1);
2245 					goto nextrec;
2246 				}
2247 
2248 				if (dt_printf(dtp, fp, "\n") < 0 ||
2249 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2250 				    naggvars, dt_print_aggs, &pd) < 0) {
2251 					dt_free(dtp, aggvars);
2252 					return (-1);
2253 				}
2254 
2255 				dt_free(dtp, aggvars);
2256 				goto nextrec;
2257 			}
2258 
2259 			switch (rec->dtrd_size) {
2260 			case sizeof (uint64_t):
2261 				n = dt_printf(dtp, fp,
2262 				    quiet ? "%lld" : " %16lld",
2263 				    /* LINTED - alignment */
2264 				    *((unsigned long long *)addr));
2265 				break;
2266 			case sizeof (uint32_t):
2267 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2268 				    /* LINTED - alignment */
2269 				    *((uint32_t *)addr));
2270 				break;
2271 			case sizeof (uint16_t):
2272 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2273 				    /* LINTED - alignment */
2274 				    *((uint16_t *)addr));
2275 				break;
2276 			case sizeof (uint8_t):
2277 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2278 				    *((uint8_t *)addr));
2279 				break;
2280 			default:
2281 				n = dt_print_bytes(dtp, fp, addr,
2282 				    rec->dtrd_size, 33, quiet, 0);
2283 				break;
2284 			}
2285 
2286 			if (n < 0)
2287 				return (-1); /* errno is set for us */
2288 
2289 nextrec:
2290 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2291 				return (-1); /* errno is set for us */
2292 		}
2293 
2294 		/*
2295 		 * Call the record callback with a NULL record to indicate
2296 		 * that we're done processing this EPID.
2297 		 */
2298 		rval = (*rfunc)(&data, NULL, arg);
2299 nextepid:
2300 		offs += epd->dtepd_size;
2301 		last = id;
2302 	}
2303 
2304 	if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
2305 		end = buf->dtbd_oldest;
2306 		start = 0;
2307 		goto again;
2308 	}
2309 
2310 	if ((drops = buf->dtbd_drops) == 0)
2311 		return (0);
2312 
2313 	/*
2314 	 * Explicitly zero the drops to prevent us from processing them again.
2315 	 */
2316 	buf->dtbd_drops = 0;
2317 
2318 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2319 }
2320 
2321 typedef struct dt_begin {
2322 	dtrace_consume_probe_f *dtbgn_probefunc;
2323 	dtrace_consume_rec_f *dtbgn_recfunc;
2324 	void *dtbgn_arg;
2325 	dtrace_handle_err_f *dtbgn_errhdlr;
2326 	void *dtbgn_errarg;
2327 	int dtbgn_beginonly;
2328 } dt_begin_t;
2329 
2330 static int
2331 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2332 {
2333 	dt_begin_t *begin = (dt_begin_t *)arg;
2334 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2335 
2336 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2337 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2338 
2339 	if (begin->dtbgn_beginonly) {
2340 		if (!(r1 && r2))
2341 			return (DTRACE_CONSUME_NEXT);
2342 	} else {
2343 		if (r1 && r2)
2344 			return (DTRACE_CONSUME_NEXT);
2345 	}
2346 
2347 	/*
2348 	 * We have a record that we're interested in.  Now call the underlying
2349 	 * probe function...
2350 	 */
2351 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2352 }
2353 
2354 static int
2355 dt_consume_begin_record(const dtrace_probedata_t *data,
2356     const dtrace_recdesc_t *rec, void *arg)
2357 {
2358 	dt_begin_t *begin = (dt_begin_t *)arg;
2359 
2360 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2361 }
2362 
2363 static int
2364 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2365 {
2366 	dt_begin_t *begin = (dt_begin_t *)arg;
2367 	dtrace_probedesc_t *pd = data->dteda_pdesc;
2368 
2369 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2370 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2371 
2372 	if (begin->dtbgn_beginonly) {
2373 		if (!(r1 && r2))
2374 			return (DTRACE_HANDLE_OK);
2375 	} else {
2376 		if (r1 && r2)
2377 			return (DTRACE_HANDLE_OK);
2378 	}
2379 
2380 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2381 }
2382 
2383 static int
2384 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
2385     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2386 {
2387 	/*
2388 	 * There's this idea that the BEGIN probe should be processed before
2389 	 * everything else, and that the END probe should be processed after
2390 	 * anything else.  In the common case, this is pretty easy to deal
2391 	 * with.  However, a situation may arise where the BEGIN enabling and
2392 	 * END enabling are on the same CPU, and some enabling in the middle
2393 	 * occurred on a different CPU.  To deal with this (blech!) we need to
2394 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2395 	 * then set it aside.  We will then process every other CPU, and then
2396 	 * we'll return to the BEGIN CPU and process the rest of the data
2397 	 * (which will inevitably include the END probe, if any).  Making this
2398 	 * even more complicated (!) is the library's ERROR enabling.  Because
2399 	 * this enabling is processed before we even get into the consume call
2400 	 * back, any ERROR firing would result in the library's ERROR enabling
2401 	 * being processed twice -- once in our first pass (for BEGIN probes),
2402 	 * and again in our second pass (for everything but BEGIN probes).  To
2403 	 * deal with this, we interpose on the ERROR handler to assure that we
2404 	 * only process ERROR enablings induced by BEGIN enablings in the
2405 	 * first pass, and that we only process ERROR enablings _not_ induced
2406 	 * by BEGIN enablings in the second pass.
2407 	 */
2408 	dt_begin_t begin;
2409 	processorid_t cpu = dtp->dt_beganon;
2410 	dtrace_bufdesc_t nbuf;
2411 #if !defined(sun)
2412 	dtrace_bufdesc_t *pbuf;
2413 #endif
2414 	int rval, i;
2415 	static int max_ncpus;
2416 	dtrace_optval_t size;
2417 
2418 	dtp->dt_beganon = -1;
2419 
2420 #if defined(sun)
2421 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2422 #else
2423 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2424 #endif
2425 		/*
2426 		 * We really don't expect this to fail, but it is at least
2427 		 * technically possible for this to fail with ENOENT.  In this
2428 		 * case, we just drive on...
2429 		 */
2430 		if (errno == ENOENT)
2431 			return (0);
2432 
2433 		return (dt_set_errno(dtp, errno));
2434 	}
2435 
2436 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2437 		/*
2438 		 * This is the simple case.  We're either not stopped, or if
2439 		 * we are, we actually processed any END probes on another
2440 		 * CPU.  We can simply consume this buffer and return.
2441 		 */
2442 		return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
2443 	}
2444 
2445 	begin.dtbgn_probefunc = pf;
2446 	begin.dtbgn_recfunc = rf;
2447 	begin.dtbgn_arg = arg;
2448 	begin.dtbgn_beginonly = 1;
2449 
2450 	/*
2451 	 * We need to interpose on the ERROR handler to be sure that we
2452 	 * only process ERRORs induced by BEGIN.
2453 	 */
2454 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2455 	begin.dtbgn_errarg = dtp->dt_errarg;
2456 	dtp->dt_errhdlr = dt_consume_begin_error;
2457 	dtp->dt_errarg = &begin;
2458 
2459 	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2460 	    dt_consume_begin_record, &begin);
2461 
2462 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2463 	dtp->dt_errarg = begin.dtbgn_errarg;
2464 
2465 	if (rval != 0)
2466 		return (rval);
2467 
2468 	/*
2469 	 * Now allocate a new buffer.  We'll use this to deal with every other
2470 	 * CPU.
2471 	 */
2472 	bzero(&nbuf, sizeof (dtrace_bufdesc_t));
2473 	(void) dtrace_getopt(dtp, "bufsize", &size);
2474 	if ((nbuf.dtbd_data = malloc(size)) == NULL)
2475 		return (dt_set_errno(dtp, EDT_NOMEM));
2476 
2477 	if (max_ncpus == 0)
2478 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2479 
2480 	for (i = 0; i < max_ncpus; i++) {
2481 		nbuf.dtbd_cpu = i;
2482 
2483 		if (i == cpu)
2484 			continue;
2485 
2486 #if defined(sun)
2487 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
2488 #else
2489 		pbuf = &nbuf;
2490 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &pbuf) == -1) {
2491 #endif
2492 			/*
2493 			 * If we failed with ENOENT, it may be because the
2494 			 * CPU was unconfigured -- this is okay.  Any other
2495 			 * error, however, is unexpected.
2496 			 */
2497 			if (errno == ENOENT)
2498 				continue;
2499 
2500 			free(nbuf.dtbd_data);
2501 
2502 			return (dt_set_errno(dtp, errno));
2503 		}
2504 
2505 		if ((rval = dt_consume_cpu(dtp, fp,
2506 		    i, &nbuf, pf, rf, arg)) != 0) {
2507 			free(nbuf.dtbd_data);
2508 			return (rval);
2509 		}
2510 	}
2511 
2512 	free(nbuf.dtbd_data);
2513 
2514 	/*
2515 	 * Okay -- we're done with the other buffers.  Now we want to
2516 	 * reconsume the first buffer -- but this time we're looking for
2517 	 * everything _but_ BEGIN.  And of course, in order to only consume
2518 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2519 	 * ERROR interposition function...
2520 	 */
2521 	begin.dtbgn_beginonly = 0;
2522 
2523 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2524 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2525 	dtp->dt_errhdlr = dt_consume_begin_error;
2526 	dtp->dt_errarg = &begin;
2527 
2528 	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2529 	    dt_consume_begin_record, &begin);
2530 
2531 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2532 	dtp->dt_errarg = begin.dtbgn_errarg;
2533 
2534 	return (rval);
2535 }
2536 
2537 int
2538 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2539     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2540 {
2541 	dtrace_bufdesc_t *buf = &dtp->dt_buf;
2542 	dtrace_optval_t size;
2543 	static int max_ncpus;
2544 	int i, rval;
2545 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2546 	hrtime_t now = gethrtime();
2547 
2548 	if (dtp->dt_lastswitch != 0) {
2549 		if (now - dtp->dt_lastswitch < interval)
2550 			return (0);
2551 
2552 		dtp->dt_lastswitch += interval;
2553 	} else {
2554 		dtp->dt_lastswitch = now;
2555 	}
2556 
2557 	if (!dtp->dt_active)
2558 		return (dt_set_errno(dtp, EINVAL));
2559 
2560 	if (max_ncpus == 0)
2561 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2562 
2563 	if (pf == NULL)
2564 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2565 
2566 	if (rf == NULL)
2567 		rf = (dtrace_consume_rec_f *)dt_nullrec;
2568 
2569 	if (buf->dtbd_data == NULL) {
2570 		(void) dtrace_getopt(dtp, "bufsize", &size);
2571 		if ((buf->dtbd_data = malloc(size)) == NULL)
2572 			return (dt_set_errno(dtp, EDT_NOMEM));
2573 
2574 		buf->dtbd_size = size;
2575 	}
2576 
2577 	/*
2578 	 * If we have just begun, we want to first process the CPU that
2579 	 * executed the BEGIN probe (if any).
2580 	 */
2581 	if (dtp->dt_active && dtp->dt_beganon != -1) {
2582 		buf->dtbd_cpu = dtp->dt_beganon;
2583 		if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
2584 			return (rval);
2585 	}
2586 
2587 	for (i = 0; i < max_ncpus; i++) {
2588 		buf->dtbd_cpu = i;
2589 
2590 		/*
2591 		 * If we have stopped, we want to process the CPU on which the
2592 		 * END probe was processed only _after_ we have processed
2593 		 * everything else.
2594 		 */
2595 		if (dtp->dt_stopped && (i == dtp->dt_endedon))
2596 			continue;
2597 
2598 #if defined(sun)
2599 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2600 #else
2601 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2602 #endif
2603 			/*
2604 			 * If we failed with ENOENT, it may be because the
2605 			 * CPU was unconfigured -- this is okay.  Any other
2606 			 * error, however, is unexpected.
2607 			 */
2608 			if (errno == ENOENT)
2609 				continue;
2610 
2611 			return (dt_set_errno(dtp, errno));
2612 		}
2613 
2614 		if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
2615 			return (rval);
2616 	}
2617 
2618 	if (!dtp->dt_stopped)
2619 		return (0);
2620 
2621 	buf->dtbd_cpu = dtp->dt_endedon;
2622 
2623 #if defined(sun)
2624 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2625 #else
2626 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2627 #endif
2628 		/*
2629 		 * This _really_ shouldn't fail, but it is strictly speaking
2630 		 * possible for this to return ENOENT if the CPU that called
2631 		 * the END enabling somehow managed to become unconfigured.
2632 		 * It's unclear how the user can possibly expect anything
2633 		 * rational to happen in this case -- the state has been thrown
2634 		 * out along with the unconfigured CPU -- so we'll just drive
2635 		 * on...
2636 		 */
2637 		if (errno == ENOENT)
2638 			return (0);
2639 
2640 		return (dt_set_errno(dtp, errno));
2641 	}
2642 
2643 	return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
2644 }
2645