1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017-2018 Intel Corporation 3 */ 4 #include <rte_malloc.h> 5 #include <rte_hash.h> 6 #include <rte_jhash.h> 7 #include <rte_mbuf.h> 8 #include <rte_cryptodev.h> 9 10 #include "rte_vhost_crypto.h" 11 #include "vhost.h" 12 #include "vhost_user.h" 13 #include "virtio_crypto.h" 14 15 #define INHDR_LEN (sizeof(struct virtio_crypto_inhdr)) 16 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ 17 sizeof(struct rte_crypto_sym_op)) 18 19 #ifdef RTE_LIBRTE_VHOST_DEBUG 20 #define VC_LOG_ERR(fmt, args...) \ 21 RTE_LOG(ERR, USER1, "[%s] %s() line %u: " fmt "\n", \ 22 "Vhost-Crypto", __func__, __LINE__, ## args) 23 #define VC_LOG_INFO(fmt, args...) \ 24 RTE_LOG(INFO, USER1, "[%s] %s() line %u: " fmt "\n", \ 25 "Vhost-Crypto", __func__, __LINE__, ## args) 26 27 #define VC_LOG_DBG(fmt, args...) \ 28 RTE_LOG(DEBUG, USER1, "[%s] %s() line %u: " fmt "\n", \ 29 "Vhost-Crypto", __func__, __LINE__, ## args) 30 #else 31 #define VC_LOG_ERR(fmt, args...) \ 32 RTE_LOG(ERR, USER1, "[VHOST-Crypto]: " fmt "\n", ## args) 33 #define VC_LOG_INFO(fmt, args...) \ 34 RTE_LOG(INFO, USER1, "[VHOST-Crypto]: " fmt "\n", ## args) 35 #define VC_LOG_DBG(fmt, args...) 36 #endif 37 38 #define VIRTIO_CRYPTO_FEATURES ((1ULL << VIRTIO_F_NOTIFY_ON_EMPTY) | \ 39 (1ULL << VIRTIO_RING_F_INDIRECT_DESC) | \ 40 (1ULL << VIRTIO_RING_F_EVENT_IDX) | \ 41 (1ULL << VIRTIO_NET_F_CTRL_VQ) | \ 42 (1ULL << VIRTIO_F_VERSION_1) | \ 43 (1ULL << VHOST_USER_F_PROTOCOL_FEATURES)) 44 45 #define IOVA_TO_VVA(t, r, a, l, p) \ 46 ((t)(uintptr_t)vhost_iova_to_vva(r->dev, r->vq, a, l, p)) 47 48 /* 49 * vhost_crypto_desc is used to copy original vring_desc to the local buffer 50 * before processing (except the next index). The copy result will be an 51 * array of vhost_crypto_desc elements that follows the sequence of original 52 * vring_desc.next is arranged. 53 */ 54 #define vhost_crypto_desc vring_desc 55 56 static int 57 cipher_algo_transform(uint32_t virtio_cipher_algo, 58 enum rte_crypto_cipher_algorithm *algo) 59 { 60 switch (virtio_cipher_algo) { 61 case VIRTIO_CRYPTO_CIPHER_AES_CBC: 62 *algo = RTE_CRYPTO_CIPHER_AES_CBC; 63 break; 64 case VIRTIO_CRYPTO_CIPHER_AES_CTR: 65 *algo = RTE_CRYPTO_CIPHER_AES_CTR; 66 break; 67 case VIRTIO_CRYPTO_CIPHER_DES_ECB: 68 *algo = -VIRTIO_CRYPTO_NOTSUPP; 69 break; 70 case VIRTIO_CRYPTO_CIPHER_DES_CBC: 71 *algo = RTE_CRYPTO_CIPHER_DES_CBC; 72 break; 73 case VIRTIO_CRYPTO_CIPHER_3DES_ECB: 74 *algo = RTE_CRYPTO_CIPHER_3DES_ECB; 75 break; 76 case VIRTIO_CRYPTO_CIPHER_3DES_CBC: 77 *algo = RTE_CRYPTO_CIPHER_3DES_CBC; 78 break; 79 case VIRTIO_CRYPTO_CIPHER_3DES_CTR: 80 *algo = RTE_CRYPTO_CIPHER_3DES_CTR; 81 break; 82 case VIRTIO_CRYPTO_CIPHER_KASUMI_F8: 83 *algo = RTE_CRYPTO_CIPHER_KASUMI_F8; 84 break; 85 case VIRTIO_CRYPTO_CIPHER_SNOW3G_UEA2: 86 *algo = RTE_CRYPTO_CIPHER_SNOW3G_UEA2; 87 break; 88 case VIRTIO_CRYPTO_CIPHER_AES_F8: 89 *algo = RTE_CRYPTO_CIPHER_AES_F8; 90 break; 91 case VIRTIO_CRYPTO_CIPHER_AES_XTS: 92 *algo = RTE_CRYPTO_CIPHER_AES_XTS; 93 break; 94 case VIRTIO_CRYPTO_CIPHER_ZUC_EEA3: 95 *algo = RTE_CRYPTO_CIPHER_ZUC_EEA3; 96 break; 97 default: 98 return -VIRTIO_CRYPTO_BADMSG; 99 break; 100 } 101 102 return 0; 103 } 104 105 static int 106 auth_algo_transform(uint32_t virtio_auth_algo, 107 enum rte_crypto_auth_algorithm *algo) 108 { 109 switch (virtio_auth_algo) { 110 case VIRTIO_CRYPTO_NO_MAC: 111 *algo = RTE_CRYPTO_AUTH_NULL; 112 break; 113 case VIRTIO_CRYPTO_MAC_HMAC_MD5: 114 *algo = RTE_CRYPTO_AUTH_MD5_HMAC; 115 break; 116 case VIRTIO_CRYPTO_MAC_HMAC_SHA1: 117 *algo = RTE_CRYPTO_AUTH_SHA1_HMAC; 118 break; 119 case VIRTIO_CRYPTO_MAC_HMAC_SHA_224: 120 *algo = RTE_CRYPTO_AUTH_SHA224_HMAC; 121 break; 122 case VIRTIO_CRYPTO_MAC_HMAC_SHA_256: 123 *algo = RTE_CRYPTO_AUTH_SHA256_HMAC; 124 break; 125 case VIRTIO_CRYPTO_MAC_HMAC_SHA_384: 126 *algo = RTE_CRYPTO_AUTH_SHA384_HMAC; 127 break; 128 case VIRTIO_CRYPTO_MAC_HMAC_SHA_512: 129 *algo = RTE_CRYPTO_AUTH_SHA512_HMAC; 130 break; 131 case VIRTIO_CRYPTO_MAC_CMAC_AES: 132 *algo = RTE_CRYPTO_AUTH_AES_CMAC; 133 break; 134 case VIRTIO_CRYPTO_MAC_KASUMI_F9: 135 *algo = RTE_CRYPTO_AUTH_KASUMI_F9; 136 break; 137 case VIRTIO_CRYPTO_MAC_SNOW3G_UIA2: 138 *algo = RTE_CRYPTO_AUTH_SNOW3G_UIA2; 139 break; 140 case VIRTIO_CRYPTO_MAC_GMAC_AES: 141 *algo = RTE_CRYPTO_AUTH_AES_GMAC; 142 break; 143 case VIRTIO_CRYPTO_MAC_CBCMAC_AES: 144 *algo = RTE_CRYPTO_AUTH_AES_CBC_MAC; 145 break; 146 case VIRTIO_CRYPTO_MAC_XCBC_AES: 147 *algo = RTE_CRYPTO_AUTH_AES_XCBC_MAC; 148 break; 149 case VIRTIO_CRYPTO_MAC_CMAC_3DES: 150 case VIRTIO_CRYPTO_MAC_GMAC_TWOFISH: 151 case VIRTIO_CRYPTO_MAC_CBCMAC_KASUMI_F9: 152 return -VIRTIO_CRYPTO_NOTSUPP; 153 default: 154 return -VIRTIO_CRYPTO_BADMSG; 155 } 156 157 return 0; 158 } 159 160 static int get_iv_len(enum rte_crypto_cipher_algorithm algo) 161 { 162 int len; 163 164 switch (algo) { 165 case RTE_CRYPTO_CIPHER_3DES_CBC: 166 len = 8; 167 break; 168 case RTE_CRYPTO_CIPHER_3DES_CTR: 169 len = 8; 170 break; 171 case RTE_CRYPTO_CIPHER_3DES_ECB: 172 len = 8; 173 break; 174 case RTE_CRYPTO_CIPHER_AES_CBC: 175 len = 16; 176 break; 177 178 /* TODO: add common algos */ 179 180 default: 181 len = -1; 182 break; 183 } 184 185 return len; 186 } 187 188 /** 189 * vhost_crypto struct is used to maintain a number of virtio_cryptos and 190 * one DPDK crypto device that deals with all crypto workloads. It is declared 191 * here and defined in vhost_crypto.c 192 */ 193 struct vhost_crypto { 194 /** Used to lookup DPDK Cryptodev Session based on VIRTIO crypto 195 * session ID. 196 */ 197 struct rte_hash *session_map; 198 struct rte_mempool *mbuf_pool; 199 struct rte_mempool *sess_pool; 200 struct rte_mempool *wb_pool; 201 202 /** DPDK cryptodev ID */ 203 uint8_t cid; 204 uint16_t nb_qps; 205 206 uint64_t last_session_id; 207 208 uint64_t cache_session_id; 209 struct rte_cryptodev_sym_session *cache_session; 210 /** socket id for the device */ 211 int socket_id; 212 213 struct virtio_net *dev; 214 215 uint8_t option; 216 } __rte_cache_aligned; 217 218 struct vhost_crypto_writeback_data { 219 uint8_t *src; 220 uint8_t *dst; 221 uint64_t len; 222 struct vhost_crypto_writeback_data *next; 223 }; 224 225 struct vhost_crypto_data_req { 226 struct vring_desc *head; 227 struct virtio_net *dev; 228 struct virtio_crypto_inhdr *inhdr; 229 struct vhost_virtqueue *vq; 230 struct vhost_crypto_writeback_data *wb; 231 struct rte_mempool *wb_pool; 232 uint16_t desc_idx; 233 uint16_t len; 234 uint16_t zero_copy; 235 }; 236 237 static int 238 transform_cipher_param(struct rte_crypto_sym_xform *xform, 239 VhostUserCryptoSessionParam *param) 240 { 241 int ret; 242 243 ret = cipher_algo_transform(param->cipher_algo, &xform->cipher.algo); 244 if (unlikely(ret < 0)) 245 return ret; 246 247 if (param->cipher_key_len > VHOST_USER_CRYPTO_MAX_CIPHER_KEY_LENGTH) { 248 VC_LOG_DBG("Invalid cipher key length\n"); 249 return -VIRTIO_CRYPTO_BADMSG; 250 } 251 252 xform->type = RTE_CRYPTO_SYM_XFORM_CIPHER; 253 xform->cipher.key.length = param->cipher_key_len; 254 if (xform->cipher.key.length > 0) 255 xform->cipher.key.data = param->cipher_key_buf; 256 if (param->dir == VIRTIO_CRYPTO_OP_ENCRYPT) 257 xform->cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 258 else if (param->dir == VIRTIO_CRYPTO_OP_DECRYPT) 259 xform->cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 260 else { 261 VC_LOG_DBG("Bad operation type"); 262 return -VIRTIO_CRYPTO_BADMSG; 263 } 264 265 ret = get_iv_len(xform->cipher.algo); 266 if (unlikely(ret < 0)) 267 return ret; 268 xform->cipher.iv.length = (uint16_t)ret; 269 xform->cipher.iv.offset = IV_OFFSET; 270 return 0; 271 } 272 273 static int 274 transform_chain_param(struct rte_crypto_sym_xform *xforms, 275 VhostUserCryptoSessionParam *param) 276 { 277 struct rte_crypto_sym_xform *xform_cipher, *xform_auth; 278 int ret; 279 280 switch (param->chaining_dir) { 281 case VIRTIO_CRYPTO_SYM_ALG_CHAIN_ORDER_HASH_THEN_CIPHER: 282 xform_auth = xforms; 283 xform_cipher = xforms->next; 284 xform_cipher->cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT; 285 xform_auth->auth.op = RTE_CRYPTO_AUTH_OP_VERIFY; 286 break; 287 case VIRTIO_CRYPTO_SYM_ALG_CHAIN_ORDER_CIPHER_THEN_HASH: 288 xform_cipher = xforms; 289 xform_auth = xforms->next; 290 xform_cipher->cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 291 xform_auth->auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; 292 break; 293 default: 294 return -VIRTIO_CRYPTO_BADMSG; 295 } 296 297 /* cipher */ 298 ret = cipher_algo_transform(param->cipher_algo, 299 &xform_cipher->cipher.algo); 300 if (unlikely(ret < 0)) 301 return ret; 302 303 if (param->cipher_key_len > VHOST_USER_CRYPTO_MAX_CIPHER_KEY_LENGTH) { 304 VC_LOG_DBG("Invalid cipher key length\n"); 305 return -VIRTIO_CRYPTO_BADMSG; 306 } 307 308 xform_cipher->type = RTE_CRYPTO_SYM_XFORM_CIPHER; 309 xform_cipher->cipher.key.length = param->cipher_key_len; 310 xform_cipher->cipher.key.data = param->cipher_key_buf; 311 ret = get_iv_len(xform_cipher->cipher.algo); 312 if (unlikely(ret < 0)) 313 return ret; 314 xform_cipher->cipher.iv.length = (uint16_t)ret; 315 xform_cipher->cipher.iv.offset = IV_OFFSET; 316 317 /* auth */ 318 xform_auth->type = RTE_CRYPTO_SYM_XFORM_AUTH; 319 ret = auth_algo_transform(param->hash_algo, &xform_auth->auth.algo); 320 if (unlikely(ret < 0)) 321 return ret; 322 323 if (param->auth_key_len > VHOST_USER_CRYPTO_MAX_HMAC_KEY_LENGTH) { 324 VC_LOG_DBG("Invalid auth key length\n"); 325 return -VIRTIO_CRYPTO_BADMSG; 326 } 327 328 xform_auth->auth.digest_length = param->digest_len; 329 xform_auth->auth.key.length = param->auth_key_len; 330 xform_auth->auth.key.data = param->auth_key_buf; 331 332 return 0; 333 } 334 335 static void 336 vhost_crypto_create_sess(struct vhost_crypto *vcrypto, 337 VhostUserCryptoSessionParam *sess_param) 338 { 339 struct rte_crypto_sym_xform xform1 = {0}, xform2 = {0}; 340 struct rte_cryptodev_sym_session *session; 341 int ret; 342 343 switch (sess_param->op_type) { 344 case VIRTIO_CRYPTO_SYM_OP_NONE: 345 case VIRTIO_CRYPTO_SYM_OP_CIPHER: 346 ret = transform_cipher_param(&xform1, sess_param); 347 if (unlikely(ret)) { 348 VC_LOG_ERR("Error transform session msg (%i)", ret); 349 sess_param->session_id = ret; 350 return; 351 } 352 break; 353 case VIRTIO_CRYPTO_SYM_OP_ALGORITHM_CHAINING: 354 if (unlikely(sess_param->hash_mode != 355 VIRTIO_CRYPTO_SYM_HASH_MODE_AUTH)) { 356 sess_param->session_id = -VIRTIO_CRYPTO_NOTSUPP; 357 VC_LOG_ERR("Error transform session message (%i)", 358 -VIRTIO_CRYPTO_NOTSUPP); 359 return; 360 } 361 362 xform1.next = &xform2; 363 364 ret = transform_chain_param(&xform1, sess_param); 365 if (unlikely(ret)) { 366 VC_LOG_ERR("Error transform session message (%i)", ret); 367 sess_param->session_id = ret; 368 return; 369 } 370 371 break; 372 default: 373 VC_LOG_ERR("Algorithm not yet supported"); 374 sess_param->session_id = -VIRTIO_CRYPTO_NOTSUPP; 375 return; 376 } 377 378 session = rte_cryptodev_sym_session_create(vcrypto->cid, &xform1, 379 vcrypto->sess_pool); 380 if (!session) { 381 VC_LOG_ERR("Failed to create session"); 382 sess_param->session_id = -VIRTIO_CRYPTO_ERR; 383 return; 384 } 385 386 /* insert hash to map */ 387 if (rte_hash_add_key_data(vcrypto->session_map, 388 &vcrypto->last_session_id, session) < 0) { 389 VC_LOG_ERR("Failed to insert session to hash table"); 390 391 if (rte_cryptodev_sym_session_free(vcrypto->cid, session) < 0) 392 VC_LOG_ERR("Failed to free session"); 393 sess_param->session_id = -VIRTIO_CRYPTO_ERR; 394 return; 395 } 396 397 VC_LOG_INFO("Session %"PRIu64" created for vdev %i.", 398 vcrypto->last_session_id, vcrypto->dev->vid); 399 400 sess_param->session_id = vcrypto->last_session_id; 401 vcrypto->last_session_id++; 402 } 403 404 static int 405 vhost_crypto_close_sess(struct vhost_crypto *vcrypto, uint64_t session_id) 406 { 407 struct rte_cryptodev_sym_session *session; 408 uint64_t sess_id = session_id; 409 int ret; 410 411 ret = rte_hash_lookup_data(vcrypto->session_map, &sess_id, 412 (void **)&session); 413 414 if (unlikely(ret < 0)) { 415 VC_LOG_ERR("Failed to delete session %"PRIu64".", session_id); 416 return -VIRTIO_CRYPTO_INVSESS; 417 } 418 419 if (rte_cryptodev_sym_session_free(vcrypto->cid, session) < 0) { 420 VC_LOG_DBG("Failed to free session"); 421 return -VIRTIO_CRYPTO_ERR; 422 } 423 424 if (rte_hash_del_key(vcrypto->session_map, &sess_id) < 0) { 425 VC_LOG_DBG("Failed to delete session from hash table."); 426 return -VIRTIO_CRYPTO_ERR; 427 } 428 429 VC_LOG_INFO("Session %"PRIu64" deleted for vdev %i.", sess_id, 430 vcrypto->dev->vid); 431 432 return 0; 433 } 434 435 static enum rte_vhost_msg_result 436 vhost_crypto_msg_post_handler(int vid, void *msg) 437 { 438 struct virtio_net *dev = get_device(vid); 439 struct vhost_crypto *vcrypto; 440 struct vhu_msg_context *ctx = msg; 441 enum rte_vhost_msg_result ret = RTE_VHOST_MSG_RESULT_OK; 442 443 if (dev == NULL) { 444 VC_LOG_ERR("Invalid vid %i", vid); 445 return RTE_VHOST_MSG_RESULT_ERR; 446 } 447 448 vcrypto = dev->extern_data; 449 if (vcrypto == NULL) { 450 VC_LOG_ERR("Cannot find required data, is it initialized?"); 451 return RTE_VHOST_MSG_RESULT_ERR; 452 } 453 454 switch (ctx->msg.request.master) { 455 case VHOST_USER_CRYPTO_CREATE_SESS: 456 vhost_crypto_create_sess(vcrypto, 457 &ctx->msg.payload.crypto_session); 458 ctx->fd_num = 0; 459 ret = RTE_VHOST_MSG_RESULT_REPLY; 460 break; 461 case VHOST_USER_CRYPTO_CLOSE_SESS: 462 if (vhost_crypto_close_sess(vcrypto, ctx->msg.payload.u64)) 463 ret = RTE_VHOST_MSG_RESULT_ERR; 464 break; 465 default: 466 ret = RTE_VHOST_MSG_RESULT_NOT_HANDLED; 467 break; 468 } 469 470 return ret; 471 } 472 473 static __rte_always_inline struct vhost_crypto_desc * 474 find_write_desc(struct vhost_crypto_desc *head, struct vhost_crypto_desc *desc, 475 uint32_t max_n_descs) 476 { 477 if (desc < head) 478 return NULL; 479 480 while (desc - head < (int)max_n_descs) { 481 if (desc->flags & VRING_DESC_F_WRITE) 482 return desc; 483 desc++; 484 } 485 486 return NULL; 487 } 488 489 static __rte_always_inline struct virtio_crypto_inhdr * 490 reach_inhdr(struct vhost_crypto_data_req *vc_req, 491 struct vhost_crypto_desc *head, 492 uint32_t max_n_descs) 493 __rte_shared_locks_required(&vc_req->vq->iotlb_lock) 494 { 495 struct virtio_crypto_inhdr *inhdr; 496 struct vhost_crypto_desc *last = head + (max_n_descs - 1); 497 uint64_t dlen = last->len; 498 499 if (unlikely(dlen != sizeof(*inhdr))) 500 return NULL; 501 502 inhdr = IOVA_TO_VVA(struct virtio_crypto_inhdr *, vc_req, last->addr, 503 &dlen, VHOST_ACCESS_WO); 504 if (unlikely(!inhdr || dlen != last->len)) 505 return NULL; 506 507 return inhdr; 508 } 509 510 static __rte_always_inline int 511 move_desc(struct vhost_crypto_desc *head, 512 struct vhost_crypto_desc **cur_desc, 513 uint32_t size, uint32_t max_n_descs) 514 { 515 struct vhost_crypto_desc *desc = *cur_desc; 516 int left = size - desc->len; 517 518 while (desc->flags & VRING_DESC_F_NEXT && left > 0 && 519 desc >= head && 520 desc - head < (int)max_n_descs) { 521 desc++; 522 left -= desc->len; 523 } 524 525 if (unlikely(left > 0)) 526 return -1; 527 528 if (unlikely(head - desc == (int)max_n_descs)) 529 *cur_desc = NULL; 530 else 531 *cur_desc = desc + 1; 532 533 return 0; 534 } 535 536 static __rte_always_inline void * 537 get_data_ptr(struct vhost_crypto_data_req *vc_req, 538 struct vhost_crypto_desc *cur_desc, 539 uint8_t perm) 540 __rte_shared_locks_required(&vc_req->vq->iotlb_lock) 541 { 542 void *data; 543 uint64_t dlen = cur_desc->len; 544 545 data = IOVA_TO_VVA(void *, vc_req, cur_desc->addr, &dlen, perm); 546 if (unlikely(!data || dlen != cur_desc->len)) { 547 VC_LOG_ERR("Failed to map object"); 548 return NULL; 549 } 550 551 return data; 552 } 553 554 static __rte_always_inline uint32_t 555 copy_data_from_desc(void *dst, struct vhost_crypto_data_req *vc_req, 556 struct vhost_crypto_desc *desc, uint32_t size) 557 __rte_shared_locks_required(&vc_req->vq->iotlb_lock) 558 { 559 uint64_t remain; 560 uint64_t addr; 561 562 remain = RTE_MIN(desc->len, size); 563 addr = desc->addr; 564 do { 565 uint64_t len; 566 void *src; 567 568 len = remain; 569 src = IOVA_TO_VVA(void *, vc_req, addr, &len, VHOST_ACCESS_RO); 570 if (unlikely(src == NULL || len == 0)) 571 return 0; 572 573 rte_memcpy(dst, src, len); 574 remain -= len; 575 /* cast is needed for 32-bit architecture */ 576 dst = RTE_PTR_ADD(dst, (size_t)len); 577 addr += len; 578 } while (unlikely(remain != 0)); 579 580 return RTE_MIN(desc->len, size); 581 } 582 583 584 static __rte_always_inline int 585 copy_data(void *data, struct vhost_crypto_data_req *vc_req, 586 struct vhost_crypto_desc *head, struct vhost_crypto_desc **cur_desc, 587 uint32_t size, uint32_t max_n_descs) 588 __rte_shared_locks_required(&vc_req->vq->iotlb_lock) 589 { 590 struct vhost_crypto_desc *desc = *cur_desc; 591 uint32_t left = size; 592 593 do { 594 uint32_t copied; 595 596 copied = copy_data_from_desc(data, vc_req, desc, left); 597 if (copied == 0) 598 return -1; 599 left -= copied; 600 data = RTE_PTR_ADD(data, copied); 601 } while (left != 0 && ++desc < head + max_n_descs); 602 603 if (unlikely(left != 0)) 604 return -1; 605 606 if (unlikely(desc == head + max_n_descs)) 607 *cur_desc = NULL; 608 else 609 *cur_desc = desc + 1; 610 611 return 0; 612 } 613 614 static void 615 write_back_data(struct vhost_crypto_data_req *vc_req) 616 { 617 struct vhost_crypto_writeback_data *wb_data = vc_req->wb, *wb_last; 618 619 while (wb_data) { 620 rte_memcpy(wb_data->dst, wb_data->src, wb_data->len); 621 memset(wb_data->src, 0, wb_data->len); 622 wb_last = wb_data; 623 wb_data = wb_data->next; 624 rte_mempool_put(vc_req->wb_pool, wb_last); 625 } 626 } 627 628 static void 629 free_wb_data(struct vhost_crypto_writeback_data *wb_data, 630 struct rte_mempool *mp) 631 { 632 while (wb_data->next != NULL) 633 free_wb_data(wb_data->next, mp); 634 635 rte_mempool_put(mp, wb_data); 636 } 637 638 /** 639 * The function will allocate a vhost_crypto_writeback_data linked list 640 * containing the source and destination data pointers for the write back 641 * operation after dequeued from Cryptodev PMD queues. 642 * 643 * @param vc_req 644 * The vhost crypto data request pointer 645 * @param cur_desc 646 * The pointer of the current in use descriptor pointer. The content of 647 * cur_desc is expected to be updated after the function execution. 648 * @param end_wb_data 649 * The last write back data element to be returned. It is used only in cipher 650 * and hash chain operations. 651 * @param src 652 * The source data pointer 653 * @param offset 654 * The offset to both source and destination data. For source data the offset 655 * is the number of bytes between src and start point of cipher operation. For 656 * destination data the offset is the number of bytes from *cur_desc->addr 657 * to the point where the src will be written to. 658 * @param write_back_len 659 * The size of the write back length. 660 * @return 661 * The pointer to the start of the write back data linked list. 662 */ 663 static __rte_always_inline struct vhost_crypto_writeback_data * 664 prepare_write_back_data(struct vhost_crypto_data_req *vc_req, 665 struct vhost_crypto_desc *head_desc, 666 struct vhost_crypto_desc **cur_desc, 667 struct vhost_crypto_writeback_data **end_wb_data, 668 uint8_t *src, 669 uint32_t offset, 670 uint64_t write_back_len, 671 uint32_t max_n_descs) 672 __rte_shared_locks_required(&vc_req->vq->iotlb_lock) 673 { 674 struct vhost_crypto_writeback_data *wb_data, *head; 675 struct vhost_crypto_desc *desc = *cur_desc; 676 uint64_t dlen; 677 uint8_t *dst; 678 int ret; 679 680 ret = rte_mempool_get(vc_req->wb_pool, (void **)&head); 681 if (unlikely(ret < 0)) { 682 VC_LOG_ERR("no memory"); 683 goto error_exit; 684 } 685 686 wb_data = head; 687 688 if (likely(desc->len > offset)) { 689 wb_data->src = src + offset; 690 dlen = desc->len; 691 dst = IOVA_TO_VVA(uint8_t *, vc_req, desc->addr, 692 &dlen, VHOST_ACCESS_RW); 693 if (unlikely(!dst || dlen != desc->len)) { 694 VC_LOG_ERR("Failed to map descriptor"); 695 goto error_exit; 696 } 697 698 wb_data->dst = dst + offset; 699 wb_data->len = RTE_MIN(dlen - offset, write_back_len); 700 write_back_len -= wb_data->len; 701 src += offset + wb_data->len; 702 offset = 0; 703 704 if (unlikely(write_back_len)) { 705 ret = rte_mempool_get(vc_req->wb_pool, 706 (void **)&(wb_data->next)); 707 if (unlikely(ret < 0)) { 708 VC_LOG_ERR("no memory"); 709 goto error_exit; 710 } 711 712 wb_data = wb_data->next; 713 } else 714 wb_data->next = NULL; 715 } else 716 offset -= desc->len; 717 718 while (write_back_len && 719 desc >= head_desc && 720 desc - head_desc < (int)max_n_descs) { 721 desc++; 722 if (unlikely(!(desc->flags & VRING_DESC_F_WRITE))) { 723 VC_LOG_ERR("incorrect descriptor"); 724 goto error_exit; 725 } 726 727 if (desc->len <= offset) { 728 offset -= desc->len; 729 continue; 730 } 731 732 dlen = desc->len; 733 dst = IOVA_TO_VVA(uint8_t *, vc_req, desc->addr, &dlen, 734 VHOST_ACCESS_RW) + offset; 735 if (unlikely(dst == NULL || dlen != desc->len)) { 736 VC_LOG_ERR("Failed to map descriptor"); 737 goto error_exit; 738 } 739 740 wb_data->src = src + offset; 741 wb_data->dst = dst; 742 wb_data->len = RTE_MIN(desc->len - offset, write_back_len); 743 write_back_len -= wb_data->len; 744 src += wb_data->len; 745 offset = 0; 746 747 if (write_back_len) { 748 ret = rte_mempool_get(vc_req->wb_pool, 749 (void **)&(wb_data->next)); 750 if (unlikely(ret < 0)) { 751 VC_LOG_ERR("no memory"); 752 goto error_exit; 753 } 754 755 wb_data = wb_data->next; 756 } else 757 wb_data->next = NULL; 758 } 759 760 if (unlikely(desc - head_desc == (int)max_n_descs)) 761 *cur_desc = NULL; 762 else 763 *cur_desc = desc + 1; 764 765 *end_wb_data = wb_data; 766 767 return head; 768 769 error_exit: 770 if (head) 771 free_wb_data(head, vc_req->wb_pool); 772 773 return NULL; 774 } 775 776 static __rte_always_inline uint8_t 777 vhost_crypto_check_cipher_request(struct virtio_crypto_cipher_data_req *req) 778 { 779 if (likely((req->para.iv_len <= VHOST_CRYPTO_MAX_IV_LEN) && 780 (req->para.src_data_len <= RTE_MBUF_DEFAULT_BUF_SIZE) && 781 (req->para.dst_data_len >= req->para.src_data_len) && 782 (req->para.dst_data_len <= RTE_MBUF_DEFAULT_BUF_SIZE))) 783 return VIRTIO_CRYPTO_OK; 784 return VIRTIO_CRYPTO_BADMSG; 785 } 786 787 static __rte_always_inline uint8_t 788 prepare_sym_cipher_op(struct vhost_crypto *vcrypto, struct rte_crypto_op *op, 789 struct vhost_crypto_data_req *vc_req, 790 struct virtio_crypto_cipher_data_req *cipher, 791 struct vhost_crypto_desc *head, 792 uint32_t max_n_descs) 793 __rte_shared_locks_required(&vc_req->vq->iotlb_lock) 794 { 795 struct vhost_crypto_desc *desc = head; 796 struct vhost_crypto_writeback_data *ewb = NULL; 797 struct rte_mbuf *m_src = op->sym->m_src, *m_dst = op->sym->m_dst; 798 uint8_t *iv_data = rte_crypto_op_ctod_offset(op, uint8_t *, IV_OFFSET); 799 uint8_t ret = vhost_crypto_check_cipher_request(cipher); 800 801 if (unlikely(ret != VIRTIO_CRYPTO_OK)) 802 goto error_exit; 803 804 /* prepare */ 805 /* iv */ 806 if (unlikely(copy_data(iv_data, vc_req, head, &desc, 807 cipher->para.iv_len, max_n_descs))) { 808 VC_LOG_ERR("Incorrect virtio descriptor"); 809 ret = VIRTIO_CRYPTO_BADMSG; 810 goto error_exit; 811 } 812 813 switch (vcrypto->option) { 814 case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE: 815 m_src->data_len = cipher->para.src_data_len; 816 rte_mbuf_iova_set(m_src, 817 gpa_to_hpa(vcrypto->dev, desc->addr, cipher->para.src_data_len)); 818 m_src->buf_addr = get_data_ptr(vc_req, desc, VHOST_ACCESS_RO); 819 if (unlikely(rte_mbuf_iova_get(m_src) == 0 || m_src->buf_addr == NULL)) { 820 VC_LOG_ERR("zero_copy may fail due to cross page data"); 821 ret = VIRTIO_CRYPTO_ERR; 822 goto error_exit; 823 } 824 825 if (unlikely(move_desc(head, &desc, cipher->para.src_data_len, 826 max_n_descs) < 0)) { 827 VC_LOG_ERR("Incorrect descriptor"); 828 ret = VIRTIO_CRYPTO_ERR; 829 goto error_exit; 830 } 831 832 break; 833 case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE: 834 vc_req->wb_pool = vcrypto->wb_pool; 835 m_src->data_len = cipher->para.src_data_len; 836 if (unlikely(copy_data(rte_pktmbuf_mtod(m_src, uint8_t *), 837 vc_req, head, &desc, cipher->para.src_data_len, 838 max_n_descs) < 0)) { 839 VC_LOG_ERR("Incorrect virtio descriptor"); 840 ret = VIRTIO_CRYPTO_BADMSG; 841 goto error_exit; 842 } 843 break; 844 default: 845 ret = VIRTIO_CRYPTO_BADMSG; 846 goto error_exit; 847 } 848 849 /* dst */ 850 desc = find_write_desc(head, desc, max_n_descs); 851 if (unlikely(!desc)) { 852 VC_LOG_ERR("Cannot find write location"); 853 ret = VIRTIO_CRYPTO_BADMSG; 854 goto error_exit; 855 } 856 857 switch (vcrypto->option) { 858 case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE: 859 rte_mbuf_iova_set(m_dst, 860 gpa_to_hpa(vcrypto->dev, desc->addr, cipher->para.dst_data_len)); 861 m_dst->buf_addr = get_data_ptr(vc_req, desc, VHOST_ACCESS_RW); 862 if (unlikely(rte_mbuf_iova_get(m_dst) == 0 || m_dst->buf_addr == NULL)) { 863 VC_LOG_ERR("zero_copy may fail due to cross page data"); 864 ret = VIRTIO_CRYPTO_ERR; 865 goto error_exit; 866 } 867 868 if (unlikely(move_desc(head, &desc, cipher->para.dst_data_len, 869 max_n_descs) < 0)) { 870 VC_LOG_ERR("Incorrect descriptor"); 871 ret = VIRTIO_CRYPTO_ERR; 872 goto error_exit; 873 } 874 875 m_dst->data_len = cipher->para.dst_data_len; 876 break; 877 case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE: 878 vc_req->wb = prepare_write_back_data(vc_req, head, &desc, &ewb, 879 rte_pktmbuf_mtod(m_src, uint8_t *), 0, 880 cipher->para.dst_data_len, max_n_descs); 881 if (unlikely(vc_req->wb == NULL)) { 882 ret = VIRTIO_CRYPTO_ERR; 883 goto error_exit; 884 } 885 886 break; 887 default: 888 ret = VIRTIO_CRYPTO_BADMSG; 889 goto error_exit; 890 } 891 892 /* src data */ 893 op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC; 894 op->sess_type = RTE_CRYPTO_OP_WITH_SESSION; 895 896 op->sym->cipher.data.offset = 0; 897 op->sym->cipher.data.length = cipher->para.src_data_len; 898 899 vc_req->inhdr = get_data_ptr(vc_req, desc, VHOST_ACCESS_WO); 900 if (unlikely(vc_req->inhdr == NULL)) { 901 ret = VIRTIO_CRYPTO_BADMSG; 902 goto error_exit; 903 } 904 905 vc_req->inhdr->status = VIRTIO_CRYPTO_OK; 906 vc_req->len = cipher->para.dst_data_len + INHDR_LEN; 907 908 return 0; 909 910 error_exit: 911 if (vc_req->wb) 912 free_wb_data(vc_req->wb, vc_req->wb_pool); 913 914 vc_req->len = INHDR_LEN; 915 return ret; 916 } 917 918 static __rte_always_inline uint8_t 919 vhost_crypto_check_chain_request(struct virtio_crypto_alg_chain_data_req *req) 920 { 921 if (likely((req->para.iv_len <= VHOST_CRYPTO_MAX_IV_LEN) && 922 (req->para.src_data_len <= VHOST_CRYPTO_MAX_DATA_SIZE) && 923 (req->para.dst_data_len >= req->para.src_data_len) && 924 (req->para.dst_data_len <= VHOST_CRYPTO_MAX_DATA_SIZE) && 925 (req->para.cipher_start_src_offset < 926 VHOST_CRYPTO_MAX_DATA_SIZE) && 927 (req->para.len_to_cipher <= VHOST_CRYPTO_MAX_DATA_SIZE) && 928 (req->para.hash_start_src_offset < 929 VHOST_CRYPTO_MAX_DATA_SIZE) && 930 (req->para.len_to_hash <= VHOST_CRYPTO_MAX_DATA_SIZE) && 931 (req->para.cipher_start_src_offset + req->para.len_to_cipher <= 932 req->para.src_data_len) && 933 (req->para.hash_start_src_offset + req->para.len_to_hash <= 934 req->para.src_data_len) && 935 (req->para.dst_data_len + req->para.hash_result_len <= 936 VHOST_CRYPTO_MAX_DATA_SIZE))) 937 return VIRTIO_CRYPTO_OK; 938 return VIRTIO_CRYPTO_BADMSG; 939 } 940 941 static __rte_always_inline uint8_t 942 prepare_sym_chain_op(struct vhost_crypto *vcrypto, struct rte_crypto_op *op, 943 struct vhost_crypto_data_req *vc_req, 944 struct virtio_crypto_alg_chain_data_req *chain, 945 struct vhost_crypto_desc *head, 946 uint32_t max_n_descs) 947 __rte_shared_locks_required(&vc_req->vq->iotlb_lock) 948 { 949 struct vhost_crypto_desc *desc = head, *digest_desc; 950 struct vhost_crypto_writeback_data *ewb = NULL, *ewb2 = NULL; 951 struct rte_mbuf *m_src = op->sym->m_src, *m_dst = op->sym->m_dst; 952 uint8_t *iv_data = rte_crypto_op_ctod_offset(op, uint8_t *, IV_OFFSET); 953 uint32_t digest_offset; 954 void *digest_addr; 955 uint8_t ret = vhost_crypto_check_chain_request(chain); 956 957 if (unlikely(ret != VIRTIO_CRYPTO_OK)) 958 goto error_exit; 959 960 /* prepare */ 961 /* iv */ 962 if (unlikely(copy_data(iv_data, vc_req, head, &desc, 963 chain->para.iv_len, max_n_descs) < 0)) { 964 VC_LOG_ERR("Incorrect virtio descriptor"); 965 ret = VIRTIO_CRYPTO_BADMSG; 966 goto error_exit; 967 } 968 969 switch (vcrypto->option) { 970 case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE: 971 m_src->data_len = chain->para.src_data_len; 972 m_dst->data_len = chain->para.dst_data_len; 973 974 rte_mbuf_iova_set(m_src, 975 gpa_to_hpa(vcrypto->dev, desc->addr, chain->para.src_data_len)); 976 m_src->buf_addr = get_data_ptr(vc_req, desc, VHOST_ACCESS_RO); 977 if (unlikely(rte_mbuf_iova_get(m_src) == 0 || m_src->buf_addr == NULL)) { 978 VC_LOG_ERR("zero_copy may fail due to cross page data"); 979 ret = VIRTIO_CRYPTO_ERR; 980 goto error_exit; 981 } 982 983 if (unlikely(move_desc(head, &desc, chain->para.src_data_len, 984 max_n_descs) < 0)) { 985 VC_LOG_ERR("Incorrect descriptor"); 986 ret = VIRTIO_CRYPTO_ERR; 987 goto error_exit; 988 } 989 break; 990 case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE: 991 vc_req->wb_pool = vcrypto->wb_pool; 992 m_src->data_len = chain->para.src_data_len; 993 if (unlikely(copy_data(rte_pktmbuf_mtod(m_src, uint8_t *), 994 vc_req, head, &desc, chain->para.src_data_len, 995 max_n_descs) < 0)) { 996 VC_LOG_ERR("Incorrect virtio descriptor"); 997 ret = VIRTIO_CRYPTO_BADMSG; 998 goto error_exit; 999 } 1000 1001 break; 1002 default: 1003 ret = VIRTIO_CRYPTO_BADMSG; 1004 goto error_exit; 1005 } 1006 1007 /* dst */ 1008 desc = find_write_desc(head, desc, max_n_descs); 1009 if (unlikely(!desc)) { 1010 VC_LOG_ERR("Cannot find write location"); 1011 ret = VIRTIO_CRYPTO_BADMSG; 1012 goto error_exit; 1013 } 1014 1015 switch (vcrypto->option) { 1016 case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE: 1017 rte_mbuf_iova_set(m_dst, 1018 gpa_to_hpa(vcrypto->dev, desc->addr, chain->para.dst_data_len)); 1019 m_dst->buf_addr = get_data_ptr(vc_req, desc, VHOST_ACCESS_RW); 1020 if (unlikely(rte_mbuf_iova_get(m_dst) == 0 || m_dst->buf_addr == NULL)) { 1021 VC_LOG_ERR("zero_copy may fail due to cross page data"); 1022 ret = VIRTIO_CRYPTO_ERR; 1023 goto error_exit; 1024 } 1025 1026 if (unlikely(move_desc(vc_req->head, &desc, 1027 chain->para.dst_data_len, max_n_descs) < 0)) { 1028 VC_LOG_ERR("Incorrect descriptor"); 1029 ret = VIRTIO_CRYPTO_ERR; 1030 goto error_exit; 1031 } 1032 1033 op->sym->auth.digest.phys_addr = gpa_to_hpa(vcrypto->dev, 1034 desc->addr, chain->para.hash_result_len); 1035 op->sym->auth.digest.data = get_data_ptr(vc_req, desc, 1036 VHOST_ACCESS_RW); 1037 if (unlikely(op->sym->auth.digest.phys_addr == 0)) { 1038 VC_LOG_ERR("zero_copy may fail due to cross page data"); 1039 ret = VIRTIO_CRYPTO_ERR; 1040 goto error_exit; 1041 } 1042 1043 if (unlikely(move_desc(head, &desc, 1044 chain->para.hash_result_len, 1045 max_n_descs) < 0)) { 1046 VC_LOG_ERR("Incorrect descriptor"); 1047 ret = VIRTIO_CRYPTO_ERR; 1048 goto error_exit; 1049 } 1050 1051 break; 1052 case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE: 1053 vc_req->wb = prepare_write_back_data(vc_req, head, &desc, &ewb, 1054 rte_pktmbuf_mtod(m_src, uint8_t *), 1055 chain->para.cipher_start_src_offset, 1056 chain->para.dst_data_len - 1057 chain->para.cipher_start_src_offset, 1058 max_n_descs); 1059 if (unlikely(vc_req->wb == NULL)) { 1060 ret = VIRTIO_CRYPTO_ERR; 1061 goto error_exit; 1062 } 1063 1064 digest_desc = desc; 1065 digest_offset = m_src->data_len; 1066 digest_addr = rte_pktmbuf_mtod_offset(m_src, void *, 1067 digest_offset); 1068 1069 /** create a wb_data for digest */ 1070 ewb->next = prepare_write_back_data(vc_req, head, &desc, 1071 &ewb2, digest_addr, 0, 1072 chain->para.hash_result_len, max_n_descs); 1073 if (unlikely(ewb->next == NULL)) { 1074 ret = VIRTIO_CRYPTO_ERR; 1075 goto error_exit; 1076 } 1077 1078 if (unlikely(copy_data(digest_addr, vc_req, head, &digest_desc, 1079 chain->para.hash_result_len, 1080 max_n_descs) < 0)) { 1081 VC_LOG_ERR("Incorrect virtio descriptor"); 1082 ret = VIRTIO_CRYPTO_BADMSG; 1083 goto error_exit; 1084 } 1085 1086 op->sym->auth.digest.data = digest_addr; 1087 op->sym->auth.digest.phys_addr = rte_pktmbuf_iova_offset(m_src, 1088 digest_offset); 1089 break; 1090 default: 1091 ret = VIRTIO_CRYPTO_BADMSG; 1092 goto error_exit; 1093 } 1094 1095 /* record inhdr */ 1096 vc_req->inhdr = get_data_ptr(vc_req, desc, VHOST_ACCESS_WO); 1097 if (unlikely(vc_req->inhdr == NULL)) { 1098 ret = VIRTIO_CRYPTO_BADMSG; 1099 goto error_exit; 1100 } 1101 1102 vc_req->inhdr->status = VIRTIO_CRYPTO_OK; 1103 1104 op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC; 1105 op->sess_type = RTE_CRYPTO_OP_WITH_SESSION; 1106 1107 op->sym->cipher.data.offset = chain->para.cipher_start_src_offset; 1108 op->sym->cipher.data.length = chain->para.src_data_len - 1109 chain->para.cipher_start_src_offset; 1110 1111 op->sym->auth.data.offset = chain->para.hash_start_src_offset; 1112 op->sym->auth.data.length = chain->para.len_to_hash; 1113 1114 vc_req->len = chain->para.dst_data_len + chain->para.hash_result_len + 1115 INHDR_LEN; 1116 return 0; 1117 1118 error_exit: 1119 if (vc_req->wb) 1120 free_wb_data(vc_req->wb, vc_req->wb_pool); 1121 vc_req->len = INHDR_LEN; 1122 return ret; 1123 } 1124 1125 /** 1126 * Process on descriptor 1127 */ 1128 static __rte_always_inline int 1129 vhost_crypto_process_one_req(struct vhost_crypto *vcrypto, 1130 struct vhost_virtqueue *vq, struct rte_crypto_op *op, 1131 struct vring_desc *head, struct vhost_crypto_desc *descs, 1132 uint16_t desc_idx) 1133 __rte_no_thread_safety_analysis /* FIXME: requires iotlb_lock? */ 1134 { 1135 struct vhost_crypto_data_req *vc_req = rte_mbuf_to_priv(op->sym->m_src); 1136 struct rte_cryptodev_sym_session *session; 1137 struct virtio_crypto_op_data_req req; 1138 struct virtio_crypto_inhdr *inhdr; 1139 struct vhost_crypto_desc *desc = descs; 1140 struct vring_desc *src_desc; 1141 uint64_t session_id; 1142 uint64_t dlen; 1143 uint32_t nb_descs = 0, max_n_descs, i; 1144 int err; 1145 1146 vc_req->desc_idx = desc_idx; 1147 vc_req->dev = vcrypto->dev; 1148 vc_req->vq = vq; 1149 1150 if (unlikely((head->flags & VRING_DESC_F_INDIRECT) == 0)) { 1151 VC_LOG_ERR("Invalid descriptor"); 1152 return -1; 1153 } 1154 1155 dlen = head->len; 1156 src_desc = IOVA_TO_VVA(struct vring_desc *, vc_req, head->addr, 1157 &dlen, VHOST_ACCESS_RO); 1158 if (unlikely(!src_desc || dlen != head->len)) { 1159 VC_LOG_ERR("Invalid descriptor"); 1160 return -1; 1161 } 1162 head = src_desc; 1163 1164 nb_descs = max_n_descs = dlen / sizeof(struct vring_desc); 1165 if (unlikely(nb_descs > VHOST_CRYPTO_MAX_N_DESC || nb_descs == 0)) { 1166 err = VIRTIO_CRYPTO_ERR; 1167 VC_LOG_ERR("Cannot process num of descriptors %u", nb_descs); 1168 if (nb_descs > 0) { 1169 struct vring_desc *inhdr_desc = head; 1170 while (inhdr_desc->flags & VRING_DESC_F_NEXT) { 1171 if (inhdr_desc->next >= max_n_descs) 1172 return -1; 1173 inhdr_desc = &head[inhdr_desc->next]; 1174 } 1175 if (inhdr_desc->len != sizeof(*inhdr)) 1176 return -1; 1177 inhdr = IOVA_TO_VVA(struct virtio_crypto_inhdr *, 1178 vc_req, inhdr_desc->addr, &dlen, 1179 VHOST_ACCESS_WO); 1180 if (unlikely(!inhdr || dlen != inhdr_desc->len)) 1181 return -1; 1182 inhdr->status = VIRTIO_CRYPTO_ERR; 1183 return -1; 1184 } 1185 } 1186 1187 /* copy descriptors to local variable */ 1188 for (i = 0; i < max_n_descs; i++) { 1189 desc->addr = src_desc->addr; 1190 desc->len = src_desc->len; 1191 desc->flags = src_desc->flags; 1192 desc++; 1193 if (unlikely((src_desc->flags & VRING_DESC_F_NEXT) == 0)) 1194 break; 1195 if (unlikely(src_desc->next >= max_n_descs)) { 1196 err = VIRTIO_CRYPTO_BADMSG; 1197 VC_LOG_ERR("Invalid descriptor"); 1198 goto error_exit; 1199 } 1200 src_desc = &head[src_desc->next]; 1201 } 1202 1203 vc_req->head = head; 1204 vc_req->zero_copy = vcrypto->option; 1205 1206 nb_descs = desc - descs; 1207 desc = descs; 1208 1209 if (unlikely(desc->len < sizeof(req))) { 1210 err = VIRTIO_CRYPTO_BADMSG; 1211 VC_LOG_ERR("Invalid descriptor"); 1212 goto error_exit; 1213 } 1214 1215 if (unlikely(copy_data(&req, vc_req, descs, &desc, sizeof(req), 1216 max_n_descs) < 0)) { 1217 err = VIRTIO_CRYPTO_BADMSG; 1218 VC_LOG_ERR("Invalid descriptor"); 1219 goto error_exit; 1220 } 1221 1222 /* desc is advanced by 1 now */ 1223 max_n_descs -= 1; 1224 1225 switch (req.header.opcode) { 1226 case VIRTIO_CRYPTO_CIPHER_ENCRYPT: 1227 case VIRTIO_CRYPTO_CIPHER_DECRYPT: 1228 session_id = req.header.session_id; 1229 1230 /* one branch to avoid unnecessary table lookup */ 1231 if (vcrypto->cache_session_id != session_id) { 1232 err = rte_hash_lookup_data(vcrypto->session_map, 1233 &session_id, (void **)&session); 1234 if (unlikely(err < 0)) { 1235 err = VIRTIO_CRYPTO_ERR; 1236 VC_LOG_ERR("Failed to find session %"PRIu64, 1237 session_id); 1238 goto error_exit; 1239 } 1240 1241 vcrypto->cache_session = session; 1242 vcrypto->cache_session_id = session_id; 1243 } 1244 1245 session = vcrypto->cache_session; 1246 1247 err = rte_crypto_op_attach_sym_session(op, session); 1248 if (unlikely(err < 0)) { 1249 err = VIRTIO_CRYPTO_ERR; 1250 VC_LOG_ERR("Failed to attach session to op"); 1251 goto error_exit; 1252 } 1253 1254 switch (req.u.sym_req.op_type) { 1255 case VIRTIO_CRYPTO_SYM_OP_NONE: 1256 err = VIRTIO_CRYPTO_NOTSUPP; 1257 break; 1258 case VIRTIO_CRYPTO_SYM_OP_CIPHER: 1259 err = prepare_sym_cipher_op(vcrypto, op, vc_req, 1260 &req.u.sym_req.u.cipher, desc, 1261 max_n_descs); 1262 break; 1263 case VIRTIO_CRYPTO_SYM_OP_ALGORITHM_CHAINING: 1264 err = prepare_sym_chain_op(vcrypto, op, vc_req, 1265 &req.u.sym_req.u.chain, desc, 1266 max_n_descs); 1267 break; 1268 } 1269 if (unlikely(err != 0)) { 1270 VC_LOG_ERR("Failed to process sym request"); 1271 goto error_exit; 1272 } 1273 break; 1274 default: 1275 err = VIRTIO_CRYPTO_ERR; 1276 VC_LOG_ERR("Unsupported symmetric crypto request type %u", 1277 req.header.opcode); 1278 goto error_exit; 1279 } 1280 1281 return 0; 1282 1283 error_exit: 1284 1285 inhdr = reach_inhdr(vc_req, descs, max_n_descs); 1286 if (likely(inhdr != NULL)) 1287 inhdr->status = (uint8_t)err; 1288 1289 return -1; 1290 } 1291 1292 static __rte_always_inline struct vhost_virtqueue * 1293 vhost_crypto_finalize_one_request(struct rte_crypto_op *op, 1294 struct vhost_virtqueue *old_vq) 1295 { 1296 struct rte_mbuf *m_src = op->sym->m_src; 1297 struct rte_mbuf *m_dst = op->sym->m_dst; 1298 struct vhost_crypto_data_req *vc_req = rte_mbuf_to_priv(m_src); 1299 struct vhost_virtqueue *vq; 1300 uint16_t used_idx, desc_idx; 1301 1302 if (unlikely(!vc_req)) { 1303 VC_LOG_ERR("Failed to retrieve vc_req"); 1304 return NULL; 1305 } 1306 vq = vc_req->vq; 1307 used_idx = vc_req->desc_idx; 1308 1309 if (old_vq && (vq != old_vq)) 1310 return vq; 1311 1312 if (unlikely(op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)) 1313 vc_req->inhdr->status = VIRTIO_CRYPTO_ERR; 1314 else { 1315 if (vc_req->zero_copy == 0) 1316 write_back_data(vc_req); 1317 } 1318 1319 desc_idx = vq->avail->ring[used_idx]; 1320 vq->used->ring[desc_idx].id = vq->avail->ring[desc_idx]; 1321 vq->used->ring[desc_idx].len = vc_req->len; 1322 1323 rte_mempool_put(m_src->pool, (void *)m_src); 1324 1325 if (m_dst) 1326 rte_mempool_put(m_dst->pool, (void *)m_dst); 1327 1328 return vc_req->vq; 1329 } 1330 1331 static __rte_always_inline uint16_t 1332 vhost_crypto_complete_one_vm_requests(struct rte_crypto_op **ops, 1333 uint16_t nb_ops, int *callfd) 1334 { 1335 uint16_t processed = 1; 1336 struct vhost_virtqueue *vq, *tmp_vq; 1337 1338 if (unlikely(nb_ops == 0)) 1339 return 0; 1340 1341 vq = vhost_crypto_finalize_one_request(ops[0], NULL); 1342 if (unlikely(vq == NULL)) 1343 return 0; 1344 tmp_vq = vq; 1345 1346 while ((processed < nb_ops)) { 1347 tmp_vq = vhost_crypto_finalize_one_request(ops[processed], 1348 tmp_vq); 1349 1350 if (unlikely(vq != tmp_vq)) 1351 break; 1352 1353 processed++; 1354 } 1355 1356 *callfd = vq->callfd; 1357 1358 *(volatile uint16_t *)&vq->used->idx += processed; 1359 1360 return processed; 1361 } 1362 1363 int 1364 rte_vhost_crypto_driver_start(const char *path) 1365 { 1366 uint64_t protocol_features; 1367 int ret; 1368 1369 ret = rte_vhost_driver_set_features(path, VIRTIO_CRYPTO_FEATURES); 1370 if (ret) 1371 return -1; 1372 1373 ret = rte_vhost_driver_get_protocol_features(path, &protocol_features); 1374 if (ret) 1375 return -1; 1376 protocol_features |= (1ULL << VHOST_USER_PROTOCOL_F_CONFIG); 1377 ret = rte_vhost_driver_set_protocol_features(path, protocol_features); 1378 if (ret) 1379 return -1; 1380 1381 return rte_vhost_driver_start(path); 1382 } 1383 1384 int 1385 rte_vhost_crypto_create(int vid, uint8_t cryptodev_id, 1386 struct rte_mempool *sess_pool, 1387 int socket_id) 1388 { 1389 struct virtio_net *dev = get_device(vid); 1390 struct rte_hash_parameters params = {0}; 1391 struct vhost_crypto *vcrypto; 1392 char name[128]; 1393 int ret; 1394 1395 if (!dev) { 1396 VC_LOG_ERR("Invalid vid %i", vid); 1397 return -EINVAL; 1398 } 1399 1400 vcrypto = rte_zmalloc_socket(NULL, sizeof(*vcrypto), 1401 RTE_CACHE_LINE_SIZE, socket_id); 1402 if (!vcrypto) { 1403 VC_LOG_ERR("Insufficient memory"); 1404 return -ENOMEM; 1405 } 1406 1407 vcrypto->sess_pool = sess_pool; 1408 vcrypto->cid = cryptodev_id; 1409 vcrypto->cache_session_id = UINT64_MAX; 1410 vcrypto->last_session_id = 1; 1411 vcrypto->dev = dev; 1412 vcrypto->option = RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE; 1413 1414 snprintf(name, 127, "HASH_VHOST_CRYPT_%u", (uint32_t)vid); 1415 params.name = name; 1416 params.entries = VHOST_CRYPTO_SESSION_MAP_ENTRIES; 1417 params.hash_func = rte_jhash; 1418 params.key_len = sizeof(uint64_t); 1419 params.socket_id = socket_id; 1420 vcrypto->session_map = rte_hash_create(¶ms); 1421 if (!vcrypto->session_map) { 1422 VC_LOG_ERR("Failed to creath session map"); 1423 ret = -ENOMEM; 1424 goto error_exit; 1425 } 1426 1427 snprintf(name, 127, "MBUF_POOL_VM_%u", (uint32_t)vid); 1428 vcrypto->mbuf_pool = rte_pktmbuf_pool_create(name, 1429 VHOST_CRYPTO_MBUF_POOL_SIZE, 512, 1430 sizeof(struct vhost_crypto_data_req), 1431 VHOST_CRYPTO_MAX_DATA_SIZE + RTE_PKTMBUF_HEADROOM, 1432 rte_socket_id()); 1433 if (!vcrypto->mbuf_pool) { 1434 VC_LOG_ERR("Failed to creath mbuf pool"); 1435 ret = -ENOMEM; 1436 goto error_exit; 1437 } 1438 1439 snprintf(name, 127, "WB_POOL_VM_%u", (uint32_t)vid); 1440 vcrypto->wb_pool = rte_mempool_create(name, 1441 VHOST_CRYPTO_MBUF_POOL_SIZE, 1442 sizeof(struct vhost_crypto_writeback_data), 1443 128, 0, NULL, NULL, NULL, NULL, 1444 rte_socket_id(), 0); 1445 if (!vcrypto->wb_pool) { 1446 VC_LOG_ERR("Failed to creath mempool"); 1447 ret = -ENOMEM; 1448 goto error_exit; 1449 } 1450 1451 dev->extern_data = vcrypto; 1452 dev->extern_ops.pre_msg_handle = NULL; 1453 dev->extern_ops.post_msg_handle = vhost_crypto_msg_post_handler; 1454 1455 return 0; 1456 1457 error_exit: 1458 rte_hash_free(vcrypto->session_map); 1459 rte_mempool_free(vcrypto->mbuf_pool); 1460 1461 rte_free(vcrypto); 1462 1463 return ret; 1464 } 1465 1466 int 1467 rte_vhost_crypto_free(int vid) 1468 { 1469 struct virtio_net *dev = get_device(vid); 1470 struct vhost_crypto *vcrypto; 1471 1472 if (unlikely(dev == NULL)) { 1473 VC_LOG_ERR("Invalid vid %i", vid); 1474 return -EINVAL; 1475 } 1476 1477 vcrypto = dev->extern_data; 1478 if (unlikely(vcrypto == NULL)) { 1479 VC_LOG_ERR("Cannot find required data, is it initialized?"); 1480 return -ENOENT; 1481 } 1482 1483 rte_hash_free(vcrypto->session_map); 1484 rte_mempool_free(vcrypto->mbuf_pool); 1485 rte_mempool_free(vcrypto->wb_pool); 1486 rte_free(vcrypto); 1487 1488 dev->extern_data = NULL; 1489 dev->extern_ops.pre_msg_handle = NULL; 1490 dev->extern_ops.post_msg_handle = NULL; 1491 1492 return 0; 1493 } 1494 1495 int 1496 rte_vhost_crypto_set_zero_copy(int vid, enum rte_vhost_crypto_zero_copy option) 1497 { 1498 struct virtio_net *dev = get_device(vid); 1499 struct vhost_crypto *vcrypto; 1500 1501 if (unlikely(dev == NULL)) { 1502 VC_LOG_ERR("Invalid vid %i", vid); 1503 return -EINVAL; 1504 } 1505 1506 if (unlikely((uint32_t)option >= 1507 RTE_VHOST_CRYPTO_MAX_ZERO_COPY_OPTIONS)) { 1508 VC_LOG_ERR("Invalid option %i", option); 1509 return -EINVAL; 1510 } 1511 1512 vcrypto = (struct vhost_crypto *)dev->extern_data; 1513 if (unlikely(vcrypto == NULL)) { 1514 VC_LOG_ERR("Cannot find required data, is it initialized?"); 1515 return -ENOENT; 1516 } 1517 1518 if (vcrypto->option == (uint8_t)option) 1519 return 0; 1520 1521 if (!(rte_mempool_full(vcrypto->mbuf_pool)) || 1522 !(rte_mempool_full(vcrypto->wb_pool))) { 1523 VC_LOG_ERR("Cannot update zero copy as mempool is not full"); 1524 return -EINVAL; 1525 } 1526 1527 if (option == RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE) { 1528 char name[128]; 1529 1530 snprintf(name, 127, "WB_POOL_VM_%u", (uint32_t)vid); 1531 vcrypto->wb_pool = rte_mempool_create(name, 1532 VHOST_CRYPTO_MBUF_POOL_SIZE, 1533 sizeof(struct vhost_crypto_writeback_data), 1534 128, 0, NULL, NULL, NULL, NULL, 1535 rte_socket_id(), 0); 1536 if (!vcrypto->wb_pool) { 1537 VC_LOG_ERR("Failed to creath mbuf pool"); 1538 return -ENOMEM; 1539 } 1540 } else { 1541 rte_mempool_free(vcrypto->wb_pool); 1542 vcrypto->wb_pool = NULL; 1543 } 1544 1545 vcrypto->option = (uint8_t)option; 1546 1547 return 0; 1548 } 1549 1550 uint16_t 1551 rte_vhost_crypto_fetch_requests(int vid, uint32_t qid, 1552 struct rte_crypto_op **ops, uint16_t nb_ops) 1553 { 1554 struct rte_mbuf *mbufs[VHOST_CRYPTO_MAX_BURST_SIZE * 2]; 1555 struct vhost_crypto_desc descs[VHOST_CRYPTO_MAX_N_DESC]; 1556 struct virtio_net *dev = get_device(vid); 1557 struct vhost_crypto *vcrypto; 1558 struct vhost_virtqueue *vq; 1559 uint16_t avail_idx; 1560 uint16_t start_idx; 1561 uint16_t count; 1562 uint16_t i = 0; 1563 1564 if (unlikely(dev == NULL)) { 1565 VC_LOG_ERR("Invalid vid %i", vid); 1566 return 0; 1567 } 1568 1569 if (unlikely(qid >= VHOST_MAX_QUEUE_PAIRS)) { 1570 VC_LOG_ERR("Invalid qid %u", qid); 1571 return 0; 1572 } 1573 1574 vcrypto = (struct vhost_crypto *)dev->extern_data; 1575 if (unlikely(vcrypto == NULL)) { 1576 VC_LOG_ERR("Cannot find required data, is it initialized?"); 1577 return 0; 1578 } 1579 1580 vq = dev->virtqueue[qid]; 1581 1582 avail_idx = *((volatile uint16_t *)&vq->avail->idx); 1583 start_idx = vq->last_used_idx; 1584 count = avail_idx - start_idx; 1585 count = RTE_MIN(count, VHOST_CRYPTO_MAX_BURST_SIZE); 1586 count = RTE_MIN(count, nb_ops); 1587 1588 if (unlikely(count == 0)) 1589 return 0; 1590 1591 /* for zero copy, we need 2 empty mbufs for src and dst, otherwise 1592 * we need only 1 mbuf as src and dst 1593 */ 1594 switch (vcrypto->option) { 1595 case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE: 1596 if (unlikely(rte_mempool_get_bulk(vcrypto->mbuf_pool, 1597 (void **)mbufs, count * 2) < 0)) { 1598 VC_LOG_ERR("Insufficient memory"); 1599 return 0; 1600 } 1601 1602 for (i = 0; i < count; i++) { 1603 uint16_t used_idx = (start_idx + i) & (vq->size - 1); 1604 uint16_t desc_idx = vq->avail->ring[used_idx]; 1605 struct vring_desc *head = &vq->desc[desc_idx]; 1606 struct rte_crypto_op *op = ops[i]; 1607 1608 op->sym->m_src = mbufs[i * 2]; 1609 op->sym->m_dst = mbufs[i * 2 + 1]; 1610 op->sym->m_src->data_off = 0; 1611 op->sym->m_dst->data_off = 0; 1612 1613 if (unlikely(vhost_crypto_process_one_req(vcrypto, vq, 1614 op, head, descs, used_idx) < 0)) 1615 break; 1616 } 1617 1618 if (unlikely(i < count)) 1619 rte_mempool_put_bulk(vcrypto->mbuf_pool, 1620 (void **)&mbufs[i * 2], 1621 (count - i) * 2); 1622 1623 break; 1624 1625 case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE: 1626 if (unlikely(rte_mempool_get_bulk(vcrypto->mbuf_pool, 1627 (void **)mbufs, count) < 0)) { 1628 VC_LOG_ERR("Insufficient memory"); 1629 return 0; 1630 } 1631 1632 for (i = 0; i < count; i++) { 1633 uint16_t used_idx = (start_idx + i) & (vq->size - 1); 1634 uint16_t desc_idx = vq->avail->ring[used_idx]; 1635 struct vring_desc *head = &vq->desc[desc_idx]; 1636 struct rte_crypto_op *op = ops[i]; 1637 1638 op->sym->m_src = mbufs[i]; 1639 op->sym->m_dst = NULL; 1640 op->sym->m_src->data_off = 0; 1641 1642 if (unlikely(vhost_crypto_process_one_req(vcrypto, vq, 1643 op, head, descs, desc_idx) < 0)) 1644 break; 1645 } 1646 1647 if (unlikely(i < count)) 1648 rte_mempool_put_bulk(vcrypto->mbuf_pool, 1649 (void **)&mbufs[i], 1650 count - i); 1651 1652 break; 1653 1654 } 1655 1656 vq->last_used_idx += i; 1657 1658 return i; 1659 } 1660 1661 uint16_t 1662 rte_vhost_crypto_finalize_requests(struct rte_crypto_op **ops, 1663 uint16_t nb_ops, int *callfds, uint16_t *nb_callfds) 1664 { 1665 struct rte_crypto_op **tmp_ops = ops; 1666 uint16_t count = 0, left = nb_ops; 1667 int callfd; 1668 uint16_t idx = 0; 1669 1670 while (left) { 1671 count = vhost_crypto_complete_one_vm_requests(tmp_ops, left, 1672 &callfd); 1673 if (unlikely(count == 0)) 1674 break; 1675 1676 tmp_ops = &tmp_ops[count]; 1677 left -= count; 1678 1679 callfds[idx++] = callfd; 1680 1681 if (unlikely(idx >= VIRTIO_CRYPTO_MAX_NUM_BURST_VQS)) { 1682 VC_LOG_ERR("Too many vqs"); 1683 break; 1684 } 1685 } 1686 1687 *nb_callfds = idx; 1688 1689 return nb_ops - left; 1690 } 1691