xref: /dpdk/lib/vhost/vhost.c (revision f4eac3a09c51a1a2dab1f2fd3a10fe0619286a0d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2017 Intel Corporation
3  */
4 
5 #include <linux/vhost.h>
6 #include <linux/virtio_net.h>
7 #include <stddef.h>
8 #include <stdint.h>
9 #include <stdlib.h>
10 #ifdef RTE_LIBRTE_VHOST_NUMA
11 #include <numa.h>
12 #include <numaif.h>
13 #endif
14 
15 #include <rte_errno.h>
16 #include <rte_ethdev.h>
17 #include <rte_log.h>
18 #include <rte_string_fns.h>
19 #include <rte_memory.h>
20 #include <rte_malloc.h>
21 #include <rte_vhost.h>
22 #include <rte_rwlock.h>
23 
24 #include "iotlb.h"
25 #include "vhost.h"
26 #include "vhost_user.h"
27 
28 struct virtio_net *vhost_devices[RTE_MAX_VHOST_DEVICE];
29 pthread_mutex_t vhost_dev_lock = PTHREAD_MUTEX_INITIALIZER;
30 
31 /* Called with iotlb_lock read-locked */
32 uint64_t
33 __vhost_iova_to_vva(struct virtio_net *dev, struct vhost_virtqueue *vq,
34 		    uint64_t iova, uint64_t *size, uint8_t perm)
35 {
36 	uint64_t vva, tmp_size;
37 
38 	if (unlikely(!*size))
39 		return 0;
40 
41 	tmp_size = *size;
42 
43 	vva = vhost_user_iotlb_cache_find(vq, iova, &tmp_size, perm);
44 	if (tmp_size == *size)
45 		return vva;
46 
47 	iova += tmp_size;
48 
49 	if (!vhost_user_iotlb_pending_miss(vq, iova, perm)) {
50 		/*
51 		 * iotlb_lock is read-locked for a full burst,
52 		 * but it only protects the iotlb cache.
53 		 * In case of IOTLB miss, we might block on the socket,
54 		 * which could cause a deadlock with QEMU if an IOTLB update
55 		 * is being handled. We can safely unlock here to avoid it.
56 		 */
57 		vhost_user_iotlb_rd_unlock(vq);
58 
59 		vhost_user_iotlb_pending_insert(dev, vq, iova, perm);
60 		if (vhost_user_iotlb_miss(dev, iova, perm)) {
61 			VHOST_LOG_DATA(ERR, "(%s) IOTLB miss req failed for IOVA 0x%" PRIx64 "\n",
62 				dev->ifname, iova);
63 			vhost_user_iotlb_pending_remove(vq, iova, 1, perm);
64 		}
65 
66 		vhost_user_iotlb_rd_lock(vq);
67 	}
68 
69 	return 0;
70 }
71 
72 #define VHOST_LOG_PAGE	4096
73 
74 /*
75  * Atomically set a bit in memory.
76  */
77 static __rte_always_inline void
78 vhost_set_bit(unsigned int nr, volatile uint8_t *addr)
79 {
80 #if defined(RTE_TOOLCHAIN_GCC) && (GCC_VERSION < 70100)
81 	/*
82 	 * __sync_ built-ins are deprecated, but __atomic_ ones
83 	 * are sub-optimized in older GCC versions.
84 	 */
85 	__sync_fetch_and_or_1(addr, (1U << nr));
86 #else
87 	__atomic_fetch_or(addr, (1U << nr), __ATOMIC_RELAXED);
88 #endif
89 }
90 
91 static __rte_always_inline void
92 vhost_log_page(uint8_t *log_base, uint64_t page)
93 {
94 	vhost_set_bit(page % 8, &log_base[page / 8]);
95 }
96 
97 void
98 __vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len)
99 {
100 	uint64_t page;
101 
102 	if (unlikely(!dev->log_base || !len))
103 		return;
104 
105 	if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
106 		return;
107 
108 	/* To make sure guest memory updates are committed before logging */
109 	rte_atomic_thread_fence(__ATOMIC_RELEASE);
110 
111 	page = addr / VHOST_LOG_PAGE;
112 	while (page * VHOST_LOG_PAGE < addr + len) {
113 		vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
114 		page += 1;
115 	}
116 }
117 
118 void
119 __vhost_log_write_iova(struct virtio_net *dev, struct vhost_virtqueue *vq,
120 			     uint64_t iova, uint64_t len)
121 {
122 	uint64_t hva, gpa, map_len;
123 	map_len = len;
124 
125 	hva = __vhost_iova_to_vva(dev, vq, iova, &map_len, VHOST_ACCESS_RW);
126 	if (map_len != len) {
127 		VHOST_LOG_DATA(ERR,
128 			"(%s) failed to write log for IOVA 0x%" PRIx64 ". No IOTLB entry found\n",
129 			dev->ifname, iova);
130 		return;
131 	}
132 
133 	gpa = hva_to_gpa(dev, hva, len);
134 	if (gpa)
135 		__vhost_log_write(dev, gpa, len);
136 }
137 
138 void
139 __vhost_log_cache_sync(struct virtio_net *dev, struct vhost_virtqueue *vq)
140 {
141 	unsigned long *log_base;
142 	int i;
143 
144 	if (unlikely(!dev->log_base))
145 		return;
146 
147 	/* No cache, nothing to sync */
148 	if (unlikely(!vq->log_cache))
149 		return;
150 
151 	rte_atomic_thread_fence(__ATOMIC_RELEASE);
152 
153 	log_base = (unsigned long *)(uintptr_t)dev->log_base;
154 
155 	for (i = 0; i < vq->log_cache_nb_elem; i++) {
156 		struct log_cache_entry *elem = vq->log_cache + i;
157 
158 #if defined(RTE_TOOLCHAIN_GCC) && (GCC_VERSION < 70100)
159 		/*
160 		 * '__sync' builtins are deprecated, but '__atomic' ones
161 		 * are sub-optimized in older GCC versions.
162 		 */
163 		__sync_fetch_and_or(log_base + elem->offset, elem->val);
164 #else
165 		__atomic_fetch_or(log_base + elem->offset, elem->val,
166 				__ATOMIC_RELAXED);
167 #endif
168 	}
169 
170 	rte_atomic_thread_fence(__ATOMIC_RELEASE);
171 
172 	vq->log_cache_nb_elem = 0;
173 }
174 
175 static __rte_always_inline void
176 vhost_log_cache_page(struct virtio_net *dev, struct vhost_virtqueue *vq,
177 			uint64_t page)
178 {
179 	uint32_t bit_nr = page % (sizeof(unsigned long) << 3);
180 	uint32_t offset = page / (sizeof(unsigned long) << 3);
181 	int i;
182 
183 	if (unlikely(!vq->log_cache)) {
184 		/* No logging cache allocated, write dirty log map directly */
185 		rte_atomic_thread_fence(__ATOMIC_RELEASE);
186 		vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
187 
188 		return;
189 	}
190 
191 	for (i = 0; i < vq->log_cache_nb_elem; i++) {
192 		struct log_cache_entry *elem = vq->log_cache + i;
193 
194 		if (elem->offset == offset) {
195 			elem->val |= (1UL << bit_nr);
196 			return;
197 		}
198 	}
199 
200 	if (unlikely(i >= VHOST_LOG_CACHE_NR)) {
201 		/*
202 		 * No more room for a new log cache entry,
203 		 * so write the dirty log map directly.
204 		 */
205 		rte_atomic_thread_fence(__ATOMIC_RELEASE);
206 		vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
207 
208 		return;
209 	}
210 
211 	vq->log_cache[i].offset = offset;
212 	vq->log_cache[i].val = (1UL << bit_nr);
213 	vq->log_cache_nb_elem++;
214 }
215 
216 void
217 __vhost_log_cache_write(struct virtio_net *dev, struct vhost_virtqueue *vq,
218 			uint64_t addr, uint64_t len)
219 {
220 	uint64_t page;
221 
222 	if (unlikely(!dev->log_base || !len))
223 		return;
224 
225 	if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
226 		return;
227 
228 	page = addr / VHOST_LOG_PAGE;
229 	while (page * VHOST_LOG_PAGE < addr + len) {
230 		vhost_log_cache_page(dev, vq, page);
231 		page += 1;
232 	}
233 }
234 
235 void
236 __vhost_log_cache_write_iova(struct virtio_net *dev, struct vhost_virtqueue *vq,
237 			     uint64_t iova, uint64_t len)
238 {
239 	uint64_t hva, gpa, map_len;
240 	map_len = len;
241 
242 	hva = __vhost_iova_to_vva(dev, vq, iova, &map_len, VHOST_ACCESS_RW);
243 	if (map_len != len) {
244 		VHOST_LOG_DATA(ERR,
245 			"(%s) failed to write log for IOVA 0x%" PRIx64 ". No IOTLB entry found\n",
246 			dev->ifname, iova);
247 		return;
248 	}
249 
250 	gpa = hva_to_gpa(dev, hva, len);
251 	if (gpa)
252 		__vhost_log_cache_write(dev, vq, gpa, len);
253 }
254 
255 void *
256 vhost_alloc_copy_ind_table(struct virtio_net *dev, struct vhost_virtqueue *vq,
257 		uint64_t desc_addr, uint64_t desc_len)
258 {
259 	void *idesc;
260 	uint64_t src, dst;
261 	uint64_t len, remain = desc_len;
262 
263 	idesc = rte_malloc_socket(__func__, desc_len, 0, vq->numa_node);
264 	if (unlikely(!idesc))
265 		return NULL;
266 
267 	dst = (uint64_t)(uintptr_t)idesc;
268 
269 	while (remain) {
270 		len = remain;
271 		src = vhost_iova_to_vva(dev, vq, desc_addr, &len,
272 				VHOST_ACCESS_RO);
273 		if (unlikely(!src || !len)) {
274 			rte_free(idesc);
275 			return NULL;
276 		}
277 
278 		rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len);
279 
280 		remain -= len;
281 		dst += len;
282 		desc_addr += len;
283 	}
284 
285 	return idesc;
286 }
287 
288 void
289 cleanup_vq(struct vhost_virtqueue *vq, int destroy)
290 {
291 	if ((vq->callfd >= 0) && (destroy != 0))
292 		close(vq->callfd);
293 	if (vq->kickfd >= 0)
294 		close(vq->kickfd);
295 }
296 
297 void
298 cleanup_vq_inflight(struct virtio_net *dev, struct vhost_virtqueue *vq)
299 {
300 	if (!(dev->protocol_features &
301 	    (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD)))
302 		return;
303 
304 	if (vq_is_packed(dev)) {
305 		if (vq->inflight_packed)
306 			vq->inflight_packed = NULL;
307 	} else {
308 		if (vq->inflight_split)
309 			vq->inflight_split = NULL;
310 	}
311 
312 	if (vq->resubmit_inflight) {
313 		if (vq->resubmit_inflight->resubmit_list) {
314 			rte_free(vq->resubmit_inflight->resubmit_list);
315 			vq->resubmit_inflight->resubmit_list = NULL;
316 		}
317 		rte_free(vq->resubmit_inflight);
318 		vq->resubmit_inflight = NULL;
319 	}
320 }
321 
322 /*
323  * Unmap any memory, close any file descriptors and
324  * free any memory owned by a device.
325  */
326 void
327 cleanup_device(struct virtio_net *dev, int destroy)
328 {
329 	uint32_t i;
330 
331 	vhost_backend_cleanup(dev);
332 
333 	for (i = 0; i < dev->nr_vring; i++) {
334 		cleanup_vq(dev->virtqueue[i], destroy);
335 		cleanup_vq_inflight(dev, dev->virtqueue[i]);
336 	}
337 }
338 
339 static void
340 vhost_free_async_mem(struct vhost_virtqueue *vq)
341 {
342 	if (!vq->async)
343 		return;
344 
345 	rte_free(vq->async->pkts_info);
346 	rte_free(vq->async->pkts_cmpl_flag);
347 
348 	rte_free(vq->async->buffers_packed);
349 	vq->async->buffers_packed = NULL;
350 	rte_free(vq->async->descs_split);
351 	vq->async->descs_split = NULL;
352 
353 	rte_free(vq->async);
354 	vq->async = NULL;
355 }
356 
357 void
358 free_vq(struct virtio_net *dev, struct vhost_virtqueue *vq)
359 {
360 	if (vq_is_packed(dev))
361 		rte_free(vq->shadow_used_packed);
362 	else
363 		rte_free(vq->shadow_used_split);
364 
365 	vhost_free_async_mem(vq);
366 	rte_free(vq->batch_copy_elems);
367 	rte_mempool_free(vq->iotlb_pool);
368 	rte_free(vq->log_cache);
369 	rte_free(vq);
370 }
371 
372 /*
373  * Release virtqueues and device memory.
374  */
375 static void
376 free_device(struct virtio_net *dev)
377 {
378 	uint32_t i;
379 
380 	for (i = 0; i < dev->nr_vring; i++)
381 		free_vq(dev, dev->virtqueue[i]);
382 
383 	rte_free(dev);
384 }
385 
386 static __rte_always_inline int
387 log_translate(struct virtio_net *dev, struct vhost_virtqueue *vq)
388 {
389 	if (likely(!(vq->ring_addrs.flags & (1 << VHOST_VRING_F_LOG))))
390 		return 0;
391 
392 	vq->log_guest_addr = translate_log_addr(dev, vq,
393 						vq->ring_addrs.log_guest_addr);
394 	if (vq->log_guest_addr == 0)
395 		return -1;
396 
397 	return 0;
398 }
399 
400 /*
401  * Converts vring log address to GPA
402  * If IOMMU is enabled, the log address is IOVA
403  * If IOMMU not enabled, the log address is already GPA
404  *
405  * Caller should have iotlb_lock read-locked
406  */
407 uint64_t
408 translate_log_addr(struct virtio_net *dev, struct vhost_virtqueue *vq,
409 		uint64_t log_addr)
410 {
411 	if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) {
412 		const uint64_t exp_size = sizeof(uint64_t);
413 		uint64_t hva, gpa;
414 		uint64_t size = exp_size;
415 
416 		hva = vhost_iova_to_vva(dev, vq, log_addr,
417 					&size, VHOST_ACCESS_RW);
418 
419 		if (size != exp_size)
420 			return 0;
421 
422 		gpa = hva_to_gpa(dev, hva, exp_size);
423 		if (!gpa) {
424 			VHOST_LOG_DATA(ERR,
425 				"(%s) failed to find GPA for log_addr: 0x%"
426 				PRIx64 " hva: 0x%" PRIx64 "\n",
427 				dev->ifname, log_addr, hva);
428 			return 0;
429 		}
430 		return gpa;
431 
432 	} else
433 		return log_addr;
434 }
435 
436 /* Caller should have iotlb_lock read-locked */
437 static int
438 vring_translate_split(struct virtio_net *dev, struct vhost_virtqueue *vq)
439 {
440 	uint64_t req_size, size;
441 
442 	req_size = sizeof(struct vring_desc) * vq->size;
443 	size = req_size;
444 	vq->desc = (struct vring_desc *)(uintptr_t)vhost_iova_to_vva(dev, vq,
445 						vq->ring_addrs.desc_user_addr,
446 						&size, VHOST_ACCESS_RW);
447 	if (!vq->desc || size != req_size)
448 		return -1;
449 
450 	req_size = sizeof(struct vring_avail);
451 	req_size += sizeof(uint16_t) * vq->size;
452 	if (dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX))
453 		req_size += sizeof(uint16_t);
454 	size = req_size;
455 	vq->avail = (struct vring_avail *)(uintptr_t)vhost_iova_to_vva(dev, vq,
456 						vq->ring_addrs.avail_user_addr,
457 						&size, VHOST_ACCESS_RW);
458 	if (!vq->avail || size != req_size)
459 		return -1;
460 
461 	req_size = sizeof(struct vring_used);
462 	req_size += sizeof(struct vring_used_elem) * vq->size;
463 	if (dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX))
464 		req_size += sizeof(uint16_t);
465 	size = req_size;
466 	vq->used = (struct vring_used *)(uintptr_t)vhost_iova_to_vva(dev, vq,
467 						vq->ring_addrs.used_user_addr,
468 						&size, VHOST_ACCESS_RW);
469 	if (!vq->used || size != req_size)
470 		return -1;
471 
472 	return 0;
473 }
474 
475 /* Caller should have iotlb_lock read-locked */
476 static int
477 vring_translate_packed(struct virtio_net *dev, struct vhost_virtqueue *vq)
478 {
479 	uint64_t req_size, size;
480 
481 	req_size = sizeof(struct vring_packed_desc) * vq->size;
482 	size = req_size;
483 	vq->desc_packed = (struct vring_packed_desc *)(uintptr_t)
484 		vhost_iova_to_vva(dev, vq, vq->ring_addrs.desc_user_addr,
485 				&size, VHOST_ACCESS_RW);
486 	if (!vq->desc_packed || size != req_size)
487 		return -1;
488 
489 	req_size = sizeof(struct vring_packed_desc_event);
490 	size = req_size;
491 	vq->driver_event = (struct vring_packed_desc_event *)(uintptr_t)
492 		vhost_iova_to_vva(dev, vq, vq->ring_addrs.avail_user_addr,
493 				&size, VHOST_ACCESS_RW);
494 	if (!vq->driver_event || size != req_size)
495 		return -1;
496 
497 	req_size = sizeof(struct vring_packed_desc_event);
498 	size = req_size;
499 	vq->device_event = (struct vring_packed_desc_event *)(uintptr_t)
500 		vhost_iova_to_vva(dev, vq, vq->ring_addrs.used_user_addr,
501 				&size, VHOST_ACCESS_RW);
502 	if (!vq->device_event || size != req_size)
503 		return -1;
504 
505 	return 0;
506 }
507 
508 int
509 vring_translate(struct virtio_net *dev, struct vhost_virtqueue *vq)
510 {
511 
512 	if (!(dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)))
513 		return -1;
514 
515 	if (vq_is_packed(dev)) {
516 		if (vring_translate_packed(dev, vq) < 0)
517 			return -1;
518 	} else {
519 		if (vring_translate_split(dev, vq) < 0)
520 			return -1;
521 	}
522 
523 	if (log_translate(dev, vq) < 0)
524 		return -1;
525 
526 	vq->access_ok = true;
527 
528 	return 0;
529 }
530 
531 void
532 vring_invalidate(struct virtio_net *dev, struct vhost_virtqueue *vq)
533 {
534 	if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
535 		vhost_user_iotlb_wr_lock(vq);
536 
537 	vq->access_ok = false;
538 	vq->desc = NULL;
539 	vq->avail = NULL;
540 	vq->used = NULL;
541 	vq->log_guest_addr = 0;
542 
543 	if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
544 		vhost_user_iotlb_wr_unlock(vq);
545 }
546 
547 static void
548 init_vring_queue(struct virtio_net *dev, uint32_t vring_idx)
549 {
550 	struct vhost_virtqueue *vq;
551 	int numa_node = SOCKET_ID_ANY;
552 
553 	if (vring_idx >= VHOST_MAX_VRING) {
554 		VHOST_LOG_CONFIG(ERR, "(%s) failed to init vring, out of bound (%d)\n",
555 				dev->ifname, vring_idx);
556 		return;
557 	}
558 
559 	vq = dev->virtqueue[vring_idx];
560 	if (!vq) {
561 		VHOST_LOG_CONFIG(ERR, "(%s) virtqueue not allocated (%d)\n",
562 				dev->ifname, vring_idx);
563 		return;
564 	}
565 
566 	memset(vq, 0, sizeof(struct vhost_virtqueue));
567 
568 	vq->kickfd = VIRTIO_UNINITIALIZED_EVENTFD;
569 	vq->callfd = VIRTIO_UNINITIALIZED_EVENTFD;
570 	vq->notif_enable = VIRTIO_UNINITIALIZED_NOTIF;
571 
572 #ifdef RTE_LIBRTE_VHOST_NUMA
573 	if (get_mempolicy(&numa_node, NULL, 0, vq, MPOL_F_NODE | MPOL_F_ADDR)) {
574 		VHOST_LOG_CONFIG(ERR, "(%s) failed to query numa node: %s\n",
575 			dev->ifname, rte_strerror(errno));
576 		numa_node = SOCKET_ID_ANY;
577 	}
578 #endif
579 	vq->numa_node = numa_node;
580 
581 	vhost_user_iotlb_init(dev, vring_idx);
582 }
583 
584 static void
585 reset_vring_queue(struct virtio_net *dev, uint32_t vring_idx)
586 {
587 	struct vhost_virtqueue *vq;
588 	int callfd;
589 
590 	if (vring_idx >= VHOST_MAX_VRING) {
591 		VHOST_LOG_CONFIG(ERR,
592 				"(%s) failed to reset vring, out of bound (%d)\n",
593 				dev->ifname, vring_idx);
594 		return;
595 	}
596 
597 	vq = dev->virtqueue[vring_idx];
598 	if (!vq) {
599 		VHOST_LOG_CONFIG(ERR, "(%s) failed to reset vring, virtqueue not allocated (%d)\n",
600 				dev->ifname, vring_idx);
601 		return;
602 	}
603 
604 	callfd = vq->callfd;
605 	init_vring_queue(dev, vring_idx);
606 	vq->callfd = callfd;
607 }
608 
609 int
610 alloc_vring_queue(struct virtio_net *dev, uint32_t vring_idx)
611 {
612 	struct vhost_virtqueue *vq;
613 	uint32_t i;
614 
615 	/* Also allocate holes, if any, up to requested vring index. */
616 	for (i = 0; i <= vring_idx; i++) {
617 		if (dev->virtqueue[i])
618 			continue;
619 
620 		vq = rte_zmalloc(NULL, sizeof(struct vhost_virtqueue), 0);
621 		if (vq == NULL) {
622 			VHOST_LOG_CONFIG(ERR, "(%s) failed to allocate memory for vring %u.\n",
623 					dev->ifname, i);
624 			return -1;
625 		}
626 
627 		dev->virtqueue[i] = vq;
628 		init_vring_queue(dev, i);
629 		rte_spinlock_init(&vq->access_lock);
630 		vq->avail_wrap_counter = 1;
631 		vq->used_wrap_counter = 1;
632 		vq->signalled_used_valid = false;
633 	}
634 
635 	dev->nr_vring = RTE_MAX(dev->nr_vring, vring_idx + 1);
636 
637 	return 0;
638 }
639 
640 /*
641  * Reset some variables in device structure, while keeping few
642  * others untouched, such as vid, ifname, nr_vring: they
643  * should be same unless the device is removed.
644  */
645 void
646 reset_device(struct virtio_net *dev)
647 {
648 	uint32_t i;
649 
650 	dev->features = 0;
651 	dev->protocol_features = 0;
652 	dev->flags &= VIRTIO_DEV_BUILTIN_VIRTIO_NET;
653 
654 	for (i = 0; i < dev->nr_vring; i++)
655 		reset_vring_queue(dev, i);
656 }
657 
658 /*
659  * Invoked when there is a new vhost-user connection established (when
660  * there is a new virtio device being attached).
661  */
662 int
663 vhost_new_device(void)
664 {
665 	struct virtio_net *dev;
666 	int i;
667 
668 	pthread_mutex_lock(&vhost_dev_lock);
669 	for (i = 0; i < RTE_MAX_VHOST_DEVICE; i++) {
670 		if (vhost_devices[i] == NULL)
671 			break;
672 	}
673 
674 	if (i == RTE_MAX_VHOST_DEVICE) {
675 		VHOST_LOG_CONFIG(ERR, "failed to find a free slot for new device.\n");
676 		pthread_mutex_unlock(&vhost_dev_lock);
677 		return -1;
678 	}
679 
680 	dev = rte_zmalloc(NULL, sizeof(struct virtio_net), 0);
681 	if (dev == NULL) {
682 		VHOST_LOG_CONFIG(ERR, "failed to allocate memory for new device.\n");
683 		pthread_mutex_unlock(&vhost_dev_lock);
684 		return -1;
685 	}
686 
687 	vhost_devices[i] = dev;
688 	pthread_mutex_unlock(&vhost_dev_lock);
689 
690 	dev->vid = i;
691 	dev->flags = VIRTIO_DEV_BUILTIN_VIRTIO_NET;
692 	dev->slave_req_fd = -1;
693 	dev->postcopy_ufd = -1;
694 	rte_spinlock_init(&dev->slave_req_lock);
695 
696 	return i;
697 }
698 
699 void
700 vhost_destroy_device_notify(struct virtio_net *dev)
701 {
702 	struct rte_vdpa_device *vdpa_dev;
703 
704 	if (dev->flags & VIRTIO_DEV_RUNNING) {
705 		vdpa_dev = dev->vdpa_dev;
706 		if (vdpa_dev)
707 			vdpa_dev->ops->dev_close(dev->vid);
708 		dev->flags &= ~VIRTIO_DEV_RUNNING;
709 		dev->notify_ops->destroy_device(dev->vid);
710 	}
711 }
712 
713 /*
714  * Invoked when there is the vhost-user connection is broken (when
715  * the virtio device is being detached).
716  */
717 void
718 vhost_destroy_device(int vid)
719 {
720 	struct virtio_net *dev = get_device(vid);
721 
722 	if (dev == NULL)
723 		return;
724 
725 	vhost_destroy_device_notify(dev);
726 
727 	cleanup_device(dev, 1);
728 	free_device(dev);
729 
730 	vhost_devices[vid] = NULL;
731 }
732 
733 void
734 vhost_attach_vdpa_device(int vid, struct rte_vdpa_device *vdpa_dev)
735 {
736 	struct virtio_net *dev = get_device(vid);
737 
738 	if (dev == NULL)
739 		return;
740 
741 	dev->vdpa_dev = vdpa_dev;
742 }
743 
744 void
745 vhost_set_ifname(int vid, const char *if_name, unsigned int if_len)
746 {
747 	struct virtio_net *dev;
748 	unsigned int len;
749 
750 	dev = get_device(vid);
751 	if (dev == NULL)
752 		return;
753 
754 	len = if_len > sizeof(dev->ifname) ?
755 		sizeof(dev->ifname) : if_len;
756 
757 	strncpy(dev->ifname, if_name, len);
758 	dev->ifname[sizeof(dev->ifname) - 1] = '\0';
759 }
760 
761 void
762 vhost_setup_virtio_net(int vid, bool enable, bool compliant_ol_flags)
763 {
764 	struct virtio_net *dev = get_device(vid);
765 
766 	if (dev == NULL)
767 		return;
768 
769 	if (enable)
770 		dev->flags |= VIRTIO_DEV_BUILTIN_VIRTIO_NET;
771 	else
772 		dev->flags &= ~VIRTIO_DEV_BUILTIN_VIRTIO_NET;
773 	if (!compliant_ol_flags)
774 		dev->flags |= VIRTIO_DEV_LEGACY_OL_FLAGS;
775 	else
776 		dev->flags &= ~VIRTIO_DEV_LEGACY_OL_FLAGS;
777 }
778 
779 void
780 vhost_enable_extbuf(int vid)
781 {
782 	struct virtio_net *dev = get_device(vid);
783 
784 	if (dev == NULL)
785 		return;
786 
787 	dev->extbuf = 1;
788 }
789 
790 void
791 vhost_enable_linearbuf(int vid)
792 {
793 	struct virtio_net *dev = get_device(vid);
794 
795 	if (dev == NULL)
796 		return;
797 
798 	dev->linearbuf = 1;
799 }
800 
801 int
802 rte_vhost_get_mtu(int vid, uint16_t *mtu)
803 {
804 	struct virtio_net *dev = get_device(vid);
805 
806 	if (dev == NULL || mtu == NULL)
807 		return -ENODEV;
808 
809 	if (!(dev->flags & VIRTIO_DEV_READY))
810 		return -EAGAIN;
811 
812 	if (!(dev->features & (1ULL << VIRTIO_NET_F_MTU)))
813 		return -ENOTSUP;
814 
815 	*mtu = dev->mtu;
816 
817 	return 0;
818 }
819 
820 int
821 rte_vhost_get_numa_node(int vid)
822 {
823 #ifdef RTE_LIBRTE_VHOST_NUMA
824 	struct virtio_net *dev = get_device(vid);
825 	int numa_node;
826 	int ret;
827 
828 	if (dev == NULL || numa_available() != 0)
829 		return -1;
830 
831 	ret = get_mempolicy(&numa_node, NULL, 0, dev,
832 			    MPOL_F_NODE | MPOL_F_ADDR);
833 	if (ret < 0) {
834 		VHOST_LOG_CONFIG(ERR, "(%s) failed to query numa node: %s\n",
835 			dev->ifname, rte_strerror(errno));
836 		return -1;
837 	}
838 
839 	return numa_node;
840 #else
841 	RTE_SET_USED(vid);
842 	return -1;
843 #endif
844 }
845 
846 uint32_t
847 rte_vhost_get_queue_num(int vid)
848 {
849 	struct virtio_net *dev = get_device(vid);
850 
851 	if (dev == NULL)
852 		return 0;
853 
854 	return dev->nr_vring / 2;
855 }
856 
857 uint16_t
858 rte_vhost_get_vring_num(int vid)
859 {
860 	struct virtio_net *dev = get_device(vid);
861 
862 	if (dev == NULL)
863 		return 0;
864 
865 	return dev->nr_vring;
866 }
867 
868 int
869 rte_vhost_get_ifname(int vid, char *buf, size_t len)
870 {
871 	struct virtio_net *dev = get_device(vid);
872 
873 	if (dev == NULL || buf == NULL)
874 		return -1;
875 
876 	len = RTE_MIN(len, sizeof(dev->ifname));
877 
878 	strncpy(buf, dev->ifname, len);
879 	buf[len - 1] = '\0';
880 
881 	return 0;
882 }
883 
884 int
885 rte_vhost_get_negotiated_features(int vid, uint64_t *features)
886 {
887 	struct virtio_net *dev;
888 
889 	dev = get_device(vid);
890 	if (dev == NULL || features == NULL)
891 		return -1;
892 
893 	*features = dev->features;
894 	return 0;
895 }
896 
897 int
898 rte_vhost_get_negotiated_protocol_features(int vid,
899 					   uint64_t *protocol_features)
900 {
901 	struct virtio_net *dev;
902 
903 	dev = get_device(vid);
904 	if (dev == NULL || protocol_features == NULL)
905 		return -1;
906 
907 	*protocol_features = dev->protocol_features;
908 	return 0;
909 }
910 
911 int
912 rte_vhost_get_mem_table(int vid, struct rte_vhost_memory **mem)
913 {
914 	struct virtio_net *dev;
915 	struct rte_vhost_memory *m;
916 	size_t size;
917 
918 	dev = get_device(vid);
919 	if (dev == NULL || mem == NULL)
920 		return -1;
921 
922 	size = dev->mem->nregions * sizeof(struct rte_vhost_mem_region);
923 	m = malloc(sizeof(struct rte_vhost_memory) + size);
924 	if (!m)
925 		return -1;
926 
927 	m->nregions = dev->mem->nregions;
928 	memcpy(m->regions, dev->mem->regions, size);
929 	*mem = m;
930 
931 	return 0;
932 }
933 
934 int
935 rte_vhost_get_vhost_vring(int vid, uint16_t vring_idx,
936 			  struct rte_vhost_vring *vring)
937 {
938 	struct virtio_net *dev;
939 	struct vhost_virtqueue *vq;
940 
941 	dev = get_device(vid);
942 	if (dev == NULL || vring == NULL)
943 		return -1;
944 
945 	if (vring_idx >= VHOST_MAX_VRING)
946 		return -1;
947 
948 	vq = dev->virtqueue[vring_idx];
949 	if (!vq)
950 		return -1;
951 
952 	if (vq_is_packed(dev)) {
953 		vring->desc_packed = vq->desc_packed;
954 		vring->driver_event = vq->driver_event;
955 		vring->device_event = vq->device_event;
956 	} else {
957 		vring->desc = vq->desc;
958 		vring->avail = vq->avail;
959 		vring->used = vq->used;
960 	}
961 	vring->log_guest_addr  = vq->log_guest_addr;
962 
963 	vring->callfd  = vq->callfd;
964 	vring->kickfd  = vq->kickfd;
965 	vring->size    = vq->size;
966 
967 	return 0;
968 }
969 
970 int
971 rte_vhost_get_vhost_ring_inflight(int vid, uint16_t vring_idx,
972 				  struct rte_vhost_ring_inflight *vring)
973 {
974 	struct virtio_net *dev;
975 	struct vhost_virtqueue *vq;
976 
977 	dev = get_device(vid);
978 	if (unlikely(!dev))
979 		return -1;
980 
981 	if (vring_idx >= VHOST_MAX_VRING)
982 		return -1;
983 
984 	vq = dev->virtqueue[vring_idx];
985 	if (unlikely(!vq))
986 		return -1;
987 
988 	if (vq_is_packed(dev)) {
989 		if (unlikely(!vq->inflight_packed))
990 			return -1;
991 
992 		vring->inflight_packed = vq->inflight_packed;
993 	} else {
994 		if (unlikely(!vq->inflight_split))
995 			return -1;
996 
997 		vring->inflight_split = vq->inflight_split;
998 	}
999 
1000 	vring->resubmit_inflight = vq->resubmit_inflight;
1001 
1002 	return 0;
1003 }
1004 
1005 int
1006 rte_vhost_set_inflight_desc_split(int vid, uint16_t vring_idx,
1007 				  uint16_t idx)
1008 {
1009 	struct vhost_virtqueue *vq;
1010 	struct virtio_net *dev;
1011 
1012 	dev = get_device(vid);
1013 	if (unlikely(!dev))
1014 		return -1;
1015 
1016 	if (unlikely(!(dev->protocol_features &
1017 	    (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))))
1018 		return 0;
1019 
1020 	if (unlikely(vq_is_packed(dev)))
1021 		return -1;
1022 
1023 	if (unlikely(vring_idx >= VHOST_MAX_VRING))
1024 		return -1;
1025 
1026 	vq = dev->virtqueue[vring_idx];
1027 	if (unlikely(!vq))
1028 		return -1;
1029 
1030 	if (unlikely(!vq->inflight_split))
1031 		return -1;
1032 
1033 	if (unlikely(idx >= vq->size))
1034 		return -1;
1035 
1036 	vq->inflight_split->desc[idx].counter = vq->global_counter++;
1037 	vq->inflight_split->desc[idx].inflight = 1;
1038 	return 0;
1039 }
1040 
1041 int
1042 rte_vhost_set_inflight_desc_packed(int vid, uint16_t vring_idx,
1043 				   uint16_t head, uint16_t last,
1044 				   uint16_t *inflight_entry)
1045 {
1046 	struct rte_vhost_inflight_info_packed *inflight_info;
1047 	struct virtio_net *dev;
1048 	struct vhost_virtqueue *vq;
1049 	struct vring_packed_desc *desc;
1050 	uint16_t old_free_head, free_head;
1051 
1052 	dev = get_device(vid);
1053 	if (unlikely(!dev))
1054 		return -1;
1055 
1056 	if (unlikely(!(dev->protocol_features &
1057 	    (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))))
1058 		return 0;
1059 
1060 	if (unlikely(!vq_is_packed(dev)))
1061 		return -1;
1062 
1063 	if (unlikely(vring_idx >= VHOST_MAX_VRING))
1064 		return -1;
1065 
1066 	vq = dev->virtqueue[vring_idx];
1067 	if (unlikely(!vq))
1068 		return -1;
1069 
1070 	inflight_info = vq->inflight_packed;
1071 	if (unlikely(!inflight_info))
1072 		return -1;
1073 
1074 	if (unlikely(head >= vq->size))
1075 		return -1;
1076 
1077 	desc = vq->desc_packed;
1078 	old_free_head = inflight_info->old_free_head;
1079 	if (unlikely(old_free_head >= vq->size))
1080 		return -1;
1081 
1082 	free_head = old_free_head;
1083 
1084 	/* init header descriptor */
1085 	inflight_info->desc[old_free_head].num = 0;
1086 	inflight_info->desc[old_free_head].counter = vq->global_counter++;
1087 	inflight_info->desc[old_free_head].inflight = 1;
1088 
1089 	/* save desc entry in flight entry */
1090 	while (head != ((last + 1) % vq->size)) {
1091 		inflight_info->desc[old_free_head].num++;
1092 		inflight_info->desc[free_head].addr = desc[head].addr;
1093 		inflight_info->desc[free_head].len = desc[head].len;
1094 		inflight_info->desc[free_head].flags = desc[head].flags;
1095 		inflight_info->desc[free_head].id = desc[head].id;
1096 
1097 		inflight_info->desc[old_free_head].last = free_head;
1098 		free_head = inflight_info->desc[free_head].next;
1099 		inflight_info->free_head = free_head;
1100 		head = (head + 1) % vq->size;
1101 	}
1102 
1103 	inflight_info->old_free_head = free_head;
1104 	*inflight_entry = old_free_head;
1105 
1106 	return 0;
1107 }
1108 
1109 int
1110 rte_vhost_clr_inflight_desc_split(int vid, uint16_t vring_idx,
1111 				  uint16_t last_used_idx, uint16_t idx)
1112 {
1113 	struct virtio_net *dev;
1114 	struct vhost_virtqueue *vq;
1115 
1116 	dev = get_device(vid);
1117 	if (unlikely(!dev))
1118 		return -1;
1119 
1120 	if (unlikely(!(dev->protocol_features &
1121 	    (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))))
1122 		return 0;
1123 
1124 	if (unlikely(vq_is_packed(dev)))
1125 		return -1;
1126 
1127 	if (unlikely(vring_idx >= VHOST_MAX_VRING))
1128 		return -1;
1129 
1130 	vq = dev->virtqueue[vring_idx];
1131 	if (unlikely(!vq))
1132 		return -1;
1133 
1134 	if (unlikely(!vq->inflight_split))
1135 		return -1;
1136 
1137 	if (unlikely(idx >= vq->size))
1138 		return -1;
1139 
1140 	rte_atomic_thread_fence(__ATOMIC_SEQ_CST);
1141 
1142 	vq->inflight_split->desc[idx].inflight = 0;
1143 
1144 	rte_atomic_thread_fence(__ATOMIC_SEQ_CST);
1145 
1146 	vq->inflight_split->used_idx = last_used_idx;
1147 	return 0;
1148 }
1149 
1150 int
1151 rte_vhost_clr_inflight_desc_packed(int vid, uint16_t vring_idx,
1152 				   uint16_t head)
1153 {
1154 	struct rte_vhost_inflight_info_packed *inflight_info;
1155 	struct virtio_net *dev;
1156 	struct vhost_virtqueue *vq;
1157 
1158 	dev = get_device(vid);
1159 	if (unlikely(!dev))
1160 		return -1;
1161 
1162 	if (unlikely(!(dev->protocol_features &
1163 	    (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))))
1164 		return 0;
1165 
1166 	if (unlikely(!vq_is_packed(dev)))
1167 		return -1;
1168 
1169 	if (unlikely(vring_idx >= VHOST_MAX_VRING))
1170 		return -1;
1171 
1172 	vq = dev->virtqueue[vring_idx];
1173 	if (unlikely(!vq))
1174 		return -1;
1175 
1176 	inflight_info = vq->inflight_packed;
1177 	if (unlikely(!inflight_info))
1178 		return -1;
1179 
1180 	if (unlikely(head >= vq->size))
1181 		return -1;
1182 
1183 	rte_atomic_thread_fence(__ATOMIC_SEQ_CST);
1184 
1185 	inflight_info->desc[head].inflight = 0;
1186 
1187 	rte_atomic_thread_fence(__ATOMIC_SEQ_CST);
1188 
1189 	inflight_info->old_free_head = inflight_info->free_head;
1190 	inflight_info->old_used_idx = inflight_info->used_idx;
1191 	inflight_info->old_used_wrap_counter = inflight_info->used_wrap_counter;
1192 
1193 	return 0;
1194 }
1195 
1196 int
1197 rte_vhost_set_last_inflight_io_split(int vid, uint16_t vring_idx,
1198 				     uint16_t idx)
1199 {
1200 	struct virtio_net *dev;
1201 	struct vhost_virtqueue *vq;
1202 
1203 	dev = get_device(vid);
1204 	if (unlikely(!dev))
1205 		return -1;
1206 
1207 	if (unlikely(!(dev->protocol_features &
1208 	    (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))))
1209 		return 0;
1210 
1211 	if (unlikely(vq_is_packed(dev)))
1212 		return -1;
1213 
1214 	if (unlikely(vring_idx >= VHOST_MAX_VRING))
1215 		return -1;
1216 
1217 	vq = dev->virtqueue[vring_idx];
1218 	if (unlikely(!vq))
1219 		return -1;
1220 
1221 	if (unlikely(!vq->inflight_split))
1222 		return -1;
1223 
1224 	if (unlikely(idx >= vq->size))
1225 		return -1;
1226 
1227 	vq->inflight_split->last_inflight_io = idx;
1228 	return 0;
1229 }
1230 
1231 int
1232 rte_vhost_set_last_inflight_io_packed(int vid, uint16_t vring_idx,
1233 				      uint16_t head)
1234 {
1235 	struct rte_vhost_inflight_info_packed *inflight_info;
1236 	struct virtio_net *dev;
1237 	struct vhost_virtqueue *vq;
1238 	uint16_t last;
1239 
1240 	dev = get_device(vid);
1241 	if (unlikely(!dev))
1242 		return -1;
1243 
1244 	if (unlikely(!(dev->protocol_features &
1245 	    (1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))))
1246 		return 0;
1247 
1248 	if (unlikely(!vq_is_packed(dev)))
1249 		return -1;
1250 
1251 	if (unlikely(vring_idx >= VHOST_MAX_VRING))
1252 		return -1;
1253 
1254 	vq = dev->virtqueue[vring_idx];
1255 	if (unlikely(!vq))
1256 		return -1;
1257 
1258 	inflight_info = vq->inflight_packed;
1259 	if (unlikely(!inflight_info))
1260 		return -1;
1261 
1262 	if (unlikely(head >= vq->size))
1263 		return -1;
1264 
1265 	last = inflight_info->desc[head].last;
1266 	if (unlikely(last >= vq->size))
1267 		return -1;
1268 
1269 	inflight_info->desc[last].next = inflight_info->free_head;
1270 	inflight_info->free_head = head;
1271 	inflight_info->used_idx += inflight_info->desc[head].num;
1272 	if (inflight_info->used_idx >= inflight_info->desc_num) {
1273 		inflight_info->used_idx -= inflight_info->desc_num;
1274 		inflight_info->used_wrap_counter =
1275 			!inflight_info->used_wrap_counter;
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 int
1282 rte_vhost_vring_call(int vid, uint16_t vring_idx)
1283 {
1284 	struct virtio_net *dev;
1285 	struct vhost_virtqueue *vq;
1286 
1287 	dev = get_device(vid);
1288 	if (!dev)
1289 		return -1;
1290 
1291 	if (vring_idx >= VHOST_MAX_VRING)
1292 		return -1;
1293 
1294 	vq = dev->virtqueue[vring_idx];
1295 	if (!vq)
1296 		return -1;
1297 
1298 	if (vq_is_packed(dev))
1299 		vhost_vring_call_packed(dev, vq);
1300 	else
1301 		vhost_vring_call_split(dev, vq);
1302 
1303 	return 0;
1304 }
1305 
1306 uint16_t
1307 rte_vhost_avail_entries(int vid, uint16_t queue_id)
1308 {
1309 	struct virtio_net *dev;
1310 	struct vhost_virtqueue *vq;
1311 	uint16_t ret = 0;
1312 
1313 	dev = get_device(vid);
1314 	if (!dev)
1315 		return 0;
1316 
1317 	if (queue_id >= VHOST_MAX_VRING)
1318 		return 0;
1319 
1320 	vq = dev->virtqueue[queue_id];
1321 	if (!vq)
1322 		return 0;
1323 
1324 	rte_spinlock_lock(&vq->access_lock);
1325 
1326 	if (unlikely(!vq->enabled || vq->avail == NULL))
1327 		goto out;
1328 
1329 	ret = *(volatile uint16_t *)&vq->avail->idx - vq->last_used_idx;
1330 
1331 out:
1332 	rte_spinlock_unlock(&vq->access_lock);
1333 	return ret;
1334 }
1335 
1336 static inline int
1337 vhost_enable_notify_split(struct virtio_net *dev,
1338 		struct vhost_virtqueue *vq, int enable)
1339 {
1340 	if (vq->used == NULL)
1341 		return -1;
1342 
1343 	if (!(dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX))) {
1344 		if (enable)
1345 			vq->used->flags &= ~VRING_USED_F_NO_NOTIFY;
1346 		else
1347 			vq->used->flags |= VRING_USED_F_NO_NOTIFY;
1348 	} else {
1349 		if (enable)
1350 			vhost_avail_event(vq) = vq->last_avail_idx;
1351 	}
1352 	return 0;
1353 }
1354 
1355 static inline int
1356 vhost_enable_notify_packed(struct virtio_net *dev,
1357 		struct vhost_virtqueue *vq, int enable)
1358 {
1359 	uint16_t flags;
1360 
1361 	if (vq->device_event == NULL)
1362 		return -1;
1363 
1364 	if (!enable) {
1365 		vq->device_event->flags = VRING_EVENT_F_DISABLE;
1366 		return 0;
1367 	}
1368 
1369 	flags = VRING_EVENT_F_ENABLE;
1370 	if (dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX)) {
1371 		flags = VRING_EVENT_F_DESC;
1372 		vq->device_event->off_wrap = vq->last_avail_idx |
1373 			vq->avail_wrap_counter << 15;
1374 	}
1375 
1376 	rte_atomic_thread_fence(__ATOMIC_RELEASE);
1377 
1378 	vq->device_event->flags = flags;
1379 	return 0;
1380 }
1381 
1382 int
1383 vhost_enable_guest_notification(struct virtio_net *dev,
1384 		struct vhost_virtqueue *vq, int enable)
1385 {
1386 	/*
1387 	 * If the virtqueue is not ready yet, it will be applied
1388 	 * when it will become ready.
1389 	 */
1390 	if (!vq->ready)
1391 		return 0;
1392 
1393 	if (vq_is_packed(dev))
1394 		return vhost_enable_notify_packed(dev, vq, enable);
1395 	else
1396 		return vhost_enable_notify_split(dev, vq, enable);
1397 }
1398 
1399 int
1400 rte_vhost_enable_guest_notification(int vid, uint16_t queue_id, int enable)
1401 {
1402 	struct virtio_net *dev = get_device(vid);
1403 	struct vhost_virtqueue *vq;
1404 	int ret;
1405 
1406 	if (!dev)
1407 		return -1;
1408 
1409 	if (queue_id >= VHOST_MAX_VRING)
1410 		return -1;
1411 
1412 	vq = dev->virtqueue[queue_id];
1413 	if (!vq)
1414 		return -1;
1415 
1416 	rte_spinlock_lock(&vq->access_lock);
1417 
1418 	vq->notif_enable = enable;
1419 	ret = vhost_enable_guest_notification(dev, vq, enable);
1420 
1421 	rte_spinlock_unlock(&vq->access_lock);
1422 
1423 	return ret;
1424 }
1425 
1426 void
1427 rte_vhost_log_write(int vid, uint64_t addr, uint64_t len)
1428 {
1429 	struct virtio_net *dev = get_device(vid);
1430 
1431 	if (dev == NULL)
1432 		return;
1433 
1434 	vhost_log_write(dev, addr, len);
1435 }
1436 
1437 void
1438 rte_vhost_log_used_vring(int vid, uint16_t vring_idx,
1439 			 uint64_t offset, uint64_t len)
1440 {
1441 	struct virtio_net *dev;
1442 	struct vhost_virtqueue *vq;
1443 
1444 	dev = get_device(vid);
1445 	if (dev == NULL)
1446 		return;
1447 
1448 	if (vring_idx >= VHOST_MAX_VRING)
1449 		return;
1450 	vq = dev->virtqueue[vring_idx];
1451 	if (!vq)
1452 		return;
1453 
1454 	vhost_log_used_vring(dev, vq, offset, len);
1455 }
1456 
1457 uint32_t
1458 rte_vhost_rx_queue_count(int vid, uint16_t qid)
1459 {
1460 	struct virtio_net *dev;
1461 	struct vhost_virtqueue *vq;
1462 	uint32_t ret = 0;
1463 
1464 	dev = get_device(vid);
1465 	if (dev == NULL)
1466 		return 0;
1467 
1468 	if (unlikely(qid >= dev->nr_vring || (qid & 1) == 0)) {
1469 		VHOST_LOG_DATA(ERR, "(%s) %s: invalid virtqueue idx %d.\n",
1470 			dev->ifname, __func__, qid);
1471 		return 0;
1472 	}
1473 
1474 	vq = dev->virtqueue[qid];
1475 	if (vq == NULL)
1476 		return 0;
1477 
1478 	rte_spinlock_lock(&vq->access_lock);
1479 
1480 	if (unlikely(!vq->enabled || vq->avail == NULL))
1481 		goto out;
1482 
1483 	ret = *((volatile uint16_t *)&vq->avail->idx) - vq->last_avail_idx;
1484 
1485 out:
1486 	rte_spinlock_unlock(&vq->access_lock);
1487 	return ret;
1488 }
1489 
1490 struct rte_vdpa_device *
1491 rte_vhost_get_vdpa_device(int vid)
1492 {
1493 	struct virtio_net *dev = get_device(vid);
1494 
1495 	if (dev == NULL)
1496 		return NULL;
1497 
1498 	return dev->vdpa_dev;
1499 }
1500 
1501 int
1502 rte_vhost_get_log_base(int vid, uint64_t *log_base,
1503 		uint64_t *log_size)
1504 {
1505 	struct virtio_net *dev = get_device(vid);
1506 
1507 	if (dev == NULL || log_base == NULL || log_size == NULL)
1508 		return -1;
1509 
1510 	*log_base = dev->log_base;
1511 	*log_size = dev->log_size;
1512 
1513 	return 0;
1514 }
1515 
1516 int
1517 rte_vhost_get_vring_base(int vid, uint16_t queue_id,
1518 		uint16_t *last_avail_idx, uint16_t *last_used_idx)
1519 {
1520 	struct vhost_virtqueue *vq;
1521 	struct virtio_net *dev = get_device(vid);
1522 
1523 	if (dev == NULL || last_avail_idx == NULL || last_used_idx == NULL)
1524 		return -1;
1525 
1526 	if (queue_id >= VHOST_MAX_VRING)
1527 		return -1;
1528 
1529 	vq = dev->virtqueue[queue_id];
1530 	if (!vq)
1531 		return -1;
1532 
1533 	if (vq_is_packed(dev)) {
1534 		*last_avail_idx = (vq->avail_wrap_counter << 15) |
1535 				  vq->last_avail_idx;
1536 		*last_used_idx = (vq->used_wrap_counter << 15) |
1537 				 vq->last_used_idx;
1538 	} else {
1539 		*last_avail_idx = vq->last_avail_idx;
1540 		*last_used_idx = vq->last_used_idx;
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 int
1547 rte_vhost_set_vring_base(int vid, uint16_t queue_id,
1548 		uint16_t last_avail_idx, uint16_t last_used_idx)
1549 {
1550 	struct vhost_virtqueue *vq;
1551 	struct virtio_net *dev = get_device(vid);
1552 
1553 	if (!dev)
1554 		return -1;
1555 
1556 	if (queue_id >= VHOST_MAX_VRING)
1557 		return -1;
1558 
1559 	vq = dev->virtqueue[queue_id];
1560 	if (!vq)
1561 		return -1;
1562 
1563 	if (vq_is_packed(dev)) {
1564 		vq->last_avail_idx = last_avail_idx & 0x7fff;
1565 		vq->avail_wrap_counter = !!(last_avail_idx & (1 << 15));
1566 		vq->last_used_idx = last_used_idx & 0x7fff;
1567 		vq->used_wrap_counter = !!(last_used_idx & (1 << 15));
1568 	} else {
1569 		vq->last_avail_idx = last_avail_idx;
1570 		vq->last_used_idx = last_used_idx;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 int
1577 rte_vhost_get_vring_base_from_inflight(int vid,
1578 				       uint16_t queue_id,
1579 				       uint16_t *last_avail_idx,
1580 				       uint16_t *last_used_idx)
1581 {
1582 	struct rte_vhost_inflight_info_packed *inflight_info;
1583 	struct vhost_virtqueue *vq;
1584 	struct virtio_net *dev = get_device(vid);
1585 
1586 	if (dev == NULL || last_avail_idx == NULL || last_used_idx == NULL)
1587 		return -1;
1588 
1589 	if (queue_id >= VHOST_MAX_VRING)
1590 		return -1;
1591 
1592 	vq = dev->virtqueue[queue_id];
1593 	if (!vq)
1594 		return -1;
1595 
1596 	if (!vq_is_packed(dev))
1597 		return -1;
1598 
1599 	inflight_info = vq->inflight_packed;
1600 	if (!inflight_info)
1601 		return -1;
1602 
1603 	*last_avail_idx = (inflight_info->old_used_wrap_counter << 15) |
1604 			  inflight_info->old_used_idx;
1605 	*last_used_idx = *last_avail_idx;
1606 
1607 	return 0;
1608 }
1609 
1610 int
1611 rte_vhost_extern_callback_register(int vid,
1612 		struct rte_vhost_user_extern_ops const * const ops, void *ctx)
1613 {
1614 	struct virtio_net *dev = get_device(vid);
1615 
1616 	if (dev == NULL || ops == NULL)
1617 		return -1;
1618 
1619 	dev->extern_ops = *ops;
1620 	dev->extern_data = ctx;
1621 	return 0;
1622 }
1623 
1624 static __rte_always_inline int
1625 async_channel_register(int vid, uint16_t queue_id)
1626 {
1627 	struct virtio_net *dev = get_device(vid);
1628 	struct vhost_virtqueue *vq = dev->virtqueue[queue_id];
1629 	struct vhost_async *async;
1630 	int node = vq->numa_node;
1631 
1632 	if (unlikely(vq->async)) {
1633 		VHOST_LOG_CONFIG(ERR,
1634 				"(%s) async register failed: already registered (qid: %d)\n",
1635 				dev->ifname, queue_id);
1636 		return -1;
1637 	}
1638 
1639 	async = rte_zmalloc_socket(NULL, sizeof(struct vhost_async), 0, node);
1640 	if (!async) {
1641 		VHOST_LOG_CONFIG(ERR, "(%s) failed to allocate async metadata (qid: %d)\n",
1642 				dev->ifname, queue_id);
1643 		return -1;
1644 	}
1645 
1646 	async->pkts_info = rte_malloc_socket(NULL, vq->size * sizeof(struct async_inflight_info),
1647 			RTE_CACHE_LINE_SIZE, node);
1648 	if (!async->pkts_info) {
1649 		VHOST_LOG_CONFIG(ERR, "(%s) failed to allocate async_pkts_info (qid: %d)\n",
1650 				dev->ifname, queue_id);
1651 		goto out_free_async;
1652 	}
1653 
1654 	async->pkts_cmpl_flag = rte_zmalloc_socket(NULL, vq->size * sizeof(bool),
1655 			RTE_CACHE_LINE_SIZE, node);
1656 	if (!async->pkts_cmpl_flag) {
1657 		VHOST_LOG_CONFIG(ERR, "(%s) failed to allocate async pkts_cmpl_flag (qid: %d)\n",
1658 				dev->ifname, queue_id);
1659 		goto out_free_async;
1660 	}
1661 
1662 	if (vq_is_packed(dev)) {
1663 		async->buffers_packed = rte_malloc_socket(NULL,
1664 				vq->size * sizeof(struct vring_used_elem_packed),
1665 				RTE_CACHE_LINE_SIZE, node);
1666 		if (!async->buffers_packed) {
1667 			VHOST_LOG_CONFIG(ERR, "(%s) failed to allocate async buffers (qid: %d)\n",
1668 					dev->ifname, queue_id);
1669 			goto out_free_inflight;
1670 		}
1671 	} else {
1672 		async->descs_split = rte_malloc_socket(NULL,
1673 				vq->size * sizeof(struct vring_used_elem),
1674 				RTE_CACHE_LINE_SIZE, node);
1675 		if (!async->descs_split) {
1676 			VHOST_LOG_CONFIG(ERR, "(%s) failed to allocate async descs (qid: %d)\n",
1677 					dev->ifname, queue_id);
1678 			goto out_free_inflight;
1679 		}
1680 	}
1681 
1682 	vq->async = async;
1683 
1684 	return 0;
1685 out_free_inflight:
1686 	rte_free(async->pkts_info);
1687 out_free_async:
1688 	rte_free(async);
1689 
1690 	return -1;
1691 }
1692 
1693 int
1694 rte_vhost_async_channel_register(int vid, uint16_t queue_id)
1695 {
1696 	struct vhost_virtqueue *vq;
1697 	struct virtio_net *dev = get_device(vid);
1698 	int ret;
1699 
1700 	if (dev == NULL)
1701 		return -1;
1702 
1703 	if (queue_id >= VHOST_MAX_VRING)
1704 		return -1;
1705 
1706 	vq = dev->virtqueue[queue_id];
1707 
1708 	if (unlikely(vq == NULL || !dev->async_copy))
1709 		return -1;
1710 
1711 	rte_spinlock_lock(&vq->access_lock);
1712 	ret = async_channel_register(vid, queue_id);
1713 	rte_spinlock_unlock(&vq->access_lock);
1714 
1715 	return ret;
1716 }
1717 
1718 int
1719 rte_vhost_async_channel_register_thread_unsafe(int vid, uint16_t queue_id)
1720 {
1721 	struct vhost_virtqueue *vq;
1722 	struct virtio_net *dev = get_device(vid);
1723 
1724 	if (dev == NULL)
1725 		return -1;
1726 
1727 	if (queue_id >= VHOST_MAX_VRING)
1728 		return -1;
1729 
1730 	vq = dev->virtqueue[queue_id];
1731 
1732 	if (unlikely(vq == NULL || !dev->async_copy))
1733 		return -1;
1734 
1735 	return async_channel_register(vid, queue_id);
1736 }
1737 
1738 int
1739 rte_vhost_async_channel_unregister(int vid, uint16_t queue_id)
1740 {
1741 	struct vhost_virtqueue *vq;
1742 	struct virtio_net *dev = get_device(vid);
1743 	int ret = -1;
1744 
1745 	if (dev == NULL)
1746 		return ret;
1747 
1748 	if (queue_id >= VHOST_MAX_VRING)
1749 		return ret;
1750 
1751 	vq = dev->virtqueue[queue_id];
1752 
1753 	if (vq == NULL)
1754 		return ret;
1755 
1756 	ret = 0;
1757 
1758 	if (!vq->async)
1759 		return ret;
1760 
1761 	if (!rte_spinlock_trylock(&vq->access_lock)) {
1762 		VHOST_LOG_CONFIG(ERR, "(%s) failed to unregister async channel, virtqueue busy.\n",
1763 				dev->ifname);
1764 		return -1;
1765 	}
1766 
1767 	if (vq->async->pkts_inflight_n) {
1768 		VHOST_LOG_CONFIG(ERR, "(%s) failed to unregister async channel.\n", dev->ifname);
1769 		VHOST_LOG_CONFIG(ERR, "(%s) inflight packets must be completed before unregistration.\n",
1770 			dev->ifname);
1771 		ret = -1;
1772 		goto out;
1773 	}
1774 
1775 	vhost_free_async_mem(vq);
1776 out:
1777 	rte_spinlock_unlock(&vq->access_lock);
1778 
1779 	return ret;
1780 }
1781 
1782 int
1783 rte_vhost_async_channel_unregister_thread_unsafe(int vid, uint16_t queue_id)
1784 {
1785 	struct vhost_virtqueue *vq;
1786 	struct virtio_net *dev = get_device(vid);
1787 
1788 	if (dev == NULL)
1789 		return -1;
1790 
1791 	if (queue_id >= VHOST_MAX_VRING)
1792 		return -1;
1793 
1794 	vq = dev->virtqueue[queue_id];
1795 
1796 	if (vq == NULL)
1797 		return -1;
1798 
1799 	if (!vq->async)
1800 		return 0;
1801 
1802 	if (vq->async->pkts_inflight_n) {
1803 		VHOST_LOG_CONFIG(ERR, "(%s) failed to unregister async channel.\n", dev->ifname);
1804 		VHOST_LOG_CONFIG(ERR, "(%s) inflight packets must be completed before unregistration.\n",
1805 			dev->ifname);
1806 		return -1;
1807 	}
1808 
1809 	vhost_free_async_mem(vq);
1810 
1811 	return 0;
1812 }
1813 
1814 int
1815 rte_vhost_async_dma_configure(int16_t dma_id, uint16_t vchan_id)
1816 {
1817 	struct rte_dma_info info;
1818 	void *pkts_cmpl_flag_addr;
1819 	uint16_t max_desc;
1820 
1821 	if (!rte_dma_is_valid(dma_id)) {
1822 		VHOST_LOG_CONFIG(ERR, "DMA %d is not found.\n", dma_id);
1823 		return -1;
1824 	}
1825 
1826 	rte_dma_info_get(dma_id, &info);
1827 	if (vchan_id >= info.max_vchans) {
1828 		VHOST_LOG_CONFIG(ERR, "Invalid DMA %d vChannel %u.\n", dma_id, vchan_id);
1829 		return -1;
1830 	}
1831 
1832 	if (!dma_copy_track[dma_id].vchans) {
1833 		struct async_dma_vchan_info *vchans;
1834 
1835 		vchans = rte_zmalloc(NULL, sizeof(struct async_dma_vchan_info) * info.max_vchans,
1836 				RTE_CACHE_LINE_SIZE);
1837 		if (vchans == NULL) {
1838 			VHOST_LOG_CONFIG(ERR, "Failed to allocate vchans for DMA %d vChannel %u.\n",
1839 					dma_id, vchan_id);
1840 			return -1;
1841 		}
1842 
1843 		dma_copy_track[dma_id].vchans = vchans;
1844 	}
1845 
1846 	if (dma_copy_track[dma_id].vchans[vchan_id].pkts_cmpl_flag_addr) {
1847 		VHOST_LOG_CONFIG(INFO, "DMA %d vChannel %u already registered.\n", dma_id,
1848 				vchan_id);
1849 		return 0;
1850 	}
1851 
1852 	max_desc = info.max_desc;
1853 	if (!rte_is_power_of_2(max_desc))
1854 		max_desc = rte_align32pow2(max_desc);
1855 
1856 	pkts_cmpl_flag_addr = rte_zmalloc(NULL, sizeof(bool *) * max_desc, RTE_CACHE_LINE_SIZE);
1857 	if (!pkts_cmpl_flag_addr) {
1858 		VHOST_LOG_CONFIG(ERR, "Failed to allocate pkts_cmpl_flag_addr for DMA %d "
1859 				"vChannel %u.\n", dma_id, vchan_id);
1860 
1861 		if (dma_copy_track[dma_id].nr_vchans == 0) {
1862 			rte_free(dma_copy_track[dma_id].vchans);
1863 			dma_copy_track[dma_id].vchans = NULL;
1864 		}
1865 		return -1;
1866 	}
1867 
1868 	dma_copy_track[dma_id].vchans[vchan_id].pkts_cmpl_flag_addr = pkts_cmpl_flag_addr;
1869 	dma_copy_track[dma_id].vchans[vchan_id].ring_size = max_desc;
1870 	dma_copy_track[dma_id].vchans[vchan_id].ring_mask = max_desc - 1;
1871 	dma_copy_track[dma_id].nr_vchans++;
1872 
1873 	return 0;
1874 }
1875 
1876 int
1877 rte_vhost_async_get_inflight(int vid, uint16_t queue_id)
1878 {
1879 	struct vhost_virtqueue *vq;
1880 	struct virtio_net *dev = get_device(vid);
1881 	int ret = -1;
1882 
1883 	if (dev == NULL)
1884 		return ret;
1885 
1886 	if (queue_id >= VHOST_MAX_VRING)
1887 		return ret;
1888 
1889 	vq = dev->virtqueue[queue_id];
1890 
1891 	if (vq == NULL)
1892 		return ret;
1893 
1894 	if (!vq->async)
1895 		return ret;
1896 
1897 	if (!rte_spinlock_trylock(&vq->access_lock)) {
1898 		VHOST_LOG_CONFIG(DEBUG,
1899 			"(%s) failed to check in-flight packets. virtqueue busy.\n",
1900 			dev->ifname);
1901 		return ret;
1902 	}
1903 
1904 	ret = vq->async->pkts_inflight_n;
1905 	rte_spinlock_unlock(&vq->access_lock);
1906 
1907 	return ret;
1908 }
1909 
1910 int
1911 rte_vhost_get_monitor_addr(int vid, uint16_t queue_id,
1912 		struct rte_vhost_power_monitor_cond *pmc)
1913 {
1914 	struct virtio_net *dev = get_device(vid);
1915 	struct vhost_virtqueue *vq;
1916 
1917 	if (dev == NULL)
1918 		return -1;
1919 	if (queue_id >= VHOST_MAX_VRING)
1920 		return -1;
1921 
1922 	vq = dev->virtqueue[queue_id];
1923 	if (vq == NULL)
1924 		return -1;
1925 
1926 	if (vq_is_packed(dev)) {
1927 		struct vring_packed_desc *desc;
1928 		desc = vq->desc_packed;
1929 		pmc->addr = &desc[vq->last_avail_idx].flags;
1930 		if (vq->avail_wrap_counter)
1931 			pmc->val = VRING_DESC_F_AVAIL;
1932 		else
1933 			pmc->val = VRING_DESC_F_USED;
1934 		pmc->mask = VRING_DESC_F_AVAIL | VRING_DESC_F_USED;
1935 		pmc->size = sizeof(desc[vq->last_avail_idx].flags);
1936 		pmc->match = 1;
1937 	} else {
1938 		pmc->addr = &vq->avail->idx;
1939 		pmc->val = vq->last_avail_idx & (vq->size - 1);
1940 		pmc->mask = vq->size - 1;
1941 		pmc->size = sizeof(vq->avail->idx);
1942 		pmc->match = 0;
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 RTE_LOG_REGISTER_SUFFIX(vhost_config_log_level, config, INFO);
1949 RTE_LOG_REGISTER_SUFFIX(vhost_data_log_level, data, WARNING);
1950