xref: /dpdk/lib/table/rte_table_hash_ext.c (revision 09442498ef736d0a96632cf8b8c15d8ca78a6468)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2017 Intel Corporation
3  */
4 
5 #include <string.h>
6 #include <stdio.h>
7 
8 #include <rte_common.h>
9 #include <rte_malloc.h>
10 #include <rte_log.h>
11 
12 #include "rte_table_hash.h"
13 
14 #define KEYS_PER_BUCKET	4
15 
16 struct bucket {
17 	union {
18 		uintptr_t next;
19 		uint64_t lru_list;
20 	};
21 	uint16_t sig[KEYS_PER_BUCKET];
22 	uint32_t key_pos[KEYS_PER_BUCKET];
23 };
24 
25 #define BUCKET_NEXT(bucket)						\
26 	((void *) ((bucket)->next & (~1LU)))
27 
28 #define BUCKET_NEXT_VALID(bucket)					\
29 	((bucket)->next & 1LU)
30 
31 #define BUCKET_NEXT_SET(bucket, bucket_next)				\
32 do									\
33 	(bucket)->next = (((uintptr_t) ((void *) (bucket_next))) | 1LU);\
34 while (0)
35 
36 #define BUCKET_NEXT_SET_NULL(bucket)					\
37 do									\
38 	(bucket)->next = 0;						\
39 while (0)
40 
41 #define BUCKET_NEXT_COPY(bucket, bucket2)				\
42 do									\
43 	(bucket)->next = (bucket2)->next;				\
44 while (0)
45 
46 #ifdef RTE_TABLE_STATS_COLLECT
47 
48 #define RTE_TABLE_HASH_EXT_STATS_PKTS_IN_ADD(table, val) \
49 	table->stats.n_pkts_in += val
50 #define RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(table, val) \
51 	table->stats.n_pkts_lookup_miss += val
52 
53 #else
54 
55 #define RTE_TABLE_HASH_EXT_STATS_PKTS_IN_ADD(table, val)
56 #define RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(table, val)
57 
58 #endif
59 
60 struct grinder {
61 	struct bucket *bkt;
62 	uint64_t sig;
63 	uint64_t match;
64 	uint32_t key_index;
65 };
66 
67 struct rte_table_hash {
68 	struct rte_table_stats stats;
69 
70 	/* Input parameters */
71 	uint32_t key_size;
72 	uint32_t entry_size;
73 	uint32_t n_keys;
74 	uint32_t n_buckets;
75 	uint32_t n_buckets_ext;
76 	rte_table_hash_op_hash f_hash;
77 	uint64_t seed;
78 	uint32_t key_offset;
79 
80 	/* Internal */
81 	uint64_t bucket_mask;
82 	uint32_t key_size_shl;
83 	uint32_t data_size_shl;
84 	uint32_t key_stack_tos;
85 	uint32_t bkt_ext_stack_tos;
86 
87 	/* Grinder */
88 	struct grinder grinders[RTE_PORT_IN_BURST_SIZE_MAX];
89 
90 	/* Tables */
91 	uint64_t *key_mask;
92 	struct bucket *buckets;
93 	struct bucket *buckets_ext;
94 	uint8_t *key_mem;
95 	uint8_t *data_mem;
96 	uint32_t *key_stack;
97 	uint32_t *bkt_ext_stack;
98 
99 	/* Table memory */
100 	uint8_t memory[0] __rte_cache_aligned;
101 };
102 
103 static int
104 keycmp(void *a, void *b, void *b_mask, uint32_t n_bytes)
105 {
106 	uint64_t *a64 = a, *b64 = b, *b_mask64 = b_mask;
107 	uint32_t i;
108 
109 	for (i = 0; i < n_bytes / sizeof(uint64_t); i++)
110 		if (a64[i] != (b64[i] & b_mask64[i]))
111 			return 1;
112 
113 	return 0;
114 }
115 
116 static void
117 keycpy(void *dst, void *src, void *src_mask, uint32_t n_bytes)
118 {
119 	uint64_t *dst64 = dst, *src64 = src, *src_mask64 = src_mask;
120 	uint32_t i;
121 
122 	for (i = 0; i < n_bytes / sizeof(uint64_t); i++)
123 		dst64[i] = src64[i] & src_mask64[i];
124 }
125 
126 static int
127 check_params_create(struct rte_table_hash_params *params)
128 {
129 	/* name */
130 	if (params->name == NULL) {
131 		RTE_LOG(ERR, TABLE, "%s: name invalid value\n", __func__);
132 		return -EINVAL;
133 	}
134 
135 	/* key_size */
136 	if ((params->key_size < sizeof(uint64_t)) ||
137 		(!rte_is_power_of_2(params->key_size))) {
138 		RTE_LOG(ERR, TABLE, "%s: key_size invalid value\n", __func__);
139 		return -EINVAL;
140 	}
141 
142 	/* n_keys */
143 	if (params->n_keys == 0) {
144 		RTE_LOG(ERR, TABLE, "%s: n_keys invalid value\n", __func__);
145 		return -EINVAL;
146 	}
147 
148 	/* n_buckets */
149 	if ((params->n_buckets == 0) ||
150 		(!rte_is_power_of_2(params->n_buckets))) {
151 		RTE_LOG(ERR, TABLE, "%s: n_buckets invalid value\n", __func__);
152 		return -EINVAL;
153 	}
154 
155 	/* f_hash */
156 	if (params->f_hash == NULL) {
157 		RTE_LOG(ERR, TABLE, "%s: f_hash invalid value\n", __func__);
158 		return -EINVAL;
159 	}
160 
161 	return 0;
162 }
163 
164 static void *
165 rte_table_hash_ext_create(void *params, int socket_id, uint32_t entry_size)
166 {
167 	struct rte_table_hash_params *p = params;
168 	struct rte_table_hash *t;
169 	uint64_t table_meta_sz, key_mask_sz, bucket_sz, bucket_ext_sz, key_sz;
170 	uint64_t key_stack_sz, bkt_ext_stack_sz, data_sz, total_size;
171 	uint64_t key_mask_offset, bucket_offset, bucket_ext_offset, key_offset;
172 	uint64_t key_stack_offset, bkt_ext_stack_offset, data_offset;
173 	uint32_t n_buckets_ext, i;
174 
175 	/* Check input parameters */
176 	if ((check_params_create(p) != 0) ||
177 		(!rte_is_power_of_2(entry_size)) ||
178 		((sizeof(struct rte_table_hash) % RTE_CACHE_LINE_SIZE) != 0) ||
179 		(sizeof(struct bucket) != (RTE_CACHE_LINE_SIZE / 2)))
180 		return NULL;
181 
182 	/*
183 	 * Table dimensioning
184 	 *
185 	 * Objective: Pick the number of bucket extensions (n_buckets_ext) so that
186 	 * it is guaranteed that n_keys keys can be stored in the table at any time.
187 	 *
188 	 * The worst case scenario takes place when all the n_keys keys fall into
189 	 * the same bucket. Actually, due to the KEYS_PER_BUCKET scheme, the worst
190 	 * case takes place when (n_keys - KEYS_PER_BUCKET + 1) keys fall into the
191 	 * same bucket, while the remaining (KEYS_PER_BUCKET - 1) keys each fall
192 	 * into a different bucket. This case defeats the purpose of the hash table.
193 	 * It indicates unsuitable f_hash or n_keys to n_buckets ratio.
194 	 *
195 	 * n_buckets_ext = n_keys / KEYS_PER_BUCKET + KEYS_PER_BUCKET - 1
196 	 */
197 	n_buckets_ext = p->n_keys / KEYS_PER_BUCKET + KEYS_PER_BUCKET - 1;
198 
199 	/* Memory allocation */
200 	table_meta_sz = RTE_CACHE_LINE_ROUNDUP(sizeof(struct rte_table_hash));
201 	key_mask_sz = RTE_CACHE_LINE_ROUNDUP(p->key_size);
202 	bucket_sz = RTE_CACHE_LINE_ROUNDUP(p->n_buckets * sizeof(struct bucket));
203 	bucket_ext_sz =
204 		RTE_CACHE_LINE_ROUNDUP(n_buckets_ext * sizeof(struct bucket));
205 	key_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * p->key_size);
206 	key_stack_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * sizeof(uint32_t));
207 	bkt_ext_stack_sz =
208 		RTE_CACHE_LINE_ROUNDUP(n_buckets_ext * sizeof(uint32_t));
209 	data_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * entry_size);
210 	total_size = table_meta_sz + key_mask_sz + bucket_sz + bucket_ext_sz +
211 		key_sz + key_stack_sz + bkt_ext_stack_sz + data_sz;
212 
213 	if (total_size > SIZE_MAX) {
214 		RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes"
215 			" for hash table %s\n",
216 			__func__, total_size, p->name);
217 		return NULL;
218 	}
219 
220 	t = rte_zmalloc_socket(p->name,
221 		(size_t)total_size,
222 		RTE_CACHE_LINE_SIZE,
223 		socket_id);
224 	if (t == NULL) {
225 		RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes"
226 			" for hash table %s\n",
227 			__func__, total_size, p->name);
228 		return NULL;
229 	}
230 	RTE_LOG(INFO, TABLE, "%s (%u-byte key): Hash table %s memory "
231 		"footprint is %" PRIu64 " bytes\n",
232 		__func__, p->key_size, p->name, total_size);
233 
234 	/* Memory initialization */
235 	t->key_size = p->key_size;
236 	t->entry_size = entry_size;
237 	t->n_keys = p->n_keys;
238 	t->n_buckets = p->n_buckets;
239 	t->n_buckets_ext = n_buckets_ext;
240 	t->f_hash = p->f_hash;
241 	t->seed = p->seed;
242 	t->key_offset = p->key_offset;
243 
244 	/* Internal */
245 	t->bucket_mask = t->n_buckets - 1;
246 	t->key_size_shl = __builtin_ctzl(p->key_size);
247 	t->data_size_shl = __builtin_ctzl(entry_size);
248 
249 	/* Tables */
250 	key_mask_offset = 0;
251 	bucket_offset = key_mask_offset + key_mask_sz;
252 	bucket_ext_offset = bucket_offset + bucket_sz;
253 	key_offset = bucket_ext_offset + bucket_ext_sz;
254 	key_stack_offset = key_offset + key_sz;
255 	bkt_ext_stack_offset = key_stack_offset + key_stack_sz;
256 	data_offset = bkt_ext_stack_offset + bkt_ext_stack_sz;
257 
258 	t->key_mask = (uint64_t *) &t->memory[key_mask_offset];
259 	t->buckets = (struct bucket *) &t->memory[bucket_offset];
260 	t->buckets_ext = (struct bucket *) &t->memory[bucket_ext_offset];
261 	t->key_mem = &t->memory[key_offset];
262 	t->key_stack = (uint32_t *) &t->memory[key_stack_offset];
263 	t->bkt_ext_stack = (uint32_t *) &t->memory[bkt_ext_stack_offset];
264 	t->data_mem = &t->memory[data_offset];
265 
266 	/* Key mask */
267 	if (p->key_mask == NULL)
268 		memset(t->key_mask, 0xFF, p->key_size);
269 	else
270 		memcpy(t->key_mask, p->key_mask, p->key_size);
271 
272 	/* Key stack */
273 	for (i = 0; i < t->n_keys; i++)
274 		t->key_stack[i] = t->n_keys - 1 - i;
275 	t->key_stack_tos = t->n_keys;
276 
277 	/* Bucket ext stack */
278 	for (i = 0; i < t->n_buckets_ext; i++)
279 		t->bkt_ext_stack[i] = t->n_buckets_ext - 1 - i;
280 	t->bkt_ext_stack_tos = t->n_buckets_ext;
281 
282 	return t;
283 }
284 
285 static int
286 rte_table_hash_ext_free(void *table)
287 {
288 	struct rte_table_hash *t = table;
289 
290 	/* Check input parameters */
291 	if (t == NULL)
292 		return -EINVAL;
293 
294 	rte_free(t);
295 	return 0;
296 }
297 
298 static int
299 rte_table_hash_ext_entry_add(void *table, void *key, void *entry,
300 	int *key_found, void **entry_ptr)
301 {
302 	struct rte_table_hash *t = table;
303 	struct bucket *bkt0, *bkt, *bkt_prev;
304 	uint64_t sig;
305 	uint32_t bkt_index, i;
306 
307 	sig = t->f_hash(key, t->key_mask, t->key_size, t->seed);
308 	bkt_index = sig & t->bucket_mask;
309 	bkt0 = &t->buckets[bkt_index];
310 	sig = (sig >> 16) | 1LLU;
311 
312 	/* Key is present in the bucket */
313 	for (bkt = bkt0; bkt != NULL; bkt = BUCKET_NEXT(bkt))
314 		for (i = 0; i < KEYS_PER_BUCKET; i++) {
315 			uint64_t bkt_sig = (uint64_t) bkt->sig[i];
316 			uint32_t bkt_key_index = bkt->key_pos[i];
317 			uint8_t *bkt_key =
318 				&t->key_mem[bkt_key_index << t->key_size_shl];
319 
320 			if ((sig == bkt_sig) && (keycmp(bkt_key, key, t->key_mask,
321 				t->key_size) == 0)) {
322 				uint8_t *data = &t->data_mem[bkt_key_index <<
323 					t->data_size_shl];
324 
325 				memcpy(data, entry, t->entry_size);
326 				*key_found = 1;
327 				*entry_ptr = (void *) data;
328 				return 0;
329 			}
330 		}
331 
332 	/* Key is not present in the bucket */
333 	for (bkt_prev = NULL, bkt = bkt0; bkt != NULL; bkt_prev = bkt,
334 		bkt = BUCKET_NEXT(bkt))
335 		for (i = 0; i < KEYS_PER_BUCKET; i++) {
336 			uint64_t bkt_sig = (uint64_t) bkt->sig[i];
337 
338 			if (bkt_sig == 0) {
339 				uint32_t bkt_key_index;
340 				uint8_t *bkt_key, *data;
341 
342 				/* Allocate new key */
343 				if (t->key_stack_tos == 0) /* No free keys */
344 					return -ENOSPC;
345 
346 				bkt_key_index = t->key_stack[
347 					--t->key_stack_tos];
348 
349 				/* Install new key */
350 				bkt_key = &t->key_mem[bkt_key_index <<
351 					t->key_size_shl];
352 				data = &t->data_mem[bkt_key_index <<
353 					t->data_size_shl];
354 
355 				bkt->sig[i] = (uint16_t) sig;
356 				bkt->key_pos[i] = bkt_key_index;
357 				keycpy(bkt_key, key, t->key_mask, t->key_size);
358 				memcpy(data, entry, t->entry_size);
359 
360 				*key_found = 0;
361 				*entry_ptr = (void *) data;
362 				return 0;
363 			}
364 		}
365 
366 	/* Bucket full: extend bucket */
367 	if ((t->bkt_ext_stack_tos > 0) && (t->key_stack_tos > 0)) {
368 		uint32_t bkt_key_index;
369 		uint8_t *bkt_key, *data;
370 
371 		/* Allocate new bucket ext */
372 		bkt_index = t->bkt_ext_stack[--t->bkt_ext_stack_tos];
373 		bkt = &t->buckets_ext[bkt_index];
374 
375 		/* Chain the new bucket ext */
376 		BUCKET_NEXT_SET(bkt_prev, bkt);
377 		BUCKET_NEXT_SET_NULL(bkt);
378 
379 		/* Allocate new key */
380 		bkt_key_index = t->key_stack[--t->key_stack_tos];
381 		bkt_key = &t->key_mem[bkt_key_index << t->key_size_shl];
382 
383 		data = &t->data_mem[bkt_key_index << t->data_size_shl];
384 
385 		/* Install new key into bucket */
386 		bkt->sig[0] = (uint16_t) sig;
387 		bkt->key_pos[0] = bkt_key_index;
388 		keycpy(bkt_key, key, t->key_mask, t->key_size);
389 		memcpy(data, entry, t->entry_size);
390 
391 		*key_found = 0;
392 		*entry_ptr = (void *) data;
393 		return 0;
394 	}
395 
396 	return -ENOSPC;
397 }
398 
399 static int
400 rte_table_hash_ext_entry_delete(void *table, void *key, int *key_found,
401 void *entry)
402 {
403 	struct rte_table_hash *t = table;
404 	struct bucket *bkt0, *bkt, *bkt_prev;
405 	uint64_t sig;
406 	uint32_t bkt_index, i;
407 
408 	sig = t->f_hash(key, t->key_mask, t->key_size, t->seed);
409 	bkt_index = sig & t->bucket_mask;
410 	bkt0 = &t->buckets[bkt_index];
411 	sig = (sig >> 16) | 1LLU;
412 
413 	/* Key is present in the bucket */
414 	for (bkt_prev = NULL, bkt = bkt0; bkt != NULL; bkt_prev = bkt,
415 		bkt = BUCKET_NEXT(bkt))
416 		for (i = 0; i < KEYS_PER_BUCKET; i++) {
417 			uint64_t bkt_sig = (uint64_t) bkt->sig[i];
418 			uint32_t bkt_key_index = bkt->key_pos[i];
419 			uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
420 				t->key_size_shl];
421 
422 			if ((sig == bkt_sig) && (keycmp(bkt_key, key, t->key_mask,
423 				t->key_size) == 0)) {
424 				uint8_t *data = &t->data_mem[bkt_key_index <<
425 					t->data_size_shl];
426 
427 				/* Uninstall key from bucket */
428 				bkt->sig[i] = 0;
429 				*key_found = 1;
430 				if (entry)
431 					memcpy(entry, data, t->entry_size);
432 
433 				/* Free key */
434 				t->key_stack[t->key_stack_tos++] =
435 					bkt_key_index;
436 
437 				/*Check if bucket is unused */
438 				if ((bkt_prev != NULL) &&
439 				    (bkt->sig[0] == 0) && (bkt->sig[1] == 0) &&
440 				    (bkt->sig[2] == 0) && (bkt->sig[3] == 0)) {
441 					/* Unchain bucket */
442 					BUCKET_NEXT_COPY(bkt_prev, bkt);
443 
444 					/* Clear bucket */
445 					memset(bkt, 0, sizeof(struct bucket));
446 
447 					/* Free bucket back to buckets ext */
448 					bkt_index = bkt - t->buckets_ext;
449 					t->bkt_ext_stack[t->bkt_ext_stack_tos++]
450 						= bkt_index;
451 				}
452 
453 				return 0;
454 			}
455 		}
456 
457 	/* Key is not present in the bucket */
458 	*key_found = 0;
459 	return 0;
460 }
461 
462 static int rte_table_hash_ext_lookup_unoptimized(
463 	void *table,
464 	struct rte_mbuf **pkts,
465 	uint64_t pkts_mask,
466 	uint64_t *lookup_hit_mask,
467 	void **entries)
468 {
469 	struct rte_table_hash *t = (struct rte_table_hash *) table;
470 	uint64_t pkts_mask_out = 0;
471 
472 	__rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask);
473 
474 	for ( ; pkts_mask; ) {
475 		struct bucket *bkt0, *bkt;
476 		struct rte_mbuf *pkt;
477 		uint8_t *key;
478 		uint64_t pkt_mask, sig;
479 		uint32_t pkt_index, bkt_index, i;
480 
481 		pkt_index = __builtin_ctzll(pkts_mask);
482 		pkt_mask = 1LLU << pkt_index;
483 		pkts_mask &= ~pkt_mask;
484 
485 		pkt = pkts[pkt_index];
486 		key = RTE_MBUF_METADATA_UINT8_PTR(pkt, t->key_offset);
487 		sig = (uint64_t) t->f_hash(key, t->key_mask, t->key_size, t->seed);
488 
489 		bkt_index = sig & t->bucket_mask;
490 		bkt0 = &t->buckets[bkt_index];
491 		sig = (sig >> 16) | 1LLU;
492 
493 		/* Key is present in the bucket */
494 		for (bkt = bkt0; bkt != NULL; bkt = BUCKET_NEXT(bkt))
495 			for (i = 0; i < KEYS_PER_BUCKET; i++) {
496 				uint64_t bkt_sig = (uint64_t) bkt->sig[i];
497 				uint32_t bkt_key_index = bkt->key_pos[i];
498 				uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
499 					t->key_size_shl];
500 
501 				if ((sig == bkt_sig) && (keycmp(bkt_key, key,
502 					t->key_mask, t->key_size) == 0)) {
503 					uint8_t *data = &t->data_mem[
504 					bkt_key_index << t->data_size_shl];
505 
506 					pkts_mask_out |= pkt_mask;
507 					entries[pkt_index] = (void *) data;
508 					break;
509 				}
510 			}
511 	}
512 
513 	*lookup_hit_mask = pkts_mask_out;
514 	return 0;
515 }
516 
517 /***
518  *
519  * mask = match bitmask
520  * match = at least one match
521  * match_many = more than one match
522  * match_pos = position of first match
523  *
524  *----------------------------------------
525  * mask		 match	 match_many	  match_pos
526  *----------------------------------------
527  * 0000		 0		 0			  00
528  * 0001		 1		 0			  00
529  * 0010		 1		 0			  01
530  * 0011		 1		 1			  00
531  *----------------------------------------
532  * 0100		 1		 0			  10
533  * 0101		 1		 1			  00
534  * 0110		 1		 1			  01
535  * 0111		 1		 1			  00
536  *----------------------------------------
537  * 1000		 1		 0			  11
538  * 1001		 1		 1			  00
539  * 1010		 1		 1			  01
540  * 1011		 1		 1			  00
541  *----------------------------------------
542  * 1100		 1		 1			  10
543  * 1101		 1		 1			  00
544  * 1110		 1		 1			  01
545  * 1111		 1		 1			  00
546  *----------------------------------------
547  *
548  * match = 1111_1111_1111_1110
549  * match_many = 1111_1110_1110_1000
550  * match_pos = 0001_0010_0001_0011__0001_0010_0001_0000
551  *
552  * match = 0xFFFELLU
553  * match_many = 0xFEE8LLU
554  * match_pos = 0x12131210LLU
555  *
556  ***/
557 
558 #define LUT_MATCH						0xFFFELLU
559 #define LUT_MATCH_MANY						0xFEE8LLU
560 #define LUT_MATCH_POS						0x12131210LLU
561 
562 #define lookup_cmp_sig(mbuf_sig, bucket, match, match_many, match_pos)	\
563 {									\
564 	uint64_t bucket_sig[4], mask[4], mask_all;			\
565 									\
566 	bucket_sig[0] = bucket->sig[0];					\
567 	bucket_sig[1] = bucket->sig[1];					\
568 	bucket_sig[2] = bucket->sig[2];					\
569 	bucket_sig[3] = bucket->sig[3];					\
570 									\
571 	bucket_sig[0] ^= mbuf_sig;					\
572 	bucket_sig[1] ^= mbuf_sig;					\
573 	bucket_sig[2] ^= mbuf_sig;					\
574 	bucket_sig[3] ^= mbuf_sig;					\
575 									\
576 	mask[0] = 0;							\
577 	mask[1] = 0;							\
578 	mask[2] = 0;							\
579 	mask[3] = 0;							\
580 									\
581 	if (bucket_sig[0] == 0)						\
582 		mask[0] = 1;						\
583 	if (bucket_sig[1] == 0)						\
584 		mask[1] = 2;						\
585 	if (bucket_sig[2] == 0)						\
586 		mask[2] = 4;						\
587 	if (bucket_sig[3] == 0)						\
588 		mask[3] = 8;						\
589 									\
590 	mask_all = (mask[0] | mask[1]) | (mask[2] | mask[3]);		\
591 									\
592 	match = (LUT_MATCH >> mask_all) & 1;				\
593 	match_many = (LUT_MATCH_MANY >> mask_all) & 1;			\
594 	match_pos = (LUT_MATCH_POS >> (mask_all << 1)) & 3;		\
595 }
596 
597 #define lookup_cmp_key(mbuf, key, match_key, f)				\
598 {									\
599 	uint64_t *pkt_key = RTE_MBUF_METADATA_UINT64_PTR(mbuf, f->key_offset);\
600 	uint64_t *bkt_key = (uint64_t *) key;				\
601 	uint64_t *key_mask = f->key_mask;					\
602 									\
603 	switch (f->key_size) {						\
604 	case 8:								\
605 	{								\
606 		uint64_t xor = (pkt_key[0] & key_mask[0]) ^ bkt_key[0];	\
607 		match_key = 0;						\
608 		if (xor == 0)						\
609 			match_key = 1;					\
610 	}								\
611 	break;								\
612 									\
613 	case 16:							\
614 	{								\
615 		uint64_t xor[2], or;					\
616 									\
617 		xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0];		\
618 		xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1];		\
619 		or = xor[0] | xor[1];					\
620 		match_key = 0;						\
621 		if (or == 0)						\
622 			match_key = 1;					\
623 	}								\
624 	break;								\
625 									\
626 	case 32:							\
627 	{								\
628 		uint64_t xor[4], or;					\
629 									\
630 		xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0];		\
631 		xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1];		\
632 		xor[2] = (pkt_key[2] & key_mask[2]) ^ bkt_key[2];		\
633 		xor[3] = (pkt_key[3] & key_mask[3]) ^ bkt_key[3];		\
634 		or = xor[0] | xor[1] | xor[2] | xor[3];			\
635 		match_key = 0;						\
636 		if (or == 0)						\
637 			match_key = 1;					\
638 	}								\
639 	break;								\
640 									\
641 	case 64:							\
642 	{								\
643 		uint64_t xor[8], or;					\
644 									\
645 		xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0];		\
646 		xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1];		\
647 		xor[2] = (pkt_key[2] & key_mask[2]) ^ bkt_key[2];		\
648 		xor[3] = (pkt_key[3] & key_mask[3]) ^ bkt_key[3];		\
649 		xor[4] = (pkt_key[4] & key_mask[4]) ^ bkt_key[4];		\
650 		xor[5] = (pkt_key[5] & key_mask[5]) ^ bkt_key[5];		\
651 		xor[6] = (pkt_key[6] & key_mask[6]) ^ bkt_key[6];		\
652 		xor[7] = (pkt_key[7] & key_mask[7]) ^ bkt_key[7];		\
653 		or = xor[0] | xor[1] | xor[2] | xor[3] |		\
654 			xor[4] | xor[5] | xor[6] | xor[7];		\
655 		match_key = 0;						\
656 		if (or == 0)						\
657 			match_key = 1;					\
658 	}								\
659 	break;								\
660 									\
661 	default:							\
662 		match_key = 0;						\
663 		if (keycmp(bkt_key, pkt_key, key_mask, f->key_size) == 0)	\
664 			match_key = 1;					\
665 	}								\
666 }
667 
668 #define lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index)	\
669 {									\
670 	uint64_t pkt00_mask, pkt01_mask;				\
671 	struct rte_mbuf *mbuf00, *mbuf01;				\
672 	uint32_t key_offset = t->key_offset;			\
673 									\
674 	pkt00_index = __builtin_ctzll(pkts_mask);			\
675 	pkt00_mask = 1LLU << pkt00_index;				\
676 	pkts_mask &= ~pkt00_mask;					\
677 	mbuf00 = pkts[pkt00_index];					\
678 									\
679 	pkt01_index = __builtin_ctzll(pkts_mask);			\
680 	pkt01_mask = 1LLU << pkt01_index;				\
681 	pkts_mask &= ~pkt01_mask;					\
682 	mbuf01 = pkts[pkt01_index];					\
683 									\
684 	rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\
685 	rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\
686 }
687 
688 #define lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask, pkt00_index, \
689 	pkt01_index)							\
690 {									\
691 	uint64_t pkt00_mask, pkt01_mask;				\
692 	struct rte_mbuf *mbuf00, *mbuf01;				\
693 	uint32_t key_offset = t->key_offset;			\
694 									\
695 	pkt00_index = __builtin_ctzll(pkts_mask);			\
696 	pkt00_mask = 1LLU << pkt00_index;				\
697 	pkts_mask &= ~pkt00_mask;					\
698 	mbuf00 = pkts[pkt00_index];					\
699 									\
700 	pkt01_index = __builtin_ctzll(pkts_mask);			\
701 	if (pkts_mask == 0)						\
702 		pkt01_index = pkt00_index;				\
703 	pkt01_mask = 1LLU << pkt01_index;				\
704 	pkts_mask &= ~pkt01_mask;					\
705 	mbuf01 = pkts[pkt01_index];					\
706 									\
707 	rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\
708 	rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\
709 }
710 
711 #define lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index)	\
712 {									\
713 	struct grinder *g10, *g11;					\
714 	uint64_t sig10, sig11, bkt10_index, bkt11_index;		\
715 	struct rte_mbuf *mbuf10, *mbuf11;				\
716 	struct bucket *bkt10, *bkt11, *buckets = t->buckets;		\
717 	uint8_t *key10, *key11;						\
718 	uint64_t bucket_mask = t->bucket_mask;				\
719 	rte_table_hash_op_hash f_hash = t->f_hash;			\
720 	uint64_t seed = t->seed;					\
721 	uint32_t key_size = t->key_size;				\
722 	uint32_t key_offset = t->key_offset;				\
723 									\
724 	mbuf10 = pkts[pkt10_index];					\
725 	key10 = RTE_MBUF_METADATA_UINT8_PTR(mbuf10, key_offset);	\
726 	sig10 = (uint64_t) f_hash(key10, t->key_mask, key_size, seed);	\
727 	bkt10_index = sig10 & bucket_mask;				\
728 	bkt10 = &buckets[bkt10_index];					\
729 									\
730 	mbuf11 = pkts[pkt11_index];					\
731 	key11 = RTE_MBUF_METADATA_UINT8_PTR(mbuf11, key_offset);	\
732 	sig11 = (uint64_t) f_hash(key11, t->key_mask, key_size, seed);	\
733 	bkt11_index = sig11 & bucket_mask;				\
734 	bkt11 = &buckets[bkt11_index];					\
735 									\
736 	rte_prefetch0(bkt10);						\
737 	rte_prefetch0(bkt11);						\
738 									\
739 	g10 = &g[pkt10_index];						\
740 	g10->sig = sig10;						\
741 	g10->bkt = bkt10;						\
742 									\
743 	g11 = &g[pkt11_index];						\
744 	g11->sig = sig11;						\
745 	g11->bkt = bkt11;						\
746 }
747 
748 #define lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many)\
749 {									\
750 	struct grinder *g20, *g21;					\
751 	uint64_t sig20, sig21;						\
752 	struct bucket *bkt20, *bkt21;					\
753 	uint8_t *key20, *key21, *key_mem = t->key_mem;			\
754 	uint64_t match20, match21, match_many20, match_many21;		\
755 	uint64_t match_pos20, match_pos21;				\
756 	uint32_t key20_index, key21_index, key_size_shl = t->key_size_shl;\
757 									\
758 	g20 = &g[pkt20_index];						\
759 	sig20 = g20->sig;						\
760 	bkt20 = g20->bkt;						\
761 	sig20 = (sig20 >> 16) | 1LLU;					\
762 	lookup_cmp_sig(sig20, bkt20, match20, match_many20, match_pos20);\
763 	match20 <<= pkt20_index;					\
764 	match_many20 |= BUCKET_NEXT_VALID(bkt20);			\
765 	match_many20 <<= pkt20_index;					\
766 	key20_index = bkt20->key_pos[match_pos20];			\
767 	key20 = &key_mem[key20_index << key_size_shl];			\
768 									\
769 	g21 = &g[pkt21_index];						\
770 	sig21 = g21->sig;						\
771 	bkt21 = g21->bkt;						\
772 	sig21 = (sig21 >> 16) | 1LLU;					\
773 	lookup_cmp_sig(sig21, bkt21, match21, match_many21, match_pos21);\
774 	match21 <<= pkt21_index;					\
775 	match_many21 |= BUCKET_NEXT_VALID(bkt21);			\
776 	match_many21 <<= pkt21_index;					\
777 	key21_index = bkt21->key_pos[match_pos21];			\
778 	key21 = &key_mem[key21_index << key_size_shl];			\
779 									\
780 	rte_prefetch0(key20);						\
781 	rte_prefetch0(key21);						\
782 									\
783 	pkts_mask_match_many |= match_many20 | match_many21;		\
784 									\
785 	g20->match = match20;						\
786 	g20->key_index = key20_index;					\
787 									\
788 	g21->match = match21;						\
789 	g21->key_index = key21_index;					\
790 }
791 
792 #define lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out, \
793 	entries)							\
794 {									\
795 	struct grinder *g30, *g31;					\
796 	struct rte_mbuf *mbuf30, *mbuf31;				\
797 	uint8_t *key30, *key31, *key_mem = t->key_mem;			\
798 	uint8_t *data30, *data31, *data_mem = t->data_mem;		\
799 	uint64_t match30, match31, match_key30, match_key31, match_keys;\
800 	uint32_t key30_index, key31_index;				\
801 	uint32_t key_size_shl = t->key_size_shl;			\
802 	uint32_t data_size_shl = t->data_size_shl;			\
803 									\
804 	mbuf30 = pkts[pkt30_index];					\
805 	g30 = &g[pkt30_index];						\
806 	match30 = g30->match;						\
807 	key30_index = g30->key_index;					\
808 	key30 = &key_mem[key30_index << key_size_shl];			\
809 	lookup_cmp_key(mbuf30, key30, match_key30, t);			\
810 	match_key30 <<= pkt30_index;					\
811 	match_key30 &= match30;						\
812 	data30 = &data_mem[key30_index << data_size_shl];		\
813 	entries[pkt30_index] = data30;					\
814 									\
815 	mbuf31 = pkts[pkt31_index];					\
816 	g31 = &g[pkt31_index];						\
817 	match31 = g31->match;						\
818 	key31_index = g31->key_index;					\
819 	key31 = &key_mem[key31_index << key_size_shl];			\
820 	lookup_cmp_key(mbuf31, key31, match_key31, t);			\
821 	match_key31 <<= pkt31_index;					\
822 	match_key31 &= match31;						\
823 	data31 = &data_mem[key31_index << data_size_shl];		\
824 	entries[pkt31_index] = data31;					\
825 									\
826 	rte_prefetch0(data30);						\
827 	rte_prefetch0(data31);						\
828 									\
829 	match_keys = match_key30 | match_key31;				\
830 	pkts_mask_out |= match_keys;					\
831 }
832 
833 /***
834 * The lookup function implements a 4-stage pipeline, with each stage processing
835 * two different packets. The purpose of pipelined implementation is to hide the
836 * latency of prefetching the data structures and loosen the data dependency
837 * between instructions.
838 *
839 *  p00  _______   p10  _______   p20  _______   p30  _______
840 *----->|       |----->|       |----->|       |----->|       |----->
841 *      |   0   |      |   1   |      |   2   |      |   3   |
842 *----->|_______|----->|_______|----->|_______|----->|_______|----->
843 *  p01            p11            p21            p31
844 *
845 * The naming convention is:
846 *    pXY = packet Y of stage X, X = 0 .. 3, Y = 0 .. 1
847 *
848 ***/
849 static int rte_table_hash_ext_lookup(
850 	void *table,
851 	struct rte_mbuf **pkts,
852 	uint64_t pkts_mask,
853 	uint64_t *lookup_hit_mask,
854 	void **entries)
855 {
856 	struct rte_table_hash *t = (struct rte_table_hash *) table;
857 	struct grinder *g = t->grinders;
858 	uint64_t pkt00_index, pkt01_index, pkt10_index, pkt11_index;
859 	uint64_t pkt20_index, pkt21_index, pkt30_index, pkt31_index;
860 	uint64_t pkts_mask_out = 0, pkts_mask_match_many = 0;
861 	int status = 0;
862 
863 	__rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask);
864 	RTE_TABLE_HASH_EXT_STATS_PKTS_IN_ADD(t, n_pkts_in);
865 
866 	/* Cannot run the pipeline with less than 7 packets */
867 	if (__builtin_popcountll(pkts_mask) < 7) {
868 		status = rte_table_hash_ext_lookup_unoptimized(table, pkts,
869 			pkts_mask, lookup_hit_mask, entries);
870 		RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in -
871 				__builtin_popcountll(*lookup_hit_mask));
872 		return status;
873 	}
874 
875 	/* Pipeline stage 0 */
876 	lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);
877 
878 	/* Pipeline feed */
879 	pkt10_index = pkt00_index;
880 	pkt11_index = pkt01_index;
881 
882 	/* Pipeline stage 0 */
883 	lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);
884 
885 	/* Pipeline stage 1 */
886 	lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
887 
888 	/* Pipeline feed */
889 	pkt20_index = pkt10_index;
890 	pkt21_index = pkt11_index;
891 	pkt10_index = pkt00_index;
892 	pkt11_index = pkt01_index;
893 
894 	/* Pipeline stage 0 */
895 	lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);
896 
897 	/* Pipeline stage 1 */
898 	lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
899 
900 	/* Pipeline stage 2 */
901 	lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);
902 
903 	/*
904 	* Pipeline run
905 	*
906 	*/
907 	for ( ; pkts_mask; ) {
908 		/* Pipeline feed */
909 		pkt30_index = pkt20_index;
910 		pkt31_index = pkt21_index;
911 		pkt20_index = pkt10_index;
912 		pkt21_index = pkt11_index;
913 		pkt10_index = pkt00_index;
914 		pkt11_index = pkt01_index;
915 
916 		/* Pipeline stage 0 */
917 		lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask,
918 			pkt00_index, pkt01_index);
919 
920 		/* Pipeline stage 1 */
921 		lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
922 
923 		/* Pipeline stage 2 */
924 		lookup2_stage2(t, g, pkt20_index, pkt21_index,
925 			pkts_mask_match_many);
926 
927 		/* Pipeline stage 3 */
928 		lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index,
929 			pkts_mask_out, entries);
930 	}
931 
932 	/* Pipeline feed */
933 	pkt30_index = pkt20_index;
934 	pkt31_index = pkt21_index;
935 	pkt20_index = pkt10_index;
936 	pkt21_index = pkt11_index;
937 	pkt10_index = pkt00_index;
938 	pkt11_index = pkt01_index;
939 
940 	/* Pipeline stage 1 */
941 	lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
942 
943 	/* Pipeline stage 2 */
944 	lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);
945 
946 	/* Pipeline stage 3 */
947 	lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
948 		entries);
949 
950 	/* Pipeline feed */
951 	pkt30_index = pkt20_index;
952 	pkt31_index = pkt21_index;
953 	pkt20_index = pkt10_index;
954 	pkt21_index = pkt11_index;
955 
956 	/* Pipeline stage 2 */
957 	lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);
958 
959 	/* Pipeline stage 3 */
960 	lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
961 		entries);
962 
963 	/* Pipeline feed */
964 	pkt30_index = pkt20_index;
965 	pkt31_index = pkt21_index;
966 
967 	/* Pipeline stage 3 */
968 	lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
969 		entries);
970 
971 	/* Slow path */
972 	pkts_mask_match_many &= ~pkts_mask_out;
973 	if (pkts_mask_match_many) {
974 		uint64_t pkts_mask_out_slow = 0;
975 
976 		status = rte_table_hash_ext_lookup_unoptimized(table, pkts,
977 			pkts_mask_match_many, &pkts_mask_out_slow, entries);
978 		pkts_mask_out |= pkts_mask_out_slow;
979 	}
980 
981 	*lookup_hit_mask = pkts_mask_out;
982 	RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in - __builtin_popcountll(pkts_mask_out));
983 	return status;
984 }
985 
986 static int
987 rte_table_hash_ext_stats_read(void *table, struct rte_table_stats *stats, int clear)
988 {
989 	struct rte_table_hash *t = table;
990 
991 	if (stats != NULL)
992 		memcpy(stats, &t->stats, sizeof(t->stats));
993 
994 	if (clear)
995 		memset(&t->stats, 0, sizeof(t->stats));
996 
997 	return 0;
998 }
999 
1000 struct rte_table_ops rte_table_hash_ext_ops	 = {
1001 	.f_create = rte_table_hash_ext_create,
1002 	.f_free = rte_table_hash_ext_free,
1003 	.f_add = rte_table_hash_ext_entry_add,
1004 	.f_delete = rte_table_hash_ext_entry_delete,
1005 	.f_add_bulk = NULL,
1006 	.f_delete_bulk = NULL,
1007 	.f_lookup = rte_table_hash_ext_lookup,
1008 	.f_stats = rte_table_hash_ext_stats_read,
1009 };
1010