1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2017,2019-2020 NXP 3 * Copyright(c) 2017-2020 Intel Corporation. 4 */ 5 6 #ifndef _RTE_SECURITY_H_ 7 #define _RTE_SECURITY_H_ 8 9 /** 10 * @file rte_security.h 11 * 12 * RTE Security Common Definitions 13 * 14 */ 15 16 #ifdef __cplusplus 17 extern "C" { 18 #endif 19 20 #include <sys/types.h> 21 22 #include <rte_compat.h> 23 #include <rte_common.h> 24 #include <rte_crypto.h> 25 #include <rte_ip.h> 26 #include <rte_mbuf.h> 27 #include <rte_mbuf_dyn.h> 28 #include <rte_memory.h> 29 #include <rte_mempool.h> 30 31 /** IPSec protocol mode */ 32 enum rte_security_ipsec_sa_mode { 33 RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT = 1, 34 /**< IPSec Transport mode */ 35 RTE_SECURITY_IPSEC_SA_MODE_TUNNEL, 36 /**< IPSec Tunnel mode */ 37 }; 38 39 /** IPSec Protocol */ 40 enum rte_security_ipsec_sa_protocol { 41 RTE_SECURITY_IPSEC_SA_PROTO_AH = 1, 42 /**< AH protocol */ 43 RTE_SECURITY_IPSEC_SA_PROTO_ESP, 44 /**< ESP protocol */ 45 }; 46 47 /** IPSEC tunnel type */ 48 enum rte_security_ipsec_tunnel_type { 49 RTE_SECURITY_IPSEC_TUNNEL_IPV4 = 1, 50 /**< Outer header is IPv4 */ 51 RTE_SECURITY_IPSEC_TUNNEL_IPV6, 52 /**< Outer header is IPv6 */ 53 }; 54 55 /** 56 * IPSEC tunnel header verification mode 57 * 58 * Controls how outer IP header is verified in inbound. 59 */ 60 #define RTE_SECURITY_IPSEC_TUNNEL_VERIFY_DST_ADDR 0x1 61 #define RTE_SECURITY_IPSEC_TUNNEL_VERIFY_SRC_DST_ADDR 0x2 62 63 /** 64 * Security context for crypto/eth devices 65 * 66 * Security instance for each driver to register security operations. 67 * The application can get the security context from the crypto/eth device id 68 * using the APIs rte_cryptodev_get_sec_ctx()/rte_eth_dev_get_sec_ctx() 69 * This structure is used to identify the device(crypto/eth) for which the 70 * security operations need to be performed. 71 */ 72 struct rte_security_ctx { 73 void *device; 74 /**< Crypto/ethernet device attached */ 75 const struct rte_security_ops *ops; 76 /**< Pointer to security ops for the device */ 77 uint16_t sess_cnt; 78 /**< Number of sessions attached to this context */ 79 uint32_t flags; 80 /**< Flags for security context */ 81 }; 82 83 #define RTE_SEC_CTX_F_FAST_SET_MDATA 0x00000001 84 /**< Driver uses fast metadata update without using driver specific callback */ 85 86 #define RTE_SEC_CTX_F_FAST_GET_UDATA 0x00000002 87 /**< Driver provides udata using fast method without using driver specific 88 * callback. For fast mdata and udata, mbuf dynamic field would be registered 89 * by driver via rte_security_dynfield_register(). 90 */ 91 92 /** 93 * IPSEC tunnel parameters 94 * 95 * These parameters are used to build outbound tunnel headers. 96 */ 97 struct rte_security_ipsec_tunnel_param { 98 enum rte_security_ipsec_tunnel_type type; 99 /**< Tunnel type: IPv4 or IPv6 */ 100 RTE_STD_C11 101 union { 102 struct { 103 struct in_addr src_ip; 104 /**< IPv4 source address */ 105 struct in_addr dst_ip; 106 /**< IPv4 destination address */ 107 uint8_t dscp; 108 /**< IPv4 Differentiated Services Code Point */ 109 uint8_t df; 110 /**< IPv4 Don't Fragment bit */ 111 uint8_t ttl; 112 /**< IPv4 Time To Live */ 113 } ipv4; 114 /**< IPv4 header parameters */ 115 struct { 116 struct in6_addr src_addr; 117 /**< IPv6 source address */ 118 struct in6_addr dst_addr; 119 /**< IPv6 destination address */ 120 uint8_t dscp; 121 /**< IPv6 Differentiated Services Code Point */ 122 uint32_t flabel; 123 /**< IPv6 flow label */ 124 uint8_t hlimit; 125 /**< IPv6 hop limit */ 126 } ipv6; 127 /**< IPv6 header parameters */ 128 }; 129 }; 130 131 struct rte_security_ipsec_udp_param { 132 uint16_t sport; 133 uint16_t dport; 134 }; 135 136 /** 137 * IPsec Security Association option flags 138 */ 139 struct rte_security_ipsec_sa_options { 140 /** Extended Sequence Numbers (ESN) 141 * 142 * * 1: Use extended (64 bit) sequence numbers 143 * * 0: Use normal sequence numbers 144 */ 145 uint32_t esn : 1; 146 147 /** UDP encapsulation 148 * 149 * * 1: Do UDP encapsulation/decapsulation so that IPSEC packets can 150 * traverse through NAT boxes. 151 * * 0: No UDP encapsulation 152 */ 153 uint32_t udp_encap : 1; 154 155 /** Copy DSCP bits 156 * 157 * * 1: Copy IPv4 or IPv6 DSCP bits from inner IP header to 158 * the outer IP header in encapsulation, and vice versa in 159 * decapsulation. 160 * * 0: Do not change DSCP field. 161 */ 162 uint32_t copy_dscp : 1; 163 164 /** Copy IPv6 Flow Label 165 * 166 * * 1: Copy IPv6 flow label from inner IPv6 header to the 167 * outer IPv6 header. 168 * * 0: Outer header is not modified. 169 */ 170 uint32_t copy_flabel : 1; 171 172 /** Copy IPv4 Don't Fragment bit 173 * 174 * * 1: Copy the DF bit from the inner IPv4 header to the outer 175 * IPv4 header. 176 * * 0: Outer header is not modified. 177 */ 178 uint32_t copy_df : 1; 179 180 /** Decrement inner packet Time To Live (TTL) field 181 * 182 * * 1: In tunnel mode, decrement inner packet IPv4 TTL or 183 * IPv6 Hop Limit after tunnel decapsulation, or before tunnel 184 * encapsulation. 185 * * 0: Inner packet is not modified. 186 */ 187 uint32_t dec_ttl : 1; 188 189 /** Explicit Congestion Notification (ECN) 190 * 191 * * 1: In tunnel mode, enable outer header ECN Field copied from 192 * inner header in tunnel encapsulation, or inner header ECN 193 * field construction in decapsulation. 194 * * 0: Inner/outer header are not modified. 195 */ 196 uint32_t ecn : 1; 197 198 /** Security statistics 199 * 200 * * 1: Enable per session security statistics collection for 201 * this SA, if supported by the driver. 202 * * 0: Disable per session security statistics collection for this SA. 203 */ 204 uint32_t stats : 1; 205 206 /** Disable IV generation in PMD 207 * 208 * * 1: Disable IV generation in PMD. When disabled, IV provided in 209 * rte_crypto_op will be used by the PMD. 210 * 211 * * 0: Enable IV generation in PMD. When enabled, PMD generated random 212 * value would be used and application is not required to provide 213 * IV. 214 * 215 * Note: For inline cases, IV generation would always need to be handled 216 * by the PMD. 217 */ 218 uint32_t iv_gen_disable : 1; 219 220 /** Verify tunnel header in inbound 221 * * ``RTE_SECURITY_IPSEC_TUNNEL_VERIFY_DST_ADDR``: Verify destination 222 * IP address. 223 * 224 * * ``RTE_SECURITY_IPSEC_TUNNEL_VERIFY_SRC_DST_ADDR``: Verify both 225 * source and destination IP addresses. 226 */ 227 uint32_t tunnel_hdr_verify : 2; 228 229 /** Verify UDP encapsulation ports in inbound 230 * 231 * * 1: Match UDP source and destination ports 232 * * 0: Do not match UDP ports 233 */ 234 uint32_t udp_ports_verify : 1; 235 236 /** Compute/verify inner packet IPv4 header checksum in tunnel mode 237 * 238 * * 1: For outbound, compute inner packet IPv4 header checksum 239 * before tunnel encapsulation and for inbound, verify after 240 * tunnel decapsulation. 241 * * 0: Inner packet IP header checksum is not computed/verified. 242 * 243 * The checksum verification status would be set in mbuf using 244 * RTE_MBUF_F_RX_IP_CKSUM_xxx flags. 245 * 246 * Inner IP checksum computation can also be enabled(per operation) 247 * by setting the flag RTE_MBUF_F_TX_IP_CKSUM in mbuf. 248 */ 249 uint32_t ip_csum_enable : 1; 250 251 /** Compute/verify inner packet L4 checksum in tunnel mode 252 * 253 * * 1: For outbound, compute inner packet L4 checksum before 254 * tunnel encapsulation and for inbound, verify after 255 * tunnel decapsulation. 256 * * 0: Inner packet L4 checksum is not computed/verified. 257 * 258 * The checksum verification status would be set in mbuf using 259 * RTE_MBUF_F_RX_L4_CKSUM_xxx flags. 260 * 261 * Inner L4 checksum computation can also be enabled(per operation) 262 * by setting the flags RTE_MBUF_F_TX_TCP_CKSUM or RTE_MBUF_F_TX_SCTP_CKSUM or 263 * RTE_MBUF_F_TX_UDP_CKSUM or RTE_MBUF_F_TX_L4_MASK in mbuf. 264 */ 265 uint32_t l4_csum_enable : 1; 266 267 /** Reserved bit fields for future extension 268 * 269 * User should ensure reserved_opts is cleared as it may change in 270 * subsequent releases to support new options. 271 * 272 * Note: Reduce number of bits in reserved_opts for every new option. 273 */ 274 uint32_t reserved_opts : 18; 275 }; 276 277 /** IPSec security association direction */ 278 enum rte_security_ipsec_sa_direction { 279 RTE_SECURITY_IPSEC_SA_DIR_EGRESS, 280 /**< Encrypt and generate digest */ 281 RTE_SECURITY_IPSEC_SA_DIR_INGRESS, 282 /**< Verify digest and decrypt */ 283 }; 284 285 /** 286 * Configure soft and hard lifetime of an IPsec SA 287 * 288 * Lifetime of an IPsec SA would specify the maximum number of packets or bytes 289 * that can be processed. IPsec operations would start failing once any hard 290 * limit is reached. 291 * 292 * Soft limits can be specified to generate notification when the SA is 293 * approaching hard limits for lifetime. For inline operations, reaching soft 294 * expiry limit would result in raising an eth event for the same. For lookaside 295 * operations, this would result in a warning returned in 296 * ``rte_crypto_op.aux_flags``. 297 */ 298 struct rte_security_ipsec_lifetime { 299 uint64_t packets_soft_limit; 300 /**< Soft expiry limit in number of packets */ 301 uint64_t bytes_soft_limit; 302 /**< Soft expiry limit in bytes */ 303 uint64_t packets_hard_limit; 304 /**< Soft expiry limit in number of packets */ 305 uint64_t bytes_hard_limit; 306 /**< Soft expiry limit in bytes */ 307 }; 308 309 /** 310 * IPsec security association configuration data. 311 * 312 * This structure contains data required to create an IPsec SA security session. 313 */ 314 struct rte_security_ipsec_xform { 315 uint32_t spi; 316 /**< SA security parameter index */ 317 uint32_t salt; 318 /**< SA salt */ 319 struct rte_security_ipsec_sa_options options; 320 /**< various SA options */ 321 enum rte_security_ipsec_sa_direction direction; 322 /**< IPSec SA Direction - Egress/Ingress */ 323 enum rte_security_ipsec_sa_protocol proto; 324 /**< IPsec SA Protocol - AH/ESP */ 325 enum rte_security_ipsec_sa_mode mode; 326 /**< IPsec SA Mode - transport/tunnel */ 327 struct rte_security_ipsec_tunnel_param tunnel; 328 /**< Tunnel parameters, NULL for transport mode */ 329 struct rte_security_ipsec_lifetime life; 330 /**< IPsec SA lifetime */ 331 uint32_t replay_win_sz; 332 /**< Anti replay window size to enable sequence replay attack handling. 333 * replay checking is disabled if the window size is 0. 334 */ 335 union { 336 uint64_t value; 337 struct { 338 uint32_t low; 339 uint32_t hi; 340 }; 341 } esn; 342 /**< Extended Sequence Number */ 343 struct rte_security_ipsec_udp_param udp; 344 /**< UDP parameters, ignored when udp_encap option not specified */ 345 }; 346 347 /** 348 * MACsec security session configuration 349 */ 350 struct rte_security_macsec_xform { 351 /** To be Filled */ 352 int dummy; 353 }; 354 355 /** 356 * PDCP Mode of session 357 */ 358 enum rte_security_pdcp_domain { 359 RTE_SECURITY_PDCP_MODE_CONTROL, /**< PDCP control plane */ 360 RTE_SECURITY_PDCP_MODE_DATA, /**< PDCP data plane */ 361 RTE_SECURITY_PDCP_MODE_SHORT_MAC, /**< PDCP short mac */ 362 }; 363 364 /** PDCP Frame direction */ 365 enum rte_security_pdcp_direction { 366 RTE_SECURITY_PDCP_UPLINK, /**< Uplink */ 367 RTE_SECURITY_PDCP_DOWNLINK, /**< Downlink */ 368 }; 369 370 /** PDCP Sequence Number Size selectors */ 371 enum rte_security_pdcp_sn_size { 372 /** PDCP_SN_SIZE_5: 5bit sequence number */ 373 RTE_SECURITY_PDCP_SN_SIZE_5 = 5, 374 /** PDCP_SN_SIZE_7: 7bit sequence number */ 375 RTE_SECURITY_PDCP_SN_SIZE_7 = 7, 376 /** PDCP_SN_SIZE_12: 12bit sequence number */ 377 RTE_SECURITY_PDCP_SN_SIZE_12 = 12, 378 /** PDCP_SN_SIZE_15: 15bit sequence number */ 379 RTE_SECURITY_PDCP_SN_SIZE_15 = 15, 380 /** PDCP_SN_SIZE_18: 18bit sequence number */ 381 RTE_SECURITY_PDCP_SN_SIZE_18 = 18 382 }; 383 384 /** 385 * PDCP security association configuration data. 386 * 387 * This structure contains data required to create a PDCP security session. 388 */ 389 struct rte_security_pdcp_xform { 390 int8_t bearer; /**< PDCP bearer ID */ 391 /** Enable in order delivery, this field shall be set only if 392 * driver/HW is capable. See RTE_SECURITY_PDCP_ORDERING_CAP. 393 */ 394 uint8_t en_ordering; 395 /** Notify driver/HW to detect and remove duplicate packets. 396 * This field should be set only when driver/hw is capable. 397 * See RTE_SECURITY_PDCP_DUP_DETECT_CAP. 398 */ 399 uint8_t remove_duplicates; 400 /** PDCP mode of operation: Control or data */ 401 enum rte_security_pdcp_domain domain; 402 /** PDCP Frame Direction 0:UL 1:DL */ 403 enum rte_security_pdcp_direction pkt_dir; 404 /** Sequence number size, 5/7/12/15/18 */ 405 enum rte_security_pdcp_sn_size sn_size; 406 /** Starting Hyper Frame Number to be used together with the SN 407 * from the PDCP frames 408 */ 409 uint32_t hfn; 410 /** HFN Threshold for key renegotiation */ 411 uint32_t hfn_threshold; 412 /** HFN can be given as a per packet value also. 413 * As we do not have IV in case of PDCP, and HFN is 414 * used to generate IV. IV field can be used to get the 415 * per packet HFN while enq/deq. 416 * If hfn_ovrd field is set, user is expected to set the 417 * per packet HFN in place of IV. PMDs will extract the HFN 418 * and perform operations accordingly. 419 */ 420 uint8_t hfn_ovrd; 421 /** In case of 5G NR, a new protocol (SDAP) header may be set 422 * inside PDCP payload which should be authenticated but not 423 * encrypted. Hence, driver should be notified if SDAP is 424 * enabled or not, so that SDAP header is not encrypted. 425 */ 426 uint8_t sdap_enabled; 427 /** Reserved for future */ 428 uint16_t reserved; 429 }; 430 431 /** DOCSIS direction */ 432 enum rte_security_docsis_direction { 433 RTE_SECURITY_DOCSIS_UPLINK, 434 /**< Uplink 435 * - Decryption, followed by CRC Verification 436 */ 437 RTE_SECURITY_DOCSIS_DOWNLINK, 438 /**< Downlink 439 * - CRC Generation, followed by Encryption 440 */ 441 }; 442 443 /** 444 * DOCSIS security session configuration. 445 * 446 * This structure contains data required to create a DOCSIS security session. 447 */ 448 struct rte_security_docsis_xform { 449 enum rte_security_docsis_direction direction; 450 /**< DOCSIS direction */ 451 }; 452 453 /** 454 * Security session action type. 455 */ 456 enum rte_security_session_action_type { 457 RTE_SECURITY_ACTION_TYPE_NONE, 458 /**< No security actions */ 459 RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO, 460 /**< Crypto processing for security protocol is processed inline 461 * during transmission 462 */ 463 RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL, 464 /**< All security protocol processing is performed inline during 465 * transmission 466 */ 467 RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL, 468 /**< All security protocol processing including crypto is performed 469 * on a lookaside accelerator 470 */ 471 RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO 472 /**< Similar to ACTION_TYPE_NONE but crypto processing for security 473 * protocol is processed synchronously by a CPU. 474 */ 475 }; 476 477 /** Security session protocol definition */ 478 enum rte_security_session_protocol { 479 RTE_SECURITY_PROTOCOL_IPSEC = 1, 480 /**< IPsec Protocol */ 481 RTE_SECURITY_PROTOCOL_MACSEC, 482 /**< MACSec Protocol */ 483 RTE_SECURITY_PROTOCOL_PDCP, 484 /**< PDCP Protocol */ 485 RTE_SECURITY_PROTOCOL_DOCSIS, 486 /**< DOCSIS Protocol */ 487 }; 488 489 /** 490 * Security session configuration 491 */ 492 struct rte_security_session_conf { 493 enum rte_security_session_action_type action_type; 494 /**< Type of action to be performed on the session */ 495 enum rte_security_session_protocol protocol; 496 /**< Security protocol to be configured */ 497 RTE_STD_C11 498 union { 499 struct rte_security_ipsec_xform ipsec; 500 struct rte_security_macsec_xform macsec; 501 struct rte_security_pdcp_xform pdcp; 502 struct rte_security_docsis_xform docsis; 503 }; 504 /**< Configuration parameters for security session */ 505 struct rte_crypto_sym_xform *crypto_xform; 506 /**< Security Session Crypto Transformations */ 507 void *userdata; 508 /**< Application specific userdata to be saved with session */ 509 }; 510 511 struct rte_security_session { 512 void *sess_private_data; 513 /**< Private session material */ 514 uint64_t opaque_data; 515 /**< Opaque user defined data */ 516 }; 517 518 /** 519 * Create security session as specified by the session configuration 520 * 521 * @param instance security instance 522 * @param conf session configuration parameters 523 * @param mp mempool to allocate session objects from 524 * @param priv_mp mempool to allocate session private data objects from 525 * @return 526 * - On success, pointer to session 527 * - On failure, NULL 528 */ 529 struct rte_security_session * 530 rte_security_session_create(struct rte_security_ctx *instance, 531 struct rte_security_session_conf *conf, 532 struct rte_mempool *mp, 533 struct rte_mempool *priv_mp); 534 535 /** 536 * Update security session as specified by the session configuration 537 * 538 * @param instance security instance 539 * @param sess session to update parameters 540 * @param conf update configuration parameters 541 * @return 542 * - On success returns 0 543 * - On failure returns a negative errno value. 544 */ 545 __rte_experimental 546 int 547 rte_security_session_update(struct rte_security_ctx *instance, 548 struct rte_security_session *sess, 549 struct rte_security_session_conf *conf); 550 551 /** 552 * Get the size of the security session data for a device. 553 * 554 * @param instance security instance. 555 * 556 * @return 557 * - Size of the private data, if successful 558 * - 0 if device is invalid or does not support the operation. 559 */ 560 unsigned int 561 rte_security_session_get_size(struct rte_security_ctx *instance); 562 563 /** 564 * Free security session header and the session private data and 565 * return it to its original mempool. 566 * 567 * @param instance security instance 568 * @param sess security session to be freed 569 * 570 * @return 571 * - 0 if successful. 572 * - -EINVAL if session or context instance is NULL. 573 * - -EBUSY if not all device private data has been freed. 574 * - -ENOTSUP if destroying private data is not supported. 575 * - other negative values in case of freeing private data errors. 576 */ 577 int 578 rte_security_session_destroy(struct rte_security_ctx *instance, 579 struct rte_security_session *sess); 580 581 /** Device-specific metadata field type */ 582 typedef uint64_t rte_security_dynfield_t; 583 /** Dynamic mbuf field for device-specific metadata */ 584 extern int rte_security_dynfield_offset; 585 586 /** 587 * @warning 588 * @b EXPERIMENTAL: this API may change without prior notice 589 * 590 * Get pointer to mbuf field for device-specific metadata. 591 * 592 * For performance reason, no check is done, 593 * the dynamic field may not be registered. 594 * @see rte_security_dynfield_is_registered 595 * 596 * @param mbuf packet to access 597 * @return pointer to mbuf field 598 */ 599 __rte_experimental 600 static inline rte_security_dynfield_t * 601 rte_security_dynfield(struct rte_mbuf *mbuf) 602 { 603 return RTE_MBUF_DYNFIELD(mbuf, 604 rte_security_dynfield_offset, 605 rte_security_dynfield_t *); 606 } 607 608 /** 609 * @warning 610 * @b EXPERIMENTAL: this API may change without prior notice 611 * 612 * Check whether the dynamic field is registered. 613 * 614 * @return true if rte_security_dynfield_register() has been called. 615 */ 616 __rte_experimental 617 static inline bool rte_security_dynfield_is_registered(void) 618 { 619 return rte_security_dynfield_offset >= 0; 620 } 621 622 /** Function to call PMD specific function pointer set_pkt_metadata() */ 623 __rte_experimental 624 extern int __rte_security_set_pkt_metadata(struct rte_security_ctx *instance, 625 struct rte_security_session *sess, 626 struct rte_mbuf *m, void *params); 627 628 /** 629 * Updates the buffer with device-specific defined metadata 630 * 631 * @param instance security instance 632 * @param sess security session 633 * @param mb packet mbuf to set metadata on. 634 * @param params device-specific defined parameters 635 * required for metadata 636 * 637 * @return 638 * - On success, zero. 639 * - On failure, a negative value. 640 */ 641 static inline int 642 rte_security_set_pkt_metadata(struct rte_security_ctx *instance, 643 struct rte_security_session *sess, 644 struct rte_mbuf *mb, void *params) 645 { 646 /* Fast Path */ 647 if (instance->flags & RTE_SEC_CTX_F_FAST_SET_MDATA) { 648 *rte_security_dynfield(mb) = 649 (rte_security_dynfield_t)(sess->sess_private_data); 650 return 0; 651 } 652 653 /* Jump to PMD specific function pointer */ 654 return __rte_security_set_pkt_metadata(instance, sess, mb, params); 655 } 656 657 /** Function to call PMD specific function pointer get_userdata() */ 658 __rte_experimental 659 extern void *__rte_security_get_userdata(struct rte_security_ctx *instance, 660 uint64_t md); 661 662 /** 663 * Get userdata associated with the security session. Device specific metadata 664 * provided would be used to uniquely identify the security session being 665 * referred to. This userdata would be registered while creating the session, 666 * and application can use this to identify the SA etc. 667 * 668 * Device specific metadata would be set in mbuf for inline processed inbound 669 * packets. In addition, the same metadata would be set for IPsec events 670 * reported by rte_eth_event framework. 671 * 672 * @param instance security instance 673 * @param md device-specific metadata 674 * 675 * @return 676 * - On success, userdata 677 * - On failure, NULL 678 */ 679 __rte_experimental 680 static inline void * 681 rte_security_get_userdata(struct rte_security_ctx *instance, uint64_t md) 682 { 683 /* Fast Path */ 684 if (instance->flags & RTE_SEC_CTX_F_FAST_GET_UDATA) 685 return (void *)(uintptr_t)md; 686 687 /* Jump to PMD specific function pointer */ 688 return __rte_security_get_userdata(instance, md); 689 } 690 691 /** 692 * Attach a session to a symmetric crypto operation 693 * 694 * @param sym_op crypto operation 695 * @param sess security session 696 */ 697 static inline int 698 __rte_security_attach_session(struct rte_crypto_sym_op *sym_op, 699 struct rte_security_session *sess) 700 { 701 sym_op->sec_session = sess; 702 703 return 0; 704 } 705 706 static inline void * 707 get_sec_session_private_data(const struct rte_security_session *sess) 708 { 709 return sess->sess_private_data; 710 } 711 712 static inline void 713 set_sec_session_private_data(struct rte_security_session *sess, 714 void *private_data) 715 { 716 sess->sess_private_data = private_data; 717 } 718 719 /** 720 * Attach a session to a crypto operation. 721 * This API is needed only in case of RTE_SECURITY_SESS_CRYPTO_PROTO_OFFLOAD 722 * For other rte_security_session_action_type, ol_flags in rte_mbuf may be 723 * defined to perform security operations. 724 * 725 * @param op crypto operation 726 * @param sess security session 727 */ 728 static inline int 729 rte_security_attach_session(struct rte_crypto_op *op, 730 struct rte_security_session *sess) 731 { 732 if (unlikely(op->type != RTE_CRYPTO_OP_TYPE_SYMMETRIC)) 733 return -EINVAL; 734 735 op->sess_type = RTE_CRYPTO_OP_SECURITY_SESSION; 736 737 return __rte_security_attach_session(op->sym, sess); 738 } 739 740 struct rte_security_macsec_stats { 741 uint64_t reserved; 742 }; 743 744 struct rte_security_ipsec_stats { 745 uint64_t ipackets; /**< Successfully received IPsec packets. */ 746 uint64_t opackets; /**< Successfully transmitted IPsec packets.*/ 747 uint64_t ibytes; /**< Successfully received IPsec bytes. */ 748 uint64_t obytes; /**< Successfully transmitted IPsec bytes. */ 749 uint64_t ierrors; /**< IPsec packets receive/decrypt errors. */ 750 uint64_t oerrors; /**< IPsec packets transmit/encrypt errors. */ 751 uint64_t reserved1; /**< Reserved for future use. */ 752 uint64_t reserved2; /**< Reserved for future use. */ 753 }; 754 755 struct rte_security_pdcp_stats { 756 uint64_t reserved; 757 }; 758 759 struct rte_security_docsis_stats { 760 uint64_t reserved; 761 }; 762 763 struct rte_security_stats { 764 enum rte_security_session_protocol protocol; 765 /**< Security protocol to be configured */ 766 767 RTE_STD_C11 768 union { 769 struct rte_security_macsec_stats macsec; 770 struct rte_security_ipsec_stats ipsec; 771 struct rte_security_pdcp_stats pdcp; 772 struct rte_security_docsis_stats docsis; 773 }; 774 }; 775 776 /** 777 * Get security session statistics 778 * 779 * @param instance security instance 780 * @param sess security session 781 * If security session is NULL then global (per security instance) statistics 782 * will be retrieved, if supported. Global statistics collection is not 783 * dependent on the per session statistics configuration. 784 * @param stats statistics 785 * @return 786 * - On success, return 0 787 * - On failure, a negative value 788 */ 789 __rte_experimental 790 int 791 rte_security_session_stats_get(struct rte_security_ctx *instance, 792 struct rte_security_session *sess, 793 struct rte_security_stats *stats); 794 795 /** 796 * Security capability definition 797 */ 798 struct rte_security_capability { 799 enum rte_security_session_action_type action; 800 /**< Security action type*/ 801 enum rte_security_session_protocol protocol; 802 /**< Security protocol */ 803 RTE_STD_C11 804 union { 805 struct { 806 enum rte_security_ipsec_sa_protocol proto; 807 /**< IPsec SA protocol */ 808 enum rte_security_ipsec_sa_mode mode; 809 /**< IPsec SA mode */ 810 enum rte_security_ipsec_sa_direction direction; 811 /**< IPsec SA direction */ 812 struct rte_security_ipsec_sa_options options; 813 /**< IPsec SA supported options */ 814 uint32_t replay_win_sz_max; 815 /**< IPsec Anti Replay Window Size. A '0' value 816 * indicates that Anti Replay is not supported. 817 */ 818 } ipsec; 819 /**< IPsec capability */ 820 struct { 821 /* To be Filled */ 822 int dummy; 823 } macsec; 824 /**< MACsec capability */ 825 struct { 826 enum rte_security_pdcp_domain domain; 827 /**< PDCP mode of operation: Control or data */ 828 uint32_t capa_flags; 829 /**< Capability flags, see RTE_SECURITY_PDCP_* */ 830 } pdcp; 831 /**< PDCP capability */ 832 struct { 833 enum rte_security_docsis_direction direction; 834 /**< DOCSIS direction */ 835 } docsis; 836 /**< DOCSIS capability */ 837 }; 838 839 const struct rte_cryptodev_capabilities *crypto_capabilities; 840 /**< Corresponding crypto capabilities for security capability */ 841 842 uint32_t ol_flags; 843 /**< Device offload flags */ 844 }; 845 846 /** Underlying Hardware/driver which support PDCP may or may not support 847 * packet ordering. Set RTE_SECURITY_PDCP_ORDERING_CAP if it support. 848 * If it is not set, driver/HW assumes packets received are in order 849 * and it will be application's responsibility to maintain ordering. 850 */ 851 #define RTE_SECURITY_PDCP_ORDERING_CAP 0x00000001 852 853 /** Underlying Hardware/driver which support PDCP may or may not detect 854 * duplicate packet. Set RTE_SECURITY_PDCP_DUP_DETECT_CAP if it support. 855 * If it is not set, driver/HW assumes there is no duplicate packet received. 856 */ 857 #define RTE_SECURITY_PDCP_DUP_DETECT_CAP 0x00000002 858 859 #define RTE_SECURITY_TX_OLOAD_NEED_MDATA 0x00000001 860 /**< HW needs metadata update, see rte_security_set_pkt_metadata(). 861 */ 862 863 #define RTE_SECURITY_TX_HW_TRAILER_OFFLOAD 0x00000002 864 /**< HW constructs trailer of packets 865 * Transmitted packets will have the trailer added to them 866 * by hardware. The next protocol field will be based on 867 * the mbuf->inner_esp_next_proto field. 868 */ 869 #define RTE_SECURITY_RX_HW_TRAILER_OFFLOAD 0x00010000 870 /**< HW removes trailer of packets 871 * Received packets have no trailer, the next protocol field 872 * is supplied in the mbuf->inner_esp_next_proto field. 873 * Inner packet is not modified. 874 */ 875 876 /** 877 * Security capability index used to query a security instance for a specific 878 * security capability 879 */ 880 struct rte_security_capability_idx { 881 enum rte_security_session_action_type action; 882 enum rte_security_session_protocol protocol; 883 884 RTE_STD_C11 885 union { 886 struct { 887 enum rte_security_ipsec_sa_protocol proto; 888 enum rte_security_ipsec_sa_mode mode; 889 enum rte_security_ipsec_sa_direction direction; 890 } ipsec; 891 struct { 892 enum rte_security_pdcp_domain domain; 893 uint32_t capa_flags; 894 } pdcp; 895 struct { 896 enum rte_security_docsis_direction direction; 897 } docsis; 898 }; 899 }; 900 901 /** 902 * Returns array of security instance capabilities 903 * 904 * @param instance Security instance. 905 * 906 * @return 907 * - Returns array of security capabilities. 908 * - Return NULL if no capabilities available. 909 */ 910 const struct rte_security_capability * 911 rte_security_capabilities_get(struct rte_security_ctx *instance); 912 913 /** 914 * Query if a specific capability is available on security instance 915 * 916 * @param instance security instance. 917 * @param idx security capability index to match against 918 * 919 * @return 920 * - Returns pointer to security capability on match of capability 921 * index criteria. 922 * - Return NULL if the capability not matched on security instance. 923 */ 924 const struct rte_security_capability * 925 rte_security_capability_get(struct rte_security_ctx *instance, 926 struct rte_security_capability_idx *idx); 927 928 #ifdef __cplusplus 929 } 930 #endif 931 932 #endif /* _RTE_SECURITY_H_ */ 933