xref: /dpdk/lib/sched/rte_approx.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdlib.h>
6 
7 #include "rte_approx.h"
8 
9 /*
10  * Based on paper "Approximating Rational Numbers by Fractions" by Michal
11  * Forisek forisek@dcs.fmph.uniba.sk
12  *
13  * Given a rational number alpha with 0 < alpha < 1 and a precision d, the goal
14  * is to find positive integers p, q such that alpha - d < p/q < alpha + d, and
15  * q is minimal.
16  *
17  * http://people.ksp.sk/~misof/publications/2007approx.pdf
18  */
19 
20 /* fraction comparison: compare (a/b) and (c/d) */
21 static inline uint32_t
22 less(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
23 {
24 	return a*d < b*c;
25 }
26 
27 static inline uint32_t
28 less_or_equal(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
29 {
30 	return a*d <= b*c;
31 }
32 
33 /* check whether a/b is a valid approximation */
34 static inline uint32_t
35 matches(uint32_t a, uint32_t b,
36 	uint32_t alpha_num, uint32_t d_num, uint32_t denum)
37 {
38 	if (less_or_equal(a, b, alpha_num - d_num, denum))
39 		return 0;
40 
41 	if (less(a ,b, alpha_num + d_num, denum))
42 		return 1;
43 
44 	return 0;
45 }
46 
47 static inline void
48 find_exact_solution_left(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b,
49 	uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
50 {
51 	uint32_t k_num = denum * p_b - (alpha_num + d_num) * q_b;
52 	uint32_t k_denum = (alpha_num + d_num) * q_a - denum * p_a;
53 	uint32_t k = (k_num / k_denum) + 1;
54 
55 	*p = p_b + k * p_a;
56 	*q = q_b + k * q_a;
57 }
58 
59 static inline void
60 find_exact_solution_right(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b,
61 	uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
62 {
63 	uint32_t k_num = - denum * p_b + (alpha_num - d_num) * q_b;
64 	uint32_t k_denum = - (alpha_num - d_num) * q_a + denum * p_a;
65 	uint32_t k = (k_num / k_denum) + 1;
66 
67 	*p = p_b + k * p_a;
68 	*q = q_b + k * q_a;
69 }
70 
71 static int
72 find_best_rational_approximation(uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
73 {
74 	uint32_t p_a, q_a, p_b, q_b;
75 
76 	/* check assumptions on the inputs */
77 	if (!((0 < d_num) && (d_num < alpha_num) && (alpha_num < denum) && (d_num + alpha_num < denum))) {
78 		return -1;
79 	}
80 
81 	/* set initial bounds for the search */
82 	p_a = 0;
83 	q_a = 1;
84 	p_b = 1;
85 	q_b = 1;
86 
87 	while (1) {
88 		uint32_t new_p_a, new_q_a, new_p_b, new_q_b;
89 		uint32_t x_num, x_denum, x;
90 		int aa, bb;
91 
92 		/* compute the number of steps to the left */
93 		x_num = denum * p_b - alpha_num * q_b;
94 		x_denum = - denum * p_a + alpha_num * q_a;
95 		x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */
96 
97 		/* check whether we have a valid approximation */
98 		aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
99 		bb = matches(p_b + (x-1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum);
100 		if (aa || bb) {
101 			find_exact_solution_left(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q);
102 			return 0;
103 		}
104 
105 		/* update the interval */
106 		new_p_a = p_b + (x - 1) * p_a ;
107 		new_q_a = q_b + (x - 1) * q_a;
108 		new_p_b = p_b + x * p_a ;
109 		new_q_b = q_b + x * q_a;
110 
111 		p_a = new_p_a ;
112 		q_a = new_q_a;
113 		p_b = new_p_b ;
114 		q_b = new_q_b;
115 
116 		/* compute the number of steps to the right */
117 		x_num = alpha_num * q_b - denum * p_b;
118 		x_denum = - alpha_num * q_a + denum * p_a;
119 		x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */
120 
121 		/* check whether we have a valid approximation */
122 		aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
123 		bb = matches(p_b + (x - 1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum);
124 		if (aa || bb) {
125 			find_exact_solution_right(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q);
126 			return 0;
127 		 }
128 
129 		/* update the interval */
130 		new_p_a = p_b + (x - 1) * p_a;
131 		new_q_a = q_b + (x - 1) * q_a;
132 		new_p_b = p_b + x * p_a;
133 		new_q_b = q_b + x * q_a;
134 
135 		p_a = new_p_a;
136 		q_a = new_q_a;
137 		p_b = new_p_b;
138 		q_b = new_q_b;
139 	}
140 }
141 
142 int rte_approx(double alpha, double d, uint32_t *p, uint32_t *q)
143 {
144 	uint32_t alpha_num, d_num, denum;
145 
146 	/* Check input arguments */
147 	if (!((0.0 < d) && (d < alpha) && (alpha < 1.0))) {
148 		return -1;
149 	}
150 
151 	if ((p == NULL) || (q == NULL)) {
152 		return -2;
153 	}
154 
155 	/* Compute alpha_num, d_num and denum */
156 	denum = 1;
157 	while (d < 1) {
158 		alpha *= 10;
159 		d *= 10;
160 		denum *= 10;
161 	}
162 	alpha_num = (uint32_t) alpha;
163 	d_num = (uint32_t) d;
164 
165 	/* Perform approximation */
166 	return find_best_rational_approximation(alpha_num, d_num, denum, p, q);
167 }
168 
169 /* fraction comparison (64 bit version): compare (a/b) and (c/d) */
170 static inline uint64_t
171 less_64(uint64_t a, uint64_t b, uint64_t c, uint64_t d)
172 {
173 	return a*d < b*c;
174 }
175 
176 static inline uint64_t
177 less_or_equal_64(uint64_t a, uint64_t b, uint64_t c, uint64_t d)
178 {
179 	return a*d <= b*c;
180 }
181 
182 /* check whether a/b is a valid approximation (64 bit version) */
183 static inline uint64_t
184 matches_64(uint64_t a, uint64_t b,
185 	uint64_t alpha_num, uint64_t d_num, uint64_t denum)
186 {
187 	if (less_or_equal_64(a, b, alpha_num - d_num, denum))
188 		return 0;
189 
190 	if (less_64(a, b, alpha_num + d_num, denum))
191 		return 1;
192 
193 	return 0;
194 }
195 
196 static inline void
197 find_exact_solution_left_64(uint64_t p_a, uint64_t q_a, uint64_t p_b, uint64_t q_b,
198 	uint64_t alpha_num, uint64_t d_num, uint64_t denum, uint64_t *p, uint64_t *q)
199 {
200 	uint64_t k_num = denum * p_b - (alpha_num + d_num) * q_b;
201 	uint64_t k_denum = (alpha_num + d_num) * q_a - denum * p_a;
202 	uint64_t k = (k_num / k_denum) + 1;
203 
204 	*p = p_b + k * p_a;
205 	*q = q_b + k * q_a;
206 }
207 
208 static inline void
209 find_exact_solution_right_64(uint64_t p_a, uint64_t q_a, uint64_t p_b, uint64_t q_b,
210 	uint64_t alpha_num, uint64_t d_num, uint64_t denum, uint64_t *p, uint64_t *q)
211 {
212 	uint64_t k_num = -denum * p_b + (alpha_num - d_num) * q_b;
213 	uint64_t k_denum = -(alpha_num - d_num) * q_a + denum * p_a;
214 	uint64_t k = (k_num / k_denum) + 1;
215 
216 	*p = p_b + k * p_a;
217 	*q = q_b + k * q_a;
218 }
219 
220 static int
221 find_best_rational_approximation_64(uint64_t alpha_num, uint64_t d_num,
222 	uint64_t denum, uint64_t *p, uint64_t *q)
223 {
224 	uint64_t p_a, q_a, p_b, q_b;
225 
226 	/* check assumptions on the inputs */
227 	if (!((d_num > 0) && (d_num < alpha_num) &&
228 		(alpha_num < denum) && (d_num + alpha_num < denum))) {
229 		return -1;
230 	}
231 
232 	/* set initial bounds for the search */
233 	p_a = 0;
234 	q_a = 1;
235 	p_b = 1;
236 	q_b = 1;
237 
238 	while (1) {
239 		uint64_t new_p_a, new_q_a, new_p_b, new_q_b;
240 		uint64_t x_num, x_denum, x;
241 		int aa, bb;
242 
243 		/* compute the number of steps to the left */
244 		x_num = denum * p_b - alpha_num * q_b;
245 		x_denum = -denum * p_a + alpha_num * q_a;
246 		x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */
247 
248 		/* check whether we have a valid approximation */
249 		aa = matches_64(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
250 		bb = matches_64(p_b + (x-1) * p_a, q_b + (x - 1) * q_a,
251 			alpha_num, d_num, denum);
252 		if (aa || bb) {
253 			find_exact_solution_left_64(p_a, q_a, p_b, q_b,
254 				alpha_num, d_num, denum, p, q);
255 			return 0;
256 		}
257 
258 		/* update the interval */
259 		new_p_a = p_b + (x - 1) * p_a;
260 		new_q_a = q_b + (x - 1) * q_a;
261 		new_p_b = p_b + x * p_a;
262 		new_q_b = q_b + x * q_a;
263 
264 		p_a = new_p_a;
265 		q_a = new_q_a;
266 		p_b = new_p_b;
267 		q_b = new_q_b;
268 
269 		/* compute the number of steps to the right */
270 		x_num = alpha_num * q_b - denum * p_b;
271 		x_denum = -alpha_num * q_a + denum * p_a;
272 		x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */
273 
274 		/* check whether we have a valid approximation */
275 		aa = matches_64(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
276 		bb = matches_64(p_b + (x - 1) * p_a, q_b + (x - 1) * q_a,
277 			alpha_num, d_num, denum);
278 		if (aa || bb) {
279 			find_exact_solution_right_64(p_a, q_a, p_b, q_b,
280 				alpha_num, d_num, denum, p, q);
281 			return 0;
282 		}
283 
284 		/* update the interval */
285 		new_p_a = p_b + (x - 1) * p_a;
286 		new_q_a = q_b + (x - 1) * q_a;
287 		new_p_b = p_b + x * p_a;
288 		new_q_b = q_b + x * q_a;
289 
290 		p_a = new_p_a;
291 		q_a = new_q_a;
292 		p_b = new_p_b;
293 		q_b = new_q_b;
294 	}
295 }
296 
297 int rte_approx_64(double alpha, double d, uint64_t *p, uint64_t *q)
298 {
299 	uint64_t alpha_num, d_num, denum;
300 
301 	/* Check input arguments */
302 	if (!((0.0 < d) && (d < alpha) && (alpha < 1.0)))
303 		return -1;
304 
305 	if ((p == NULL) || (q == NULL))
306 		return -2;
307 
308 	/* Compute alpha_num, d_num and denum */
309 	denum = 1;
310 	while (d < 1) {
311 		alpha *= 10;
312 		d *= 10;
313 		denum *= 10;
314 	}
315 	alpha_num = (uint64_t) alpha;
316 	d_num = (uint64_t) d;
317 
318 	/* Perform approximation */
319 	return find_best_rational_approximation_64(alpha_num, d_num, denum, p, q);
320 }
321