xref: /dpdk/lib/reorder/rte_reorder.c (revision 665b49c51639a10c553433bc2bcd85c7331c631e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <string.h>
6 
7 #include <rte_string_fns.h>
8 #include <rte_log.h>
9 #include <rte_mbuf.h>
10 #include <rte_mbuf_dyn.h>
11 #include <rte_eal_memconfig.h>
12 #include <rte_errno.h>
13 #include <rte_malloc.h>
14 #include <rte_tailq.h>
15 
16 #include "rte_reorder.h"
17 
18 TAILQ_HEAD(rte_reorder_list, rte_tailq_entry);
19 
20 static struct rte_tailq_elem rte_reorder_tailq = {
21 	.name = "RTE_REORDER",
22 };
23 EAL_REGISTER_TAILQ(rte_reorder_tailq)
24 
25 #define NO_FLAGS 0
26 #define RTE_REORDER_PREFIX "RO_"
27 #define RTE_REORDER_NAMESIZE 32
28 
29 /* Macros for printing using RTE_LOG */
30 #define RTE_LOGTYPE_REORDER	RTE_LOGTYPE_USER1
31 
32 #define RTE_REORDER_SEQN_DYNFIELD_NAME "rte_reorder_seqn_dynfield"
33 int rte_reorder_seqn_dynfield_offset = -1;
34 
35 /* A generic circular buffer */
36 struct cir_buffer {
37 	unsigned int size;   /**< Number of entries that can be stored */
38 	unsigned int mask;   /**< [buffer_size - 1]: used for wrap-around */
39 	unsigned int head;   /**< insertion point in buffer */
40 	unsigned int tail;   /**< extraction point in buffer */
41 	struct rte_mbuf **entries;
42 } __rte_cache_aligned;
43 
44 /* The reorder buffer data structure itself */
45 struct rte_reorder_buffer {
46 	char name[RTE_REORDER_NAMESIZE];
47 	uint32_t min_seqn;  /**< Lowest seq. number that can be in the buffer */
48 	unsigned int memsize; /**< memory area size of reorder buffer */
49 	struct cir_buffer ready_buf; /**< temp buffer for dequeued entries */
50 	struct cir_buffer order_buf; /**< buffer used to reorder entries */
51 	int is_initialized;
52 } __rte_cache_aligned;
53 
54 static void
55 rte_reorder_free_mbufs(struct rte_reorder_buffer *b);
56 
57 struct rte_reorder_buffer *
58 rte_reorder_init(struct rte_reorder_buffer *b, unsigned int bufsize,
59 		const char *name, unsigned int size)
60 {
61 	const unsigned int min_bufsize = sizeof(*b) +
62 					(2 * size * sizeof(struct rte_mbuf *));
63 
64 	if (b == NULL) {
65 		RTE_LOG(ERR, REORDER, "Invalid reorder buffer parameter:"
66 					" NULL\n");
67 		rte_errno = EINVAL;
68 		return NULL;
69 	}
70 	if (!rte_is_power_of_2(size)) {
71 		RTE_LOG(ERR, REORDER, "Invalid reorder buffer size"
72 				" - Not a power of 2\n");
73 		rte_errno = EINVAL;
74 		return NULL;
75 	}
76 	if (name == NULL) {
77 		RTE_LOG(ERR, REORDER, "Invalid reorder buffer name ptr:"
78 					" NULL\n");
79 		rte_errno = EINVAL;
80 		return NULL;
81 	}
82 	if (bufsize < min_bufsize) {
83 		RTE_LOG(ERR, REORDER, "Invalid reorder buffer memory size: %u, "
84 			"minimum required: %u\n", bufsize, min_bufsize);
85 		rte_errno = EINVAL;
86 		return NULL;
87 	}
88 
89 	memset(b, 0, bufsize);
90 	strlcpy(b->name, name, sizeof(b->name));
91 	b->memsize = bufsize;
92 	b->order_buf.size = b->ready_buf.size = size;
93 	b->order_buf.mask = b->ready_buf.mask = size - 1;
94 	b->ready_buf.entries = (void *)&b[1];
95 	b->order_buf.entries = RTE_PTR_ADD(&b[1],
96 			size * sizeof(b->ready_buf.entries[0]));
97 
98 	return b;
99 }
100 
101 struct rte_reorder_buffer*
102 rte_reorder_create(const char *name, unsigned socket_id, unsigned int size)
103 {
104 	struct rte_reorder_buffer *b = NULL;
105 	struct rte_tailq_entry *te;
106 	struct rte_reorder_list *reorder_list;
107 	const unsigned int bufsize = sizeof(struct rte_reorder_buffer) +
108 					(2 * size * sizeof(struct rte_mbuf *));
109 	static const struct rte_mbuf_dynfield reorder_seqn_dynfield_desc = {
110 		.name = RTE_REORDER_SEQN_DYNFIELD_NAME,
111 		.size = sizeof(rte_reorder_seqn_t),
112 		.align = __alignof__(rte_reorder_seqn_t),
113 	};
114 
115 	reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list);
116 
117 	/* Check user arguments. */
118 	if (!rte_is_power_of_2(size)) {
119 		RTE_LOG(ERR, REORDER, "Invalid reorder buffer size"
120 				" - Not a power of 2\n");
121 		rte_errno = EINVAL;
122 		return NULL;
123 	}
124 	if (name == NULL) {
125 		RTE_LOG(ERR, REORDER, "Invalid reorder buffer name ptr:"
126 					" NULL\n");
127 		rte_errno = EINVAL;
128 		return NULL;
129 	}
130 
131 	rte_reorder_seqn_dynfield_offset =
132 		rte_mbuf_dynfield_register(&reorder_seqn_dynfield_desc);
133 	if (rte_reorder_seqn_dynfield_offset < 0) {
134 		RTE_LOG(ERR, REORDER, "Failed to register mbuf field for reorder sequence number\n");
135 		rte_errno = ENOMEM;
136 		return NULL;
137 	}
138 
139 	rte_mcfg_tailq_write_lock();
140 
141 	/* guarantee there's no existing */
142 	TAILQ_FOREACH(te, reorder_list, next) {
143 		b = (struct rte_reorder_buffer *) te->data;
144 		if (strncmp(name, b->name, RTE_REORDER_NAMESIZE) == 0)
145 			break;
146 	}
147 	if (te != NULL)
148 		goto exit;
149 
150 	/* allocate tailq entry */
151 	te = rte_zmalloc("REORDER_TAILQ_ENTRY", sizeof(*te), 0);
152 	if (te == NULL) {
153 		RTE_LOG(ERR, REORDER, "Failed to allocate tailq entry\n");
154 		rte_errno = ENOMEM;
155 		b = NULL;
156 		goto exit;
157 	}
158 
159 	/* Allocate memory to store the reorder buffer structure. */
160 	b = rte_zmalloc_socket("REORDER_BUFFER", bufsize, 0, socket_id);
161 	if (b == NULL) {
162 		RTE_LOG(ERR, REORDER, "Memzone allocation failed\n");
163 		rte_errno = ENOMEM;
164 		rte_free(te);
165 	} else {
166 		rte_reorder_init(b, bufsize, name, size);
167 		te->data = (void *)b;
168 		TAILQ_INSERT_TAIL(reorder_list, te, next);
169 	}
170 
171 exit:
172 	rte_mcfg_tailq_write_unlock();
173 	return b;
174 }
175 
176 void
177 rte_reorder_reset(struct rte_reorder_buffer *b)
178 {
179 	char name[RTE_REORDER_NAMESIZE];
180 
181 	rte_reorder_free_mbufs(b);
182 	strlcpy(name, b->name, sizeof(name));
183 	/* No error checking as current values should be valid */
184 	rte_reorder_init(b, b->memsize, name, b->order_buf.size);
185 }
186 
187 static void
188 rte_reorder_free_mbufs(struct rte_reorder_buffer *b)
189 {
190 	unsigned i;
191 
192 	/* Free up the mbufs of order buffer & ready buffer */
193 	for (i = 0; i < b->order_buf.size; i++) {
194 		rte_pktmbuf_free(b->order_buf.entries[i]);
195 		rte_pktmbuf_free(b->ready_buf.entries[i]);
196 	}
197 }
198 
199 void
200 rte_reorder_free(struct rte_reorder_buffer *b)
201 {
202 	struct rte_reorder_list *reorder_list;
203 	struct rte_tailq_entry *te;
204 
205 	/* Check user arguments. */
206 	if (b == NULL)
207 		return;
208 
209 	reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list);
210 
211 	rte_mcfg_tailq_write_lock();
212 
213 	/* find our tailq entry */
214 	TAILQ_FOREACH(te, reorder_list, next) {
215 		if (te->data == (void *) b)
216 			break;
217 	}
218 	if (te == NULL) {
219 		rte_mcfg_tailq_write_unlock();
220 		return;
221 	}
222 
223 	TAILQ_REMOVE(reorder_list, te, next);
224 
225 	rte_mcfg_tailq_write_unlock();
226 
227 	rte_reorder_free_mbufs(b);
228 
229 	rte_free(b);
230 	rte_free(te);
231 }
232 
233 struct rte_reorder_buffer *
234 rte_reorder_find_existing(const char *name)
235 {
236 	struct rte_reorder_buffer *b = NULL;
237 	struct rte_tailq_entry *te;
238 	struct rte_reorder_list *reorder_list;
239 
240 	if (name == NULL) {
241 		rte_errno = EINVAL;
242 		return NULL;
243 	}
244 
245 	reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list);
246 
247 	rte_mcfg_tailq_read_lock();
248 	TAILQ_FOREACH(te, reorder_list, next) {
249 		b = (struct rte_reorder_buffer *) te->data;
250 		if (strncmp(name, b->name, RTE_REORDER_NAMESIZE) == 0)
251 			break;
252 	}
253 	rte_mcfg_tailq_read_unlock();
254 
255 	if (te == NULL) {
256 		rte_errno = ENOENT;
257 		return NULL;
258 	}
259 
260 	return b;
261 }
262 
263 static unsigned
264 rte_reorder_fill_overflow(struct rte_reorder_buffer *b, unsigned n)
265 {
266 	/*
267 	 * 1. Move all ready entries that fit to the ready_buf
268 	 * 2. check if we meet the minimum needed (n).
269 	 * 3. If not, then skip any gaps and keep moving.
270 	 * 4. If at any point the ready buffer is full, stop
271 	 * 5. Return the number of positions the order_buf head has moved
272 	 */
273 
274 	struct cir_buffer *order_buf = &b->order_buf,
275 			*ready_buf = &b->ready_buf;
276 
277 	unsigned int order_head_adv = 0;
278 
279 	/*
280 	 * move at least n packets to ready buffer, assuming ready buffer
281 	 * has room for those packets.
282 	 */
283 	while (order_head_adv < n &&
284 			((ready_buf->head + 1) & ready_buf->mask) != ready_buf->tail) {
285 
286 		/* if we are blocked waiting on a packet, skip it */
287 		if (order_buf->entries[order_buf->head] == NULL) {
288 			order_buf->head = (order_buf->head + 1) & order_buf->mask;
289 			order_head_adv++;
290 		}
291 
292 		/* Move all ready entries that fit to the ready_buf */
293 		while (order_buf->entries[order_buf->head] != NULL) {
294 			ready_buf->entries[ready_buf->head] =
295 					order_buf->entries[order_buf->head];
296 
297 			order_buf->entries[order_buf->head] = NULL;
298 			order_head_adv++;
299 
300 			order_buf->head = (order_buf->head + 1) & order_buf->mask;
301 
302 			if (((ready_buf->head + 1) & ready_buf->mask) == ready_buf->tail)
303 				break;
304 
305 			ready_buf->head = (ready_buf->head + 1) & ready_buf->mask;
306 		}
307 	}
308 
309 	b->min_seqn += order_head_adv;
310 	/* Return the number of positions the order_buf head has moved */
311 	return order_head_adv;
312 }
313 
314 int
315 rte_reorder_insert(struct rte_reorder_buffer *b, struct rte_mbuf *mbuf)
316 {
317 	uint32_t offset, position;
318 	struct cir_buffer *order_buf;
319 
320 	if (b == NULL || mbuf == NULL) {
321 		rte_errno = EINVAL;
322 		return -1;
323 	}
324 
325 	order_buf = &b->order_buf;
326 	if (!b->is_initialized) {
327 		b->min_seqn = *rte_reorder_seqn(mbuf);
328 		b->is_initialized = 1;
329 	}
330 
331 	/*
332 	 * calculate the offset from the head pointer we need to go.
333 	 * The subtraction takes care of the sequence number wrapping.
334 	 * For example (using 16-bit for brevity):
335 	 *	min_seqn  = 0xFFFD
336 	 *	mbuf_seqn = 0x0010
337 	 *	offset    = 0x0010 - 0xFFFD = 0x13
338 	 */
339 	offset = *rte_reorder_seqn(mbuf) - b->min_seqn;
340 
341 	/*
342 	 * action to take depends on offset.
343 	 * offset < buffer->size: the mbuf fits within the current window of
344 	 *    sequence numbers we can reorder. EXPECTED CASE.
345 	 * offset > buffer->size: the mbuf is outside the current window. There
346 	 *    are a number of cases to consider:
347 	 *    1. The packet sequence is just outside the window, then we need
348 	 *       to see about shifting the head pointer and taking any ready
349 	 *       to return packets out of the ring. If there was a delayed
350 	 *       or dropped packet preventing drains from shifting the window
351 	 *       this case will skip over the dropped packet instead, and any
352 	 *       packets dequeued here will be returned on the next drain call.
353 	 *    2. The packet sequence number is vastly outside our window, taken
354 	 *       here as having offset greater than twice the buffer size. In
355 	 *       this case, the packet is probably an old or late packet that
356 	 *       was previously skipped, so just enqueue the packet for
357 	 *       immediate return on the next drain call, or else return error.
358 	 */
359 	if (offset < b->order_buf.size) {
360 		position = (order_buf->head + offset) & order_buf->mask;
361 		order_buf->entries[position] = mbuf;
362 	} else if (offset < 2 * b->order_buf.size) {
363 		if (rte_reorder_fill_overflow(b, offset + 1 - order_buf->size)
364 				< (offset + 1 - order_buf->size)) {
365 			/* Put in handling for enqueue straight to output */
366 			rte_errno = ENOSPC;
367 			return -1;
368 		}
369 		offset = *rte_reorder_seqn(mbuf) - b->min_seqn;
370 		position = (order_buf->head + offset) & order_buf->mask;
371 		order_buf->entries[position] = mbuf;
372 	} else {
373 		/* Put in handling for enqueue straight to output */
374 		rte_errno = ERANGE;
375 		return -1;
376 	}
377 	return 0;
378 }
379 
380 unsigned int
381 rte_reorder_drain(struct rte_reorder_buffer *b, struct rte_mbuf **mbufs,
382 		unsigned max_mbufs)
383 {
384 	unsigned int drain_cnt = 0;
385 
386 	struct cir_buffer *order_buf = &b->order_buf,
387 			*ready_buf = &b->ready_buf;
388 
389 	/* Try to fetch requested number of mbufs from ready buffer */
390 	while ((drain_cnt < max_mbufs) && (ready_buf->tail != ready_buf->head)) {
391 		mbufs[drain_cnt++] = ready_buf->entries[ready_buf->tail];
392 		ready_buf->entries[ready_buf->tail] = NULL;
393 		ready_buf->tail = (ready_buf->tail + 1) & ready_buf->mask;
394 	}
395 
396 	/*
397 	 * If requested number of buffers not fetched from ready buffer, fetch
398 	 * remaining buffers from order buffer
399 	 */
400 	while ((drain_cnt < max_mbufs) &&
401 			(order_buf->entries[order_buf->head] != NULL)) {
402 		mbufs[drain_cnt++] = order_buf->entries[order_buf->head];
403 		order_buf->entries[order_buf->head] = NULL;
404 		b->min_seqn++;
405 		order_buf->head = (order_buf->head + 1) & order_buf->mask;
406 	}
407 
408 	return drain_cnt;
409 }
410 
411 /* Binary search seqn in ready buffer */
412 static inline uint32_t
413 ready_buffer_seqn_find(const struct cir_buffer *ready_buf, const uint32_t seqn)
414 {
415 	uint32_t mid, value, position, high;
416 	uint32_t low = 0;
417 
418 	if (ready_buf->tail > ready_buf->head)
419 		high = ready_buf->tail - ready_buf->head;
420 	else
421 		high = ready_buf->head - ready_buf->tail;
422 
423 	while (low <= high) {
424 		mid = low + (high - low) / 2;
425 		position = (ready_buf->tail + mid) & ready_buf->mask;
426 		value = *rte_reorder_seqn(ready_buf->entries[position]);
427 		if (seqn == value)
428 			return mid;
429 		else if (seqn > value)
430 			low = mid + 1;
431 		else
432 			high = mid - 1;
433 	}
434 
435 	return low;
436 }
437 
438 unsigned int
439 rte_reorder_drain_up_to_seqn(struct rte_reorder_buffer *b, struct rte_mbuf **mbufs,
440 		const unsigned int max_mbufs, const rte_reorder_seqn_t seqn)
441 {
442 	uint32_t i, position, offset;
443 	unsigned int drain_cnt = 0;
444 
445 	struct cir_buffer *order_buf = &b->order_buf,
446 			*ready_buf = &b->ready_buf;
447 
448 	/* Seqn in Ready buffer */
449 	if (seqn < b->min_seqn) {
450 		/* All sequence numbers are higher then given */
451 		if ((ready_buf->tail == ready_buf->head) ||
452 		    (*rte_reorder_seqn(ready_buf->entries[ready_buf->tail]) > seqn))
453 			return 0;
454 
455 		offset = ready_buffer_seqn_find(ready_buf, seqn);
456 
457 		for (i = 0; (i < offset) && (drain_cnt < max_mbufs); i++) {
458 			position = (ready_buf->tail + i) & ready_buf->mask;
459 			mbufs[drain_cnt++] = ready_buf->entries[position];
460 			ready_buf->entries[position] = NULL;
461 		}
462 		ready_buf->tail = (ready_buf->tail + i) & ready_buf->mask;
463 
464 		return drain_cnt;
465 	}
466 
467 	/* Seqn in Order buffer, add all buffers from Ready buffer */
468 	while ((drain_cnt < max_mbufs) && (ready_buf->tail != ready_buf->head)) {
469 		mbufs[drain_cnt++] = ready_buf->entries[ready_buf->tail];
470 		ready_buf->entries[ready_buf->tail] = NULL;
471 		ready_buf->tail = (ready_buf->tail + 1) & ready_buf->mask;
472 	}
473 
474 	/* Fetch buffers from Order buffer up to given sequence number (exclusive) */
475 	offset = RTE_MIN(seqn - b->min_seqn, b->order_buf.size);
476 	for (i = 0; (i < offset) && (drain_cnt < max_mbufs); i++) {
477 		position = (order_buf->head + i) & order_buf->mask;
478 		if (order_buf->entries[position] == NULL)
479 			continue;
480 		mbufs[drain_cnt++] = order_buf->entries[position];
481 		order_buf->entries[position] = NULL;
482 	}
483 	b->min_seqn += i;
484 	order_buf->head = (order_buf->head + i) & order_buf->mask;
485 
486 	return drain_cnt;
487 }
488 
489 static bool
490 rte_reorder_is_empty(const struct rte_reorder_buffer *b)
491 {
492 	const struct cir_buffer *order_buf = &b->order_buf, *ready_buf = &b->ready_buf;
493 	unsigned int i;
494 
495 	/* Ready buffer does not have gaps */
496 	if (ready_buf->tail != ready_buf->head)
497 		return false;
498 
499 	/* Order buffer could have gaps, iterate */
500 	for (i = 0; i < order_buf->size; i++) {
501 		if (order_buf->entries[i] != NULL)
502 			return false;
503 	}
504 
505 	return true;
506 }
507 
508 unsigned int
509 rte_reorder_min_seqn_set(struct rte_reorder_buffer *b, rte_reorder_seqn_t min_seqn)
510 {
511 	if (!rte_reorder_is_empty(b))
512 		return -ENOTEMPTY;
513 
514 	b->min_seqn = min_seqn;
515 	b->is_initialized = true;
516 
517 	return 0;
518 }
519