1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <string.h> 6 #include <sys/queue.h> 7 8 #include <rte_string_fns.h> 9 #include <rte_log.h> 10 #include <rte_mbuf.h> 11 #include <rte_mbuf_dyn.h> 12 #include <rte_eal_memconfig.h> 13 #include <rte_errno.h> 14 #include <rte_malloc.h> 15 #include <rte_tailq.h> 16 17 #include "rte_reorder.h" 18 19 RTE_LOG_REGISTER_DEFAULT(reorder_logtype, INFO); 20 #define RTE_LOGTYPE_REORDER reorder_logtype 21 #define REORDER_LOG(level, ...) \ 22 RTE_LOG_LINE(level, REORDER, "" __VA_ARGS__) 23 24 TAILQ_HEAD(rte_reorder_list, rte_tailq_entry); 25 26 static struct rte_tailq_elem rte_reorder_tailq = { 27 .name = "RTE_REORDER", 28 }; 29 EAL_REGISTER_TAILQ(rte_reorder_tailq) 30 31 #define NO_FLAGS 0 32 #define RTE_REORDER_PREFIX "RO_" 33 #define RTE_REORDER_NAMESIZE 32 34 35 #define RTE_REORDER_SEQN_DYNFIELD_NAME "rte_reorder_seqn_dynfield" 36 int rte_reorder_seqn_dynfield_offset = -1; 37 38 /* A generic circular buffer */ 39 struct cir_buffer { 40 unsigned int size; /**< Number of entries that can be stored */ 41 unsigned int mask; /**< [buffer_size - 1]: used for wrap-around */ 42 unsigned int head; /**< insertion point in buffer */ 43 unsigned int tail; /**< extraction point in buffer */ 44 struct rte_mbuf **entries; 45 } __rte_cache_aligned; 46 47 /* The reorder buffer data structure itself */ 48 struct rte_reorder_buffer { 49 char name[RTE_REORDER_NAMESIZE]; 50 uint32_t min_seqn; /**< Lowest seq. number that can be in the buffer */ 51 unsigned int memsize; /**< memory area size of reorder buffer */ 52 bool is_initialized; /**< flag indicates that buffer was initialized */ 53 54 struct cir_buffer ready_buf; /**< temp buffer for dequeued entries */ 55 struct cir_buffer order_buf; /**< buffer used to reorder entries */ 56 } __rte_cache_aligned; 57 58 static void 59 rte_reorder_free_mbufs(struct rte_reorder_buffer *b); 60 61 unsigned int 62 rte_reorder_memory_footprint_get(unsigned int size) 63 { 64 return sizeof(struct rte_reorder_buffer) + (2 * size * sizeof(struct rte_mbuf *)); 65 } 66 67 struct rte_reorder_buffer * 68 rte_reorder_init(struct rte_reorder_buffer *b, unsigned int bufsize, 69 const char *name, unsigned int size) 70 { 71 const unsigned int min_bufsize = rte_reorder_memory_footprint_get(size); 72 static const struct rte_mbuf_dynfield reorder_seqn_dynfield_desc = { 73 .name = RTE_REORDER_SEQN_DYNFIELD_NAME, 74 .size = sizeof(rte_reorder_seqn_t), 75 .align = __alignof__(rte_reorder_seqn_t), 76 }; 77 78 if (b == NULL) { 79 REORDER_LOG(ERR, "Invalid reorder buffer parameter:" 80 " NULL"); 81 rte_errno = EINVAL; 82 return NULL; 83 } 84 if (!rte_is_power_of_2(size)) { 85 REORDER_LOG(ERR, "Invalid reorder buffer size" 86 " - Not a power of 2"); 87 rte_errno = EINVAL; 88 return NULL; 89 } 90 if (name == NULL) { 91 REORDER_LOG(ERR, "Invalid reorder buffer name ptr:" 92 " NULL"); 93 rte_errno = EINVAL; 94 return NULL; 95 } 96 if (bufsize < min_bufsize) { 97 REORDER_LOG(ERR, "Invalid reorder buffer memory size: %u, " 98 "minimum required: %u", bufsize, min_bufsize); 99 rte_errno = EINVAL; 100 return NULL; 101 } 102 103 rte_reorder_seqn_dynfield_offset = rte_mbuf_dynfield_register(&reorder_seqn_dynfield_desc); 104 if (rte_reorder_seqn_dynfield_offset < 0) { 105 REORDER_LOG(ERR, 106 "Failed to register mbuf field for reorder sequence number, rte_errno: %i", 107 rte_errno); 108 rte_errno = ENOMEM; 109 return NULL; 110 } 111 112 memset(b, 0, bufsize); 113 strlcpy(b->name, name, sizeof(b->name)); 114 b->memsize = bufsize; 115 b->order_buf.size = b->ready_buf.size = size; 116 b->order_buf.mask = b->ready_buf.mask = size - 1; 117 b->ready_buf.entries = (void *)&b[1]; 118 b->order_buf.entries = RTE_PTR_ADD(&b[1], 119 size * sizeof(b->ready_buf.entries[0])); 120 121 return b; 122 } 123 124 /* 125 * Insert new entry into global list. 126 * Returns pointer to already inserted entry if such exists, or to newly inserted one. 127 */ 128 static struct rte_tailq_entry * 129 rte_reorder_entry_insert(struct rte_tailq_entry *new_te) 130 { 131 struct rte_reorder_list *reorder_list; 132 struct rte_reorder_buffer *b, *nb; 133 struct rte_tailq_entry *te; 134 135 rte_mcfg_tailq_write_lock(); 136 137 reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list); 138 /* guarantee there's no existing */ 139 TAILQ_FOREACH(te, reorder_list, next) { 140 b = (struct rte_reorder_buffer *) te->data; 141 nb = (struct rte_reorder_buffer *) new_te->data; 142 if (strncmp(nb->name, b->name, RTE_REORDER_NAMESIZE) == 0) 143 break; 144 } 145 146 if (te == NULL) { 147 TAILQ_INSERT_TAIL(reorder_list, new_te, next); 148 te = new_te; 149 } 150 151 rte_mcfg_tailq_write_unlock(); 152 153 return te; 154 } 155 156 struct rte_reorder_buffer* 157 rte_reorder_create(const char *name, unsigned socket_id, unsigned int size) 158 { 159 struct rte_reorder_buffer *b = NULL; 160 struct rte_tailq_entry *te, *te_inserted; 161 162 const unsigned int bufsize = rte_reorder_memory_footprint_get(size); 163 164 /* Check user arguments. */ 165 if (!rte_is_power_of_2(size)) { 166 REORDER_LOG(ERR, "Invalid reorder buffer size" 167 " - Not a power of 2"); 168 rte_errno = EINVAL; 169 return NULL; 170 } 171 if (name == NULL) { 172 REORDER_LOG(ERR, "Invalid reorder buffer name ptr:" 173 " NULL"); 174 rte_errno = EINVAL; 175 return NULL; 176 } 177 178 /* allocate tailq entry */ 179 te = rte_zmalloc("REORDER_TAILQ_ENTRY", sizeof(*te), 0); 180 if (te == NULL) { 181 REORDER_LOG(ERR, "Failed to allocate tailq entry"); 182 rte_errno = ENOMEM; 183 return NULL; 184 } 185 186 /* Allocate memory to store the reorder buffer structure. */ 187 b = rte_zmalloc_socket("REORDER_BUFFER", bufsize, 0, socket_id); 188 if (b == NULL) { 189 REORDER_LOG(ERR, "Memzone allocation failed"); 190 rte_errno = ENOMEM; 191 rte_free(te); 192 return NULL; 193 } else { 194 if (rte_reorder_init(b, bufsize, name, size) == NULL) { 195 rte_free(b); 196 rte_free(te); 197 return NULL; 198 } 199 te->data = (void *)b; 200 } 201 202 te_inserted = rte_reorder_entry_insert(te); 203 if (te_inserted != te) { 204 rte_free(b); 205 rte_free(te); 206 return te_inserted->data; 207 } 208 209 return b; 210 } 211 212 void 213 rte_reorder_reset(struct rte_reorder_buffer *b) 214 { 215 char name[RTE_REORDER_NAMESIZE]; 216 217 rte_reorder_free_mbufs(b); 218 strlcpy(name, b->name, sizeof(name)); 219 /* No error checking as current values should be valid */ 220 rte_reorder_init(b, b->memsize, name, b->order_buf.size); 221 } 222 223 static void 224 rte_reorder_free_mbufs(struct rte_reorder_buffer *b) 225 { 226 unsigned i; 227 228 /* Free up the mbufs of order buffer & ready buffer */ 229 for (i = 0; i < b->order_buf.size; i++) { 230 rte_pktmbuf_free(b->order_buf.entries[i]); 231 rte_pktmbuf_free(b->ready_buf.entries[i]); 232 } 233 } 234 235 void 236 rte_reorder_free(struct rte_reorder_buffer *b) 237 { 238 struct rte_reorder_list *reorder_list; 239 struct rte_tailq_entry *te; 240 241 /* Check user arguments. */ 242 if (b == NULL) 243 return; 244 245 reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list); 246 247 rte_mcfg_tailq_write_lock(); 248 249 /* find our tailq entry */ 250 TAILQ_FOREACH(te, reorder_list, next) { 251 if (te->data == (void *) b) 252 break; 253 } 254 if (te == NULL) { 255 rte_mcfg_tailq_write_unlock(); 256 return; 257 } 258 259 TAILQ_REMOVE(reorder_list, te, next); 260 261 rte_mcfg_tailq_write_unlock(); 262 263 rte_reorder_free_mbufs(b); 264 265 rte_free(b); 266 rte_free(te); 267 } 268 269 struct rte_reorder_buffer * 270 rte_reorder_find_existing(const char *name) 271 { 272 struct rte_reorder_buffer *b = NULL; 273 struct rte_tailq_entry *te; 274 struct rte_reorder_list *reorder_list; 275 276 if (name == NULL) { 277 rte_errno = EINVAL; 278 return NULL; 279 } 280 281 reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list); 282 283 rte_mcfg_tailq_read_lock(); 284 TAILQ_FOREACH(te, reorder_list, next) { 285 b = (struct rte_reorder_buffer *) te->data; 286 if (strncmp(name, b->name, RTE_REORDER_NAMESIZE) == 0) 287 break; 288 } 289 rte_mcfg_tailq_read_unlock(); 290 291 if (te == NULL) { 292 rte_errno = ENOENT; 293 return NULL; 294 } 295 296 return b; 297 } 298 299 static unsigned 300 rte_reorder_fill_overflow(struct rte_reorder_buffer *b, unsigned n) 301 { 302 /* 303 * 1. Move all ready entries that fit to the ready_buf 304 * 2. check if we meet the minimum needed (n). 305 * 3. If not, then skip any gaps and keep moving. 306 * 4. If at any point the ready buffer is full, stop 307 * 5. Return the number of positions the order_buf head has moved 308 */ 309 310 struct cir_buffer *order_buf = &b->order_buf, 311 *ready_buf = &b->ready_buf; 312 313 unsigned int order_head_adv = 0; 314 315 /* 316 * move at least n packets to ready buffer, assuming ready buffer 317 * has room for those packets. 318 */ 319 while (order_head_adv < n && 320 ((ready_buf->head + 1) & ready_buf->mask) != ready_buf->tail) { 321 322 /* if we are blocked waiting on a packet, skip it */ 323 if (order_buf->entries[order_buf->head] == NULL) { 324 order_buf->head = (order_buf->head + 1) & order_buf->mask; 325 order_head_adv++; 326 } 327 328 /* Move all ready entries that fit to the ready_buf */ 329 while (order_buf->entries[order_buf->head] != NULL) { 330 ready_buf->entries[ready_buf->head] = 331 order_buf->entries[order_buf->head]; 332 333 order_buf->entries[order_buf->head] = NULL; 334 order_head_adv++; 335 336 order_buf->head = (order_buf->head + 1) & order_buf->mask; 337 338 if (((ready_buf->head + 1) & ready_buf->mask) == ready_buf->tail) 339 break; 340 341 ready_buf->head = (ready_buf->head + 1) & ready_buf->mask; 342 } 343 } 344 345 b->min_seqn += order_head_adv; 346 /* Return the number of positions the order_buf head has moved */ 347 return order_head_adv; 348 } 349 350 int 351 rte_reorder_insert(struct rte_reorder_buffer *b, struct rte_mbuf *mbuf) 352 { 353 uint32_t offset, position; 354 struct cir_buffer *order_buf; 355 356 if (b == NULL || mbuf == NULL) { 357 rte_errno = EINVAL; 358 return -1; 359 } 360 361 order_buf = &b->order_buf; 362 if (!b->is_initialized) { 363 b->min_seqn = *rte_reorder_seqn(mbuf); 364 b->is_initialized = 1; 365 } 366 367 /* 368 * calculate the offset from the head pointer we need to go. 369 * The subtraction takes care of the sequence number wrapping. 370 * For example (using 16-bit for brevity): 371 * min_seqn = 0xFFFD 372 * mbuf_seqn = 0x0010 373 * offset = 0x0010 - 0xFFFD = 0x13 374 */ 375 offset = *rte_reorder_seqn(mbuf) - b->min_seqn; 376 377 /* 378 * action to take depends on offset. 379 * offset < buffer->size: the mbuf fits within the current window of 380 * sequence numbers we can reorder. EXPECTED CASE. 381 * offset > buffer->size: the mbuf is outside the current window. There 382 * are a number of cases to consider: 383 * 1. The packet sequence is just outside the window, then we need 384 * to see about shifting the head pointer and taking any ready 385 * to return packets out of the ring. If there was a delayed 386 * or dropped packet preventing drains from shifting the window 387 * this case will skip over the dropped packet instead, and any 388 * packets dequeued here will be returned on the next drain call. 389 * 2. The packet sequence number is vastly outside our window, taken 390 * here as having offset greater than twice the buffer size. In 391 * this case, the packet is probably an old or late packet that 392 * was previously skipped, so just enqueue the packet for 393 * immediate return on the next drain call, or else return error. 394 */ 395 if (offset < b->order_buf.size) { 396 position = (order_buf->head + offset) & order_buf->mask; 397 order_buf->entries[position] = mbuf; 398 } else if (offset < 2 * b->order_buf.size) { 399 if (rte_reorder_fill_overflow(b, offset + 1 - order_buf->size) 400 < (offset + 1 - order_buf->size)) { 401 /* Put in handling for enqueue straight to output */ 402 rte_errno = ENOSPC; 403 return -1; 404 } 405 offset = *rte_reorder_seqn(mbuf) - b->min_seqn; 406 position = (order_buf->head + offset) & order_buf->mask; 407 order_buf->entries[position] = mbuf; 408 } else { 409 /* Put in handling for enqueue straight to output */ 410 rte_errno = ERANGE; 411 return -1; 412 } 413 return 0; 414 } 415 416 unsigned int 417 rte_reorder_drain(struct rte_reorder_buffer *b, struct rte_mbuf **mbufs, 418 unsigned max_mbufs) 419 { 420 unsigned int drain_cnt = 0; 421 422 struct cir_buffer *order_buf = &b->order_buf, 423 *ready_buf = &b->ready_buf; 424 425 /* Try to fetch requested number of mbufs from ready buffer */ 426 while ((drain_cnt < max_mbufs) && (ready_buf->tail != ready_buf->head)) { 427 mbufs[drain_cnt++] = ready_buf->entries[ready_buf->tail]; 428 ready_buf->entries[ready_buf->tail] = NULL; 429 ready_buf->tail = (ready_buf->tail + 1) & ready_buf->mask; 430 } 431 432 /* 433 * If requested number of buffers not fetched from ready buffer, fetch 434 * remaining buffers from order buffer 435 */ 436 while ((drain_cnt < max_mbufs) && 437 (order_buf->entries[order_buf->head] != NULL)) { 438 mbufs[drain_cnt++] = order_buf->entries[order_buf->head]; 439 order_buf->entries[order_buf->head] = NULL; 440 b->min_seqn++; 441 order_buf->head = (order_buf->head + 1) & order_buf->mask; 442 } 443 444 return drain_cnt; 445 } 446 447 /* Binary search seqn in ready buffer */ 448 static inline uint32_t 449 ready_buffer_seqn_find(const struct cir_buffer *ready_buf, const uint32_t seqn) 450 { 451 uint32_t mid, value, position, high; 452 uint32_t low = 0; 453 454 if (ready_buf->tail > ready_buf->head) 455 high = ready_buf->tail - ready_buf->head; 456 else 457 high = ready_buf->head - ready_buf->tail; 458 459 while (low <= high) { 460 mid = low + (high - low) / 2; 461 position = (ready_buf->tail + mid) & ready_buf->mask; 462 value = *rte_reorder_seqn(ready_buf->entries[position]); 463 if (seqn == value) 464 return mid; 465 else if (seqn > value) 466 low = mid + 1; 467 else 468 high = mid - 1; 469 } 470 471 return low; 472 } 473 474 unsigned int 475 rte_reorder_drain_up_to_seqn(struct rte_reorder_buffer *b, struct rte_mbuf **mbufs, 476 const unsigned int max_mbufs, const rte_reorder_seqn_t seqn) 477 { 478 uint32_t i, position, offset; 479 unsigned int drain_cnt = 0; 480 481 struct cir_buffer *order_buf = &b->order_buf, 482 *ready_buf = &b->ready_buf; 483 484 /* Seqn in Ready buffer */ 485 if (seqn < b->min_seqn) { 486 /* All sequence numbers are higher then given */ 487 if ((ready_buf->tail == ready_buf->head) || 488 (*rte_reorder_seqn(ready_buf->entries[ready_buf->tail]) > seqn)) 489 return 0; 490 491 offset = ready_buffer_seqn_find(ready_buf, seqn); 492 493 for (i = 0; (i < offset) && (drain_cnt < max_mbufs); i++) { 494 position = (ready_buf->tail + i) & ready_buf->mask; 495 mbufs[drain_cnt++] = ready_buf->entries[position]; 496 ready_buf->entries[position] = NULL; 497 } 498 ready_buf->tail = (ready_buf->tail + i) & ready_buf->mask; 499 500 return drain_cnt; 501 } 502 503 /* Seqn in Order buffer, add all buffers from Ready buffer */ 504 while ((drain_cnt < max_mbufs) && (ready_buf->tail != ready_buf->head)) { 505 mbufs[drain_cnt++] = ready_buf->entries[ready_buf->tail]; 506 ready_buf->entries[ready_buf->tail] = NULL; 507 ready_buf->tail = (ready_buf->tail + 1) & ready_buf->mask; 508 } 509 510 /* Fetch buffers from Order buffer up to given sequence number (exclusive) */ 511 offset = RTE_MIN(seqn - b->min_seqn, b->order_buf.size); 512 for (i = 0; (i < offset) && (drain_cnt < max_mbufs); i++) { 513 position = (order_buf->head + i) & order_buf->mask; 514 if (order_buf->entries[position] == NULL) 515 continue; 516 mbufs[drain_cnt++] = order_buf->entries[position]; 517 order_buf->entries[position] = NULL; 518 } 519 b->min_seqn += i; 520 order_buf->head = (order_buf->head + i) & order_buf->mask; 521 522 return drain_cnt; 523 } 524 525 static bool 526 rte_reorder_is_empty(const struct rte_reorder_buffer *b) 527 { 528 const struct cir_buffer *order_buf = &b->order_buf, *ready_buf = &b->ready_buf; 529 unsigned int i; 530 531 /* Ready buffer does not have gaps */ 532 if (ready_buf->tail != ready_buf->head) 533 return false; 534 535 /* Order buffer could have gaps, iterate */ 536 for (i = 0; i < order_buf->size; i++) { 537 if (order_buf->entries[i] != NULL) 538 return false; 539 } 540 541 return true; 542 } 543 544 unsigned int 545 rte_reorder_min_seqn_set(struct rte_reorder_buffer *b, rte_reorder_seqn_t min_seqn) 546 { 547 if (!rte_reorder_is_empty(b)) 548 return -ENOTEMPTY; 549 550 b->min_seqn = min_seqn; 551 b->is_initialized = true; 552 553 return 0; 554 } 555