1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <string.h> 6 #include <sys/queue.h> 7 8 #include <rte_string_fns.h> 9 #include <rte_log.h> 10 #include <rte_mbuf.h> 11 #include <rte_mbuf_dyn.h> 12 #include <rte_eal_memconfig.h> 13 #include <rte_errno.h> 14 #include <rte_malloc.h> 15 #include <rte_tailq.h> 16 17 #include "rte_reorder.h" 18 19 TAILQ_HEAD(rte_reorder_list, rte_tailq_entry); 20 21 static struct rte_tailq_elem rte_reorder_tailq = { 22 .name = "RTE_REORDER", 23 }; 24 EAL_REGISTER_TAILQ(rte_reorder_tailq) 25 26 #define NO_FLAGS 0 27 #define RTE_REORDER_PREFIX "RO_" 28 #define RTE_REORDER_NAMESIZE 32 29 30 /* Macros for printing using RTE_LOG */ 31 #define RTE_LOGTYPE_REORDER RTE_LOGTYPE_USER1 32 33 #define RTE_REORDER_SEQN_DYNFIELD_NAME "rte_reorder_seqn_dynfield" 34 int rte_reorder_seqn_dynfield_offset = -1; 35 36 /* A generic circular buffer */ 37 struct cir_buffer { 38 unsigned int size; /**< Number of entries that can be stored */ 39 unsigned int mask; /**< [buffer_size - 1]: used for wrap-around */ 40 unsigned int head; /**< insertion point in buffer */ 41 unsigned int tail; /**< extraction point in buffer */ 42 struct rte_mbuf **entries; 43 } __rte_cache_aligned; 44 45 /* The reorder buffer data structure itself */ 46 struct rte_reorder_buffer { 47 char name[RTE_REORDER_NAMESIZE]; 48 uint32_t min_seqn; /**< Lowest seq. number that can be in the buffer */ 49 unsigned int memsize; /**< memory area size of reorder buffer */ 50 struct cir_buffer ready_buf; /**< temp buffer for dequeued entries */ 51 struct cir_buffer order_buf; /**< buffer used to reorder entries */ 52 int is_initialized; 53 } __rte_cache_aligned; 54 55 static void 56 rte_reorder_free_mbufs(struct rte_reorder_buffer *b); 57 58 struct rte_reorder_buffer * 59 rte_reorder_init(struct rte_reorder_buffer *b, unsigned int bufsize, 60 const char *name, unsigned int size) 61 { 62 const unsigned int min_bufsize = sizeof(*b) + 63 (2 * size * sizeof(struct rte_mbuf *)); 64 static const struct rte_mbuf_dynfield reorder_seqn_dynfield_desc = { 65 .name = RTE_REORDER_SEQN_DYNFIELD_NAME, 66 .size = sizeof(rte_reorder_seqn_t), 67 .align = __alignof__(rte_reorder_seqn_t), 68 }; 69 70 if (b == NULL) { 71 RTE_LOG(ERR, REORDER, "Invalid reorder buffer parameter:" 72 " NULL\n"); 73 rte_errno = EINVAL; 74 return NULL; 75 } 76 if (!rte_is_power_of_2(size)) { 77 RTE_LOG(ERR, REORDER, "Invalid reorder buffer size" 78 " - Not a power of 2\n"); 79 rte_errno = EINVAL; 80 return NULL; 81 } 82 if (name == NULL) { 83 RTE_LOG(ERR, REORDER, "Invalid reorder buffer name ptr:" 84 " NULL\n"); 85 rte_errno = EINVAL; 86 return NULL; 87 } 88 if (bufsize < min_bufsize) { 89 RTE_LOG(ERR, REORDER, "Invalid reorder buffer memory size: %u, " 90 "minimum required: %u\n", bufsize, min_bufsize); 91 rte_errno = EINVAL; 92 return NULL; 93 } 94 95 rte_reorder_seqn_dynfield_offset = rte_mbuf_dynfield_register(&reorder_seqn_dynfield_desc); 96 if (rte_reorder_seqn_dynfield_offset < 0) { 97 RTE_LOG(ERR, REORDER, 98 "Failed to register mbuf field for reorder sequence number, rte_errno: %i\n", 99 rte_errno); 100 rte_errno = ENOMEM; 101 return NULL; 102 } 103 104 memset(b, 0, bufsize); 105 strlcpy(b->name, name, sizeof(b->name)); 106 b->memsize = bufsize; 107 b->order_buf.size = b->ready_buf.size = size; 108 b->order_buf.mask = b->ready_buf.mask = size - 1; 109 b->ready_buf.entries = (void *)&b[1]; 110 b->order_buf.entries = RTE_PTR_ADD(&b[1], 111 size * sizeof(b->ready_buf.entries[0])); 112 113 return b; 114 } 115 116 /* 117 * Insert new entry into global list. 118 * Returns pointer to already inserted entry if such exists, or to newly inserted one. 119 */ 120 static struct rte_tailq_entry * 121 rte_reorder_entry_insert(struct rte_tailq_entry *new_te) 122 { 123 struct rte_reorder_list *reorder_list; 124 struct rte_reorder_buffer *b, *nb; 125 struct rte_tailq_entry *te; 126 127 rte_mcfg_tailq_write_lock(); 128 129 reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list); 130 /* guarantee there's no existing */ 131 TAILQ_FOREACH(te, reorder_list, next) { 132 b = (struct rte_reorder_buffer *) te->data; 133 nb = (struct rte_reorder_buffer *) new_te->data; 134 if (strncmp(nb->name, b->name, RTE_REORDER_NAMESIZE) == 0) 135 break; 136 } 137 138 if (te == NULL) { 139 TAILQ_INSERT_TAIL(reorder_list, new_te, next); 140 te = new_te; 141 } 142 143 rte_mcfg_tailq_write_unlock(); 144 145 return te; 146 } 147 148 struct rte_reorder_buffer* 149 rte_reorder_create(const char *name, unsigned socket_id, unsigned int size) 150 { 151 struct rte_reorder_buffer *b = NULL; 152 struct rte_tailq_entry *te, *te_inserted; 153 const unsigned int bufsize = sizeof(struct rte_reorder_buffer) + 154 (2 * size * sizeof(struct rte_mbuf *)); 155 156 /* Check user arguments. */ 157 if (!rte_is_power_of_2(size)) { 158 RTE_LOG(ERR, REORDER, "Invalid reorder buffer size" 159 " - Not a power of 2\n"); 160 rte_errno = EINVAL; 161 return NULL; 162 } 163 if (name == NULL) { 164 RTE_LOG(ERR, REORDER, "Invalid reorder buffer name ptr:" 165 " NULL\n"); 166 rte_errno = EINVAL; 167 return NULL; 168 } 169 170 /* allocate tailq entry */ 171 te = rte_zmalloc("REORDER_TAILQ_ENTRY", sizeof(*te), 0); 172 if (te == NULL) { 173 RTE_LOG(ERR, REORDER, "Failed to allocate tailq entry\n"); 174 rte_errno = ENOMEM; 175 return NULL; 176 } 177 178 /* Allocate memory to store the reorder buffer structure. */ 179 b = rte_zmalloc_socket("REORDER_BUFFER", bufsize, 0, socket_id); 180 if (b == NULL) { 181 RTE_LOG(ERR, REORDER, "Memzone allocation failed\n"); 182 rte_errno = ENOMEM; 183 rte_free(te); 184 return NULL; 185 } else { 186 if (rte_reorder_init(b, bufsize, name, size) == NULL) { 187 rte_free(b); 188 rte_free(te); 189 return NULL; 190 } 191 te->data = (void *)b; 192 } 193 194 te_inserted = rte_reorder_entry_insert(te); 195 if (te_inserted != te) { 196 rte_free(b); 197 rte_free(te); 198 return te_inserted->data; 199 } 200 201 return b; 202 } 203 204 void 205 rte_reorder_reset(struct rte_reorder_buffer *b) 206 { 207 char name[RTE_REORDER_NAMESIZE]; 208 209 rte_reorder_free_mbufs(b); 210 strlcpy(name, b->name, sizeof(name)); 211 /* No error checking as current values should be valid */ 212 rte_reorder_init(b, b->memsize, name, b->order_buf.size); 213 } 214 215 static void 216 rte_reorder_free_mbufs(struct rte_reorder_buffer *b) 217 { 218 unsigned i; 219 220 /* Free up the mbufs of order buffer & ready buffer */ 221 for (i = 0; i < b->order_buf.size; i++) { 222 rte_pktmbuf_free(b->order_buf.entries[i]); 223 rte_pktmbuf_free(b->ready_buf.entries[i]); 224 } 225 } 226 227 void 228 rte_reorder_free(struct rte_reorder_buffer *b) 229 { 230 struct rte_reorder_list *reorder_list; 231 struct rte_tailq_entry *te; 232 233 /* Check user arguments. */ 234 if (b == NULL) 235 return; 236 237 reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list); 238 239 rte_mcfg_tailq_write_lock(); 240 241 /* find our tailq entry */ 242 TAILQ_FOREACH(te, reorder_list, next) { 243 if (te->data == (void *) b) 244 break; 245 } 246 if (te == NULL) { 247 rte_mcfg_tailq_write_unlock(); 248 return; 249 } 250 251 TAILQ_REMOVE(reorder_list, te, next); 252 253 rte_mcfg_tailq_write_unlock(); 254 255 rte_reorder_free_mbufs(b); 256 257 rte_free(b); 258 rte_free(te); 259 } 260 261 struct rte_reorder_buffer * 262 rte_reorder_find_existing(const char *name) 263 { 264 struct rte_reorder_buffer *b = NULL; 265 struct rte_tailq_entry *te; 266 struct rte_reorder_list *reorder_list; 267 268 if (name == NULL) { 269 rte_errno = EINVAL; 270 return NULL; 271 } 272 273 reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list); 274 275 rte_mcfg_tailq_read_lock(); 276 TAILQ_FOREACH(te, reorder_list, next) { 277 b = (struct rte_reorder_buffer *) te->data; 278 if (strncmp(name, b->name, RTE_REORDER_NAMESIZE) == 0) 279 break; 280 } 281 rte_mcfg_tailq_read_unlock(); 282 283 if (te == NULL) { 284 rte_errno = ENOENT; 285 return NULL; 286 } 287 288 return b; 289 } 290 291 static unsigned 292 rte_reorder_fill_overflow(struct rte_reorder_buffer *b, unsigned n) 293 { 294 /* 295 * 1. Move all ready entries that fit to the ready_buf 296 * 2. check if we meet the minimum needed (n). 297 * 3. If not, then skip any gaps and keep moving. 298 * 4. If at any point the ready buffer is full, stop 299 * 5. Return the number of positions the order_buf head has moved 300 */ 301 302 struct cir_buffer *order_buf = &b->order_buf, 303 *ready_buf = &b->ready_buf; 304 305 unsigned int order_head_adv = 0; 306 307 /* 308 * move at least n packets to ready buffer, assuming ready buffer 309 * has room for those packets. 310 */ 311 while (order_head_adv < n && 312 ((ready_buf->head + 1) & ready_buf->mask) != ready_buf->tail) { 313 314 /* if we are blocked waiting on a packet, skip it */ 315 if (order_buf->entries[order_buf->head] == NULL) { 316 order_buf->head = (order_buf->head + 1) & order_buf->mask; 317 order_head_adv++; 318 } 319 320 /* Move all ready entries that fit to the ready_buf */ 321 while (order_buf->entries[order_buf->head] != NULL) { 322 ready_buf->entries[ready_buf->head] = 323 order_buf->entries[order_buf->head]; 324 325 order_buf->entries[order_buf->head] = NULL; 326 order_head_adv++; 327 328 order_buf->head = (order_buf->head + 1) & order_buf->mask; 329 330 if (((ready_buf->head + 1) & ready_buf->mask) == ready_buf->tail) 331 break; 332 333 ready_buf->head = (ready_buf->head + 1) & ready_buf->mask; 334 } 335 } 336 337 b->min_seqn += order_head_adv; 338 /* Return the number of positions the order_buf head has moved */ 339 return order_head_adv; 340 } 341 342 int 343 rte_reorder_insert(struct rte_reorder_buffer *b, struct rte_mbuf *mbuf) 344 { 345 uint32_t offset, position; 346 struct cir_buffer *order_buf; 347 348 if (b == NULL || mbuf == NULL) { 349 rte_errno = EINVAL; 350 return -1; 351 } 352 353 order_buf = &b->order_buf; 354 if (!b->is_initialized) { 355 b->min_seqn = *rte_reorder_seqn(mbuf); 356 b->is_initialized = 1; 357 } 358 359 /* 360 * calculate the offset from the head pointer we need to go. 361 * The subtraction takes care of the sequence number wrapping. 362 * For example (using 16-bit for brevity): 363 * min_seqn = 0xFFFD 364 * mbuf_seqn = 0x0010 365 * offset = 0x0010 - 0xFFFD = 0x13 366 */ 367 offset = *rte_reorder_seqn(mbuf) - b->min_seqn; 368 369 /* 370 * action to take depends on offset. 371 * offset < buffer->size: the mbuf fits within the current window of 372 * sequence numbers we can reorder. EXPECTED CASE. 373 * offset > buffer->size: the mbuf is outside the current window. There 374 * are a number of cases to consider: 375 * 1. The packet sequence is just outside the window, then we need 376 * to see about shifting the head pointer and taking any ready 377 * to return packets out of the ring. If there was a delayed 378 * or dropped packet preventing drains from shifting the window 379 * this case will skip over the dropped packet instead, and any 380 * packets dequeued here will be returned on the next drain call. 381 * 2. The packet sequence number is vastly outside our window, taken 382 * here as having offset greater than twice the buffer size. In 383 * this case, the packet is probably an old or late packet that 384 * was previously skipped, so just enqueue the packet for 385 * immediate return on the next drain call, or else return error. 386 */ 387 if (offset < b->order_buf.size) { 388 position = (order_buf->head + offset) & order_buf->mask; 389 order_buf->entries[position] = mbuf; 390 } else if (offset < 2 * b->order_buf.size) { 391 if (rte_reorder_fill_overflow(b, offset + 1 - order_buf->size) 392 < (offset + 1 - order_buf->size)) { 393 /* Put in handling for enqueue straight to output */ 394 rte_errno = ENOSPC; 395 return -1; 396 } 397 offset = *rte_reorder_seqn(mbuf) - b->min_seqn; 398 position = (order_buf->head + offset) & order_buf->mask; 399 order_buf->entries[position] = mbuf; 400 } else { 401 /* Put in handling for enqueue straight to output */ 402 rte_errno = ERANGE; 403 return -1; 404 } 405 return 0; 406 } 407 408 unsigned int 409 rte_reorder_drain(struct rte_reorder_buffer *b, struct rte_mbuf **mbufs, 410 unsigned max_mbufs) 411 { 412 unsigned int drain_cnt = 0; 413 414 struct cir_buffer *order_buf = &b->order_buf, 415 *ready_buf = &b->ready_buf; 416 417 /* Try to fetch requested number of mbufs from ready buffer */ 418 while ((drain_cnt < max_mbufs) && (ready_buf->tail != ready_buf->head)) { 419 mbufs[drain_cnt++] = ready_buf->entries[ready_buf->tail]; 420 ready_buf->entries[ready_buf->tail] = NULL; 421 ready_buf->tail = (ready_buf->tail + 1) & ready_buf->mask; 422 } 423 424 /* 425 * If requested number of buffers not fetched from ready buffer, fetch 426 * remaining buffers from order buffer 427 */ 428 while ((drain_cnt < max_mbufs) && 429 (order_buf->entries[order_buf->head] != NULL)) { 430 mbufs[drain_cnt++] = order_buf->entries[order_buf->head]; 431 order_buf->entries[order_buf->head] = NULL; 432 b->min_seqn++; 433 order_buf->head = (order_buf->head + 1) & order_buf->mask; 434 } 435 436 return drain_cnt; 437 } 438 439 /* Binary search seqn in ready buffer */ 440 static inline uint32_t 441 ready_buffer_seqn_find(const struct cir_buffer *ready_buf, const uint32_t seqn) 442 { 443 uint32_t mid, value, position, high; 444 uint32_t low = 0; 445 446 if (ready_buf->tail > ready_buf->head) 447 high = ready_buf->tail - ready_buf->head; 448 else 449 high = ready_buf->head - ready_buf->tail; 450 451 while (low <= high) { 452 mid = low + (high - low) / 2; 453 position = (ready_buf->tail + mid) & ready_buf->mask; 454 value = *rte_reorder_seqn(ready_buf->entries[position]); 455 if (seqn == value) 456 return mid; 457 else if (seqn > value) 458 low = mid + 1; 459 else 460 high = mid - 1; 461 } 462 463 return low; 464 } 465 466 unsigned int 467 rte_reorder_drain_up_to_seqn(struct rte_reorder_buffer *b, struct rte_mbuf **mbufs, 468 const unsigned int max_mbufs, const rte_reorder_seqn_t seqn) 469 { 470 uint32_t i, position, offset; 471 unsigned int drain_cnt = 0; 472 473 struct cir_buffer *order_buf = &b->order_buf, 474 *ready_buf = &b->ready_buf; 475 476 /* Seqn in Ready buffer */ 477 if (seqn < b->min_seqn) { 478 /* All sequence numbers are higher then given */ 479 if ((ready_buf->tail == ready_buf->head) || 480 (*rte_reorder_seqn(ready_buf->entries[ready_buf->tail]) > seqn)) 481 return 0; 482 483 offset = ready_buffer_seqn_find(ready_buf, seqn); 484 485 for (i = 0; (i < offset) && (drain_cnt < max_mbufs); i++) { 486 position = (ready_buf->tail + i) & ready_buf->mask; 487 mbufs[drain_cnt++] = ready_buf->entries[position]; 488 ready_buf->entries[position] = NULL; 489 } 490 ready_buf->tail = (ready_buf->tail + i) & ready_buf->mask; 491 492 return drain_cnt; 493 } 494 495 /* Seqn in Order buffer, add all buffers from Ready buffer */ 496 while ((drain_cnt < max_mbufs) && (ready_buf->tail != ready_buf->head)) { 497 mbufs[drain_cnt++] = ready_buf->entries[ready_buf->tail]; 498 ready_buf->entries[ready_buf->tail] = NULL; 499 ready_buf->tail = (ready_buf->tail + 1) & ready_buf->mask; 500 } 501 502 /* Fetch buffers from Order buffer up to given sequence number (exclusive) */ 503 offset = RTE_MIN(seqn - b->min_seqn, b->order_buf.size); 504 for (i = 0; (i < offset) && (drain_cnt < max_mbufs); i++) { 505 position = (order_buf->head + i) & order_buf->mask; 506 if (order_buf->entries[position] == NULL) 507 continue; 508 mbufs[drain_cnt++] = order_buf->entries[position]; 509 order_buf->entries[position] = NULL; 510 } 511 b->min_seqn += i; 512 order_buf->head = (order_buf->head + i) & order_buf->mask; 513 514 return drain_cnt; 515 } 516 517 static bool 518 rte_reorder_is_empty(const struct rte_reorder_buffer *b) 519 { 520 const struct cir_buffer *order_buf = &b->order_buf, *ready_buf = &b->ready_buf; 521 unsigned int i; 522 523 /* Ready buffer does not have gaps */ 524 if (ready_buf->tail != ready_buf->head) 525 return false; 526 527 /* Order buffer could have gaps, iterate */ 528 for (i = 0; i < order_buf->size; i++) { 529 if (order_buf->entries[i] != NULL) 530 return false; 531 } 532 533 return true; 534 } 535 536 unsigned int 537 rte_reorder_min_seqn_set(struct rte_reorder_buffer *b, rte_reorder_seqn_t min_seqn) 538 { 539 if (!rte_reorder_is_empty(b)) 540 return -ENOTEMPTY; 541 542 b->min_seqn = min_seqn; 543 b->is_initialized = true; 544 545 return 0; 546 } 547