1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 1982, 1986, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright(c) 2010-2014 Intel Corporation. 5 * Copyright(c) 2014 6WIND S.A. 6 * All rights reserved. 7 */ 8 9 #ifndef _RTE_IP_H_ 10 #define _RTE_IP_H_ 11 12 /** 13 * @file 14 * 15 * IP-related defines 16 */ 17 18 #include <stdint.h> 19 20 #ifdef RTE_EXEC_ENV_WINDOWS 21 #include <ws2tcpip.h> 22 #else 23 #include <sys/socket.h> 24 #include <sys/types.h> 25 #include <netinet/in.h> 26 #include <arpa/inet.h> 27 #include <netinet/ip.h> 28 #include <netinet/ip6.h> 29 #endif 30 31 #include <rte_byteorder.h> 32 #include <rte_mbuf.h> 33 34 #ifdef __cplusplus 35 extern "C" { 36 #endif 37 38 /** 39 * IPv4 Header 40 */ 41 struct rte_ipv4_hdr { 42 __extension__ 43 union { 44 uint8_t version_ihl; /**< version and header length */ 45 struct { 46 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 47 uint8_t ihl:4; /**< header length */ 48 uint8_t version:4; /**< version */ 49 #elif RTE_BYTE_ORDER == RTE_BIG_ENDIAN 50 uint8_t version:4; /**< version */ 51 uint8_t ihl:4; /**< header length */ 52 #endif 53 }; 54 }; 55 uint8_t type_of_service; /**< type of service */ 56 rte_be16_t total_length; /**< length of packet */ 57 rte_be16_t packet_id; /**< packet ID */ 58 rte_be16_t fragment_offset; /**< fragmentation offset */ 59 uint8_t time_to_live; /**< time to live */ 60 uint8_t next_proto_id; /**< protocol ID */ 61 rte_be16_t hdr_checksum; /**< header checksum */ 62 rte_be32_t src_addr; /**< source address */ 63 rte_be32_t dst_addr; /**< destination address */ 64 } __rte_packed; 65 66 /** Create IPv4 address */ 67 #define RTE_IPV4(a, b, c, d) ((uint32_t)(((a) & 0xff) << 24) | \ 68 (((b) & 0xff) << 16) | \ 69 (((c) & 0xff) << 8) | \ 70 ((d) & 0xff)) 71 72 /** Maximal IPv4 packet length (including a header) */ 73 #define RTE_IPV4_MAX_PKT_LEN 65535 74 75 /** Internet header length mask for version_ihl field */ 76 #define RTE_IPV4_HDR_IHL_MASK (0x0f) 77 /** 78 * Internet header length field multiplier (IHL field specifies overall header 79 * length in number of 4-byte words) 80 */ 81 #define RTE_IPV4_IHL_MULTIPLIER (4) 82 83 /* Type of Service fields */ 84 #define RTE_IPV4_HDR_DSCP_MASK (0xfc) 85 #define RTE_IPV4_HDR_ECN_MASK (0x03) 86 #define RTE_IPV4_HDR_ECN_CE RTE_IPV4_HDR_ECN_MASK 87 88 /* Fragment Offset * Flags. */ 89 #define RTE_IPV4_HDR_DF_SHIFT 14 90 #define RTE_IPV4_HDR_MF_SHIFT 13 91 #define RTE_IPV4_HDR_FO_SHIFT 3 92 93 #define RTE_IPV4_HDR_DF_FLAG (1 << RTE_IPV4_HDR_DF_SHIFT) 94 #define RTE_IPV4_HDR_MF_FLAG (1 << RTE_IPV4_HDR_MF_SHIFT) 95 96 #define RTE_IPV4_HDR_OFFSET_MASK ((1 << RTE_IPV4_HDR_MF_SHIFT) - 1) 97 98 #define RTE_IPV4_HDR_OFFSET_UNITS 8 99 100 /* IPv4 options */ 101 #define RTE_IPV4_HDR_OPT_EOL 0 102 #define RTE_IPV4_HDR_OPT_NOP 1 103 #define RTE_IPV4_HDR_OPT_COPIED(v) ((v) & 0x80) 104 #define RTE_IPV4_HDR_OPT_MAX_LEN 40 105 106 /* 107 * IPv4 address types 108 */ 109 #define RTE_IPV4_ANY ((uint32_t)0x00000000) /**< 0.0.0.0 */ 110 #define RTE_IPV4_LOOPBACK ((uint32_t)0x7f000001) /**< 127.0.0.1 */ 111 #define RTE_IPV4_BROADCAST ((uint32_t)0xe0000000) /**< 224.0.0.0 */ 112 #define RTE_IPV4_ALLHOSTS_GROUP ((uint32_t)0xe0000001) /**< 224.0.0.1 */ 113 #define RTE_IPV4_ALLRTRS_GROUP ((uint32_t)0xe0000002) /**< 224.0.0.2 */ 114 #define RTE_IPV4_MAX_LOCAL_GROUP ((uint32_t)0xe00000ff) /**< 224.0.0.255 */ 115 116 /* 117 * IPv4 Multicast-related macros 118 */ 119 #define RTE_IPV4_MIN_MCAST \ 120 RTE_IPV4(224, 0, 0, 0) /**< Minimal IPv4-multicast address */ 121 #define RTE_IPV4_MAX_MCAST \ 122 RTE_IPV4(239, 255, 255, 255) /**< Maximum IPv4 multicast address */ 123 124 #define RTE_IS_IPV4_MCAST(x) \ 125 ((x) >= RTE_IPV4_MIN_MCAST && (x) <= RTE_IPV4_MAX_MCAST) 126 /**< check if IPv4 address is multicast */ 127 128 /* IPv4 default fields values */ 129 #define RTE_IPV4_MIN_IHL (0x5) 130 #define RTE_IPV4_VHL_DEF ((IPVERSION << 4) | RTE_IPV4_MIN_IHL) 131 132 /** 133 * Get the length of an IPv4 header. 134 * 135 * @param ipv4_hdr 136 * Pointer to the IPv4 header. 137 * @return 138 * The length of the IPv4 header (with options if present) in bytes. 139 */ 140 static inline uint8_t 141 rte_ipv4_hdr_len(const struct rte_ipv4_hdr *ipv4_hdr) 142 { 143 return (uint8_t)((ipv4_hdr->version_ihl & RTE_IPV4_HDR_IHL_MASK) * 144 RTE_IPV4_IHL_MULTIPLIER); 145 } 146 147 /** 148 * @internal Calculate a sum of all words in the buffer. 149 * Helper routine for the rte_raw_cksum(). 150 * 151 * @param buf 152 * Pointer to the buffer. 153 * @param len 154 * Length of the buffer. 155 * @param sum 156 * Initial value of the sum. 157 * @return 158 * sum += Sum of all words in the buffer. 159 */ 160 static inline uint32_t 161 __rte_raw_cksum(const void *buf, size_t len, uint32_t sum) 162 { 163 const void *end; 164 165 for (end = RTE_PTR_ADD(buf, RTE_ALIGN_FLOOR(len, sizeof(uint16_t))); 166 buf != end; buf = RTE_PTR_ADD(buf, sizeof(uint16_t))) { 167 uint16_t v; 168 169 memcpy(&v, buf, sizeof(uint16_t)); 170 sum += v; 171 } 172 173 /* if length is odd, keeping it byte order independent */ 174 if (unlikely(len % 2)) { 175 uint16_t left = 0; 176 177 memcpy(&left, end, 1); 178 sum += left; 179 } 180 181 return sum; 182 } 183 184 /** 185 * @internal Reduce a sum to the non-complemented checksum. 186 * Helper routine for the rte_raw_cksum(). 187 * 188 * @param sum 189 * Value of the sum. 190 * @return 191 * The non-complemented checksum. 192 */ 193 static inline uint16_t 194 __rte_raw_cksum_reduce(uint32_t sum) 195 { 196 sum = ((sum & 0xffff0000) >> 16) + (sum & 0xffff); 197 sum = ((sum & 0xffff0000) >> 16) + (sum & 0xffff); 198 return (uint16_t)sum; 199 } 200 201 /** 202 * Process the non-complemented checksum of a buffer. 203 * 204 * @param buf 205 * Pointer to the buffer. 206 * @param len 207 * Length of the buffer. 208 * @return 209 * The non-complemented checksum. 210 */ 211 static inline uint16_t 212 rte_raw_cksum(const void *buf, size_t len) 213 { 214 uint32_t sum; 215 216 sum = __rte_raw_cksum(buf, len, 0); 217 return __rte_raw_cksum_reduce(sum); 218 } 219 220 /** 221 * Compute the raw (non complemented) checksum of a packet. 222 * 223 * @param m 224 * The pointer to the mbuf. 225 * @param off 226 * The offset in bytes to start the checksum. 227 * @param len 228 * The length in bytes of the data to checksum. 229 * @param cksum 230 * A pointer to the checksum, filled on success. 231 * @return 232 * 0 on success, -1 on error (bad length or offset). 233 */ 234 static inline int 235 rte_raw_cksum_mbuf(const struct rte_mbuf *m, uint32_t off, uint32_t len, 236 uint16_t *cksum) 237 { 238 const struct rte_mbuf *seg; 239 const char *buf; 240 uint32_t sum, tmp; 241 uint32_t seglen, done; 242 243 /* easy case: all data in the first segment */ 244 if (off + len <= rte_pktmbuf_data_len(m)) { 245 *cksum = rte_raw_cksum(rte_pktmbuf_mtod_offset(m, 246 const char *, off), len); 247 return 0; 248 } 249 250 if (unlikely(off + len > rte_pktmbuf_pkt_len(m))) 251 return -1; /* invalid params, return a dummy value */ 252 253 /* else browse the segment to find offset */ 254 seglen = 0; 255 for (seg = m; seg != NULL; seg = seg->next) { 256 seglen = rte_pktmbuf_data_len(seg); 257 if (off < seglen) 258 break; 259 off -= seglen; 260 } 261 RTE_ASSERT(seg != NULL); 262 if (seg == NULL) 263 return -1; 264 seglen -= off; 265 buf = rte_pktmbuf_mtod_offset(seg, const char *, off); 266 if (seglen >= len) { 267 /* all in one segment */ 268 *cksum = rte_raw_cksum(buf, len); 269 return 0; 270 } 271 272 /* hard case: process checksum of several segments */ 273 sum = 0; 274 done = 0; 275 for (;;) { 276 tmp = __rte_raw_cksum(buf, seglen, 0); 277 if (done & 1) 278 tmp = rte_bswap16((uint16_t)tmp); 279 sum += tmp; 280 done += seglen; 281 if (done == len) 282 break; 283 seg = seg->next; 284 buf = rte_pktmbuf_mtod(seg, const char *); 285 seglen = rte_pktmbuf_data_len(seg); 286 if (seglen > len - done) 287 seglen = len - done; 288 } 289 290 *cksum = __rte_raw_cksum_reduce(sum); 291 return 0; 292 } 293 294 /** 295 * Process the IPv4 checksum of an IPv4 header. 296 * 297 * The checksum field must be set to 0 by the caller. 298 * 299 * @param ipv4_hdr 300 * The pointer to the contiguous IPv4 header. 301 * @return 302 * The complemented checksum to set in the IP packet. 303 */ 304 static inline uint16_t 305 rte_ipv4_cksum(const struct rte_ipv4_hdr *ipv4_hdr) 306 { 307 uint16_t cksum; 308 cksum = rte_raw_cksum(ipv4_hdr, rte_ipv4_hdr_len(ipv4_hdr)); 309 return (uint16_t)~cksum; 310 } 311 312 /** 313 * Process the pseudo-header checksum of an IPv4 header. 314 * 315 * The checksum field must be set to 0 by the caller. 316 * 317 * Depending on the ol_flags, the pseudo-header checksum expected by the 318 * drivers is not the same. For instance, when TSO is enabled, the IP 319 * payload length must not be included in the packet. 320 * 321 * When ol_flags is 0, it computes the standard pseudo-header checksum. 322 * 323 * @param ipv4_hdr 324 * The pointer to the contiguous IPv4 header. 325 * @param ol_flags 326 * The ol_flags of the associated mbuf. 327 * @return 328 * The non-complemented checksum to set in the L4 header. 329 */ 330 static inline uint16_t 331 rte_ipv4_phdr_cksum(const struct rte_ipv4_hdr *ipv4_hdr, uint64_t ol_flags) 332 { 333 struct ipv4_psd_header { 334 uint32_t src_addr; /* IP address of source host. */ 335 uint32_t dst_addr; /* IP address of destination host. */ 336 uint8_t zero; /* zero. */ 337 uint8_t proto; /* L4 protocol type. */ 338 uint16_t len; /* L4 length. */ 339 } psd_hdr; 340 341 uint32_t l3_len; 342 343 psd_hdr.src_addr = ipv4_hdr->src_addr; 344 psd_hdr.dst_addr = ipv4_hdr->dst_addr; 345 psd_hdr.zero = 0; 346 psd_hdr.proto = ipv4_hdr->next_proto_id; 347 if (ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) { 348 psd_hdr.len = 0; 349 } else { 350 l3_len = rte_be_to_cpu_16(ipv4_hdr->total_length); 351 psd_hdr.len = rte_cpu_to_be_16((uint16_t)(l3_len - 352 rte_ipv4_hdr_len(ipv4_hdr))); 353 } 354 return rte_raw_cksum(&psd_hdr, sizeof(psd_hdr)); 355 } 356 357 /** 358 * @internal Calculate the non-complemented IPv4 L4 checksum 359 */ 360 static inline uint16_t 361 __rte_ipv4_udptcp_cksum(const struct rte_ipv4_hdr *ipv4_hdr, const void *l4_hdr) 362 { 363 uint32_t cksum; 364 uint32_t l3_len, l4_len; 365 uint8_t ip_hdr_len; 366 367 ip_hdr_len = rte_ipv4_hdr_len(ipv4_hdr); 368 l3_len = rte_be_to_cpu_16(ipv4_hdr->total_length); 369 if (l3_len < ip_hdr_len) 370 return 0; 371 372 l4_len = l3_len - ip_hdr_len; 373 374 cksum = rte_raw_cksum(l4_hdr, l4_len); 375 cksum += rte_ipv4_phdr_cksum(ipv4_hdr, 0); 376 377 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff); 378 379 return (uint16_t)cksum; 380 } 381 382 /** 383 * Process the IPv4 UDP or TCP checksum. 384 * 385 * The layer 4 checksum must be set to 0 in the L4 header by the caller. 386 * 387 * @param ipv4_hdr 388 * The pointer to the contiguous IPv4 header. 389 * @param l4_hdr 390 * The pointer to the beginning of the L4 header. 391 * @return 392 * The complemented checksum to set in the L4 header. 393 */ 394 static inline uint16_t 395 rte_ipv4_udptcp_cksum(const struct rte_ipv4_hdr *ipv4_hdr, const void *l4_hdr) 396 { 397 uint16_t cksum = __rte_ipv4_udptcp_cksum(ipv4_hdr, l4_hdr); 398 399 cksum = ~cksum; 400 401 /* 402 * Per RFC 768: If the computed checksum is zero for UDP, 403 * it is transmitted as all ones 404 * (the equivalent in one's complement arithmetic). 405 */ 406 if (cksum == 0 && ipv4_hdr->next_proto_id == IPPROTO_UDP) 407 cksum = 0xffff; 408 409 return cksum; 410 } 411 412 /** 413 * @internal Calculate the non-complemented IPv4 L4 checksum of a packet 414 */ 415 static inline uint16_t 416 __rte_ipv4_udptcp_cksum_mbuf(const struct rte_mbuf *m, 417 const struct rte_ipv4_hdr *ipv4_hdr, 418 uint16_t l4_off) 419 { 420 uint16_t raw_cksum; 421 uint32_t cksum; 422 uint16_t len; 423 424 if (unlikely(l4_off > m->pkt_len)) 425 return 0; /* invalid params, return a dummy value */ 426 427 len = rte_be_to_cpu_16(ipv4_hdr->total_length) - (uint16_t)rte_ipv4_hdr_len(ipv4_hdr); 428 429 if (rte_raw_cksum_mbuf(m, l4_off, len, &raw_cksum)) 430 return 0; 431 432 cksum = raw_cksum + rte_ipv4_phdr_cksum(ipv4_hdr, 0); 433 434 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff); 435 436 return (uint16_t)cksum; 437 } 438 439 /** 440 * Compute the IPv4 UDP/TCP checksum of a packet. 441 * 442 * @param m 443 * The pointer to the mbuf. 444 * @param ipv4_hdr 445 * The pointer to the contiguous IPv4 header. 446 * @param l4_off 447 * The offset in bytes to start L4 checksum. 448 * @return 449 * The complemented checksum to set in the L4 header. 450 */ 451 static inline uint16_t 452 rte_ipv4_udptcp_cksum_mbuf(const struct rte_mbuf *m, 453 const struct rte_ipv4_hdr *ipv4_hdr, uint16_t l4_off) 454 { 455 uint16_t cksum = __rte_ipv4_udptcp_cksum_mbuf(m, ipv4_hdr, l4_off); 456 457 cksum = ~cksum; 458 459 /* 460 * Per RFC 768: If the computed checksum is zero for UDP, 461 * it is transmitted as all ones 462 * (the equivalent in one's complement arithmetic). 463 */ 464 if (cksum == 0 && ipv4_hdr->next_proto_id == IPPROTO_UDP) 465 cksum = 0xffff; 466 467 return cksum; 468 } 469 470 /** 471 * Validate the IPv4 UDP or TCP checksum. 472 * 473 * In case of UDP, the caller must first check if udp_hdr->dgram_cksum is 0 474 * (i.e. no checksum). 475 * 476 * @param ipv4_hdr 477 * The pointer to the contiguous IPv4 header. 478 * @param l4_hdr 479 * The pointer to the beginning of the L4 header. 480 * @return 481 * Return 0 if the checksum is correct, else -1. 482 */ 483 static inline int 484 rte_ipv4_udptcp_cksum_verify(const struct rte_ipv4_hdr *ipv4_hdr, 485 const void *l4_hdr) 486 { 487 uint16_t cksum = __rte_ipv4_udptcp_cksum(ipv4_hdr, l4_hdr); 488 489 if (cksum != 0xffff) 490 return -1; 491 492 return 0; 493 } 494 495 /** 496 * Verify the IPv4 UDP/TCP checksum of a packet. 497 * 498 * In case of UDP, the caller must first check if udp_hdr->dgram_cksum is 0 499 * (i.e. no checksum). 500 * 501 * @param m 502 * The pointer to the mbuf. 503 * @param ipv4_hdr 504 * The pointer to the contiguous IPv4 header. 505 * @param l4_off 506 * The offset in bytes to start L4 checksum. 507 * @return 508 * Return 0 if the checksum is correct, else -1. 509 */ 510 static inline int 511 rte_ipv4_udptcp_cksum_mbuf_verify(const struct rte_mbuf *m, 512 const struct rte_ipv4_hdr *ipv4_hdr, 513 uint16_t l4_off) 514 { 515 uint16_t cksum = __rte_ipv4_udptcp_cksum_mbuf(m, ipv4_hdr, l4_off); 516 517 if (cksum != 0xffff) 518 return -1; 519 520 return 0; 521 } 522 523 /** 524 * IPv6 Header 525 */ 526 struct rte_ipv6_hdr { 527 rte_be32_t vtc_flow; /**< IP version, traffic class & flow label. */ 528 rte_be16_t payload_len; /**< IP payload size, including ext. headers */ 529 uint8_t proto; /**< Protocol, next header. */ 530 uint8_t hop_limits; /**< Hop limits. */ 531 uint8_t src_addr[16]; /**< IP address of source host. */ 532 uint8_t dst_addr[16]; /**< IP address of destination host(s). */ 533 } __rte_packed; 534 535 /* IPv6 routing extension type definition. */ 536 #define RTE_IPV6_SRCRT_TYPE_4 4 537 538 /** 539 * IPv6 Routing Extension Header 540 */ 541 struct rte_ipv6_routing_ext { 542 uint8_t next_hdr; /**< Protocol, next header. */ 543 uint8_t hdr_len; /**< Header length. */ 544 uint8_t type; /**< Extension header type. */ 545 uint8_t segments_left; /**< Valid segments number. */ 546 __extension__ 547 union { 548 rte_be32_t flags; /**< Packet control data per type. */ 549 struct { 550 uint8_t last_entry; /**< The last_entry field of SRH */ 551 uint8_t flag; /**< Packet flag. */ 552 rte_be16_t tag; /**< Packet tag. */ 553 }; 554 }; 555 /* Next are 128-bit IPv6 address fields to describe segments. */ 556 } __rte_packed; 557 558 /* IPv6 vtc_flow: IPv / TC / flow_label */ 559 #define RTE_IPV6_HDR_FL_SHIFT 0 560 #define RTE_IPV6_HDR_TC_SHIFT 20 561 #define RTE_IPV6_HDR_FL_MASK ((1u << RTE_IPV6_HDR_TC_SHIFT) - 1) 562 #define RTE_IPV6_HDR_TC_MASK (0xff << RTE_IPV6_HDR_TC_SHIFT) 563 #define RTE_IPV6_HDR_DSCP_MASK (0xfc << RTE_IPV6_HDR_TC_SHIFT) 564 #define RTE_IPV6_HDR_ECN_MASK (0x03 << RTE_IPV6_HDR_TC_SHIFT) 565 #define RTE_IPV6_HDR_ECN_CE RTE_IPV6_HDR_ECN_MASK 566 567 #define RTE_IPV6_MIN_MTU 1280 /**< Minimum MTU for IPv6, see RFC 8200. */ 568 569 /** 570 * Process the pseudo-header checksum of an IPv6 header. 571 * 572 * Depending on the ol_flags, the pseudo-header checksum expected by the 573 * drivers is not the same. For instance, when TSO is enabled, the IPv6 574 * payload length must not be included in the packet. 575 * 576 * When ol_flags is 0, it computes the standard pseudo-header checksum. 577 * 578 * @param ipv6_hdr 579 * The pointer to the contiguous IPv6 header. 580 * @param ol_flags 581 * The ol_flags of the associated mbuf. 582 * @return 583 * The non-complemented checksum to set in the L4 header. 584 */ 585 static inline uint16_t 586 rte_ipv6_phdr_cksum(const struct rte_ipv6_hdr *ipv6_hdr, uint64_t ol_flags) 587 { 588 uint32_t sum; 589 struct { 590 rte_be32_t len; /* L4 length. */ 591 rte_be32_t proto; /* L4 protocol - top 3 bytes must be zero */ 592 } psd_hdr; 593 594 psd_hdr.proto = (uint32_t)(ipv6_hdr->proto << 24); 595 if (ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) { 596 psd_hdr.len = 0; 597 } else { 598 psd_hdr.len = ipv6_hdr->payload_len; 599 } 600 601 sum = __rte_raw_cksum(ipv6_hdr->src_addr, 602 sizeof(ipv6_hdr->src_addr) + sizeof(ipv6_hdr->dst_addr), 603 0); 604 sum = __rte_raw_cksum(&psd_hdr, sizeof(psd_hdr), sum); 605 return __rte_raw_cksum_reduce(sum); 606 } 607 608 /** 609 * @internal Calculate the non-complemented IPv6 L4 checksum 610 */ 611 static inline uint16_t 612 __rte_ipv6_udptcp_cksum(const struct rte_ipv6_hdr *ipv6_hdr, const void *l4_hdr) 613 { 614 uint32_t cksum; 615 uint32_t l4_len; 616 617 l4_len = rte_be_to_cpu_16(ipv6_hdr->payload_len); 618 619 cksum = rte_raw_cksum(l4_hdr, l4_len); 620 cksum += rte_ipv6_phdr_cksum(ipv6_hdr, 0); 621 622 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff); 623 624 return (uint16_t)cksum; 625 } 626 627 /** 628 * Process the IPv6 UDP or TCP checksum. 629 * 630 * The IPv6 header must not be followed by extension headers. The layer 4 631 * checksum must be set to 0 in the L4 header by the caller. 632 * 633 * @param ipv6_hdr 634 * The pointer to the contiguous IPv6 header. 635 * @param l4_hdr 636 * The pointer to the beginning of the L4 header. 637 * @return 638 * The complemented checksum to set in the L4 header. 639 */ 640 static inline uint16_t 641 rte_ipv6_udptcp_cksum(const struct rte_ipv6_hdr *ipv6_hdr, const void *l4_hdr) 642 { 643 uint16_t cksum = __rte_ipv6_udptcp_cksum(ipv6_hdr, l4_hdr); 644 645 cksum = ~cksum; 646 647 /* 648 * Per RFC 768: If the computed checksum is zero for UDP, 649 * it is transmitted as all ones 650 * (the equivalent in one's complement arithmetic). 651 */ 652 if (cksum == 0 && ipv6_hdr->proto == IPPROTO_UDP) 653 cksum = 0xffff; 654 655 return cksum; 656 } 657 658 /** 659 * @internal Calculate the non-complemented IPv6 L4 checksum of a packet 660 */ 661 static inline uint16_t 662 __rte_ipv6_udptcp_cksum_mbuf(const struct rte_mbuf *m, 663 const struct rte_ipv6_hdr *ipv6_hdr, 664 uint16_t l4_off) 665 { 666 uint16_t raw_cksum; 667 uint32_t cksum; 668 669 if (unlikely(l4_off > m->pkt_len)) 670 return 0; /* invalid params, return a dummy value */ 671 672 if (rte_raw_cksum_mbuf(m, l4_off, rte_be_to_cpu_16(ipv6_hdr->payload_len), &raw_cksum)) 673 return 0; 674 675 cksum = raw_cksum + rte_ipv6_phdr_cksum(ipv6_hdr, 0); 676 677 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff); 678 679 return (uint16_t)cksum; 680 } 681 682 /** 683 * Process the IPv6 UDP or TCP checksum of a packet. 684 * 685 * The IPv6 header must not be followed by extension headers. The layer 4 686 * checksum must be set to 0 in the L4 header by the caller. 687 * 688 * @param m 689 * The pointer to the mbuf. 690 * @param ipv6_hdr 691 * The pointer to the contiguous IPv6 header. 692 * @param l4_off 693 * The offset in bytes to start L4 checksum. 694 * @return 695 * The complemented checksum to set in the L4 header. 696 */ 697 static inline uint16_t 698 rte_ipv6_udptcp_cksum_mbuf(const struct rte_mbuf *m, 699 const struct rte_ipv6_hdr *ipv6_hdr, uint16_t l4_off) 700 { 701 uint16_t cksum = __rte_ipv6_udptcp_cksum_mbuf(m, ipv6_hdr, l4_off); 702 703 cksum = ~cksum; 704 705 /* 706 * Per RFC 768: If the computed checksum is zero for UDP, 707 * it is transmitted as all ones 708 * (the equivalent in one's complement arithmetic). 709 */ 710 if (cksum == 0 && ipv6_hdr->proto == IPPROTO_UDP) 711 cksum = 0xffff; 712 713 return cksum; 714 } 715 716 /** 717 * Validate the IPv6 UDP or TCP checksum. 718 * 719 * In case of UDP, the caller must first check if udp_hdr->dgram_cksum is 0: 720 * this is either invalid or means no checksum in some situations. See 8.1 721 * (Upper-Layer Checksums) in RFC 8200. 722 * 723 * @param ipv6_hdr 724 * The pointer to the contiguous IPv6 header. 725 * @param l4_hdr 726 * The pointer to the beginning of the L4 header. 727 * @return 728 * Return 0 if the checksum is correct, else -1. 729 */ 730 static inline int 731 rte_ipv6_udptcp_cksum_verify(const struct rte_ipv6_hdr *ipv6_hdr, 732 const void *l4_hdr) 733 { 734 uint16_t cksum = __rte_ipv6_udptcp_cksum(ipv6_hdr, l4_hdr); 735 736 if (cksum != 0xffff) 737 return -1; 738 739 return 0; 740 } 741 742 /** 743 * Validate the IPv6 UDP or TCP checksum of a packet. 744 * 745 * In case of UDP, the caller must first check if udp_hdr->dgram_cksum is 0: 746 * this is either invalid or means no checksum in some situations. See 8.1 747 * (Upper-Layer Checksums) in RFC 8200. 748 * 749 * @param m 750 * The pointer to the mbuf. 751 * @param ipv6_hdr 752 * The pointer to the contiguous IPv6 header. 753 * @param l4_off 754 * The offset in bytes to start L4 checksum. 755 * @return 756 * Return 0 if the checksum is correct, else -1. 757 */ 758 static inline int 759 rte_ipv6_udptcp_cksum_mbuf_verify(const struct rte_mbuf *m, 760 const struct rte_ipv6_hdr *ipv6_hdr, 761 uint16_t l4_off) 762 { 763 uint16_t cksum = __rte_ipv6_udptcp_cksum_mbuf(m, ipv6_hdr, l4_off); 764 765 if (cksum != 0xffff) 766 return -1; 767 768 return 0; 769 } 770 771 /** IPv6 fragment extension header. */ 772 #define RTE_IPV6_EHDR_MF_SHIFT 0 773 #define RTE_IPV6_EHDR_MF_MASK 1 774 #define RTE_IPV6_EHDR_FO_SHIFT 3 775 #define RTE_IPV6_EHDR_FO_MASK (~((1 << RTE_IPV6_EHDR_FO_SHIFT) - 1)) 776 #define RTE_IPV6_EHDR_FO_ALIGN (1 << RTE_IPV6_EHDR_FO_SHIFT) 777 778 #define RTE_IPV6_FRAG_USED_MASK (RTE_IPV6_EHDR_MF_MASK | RTE_IPV6_EHDR_FO_MASK) 779 780 #define RTE_IPV6_GET_MF(x) ((x) & RTE_IPV6_EHDR_MF_MASK) 781 #define RTE_IPV6_GET_FO(x) ((x) >> RTE_IPV6_EHDR_FO_SHIFT) 782 783 #define RTE_IPV6_SET_FRAG_DATA(fo, mf) \ 784 (((fo) & RTE_IPV6_EHDR_FO_MASK) | ((mf) & RTE_IPV6_EHDR_MF_MASK)) 785 786 struct rte_ipv6_fragment_ext { 787 uint8_t next_header; /**< Next header type */ 788 uint8_t reserved; /**< Reserved */ 789 rte_be16_t frag_data; /**< All fragmentation data */ 790 rte_be32_t id; /**< Packet ID */ 791 } __rte_packed; 792 793 /* IPv6 fragment extension header size */ 794 #define RTE_IPV6_FRAG_HDR_SIZE sizeof(struct rte_ipv6_fragment_ext) 795 796 /** 797 * Parse next IPv6 header extension 798 * 799 * This function checks if proto number is an IPv6 extensions and parses its 800 * data if so, providing information on next header and extension length. 801 * 802 * @param p 803 * Pointer to an extension raw data. 804 * @param proto 805 * Protocol number extracted from the "next header" field from 806 * the IPv6 header or the previous extension. 807 * @param ext_len 808 * Extension data length. 809 * @return 810 * next protocol number if proto is an IPv6 extension, -EINVAL otherwise 811 */ 812 static inline int 813 rte_ipv6_get_next_ext(const uint8_t *p, int proto, size_t *ext_len) 814 { 815 int next_proto; 816 817 switch (proto) { 818 case IPPROTO_AH: 819 next_proto = *p++; 820 *ext_len = (*p + 2) * sizeof(uint32_t); 821 break; 822 823 case IPPROTO_HOPOPTS: 824 case IPPROTO_ROUTING: 825 case IPPROTO_DSTOPTS: 826 next_proto = *p++; 827 *ext_len = (*p + 1) * sizeof(uint64_t); 828 break; 829 830 case IPPROTO_FRAGMENT: 831 next_proto = *p; 832 *ext_len = RTE_IPV6_FRAG_HDR_SIZE; 833 break; 834 835 default: 836 return -EINVAL; 837 } 838 839 return next_proto; 840 } 841 842 #ifdef __cplusplus 843 } 844 #endif 845 846 #endif /* _RTE_IP_H_ */ 847