1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #ifndef _RTE_ETHER_H_ 6 #define _RTE_ETHER_H_ 7 8 /** 9 * @file 10 * 11 * Ethernet Helpers in RTE 12 */ 13 14 #ifdef __cplusplus 15 extern "C" { 16 #endif 17 18 #include <stdint.h> 19 #include <stdio.h> 20 21 #include <rte_random.h> 22 #include <rte_mbuf.h> 23 #include <rte_byteorder.h> 24 25 #define RTE_ETHER_ADDR_LEN 6 /**< Length of Ethernet address. */ 26 #define RTE_ETHER_TYPE_LEN 2 /**< Length of Ethernet type field. */ 27 #define RTE_ETHER_CRC_LEN 4 /**< Length of Ethernet CRC. */ 28 #define RTE_ETHER_HDR_LEN \ 29 (RTE_ETHER_ADDR_LEN * 2 + \ 30 RTE_ETHER_TYPE_LEN) /**< Length of Ethernet header. */ 31 #define RTE_ETHER_MIN_LEN 64 /**< Minimum frame len, including CRC. */ 32 #define RTE_ETHER_MAX_LEN 1518 /**< Maximum frame len, including CRC. */ 33 #define RTE_ETHER_MTU \ 34 (RTE_ETHER_MAX_LEN - RTE_ETHER_HDR_LEN - \ 35 RTE_ETHER_CRC_LEN) /**< Ethernet MTU. */ 36 37 #define RTE_VLAN_HLEN 4 /**< VLAN (IEEE 802.1Q) header length. */ 38 /** Maximum VLAN frame length (excluding QinQ), including CRC. */ 39 #define RTE_ETHER_MAX_VLAN_FRAME_LEN \ 40 (RTE_ETHER_MAX_LEN + RTE_VLAN_HLEN) 41 42 #define RTE_ETHER_MAX_JUMBO_FRAME_LEN \ 43 0x3F00 /**< Maximum Jumbo frame length, including CRC. */ 44 45 #define RTE_ETHER_MAX_VLAN_ID 4095 /**< Maximum VLAN ID. */ 46 47 #define RTE_ETHER_MIN_MTU 68 /**< Minimum MTU for IPv4 packets, see RFC 791. */ 48 49 /* VLAN header fields */ 50 #define RTE_VLAN_DEI_SHIFT 12 51 #define RTE_VLAN_PRI_SHIFT 13 52 #define RTE_VLAN_PRI_MASK 0xe000 /* Priority Code Point */ 53 #define RTE_VLAN_DEI_MASK 0x1000 /* Drop Eligible Indicator */ 54 #define RTE_VLAN_ID_MASK 0x0fff /* VLAN Identifier */ 55 56 #define RTE_VLAN_TCI_ID(vlan_tci) ((vlan_tci) & RTE_VLAN_ID_MASK) 57 #define RTE_VLAN_TCI_PRI(vlan_tci) (((vlan_tci) & RTE_VLAN_PRI_MASK) >> RTE_VLAN_PRI_SHIFT) 58 #define RTE_VLAN_TCI_DEI(vlan_tci) (((vlan_tci) & RTE_VLAN_DEI_MASK) >> RTE_VLAN_DEI_SHIFT) 59 #define RTE_VLAN_TCI_MAKE(id, pri, dei) ((id) | \ 60 ((pri) << RTE_VLAN_PRI_SHIFT) | \ 61 ((dei) << RTE_VLAN_DEI_SHIFT)) 62 63 /** 64 * Ethernet address: 65 * A universally administered address is uniquely assigned to a device by its 66 * manufacturer. The first three octets (in transmission order) contain the 67 * Organizationally Unique Identifier (OUI). The following three (MAC-48 and 68 * EUI-48) octets are assigned by that organization with the only constraint 69 * of uniqueness. 70 * A locally administered address is assigned to a device by a network 71 * administrator and does not contain OUIs. 72 * See http://standards.ieee.org/regauth/groupmac/tutorial.html 73 */ 74 struct __rte_aligned(2) rte_ether_addr { 75 uint8_t addr_bytes[RTE_ETHER_ADDR_LEN]; /**< Addr bytes in tx order */ 76 }; 77 78 #define RTE_ETHER_LOCAL_ADMIN_ADDR 0x02 /**< Locally assigned Eth. address. */ 79 #define RTE_ETHER_GROUP_ADDR 0x01 /**< Multicast or broadcast Eth. address. */ 80 81 /** 82 * Check if two Ethernet addresses are the same. 83 * 84 * @param ea1 85 * A pointer to the first ether_addr structure containing 86 * the ethernet address. 87 * @param ea2 88 * A pointer to the second ether_addr structure containing 89 * the ethernet address. 90 * 91 * @return 92 * True (1) if the given two ethernet address are the same; 93 * False (0) otherwise. 94 */ 95 static inline int rte_is_same_ether_addr(const struct rte_ether_addr *ea1, 96 const struct rte_ether_addr *ea2) 97 { 98 const uint16_t *w1 = (const uint16_t *)ea1; 99 const uint16_t *w2 = (const uint16_t *)ea2; 100 101 return ((w1[0] ^ w2[0]) | (w1[1] ^ w2[1]) | (w1[2] ^ w2[2])) == 0; 102 } 103 104 /** 105 * Check if an Ethernet address is filled with zeros. 106 * 107 * @param ea 108 * A pointer to a ether_addr structure containing the ethernet address 109 * to check. 110 * @return 111 * True (1) if the given ethernet address is filled with zeros; 112 * false (0) otherwise. 113 */ 114 static inline int rte_is_zero_ether_addr(const struct rte_ether_addr *ea) 115 { 116 const uint16_t *w = (const uint16_t *)ea; 117 118 return (w[0] | w[1] | w[2]) == 0; 119 } 120 121 /** 122 * Check if an Ethernet address is a unicast address. 123 * 124 * @param ea 125 * A pointer to a ether_addr structure containing the ethernet address 126 * to check. 127 * @return 128 * True (1) if the given ethernet address is a unicast address; 129 * false (0) otherwise. 130 */ 131 static inline int rte_is_unicast_ether_addr(const struct rte_ether_addr *ea) 132 { 133 return (ea->addr_bytes[0] & RTE_ETHER_GROUP_ADDR) == 0; 134 } 135 136 /** 137 * Check if an Ethernet address is a multicast address. 138 * 139 * @param ea 140 * A pointer to a ether_addr structure containing the ethernet address 141 * to check. 142 * @return 143 * True (1) if the given ethernet address is a multicast address; 144 * false (0) otherwise. 145 */ 146 static inline int rte_is_multicast_ether_addr(const struct rte_ether_addr *ea) 147 { 148 return ea->addr_bytes[0] & RTE_ETHER_GROUP_ADDR; 149 } 150 151 /** 152 * Check if an Ethernet address is a broadcast address. 153 * 154 * @param ea 155 * A pointer to a ether_addr structure containing the ethernet address 156 * to check. 157 * @return 158 * True (1) if the given ethernet address is a broadcast address; 159 * false (0) otherwise. 160 */ 161 static inline int rte_is_broadcast_ether_addr(const struct rte_ether_addr *ea) 162 { 163 const uint16_t *w = (const uint16_t *)ea; 164 165 return (w[0] & w[1] & w[2]) == 0xFFFF; 166 } 167 168 /** 169 * Check if an Ethernet address is a universally assigned address. 170 * 171 * @param ea 172 * A pointer to a ether_addr structure containing the ethernet address 173 * to check. 174 * @return 175 * True (1) if the given ethernet address is a universally assigned address; 176 * false (0) otherwise. 177 */ 178 static inline int rte_is_universal_ether_addr(const struct rte_ether_addr *ea) 179 { 180 return (ea->addr_bytes[0] & RTE_ETHER_LOCAL_ADMIN_ADDR) == 0; 181 } 182 183 /** 184 * Check if an Ethernet address is a locally assigned address. 185 * 186 * @param ea 187 * A pointer to a ether_addr structure containing the ethernet address 188 * to check. 189 * @return 190 * True (1) if the given ethernet address is a locally assigned address; 191 * false (0) otherwise. 192 */ 193 static inline int rte_is_local_admin_ether_addr(const struct rte_ether_addr *ea) 194 { 195 return (ea->addr_bytes[0] & RTE_ETHER_LOCAL_ADMIN_ADDR) != 0; 196 } 197 198 /** 199 * Check if an Ethernet address is a valid address. Checks that the address is a 200 * unicast address and is not filled with zeros. 201 * 202 * @param ea 203 * A pointer to a ether_addr structure containing the ethernet address 204 * to check. 205 * @return 206 * True (1) if the given ethernet address is valid; 207 * false (0) otherwise. 208 */ 209 static inline int rte_is_valid_assigned_ether_addr(const struct rte_ether_addr *ea) 210 { 211 return rte_is_unicast_ether_addr(ea) && (!rte_is_zero_ether_addr(ea)); 212 } 213 214 /** 215 * Generate a random Ethernet address that is locally administered 216 * and not multicast. 217 * @param addr 218 * A pointer to Ethernet address. 219 */ 220 void 221 rte_eth_random_addr(uint8_t *addr); 222 223 /** 224 * Copy an Ethernet address. 225 * 226 * @param ea_from 227 * A pointer to a ether_addr structure holding the Ethernet address to copy. 228 * @param ea_to 229 * A pointer to a ether_addr structure where to copy the Ethernet address. 230 */ 231 static inline void 232 rte_ether_addr_copy(const struct rte_ether_addr *__restrict ea_from, 233 struct rte_ether_addr *__restrict ea_to) 234 { 235 *ea_to = *ea_from; 236 } 237 238 /** 239 * Macro to print six-bytes of MAC address in hex format 240 */ 241 #define RTE_ETHER_ADDR_PRT_FMT "%02X:%02X:%02X:%02X:%02X:%02X" 242 /** 243 * Macro to extract the MAC address bytes from rte_ether_addr struct 244 */ 245 #define RTE_ETHER_ADDR_BYTES(mac_addrs) ((mac_addrs)->addr_bytes[0]), \ 246 ((mac_addrs)->addr_bytes[1]), \ 247 ((mac_addrs)->addr_bytes[2]), \ 248 ((mac_addrs)->addr_bytes[3]), \ 249 ((mac_addrs)->addr_bytes[4]), \ 250 ((mac_addrs)->addr_bytes[5]) 251 252 #define RTE_ETHER_ADDR_FMT_SIZE 18 253 /** 254 * Format 48bits Ethernet address in pattern xx:xx:xx:xx:xx:xx. 255 * 256 * @param buf 257 * A pointer to buffer contains the formatted MAC address. 258 * @param size 259 * The format buffer size. 260 * @param eth_addr 261 * A pointer to a ether_addr structure. 262 */ 263 void 264 rte_ether_format_addr(char *buf, uint16_t size, 265 const struct rte_ether_addr *eth_addr); 266 /** 267 * Convert string with Ethernet address to an ether_addr. 268 * 269 * @param str 270 * A pointer to buffer contains the formatted MAC address. 271 * Accepts either byte or word format separated by colon, 272 * hyphen or period. 273 * 274 * The example formats are: 275 * XX:XX:XX:XX:XX:XX - Canonical form 276 * XX-XX-XX-XX-XX-XX - Windows and IEEE 802 277 * XXXX.XXXX.XXXX - Cisco 278 * where XX is a hex digit: 0-9, a-f, or A-F. 279 * In the byte format, leading zeros are optional. 280 * @param eth_addr 281 * A pointer to a ether_addr structure. 282 * @return 283 * 0 if successful 284 * -1 and sets rte_errno if invalid string 285 */ 286 int 287 rte_ether_unformat_addr(const char *str, struct rte_ether_addr *eth_addr); 288 289 /** 290 * Ethernet header: Contains the destination address, source address 291 * and frame type. 292 */ 293 struct __rte_aligned(2) rte_ether_hdr { 294 struct rte_ether_addr dst_addr; /**< Destination address. */ 295 struct rte_ether_addr src_addr; /**< Source address. */ 296 rte_be16_t ether_type; /**< Frame type. */ 297 }; 298 299 /** 300 * Ethernet VLAN Header. 301 * Contains the 16-bit VLAN Tag Control Identifier and the Ethernet type 302 * of the encapsulated frame. 303 */ 304 struct rte_vlan_hdr { 305 rte_be16_t vlan_tci; /**< Priority (3) + CFI (1) + Identifier Code (12) */ 306 rte_be16_t eth_proto; /**< Ethernet type of encapsulated frame. */ 307 } __rte_packed; 308 309 310 311 /* Ethernet frame types */ 312 #define RTE_ETHER_TYPE_IPV4 0x0800 /**< IPv4 Protocol. */ 313 #define RTE_ETHER_TYPE_IPV6 0x86DD /**< IPv6 Protocol. */ 314 #define RTE_ETHER_TYPE_ARP 0x0806 /**< Arp Protocol. */ 315 #define RTE_ETHER_TYPE_RARP 0x8035 /**< Reverse Arp Protocol. */ 316 #define RTE_ETHER_TYPE_VLAN 0x8100 /**< IEEE 802.1Q VLAN tagging. */ 317 #define RTE_ETHER_TYPE_QINQ 0x88A8 /**< IEEE 802.1ad QinQ tagging. */ 318 #define RTE_ETHER_TYPE_QINQ1 0x9100 /**< Deprecated QinQ VLAN. */ 319 #define RTE_ETHER_TYPE_QINQ2 0x9200 /**< Deprecated QinQ VLAN. */ 320 #define RTE_ETHER_TYPE_QINQ3 0x9300 /**< Deprecated QinQ VLAN. */ 321 #define RTE_ETHER_TYPE_PPPOE_DISCOVERY 0x8863 /**< PPPoE Discovery Stage. */ 322 #define RTE_ETHER_TYPE_PPPOE_SESSION 0x8864 /**< PPPoE Session Stage. */ 323 #define RTE_ETHER_TYPE_ETAG 0x893F /**< IEEE 802.1BR E-Tag. */ 324 #define RTE_ETHER_TYPE_1588 0x88F7 325 /**< IEEE 802.1AS 1588 Precise Time Protocol. */ 326 #define RTE_ETHER_TYPE_SLOW 0x8809 /**< Slow protocols (LACP and Marker). */ 327 #define RTE_ETHER_TYPE_TEB 0x6558 /**< Transparent Ethernet Bridging. */ 328 #define RTE_ETHER_TYPE_LLDP 0x88CC /**< LLDP Protocol. */ 329 #define RTE_ETHER_TYPE_MPLS 0x8847 /**< MPLS ethertype. */ 330 #define RTE_ETHER_TYPE_MPLSM 0x8848 /**< MPLS multicast ethertype. */ 331 #define RTE_ETHER_TYPE_ECPRI 0xAEFE /**< eCPRI ethertype (.1Q supported). */ 332 333 /** 334 * Extract VLAN tag information into mbuf 335 * 336 * Software version of VLAN stripping 337 * 338 * @param m 339 * The packet mbuf. 340 * @return 341 * - 0: Success 342 * - 1: not a vlan packet 343 */ 344 static inline int rte_vlan_strip(struct rte_mbuf *m) 345 { 346 struct rte_ether_hdr *eh 347 = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 348 struct rte_vlan_hdr *vh; 349 350 if (eh->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) 351 return -1; 352 353 vh = (struct rte_vlan_hdr *)(eh + 1); 354 m->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED; 355 m->vlan_tci = rte_be_to_cpu_16(vh->vlan_tci); 356 357 /* Copy ether header over rather than moving whole packet */ 358 memmove(rte_pktmbuf_adj(m, sizeof(struct rte_vlan_hdr)), 359 eh, 2 * RTE_ETHER_ADDR_LEN); 360 361 return 0; 362 } 363 364 /** 365 * Insert VLAN tag into mbuf. 366 * 367 * Software version of VLAN unstripping 368 * 369 * @param m 370 * The packet mbuf. 371 * @return 372 * - 0: On success 373 * -EPERM: mbuf is shared overwriting would be unsafe 374 * -ENOSPC: not enough headroom in mbuf 375 */ 376 static inline int rte_vlan_insert(struct rte_mbuf **m) 377 { 378 struct rte_ether_hdr *oh, *nh; 379 struct rte_vlan_hdr *vh; 380 381 /* Can't insert header if mbuf is shared */ 382 if (!RTE_MBUF_DIRECT(*m) || rte_mbuf_refcnt_read(*m) > 1) 383 return -EINVAL; 384 385 /* Can't insert header if the first segment is too short */ 386 if (rte_pktmbuf_data_len(*m) < 2 * RTE_ETHER_ADDR_LEN) 387 return -EINVAL; 388 389 oh = rte_pktmbuf_mtod(*m, struct rte_ether_hdr *); 390 nh = (struct rte_ether_hdr *)(void *) 391 rte_pktmbuf_prepend(*m, sizeof(struct rte_vlan_hdr)); 392 if (nh == NULL) 393 return -ENOSPC; 394 395 memmove(nh, oh, 2 * RTE_ETHER_ADDR_LEN); 396 nh->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN); 397 398 vh = (struct rte_vlan_hdr *) (nh + 1); 399 vh->vlan_tci = rte_cpu_to_be_16((*m)->vlan_tci); 400 401 (*m)->ol_flags &= ~(RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_TX_VLAN); 402 403 if ((*m)->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) 404 (*m)->outer_l2_len += sizeof(struct rte_vlan_hdr); 405 else 406 (*m)->l2_len += sizeof(struct rte_vlan_hdr); 407 408 return 0; 409 } 410 411 #ifdef __cplusplus 412 } 413 #endif 414 415 #endif /* _RTE_ETHER_H_ */ 416