1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #ifndef _RTE_ETHER_H_ 6 #define _RTE_ETHER_H_ 7 8 /** 9 * @file 10 * 11 * Ethernet Helpers in RTE 12 */ 13 14 #ifdef __cplusplus 15 extern "C" { 16 #endif 17 18 #include <stdint.h> 19 #include <stdio.h> 20 21 #include <rte_memcpy.h> 22 #include <rte_random.h> 23 #include <rte_mbuf.h> 24 #include <rte_byteorder.h> 25 26 #define RTE_ETHER_ADDR_LEN 6 /**< Length of Ethernet address. */ 27 #define RTE_ETHER_TYPE_LEN 2 /**< Length of Ethernet type field. */ 28 #define RTE_ETHER_CRC_LEN 4 /**< Length of Ethernet CRC. */ 29 #define RTE_ETHER_HDR_LEN \ 30 (RTE_ETHER_ADDR_LEN * 2 + \ 31 RTE_ETHER_TYPE_LEN) /**< Length of Ethernet header. */ 32 #define RTE_ETHER_MIN_LEN 64 /**< Minimum frame len, including CRC. */ 33 #define RTE_ETHER_MAX_LEN 1518 /**< Maximum frame len, including CRC. */ 34 #define RTE_ETHER_MTU \ 35 (RTE_ETHER_MAX_LEN - RTE_ETHER_HDR_LEN - \ 36 RTE_ETHER_CRC_LEN) /**< Ethernet MTU. */ 37 38 #define RTE_ETHER_MAX_VLAN_FRAME_LEN \ 39 (RTE_ETHER_MAX_LEN + 4) 40 /**< Maximum VLAN frame length, including CRC. */ 41 42 #define RTE_ETHER_MAX_JUMBO_FRAME_LEN \ 43 0x3F00 /**< Maximum Jumbo frame length, including CRC. */ 44 45 #define RTE_ETHER_MAX_VLAN_ID 4095 /**< Maximum VLAN ID. */ 46 47 #define RTE_ETHER_MIN_MTU 68 /**< Minimum MTU for IPv4 packets, see RFC 791. */ 48 49 /** 50 * Ethernet address: 51 * A universally administered address is uniquely assigned to a device by its 52 * manufacturer. The first three octets (in transmission order) contain the 53 * Organizationally Unique Identifier (OUI). The following three (MAC-48 and 54 * EUI-48) octets are assigned by that organization with the only constraint 55 * of uniqueness. 56 * A locally administered address is assigned to a device by a network 57 * administrator and does not contain OUIs. 58 * See http://standards.ieee.org/regauth/groupmac/tutorial.html 59 */ 60 struct rte_ether_addr { 61 uint8_t addr_bytes[RTE_ETHER_ADDR_LEN]; /**< Addr bytes in tx order */ 62 } __rte_aligned(2); 63 64 #define RTE_ETHER_LOCAL_ADMIN_ADDR 0x02 /**< Locally assigned Eth. address. */ 65 #define RTE_ETHER_GROUP_ADDR 0x01 /**< Multicast or broadcast Eth. address. */ 66 67 /** 68 * Check if two Ethernet addresses are the same. 69 * 70 * @param ea1 71 * A pointer to the first ether_addr structure containing 72 * the ethernet address. 73 * @param ea2 74 * A pointer to the second ether_addr structure containing 75 * the ethernet address. 76 * 77 * @return 78 * True (1) if the given two ethernet address are the same; 79 * False (0) otherwise. 80 */ 81 static inline int rte_is_same_ether_addr(const struct rte_ether_addr *ea1, 82 const struct rte_ether_addr *ea2) 83 { 84 const uint16_t *w1 = (const uint16_t *)ea1; 85 const uint16_t *w2 = (const uint16_t *)ea2; 86 87 return ((w1[0] ^ w2[0]) | (w1[1] ^ w2[1]) | (w1[2] ^ w2[2])) == 0; 88 } 89 90 /** 91 * Check if an Ethernet address is filled with zeros. 92 * 93 * @param ea 94 * A pointer to a ether_addr structure containing the ethernet address 95 * to check. 96 * @return 97 * True (1) if the given ethernet address is filled with zeros; 98 * false (0) otherwise. 99 */ 100 static inline int rte_is_zero_ether_addr(const struct rte_ether_addr *ea) 101 { 102 const uint16_t *w = (const uint16_t *)ea; 103 104 return (w[0] | w[1] | w[2]) == 0; 105 } 106 107 /** 108 * Check if an Ethernet address is a unicast address. 109 * 110 * @param ea 111 * A pointer to a ether_addr structure containing the ethernet address 112 * to check. 113 * @return 114 * True (1) if the given ethernet address is a unicast address; 115 * false (0) otherwise. 116 */ 117 static inline int rte_is_unicast_ether_addr(const struct rte_ether_addr *ea) 118 { 119 return (ea->addr_bytes[0] & RTE_ETHER_GROUP_ADDR) == 0; 120 } 121 122 /** 123 * Check if an Ethernet address is a multicast address. 124 * 125 * @param ea 126 * A pointer to a ether_addr structure containing the ethernet address 127 * to check. 128 * @return 129 * True (1) if the given ethernet address is a multicast address; 130 * false (0) otherwise. 131 */ 132 static inline int rte_is_multicast_ether_addr(const struct rte_ether_addr *ea) 133 { 134 return ea->addr_bytes[0] & RTE_ETHER_GROUP_ADDR; 135 } 136 137 /** 138 * Check if an Ethernet address is a broadcast address. 139 * 140 * @param ea 141 * A pointer to a ether_addr structure containing the ethernet address 142 * to check. 143 * @return 144 * True (1) if the given ethernet address is a broadcast address; 145 * false (0) otherwise. 146 */ 147 static inline int rte_is_broadcast_ether_addr(const struct rte_ether_addr *ea) 148 { 149 const uint16_t *w = (const uint16_t *)ea; 150 151 return (w[0] & w[1] & w[2]) == 0xFFFF; 152 } 153 154 /** 155 * Check if an Ethernet address is a universally assigned address. 156 * 157 * @param ea 158 * A pointer to a ether_addr structure containing the ethernet address 159 * to check. 160 * @return 161 * True (1) if the given ethernet address is a universally assigned address; 162 * false (0) otherwise. 163 */ 164 static inline int rte_is_universal_ether_addr(const struct rte_ether_addr *ea) 165 { 166 return (ea->addr_bytes[0] & RTE_ETHER_LOCAL_ADMIN_ADDR) == 0; 167 } 168 169 /** 170 * Check if an Ethernet address is a locally assigned address. 171 * 172 * @param ea 173 * A pointer to a ether_addr structure containing the ethernet address 174 * to check. 175 * @return 176 * True (1) if the given ethernet address is a locally assigned address; 177 * false (0) otherwise. 178 */ 179 static inline int rte_is_local_admin_ether_addr(const struct rte_ether_addr *ea) 180 { 181 return (ea->addr_bytes[0] & RTE_ETHER_LOCAL_ADMIN_ADDR) != 0; 182 } 183 184 /** 185 * Check if an Ethernet address is a valid address. Checks that the address is a 186 * unicast address and is not filled with zeros. 187 * 188 * @param ea 189 * A pointer to a ether_addr structure containing the ethernet address 190 * to check. 191 * @return 192 * True (1) if the given ethernet address is valid; 193 * false (0) otherwise. 194 */ 195 static inline int rte_is_valid_assigned_ether_addr(const struct rte_ether_addr *ea) 196 { 197 return rte_is_unicast_ether_addr(ea) && (!rte_is_zero_ether_addr(ea)); 198 } 199 200 /** 201 * Generate a random Ethernet address that is locally administered 202 * and not multicast. 203 * @param addr 204 * A pointer to Ethernet address. 205 */ 206 void 207 rte_eth_random_addr(uint8_t *addr); 208 209 /** 210 * Copy an Ethernet address. 211 * 212 * @param ea_from 213 * A pointer to a ether_addr structure holding the Ethernet address to copy. 214 * @param ea_to 215 * A pointer to a ether_addr structure where to copy the Ethernet address. 216 */ 217 static inline void 218 rte_ether_addr_copy(const struct rte_ether_addr *__restrict ea_from, 219 struct rte_ether_addr *__restrict ea_to) 220 { 221 *ea_to = *ea_from; 222 } 223 224 /** 225 * Macro to print six-bytes of MAC address in hex format 226 */ 227 #define RTE_ETHER_ADDR_PRT_FMT "%02X:%02X:%02X:%02X:%02X:%02X" 228 229 #define RTE_ETHER_ADDR_FMT_SIZE 18 230 /** 231 * Format 48bits Ethernet address in pattern xx:xx:xx:xx:xx:xx. 232 * 233 * @param buf 234 * A pointer to buffer contains the formatted MAC address. 235 * @param size 236 * The format buffer size. 237 * @param eth_addr 238 * A pointer to a ether_addr structure. 239 */ 240 void 241 rte_ether_format_addr(char *buf, uint16_t size, 242 const struct rte_ether_addr *eth_addr); 243 /** 244 * Convert string with Ethernet address to an ether_addr. 245 * 246 * @param str 247 * A pointer to buffer contains the formatted MAC address. 248 * The supported formats are: 249 * XX:XX:XX:XX:XX:XX or XXXX:XXXX:XXXX 250 * where XX is a hex digit: 0-9, a-f, or A-F. 251 * @param eth_addr 252 * A pointer to a ether_addr structure. 253 * @return 254 * 0 if successful 255 * -1 and sets rte_errno if invalid string 256 */ 257 __rte_experimental 258 int 259 rte_ether_unformat_addr(const char *str, struct rte_ether_addr *eth_addr); 260 261 /* Windows Sockets headers contain `#define s_addr S_un.S_addr`. 262 * Temporarily disable this macro to avoid conflict at definition. 263 * Place source MAC address in both `s_addr` and `S_un.S_addr` fields, 264 * so that access works either directly or through the macro. 265 */ 266 #pragma push_macro("s_addr") 267 #ifdef s_addr 268 #undef s_addr 269 #endif 270 271 /** 272 * Ethernet header: Contains the destination address, source address 273 * and frame type. 274 */ 275 struct rte_ether_hdr { 276 struct rte_ether_addr d_addr; /**< Destination address. */ 277 RTE_STD_C11 278 union { 279 struct rte_ether_addr s_addr; /**< Source address. */ 280 struct { 281 struct rte_ether_addr S_addr; 282 } S_un; /**< Do not use directly; use s_addr instead.*/ 283 }; 284 rte_be16_t ether_type; /**< Frame type. */ 285 } __rte_aligned(2); 286 287 #pragma pop_macro("s_addr") 288 289 /** 290 * Ethernet VLAN Header. 291 * Contains the 16-bit VLAN Tag Control Identifier and the Ethernet type 292 * of the encapsulated frame. 293 */ 294 struct rte_vlan_hdr { 295 rte_be16_t vlan_tci; /**< Priority (3) + CFI (1) + Identifier Code (12) */ 296 rte_be16_t eth_proto; /**< Ethernet type of encapsulated frame. */ 297 } __rte_packed; 298 299 300 301 /* Ethernet frame types */ 302 #define RTE_ETHER_TYPE_IPV4 0x0800 /**< IPv4 Protocol. */ 303 #define RTE_ETHER_TYPE_IPV6 0x86DD /**< IPv6 Protocol. */ 304 #define RTE_ETHER_TYPE_ARP 0x0806 /**< Arp Protocol. */ 305 #define RTE_ETHER_TYPE_RARP 0x8035 /**< Reverse Arp Protocol. */ 306 #define RTE_ETHER_TYPE_VLAN 0x8100 /**< IEEE 802.1Q VLAN tagging. */ 307 #define RTE_ETHER_TYPE_QINQ 0x88A8 /**< IEEE 802.1ad QinQ tagging. */ 308 #define RTE_ETHER_TYPE_QINQ1 0x9100 /**< Deprecated QinQ VLAN. */ 309 #define RTE_ETHER_TYPE_QINQ2 0x9200 /**< Deprecated QinQ VLAN. */ 310 #define RTE_ETHER_TYPE_QINQ3 0x9300 /**< Deprecated QinQ VLAN. */ 311 #define RTE_ETHER_TYPE_PPPOE_DISCOVERY 0x8863 /**< PPPoE Discovery Stage. */ 312 #define RTE_ETHER_TYPE_PPPOE_SESSION 0x8864 /**< PPPoE Session Stage. */ 313 #define RTE_ETHER_TYPE_ETAG 0x893F /**< IEEE 802.1BR E-Tag. */ 314 #define RTE_ETHER_TYPE_1588 0x88F7 315 /**< IEEE 802.1AS 1588 Precise Time Protocol. */ 316 #define RTE_ETHER_TYPE_SLOW 0x8809 /**< Slow protocols (LACP and Marker). */ 317 #define RTE_ETHER_TYPE_TEB 0x6558 /**< Transparent Ethernet Bridging. */ 318 #define RTE_ETHER_TYPE_LLDP 0x88CC /**< LLDP Protocol. */ 319 #define RTE_ETHER_TYPE_MPLS 0x8847 /**< MPLS ethertype. */ 320 #define RTE_ETHER_TYPE_MPLSM 0x8848 /**< MPLS multicast ethertype. */ 321 #define RTE_ETHER_TYPE_ECPRI 0xAEFE /**< eCPRI ethertype (.1Q supported). */ 322 323 /** 324 * Extract VLAN tag information into mbuf 325 * 326 * Software version of VLAN stripping 327 * 328 * @param m 329 * The packet mbuf. 330 * @return 331 * - 0: Success 332 * - 1: not a vlan packet 333 */ 334 static inline int rte_vlan_strip(struct rte_mbuf *m) 335 { 336 struct rte_ether_hdr *eh 337 = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 338 struct rte_vlan_hdr *vh; 339 340 if (eh->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) 341 return -1; 342 343 vh = (struct rte_vlan_hdr *)(eh + 1); 344 m->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED; 345 m->vlan_tci = rte_be_to_cpu_16(vh->vlan_tci); 346 347 /* Copy ether header over rather than moving whole packet */ 348 memmove(rte_pktmbuf_adj(m, sizeof(struct rte_vlan_hdr)), 349 eh, 2 * RTE_ETHER_ADDR_LEN); 350 351 return 0; 352 } 353 354 /** 355 * Insert VLAN tag into mbuf. 356 * 357 * Software version of VLAN unstripping 358 * 359 * @param m 360 * The packet mbuf. 361 * @return 362 * - 0: On success 363 * -EPERM: mbuf is is shared overwriting would be unsafe 364 * -ENOSPC: not enough headroom in mbuf 365 */ 366 static inline int rte_vlan_insert(struct rte_mbuf **m) 367 { 368 struct rte_ether_hdr *oh, *nh; 369 struct rte_vlan_hdr *vh; 370 371 /* Can't insert header if mbuf is shared */ 372 if (!RTE_MBUF_DIRECT(*m) || rte_mbuf_refcnt_read(*m) > 1) 373 return -EINVAL; 374 375 /* Can't insert header if the first segment is too short */ 376 if (rte_pktmbuf_data_len(*m) < 2 * RTE_ETHER_ADDR_LEN) 377 return -EINVAL; 378 379 oh = rte_pktmbuf_mtod(*m, struct rte_ether_hdr *); 380 nh = (struct rte_ether_hdr *) 381 rte_pktmbuf_prepend(*m, sizeof(struct rte_vlan_hdr)); 382 if (nh == NULL) 383 return -ENOSPC; 384 385 memmove(nh, oh, 2 * RTE_ETHER_ADDR_LEN); 386 nh->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN); 387 388 vh = (struct rte_vlan_hdr *) (nh + 1); 389 vh->vlan_tci = rte_cpu_to_be_16((*m)->vlan_tci); 390 391 (*m)->ol_flags &= ~(PKT_RX_VLAN_STRIPPED | PKT_TX_VLAN); 392 393 if ((*m)->ol_flags & PKT_TX_TUNNEL_MASK) 394 (*m)->outer_l2_len += sizeof(struct rte_vlan_hdr); 395 else 396 (*m)->l2_len += sizeof(struct rte_vlan_hdr); 397 398 return 0; 399 } 400 401 #ifdef __cplusplus 402 } 403 #endif 404 405 #endif /* _RTE_ETHER_H_ */ 406