1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2020 Intel Corporation 3 */ 4 5 #include <stdalign.h> 6 7 #include <rte_common.h> 8 #include <rte_vect.h> 9 10 #include "net_crc.h" 11 12 /* VPCLMULQDQ CRC computation context structure */ 13 struct crc_vpclmulqdq_ctx { 14 __m512i rk1_rk2; 15 __m512i rk3_rk4; 16 __m512i fold_7x128b; 17 __m512i fold_3x128b; 18 __m128i rk5_rk6; 19 __m128i rk7_rk8; 20 __m128i fold_1x128b; 21 }; 22 23 static alignas(64) struct crc_vpclmulqdq_ctx crc32_eth; 24 static alignas(64) struct crc_vpclmulqdq_ctx crc16_ccitt; 25 26 static uint16_t byte_len_to_mask_table[] = { 27 0x0000, 0x0001, 0x0003, 0x0007, 28 0x000f, 0x001f, 0x003f, 0x007f, 29 0x00ff, 0x01ff, 0x03ff, 0x07ff, 30 0x0fff, 0x1fff, 0x3fff, 0x7fff, 31 0xffff}; 32 33 static const alignas(16) uint8_t shf_table[32] = { 34 0x00, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 35 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 36 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 37 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f 38 }; 39 40 static const alignas(16) uint32_t mask[4] = { 41 0xffffffff, 0xffffffff, 0x00000000, 0x00000000 42 }; 43 44 static const alignas(16) uint32_t mask2[4] = { 45 0x00000000, 0xffffffff, 0xffffffff, 0xffffffff 46 }; 47 48 static __rte_always_inline __m512i 49 crcr32_folding_round(__m512i data_block, __m512i precomp, __m512i fold) 50 { 51 __m512i tmp0, tmp1; 52 53 tmp0 = _mm512_clmulepi64_epi128(fold, precomp, 0x01); 54 tmp1 = _mm512_clmulepi64_epi128(fold, precomp, 0x10); 55 56 return _mm512_ternarylogic_epi64(tmp0, tmp1, data_block, 0x96); 57 } 58 59 static __rte_always_inline __m128i 60 crc32_fold_128(__m512i fold0, __m512i fold1, 61 const struct crc_vpclmulqdq_ctx *params) 62 { 63 __m128i res, res2; 64 __m256i a; 65 __m512i tmp0, tmp1, tmp2, tmp3; 66 __m512i tmp4; 67 68 tmp0 = _mm512_clmulepi64_epi128(fold0, params->fold_7x128b, 0x01); 69 tmp1 = _mm512_clmulepi64_epi128(fold0, params->fold_7x128b, 0x10); 70 71 res = _mm512_extracti64x2_epi64(fold1, 3); 72 tmp4 = _mm512_maskz_broadcast_i32x4(0xF, res); 73 74 tmp2 = _mm512_clmulepi64_epi128(fold1, params->fold_3x128b, 0x01); 75 tmp3 = _mm512_clmulepi64_epi128(fold1, params->fold_3x128b, 0x10); 76 77 tmp0 = _mm512_ternarylogic_epi64(tmp0, tmp1, tmp2, 0x96); 78 tmp0 = _mm512_ternarylogic_epi64(tmp0, tmp3, tmp4, 0x96); 79 80 tmp1 = _mm512_shuffle_i64x2(tmp0, tmp0, 0x4e); 81 82 a = _mm256_xor_si256(*(__m256i *)&tmp1, *(__m256i *)&tmp0); 83 res = _mm256_extracti64x2_epi64(a, 1); 84 res2 = _mm_xor_si128(res, *(__m128i *)&a); 85 86 return res2; 87 } 88 89 static __rte_always_inline __m128i 90 last_two_xmm(const uint8_t *data, uint32_t data_len, uint32_t n, __m128i res, 91 const struct crc_vpclmulqdq_ctx *params) 92 { 93 uint32_t offset; 94 __m128i res2, res3, res4, pshufb_shf; 95 96 const alignas(16) uint32_t mask3[4] = { 97 0x80808080, 0x80808080, 0x80808080, 0x80808080 98 }; 99 100 res2 = res; 101 offset = data_len - n; 102 res3 = _mm_loadu_si128((const __m128i *)&data[n+offset-16]); 103 104 pshufb_shf = _mm_loadu_si128((const __m128i *) 105 (shf_table + (data_len-n))); 106 107 res = _mm_shuffle_epi8(res, pshufb_shf); 108 pshufb_shf = _mm_xor_si128(pshufb_shf, 109 _mm_load_si128((const __m128i *) mask3)); 110 res2 = _mm_shuffle_epi8(res2, pshufb_shf); 111 112 res2 = _mm_blendv_epi8(res2, res3, pshufb_shf); 113 114 res4 = _mm_clmulepi64_si128(res, params->fold_1x128b, 0x01); 115 res = _mm_clmulepi64_si128(res, params->fold_1x128b, 0x10); 116 res = _mm_ternarylogic_epi64(res, res2, res4, 0x96); 117 118 return res; 119 } 120 121 static __rte_always_inline __m128i 122 done_128(__m128i res, const struct crc_vpclmulqdq_ctx *params) 123 { 124 __m128i res1; 125 126 res1 = res; 127 128 res = _mm_clmulepi64_si128(res, params->rk5_rk6, 0x0); 129 res1 = _mm_srli_si128(res1, 8); 130 res = _mm_xor_si128(res, res1); 131 132 res1 = res; 133 res = _mm_slli_si128(res, 4); 134 res = _mm_clmulepi64_si128(res, params->rk5_rk6, 0x10); 135 res = _mm_xor_si128(res, res1); 136 137 return res; 138 } 139 140 static __rte_always_inline uint32_t 141 barrett_reduction(__m128i data64, const struct crc_vpclmulqdq_ctx *params) 142 { 143 __m128i tmp0, tmp1; 144 145 data64 = _mm_and_si128(data64, *(const __m128i *)mask2); 146 tmp0 = data64; 147 tmp1 = data64; 148 149 data64 = _mm_clmulepi64_si128(tmp0, params->rk7_rk8, 0x0); 150 data64 = _mm_ternarylogic_epi64(data64, tmp1, *(const __m128i *)mask, 151 0x28); 152 153 tmp1 = data64; 154 data64 = _mm_clmulepi64_si128(data64, params->rk7_rk8, 0x10); 155 data64 = _mm_ternarylogic_epi64(data64, tmp1, tmp0, 0x96); 156 157 return _mm_extract_epi32(data64, 2); 158 } 159 160 static __rte_always_inline void 161 reduction_loop(__m128i *fold, int *len, const uint8_t *data, uint32_t *n, 162 const struct crc_vpclmulqdq_ctx *params) 163 { 164 __m128i tmp, tmp1; 165 166 tmp = _mm_clmulepi64_si128(*fold, params->fold_1x128b, 0x1); 167 *fold = _mm_clmulepi64_si128(*fold, params->fold_1x128b, 0x10); 168 *fold = _mm_xor_si128(*fold, tmp); 169 tmp1 = _mm_loadu_si128((const __m128i *)&data[*n]); 170 *fold = _mm_xor_si128(*fold, tmp1); 171 *n += 16; 172 *len -= 16; 173 } 174 175 static __rte_always_inline uint32_t 176 crc32_eth_calc_vpclmulqdq(const uint8_t *data, uint32_t data_len, uint32_t crc, 177 const struct crc_vpclmulqdq_ctx *params) 178 { 179 __m128i res, d, b; 180 __m512i temp, k; 181 __m512i qw0 = _mm512_set1_epi64(0), qw1, qw2, qw3; 182 __m512i fold0, fold1, fold2, fold3; 183 __mmask16 mask; 184 uint32_t n = 0; 185 int reduction = 0; 186 187 /* Get CRC init value */ 188 b = _mm_cvtsi32_si128(crc); 189 temp = _mm512_castsi128_si512(b); 190 191 if (data_len > 255) { 192 fold0 = _mm512_loadu_si512((const __m512i *)data); 193 fold1 = _mm512_loadu_si512((const __m512i *)(data+64)); 194 fold2 = _mm512_loadu_si512((const __m512i *)(data+128)); 195 fold3 = _mm512_loadu_si512((const __m512i *)(data+192)); 196 fold0 = _mm512_xor_si512(fold0, temp); 197 198 /* Main folding loop */ 199 k = params->rk1_rk2; 200 for (n = 256; (n + 256) <= data_len; n += 256) { 201 qw0 = _mm512_loadu_si512((const __m512i *)&data[n]); 202 qw1 = _mm512_loadu_si512((const __m512i *) 203 &(data[n+64])); 204 qw2 = _mm512_loadu_si512((const __m512i *) 205 &(data[n+128])); 206 qw3 = _mm512_loadu_si512((const __m512i *) 207 &(data[n+192])); 208 fold0 = crcr32_folding_round(qw0, k, fold0); 209 fold1 = crcr32_folding_round(qw1, k, fold1); 210 fold2 = crcr32_folding_round(qw2, k, fold2); 211 fold3 = crcr32_folding_round(qw3, k, fold3); 212 } 213 214 /* 256 to 128 fold */ 215 k = params->rk3_rk4; 216 fold0 = crcr32_folding_round(fold2, k, fold0); 217 fold1 = crcr32_folding_round(fold3, k, fold1); 218 219 res = crc32_fold_128(fold0, fold1, params); 220 221 reduction = 240 - ((n+256)-data_len); 222 223 while (reduction > 0) 224 reduction_loop(&res, &reduction, data, &n, 225 params); 226 227 reduction += 16; 228 229 if (n != data_len) 230 res = last_two_xmm(data, data_len, n, res, 231 params); 232 } else { 233 if (data_len > 31) { 234 res = _mm_cvtsi32_si128(crc); 235 d = _mm_loadu_si128((const __m128i *)data); 236 res = _mm_xor_si128(res, d); 237 n += 16; 238 239 reduction = 240 - ((n+256)-data_len); 240 241 while (reduction > 0) 242 reduction_loop(&res, &reduction, data, &n, 243 params); 244 245 if (n != data_len) 246 res = last_two_xmm(data, data_len, n, res, 247 params); 248 } else if (data_len > 16) { 249 res = _mm_cvtsi32_si128(crc); 250 d = _mm_loadu_si128((const __m128i *)data); 251 res = _mm_xor_si128(res, d); 252 n += 16; 253 254 if (n != data_len) 255 res = last_two_xmm(data, data_len, n, res, 256 params); 257 } else if (data_len == 16) { 258 res = _mm_cvtsi32_si128(crc); 259 d = _mm_loadu_si128((const __m128i *)data); 260 res = _mm_xor_si128(res, d); 261 } else { 262 res = _mm_cvtsi32_si128(crc); 263 mask = byte_len_to_mask_table[data_len]; 264 d = _mm_maskz_loadu_epi8(mask, data); 265 res = _mm_xor_si128(res, d); 266 267 if (data_len > 3) { 268 d = _mm_loadu_si128((const __m128i *) 269 &shf_table[data_len]); 270 res = _mm_shuffle_epi8(res, d); 271 } else if (data_len > 2) { 272 res = _mm_slli_si128(res, 5); 273 goto do_barrett_reduction; 274 } else if (data_len > 1) { 275 res = _mm_slli_si128(res, 6); 276 goto do_barrett_reduction; 277 } else if (data_len > 0) { 278 res = _mm_slli_si128(res, 7); 279 goto do_barrett_reduction; 280 } else { 281 /* zero length case */ 282 return crc; 283 } 284 } 285 } 286 287 res = done_128(res, params); 288 289 do_barrett_reduction: 290 n = barrett_reduction(res, params); 291 292 return n; 293 } 294 295 static void 296 crc32_load_init_constants(void) 297 { 298 __m128i a; 299 /* fold constants */ 300 uint64_t c0 = 0x00000000e95c1271; 301 uint64_t c1 = 0x00000000ce3371cb; 302 uint64_t c2 = 0x00000000910eeec1; 303 uint64_t c3 = 0x0000000033fff533; 304 uint64_t c4 = 0x000000000cbec0ed; 305 uint64_t c5 = 0x0000000031f8303f; 306 uint64_t c6 = 0x0000000057c54819; 307 uint64_t c7 = 0x00000000df068dc2; 308 uint64_t c8 = 0x00000000ae0b5394; 309 uint64_t c9 = 0x000000001c279815; 310 uint64_t c10 = 0x000000001d9513d7; 311 uint64_t c11 = 0x000000008f352d95; 312 uint64_t c12 = 0x00000000af449247; 313 uint64_t c13 = 0x000000003db1ecdc; 314 uint64_t c14 = 0x0000000081256527; 315 uint64_t c15 = 0x00000000f1da05aa; 316 uint64_t c16 = 0x00000000ccaa009e; 317 uint64_t c17 = 0x00000000ae689191; 318 uint64_t c18 = 0x00000000ccaa009e; 319 uint64_t c19 = 0x00000000b8bc6765; 320 uint64_t c20 = 0x00000001f7011640; 321 uint64_t c21 = 0x00000001db710640; 322 323 a = _mm_set_epi64x(c1, c0); 324 crc32_eth.rk1_rk2 = _mm512_broadcast_i32x4(a); 325 326 a = _mm_set_epi64x(c3, c2); 327 crc32_eth.rk3_rk4 = _mm512_broadcast_i32x4(a); 328 329 crc32_eth.fold_7x128b = _mm512_setr_epi64(c4, c5, c6, c7, c8, 330 c9, c10, c11); 331 crc32_eth.fold_3x128b = _mm512_setr_epi64(c12, c13, c14, c15, 332 c16, c17, 0, 0); 333 crc32_eth.fold_1x128b = _mm_set_epi64x(c17, c16); 334 335 crc32_eth.rk5_rk6 = _mm_set_epi64x(c19, c18); 336 crc32_eth.rk7_rk8 = _mm_set_epi64x(c21, c20); 337 } 338 339 static void 340 crc16_load_init_constants(void) 341 { 342 __m128i a; 343 /* fold constants */ 344 uint64_t c0 = 0x0000000000009a19; 345 uint64_t c1 = 0x0000000000002df8; 346 uint64_t c2 = 0x00000000000068af; 347 uint64_t c3 = 0x000000000000b6c9; 348 uint64_t c4 = 0x000000000000c64f; 349 uint64_t c5 = 0x000000000000cd95; 350 uint64_t c6 = 0x000000000000d341; 351 uint64_t c7 = 0x000000000000b8f2; 352 uint64_t c8 = 0x0000000000000842; 353 uint64_t c9 = 0x000000000000b072; 354 uint64_t c10 = 0x00000000000047e3; 355 uint64_t c11 = 0x000000000000922d; 356 uint64_t c12 = 0x0000000000000e3a; 357 uint64_t c13 = 0x0000000000004d7a; 358 uint64_t c14 = 0x0000000000005b44; 359 uint64_t c15 = 0x0000000000007762; 360 uint64_t c16 = 0x00000000000081bf; 361 uint64_t c17 = 0x0000000000008e10; 362 uint64_t c18 = 0x00000000000081bf; 363 uint64_t c19 = 0x0000000000001cbb; 364 uint64_t c20 = 0x000000011c581910; 365 uint64_t c21 = 0x0000000000010810; 366 367 a = _mm_set_epi64x(c1, c0); 368 crc16_ccitt.rk1_rk2 = _mm512_broadcast_i32x4(a); 369 370 a = _mm_set_epi64x(c3, c2); 371 crc16_ccitt.rk3_rk4 = _mm512_broadcast_i32x4(a); 372 373 crc16_ccitt.fold_7x128b = _mm512_setr_epi64(c4, c5, c6, c7, c8, 374 c9, c10, c11); 375 crc16_ccitt.fold_3x128b = _mm512_setr_epi64(c12, c13, c14, c15, 376 c16, c17, 0, 0); 377 crc16_ccitt.fold_1x128b = _mm_set_epi64x(c17, c16); 378 379 crc16_ccitt.rk5_rk6 = _mm_set_epi64x(c19, c18); 380 crc16_ccitt.rk7_rk8 = _mm_set_epi64x(c21, c20); 381 } 382 383 void 384 rte_net_crc_avx512_init(void) 385 { 386 crc32_load_init_constants(); 387 crc16_load_init_constants(); 388 } 389 390 uint32_t 391 rte_crc16_ccitt_avx512_handler(const uint8_t *data, uint32_t data_len) 392 { 393 /* return 16-bit CRC value */ 394 return (uint16_t)~crc32_eth_calc_vpclmulqdq(data, 395 data_len, 396 0xffff, 397 &crc16_ccitt); 398 } 399 400 uint32_t 401 rte_crc32_eth_avx512_handler(const uint8_t *data, uint32_t data_len) 402 { 403 /* return 32-bit CRC value */ 404 return ~crc32_eth_calc_vpclmulqdq(data, 405 data_len, 406 0xffffffffUL, 407 &crc32_eth); 408 } 409