xref: /dpdk/lib/member/rte_member_vbf.c (revision e9fd1ebf981f361844aea9ec94e17f4bda5e1479)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <math.h>
6 #include <string.h>
7 
8 #include <rte_malloc.h>
9 #include <rte_errno.h>
10 #include <rte_log.h>
11 
12 #include "member.h"
13 #include "rte_member.h"
14 #include "rte_member_vbf.h"
15 
16 /*
17  * vBF currently implemented as a big array.
18  * The BFs have a vertical layout. Bits in same location of all bfs will stay
19  * in the same cache line.
20  * For example, if we have 32 bloom filters, we use a uint32_t array to
21  * represent all of them. array[0] represent the first location of all the
22  * bloom filters, array[1] represents the second location of all the
23  * bloom filters, etc. The advantage of this layout is to minimize the average
24  * number of memory accesses to test all bloom filters.
25  *
26  * Currently the implementation supports vBF containing 1,2,4,8,16,32 BFs.
27  */
28 int
29 rte_member_create_vbf(struct rte_member_setsum *ss,
30 		const struct rte_member_parameters *params)
31 {
32 
33 	if (params->num_set > RTE_MEMBER_MAX_BF ||
34 			!rte_is_power_of_2(params->num_set) ||
35 			params->num_keys == 0 ||
36 			params->false_positive_rate == 0 ||
37 			params->false_positive_rate > 1) {
38 		rte_errno = EINVAL;
39 		MEMBER_LOG(ERR, "Membership vBF create with invalid parameters");
40 		return -EINVAL;
41 	}
42 
43 	/* We assume expected keys evenly distribute to all BFs */
44 	uint32_t num_keys_per_bf = 1 + (params->num_keys - 1) / ss->num_set;
45 
46 	/*
47 	 * Note that the false positive rate is for all BFs in the vBF
48 	 * such that the single BF's false positive rate needs to be
49 	 * calculated.
50 	 * Assume each BF's False positive rate is fp_one_bf. The total false
51 	 * positive rate is fp = 1-(1-fp_one_bf)^n.
52 	 * => fp_one_bf = 1 - (1-fp)^(1/n)
53 	 */
54 
55 	float fp_one_bf = 1 - pow((1 - params->false_positive_rate),
56 					1.0 / ss->num_set);
57 
58 	if (fp_one_bf == 0) {
59 		rte_errno = EINVAL;
60 		MEMBER_LOG(ERR, "Membership BF false positive rate is too small");
61 		return -EINVAL;
62 	}
63 
64 	uint32_t bits = ceil((num_keys_per_bf *
65 				log(fp_one_bf)) /
66 				log(1.0 / (pow(2.0, log(2.0)))));
67 
68 	/* We round to power of 2 for performance during lookup */
69 	ss->bits = rte_align32pow2(bits);
70 
71 	ss->num_hashes = (uint32_t)(log(2.0) * bits / num_keys_per_bf);
72 	ss->bit_mask = ss->bits - 1;
73 
74 	/*
75 	 * Since we round the bits to power of 2, the final false positive
76 	 * rate will probably not be same as the user specified. We log the
77 	 * new value as debug message.
78 	 */
79 	float new_fp = pow((1 - pow((1 - 1.0 / ss->bits), num_keys_per_bf *
80 					ss->num_hashes)), ss->num_hashes);
81 	new_fp = 1 - pow((1 - new_fp), ss->num_set);
82 
83 	/*
84 	 * Reduce hash function count, until we approach the user specified
85 	 * false-positive rate. Otherwise it is too conservative
86 	 */
87 	int tmp_num_hash = ss->num_hashes;
88 
89 	while (tmp_num_hash > 1) {
90 		float tmp_fp = new_fp;
91 
92 		tmp_num_hash--;
93 		new_fp = pow((1 - pow((1 - 1.0 / ss->bits), num_keys_per_bf *
94 					tmp_num_hash)), tmp_num_hash);
95 		new_fp = 1 - pow((1 - new_fp), ss->num_set);
96 
97 		if (new_fp > params->false_positive_rate) {
98 			new_fp = tmp_fp;
99 			tmp_num_hash++;
100 			break;
101 		}
102 	}
103 
104 	ss->num_hashes = tmp_num_hash;
105 
106 	/*
107 	 * To avoid multiplication and division:
108 	 * mul_shift is used for multiplication shift during bit test
109 	 * div_shift is used for division shift, to be divided by number of bits
110 	 * represented by a uint32_t variable
111 	 */
112 	ss->mul_shift = rte_ctz32(ss->num_set);
113 	ss->div_shift = rte_ctz32(32 >> ss->mul_shift);
114 
115 	MEMBER_LOG(DEBUG, "vector bloom filter created, "
116 		"each bloom filter expects %u keys, needs %u bits, %u hashes, "
117 		"with false positive rate set as %.5f, "
118 		"The new calculated vBF false positive rate is %.5f",
119 		num_keys_per_bf, ss->bits, ss->num_hashes, fp_one_bf, new_fp);
120 
121 	ss->table = rte_zmalloc_socket(NULL, ss->num_set * (ss->bits >> 3),
122 					RTE_CACHE_LINE_SIZE, ss->socket_id);
123 	if (ss->table == NULL)
124 		return -ENOMEM;
125 
126 	return 0;
127 }
128 
129 static inline uint32_t
130 test_bit(uint32_t bit_loc, const struct rte_member_setsum *ss)
131 {
132 	uint32_t *vbf = ss->table;
133 	uint32_t n = ss->num_set;
134 	uint32_t div_shift = ss->div_shift;
135 	uint32_t mul_shift = ss->mul_shift;
136 	/*
137 	 * a is how many bits in one BF are represented by one 32bit
138 	 * variable.
139 	 */
140 	uint32_t a = 32 >> mul_shift;
141 	/*
142 	 * x>>b is the divide, x & (a-1) is the mod, & (1<<n-1) to mask out bits
143 	 * we do not need
144 	 */
145 	return (vbf[bit_loc >> div_shift] >>
146 			((bit_loc & (a - 1)) << mul_shift)) & ((1ULL << n) - 1);
147 }
148 
149 static inline void
150 set_bit(uint32_t bit_loc, const struct rte_member_setsum *ss, int32_t set)
151 {
152 	uint32_t *vbf = ss->table;
153 	uint32_t div_shift = ss->div_shift;
154 	uint32_t mul_shift = ss->mul_shift;
155 	uint32_t a = 32 >> mul_shift;
156 
157 	vbf[bit_loc >> div_shift] |=
158 			1UL << (((bit_loc & (a - 1)) << mul_shift) + set - 1);
159 }
160 
161 int
162 rte_member_lookup_vbf(const struct rte_member_setsum *ss, const void *key,
163 		member_set_t *set_id)
164 {
165 	uint32_t j;
166 	uint32_t h1 = MEMBER_HASH_FUNC(key, ss->key_len, ss->prim_hash_seed);
167 	uint32_t h2 = MEMBER_HASH_FUNC(&h1, sizeof(uint32_t),
168 						ss->sec_hash_seed);
169 	uint32_t mask = ~0;
170 	uint32_t bit_loc;
171 
172 	for (j = 0; j < ss->num_hashes; j++) {
173 		bit_loc = (h1 + j * h2) & ss->bit_mask;
174 		mask &= test_bit(bit_loc, ss);
175 	}
176 
177 	if (mask) {
178 		*set_id = rte_ctz32(mask) + 1;
179 		return 1;
180 	}
181 
182 	*set_id = RTE_MEMBER_NO_MATCH;
183 	return 0;
184 }
185 
186 uint32_t
187 rte_member_lookup_bulk_vbf(const struct rte_member_setsum *ss,
188 		const void **keys, uint32_t num_keys, member_set_t *set_ids)
189 {
190 	uint32_t i, k;
191 	uint32_t num_matches = 0;
192 	uint32_t mask[RTE_MEMBER_LOOKUP_BULK_MAX];
193 	uint32_t h1[RTE_MEMBER_LOOKUP_BULK_MAX], h2[RTE_MEMBER_LOOKUP_BULK_MAX];
194 	uint32_t bit_loc;
195 
196 	for (i = 0; i < num_keys; i++)
197 		h1[i] = MEMBER_HASH_FUNC(keys[i], ss->key_len,
198 						ss->prim_hash_seed);
199 	for (i = 0; i < num_keys; i++)
200 		h2[i] = MEMBER_HASH_FUNC(&h1[i], sizeof(uint32_t),
201 						ss->sec_hash_seed);
202 	for (i = 0; i < num_keys; i++) {
203 		mask[i] = ~0;
204 		for (k = 0; k < ss->num_hashes; k++) {
205 			bit_loc = (h1[i] + k * h2[i]) & ss->bit_mask;
206 			mask[i] &= test_bit(bit_loc, ss);
207 		}
208 	}
209 	for (i = 0; i < num_keys; i++) {
210 		if (mask[i]) {
211 			set_ids[i] = rte_ctz32(mask[i]) + 1;
212 			num_matches++;
213 		} else
214 			set_ids[i] = RTE_MEMBER_NO_MATCH;
215 	}
216 	return num_matches;
217 }
218 
219 uint32_t
220 rte_member_lookup_multi_vbf(const struct rte_member_setsum *ss,
221 		const void *key, uint32_t match_per_key,
222 		member_set_t *set_id)
223 {
224 	uint32_t num_matches = 0;
225 	uint32_t j;
226 	uint32_t h1 = MEMBER_HASH_FUNC(key, ss->key_len, ss->prim_hash_seed);
227 	uint32_t h2 = MEMBER_HASH_FUNC(&h1, sizeof(uint32_t),
228 						ss->sec_hash_seed);
229 	uint32_t mask = ~0;
230 	uint32_t bit_loc;
231 
232 	for (j = 0; j < ss->num_hashes; j++) {
233 		bit_loc = (h1 + j * h2) & ss->bit_mask;
234 		mask &= test_bit(bit_loc, ss);
235 	}
236 	while (mask) {
237 		uint32_t loc = rte_ctz32(mask);
238 		set_id[num_matches] = loc + 1;
239 		num_matches++;
240 		if (num_matches >= match_per_key)
241 			return num_matches;
242 		mask &= ~(1UL << loc);
243 	}
244 	return num_matches;
245 }
246 
247 uint32_t
248 rte_member_lookup_multi_bulk_vbf(const struct rte_member_setsum *ss,
249 		const void **keys, uint32_t num_keys, uint32_t match_per_key,
250 		uint32_t *match_count,
251 		member_set_t *set_ids)
252 {
253 	uint32_t i, k;
254 	uint32_t num_matches = 0;
255 	uint32_t match_cnt_t;
256 	uint32_t mask[RTE_MEMBER_LOOKUP_BULK_MAX];
257 	uint32_t h1[RTE_MEMBER_LOOKUP_BULK_MAX], h2[RTE_MEMBER_LOOKUP_BULK_MAX];
258 	uint32_t bit_loc;
259 
260 	for (i = 0; i < num_keys; i++)
261 		h1[i] = MEMBER_HASH_FUNC(keys[i], ss->key_len,
262 						ss->prim_hash_seed);
263 	for (i = 0; i < num_keys; i++)
264 		h2[i] = MEMBER_HASH_FUNC(&h1[i], sizeof(uint32_t),
265 						ss->sec_hash_seed);
266 	for (i = 0; i < num_keys; i++) {
267 		mask[i] = ~0;
268 		for (k = 0; k < ss->num_hashes; k++) {
269 			bit_loc = (h1[i] + k * h2[i]) & ss->bit_mask;
270 			mask[i] &= test_bit(bit_loc, ss);
271 		}
272 	}
273 	for (i = 0; i < num_keys; i++) {
274 		match_cnt_t = 0;
275 		while (mask[i]) {
276 			uint32_t loc = rte_ctz32(mask[i]);
277 			set_ids[i * match_per_key + match_cnt_t] = loc + 1;
278 			match_cnt_t++;
279 			if (match_cnt_t >= match_per_key)
280 				break;
281 			mask[i] &= ~(1UL << loc);
282 		}
283 		match_count[i] = match_cnt_t;
284 		if (match_cnt_t != 0)
285 			num_matches++;
286 	}
287 	return num_matches;
288 }
289 
290 int
291 rte_member_add_vbf(const struct rte_member_setsum *ss,
292 		const void *key, member_set_t set_id)
293 {
294 	uint32_t i, h1, h2;
295 	uint32_t bit_loc;
296 
297 	if (set_id > ss->num_set || set_id == RTE_MEMBER_NO_MATCH)
298 		return -EINVAL;
299 
300 	h1 = MEMBER_HASH_FUNC(key, ss->key_len, ss->prim_hash_seed);
301 	h2 = MEMBER_HASH_FUNC(&h1, sizeof(uint32_t), ss->sec_hash_seed);
302 
303 	for (i = 0; i < ss->num_hashes; i++) {
304 		bit_loc = (h1 + i * h2) & ss->bit_mask;
305 		set_bit(bit_loc, ss, set_id);
306 	}
307 	return 0;
308 }
309 
310 void
311 rte_member_free_vbf(struct rte_member_setsum *ss)
312 {
313 	rte_free(ss->table);
314 }
315 
316 void
317 rte_member_reset_vbf(const struct rte_member_setsum *ss)
318 {
319 	uint32_t *vbf = ss->table;
320 	memset(vbf, 0, (ss->num_set * ss->bits) >> 3);
321 }
322