xref: /dpdk/lib/ipsec/esp_outb.c (revision da7e701151ea8b742d4c38ace3e4fefd1b4507fc)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2020 Intel Corporation
3  */
4 
5 #include <rte_ipsec.h>
6 #include <rte_esp.h>
7 #include <rte_udp.h>
8 #include <rte_errno.h>
9 #include <rte_cryptodev.h>
10 
11 #include "sa.h"
12 #include "ipsec_sqn.h"
13 #include "crypto.h"
14 #include "iph.h"
15 #include "misc.h"
16 #include "pad.h"
17 
18 typedef int32_t (*esp_outb_prepare_t)(struct rte_ipsec_sa *sa, rte_be64_t sqc,
19 	const uint64_t ivp[IPSEC_MAX_IV_QWORD], struct rte_mbuf *mb,
20 	union sym_op_data *icv, uint8_t sqh_len, uint8_t tso);
21 
22 /*
23  * helper function to fill crypto_sym op for cipher+auth algorithms.
24  * used by outb_cop_prepare(), see below.
25  */
26 static inline void
27 sop_ciph_auth_prepare(struct rte_crypto_sym_op *sop,
28 	const struct rte_ipsec_sa *sa, const union sym_op_data *icv,
29 	uint32_t pofs, uint32_t plen)
30 {
31 	sop->cipher.data.offset = sa->ctp.cipher.offset + pofs;
32 	sop->cipher.data.length = sa->ctp.cipher.length + plen;
33 	sop->auth.data.offset = sa->ctp.auth.offset + pofs;
34 	sop->auth.data.length = sa->ctp.auth.length + plen;
35 	sop->auth.digest.data = icv->va;
36 	sop->auth.digest.phys_addr = icv->pa;
37 }
38 
39 /*
40  * helper function to fill crypto_sym op for cipher+auth algorithms.
41  * used by outb_cop_prepare(), see below.
42  */
43 static inline void
44 sop_aead_prepare(struct rte_crypto_sym_op *sop,
45 	const struct rte_ipsec_sa *sa, const union sym_op_data *icv,
46 	uint32_t pofs, uint32_t plen)
47 {
48 	sop->aead.data.offset = sa->ctp.cipher.offset + pofs;
49 	sop->aead.data.length = sa->ctp.cipher.length + plen;
50 	sop->aead.digest.data = icv->va;
51 	sop->aead.digest.phys_addr = icv->pa;
52 	sop->aead.aad.data = icv->va + sa->icv_len;
53 	sop->aead.aad.phys_addr = icv->pa + sa->icv_len;
54 }
55 
56 /*
57  * setup crypto op and crypto sym op for ESP outbound packet.
58  */
59 static inline void
60 outb_cop_prepare(struct rte_crypto_op *cop,
61 	const struct rte_ipsec_sa *sa, const uint64_t ivp[IPSEC_MAX_IV_QWORD],
62 	const union sym_op_data *icv, uint32_t hlen, uint32_t plen)
63 {
64 	struct rte_crypto_sym_op *sop;
65 	struct aead_gcm_iv *gcm;
66 	struct aead_ccm_iv *ccm;
67 	struct aead_chacha20_poly1305_iv *chacha20_poly1305;
68 	struct aesctr_cnt_blk *ctr;
69 	uint32_t algo;
70 
71 	algo = sa->algo_type;
72 
73 	/* fill sym op fields */
74 	sop = cop->sym;
75 
76 	switch (algo) {
77 	case ALGO_TYPE_AES_CBC:
78 		/* Cipher-Auth (AES-CBC *) case */
79 	case ALGO_TYPE_3DES_CBC:
80 		/* Cipher-Auth (3DES-CBC *) case */
81 	case ALGO_TYPE_NULL:
82 		/* NULL case */
83 		sop_ciph_auth_prepare(sop, sa, icv, hlen, plen);
84 		break;
85 	case ALGO_TYPE_AES_GMAC:
86 		/* GMAC case */
87 		sop_ciph_auth_prepare(sop, sa, icv, hlen, plen);
88 
89 		/* fill AAD IV (located inside crypto op) */
90 		gcm = rte_crypto_op_ctod_offset(cop, struct aead_gcm_iv *,
91 			sa->iv_ofs);
92 		aead_gcm_iv_fill(gcm, ivp[0], sa->salt);
93 		break;
94 	case ALGO_TYPE_AES_GCM:
95 		/* AEAD (AES_GCM) case */
96 		sop_aead_prepare(sop, sa, icv, hlen, plen);
97 
98 		/* fill AAD IV (located inside crypto op) */
99 		gcm = rte_crypto_op_ctod_offset(cop, struct aead_gcm_iv *,
100 			sa->iv_ofs);
101 		aead_gcm_iv_fill(gcm, ivp[0], sa->salt);
102 		break;
103 	case ALGO_TYPE_AES_CCM:
104 		/* AEAD (AES_CCM) case */
105 		sop_aead_prepare(sop, sa, icv, hlen, plen);
106 
107 		/* fill AAD IV (located inside crypto op) */
108 		ccm = rte_crypto_op_ctod_offset(cop, struct aead_ccm_iv *,
109 			sa->iv_ofs);
110 		aead_ccm_iv_fill(ccm, ivp[0], sa->salt);
111 		break;
112 	case ALGO_TYPE_CHACHA20_POLY1305:
113 		/* AEAD (CHACHA20_POLY) case */
114 		sop_aead_prepare(sop, sa, icv, hlen, plen);
115 
116 		/* fill AAD IV (located inside crypto op) */
117 		chacha20_poly1305 = rte_crypto_op_ctod_offset(cop,
118 			struct aead_chacha20_poly1305_iv *,
119 			sa->iv_ofs);
120 		aead_chacha20_poly1305_iv_fill(chacha20_poly1305,
121 					       ivp[0], sa->salt);
122 		break;
123 	case ALGO_TYPE_AES_CTR:
124 		/* Cipher-Auth (AES-CTR *) case */
125 		sop_ciph_auth_prepare(sop, sa, icv, hlen, plen);
126 
127 		/* fill CTR block (located inside crypto op) */
128 		ctr = rte_crypto_op_ctod_offset(cop, struct aesctr_cnt_blk *,
129 			sa->iv_ofs);
130 		aes_ctr_cnt_blk_fill(ctr, ivp[0], sa->salt);
131 		break;
132 	}
133 }
134 
135 /*
136  * setup/update packet data and metadata for ESP outbound tunnel case.
137  */
138 static inline int32_t
139 outb_tun_pkt_prepare(struct rte_ipsec_sa *sa, rte_be64_t sqc,
140 	const uint64_t ivp[IPSEC_MAX_IV_QWORD], struct rte_mbuf *mb,
141 	union sym_op_data *icv, uint8_t sqh_len, uint8_t tso)
142 {
143 	uint32_t clen, hlen, l2len, pdlen, pdofs, plen, tlen;
144 	struct rte_mbuf *ml;
145 	struct rte_esp_hdr *esph;
146 	struct rte_esp_tail *espt;
147 	char *ph, *pt;
148 	uint64_t *iv;
149 
150 	/* calculate extra header space required */
151 	hlen = sa->hdr_len + sa->iv_len + sizeof(*esph);
152 
153 	/* size of ipsec protected data */
154 	l2len = mb->l2_len;
155 	plen = mb->pkt_len - l2len;
156 
157 	/* number of bytes to encrypt */
158 	clen = plen + sizeof(*espt);
159 
160 	if (!tso) {
161 		clen = RTE_ALIGN_CEIL(clen, sa->pad_align);
162 		/* pad length + esp tail */
163 		pdlen = clen - plen;
164 		tlen = pdlen + sa->icv_len + sqh_len;
165 	} else {
166 		/* We don't need to pad/align packet or append ICV length
167 		 * when using TSO offload
168 		 */
169 		pdlen = clen - plen;
170 		tlen = pdlen + sqh_len;
171 	}
172 
173 	/* do append and prepend */
174 	ml = rte_pktmbuf_lastseg(mb);
175 	if (tlen + sa->aad_len > rte_pktmbuf_tailroom(ml))
176 		return -ENOSPC;
177 
178 	/* prepend header */
179 	ph = rte_pktmbuf_prepend(mb, hlen - l2len);
180 	if (ph == NULL)
181 		return -ENOSPC;
182 
183 	/* append tail */
184 	pdofs = ml->data_len;
185 	ml->data_len += tlen;
186 	mb->pkt_len += tlen;
187 	pt = rte_pktmbuf_mtod_offset(ml, typeof(pt), pdofs);
188 
189 	/* update pkt l2/l3 len */
190 	mb->tx_offload = (mb->tx_offload & sa->tx_offload.msk) |
191 		sa->tx_offload.val;
192 
193 	/* copy tunnel pkt header */
194 	rte_memcpy(ph, sa->hdr, sa->hdr_len);
195 
196 	/* if UDP encap is enabled update the dgram_len */
197 	if (sa->type & RTE_IPSEC_SATP_NATT_ENABLE) {
198 		struct rte_udp_hdr *udph = (struct rte_udp_hdr *)
199 			(ph + sa->hdr_len - sizeof(struct rte_udp_hdr));
200 		udph->dgram_len = rte_cpu_to_be_16(mb->pkt_len - sqh_len -
201 				sa->hdr_len + sizeof(struct rte_udp_hdr));
202 	}
203 
204 	/* update original and new ip header fields */
205 	update_tun_outb_l3hdr(sa, ph + sa->hdr_l3_off, ph + hlen,
206 			mb->pkt_len - sqh_len, sa->hdr_l3_off, sqn_low16(sqc));
207 
208 	/* update spi, seqn and iv */
209 	esph = (struct rte_esp_hdr *)(ph + sa->hdr_len);
210 	iv = (uint64_t *)(esph + 1);
211 	copy_iv(iv, ivp, sa->iv_len);
212 
213 	esph->spi = sa->spi;
214 	esph->seq = sqn_low32(sqc);
215 
216 	/* offset for ICV */
217 	pdofs += pdlen + sa->sqh_len;
218 
219 	/* pad length */
220 	pdlen -= sizeof(*espt);
221 
222 	RTE_ASSERT(pdlen <= sizeof(esp_pad_bytes));
223 
224 	/* copy padding data */
225 	rte_memcpy(pt, esp_pad_bytes, RTE_MIN(pdlen, sizeof(esp_pad_bytes)));
226 
227 	/* update esp trailer */
228 	espt = (struct rte_esp_tail *)(pt + pdlen);
229 	espt->pad_len = pdlen;
230 	espt->next_proto = sa->proto;
231 
232 	/* set icv va/pa value(s) */
233 	icv->va = rte_pktmbuf_mtod_offset(ml, void *, pdofs);
234 	icv->pa = rte_pktmbuf_iova_offset(ml, pdofs);
235 
236 	return clen;
237 }
238 
239 /*
240  * for pure cryptodev (lookaside none) depending on SA settings,
241  * we might have to write some extra data to the packet.
242  */
243 static inline void
244 outb_pkt_xprepare(const struct rte_ipsec_sa *sa, rte_be64_t sqc,
245 	const union sym_op_data *icv)
246 {
247 	uint32_t *psqh;
248 	struct aead_gcm_aad *gaad;
249 	struct aead_ccm_aad *caad;
250 	struct aead_chacha20_poly1305_aad *chacha20_poly1305_aad;
251 
252 	/* insert SQN.hi between ESP trailer and ICV */
253 	if (sa->sqh_len != 0) {
254 		psqh = (uint32_t *)(icv->va - sa->sqh_len);
255 		psqh[0] = sqn_hi32(sqc);
256 	}
257 
258 	/*
259 	 * fill IV and AAD fields, if any (aad fields are placed after icv),
260 	 * right now we support only one AEAD algorithm: AES-GCM .
261 	 */
262 	switch (sa->algo_type) {
263 	case ALGO_TYPE_AES_GCM:
264 	if (sa->aad_len != 0) {
265 		gaad = (struct aead_gcm_aad *)(icv->va + sa->icv_len);
266 		aead_gcm_aad_fill(gaad, sa->spi, sqc, IS_ESN(sa));
267 	}
268 		break;
269 	case ALGO_TYPE_AES_CCM:
270 	if (sa->aad_len != 0) {
271 		caad = (struct aead_ccm_aad *)(icv->va + sa->icv_len);
272 		aead_ccm_aad_fill(caad, sa->spi, sqc, IS_ESN(sa));
273 	}
274 		break;
275 	case ALGO_TYPE_CHACHA20_POLY1305:
276 	if (sa->aad_len != 0) {
277 		chacha20_poly1305_aad =	(struct aead_chacha20_poly1305_aad *)
278 			(icv->va + sa->icv_len);
279 		aead_chacha20_poly1305_aad_fill(chacha20_poly1305_aad,
280 			sa->spi, sqc, IS_ESN(sa));
281 	}
282 		break;
283 	default:
284 		break;
285 	}
286 }
287 
288 /*
289  * setup/update packets and crypto ops for ESP outbound tunnel case.
290  */
291 uint16_t
292 esp_outb_tun_prepare(const struct rte_ipsec_session *ss, struct rte_mbuf *mb[],
293 	struct rte_crypto_op *cop[], uint16_t num)
294 {
295 	int32_t rc;
296 	uint32_t i, k, n;
297 	uint64_t sqn;
298 	rte_be64_t sqc;
299 	struct rte_ipsec_sa *sa;
300 	struct rte_cryptodev_sym_session *cs;
301 	union sym_op_data icv;
302 	uint64_t iv[IPSEC_MAX_IV_QWORD];
303 	uint32_t dr[num];
304 
305 	sa = ss->sa;
306 	cs = ss->crypto.ses;
307 
308 	n = num;
309 	sqn = esn_outb_update_sqn(sa, &n);
310 	if (n != num)
311 		rte_errno = EOVERFLOW;
312 
313 	k = 0;
314 	for (i = 0; i != n; i++) {
315 
316 		sqc = rte_cpu_to_be_64(sqn + i);
317 		gen_iv(iv, sqc);
318 
319 		/* try to update the packet itself */
320 		rc = outb_tun_pkt_prepare(sa, sqc, iv, mb[i], &icv,
321 					  sa->sqh_len, 0);
322 		/* success, setup crypto op */
323 		if (rc >= 0) {
324 			outb_pkt_xprepare(sa, sqc, &icv);
325 			lksd_none_cop_prepare(cop[k], cs, mb[i]);
326 			outb_cop_prepare(cop[k], sa, iv, &icv, 0, rc);
327 			k++;
328 		/* failure, put packet into the death-row */
329 		} else {
330 			dr[i - k] = i;
331 			rte_errno = -rc;
332 		}
333 	}
334 
335 	 /* copy not prepared mbufs beyond good ones */
336 	if (k != n && k != 0)
337 		move_bad_mbufs(mb, dr, n, n - k);
338 
339 	return k;
340 }
341 
342 /*
343  * setup/update packet data and metadata for ESP outbound transport case.
344  */
345 static inline int32_t
346 outb_trs_pkt_prepare(struct rte_ipsec_sa *sa, rte_be64_t sqc,
347 	const uint64_t ivp[IPSEC_MAX_IV_QWORD], struct rte_mbuf *mb,
348 	union sym_op_data *icv, uint8_t sqh_len, uint8_t tso)
349 {
350 	uint8_t np;
351 	uint32_t clen, hlen, pdlen, pdofs, plen, tlen, uhlen;
352 	struct rte_mbuf *ml;
353 	struct rte_esp_hdr *esph;
354 	struct rte_esp_tail *espt;
355 	char *ph, *pt;
356 	uint64_t *iv;
357 	uint32_t l2len, l3len;
358 
359 	l2len = mb->l2_len;
360 	l3len = mb->l3_len;
361 
362 	uhlen = l2len + l3len;
363 	plen = mb->pkt_len - uhlen;
364 
365 	/* calculate extra header space required */
366 	hlen = sa->iv_len + sizeof(*esph);
367 
368 	/* number of bytes to encrypt */
369 	clen = plen + sizeof(*espt);
370 
371 	if (!tso) {
372 		clen = RTE_ALIGN_CEIL(clen, sa->pad_align);
373 		/* pad length + esp tail */
374 		pdlen = clen - plen;
375 		tlen = pdlen + sa->icv_len + sqh_len;
376 	} else {
377 		/* We don't need to pad/align packet or append ICV length
378 		 * when using TSO offload
379 		 */
380 		pdlen = clen - plen;
381 		tlen = pdlen + sqh_len;
382 	}
383 
384 	/* do append and insert */
385 	ml = rte_pktmbuf_lastseg(mb);
386 	if (tlen + sa->aad_len > rte_pktmbuf_tailroom(ml))
387 		return -ENOSPC;
388 
389 	/* prepend space for ESP header */
390 	ph = rte_pktmbuf_prepend(mb, hlen);
391 	if (ph == NULL)
392 		return -ENOSPC;
393 
394 	/* append tail */
395 	pdofs = ml->data_len;
396 	ml->data_len += tlen;
397 	mb->pkt_len += tlen;
398 	pt = rte_pktmbuf_mtod_offset(ml, typeof(pt), pdofs);
399 
400 	/* shift L2/L3 headers */
401 	insert_esph(ph, ph + hlen, uhlen);
402 
403 	/* update ip  header fields */
404 	np = update_trs_l3hdr(sa, ph + l2len, mb->pkt_len - sqh_len, l2len,
405 			l3len, IPPROTO_ESP);
406 
407 	/* update spi, seqn and iv */
408 	esph = (struct rte_esp_hdr *)(ph + uhlen);
409 	iv = (uint64_t *)(esph + 1);
410 	copy_iv(iv, ivp, sa->iv_len);
411 
412 	esph->spi = sa->spi;
413 	esph->seq = sqn_low32(sqc);
414 
415 	/* offset for ICV */
416 	pdofs += pdlen + sa->sqh_len;
417 
418 	/* pad length */
419 	pdlen -= sizeof(*espt);
420 
421 	RTE_ASSERT(pdlen <= sizeof(esp_pad_bytes));
422 
423 	/* copy padding data */
424 	rte_memcpy(pt, esp_pad_bytes, RTE_MIN(pdlen, sizeof(esp_pad_bytes)));
425 
426 	/* update esp trailer */
427 	espt = (struct rte_esp_tail *)(pt + pdlen);
428 	espt->pad_len = pdlen;
429 	espt->next_proto = np;
430 
431 	/* set icv va/pa value(s) */
432 	icv->va = rte_pktmbuf_mtod_offset(ml, void *, pdofs);
433 	icv->pa = rte_pktmbuf_iova_offset(ml, pdofs);
434 
435 	return clen;
436 }
437 
438 /*
439  * setup/update packets and crypto ops for ESP outbound transport case.
440  */
441 uint16_t
442 esp_outb_trs_prepare(const struct rte_ipsec_session *ss, struct rte_mbuf *mb[],
443 	struct rte_crypto_op *cop[], uint16_t num)
444 {
445 	int32_t rc;
446 	uint32_t i, k, n, l2, l3;
447 	uint64_t sqn;
448 	rte_be64_t sqc;
449 	struct rte_ipsec_sa *sa;
450 	struct rte_cryptodev_sym_session *cs;
451 	union sym_op_data icv;
452 	uint64_t iv[IPSEC_MAX_IV_QWORD];
453 	uint32_t dr[num];
454 
455 	sa = ss->sa;
456 	cs = ss->crypto.ses;
457 
458 	n = num;
459 	sqn = esn_outb_update_sqn(sa, &n);
460 	if (n != num)
461 		rte_errno = EOVERFLOW;
462 
463 	k = 0;
464 	for (i = 0; i != n; i++) {
465 
466 		l2 = mb[i]->l2_len;
467 		l3 = mb[i]->l3_len;
468 
469 		sqc = rte_cpu_to_be_64(sqn + i);
470 		gen_iv(iv, sqc);
471 
472 		/* try to update the packet itself */
473 		rc = outb_trs_pkt_prepare(sa, sqc, iv, mb[i], &icv,
474 				  sa->sqh_len, 0);
475 		/* success, setup crypto op */
476 		if (rc >= 0) {
477 			outb_pkt_xprepare(sa, sqc, &icv);
478 			lksd_none_cop_prepare(cop[k], cs, mb[i]);
479 			outb_cop_prepare(cop[k], sa, iv, &icv, l2 + l3, rc);
480 			k++;
481 		/* failure, put packet into the death-row */
482 		} else {
483 			dr[i - k] = i;
484 			rte_errno = -rc;
485 		}
486 	}
487 
488 	/* copy not prepared mbufs beyond good ones */
489 	if (k != n && k != 0)
490 		move_bad_mbufs(mb, dr, n, n - k);
491 
492 	return k;
493 }
494 
495 
496 static inline uint32_t
497 outb_cpu_crypto_prepare(const struct rte_ipsec_sa *sa, uint32_t *pofs,
498 	uint32_t plen, void *iv)
499 {
500 	uint64_t *ivp = iv;
501 	struct aead_gcm_iv *gcm;
502 	struct aead_ccm_iv *ccm;
503 	struct aead_chacha20_poly1305_iv *chacha20_poly1305;
504 	struct aesctr_cnt_blk *ctr;
505 	uint32_t clen;
506 
507 	switch (sa->algo_type) {
508 	case ALGO_TYPE_AES_GCM:
509 		gcm = iv;
510 		aead_gcm_iv_fill(gcm, ivp[0], sa->salt);
511 		break;
512 	case ALGO_TYPE_AES_CCM:
513 		ccm = iv;
514 		aead_ccm_iv_fill(ccm, ivp[0], sa->salt);
515 		break;
516 	case ALGO_TYPE_CHACHA20_POLY1305:
517 		chacha20_poly1305 = iv;
518 		aead_chacha20_poly1305_iv_fill(chacha20_poly1305,
519 					       ivp[0], sa->salt);
520 		break;
521 	case ALGO_TYPE_AES_CTR:
522 		ctr = iv;
523 		aes_ctr_cnt_blk_fill(ctr, ivp[0], sa->salt);
524 		break;
525 	}
526 
527 	*pofs += sa->ctp.auth.offset;
528 	clen = plen + sa->ctp.auth.length;
529 	return clen;
530 }
531 
532 static uint16_t
533 cpu_outb_pkt_prepare(const struct rte_ipsec_session *ss,
534 		struct rte_mbuf *mb[], uint16_t num,
535 		esp_outb_prepare_t prepare, uint32_t cofs_mask)
536 {
537 	int32_t rc;
538 	uint64_t sqn;
539 	rte_be64_t sqc;
540 	struct rte_ipsec_sa *sa;
541 	uint32_t i, k, n;
542 	uint32_t l2, l3;
543 	union sym_op_data icv;
544 	struct rte_crypto_va_iova_ptr iv[num];
545 	struct rte_crypto_va_iova_ptr aad[num];
546 	struct rte_crypto_va_iova_ptr dgst[num];
547 	uint32_t dr[num];
548 	uint32_t l4ofs[num];
549 	uint32_t clen[num];
550 	uint64_t ivbuf[num][IPSEC_MAX_IV_QWORD];
551 
552 	sa = ss->sa;
553 
554 	n = num;
555 	sqn = esn_outb_update_sqn(sa, &n);
556 	if (n != num)
557 		rte_errno = EOVERFLOW;
558 
559 	for (i = 0, k = 0; i != n; i++) {
560 
561 		l2 = mb[i]->l2_len;
562 		l3 = mb[i]->l3_len;
563 
564 		/* calculate ESP header offset */
565 		l4ofs[k] = (l2 + l3) & cofs_mask;
566 
567 		sqc = rte_cpu_to_be_64(sqn + i);
568 		gen_iv(ivbuf[k], sqc);
569 
570 		/* try to update the packet itself */
571 		rc = prepare(sa, sqc, ivbuf[k], mb[i], &icv, sa->sqh_len, 0);
572 
573 		/* success, proceed with preparations */
574 		if (rc >= 0) {
575 
576 			outb_pkt_xprepare(sa, sqc, &icv);
577 
578 			/* get encrypted data offset and length */
579 			clen[k] = outb_cpu_crypto_prepare(sa, l4ofs + k, rc,
580 				ivbuf[k]);
581 
582 			/* fill iv, digest and aad */
583 			iv[k].va = ivbuf[k];
584 			aad[k].va = icv.va + sa->icv_len;
585 			dgst[k++].va = icv.va;
586 		} else {
587 			dr[i - k] = i;
588 			rte_errno = -rc;
589 		}
590 	}
591 
592 	/* copy not prepared mbufs beyond good ones */
593 	if (k != n && k != 0)
594 		move_bad_mbufs(mb, dr, n, n - k);
595 
596 	/* convert mbufs to iovecs and do actual crypto/auth processing */
597 	if (k != 0)
598 		cpu_crypto_bulk(ss, sa->cofs, mb, iv, aad, dgst,
599 			l4ofs, clen, k);
600 	return k;
601 }
602 
603 uint16_t
604 cpu_outb_tun_pkt_prepare(const struct rte_ipsec_session *ss,
605 		struct rte_mbuf *mb[], uint16_t num)
606 {
607 	return cpu_outb_pkt_prepare(ss, mb, num, outb_tun_pkt_prepare, 0);
608 }
609 
610 uint16_t
611 cpu_outb_trs_pkt_prepare(const struct rte_ipsec_session *ss,
612 		struct rte_mbuf *mb[], uint16_t num)
613 {
614 	return cpu_outb_pkt_prepare(ss, mb, num, outb_trs_pkt_prepare,
615 		UINT32_MAX);
616 }
617 
618 /*
619  * process outbound packets for SA with ESN support,
620  * for algorithms that require SQN.hibits to be implicitly included
621  * into digest computation.
622  * In that case we have to move ICV bytes back to their proper place.
623  */
624 uint16_t
625 esp_outb_sqh_process(const struct rte_ipsec_session *ss, struct rte_mbuf *mb[],
626 	uint16_t num)
627 {
628 	uint32_t i, k, icv_len, *icv, bytes;
629 	struct rte_mbuf *ml;
630 	struct rte_ipsec_sa *sa;
631 	uint32_t dr[num];
632 
633 	sa = ss->sa;
634 
635 	k = 0;
636 	icv_len = sa->icv_len;
637 	bytes = 0;
638 
639 	for (i = 0; i != num; i++) {
640 		if ((mb[i]->ol_flags & RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED) == 0) {
641 			ml = rte_pktmbuf_lastseg(mb[i]);
642 			/* remove high-order 32 bits of esn from packet len */
643 			mb[i]->pkt_len -= sa->sqh_len;
644 			ml->data_len -= sa->sqh_len;
645 			icv = rte_pktmbuf_mtod_offset(ml, void *,
646 				ml->data_len - icv_len);
647 			remove_sqh(icv, icv_len);
648 			bytes += mb[i]->pkt_len;
649 			k++;
650 		} else
651 			dr[i - k] = i;
652 	}
653 	sa->statistics.count += k;
654 	sa->statistics.bytes += bytes;
655 
656 	/* handle unprocessed mbufs */
657 	if (k != num) {
658 		rte_errno = EBADMSG;
659 		if (k != 0)
660 			move_bad_mbufs(mb, dr, num, num - k);
661 	}
662 
663 	return k;
664 }
665 
666 /*
667  * prepare packets for inline ipsec processing:
668  * set ol_flags and attach metadata.
669  */
670 static inline void
671 inline_outb_mbuf_prepare(const struct rte_ipsec_session *ss,
672 	struct rte_mbuf *mb[], uint16_t num)
673 {
674 	uint32_t i, ol_flags, bytes;
675 
676 	ol_flags = ss->security.ol_flags & RTE_SECURITY_TX_OLOAD_NEED_MDATA;
677 	bytes = 0;
678 	for (i = 0; i != num; i++) {
679 
680 		mb[i]->ol_flags |= RTE_MBUF_F_TX_SEC_OFFLOAD;
681 		bytes += mb[i]->pkt_len;
682 		if (ol_flags != 0)
683 			rte_security_set_pkt_metadata(ss->security.ctx,
684 				ss->security.ses, mb[i], NULL);
685 	}
686 	ss->sa->statistics.count += num;
687 	ss->sa->statistics.bytes += bytes;
688 }
689 
690 
691 static inline int
692 esn_outb_nb_segments(struct rte_mbuf *m)
693 {
694 	if  (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) {
695 		uint16_t pkt_l3len = m->pkt_len - m->l2_len;
696 		uint16_t segments =
697 			(m->tso_segsz > 0 && pkt_l3len > m->tso_segsz) ?
698 			(pkt_l3len + m->tso_segsz - 1) / m->tso_segsz : 1;
699 		return segments;
700 	}
701 	return 1; /* no TSO */
702 }
703 
704 /* Compute how many packets can be sent before overflow occurs */
705 static inline uint16_t
706 esn_outb_nb_valid_packets(uint16_t num, uint32_t n_sqn, uint16_t nb_segs[])
707 {
708 	uint16_t i;
709 	uint32_t seg_cnt = 0;
710 	for (i = 0; i < num && seg_cnt < n_sqn; i++)
711 		seg_cnt += nb_segs[i];
712 	return i - 1;
713 }
714 
715 /*
716  * process group of ESP outbound tunnel packets destined for
717  * INLINE_CRYPTO type of device.
718  */
719 uint16_t
720 inline_outb_tun_pkt_process(const struct rte_ipsec_session *ss,
721 	struct rte_mbuf *mb[], uint16_t num)
722 {
723 	int32_t rc;
724 	uint32_t i, k, nb_segs_total, n_sqn;
725 	uint64_t sqn;
726 	rte_be64_t sqc;
727 	struct rte_ipsec_sa *sa;
728 	union sym_op_data icv;
729 	uint64_t iv[IPSEC_MAX_IV_QWORD];
730 	uint32_t dr[num];
731 	uint16_t nb_segs[num];
732 
733 	sa = ss->sa;
734 	nb_segs_total = 0;
735 	/* Calculate number of segments */
736 	for (i = 0; i != num; i++) {
737 		nb_segs[i] = esn_outb_nb_segments(mb[i]);
738 		nb_segs_total += nb_segs[i];
739 	}
740 
741 	n_sqn = nb_segs_total;
742 	sqn = esn_outb_update_sqn(sa, &n_sqn);
743 	if (n_sqn != nb_segs_total) {
744 		rte_errno = EOVERFLOW;
745 		/* if there are segmented packets find out how many can be
746 		 * sent until overflow occurs
747 		 */
748 		if (nb_segs_total > num) /* there is at least 1 */
749 			num = esn_outb_nb_valid_packets(num, n_sqn, nb_segs);
750 		else
751 			num = n_sqn; /* no segmented packets */
752 	}
753 
754 	k = 0;
755 	for (i = 0; i != num; i++) {
756 
757 		sqc = rte_cpu_to_be_64(sqn);
758 		gen_iv(iv, sqc);
759 		sqn += nb_segs[i];
760 
761 		/* try to update the packet itself */
762 		rc = outb_tun_pkt_prepare(sa, sqc, iv, mb[i], &icv, 0,
763 			(mb[i]->ol_flags &
764 			(RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) != 0);
765 
766 		k += (rc >= 0);
767 
768 		/* failure, put packet into the death-row */
769 		if (rc < 0) {
770 			dr[i - k] = i;
771 			rte_errno = -rc;
772 		}
773 	}
774 
775 	/* copy not processed mbufs beyond good ones */
776 	if (k != num && k != 0)
777 		move_bad_mbufs(mb, dr, num, num - k);
778 
779 	inline_outb_mbuf_prepare(ss, mb, k);
780 	return k;
781 }
782 
783 /*
784  * process group of ESP outbound transport packets destined for
785  * INLINE_CRYPTO type of device.
786  */
787 uint16_t
788 inline_outb_trs_pkt_process(const struct rte_ipsec_session *ss,
789 	struct rte_mbuf *mb[], uint16_t num)
790 {
791 	int32_t rc;
792 	uint32_t i, k, nb_segs_total, n_sqn;
793 	uint64_t sqn;
794 	rte_be64_t sqc;
795 	struct rte_ipsec_sa *sa;
796 	union sym_op_data icv;
797 	uint64_t iv[IPSEC_MAX_IV_QWORD];
798 	uint32_t dr[num];
799 	uint16_t nb_segs[num];
800 
801 	sa = ss->sa;
802 	nb_segs_total = 0;
803 	/* Calculate number of segments */
804 	for (i = 0; i != num; i++) {
805 		nb_segs[i] = esn_outb_nb_segments(mb[i]);
806 		nb_segs_total += nb_segs[i];
807 	}
808 
809 	n_sqn = nb_segs_total;
810 	sqn = esn_outb_update_sqn(sa, &n_sqn);
811 	if (n_sqn != nb_segs_total) {
812 		rte_errno = EOVERFLOW;
813 		/* if there are segmented packets find out how many can be
814 		 * sent until overflow occurs
815 		 */
816 		if (nb_segs_total > num) /* there is at least 1 */
817 			num = esn_outb_nb_valid_packets(num, n_sqn, nb_segs);
818 		else
819 			num = n_sqn; /* no segmented packets */
820 	}
821 
822 	k = 0;
823 	for (i = 0; i != num; i++) {
824 
825 		sqc = rte_cpu_to_be_64(sqn);
826 		gen_iv(iv, sqc);
827 		sqn += nb_segs[i];
828 
829 		/* try to update the packet itself */
830 		rc = outb_trs_pkt_prepare(sa, sqc, iv, mb[i], &icv, 0,
831 			(mb[i]->ol_flags &
832 			(RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) != 0);
833 
834 		k += (rc >= 0);
835 
836 		/* failure, put packet into the death-row */
837 		if (rc < 0) {
838 			dr[i - k] = i;
839 			rte_errno = -rc;
840 		}
841 	}
842 
843 	/* copy not processed mbufs beyond good ones */
844 	if (k != num && k != 0)
845 		move_bad_mbufs(mb, dr, num, num - k);
846 
847 	inline_outb_mbuf_prepare(ss, mb, k);
848 	return k;
849 }
850 
851 /*
852  * outbound for RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
853  * actual processing is done by HW/PMD, just set flags and metadata.
854  */
855 uint16_t
856 inline_proto_outb_pkt_process(const struct rte_ipsec_session *ss,
857 	struct rte_mbuf *mb[], uint16_t num)
858 {
859 	inline_outb_mbuf_prepare(ss, mb, num);
860 	return num;
861 }
862