xref: /dpdk/lib/ip_frag/rte_ipv6_fragmentation.c (revision 99a2dd955fba6e4cc23b77d590a033650ced9c45)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stddef.h>
6 #include <errno.h>
7 
8 #include <rte_memcpy.h>
9 
10 #include "ip_frag_common.h"
11 
12 /**
13  * @file
14  * RTE IPv6 Fragmentation
15  *
16  * Implementation of IPv6 fragmentation.
17  *
18  */
19 
20 static inline void
21 __fill_ipv6hdr_frag(struct rte_ipv6_hdr *dst,
22 		const struct rte_ipv6_hdr *src, uint16_t len, uint16_t fofs,
23 		uint32_t mf)
24 {
25 	struct ipv6_extension_fragment *fh;
26 
27 	rte_memcpy(dst, src, sizeof(*dst));
28 	dst->payload_len = rte_cpu_to_be_16(len);
29 	dst->proto = IPPROTO_FRAGMENT;
30 
31 	fh = (struct ipv6_extension_fragment *) ++dst;
32 	fh->next_header = src->proto;
33 	fh->reserved = 0;
34 	fh->frag_data = rte_cpu_to_be_16(RTE_IPV6_SET_FRAG_DATA(fofs, mf));
35 	fh->id = 0;
36 }
37 
38 static inline void
39 __free_fragments(struct rte_mbuf *mb[], uint32_t num)
40 {
41 	uint32_t i;
42 	for (i = 0; i < num; i++)
43 		rte_pktmbuf_free(mb[i]);
44 }
45 
46 /**
47  * IPv6 fragmentation.
48  *
49  * This function implements the fragmentation of IPv6 packets.
50  *
51  * @param pkt_in
52  *   The input packet.
53  * @param pkts_out
54  *   Array storing the output fragments.
55  * @param mtu_size
56  *   Size in bytes of the Maximum Transfer Unit (MTU) for the outgoing IPv6
57  *   datagrams. This value includes the size of the IPv6 header.
58  * @param pool_direct
59  *   MBUF pool used for allocating direct buffers for the output fragments.
60  * @param pool_indirect
61  *   MBUF pool used for allocating indirect buffers for the output fragments.
62  * @return
63  *   Upon successful completion - number of output fragments placed
64  *   in the pkts_out array.
65  *   Otherwise - (-1) * <errno>.
66  */
67 int32_t
68 rte_ipv6_fragment_packet(struct rte_mbuf *pkt_in,
69 	struct rte_mbuf **pkts_out,
70 	uint16_t nb_pkts_out,
71 	uint16_t mtu_size,
72 	struct rte_mempool *pool_direct,
73 	struct rte_mempool *pool_indirect)
74 {
75 	struct rte_mbuf *in_seg = NULL;
76 	struct rte_ipv6_hdr *in_hdr;
77 	uint32_t out_pkt_pos, in_seg_data_pos;
78 	uint32_t more_in_segs;
79 	uint16_t fragment_offset, frag_size;
80 	uint64_t frag_bytes_remaining;
81 
82 	/*
83 	 * Formal parameter checking.
84 	 */
85 	if (unlikely(pkt_in == NULL) || unlikely(pkts_out == NULL) ||
86 	    unlikely(nb_pkts_out == 0) ||
87 	    unlikely(pool_direct == NULL) || unlikely(pool_indirect == NULL) ||
88 	    unlikely(mtu_size < RTE_IPV6_MIN_MTU))
89 		return -EINVAL;
90 
91 	/*
92 	 * Ensure the IP payload length of all fragments (except the
93 	 * the last fragment) are a multiple of 8 bytes per RFC2460.
94 	 */
95 
96 	frag_size = mtu_size - sizeof(struct rte_ipv6_hdr) -
97 		sizeof(struct ipv6_extension_fragment);
98 	frag_size = RTE_ALIGN_FLOOR(frag_size, RTE_IPV6_EHDR_FO_ALIGN);
99 
100 	/* Check that pkts_out is big enough to hold all fragments */
101 	if (unlikely (frag_size * nb_pkts_out <
102 	    (uint16_t)(pkt_in->pkt_len - sizeof(struct rte_ipv6_hdr))))
103 		return -EINVAL;
104 
105 	in_hdr = rte_pktmbuf_mtod(pkt_in, struct rte_ipv6_hdr *);
106 
107 	in_seg = pkt_in;
108 	in_seg_data_pos = sizeof(struct rte_ipv6_hdr);
109 	out_pkt_pos = 0;
110 	fragment_offset = 0;
111 
112 	more_in_segs = 1;
113 	while (likely(more_in_segs)) {
114 		struct rte_mbuf *out_pkt = NULL, *out_seg_prev = NULL;
115 		uint32_t more_out_segs;
116 		struct rte_ipv6_hdr *out_hdr;
117 
118 		/* Allocate direct buffer */
119 		out_pkt = rte_pktmbuf_alloc(pool_direct);
120 		if (unlikely(out_pkt == NULL)) {
121 			__free_fragments(pkts_out, out_pkt_pos);
122 			return -ENOMEM;
123 		}
124 
125 		/* Reserve space for the IP header that will be built later */
126 		out_pkt->data_len = sizeof(struct rte_ipv6_hdr) +
127 			sizeof(struct ipv6_extension_fragment);
128 		out_pkt->pkt_len  = sizeof(struct rte_ipv6_hdr) +
129 			sizeof(struct ipv6_extension_fragment);
130 		frag_bytes_remaining = frag_size;
131 
132 		out_seg_prev = out_pkt;
133 		more_out_segs = 1;
134 		while (likely(more_out_segs && more_in_segs)) {
135 			struct rte_mbuf *out_seg = NULL;
136 			uint32_t len;
137 
138 			/* Allocate indirect buffer */
139 			out_seg = rte_pktmbuf_alloc(pool_indirect);
140 			if (unlikely(out_seg == NULL)) {
141 				rte_pktmbuf_free(out_pkt);
142 				__free_fragments(pkts_out, out_pkt_pos);
143 				return -ENOMEM;
144 			}
145 			out_seg_prev->next = out_seg;
146 			out_seg_prev = out_seg;
147 
148 			/* Prepare indirect buffer */
149 			rte_pktmbuf_attach(out_seg, in_seg);
150 			len = frag_bytes_remaining;
151 			if (len > (in_seg->data_len - in_seg_data_pos)) {
152 				len = in_seg->data_len - in_seg_data_pos;
153 			}
154 			out_seg->data_off = in_seg->data_off + in_seg_data_pos;
155 			out_seg->data_len = (uint16_t)len;
156 			out_pkt->pkt_len = (uint16_t)(len +
157 			    out_pkt->pkt_len);
158 			out_pkt->nb_segs += 1;
159 			in_seg_data_pos += len;
160 			frag_bytes_remaining -= len;
161 
162 			/* Current output packet (i.e. fragment) done ? */
163 			if (unlikely(frag_bytes_remaining == 0))
164 				more_out_segs = 0;
165 
166 			/* Current input segment done ? */
167 			if (unlikely(in_seg_data_pos == in_seg->data_len)) {
168 				in_seg = in_seg->next;
169 				in_seg_data_pos = 0;
170 
171 				if (unlikely(in_seg == NULL)) {
172 					more_in_segs = 0;
173 				}
174 			}
175 		}
176 
177 		/* Build the IP header */
178 
179 		out_hdr = rte_pktmbuf_mtod(out_pkt, struct rte_ipv6_hdr *);
180 
181 		__fill_ipv6hdr_frag(out_hdr, in_hdr,
182 		    (uint16_t) out_pkt->pkt_len - sizeof(struct rte_ipv6_hdr),
183 		    fragment_offset, more_in_segs);
184 
185 		fragment_offset = (uint16_t)(fragment_offset +
186 		    out_pkt->pkt_len - sizeof(struct rte_ipv6_hdr)
187 			- sizeof(struct ipv6_extension_fragment));
188 
189 		/* Write the fragment to the output list */
190 		pkts_out[out_pkt_pos] = out_pkt;
191 		out_pkt_pos ++;
192 	}
193 
194 	return out_pkt_pos;
195 }
196