1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2020 Inspur Corporation 3 */ 4 5 #include <rte_malloc.h> 6 #include <rte_mbuf.h> 7 #include <rte_cycles.h> 8 #include <rte_ethdev.h> 9 10 #include "gro_udp4.h" 11 12 void * 13 gro_udp4_tbl_create(uint16_t socket_id, 14 uint16_t max_flow_num, 15 uint16_t max_item_per_flow) 16 { 17 struct gro_udp4_tbl *tbl; 18 size_t size; 19 uint32_t entries_num, i; 20 21 entries_num = max_flow_num * max_item_per_flow; 22 entries_num = RTE_MIN(entries_num, GRO_UDP4_TBL_MAX_ITEM_NUM); 23 24 if (entries_num == 0) 25 return NULL; 26 27 tbl = rte_zmalloc_socket(__func__, 28 sizeof(struct gro_udp4_tbl), 29 RTE_CACHE_LINE_SIZE, 30 socket_id); 31 if (tbl == NULL) 32 return NULL; 33 34 size = sizeof(struct gro_udp4_item) * entries_num; 35 tbl->items = rte_zmalloc_socket(__func__, 36 size, 37 RTE_CACHE_LINE_SIZE, 38 socket_id); 39 if (tbl->items == NULL) { 40 rte_free(tbl); 41 return NULL; 42 } 43 tbl->max_item_num = entries_num; 44 45 size = sizeof(struct gro_udp4_flow) * entries_num; 46 tbl->flows = rte_zmalloc_socket(__func__, 47 size, 48 RTE_CACHE_LINE_SIZE, 49 socket_id); 50 if (tbl->flows == NULL) { 51 rte_free(tbl->items); 52 rte_free(tbl); 53 return NULL; 54 } 55 /* INVALID_ARRAY_INDEX indicates an empty flow */ 56 for (i = 0; i < entries_num; i++) 57 tbl->flows[i].start_index = INVALID_ARRAY_INDEX; 58 tbl->max_flow_num = entries_num; 59 60 return tbl; 61 } 62 63 void 64 gro_udp4_tbl_destroy(void *tbl) 65 { 66 struct gro_udp4_tbl *udp_tbl = tbl; 67 68 if (udp_tbl) { 69 rte_free(udp_tbl->items); 70 rte_free(udp_tbl->flows); 71 } 72 rte_free(udp_tbl); 73 } 74 75 static inline uint32_t 76 find_an_empty_item(struct gro_udp4_tbl *tbl) 77 { 78 uint32_t i; 79 uint32_t max_item_num = tbl->max_item_num; 80 81 for (i = 0; i < max_item_num; i++) 82 if (tbl->items[i].firstseg == NULL) 83 return i; 84 return INVALID_ARRAY_INDEX; 85 } 86 87 static inline uint32_t 88 find_an_empty_flow(struct gro_udp4_tbl *tbl) 89 { 90 uint32_t i; 91 uint32_t max_flow_num = tbl->max_flow_num; 92 93 for (i = 0; i < max_flow_num; i++) 94 if (tbl->flows[i].start_index == INVALID_ARRAY_INDEX) 95 return i; 96 return INVALID_ARRAY_INDEX; 97 } 98 99 static inline uint32_t 100 insert_new_item(struct gro_udp4_tbl *tbl, 101 struct rte_mbuf *pkt, 102 uint64_t start_time, 103 uint32_t prev_idx, 104 uint16_t frag_offset, 105 uint8_t is_last_frag) 106 { 107 uint32_t item_idx; 108 109 item_idx = find_an_empty_item(tbl); 110 if (unlikely(item_idx == INVALID_ARRAY_INDEX)) 111 return INVALID_ARRAY_INDEX; 112 113 tbl->items[item_idx].firstseg = pkt; 114 tbl->items[item_idx].lastseg = rte_pktmbuf_lastseg(pkt); 115 tbl->items[item_idx].start_time = start_time; 116 tbl->items[item_idx].next_pkt_idx = INVALID_ARRAY_INDEX; 117 tbl->items[item_idx].frag_offset = frag_offset; 118 tbl->items[item_idx].is_last_frag = is_last_frag; 119 tbl->items[item_idx].nb_merged = 1; 120 tbl->item_num++; 121 122 /* if the previous packet exists, chain them together. */ 123 if (prev_idx != INVALID_ARRAY_INDEX) { 124 tbl->items[item_idx].next_pkt_idx = 125 tbl->items[prev_idx].next_pkt_idx; 126 tbl->items[prev_idx].next_pkt_idx = item_idx; 127 } 128 129 return item_idx; 130 } 131 132 static inline uint32_t 133 delete_item(struct gro_udp4_tbl *tbl, uint32_t item_idx, 134 uint32_t prev_item_idx) 135 { 136 uint32_t next_idx = tbl->items[item_idx].next_pkt_idx; 137 138 /* NULL indicates an empty item */ 139 tbl->items[item_idx].firstseg = NULL; 140 tbl->item_num--; 141 if (prev_item_idx != INVALID_ARRAY_INDEX) 142 tbl->items[prev_item_idx].next_pkt_idx = next_idx; 143 144 return next_idx; 145 } 146 147 static inline uint32_t 148 insert_new_flow(struct gro_udp4_tbl *tbl, 149 struct udp4_flow_key *src, 150 uint32_t item_idx) 151 { 152 struct udp4_flow_key *dst; 153 uint32_t flow_idx; 154 155 flow_idx = find_an_empty_flow(tbl); 156 if (unlikely(flow_idx == INVALID_ARRAY_INDEX)) 157 return INVALID_ARRAY_INDEX; 158 159 dst = &(tbl->flows[flow_idx].key); 160 161 rte_ether_addr_copy(&(src->eth_saddr), &(dst->eth_saddr)); 162 rte_ether_addr_copy(&(src->eth_daddr), &(dst->eth_daddr)); 163 dst->ip_src_addr = src->ip_src_addr; 164 dst->ip_dst_addr = src->ip_dst_addr; 165 dst->ip_id = src->ip_id; 166 167 tbl->flows[flow_idx].start_index = item_idx; 168 tbl->flow_num++; 169 170 return flow_idx; 171 } 172 173 /* 174 * update the packet length for the flushed packet. 175 */ 176 static inline void 177 update_header(struct gro_udp4_item *item) 178 { 179 struct rte_ipv4_hdr *ipv4_hdr; 180 struct rte_mbuf *pkt = item->firstseg; 181 uint16_t frag_offset; 182 183 ipv4_hdr = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(pkt, char *) + 184 pkt->l2_len); 185 ipv4_hdr->total_length = rte_cpu_to_be_16(pkt->pkt_len - 186 pkt->l2_len); 187 188 /* Clear MF bit if it is last fragment */ 189 if (item->is_last_frag) { 190 frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset); 191 ipv4_hdr->fragment_offset = 192 rte_cpu_to_be_16(frag_offset & ~RTE_IPV4_HDR_MF_FLAG); 193 } 194 } 195 196 int32_t 197 gro_udp4_reassemble(struct rte_mbuf *pkt, 198 struct gro_udp4_tbl *tbl, 199 uint64_t start_time) 200 { 201 struct rte_ether_hdr *eth_hdr; 202 struct rte_ipv4_hdr *ipv4_hdr; 203 uint16_t ip_dl; 204 uint16_t ip_id, hdr_len; 205 uint16_t frag_offset = 0; 206 uint8_t is_last_frag; 207 208 struct udp4_flow_key key; 209 uint32_t cur_idx, prev_idx, item_idx; 210 uint32_t i, max_flow_num, remaining_flow_num; 211 int cmp; 212 uint8_t find; 213 214 eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *); 215 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)eth_hdr + pkt->l2_len); 216 hdr_len = pkt->l2_len + pkt->l3_len; 217 218 /* 219 * Don't process non-fragment packet. 220 */ 221 if (!is_ipv4_fragment(ipv4_hdr)) 222 return -1; 223 224 /* 225 * Don't process the packet whose payload length is less than or 226 * equal to 0. 227 */ 228 if (pkt->pkt_len <= hdr_len) 229 return -1; 230 231 ip_dl = rte_be_to_cpu_16(ipv4_hdr->total_length); 232 if (ip_dl <= pkt->l3_len) 233 return -1; 234 235 ip_dl -= pkt->l3_len; 236 ip_id = rte_be_to_cpu_16(ipv4_hdr->packet_id); 237 frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset); 238 is_last_frag = ((frag_offset & RTE_IPV4_HDR_MF_FLAG) == 0) ? 1 : 0; 239 frag_offset = (uint16_t)(frag_offset & RTE_IPV4_HDR_OFFSET_MASK) << 3; 240 241 rte_ether_addr_copy(&(eth_hdr->src_addr), &(key.eth_saddr)); 242 rte_ether_addr_copy(&(eth_hdr->dst_addr), &(key.eth_daddr)); 243 key.ip_src_addr = ipv4_hdr->src_addr; 244 key.ip_dst_addr = ipv4_hdr->dst_addr; 245 key.ip_id = ip_id; 246 247 /* Search for a matched flow. */ 248 max_flow_num = tbl->max_flow_num; 249 remaining_flow_num = tbl->flow_num; 250 find = 0; 251 for (i = 0; i < max_flow_num && remaining_flow_num; i++) { 252 if (tbl->flows[i].start_index != INVALID_ARRAY_INDEX) { 253 if (is_same_udp4_flow(tbl->flows[i].key, key)) { 254 find = 1; 255 break; 256 } 257 remaining_flow_num--; 258 } 259 } 260 261 /* 262 * Fail to find a matched flow. Insert a new flow and store the 263 * packet into the flow. 264 */ 265 if (find == 0) { 266 item_idx = insert_new_item(tbl, pkt, start_time, 267 INVALID_ARRAY_INDEX, frag_offset, 268 is_last_frag); 269 if (unlikely(item_idx == INVALID_ARRAY_INDEX)) 270 return -1; 271 if (insert_new_flow(tbl, &key, item_idx) == 272 INVALID_ARRAY_INDEX) { 273 /* 274 * Fail to insert a new flow, so delete the 275 * stored packet. 276 */ 277 delete_item(tbl, item_idx, INVALID_ARRAY_INDEX); 278 return -1; 279 } 280 return 0; 281 } 282 283 /* 284 * Check all packets in the flow and try to find a neighbor for 285 * the input packet. 286 */ 287 cur_idx = tbl->flows[i].start_index; 288 prev_idx = cur_idx; 289 do { 290 cmp = udp4_check_neighbor(&(tbl->items[cur_idx]), 291 frag_offset, ip_dl, 0); 292 if (cmp) { 293 if (merge_two_udp4_packets(&(tbl->items[cur_idx]), 294 pkt, cmp, frag_offset, 295 is_last_frag, 0)) 296 return 1; 297 /* 298 * Fail to merge the two packets, as the packet 299 * length is greater than the max value. Store 300 * the packet into the flow. 301 */ 302 if (insert_new_item(tbl, pkt, start_time, prev_idx, 303 frag_offset, is_last_frag) == 304 INVALID_ARRAY_INDEX) 305 return -1; 306 return 0; 307 } 308 309 /* Ensure inserted items are ordered by frag_offset */ 310 if (frag_offset 311 < tbl->items[cur_idx].frag_offset) { 312 break; 313 } 314 315 prev_idx = cur_idx; 316 cur_idx = tbl->items[cur_idx].next_pkt_idx; 317 } while (cur_idx != INVALID_ARRAY_INDEX); 318 319 /* Fail to find a neighbor, so store the packet into the flow. */ 320 if (cur_idx == tbl->flows[i].start_index) { 321 /* Insert it before the first packet of the flow */ 322 item_idx = insert_new_item(tbl, pkt, start_time, 323 INVALID_ARRAY_INDEX, frag_offset, 324 is_last_frag); 325 if (unlikely(item_idx == INVALID_ARRAY_INDEX)) 326 return -1; 327 tbl->items[item_idx].next_pkt_idx = cur_idx; 328 tbl->flows[i].start_index = item_idx; 329 } else { 330 if (insert_new_item(tbl, pkt, start_time, prev_idx, 331 frag_offset, is_last_frag) 332 == INVALID_ARRAY_INDEX) 333 return -1; 334 } 335 336 return 0; 337 } 338 339 static int 340 gro_udp4_merge_items(struct gro_udp4_tbl *tbl, 341 uint32_t start_idx) 342 { 343 uint16_t frag_offset; 344 uint8_t is_last_frag; 345 int16_t ip_dl; 346 struct rte_mbuf *pkt; 347 int cmp; 348 uint32_t item_idx; 349 uint16_t hdr_len; 350 351 item_idx = tbl->items[start_idx].next_pkt_idx; 352 while (item_idx != INVALID_ARRAY_INDEX) { 353 pkt = tbl->items[item_idx].firstseg; 354 hdr_len = pkt->l2_len + pkt->l3_len; 355 ip_dl = pkt->pkt_len - hdr_len; 356 frag_offset = tbl->items[item_idx].frag_offset; 357 is_last_frag = tbl->items[item_idx].is_last_frag; 358 cmp = udp4_check_neighbor(&(tbl->items[start_idx]), 359 frag_offset, ip_dl, 0); 360 if (cmp) { 361 if (merge_two_udp4_packets( 362 &(tbl->items[start_idx]), 363 pkt, cmp, frag_offset, 364 is_last_frag, 0)) { 365 item_idx = delete_item(tbl, item_idx, 366 INVALID_ARRAY_INDEX); 367 tbl->items[start_idx].next_pkt_idx 368 = item_idx; 369 } else 370 return 0; 371 } else 372 return 0; 373 } 374 375 return 0; 376 } 377 378 uint16_t 379 gro_udp4_tbl_timeout_flush(struct gro_udp4_tbl *tbl, 380 uint64_t flush_timestamp, 381 struct rte_mbuf **out, 382 uint16_t nb_out) 383 { 384 uint16_t k = 0; 385 uint32_t i, j; 386 uint32_t max_flow_num = tbl->max_flow_num; 387 388 for (i = 0; i < max_flow_num; i++) { 389 if (unlikely(tbl->flow_num == 0)) 390 return k; 391 392 j = tbl->flows[i].start_index; 393 while (j != INVALID_ARRAY_INDEX) { 394 if (tbl->items[j].start_time <= flush_timestamp) { 395 gro_udp4_merge_items(tbl, j); 396 out[k++] = tbl->items[j].firstseg; 397 if (tbl->items[j].nb_merged > 1) 398 update_header(&(tbl->items[j])); 399 /* 400 * Delete the packet and get the next 401 * packet in the flow. 402 */ 403 j = delete_item(tbl, j, INVALID_ARRAY_INDEX); 404 tbl->flows[i].start_index = j; 405 if (j == INVALID_ARRAY_INDEX) 406 tbl->flow_num--; 407 408 if (unlikely(k == nb_out)) 409 return k; 410 } else 411 /* 412 * Flushing packets does not strictly follow 413 * timestamp. It does not flush left packets of 414 * the flow this time once it finds one item 415 * whose start_time is greater than 416 * flush_timestamp. So go to check other flows. 417 */ 418 break; 419 } 420 } 421 return k; 422 } 423 424 uint32_t 425 gro_udp4_tbl_pkt_count(void *tbl) 426 { 427 struct gro_udp4_tbl *gro_tbl = tbl; 428 429 if (gro_tbl) 430 return gro_tbl->item_num; 431 432 return 0; 433 } 434