xref: /dpdk/lib/ethdev/sff_8472.c (revision 7917b0d38e92e8b9ec5a870415b791420e10f11a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2022 Intel Corporation
3  * Implements SFF-8472 optics diagnostics.
4  */
5 
6 #include <stdio.h>
7 
8 #include "sff_common.h"
9 
10 /* Offsets in decimal, for direct comparison with the SFF specs */
11 
12 /* A0-based EEPROM offsets for DOM support checks */
13 #define SFF_A0_DOM                        92
14 #define SFF_A0_OPTIONS                    93
15 #define SFF_A0_COMP                       94
16 
17 /* EEPROM bit values for various registers */
18 #define SFF_A0_DOM_EXTCAL                 RTE_BIT32(4)
19 #define SFF_A0_DOM_INTCAL                 RTE_BIT32(5)
20 #define SFF_A0_DOM_IMPL                   RTE_BIT32(6)
21 #define SFF_A0_DOM_PWRT                   RTE_BIT32(3)
22 
23 #define SFF_A0_OPTIONS_AW                 RTE_BIT32(7)
24 
25 /*
26  * This is the offset at which the A2 page is in the EEPROM
27  * blob returned by the kernel.
28  */
29 #define SFF_A2_BASE                       0x100
30 
31 /* A2-based offsets for DOM */
32 #define SFF_A2_TEMP                       96
33 #define SFF_A2_TEMP_HALRM                 0
34 #define SFF_A2_TEMP_LALRM                 2
35 #define SFF_A2_TEMP_HWARN                 4
36 #define SFF_A2_TEMP_LWARN                 6
37 
38 #define SFF_A2_VCC                        98
39 #define SFF_A2_VCC_HALRM                  8
40 #define SFF_A2_VCC_LALRM                  10
41 #define SFF_A2_VCC_HWARN                  12
42 #define SFF_A2_VCC_LWARN                  14
43 
44 #define SFF_A2_BIAS                       100
45 #define SFF_A2_BIAS_HALRM                 16
46 #define SFF_A2_BIAS_LALRM                 18
47 #define SFF_A2_BIAS_HWARN                 20
48 #define SFF_A2_BIAS_LWARN                 22
49 
50 #define SFF_A2_TX_PWR                     102
51 #define SFF_A2_TX_PWR_HALRM               24
52 #define SFF_A2_TX_PWR_LALRM               26
53 #define SFF_A2_TX_PWR_HWARN               28
54 #define SFF_A2_TX_PWR_LWARN               30
55 
56 #define SFF_A2_RX_PWR                     104
57 #define SFF_A2_RX_PWR_HALRM               32
58 #define SFF_A2_RX_PWR_LALRM               34
59 #define SFF_A2_RX_PWR_HWARN               36
60 #define SFF_A2_RX_PWR_LWARN               38
61 
62 #define SFF_A2_ALRM_FLG                   112
63 #define SFF_A2_WARN_FLG                   116
64 
65 /* 32-bit little-endian calibration constants */
66 #define SFF_A2_CAL_RXPWR4                 56
67 #define SFF_A2_CAL_RXPWR3                 60
68 #define SFF_A2_CAL_RXPWR2                 64
69 #define SFF_A2_CAL_RXPWR1                 68
70 #define SFF_A2_CAL_RXPWR0                 72
71 
72 /* 16-bit little endian calibration constants */
73 #define SFF_A2_CAL_TXI_SLP                76
74 #define SFF_A2_CAL_TXI_OFF                78
75 #define SFF_A2_CAL_TXPWR_SLP              80
76 #define SFF_A2_CAL_TXPWR_OFF              82
77 #define SFF_A2_CAL_T_SLP                  84
78 #define SFF_A2_CAL_T_OFF                  86
79 #define SFF_A2_CAL_V_SLP                  88
80 #define SFF_A2_CAL_V_OFF                  90
81 
82 static struct sff_8472_aw_flags {
83 	const char *str;        /* Human-readable string, null at the end */
84 	int offset;             /* A2-relative address offset */
85 	uint8_t value;          /* Alarm is on if (offset & value) != 0. */
86 } sff_8472_aw_flags[] = {
87 	{ "Laser bias current high alarm",   SFF_A2_ALRM_FLG, RTE_BIT32(3) },
88 	{ "Laser bias current low alarm",    SFF_A2_ALRM_FLG, RTE_BIT32(2) },
89 	{ "Laser bias current high warning", SFF_A2_WARN_FLG, RTE_BIT32(3) },
90 	{ "Laser bias current low warning",  SFF_A2_WARN_FLG, RTE_BIT32(2) },
91 
92 	{ "Laser output power high alarm",   SFF_A2_ALRM_FLG, RTE_BIT32(1) },
93 	{ "Laser output power low alarm",    SFF_A2_ALRM_FLG, RTE_BIT32(0) },
94 	{ "Laser output power high warning", SFF_A2_WARN_FLG, RTE_BIT32(1) },
95 	{ "Laser output power low warning",  SFF_A2_WARN_FLG, RTE_BIT32(0) },
96 
97 	{ "Module temperature high alarm",   SFF_A2_ALRM_FLG, RTE_BIT32(7) },
98 	{ "Module temperature low alarm",    SFF_A2_ALRM_FLG, RTE_BIT32(6) },
99 	{ "Module temperature high warning", SFF_A2_WARN_FLG, RTE_BIT32(7) },
100 	{ "Module temperature low warning",  SFF_A2_WARN_FLG, RTE_BIT32(6) },
101 
102 	{ "Module voltage high alarm",   SFF_A2_ALRM_FLG, RTE_BIT32(5) },
103 	{ "Module voltage low alarm",    SFF_A2_ALRM_FLG, RTE_BIT32(4) },
104 	{ "Module voltage high warning", SFF_A2_WARN_FLG, RTE_BIT32(5) },
105 	{ "Module voltage low warning",  SFF_A2_WARN_FLG, RTE_BIT32(4) },
106 
107 	{ "Laser rx power high alarm",   SFF_A2_ALRM_FLG + 1, RTE_BIT32(7) },
108 	{ "Laser rx power low alarm",    SFF_A2_ALRM_FLG + 1, RTE_BIT32(6) },
109 	{ "Laser rx power high warning", SFF_A2_WARN_FLG + 1, RTE_BIT32(7) },
110 	{ "Laser rx power low warning",  SFF_A2_WARN_FLG + 1, RTE_BIT32(6) },
111 
112 	{ NULL, 0, 0 },
113 };
114 
115 /* Most common case: 16-bit unsigned integer in a certain unit */
116 #define A2_OFFSET_TO_U16(offset) \
117 	(data[SFF_A2_BASE + (offset)] << 8 | data[SFF_A2_BASE + (offset) + 1])
118 
119 /* Calibration slope is a number between 0.0 included and 256.0 excluded. */
120 #define A2_OFFSET_TO_SLP(offset) \
121 	(data[SFF_A2_BASE + (offset)] + data[SFF_A2_BASE + (offset) + 1] / 256.)
122 
123 /* Calibration offset is an integer from -32768 to 32767 */
124 #define A2_OFFSET_TO_OFF(offset) \
125 	((int16_t)A2_OFFSET_TO_U16(offset))
126 
127 /* RXPWR(x) are IEEE-754 floating point numbers in big-endian format */
128 #define A2_OFFSET_TO_RXPWRx(offset) \
129 	(befloattoh((const uint32_t *)(data + SFF_A2_BASE + (offset))))
130 
131 /*
132  * 2-byte internal temperature conversions:
133  * First byte is a signed 8-bit integer, which is the temp decimal part
134  * Second byte are 1/256th of degree, which are added to the dec part.
135  */
136 #define A2_OFFSET_TO_TEMP(offset) ((int16_t)A2_OFFSET_TO_U16(offset))
137 
138 static void sff_8472_dom_parse(const uint8_t *data, struct sff_diags *sd)
139 {
140 	sd->bias_cur[SFF_MCURR] = A2_OFFSET_TO_U16(SFF_A2_BIAS);
141 	sd->bias_cur[SFF_HALRM] = A2_OFFSET_TO_U16(SFF_A2_BIAS_HALRM);
142 	sd->bias_cur[SFF_LALRM] = A2_OFFSET_TO_U16(SFF_A2_BIAS_LALRM);
143 	sd->bias_cur[SFF_HWARN] = A2_OFFSET_TO_U16(SFF_A2_BIAS_HWARN);
144 	sd->bias_cur[SFF_LWARN] = A2_OFFSET_TO_U16(SFF_A2_BIAS_LWARN);
145 
146 	sd->sfp_voltage[SFF_MCURR] = A2_OFFSET_TO_U16(SFF_A2_VCC);
147 	sd->sfp_voltage[SFF_HALRM] = A2_OFFSET_TO_U16(SFF_A2_VCC_HALRM);
148 	sd->sfp_voltage[SFF_LALRM] = A2_OFFSET_TO_U16(SFF_A2_VCC_LALRM);
149 	sd->sfp_voltage[SFF_HWARN] = A2_OFFSET_TO_U16(SFF_A2_VCC_HWARN);
150 	sd->sfp_voltage[SFF_LWARN] = A2_OFFSET_TO_U16(SFF_A2_VCC_LWARN);
151 
152 	sd->tx_power[SFF_MCURR] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR);
153 	sd->tx_power[SFF_HALRM] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_HALRM);
154 	sd->tx_power[SFF_LALRM] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_LALRM);
155 	sd->tx_power[SFF_HWARN] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_HWARN);
156 	sd->tx_power[SFF_LWARN] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_LWARN);
157 
158 	sd->rx_power[SFF_MCURR] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR);
159 	sd->rx_power[SFF_HALRM] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_HALRM);
160 	sd->rx_power[SFF_LALRM] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_LALRM);
161 	sd->rx_power[SFF_HWARN] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_HWARN);
162 	sd->rx_power[SFF_LWARN] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_LWARN);
163 
164 	sd->sfp_temp[SFF_MCURR] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP);
165 	sd->sfp_temp[SFF_HALRM] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_HALRM);
166 	sd->sfp_temp[SFF_LALRM] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_LALRM);
167 	sd->sfp_temp[SFF_HWARN] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_HWARN);
168 	sd->sfp_temp[SFF_LWARN] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_LWARN);
169 }
170 
171 /* Converts to a float from a big-endian 4-byte source buffer. */
172 static float befloattoh(const uint32_t *source)
173 {
174 	union {
175 		uint32_t src;
176 		float dst;
177 	} converter;
178 
179 	converter.src = ntohl(*source);
180 	return converter.dst;
181 }
182 
183 static void sff_8472_calibration(const uint8_t *data, struct sff_diags *sd)
184 {
185 	unsigned long i;
186 	uint16_t rx_reading;
187 
188 	/* Calibration should occur for all values (threshold and current) */
189 	for (i = 0; i < RTE_DIM(sd->bias_cur); ++i) {
190 		/*
191 		 * Apply calibration formula 1 (Temp., Voltage, Bias, Tx Power)
192 		 */
193 		sd->bias_cur[i]    *= A2_OFFSET_TO_SLP(SFF_A2_CAL_TXI_SLP);
194 		sd->tx_power[i]    *= A2_OFFSET_TO_SLP(SFF_A2_CAL_TXPWR_SLP);
195 		sd->sfp_voltage[i] *= A2_OFFSET_TO_SLP(SFF_A2_CAL_V_SLP);
196 		sd->sfp_temp[i]    *= A2_OFFSET_TO_SLP(SFF_A2_CAL_T_SLP);
197 
198 		sd->bias_cur[i]    += A2_OFFSET_TO_OFF(SFF_A2_CAL_TXI_OFF);
199 		sd->tx_power[i]    += A2_OFFSET_TO_OFF(SFF_A2_CAL_TXPWR_OFF);
200 		sd->sfp_voltage[i] += A2_OFFSET_TO_OFF(SFF_A2_CAL_V_OFF);
201 		sd->sfp_temp[i]    += A2_OFFSET_TO_OFF(SFF_A2_CAL_T_OFF);
202 
203 		/*
204 		 * Apply calibration formula 2 (Rx Power only)
205 		 */
206 		rx_reading = sd->rx_power[i];
207 		sd->rx_power[i]    = A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR0);
208 		sd->rx_power[i]    += rx_reading *
209 			A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR1);
210 		sd->rx_power[i]    += rx_reading *
211 			A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR2);
212 		sd->rx_power[i]    += rx_reading *
213 			A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR3);
214 	}
215 }
216 
217 static void sff_8472_parse_eeprom(const uint8_t *data, struct sff_diags *sd)
218 {
219 	sd->supports_dom = data[SFF_A0_DOM] & SFF_A0_DOM_IMPL;
220 	sd->supports_alarms = data[SFF_A0_OPTIONS] & SFF_A0_OPTIONS_AW;
221 	sd->calibrated_ext = data[SFF_A0_DOM] & SFF_A0_DOM_EXTCAL;
222 	sd->rx_power_type = data[SFF_A0_DOM] & SFF_A0_DOM_PWRT;
223 
224 	sff_8472_dom_parse(data, sd);
225 
226 	/*
227 	 * If the SFP is externally calibrated, we need to read calibration data
228 	 * and compensate the already stored readings.
229 	 */
230 	if (sd->calibrated_ext)
231 		sff_8472_calibration(data, sd);
232 }
233 
234 void sff_8472_show_all(const uint8_t *data, struct rte_tel_data *d)
235 {
236 	struct sff_diags sd = {0};
237 	const char *rx_power_string = NULL;
238 	char val_string[SFF_ITEM_VAL_COMPOSE_SIZE];
239 	int i;
240 
241 	sff_8472_parse_eeprom(data, &sd);
242 
243 	if (!sd.supports_dom) {
244 		ssf_add_dict_string(d, "Optical diagnostics support", "No");
245 		return;
246 	}
247 	ssf_add_dict_string(d, "Optical diagnostics support", "Yes");
248 
249 	SFF_SPRINT_BIAS(val_string, sd.bias_cur[SFF_MCURR]);
250 	ssf_add_dict_string(d, "Laser bias current", val_string);
251 
252 	SFF_SPRINT_xX_PWR(val_string, sd.tx_power[SFF_MCURR]);
253 	ssf_add_dict_string(d, "Laser output power", val_string);
254 
255 	if (!sd.rx_power_type)
256 		rx_power_string = "Receiver signal OMA";
257 	else
258 		rx_power_string = "Receiver signal average optical power";
259 
260 	SFF_SPRINT_xX_PWR(val_string, sd.rx_power[SFF_MCURR]);
261 	ssf_add_dict_string(d, rx_power_string, val_string);
262 
263 	SFF_SPRINT_TEMP(val_string, sd.sfp_temp[SFF_MCURR]);
264 	ssf_add_dict_string(d, "Module temperature", val_string);
265 
266 	SFF_SPRINT_VCC(val_string, sd.sfp_voltage[SFF_MCURR]);
267 	ssf_add_dict_string(d, "Module voltage", val_string);
268 
269 	ssf_add_dict_string(d, "Alarm/warning flags implemented",
270 			(sd.supports_alarms ? "Yes" : "No"));
271 
272 	if (sd.supports_alarms) {
273 		for (i = 0; sff_8472_aw_flags[i].str; ++i) {
274 			ssf_add_dict_string(d, sff_8472_aw_flags[i].str,
275 					data[SFF_A2_BASE + sff_8472_aw_flags[i].offset]
276 					& sff_8472_aw_flags[i].value ? "On" : "Off");
277 		}
278 		sff_show_thresholds(sd, d);
279 	}
280 }
281