xref: /dpdk/lib/eal/linux/eal_memalloc.c (revision f8dbaebbf1c9efcbb2e2354b341ed62175466a57)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017-2018 Intel Corporation
3  */
4 
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdlib.h>
9 #include <stdio.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 #include <string.h>
13 #include <sys/mman.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <sys/queue.h>
17 #include <sys/file.h>
18 #include <unistd.h>
19 #include <limits.h>
20 #include <fcntl.h>
21 #include <sys/ioctl.h>
22 #include <sys/time.h>
23 #include <signal.h>
24 #include <setjmp.h>
25 #ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */
26 #include <linux/memfd.h>
27 #define MEMFD_SUPPORTED
28 #endif
29 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
30 #include <numa.h>
31 #include <numaif.h>
32 #endif
33 #include <linux/falloc.h>
34 #include <linux/mman.h> /* for hugetlb-related mmap flags */
35 
36 #include <rte_common.h>
37 #include <rte_log.h>
38 #include <rte_eal.h>
39 #include <rte_errno.h>
40 #include <rte_memory.h>
41 #include <rte_spinlock.h>
42 
43 #include "eal_filesystem.h"
44 #include "eal_internal_cfg.h"
45 #include "eal_memalloc.h"
46 #include "eal_memcfg.h"
47 #include "eal_private.h"
48 
49 const int anonymous_hugepages_supported =
50 #ifdef MAP_HUGE_SHIFT
51 		1;
52 #define RTE_MAP_HUGE_SHIFT MAP_HUGE_SHIFT
53 #else
54 		0;
55 #define RTE_MAP_HUGE_SHIFT 26
56 #endif
57 
58 /*
59  * we've already checked memfd support at compile-time, but we also need to
60  * check if we can create hugepage files with memfd.
61  *
62  * also, this is not a constant, because while we may be *compiled* with memfd
63  * hugetlbfs support, we might not be *running* on a system that supports memfd
64  * and/or memfd with hugetlbfs, so we need to be able to adjust this flag at
65  * runtime, and fall back to anonymous memory.
66  */
67 static int memfd_create_supported =
68 #ifdef MFD_HUGETLB
69 		1;
70 #define RTE_MFD_HUGETLB MFD_HUGETLB
71 #else
72 		0;
73 #define RTE_MFD_HUGETLB 4U
74 #endif
75 
76 /*
77  * not all kernel version support fallocate on hugetlbfs, so fall back to
78  * ftruncate and disallow deallocation if fallocate is not supported.
79  */
80 static int fallocate_supported = -1; /* unknown */
81 
82 /*
83  * we have two modes - single file segments, and file-per-page mode.
84  *
85  * for single-file segments, we use memseg_list_fd to store the segment fd,
86  * while the fds[] will not be allocated, and len will be set to 0.
87  *
88  * for file-per-page mode, each page will have its own fd, so 'memseg_list_fd'
89  * will be invalid (set to -1), and we'll use 'fds' to keep track of page fd's.
90  *
91  * we cannot know how many pages a system will have in advance, but we do know
92  * that they come in lists, and we know lengths of these lists. so, simply store
93  * a malloc'd array of fd's indexed by list and segment index.
94  *
95  * they will be initialized at startup, and filled as we allocate/deallocate
96  * segments.
97  */
98 static struct {
99 	int *fds; /**< dynamically allocated array of segment lock fd's */
100 	int memseg_list_fd; /**< memseg list fd */
101 	int len; /**< total length of the array */
102 	int count; /**< entries used in an array */
103 } fd_list[RTE_MAX_MEMSEG_LISTS];
104 
105 /** local copy of a memory map, used to synchronize memory hotplug in MP */
106 static struct rte_memseg_list local_memsegs[RTE_MAX_MEMSEG_LISTS];
107 
108 static sigjmp_buf huge_jmpenv;
109 
110 static void huge_sigbus_handler(int signo __rte_unused)
111 {
112 	siglongjmp(huge_jmpenv, 1);
113 }
114 
115 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
116  * non-static local variable in the stack frame calling sigsetjmp might be
117  * clobbered by a call to longjmp.
118  */
119 static int huge_wrap_sigsetjmp(void)
120 {
121 	return sigsetjmp(huge_jmpenv, 1);
122 }
123 
124 static struct sigaction huge_action_old;
125 static int huge_need_recover;
126 
127 static void
128 huge_register_sigbus(void)
129 {
130 	sigset_t mask;
131 	struct sigaction action;
132 
133 	sigemptyset(&mask);
134 	sigaddset(&mask, SIGBUS);
135 	action.sa_flags = 0;
136 	action.sa_mask = mask;
137 	action.sa_handler = huge_sigbus_handler;
138 
139 	huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
140 }
141 
142 static void
143 huge_recover_sigbus(void)
144 {
145 	if (huge_need_recover) {
146 		sigaction(SIGBUS, &huge_action_old, NULL);
147 		huge_need_recover = 0;
148 	}
149 }
150 
151 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
152 static bool
153 check_numa(void)
154 {
155 	bool ret = true;
156 	/* Check if kernel supports NUMA. */
157 	if (numa_available() != 0) {
158 		RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
159 		ret = false;
160 	}
161 	return ret;
162 }
163 
164 static void
165 prepare_numa(int *oldpolicy, struct bitmask *oldmask, int socket_id)
166 {
167 	RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
168 	if (get_mempolicy(oldpolicy, oldmask->maskp,
169 			  oldmask->size + 1, 0, 0) < 0) {
170 		RTE_LOG(ERR, EAL,
171 			"Failed to get current mempolicy: %s. "
172 			"Assuming MPOL_DEFAULT.\n", strerror(errno));
173 		*oldpolicy = MPOL_DEFAULT;
174 	}
175 	RTE_LOG(DEBUG, EAL,
176 		"Setting policy MPOL_PREFERRED for socket %d\n",
177 		socket_id);
178 	numa_set_preferred(socket_id);
179 }
180 
181 static void
182 restore_numa(int *oldpolicy, struct bitmask *oldmask)
183 {
184 	RTE_LOG(DEBUG, EAL,
185 		"Restoring previous memory policy: %d\n", *oldpolicy);
186 	if (*oldpolicy == MPOL_DEFAULT) {
187 		numa_set_localalloc();
188 	} else if (set_mempolicy(*oldpolicy, oldmask->maskp,
189 				 oldmask->size + 1) < 0) {
190 		RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
191 			strerror(errno));
192 		numa_set_localalloc();
193 	}
194 	numa_free_cpumask(oldmask);
195 }
196 #endif
197 
198 /*
199  * uses fstat to report the size of a file on disk
200  */
201 static off_t
202 get_file_size(int fd)
203 {
204 	struct stat st;
205 	if (fstat(fd, &st) < 0)
206 		return 0;
207 	return st.st_size;
208 }
209 
210 static int
211 pagesz_flags(uint64_t page_sz)
212 {
213 	/* as per mmap() manpage, all page sizes are log2 of page size
214 	 * shifted by MAP_HUGE_SHIFT
215 	 */
216 	int log2 = rte_log2_u64(page_sz);
217 	return log2 << RTE_MAP_HUGE_SHIFT;
218 }
219 
220 /* returns 1 on successful lock, 0 on unsuccessful lock, -1 on error */
221 static int lock(int fd, int type)
222 {
223 	int ret;
224 
225 	/* flock may be interrupted */
226 	do {
227 		ret = flock(fd, type | LOCK_NB);
228 	} while (ret && errno == EINTR);
229 
230 	if (ret && errno == EWOULDBLOCK) {
231 		/* couldn't lock */
232 		return 0;
233 	} else if (ret) {
234 		RTE_LOG(ERR, EAL, "%s(): error calling flock(): %s\n",
235 			__func__, strerror(errno));
236 		return -1;
237 	}
238 	/* lock was successful */
239 	return 1;
240 }
241 
242 static int
243 get_seg_memfd(struct hugepage_info *hi __rte_unused,
244 		unsigned int list_idx __rte_unused,
245 		unsigned int seg_idx __rte_unused)
246 {
247 #ifdef MEMFD_SUPPORTED
248 	int fd;
249 	char segname[250]; /* as per manpage, limit is 249 bytes plus null */
250 
251 	int flags = RTE_MFD_HUGETLB | pagesz_flags(hi->hugepage_sz);
252 	const struct internal_config *internal_conf =
253 		eal_get_internal_configuration();
254 
255 	if (internal_conf->single_file_segments) {
256 		fd = fd_list[list_idx].memseg_list_fd;
257 
258 		if (fd < 0) {
259 			snprintf(segname, sizeof(segname), "seg_%i", list_idx);
260 			fd = memfd_create(segname, flags);
261 			if (fd < 0) {
262 				RTE_LOG(DEBUG, EAL, "%s(): memfd create failed: %s\n",
263 					__func__, strerror(errno));
264 				return -1;
265 			}
266 			fd_list[list_idx].memseg_list_fd = fd;
267 		}
268 	} else {
269 		fd = fd_list[list_idx].fds[seg_idx];
270 
271 		if (fd < 0) {
272 			snprintf(segname, sizeof(segname), "seg_%i-%i",
273 					list_idx, seg_idx);
274 			fd = memfd_create(segname, flags);
275 			if (fd < 0) {
276 				RTE_LOG(DEBUG, EAL, "%s(): memfd create failed: %s\n",
277 					__func__, strerror(errno));
278 				return -1;
279 			}
280 			fd_list[list_idx].fds[seg_idx] = fd;
281 		}
282 	}
283 	return fd;
284 #endif
285 	return -1;
286 }
287 
288 static int
289 get_seg_fd(char *path, int buflen, struct hugepage_info *hi,
290 		unsigned int list_idx, unsigned int seg_idx)
291 {
292 	int fd;
293 	const struct internal_config *internal_conf =
294 		eal_get_internal_configuration();
295 
296 	/* for in-memory mode, we only make it here when we're sure we support
297 	 * memfd, and this is a special case.
298 	 */
299 	if (internal_conf->in_memory)
300 		return get_seg_memfd(hi, list_idx, seg_idx);
301 
302 	if (internal_conf->single_file_segments) {
303 		/* create a hugepage file path */
304 		eal_get_hugefile_path(path, buflen, hi->hugedir, list_idx);
305 
306 		fd = fd_list[list_idx].memseg_list_fd;
307 
308 		if (fd < 0) {
309 			fd = open(path, O_CREAT | O_RDWR, 0600);
310 			if (fd < 0) {
311 				RTE_LOG(ERR, EAL, "%s(): open failed: %s\n",
312 					__func__, strerror(errno));
313 				return -1;
314 			}
315 			/* take out a read lock and keep it indefinitely */
316 			if (lock(fd, LOCK_SH) < 0) {
317 				RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
318 					__func__, strerror(errno));
319 				close(fd);
320 				return -1;
321 			}
322 			fd_list[list_idx].memseg_list_fd = fd;
323 		}
324 	} else {
325 		/* create a hugepage file path */
326 		eal_get_hugefile_path(path, buflen, hi->hugedir,
327 				list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
328 
329 		fd = fd_list[list_idx].fds[seg_idx];
330 
331 		if (fd < 0) {
332 			/* A primary process is the only one creating these
333 			 * files. If there is a leftover that was not cleaned
334 			 * by clear_hugedir(), we must *now* make sure to drop
335 			 * the file or we will remap old stuff while the rest
336 			 * of the code is built on the assumption that a new
337 			 * page is clean.
338 			 */
339 			if (rte_eal_process_type() == RTE_PROC_PRIMARY &&
340 					unlink(path) == -1 &&
341 					errno != ENOENT) {
342 				RTE_LOG(DEBUG, EAL, "%s(): could not remove '%s': %s\n",
343 					__func__, path, strerror(errno));
344 				return -1;
345 			}
346 
347 			fd = open(path, O_CREAT | O_RDWR, 0600);
348 			if (fd < 0) {
349 				RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n",
350 					__func__, strerror(errno));
351 				return -1;
352 			}
353 			/* take out a read lock */
354 			if (lock(fd, LOCK_SH) < 0) {
355 				RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
356 					__func__, strerror(errno));
357 				close(fd);
358 				return -1;
359 			}
360 			fd_list[list_idx].fds[seg_idx] = fd;
361 		}
362 	}
363 	return fd;
364 }
365 
366 static int
367 resize_hugefile_in_memory(int fd, uint64_t fa_offset,
368 		uint64_t page_sz, bool grow)
369 {
370 	int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
371 			FALLOC_FL_KEEP_SIZE;
372 	int ret;
373 
374 	/* grow or shrink the file */
375 	ret = fallocate(fd, flags, fa_offset, page_sz);
376 
377 	if (ret < 0) {
378 		RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
379 				__func__,
380 				strerror(errno));
381 		return -1;
382 	}
383 	return 0;
384 }
385 
386 static int
387 resize_hugefile_in_filesystem(int fd, uint64_t fa_offset, uint64_t page_sz,
388 		bool grow)
389 {
390 	bool again = false;
391 
392 	do {
393 		if (fallocate_supported == 0) {
394 			/* we cannot deallocate memory if fallocate() is not
395 			 * supported, and hugepage file is already locked at
396 			 * creation, so no further synchronization needed.
397 			 */
398 
399 			if (!grow) {
400 				RTE_LOG(DEBUG, EAL, "%s(): fallocate not supported, not freeing page back to the system\n",
401 					__func__);
402 				return -1;
403 			}
404 			uint64_t new_size = fa_offset + page_sz;
405 			uint64_t cur_size = get_file_size(fd);
406 
407 			/* fallocate isn't supported, fall back to ftruncate */
408 			if (new_size > cur_size &&
409 					ftruncate(fd, new_size) < 0) {
410 				RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
411 					__func__, strerror(errno));
412 				return -1;
413 			}
414 		} else {
415 			int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
416 					FALLOC_FL_KEEP_SIZE;
417 			int ret;
418 
419 			/*
420 			 * technically, it is perfectly safe for both primary
421 			 * and secondary to grow and shrink the page files:
422 			 * growing the file repeatedly has no effect because
423 			 * a page can only be allocated once, while mmap ensures
424 			 * that secondaries hold on to the page even after the
425 			 * page itself is removed from the filesystem.
426 			 *
427 			 * however, leaving growing/shrinking to the primary
428 			 * tends to expose bugs in fdlist page count handling,
429 			 * so leave this here just in case.
430 			 */
431 			if (rte_eal_process_type() != RTE_PROC_PRIMARY)
432 				return 0;
433 
434 			/* grow or shrink the file */
435 			ret = fallocate(fd, flags, fa_offset, page_sz);
436 
437 			if (ret < 0) {
438 				if (fallocate_supported == -1 &&
439 						errno == ENOTSUP) {
440 					RTE_LOG(ERR, EAL, "%s(): fallocate() not supported, hugepage deallocation will be disabled\n",
441 						__func__);
442 					again = true;
443 					fallocate_supported = 0;
444 				} else {
445 					RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
446 						__func__,
447 						strerror(errno));
448 					return -1;
449 				}
450 			} else
451 				fallocate_supported = 1;
452 		}
453 	} while (again);
454 
455 	return 0;
456 }
457 
458 static void
459 close_hugefile(int fd, char *path, int list_idx)
460 {
461 	const struct internal_config *internal_conf =
462 		eal_get_internal_configuration();
463 	/*
464 	 * primary process must unlink the file, but only when not in in-memory
465 	 * mode (as in that case there is no file to unlink).
466 	 */
467 	if (!internal_conf->in_memory &&
468 			rte_eal_process_type() == RTE_PROC_PRIMARY &&
469 			unlink(path))
470 		RTE_LOG(ERR, EAL, "%s(): unlinking '%s' failed: %s\n",
471 			__func__, path, strerror(errno));
472 
473 	close(fd);
474 	fd_list[list_idx].memseg_list_fd = -1;
475 }
476 
477 static int
478 resize_hugefile(int fd, uint64_t fa_offset, uint64_t page_sz, bool grow)
479 {
480 	/* in-memory mode is a special case, because we can be sure that
481 	 * fallocate() is supported.
482 	 */
483 	const struct internal_config *internal_conf =
484 		eal_get_internal_configuration();
485 
486 	if (internal_conf->in_memory)
487 		return resize_hugefile_in_memory(fd, fa_offset,
488 				page_sz, grow);
489 
490 	return resize_hugefile_in_filesystem(fd, fa_offset, page_sz,
491 				grow);
492 }
493 
494 static int
495 alloc_seg(struct rte_memseg *ms, void *addr, int socket_id,
496 		struct hugepage_info *hi, unsigned int list_idx,
497 		unsigned int seg_idx)
498 {
499 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
500 	int cur_socket_id = 0;
501 #endif
502 	uint64_t map_offset;
503 	rte_iova_t iova;
504 	void *va;
505 	char path[PATH_MAX];
506 	int ret = 0;
507 	int fd;
508 	size_t alloc_sz;
509 	int flags;
510 	void *new_addr;
511 	const struct internal_config *internal_conf =
512 		eal_get_internal_configuration();
513 
514 	alloc_sz = hi->hugepage_sz;
515 
516 	/* these are checked at init, but code analyzers don't know that */
517 	if (internal_conf->in_memory && !anonymous_hugepages_supported) {
518 		RTE_LOG(ERR, EAL, "Anonymous hugepages not supported, in-memory mode cannot allocate memory\n");
519 		return -1;
520 	}
521 	if (internal_conf->in_memory && !memfd_create_supported &&
522 			internal_conf->single_file_segments) {
523 		RTE_LOG(ERR, EAL, "Single-file segments are not supported without memfd support\n");
524 		return -1;
525 	}
526 
527 	/* in-memory without memfd is a special case */
528 	int mmap_flags;
529 
530 	if (internal_conf->in_memory && !memfd_create_supported) {
531 		const int in_memory_flags = MAP_HUGETLB | MAP_FIXED |
532 				MAP_PRIVATE | MAP_ANONYMOUS;
533 		int pagesz_flag;
534 
535 		pagesz_flag = pagesz_flags(alloc_sz);
536 		fd = -1;
537 		mmap_flags = in_memory_flags | pagesz_flag;
538 
539 		/* single-file segments codepath will never be active
540 		 * here because in-memory mode is incompatible with the
541 		 * fallback path, and it's stopped at EAL initialization
542 		 * stage.
543 		 */
544 		map_offset = 0;
545 	} else {
546 		/* takes out a read lock on segment or segment list */
547 		fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
548 		if (fd < 0) {
549 			RTE_LOG(ERR, EAL, "Couldn't get fd on hugepage file\n");
550 			return -1;
551 		}
552 
553 		if (internal_conf->single_file_segments) {
554 			map_offset = seg_idx * alloc_sz;
555 			ret = resize_hugefile(fd, map_offset, alloc_sz, true);
556 			if (ret < 0)
557 				goto resized;
558 
559 			fd_list[list_idx].count++;
560 		} else {
561 			map_offset = 0;
562 			if (ftruncate(fd, alloc_sz) < 0) {
563 				RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
564 					__func__, strerror(errno));
565 				goto resized;
566 			}
567 			if (internal_conf->hugepage_unlink &&
568 					!internal_conf->in_memory) {
569 				if (unlink(path)) {
570 					RTE_LOG(DEBUG, EAL, "%s(): unlink() failed: %s\n",
571 						__func__, strerror(errno));
572 					goto resized;
573 				}
574 			}
575 		}
576 		mmap_flags = MAP_SHARED | MAP_POPULATE | MAP_FIXED;
577 	}
578 
579 	huge_register_sigbus();
580 
581 	/*
582 	 * map the segment, and populate page tables, the kernel fills
583 	 * this segment with zeros if it's a new page.
584 	 */
585 	va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, mmap_flags, fd,
586 			map_offset);
587 
588 	if (va == MAP_FAILED) {
589 		RTE_LOG(DEBUG, EAL, "%s(): mmap() failed: %s\n", __func__,
590 			strerror(errno));
591 		/* mmap failed, but the previous region might have been
592 		 * unmapped anyway. try to remap it
593 		 */
594 		goto unmapped;
595 	}
596 	if (va != addr) {
597 		RTE_LOG(DEBUG, EAL, "%s(): wrong mmap() address\n", __func__);
598 		munmap(va, alloc_sz);
599 		goto resized;
600 	}
601 
602 	/* In linux, hugetlb limitations, like cgroup, are
603 	 * enforced at fault time instead of mmap(), even
604 	 * with the option of MAP_POPULATE. Kernel will send
605 	 * a SIGBUS signal. To avoid to be killed, save stack
606 	 * environment here, if SIGBUS happens, we can jump
607 	 * back here.
608 	 */
609 	if (huge_wrap_sigsetjmp()) {
610 		RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more hugepages of size %uMB\n",
611 			(unsigned int)(alloc_sz >> 20));
612 		goto mapped;
613 	}
614 
615 	/* we need to trigger a write to the page to enforce page fault and
616 	 * ensure that page is accessible to us, but we can't overwrite value
617 	 * that is already there, so read the old value, and write itback.
618 	 * kernel populates the page with zeroes initially.
619 	 */
620 	*(volatile int *)addr = *(volatile int *)addr;
621 
622 	iova = rte_mem_virt2iova(addr);
623 	if (iova == RTE_BAD_PHYS_ADDR) {
624 		RTE_LOG(DEBUG, EAL, "%s(): can't get IOVA addr\n",
625 			__func__);
626 		goto mapped;
627 	}
628 
629 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
630 	/*
631 	 * If the kernel has been built without NUMA support, get_mempolicy()
632 	 * will return an error. If check_numa() returns false, memory
633 	 * allocation is not NUMA aware and the socket_id should not be
634 	 * checked.
635 	 */
636 	if (check_numa()) {
637 		ret = get_mempolicy(&cur_socket_id, NULL, 0, addr,
638 					MPOL_F_NODE | MPOL_F_ADDR);
639 		if (ret < 0) {
640 			RTE_LOG(DEBUG, EAL, "%s(): get_mempolicy: %s\n",
641 				__func__, strerror(errno));
642 			goto mapped;
643 		} else if (cur_socket_id != socket_id) {
644 			RTE_LOG(DEBUG, EAL,
645 					"%s(): allocation happened on wrong socket (wanted %d, got %d)\n",
646 				__func__, socket_id, cur_socket_id);
647 			goto mapped;
648 		}
649 	}
650 #else
651 	if (rte_socket_count() > 1)
652 		RTE_LOG(DEBUG, EAL, "%s(): not checking hugepage NUMA node.\n",
653 				__func__);
654 #endif
655 
656 	huge_recover_sigbus();
657 
658 	ms->addr = addr;
659 	ms->hugepage_sz = alloc_sz;
660 	ms->len = alloc_sz;
661 	ms->nchannel = rte_memory_get_nchannel();
662 	ms->nrank = rte_memory_get_nrank();
663 	ms->iova = iova;
664 	ms->socket_id = socket_id;
665 
666 	return 0;
667 
668 mapped:
669 	munmap(addr, alloc_sz);
670 unmapped:
671 	huge_recover_sigbus();
672 	flags = EAL_RESERVE_FORCE_ADDRESS;
673 	new_addr = eal_get_virtual_area(addr, &alloc_sz, alloc_sz, 0, flags);
674 	if (new_addr != addr) {
675 		if (new_addr != NULL)
676 			munmap(new_addr, alloc_sz);
677 		/* we're leaving a hole in our virtual address space. if
678 		 * somebody else maps this hole now, we could accidentally
679 		 * override it in the future.
680 		 */
681 		RTE_LOG(CRIT, EAL, "Can't mmap holes in our virtual address space\n");
682 	}
683 	/* roll back the ref count */
684 	if (internal_conf->single_file_segments)
685 		fd_list[list_idx].count--;
686 resized:
687 	/* some codepaths will return negative fd, so exit early */
688 	if (fd < 0)
689 		return -1;
690 
691 	if (internal_conf->single_file_segments) {
692 		resize_hugefile(fd, map_offset, alloc_sz, false);
693 		/* ignore failure, can't make it any worse */
694 
695 		/* if refcount is at zero, close the file */
696 		if (fd_list[list_idx].count == 0)
697 			close_hugefile(fd, path, list_idx);
698 	} else {
699 		/* only remove file if we can take out a write lock */
700 		if (internal_conf->hugepage_unlink == 0 &&
701 				internal_conf->in_memory == 0 &&
702 				lock(fd, LOCK_EX) == 1)
703 			unlink(path);
704 		close(fd);
705 		fd_list[list_idx].fds[seg_idx] = -1;
706 	}
707 	return -1;
708 }
709 
710 static int
711 free_seg(struct rte_memseg *ms, struct hugepage_info *hi,
712 		unsigned int list_idx, unsigned int seg_idx)
713 {
714 	uint64_t map_offset;
715 	char path[PATH_MAX];
716 	int fd, ret = 0;
717 	const struct internal_config *internal_conf =
718 		eal_get_internal_configuration();
719 
720 	/* erase page data */
721 	memset(ms->addr, 0, ms->len);
722 
723 	if (mmap(ms->addr, ms->len, PROT_NONE,
724 			MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0) ==
725 				MAP_FAILED) {
726 		RTE_LOG(DEBUG, EAL, "couldn't unmap page\n");
727 		return -1;
728 	}
729 
730 	eal_mem_set_dump(ms->addr, ms->len, false);
731 
732 	/* if we're using anonymous hugepages, nothing to be done */
733 	if (internal_conf->in_memory && !memfd_create_supported) {
734 		memset(ms, 0, sizeof(*ms));
735 		return 0;
736 	}
737 
738 	/* if we are not in single file segments mode, we're going to unmap the
739 	 * segment and thus drop the lock on original fd, but hugepage dir is
740 	 * now locked so we can take out another one without races.
741 	 */
742 	fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
743 	if (fd < 0)
744 		return -1;
745 
746 	if (internal_conf->single_file_segments) {
747 		map_offset = seg_idx * ms->len;
748 		if (resize_hugefile(fd, map_offset, ms->len, false))
749 			return -1;
750 
751 		if (--(fd_list[list_idx].count) == 0)
752 			close_hugefile(fd, path, list_idx);
753 
754 		ret = 0;
755 	} else {
756 		/* if we're able to take out a write lock, we're the last one
757 		 * holding onto this page.
758 		 */
759 		if (!internal_conf->in_memory && !internal_conf->hugepage_unlink) {
760 			ret = lock(fd, LOCK_EX);
761 			if (ret >= 0) {
762 				/* no one else is using this page */
763 				if (ret == 1)
764 					unlink(path);
765 			}
766 		}
767 		/* closing fd will drop the lock */
768 		close(fd);
769 		fd_list[list_idx].fds[seg_idx] = -1;
770 	}
771 
772 	memset(ms, 0, sizeof(*ms));
773 
774 	return ret < 0 ? -1 : 0;
775 }
776 
777 struct alloc_walk_param {
778 	struct hugepage_info *hi;
779 	struct rte_memseg **ms;
780 	size_t page_sz;
781 	unsigned int segs_allocated;
782 	unsigned int n_segs;
783 	int socket;
784 	bool exact;
785 };
786 static int
787 alloc_seg_walk(const struct rte_memseg_list *msl, void *arg)
788 {
789 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
790 	struct alloc_walk_param *wa = arg;
791 	struct rte_memseg_list *cur_msl;
792 	size_t page_sz;
793 	int cur_idx, start_idx, j, dir_fd = -1;
794 	unsigned int msl_idx, need, i;
795 	const struct internal_config *internal_conf =
796 		eal_get_internal_configuration();
797 
798 	if (msl->page_sz != wa->page_sz)
799 		return 0;
800 	if (msl->socket_id != wa->socket)
801 		return 0;
802 
803 	page_sz = (size_t)msl->page_sz;
804 
805 	msl_idx = msl - mcfg->memsegs;
806 	cur_msl = &mcfg->memsegs[msl_idx];
807 
808 	need = wa->n_segs;
809 
810 	/* try finding space in memseg list */
811 	if (wa->exact) {
812 		/* if we require exact number of pages in a list, find them */
813 		cur_idx = rte_fbarray_find_next_n_free(&cur_msl->memseg_arr, 0,
814 				need);
815 		if (cur_idx < 0)
816 			return 0;
817 		start_idx = cur_idx;
818 	} else {
819 		int cur_len;
820 
821 		/* we don't require exact number of pages, so we're going to go
822 		 * for best-effort allocation. that means finding the biggest
823 		 * unused block, and going with that.
824 		 */
825 		cur_idx = rte_fbarray_find_biggest_free(&cur_msl->memseg_arr,
826 				0);
827 		if (cur_idx < 0)
828 			return 0;
829 		start_idx = cur_idx;
830 		/* adjust the size to possibly be smaller than original
831 		 * request, but do not allow it to be bigger.
832 		 */
833 		cur_len = rte_fbarray_find_contig_free(&cur_msl->memseg_arr,
834 				cur_idx);
835 		need = RTE_MIN(need, (unsigned int)cur_len);
836 	}
837 
838 	/* do not allow any page allocations during the time we're allocating,
839 	 * because file creation and locking operations are not atomic,
840 	 * and we might be the first or the last ones to use a particular page,
841 	 * so we need to ensure atomicity of every operation.
842 	 *
843 	 * during init, we already hold a write lock, so don't try to take out
844 	 * another one.
845 	 */
846 	if (wa->hi->lock_descriptor == -1 && !internal_conf->in_memory) {
847 		dir_fd = open(wa->hi->hugedir, O_RDONLY);
848 		if (dir_fd < 0) {
849 			RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
850 				__func__, wa->hi->hugedir, strerror(errno));
851 			return -1;
852 		}
853 		/* blocking writelock */
854 		if (flock(dir_fd, LOCK_EX)) {
855 			RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
856 				__func__, wa->hi->hugedir, strerror(errno));
857 			close(dir_fd);
858 			return -1;
859 		}
860 	}
861 
862 	for (i = 0; i < need; i++, cur_idx++) {
863 		struct rte_memseg *cur;
864 		void *map_addr;
865 
866 		cur = rte_fbarray_get(&cur_msl->memseg_arr, cur_idx);
867 		map_addr = RTE_PTR_ADD(cur_msl->base_va,
868 				cur_idx * page_sz);
869 
870 		if (alloc_seg(cur, map_addr, wa->socket, wa->hi,
871 				msl_idx, cur_idx)) {
872 			RTE_LOG(DEBUG, EAL, "attempted to allocate %i segments, but only %i were allocated\n",
873 				need, i);
874 
875 			/* if exact number wasn't requested, stop */
876 			if (!wa->exact)
877 				goto out;
878 
879 			/* clean up */
880 			for (j = start_idx; j < cur_idx; j++) {
881 				struct rte_memseg *tmp;
882 				struct rte_fbarray *arr =
883 						&cur_msl->memseg_arr;
884 
885 				tmp = rte_fbarray_get(arr, j);
886 				rte_fbarray_set_free(arr, j);
887 
888 				/* free_seg may attempt to create a file, which
889 				 * may fail.
890 				 */
891 				if (free_seg(tmp, wa->hi, msl_idx, j))
892 					RTE_LOG(DEBUG, EAL, "Cannot free page\n");
893 			}
894 			/* clear the list */
895 			if (wa->ms)
896 				memset(wa->ms, 0, sizeof(*wa->ms) * wa->n_segs);
897 
898 			if (dir_fd >= 0)
899 				close(dir_fd);
900 			return -1;
901 		}
902 		if (wa->ms)
903 			wa->ms[i] = cur;
904 
905 		rte_fbarray_set_used(&cur_msl->memseg_arr, cur_idx);
906 	}
907 out:
908 	wa->segs_allocated = i;
909 	if (i > 0)
910 		cur_msl->version++;
911 	if (dir_fd >= 0)
912 		close(dir_fd);
913 	/* if we didn't allocate any segments, move on to the next list */
914 	return i > 0;
915 }
916 
917 struct free_walk_param {
918 	struct hugepage_info *hi;
919 	struct rte_memseg *ms;
920 };
921 static int
922 free_seg_walk(const struct rte_memseg_list *msl, void *arg)
923 {
924 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
925 	struct rte_memseg_list *found_msl;
926 	struct free_walk_param *wa = arg;
927 	uintptr_t start_addr, end_addr;
928 	int msl_idx, seg_idx, ret, dir_fd = -1;
929 	const struct internal_config *internal_conf =
930 		eal_get_internal_configuration();
931 
932 	start_addr = (uintptr_t) msl->base_va;
933 	end_addr = start_addr + msl->len;
934 
935 	if ((uintptr_t)wa->ms->addr < start_addr ||
936 			(uintptr_t)wa->ms->addr >= end_addr)
937 		return 0;
938 
939 	msl_idx = msl - mcfg->memsegs;
940 	seg_idx = RTE_PTR_DIFF(wa->ms->addr, start_addr) / msl->page_sz;
941 
942 	/* msl is const */
943 	found_msl = &mcfg->memsegs[msl_idx];
944 
945 	/* do not allow any page allocations during the time we're freeing,
946 	 * because file creation and locking operations are not atomic,
947 	 * and we might be the first or the last ones to use a particular page,
948 	 * so we need to ensure atomicity of every operation.
949 	 *
950 	 * during init, we already hold a write lock, so don't try to take out
951 	 * another one.
952 	 */
953 	if (wa->hi->lock_descriptor == -1 && !internal_conf->in_memory) {
954 		dir_fd = open(wa->hi->hugedir, O_RDONLY);
955 		if (dir_fd < 0) {
956 			RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
957 				__func__, wa->hi->hugedir, strerror(errno));
958 			return -1;
959 		}
960 		/* blocking writelock */
961 		if (flock(dir_fd, LOCK_EX)) {
962 			RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
963 				__func__, wa->hi->hugedir, strerror(errno));
964 			close(dir_fd);
965 			return -1;
966 		}
967 	}
968 
969 	found_msl->version++;
970 
971 	rte_fbarray_set_free(&found_msl->memseg_arr, seg_idx);
972 
973 	ret = free_seg(wa->ms, wa->hi, msl_idx, seg_idx);
974 
975 	if (dir_fd >= 0)
976 		close(dir_fd);
977 
978 	if (ret < 0)
979 		return -1;
980 
981 	return 1;
982 }
983 
984 int
985 eal_memalloc_alloc_seg_bulk(struct rte_memseg **ms, int n_segs, size_t page_sz,
986 		int socket, bool exact)
987 {
988 	int i, ret = -1;
989 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
990 	bool have_numa = false;
991 	int oldpolicy;
992 	struct bitmask *oldmask;
993 #endif
994 	struct alloc_walk_param wa;
995 	struct hugepage_info *hi = NULL;
996 	struct internal_config *internal_conf =
997 		eal_get_internal_configuration();
998 
999 	memset(&wa, 0, sizeof(wa));
1000 
1001 	/* dynamic allocation not supported in legacy mode */
1002 	if (internal_conf->legacy_mem)
1003 		return -1;
1004 
1005 	for (i = 0; i < (int) RTE_DIM(internal_conf->hugepage_info); i++) {
1006 		if (page_sz ==
1007 				internal_conf->hugepage_info[i].hugepage_sz) {
1008 			hi = &internal_conf->hugepage_info[i];
1009 			break;
1010 		}
1011 	}
1012 	if (!hi) {
1013 		RTE_LOG(ERR, EAL, "%s(): can't find relevant hugepage_info entry\n",
1014 			__func__);
1015 		return -1;
1016 	}
1017 
1018 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
1019 	if (check_numa()) {
1020 		oldmask = numa_allocate_nodemask();
1021 		prepare_numa(&oldpolicy, oldmask, socket);
1022 		have_numa = true;
1023 	}
1024 #endif
1025 
1026 	wa.exact = exact;
1027 	wa.hi = hi;
1028 	wa.ms = ms;
1029 	wa.n_segs = n_segs;
1030 	wa.page_sz = page_sz;
1031 	wa.socket = socket;
1032 	wa.segs_allocated = 0;
1033 
1034 	/* memalloc is locked, so it's safe to use thread-unsafe version */
1035 	ret = rte_memseg_list_walk_thread_unsafe(alloc_seg_walk, &wa);
1036 	if (ret == 0) {
1037 		RTE_LOG(ERR, EAL, "%s(): couldn't find suitable memseg_list\n",
1038 			__func__);
1039 		ret = -1;
1040 	} else if (ret > 0) {
1041 		ret = (int)wa.segs_allocated;
1042 	}
1043 
1044 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
1045 	if (have_numa)
1046 		restore_numa(&oldpolicy, oldmask);
1047 #endif
1048 	return ret;
1049 }
1050 
1051 struct rte_memseg *
1052 eal_memalloc_alloc_seg(size_t page_sz, int socket)
1053 {
1054 	struct rte_memseg *ms;
1055 	if (eal_memalloc_alloc_seg_bulk(&ms, 1, page_sz, socket, true) < 0)
1056 		return NULL;
1057 	/* return pointer to newly allocated memseg */
1058 	return ms;
1059 }
1060 
1061 int
1062 eal_memalloc_free_seg_bulk(struct rte_memseg **ms, int n_segs)
1063 {
1064 	int seg, ret = 0;
1065 	struct internal_config *internal_conf =
1066 		eal_get_internal_configuration();
1067 
1068 	/* dynamic free not supported in legacy mode */
1069 	if (internal_conf->legacy_mem)
1070 		return -1;
1071 
1072 	for (seg = 0; seg < n_segs; seg++) {
1073 		struct rte_memseg *cur = ms[seg];
1074 		struct hugepage_info *hi = NULL;
1075 		struct free_walk_param wa;
1076 		int i, walk_res;
1077 
1078 		/* if this page is marked as unfreeable, fail */
1079 		if (cur->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
1080 			RTE_LOG(DEBUG, EAL, "Page is not allowed to be freed\n");
1081 			ret = -1;
1082 			continue;
1083 		}
1084 
1085 		memset(&wa, 0, sizeof(wa));
1086 
1087 		for (i = 0; i < (int)RTE_DIM(internal_conf->hugepage_info);
1088 				i++) {
1089 			hi = &internal_conf->hugepage_info[i];
1090 			if (cur->hugepage_sz == hi->hugepage_sz)
1091 				break;
1092 		}
1093 		if (i == (int)RTE_DIM(internal_conf->hugepage_info)) {
1094 			RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
1095 			ret = -1;
1096 			continue;
1097 		}
1098 
1099 		wa.ms = cur;
1100 		wa.hi = hi;
1101 
1102 		/* memalloc is locked, so it's safe to use thread-unsafe version
1103 		 */
1104 		walk_res = rte_memseg_list_walk_thread_unsafe(free_seg_walk,
1105 				&wa);
1106 		if (walk_res == 1)
1107 			continue;
1108 		if (walk_res == 0)
1109 			RTE_LOG(ERR, EAL, "Couldn't find memseg list\n");
1110 		ret = -1;
1111 	}
1112 	return ret;
1113 }
1114 
1115 int
1116 eal_memalloc_free_seg(struct rte_memseg *ms)
1117 {
1118 	const struct internal_config *internal_conf =
1119 		eal_get_internal_configuration();
1120 
1121 	/* dynamic free not supported in legacy mode */
1122 	if (internal_conf->legacy_mem)
1123 		return -1;
1124 
1125 	return eal_memalloc_free_seg_bulk(&ms, 1);
1126 }
1127 
1128 static int
1129 sync_chunk(struct rte_memseg_list *primary_msl,
1130 		struct rte_memseg_list *local_msl, struct hugepage_info *hi,
1131 		unsigned int msl_idx, bool used, int start, int end)
1132 {
1133 	struct rte_fbarray *l_arr, *p_arr;
1134 	int i, ret, chunk_len, diff_len;
1135 
1136 	l_arr = &local_msl->memseg_arr;
1137 	p_arr = &primary_msl->memseg_arr;
1138 
1139 	/* we need to aggregate allocations/deallocations into bigger chunks,
1140 	 * as we don't want to spam the user with per-page callbacks.
1141 	 *
1142 	 * to avoid any potential issues, we also want to trigger
1143 	 * deallocation callbacks *before* we actually deallocate
1144 	 * memory, so that the user application could wrap up its use
1145 	 * before it goes away.
1146 	 */
1147 
1148 	chunk_len = end - start;
1149 
1150 	/* find how many contiguous pages we can map/unmap for this chunk */
1151 	diff_len = used ?
1152 			rte_fbarray_find_contig_free(l_arr, start) :
1153 			rte_fbarray_find_contig_used(l_arr, start);
1154 
1155 	/* has to be at least one page */
1156 	if (diff_len < 1)
1157 		return -1;
1158 
1159 	diff_len = RTE_MIN(chunk_len, diff_len);
1160 
1161 	/* if we are freeing memory, notify the application */
1162 	if (!used) {
1163 		struct rte_memseg *ms;
1164 		void *start_va;
1165 		size_t len, page_sz;
1166 
1167 		ms = rte_fbarray_get(l_arr, start);
1168 		start_va = ms->addr;
1169 		page_sz = (size_t)primary_msl->page_sz;
1170 		len = page_sz * diff_len;
1171 
1172 		eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
1173 				start_va, len);
1174 	}
1175 
1176 	for (i = 0; i < diff_len; i++) {
1177 		struct rte_memseg *p_ms, *l_ms;
1178 		int seg_idx = start + i;
1179 
1180 		l_ms = rte_fbarray_get(l_arr, seg_idx);
1181 		p_ms = rte_fbarray_get(p_arr, seg_idx);
1182 
1183 		if (l_ms == NULL || p_ms == NULL)
1184 			return -1;
1185 
1186 		if (used) {
1187 			ret = alloc_seg(l_ms, p_ms->addr,
1188 					p_ms->socket_id, hi,
1189 					msl_idx, seg_idx);
1190 			if (ret < 0)
1191 				return -1;
1192 			rte_fbarray_set_used(l_arr, seg_idx);
1193 		} else {
1194 			ret = free_seg(l_ms, hi, msl_idx, seg_idx);
1195 			rte_fbarray_set_free(l_arr, seg_idx);
1196 			if (ret < 0)
1197 				return -1;
1198 		}
1199 	}
1200 
1201 	/* if we just allocated memory, notify the application */
1202 	if (used) {
1203 		struct rte_memseg *ms;
1204 		void *start_va;
1205 		size_t len, page_sz;
1206 
1207 		ms = rte_fbarray_get(l_arr, start);
1208 		start_va = ms->addr;
1209 		page_sz = (size_t)primary_msl->page_sz;
1210 		len = page_sz * diff_len;
1211 
1212 		eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
1213 				start_va, len);
1214 	}
1215 
1216 	/* calculate how much we can advance until next chunk */
1217 	diff_len = used ?
1218 			rte_fbarray_find_contig_used(l_arr, start) :
1219 			rte_fbarray_find_contig_free(l_arr, start);
1220 	ret = RTE_MIN(chunk_len, diff_len);
1221 
1222 	return ret;
1223 }
1224 
1225 static int
1226 sync_status(struct rte_memseg_list *primary_msl,
1227 		struct rte_memseg_list *local_msl, struct hugepage_info *hi,
1228 		unsigned int msl_idx, bool used)
1229 {
1230 	struct rte_fbarray *l_arr, *p_arr;
1231 	int p_idx, l_chunk_len, p_chunk_len, ret;
1232 	int start, end;
1233 
1234 	/* this is a little bit tricky, but the basic idea is - walk both lists
1235 	 * and spot any places where there are discrepancies. walking both lists
1236 	 * and noting discrepancies in a single go is a hard problem, so we do
1237 	 * it in two passes - first we spot any places where allocated segments
1238 	 * mismatch (i.e. ensure that everything that's allocated in the primary
1239 	 * is also allocated in the secondary), and then we do it by looking at
1240 	 * free segments instead.
1241 	 *
1242 	 * we also need to aggregate changes into chunks, as we have to call
1243 	 * callbacks per allocation, not per page.
1244 	 */
1245 	l_arr = &local_msl->memseg_arr;
1246 	p_arr = &primary_msl->memseg_arr;
1247 
1248 	if (used)
1249 		p_idx = rte_fbarray_find_next_used(p_arr, 0);
1250 	else
1251 		p_idx = rte_fbarray_find_next_free(p_arr, 0);
1252 
1253 	while (p_idx >= 0) {
1254 		int next_chunk_search_idx;
1255 
1256 		if (used) {
1257 			p_chunk_len = rte_fbarray_find_contig_used(p_arr,
1258 					p_idx);
1259 			l_chunk_len = rte_fbarray_find_contig_used(l_arr,
1260 					p_idx);
1261 		} else {
1262 			p_chunk_len = rte_fbarray_find_contig_free(p_arr,
1263 					p_idx);
1264 			l_chunk_len = rte_fbarray_find_contig_free(l_arr,
1265 					p_idx);
1266 		}
1267 		/* best case scenario - no differences (or bigger, which will be
1268 		 * fixed during next iteration), look for next chunk
1269 		 */
1270 		if (l_chunk_len >= p_chunk_len) {
1271 			next_chunk_search_idx = p_idx + p_chunk_len;
1272 			goto next_chunk;
1273 		}
1274 
1275 		/* if both chunks start at the same point, skip parts we know
1276 		 * are identical, and sync the rest. each call to sync_chunk
1277 		 * will only sync contiguous segments, so we need to call this
1278 		 * until we are sure there are no more differences in this
1279 		 * chunk.
1280 		 */
1281 		start = p_idx + l_chunk_len;
1282 		end = p_idx + p_chunk_len;
1283 		do {
1284 			ret = sync_chunk(primary_msl, local_msl, hi, msl_idx,
1285 					used, start, end);
1286 			start += ret;
1287 		} while (start < end && ret >= 0);
1288 		/* if ret is negative, something went wrong */
1289 		if (ret < 0)
1290 			return -1;
1291 
1292 		next_chunk_search_idx = p_idx + p_chunk_len;
1293 next_chunk:
1294 		/* skip to end of this chunk */
1295 		if (used) {
1296 			p_idx = rte_fbarray_find_next_used(p_arr,
1297 					next_chunk_search_idx);
1298 		} else {
1299 			p_idx = rte_fbarray_find_next_free(p_arr,
1300 					next_chunk_search_idx);
1301 		}
1302 	}
1303 	return 0;
1304 }
1305 
1306 static int
1307 sync_existing(struct rte_memseg_list *primary_msl,
1308 		struct rte_memseg_list *local_msl, struct hugepage_info *hi,
1309 		unsigned int msl_idx)
1310 {
1311 	int ret, dir_fd;
1312 
1313 	/* do not allow any page allocations during the time we're allocating,
1314 	 * because file creation and locking operations are not atomic,
1315 	 * and we might be the first or the last ones to use a particular page,
1316 	 * so we need to ensure atomicity of every operation.
1317 	 */
1318 	dir_fd = open(hi->hugedir, O_RDONLY);
1319 	if (dir_fd < 0) {
1320 		RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", __func__,
1321 			hi->hugedir, strerror(errno));
1322 		return -1;
1323 	}
1324 	/* blocking writelock */
1325 	if (flock(dir_fd, LOCK_EX)) {
1326 		RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", __func__,
1327 			hi->hugedir, strerror(errno));
1328 		close(dir_fd);
1329 		return -1;
1330 	}
1331 
1332 	/* ensure all allocated space is the same in both lists */
1333 	ret = sync_status(primary_msl, local_msl, hi, msl_idx, true);
1334 	if (ret < 0)
1335 		goto fail;
1336 
1337 	/* ensure all unallocated space is the same in both lists */
1338 	ret = sync_status(primary_msl, local_msl, hi, msl_idx, false);
1339 	if (ret < 0)
1340 		goto fail;
1341 
1342 	/* update version number */
1343 	local_msl->version = primary_msl->version;
1344 
1345 	close(dir_fd);
1346 
1347 	return 0;
1348 fail:
1349 	close(dir_fd);
1350 	return -1;
1351 }
1352 
1353 static int
1354 sync_walk(const struct rte_memseg_list *msl, void *arg __rte_unused)
1355 {
1356 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1357 	struct rte_memseg_list *primary_msl, *local_msl;
1358 	struct hugepage_info *hi = NULL;
1359 	unsigned int i;
1360 	int msl_idx;
1361 	struct internal_config *internal_conf =
1362 		eal_get_internal_configuration();
1363 
1364 	if (msl->external)
1365 		return 0;
1366 
1367 	msl_idx = msl - mcfg->memsegs;
1368 	primary_msl = &mcfg->memsegs[msl_idx];
1369 	local_msl = &local_memsegs[msl_idx];
1370 
1371 	for (i = 0; i < RTE_DIM(internal_conf->hugepage_info); i++) {
1372 		uint64_t cur_sz =
1373 			internal_conf->hugepage_info[i].hugepage_sz;
1374 		uint64_t msl_sz = primary_msl->page_sz;
1375 		if (msl_sz == cur_sz) {
1376 			hi = &internal_conf->hugepage_info[i];
1377 			break;
1378 		}
1379 	}
1380 	if (!hi) {
1381 		RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
1382 		return -1;
1383 	}
1384 
1385 	/* if versions don't match, synchronize everything */
1386 	if (local_msl->version != primary_msl->version &&
1387 			sync_existing(primary_msl, local_msl, hi, msl_idx))
1388 		return -1;
1389 	return 0;
1390 }
1391 
1392 
1393 int
1394 eal_memalloc_sync_with_primary(void)
1395 {
1396 	/* nothing to be done in primary */
1397 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
1398 		return 0;
1399 
1400 	/* memalloc is locked, so it's safe to call thread-unsafe version */
1401 	if (rte_memseg_list_walk_thread_unsafe(sync_walk, NULL))
1402 		return -1;
1403 	return 0;
1404 }
1405 
1406 static int
1407 secondary_msl_create_walk(const struct rte_memseg_list *msl,
1408 		void *arg __rte_unused)
1409 {
1410 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1411 	struct rte_memseg_list *primary_msl, *local_msl;
1412 	char name[PATH_MAX];
1413 	int msl_idx, ret;
1414 
1415 	if (msl->external)
1416 		return 0;
1417 
1418 	msl_idx = msl - mcfg->memsegs;
1419 	primary_msl = &mcfg->memsegs[msl_idx];
1420 	local_msl = &local_memsegs[msl_idx];
1421 
1422 	/* create distinct fbarrays for each secondary */
1423 	snprintf(name, RTE_FBARRAY_NAME_LEN, "%s_%i",
1424 		primary_msl->memseg_arr.name, getpid());
1425 
1426 	ret = rte_fbarray_init(&local_msl->memseg_arr, name,
1427 		primary_msl->memseg_arr.len,
1428 		primary_msl->memseg_arr.elt_sz);
1429 	if (ret < 0) {
1430 		RTE_LOG(ERR, EAL, "Cannot initialize local memory map\n");
1431 		return -1;
1432 	}
1433 	local_msl->base_va = primary_msl->base_va;
1434 	local_msl->len = primary_msl->len;
1435 
1436 	return 0;
1437 }
1438 
1439 static int
1440 secondary_msl_destroy_walk(const struct rte_memseg_list *msl,
1441 		void *arg __rte_unused)
1442 {
1443 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1444 	struct rte_memseg_list *local_msl;
1445 	int msl_idx, ret;
1446 
1447 	if (msl->external)
1448 		return 0;
1449 
1450 	msl_idx = msl - mcfg->memsegs;
1451 	local_msl = &local_memsegs[msl_idx];
1452 
1453 	ret = rte_fbarray_destroy(&local_msl->memseg_arr);
1454 	if (ret < 0) {
1455 		RTE_LOG(ERR, EAL, "Cannot destroy local memory map\n");
1456 		return -1;
1457 	}
1458 	local_msl->base_va = NULL;
1459 	local_msl->len = 0;
1460 
1461 	return 0;
1462 }
1463 
1464 static int
1465 alloc_list(int list_idx, int len)
1466 {
1467 	int *data;
1468 	int i;
1469 	const struct internal_config *internal_conf =
1470 		eal_get_internal_configuration();
1471 
1472 	/* single-file segments mode does not need fd list */
1473 	if (!internal_conf->single_file_segments) {
1474 		/* ensure we have space to store fd per each possible segment */
1475 		data = malloc(sizeof(int) * len);
1476 		if (data == NULL) {
1477 			RTE_LOG(ERR, EAL, "Unable to allocate space for file descriptors\n");
1478 			return -1;
1479 		}
1480 		/* set all fd's as invalid */
1481 		for (i = 0; i < len; i++)
1482 			data[i] = -1;
1483 		fd_list[list_idx].fds = data;
1484 		fd_list[list_idx].len = len;
1485 	} else {
1486 		fd_list[list_idx].fds = NULL;
1487 		fd_list[list_idx].len = 0;
1488 	}
1489 
1490 	fd_list[list_idx].count = 0;
1491 	fd_list[list_idx].memseg_list_fd = -1;
1492 
1493 	return 0;
1494 }
1495 
1496 static int
1497 destroy_list(int list_idx)
1498 {
1499 	const struct internal_config *internal_conf =
1500 			eal_get_internal_configuration();
1501 
1502 	/* single-file segments mode does not need fd list */
1503 	if (!internal_conf->single_file_segments) {
1504 		int *fds = fd_list[list_idx].fds;
1505 		int i;
1506 		/* go through each fd and ensure it's closed */
1507 		for (i = 0; i < fd_list[list_idx].len; i++) {
1508 			if (fds[i] >= 0) {
1509 				close(fds[i]);
1510 				fds[i] = -1;
1511 			}
1512 		}
1513 		free(fds);
1514 		fd_list[list_idx].fds = NULL;
1515 		fd_list[list_idx].len = 0;
1516 	} else if (fd_list[list_idx].memseg_list_fd >= 0) {
1517 		close(fd_list[list_idx].memseg_list_fd);
1518 		fd_list[list_idx].count = 0;
1519 		fd_list[list_idx].memseg_list_fd = -1;
1520 	}
1521 	return 0;
1522 }
1523 
1524 static int
1525 fd_list_create_walk(const struct rte_memseg_list *msl,
1526 		void *arg __rte_unused)
1527 {
1528 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1529 	unsigned int len;
1530 	int msl_idx;
1531 
1532 	if (msl->external)
1533 		return 0;
1534 
1535 	msl_idx = msl - mcfg->memsegs;
1536 	len = msl->memseg_arr.len;
1537 
1538 	return alloc_list(msl_idx, len);
1539 }
1540 
1541 static int
1542 fd_list_destroy_walk(const struct rte_memseg_list *msl, void *arg __rte_unused)
1543 {
1544 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1545 	int msl_idx;
1546 
1547 	if (msl->external)
1548 		return 0;
1549 
1550 	msl_idx = msl - mcfg->memsegs;
1551 
1552 	return destroy_list(msl_idx);
1553 }
1554 
1555 int
1556 eal_memalloc_set_seg_fd(int list_idx, int seg_idx, int fd)
1557 {
1558 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1559 	const struct internal_config *internal_conf =
1560 		eal_get_internal_configuration();
1561 
1562 	/* single file segments mode doesn't support individual segment fd's */
1563 	if (internal_conf->single_file_segments)
1564 		return -ENOTSUP;
1565 
1566 	/* if list is not allocated, allocate it */
1567 	if (fd_list[list_idx].len == 0) {
1568 		int len = mcfg->memsegs[list_idx].memseg_arr.len;
1569 
1570 		if (alloc_list(list_idx, len) < 0)
1571 			return -ENOMEM;
1572 	}
1573 	fd_list[list_idx].fds[seg_idx] = fd;
1574 
1575 	return 0;
1576 }
1577 
1578 int
1579 eal_memalloc_set_seg_list_fd(int list_idx, int fd)
1580 {
1581 	const struct internal_config *internal_conf =
1582 		eal_get_internal_configuration();
1583 
1584 	/* non-single file segment mode doesn't support segment list fd's */
1585 	if (!internal_conf->single_file_segments)
1586 		return -ENOTSUP;
1587 
1588 	fd_list[list_idx].memseg_list_fd = fd;
1589 
1590 	return 0;
1591 }
1592 
1593 int
1594 eal_memalloc_get_seg_fd(int list_idx, int seg_idx)
1595 {
1596 	int fd;
1597 	const struct internal_config *internal_conf =
1598 		eal_get_internal_configuration();
1599 
1600 	if (internal_conf->in_memory || internal_conf->no_hugetlbfs) {
1601 #ifndef MEMFD_SUPPORTED
1602 		/* in in-memory or no-huge mode, we rely on memfd support */
1603 		return -ENOTSUP;
1604 #endif
1605 		/* memfd supported, but hugetlbfs memfd may not be */
1606 		if (!internal_conf->no_hugetlbfs && !memfd_create_supported)
1607 			return -ENOTSUP;
1608 	}
1609 
1610 	if (internal_conf->single_file_segments) {
1611 		fd = fd_list[list_idx].memseg_list_fd;
1612 	} else if (fd_list[list_idx].len == 0) {
1613 		/* list not initialized */
1614 		fd = -1;
1615 	} else {
1616 		fd = fd_list[list_idx].fds[seg_idx];
1617 	}
1618 	if (fd < 0)
1619 		return -ENODEV;
1620 	return fd;
1621 }
1622 
1623 static int
1624 test_memfd_create(void)
1625 {
1626 #ifdef MEMFD_SUPPORTED
1627 	const struct internal_config *internal_conf =
1628 		eal_get_internal_configuration();
1629 	unsigned int i;
1630 	for (i = 0; i < internal_conf->num_hugepage_sizes; i++) {
1631 		uint64_t pagesz = internal_conf->hugepage_info[i].hugepage_sz;
1632 		int pagesz_flag = pagesz_flags(pagesz);
1633 		int flags;
1634 
1635 		flags = pagesz_flag | RTE_MFD_HUGETLB;
1636 		int fd = memfd_create("test", flags);
1637 		if (fd < 0) {
1638 			/* we failed - let memalloc know this isn't working */
1639 			if (errno == EINVAL) {
1640 				memfd_create_supported = 0;
1641 				return 0; /* not supported */
1642 			}
1643 
1644 			/* we got other error - something's wrong */
1645 			return -1; /* error */
1646 		}
1647 		close(fd);
1648 		return 1; /* supported */
1649 	}
1650 #endif
1651 	return 0; /* not supported */
1652 }
1653 
1654 int
1655 eal_memalloc_get_seg_fd_offset(int list_idx, int seg_idx, size_t *offset)
1656 {
1657 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1658 	const struct internal_config *internal_conf =
1659 		eal_get_internal_configuration();
1660 
1661 	if (internal_conf->in_memory || internal_conf->no_hugetlbfs) {
1662 #ifndef MEMFD_SUPPORTED
1663 		/* in in-memory or no-huge mode, we rely on memfd support */
1664 		return -ENOTSUP;
1665 #endif
1666 		/* memfd supported, but hugetlbfs memfd may not be */
1667 		if (!internal_conf->no_hugetlbfs && !memfd_create_supported)
1668 			return -ENOTSUP;
1669 	}
1670 
1671 	if (internal_conf->single_file_segments) {
1672 		size_t pgsz = mcfg->memsegs[list_idx].page_sz;
1673 
1674 		/* segment not active? */
1675 		if (fd_list[list_idx].memseg_list_fd < 0)
1676 			return -ENOENT;
1677 		*offset = pgsz * seg_idx;
1678 	} else {
1679 		/* fd_list not initialized? */
1680 		if (fd_list[list_idx].len == 0)
1681 			return -ENODEV;
1682 
1683 		/* segment not active? */
1684 		if (fd_list[list_idx].fds[seg_idx] < 0)
1685 			return -ENOENT;
1686 		*offset = 0;
1687 	}
1688 	return 0;
1689 }
1690 
1691 int
1692 eal_memalloc_cleanup(void)
1693 {
1694 	/* close all remaining fd's - these are per-process, so it's safe */
1695 	if (rte_memseg_list_walk_thread_unsafe(fd_list_destroy_walk, NULL))
1696 		return -1;
1697 
1698 	/* destroy the shadow page table if we're a secondary process */
1699 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
1700 		return 0;
1701 
1702 	if (rte_memseg_list_walk_thread_unsafe(secondary_msl_destroy_walk,
1703 			NULL))
1704 		return -1;
1705 
1706 	return 0;
1707 }
1708 
1709 int
1710 eal_memalloc_init(void)
1711 {
1712 	const struct internal_config *internal_conf =
1713 		eal_get_internal_configuration();
1714 
1715 	if (rte_eal_process_type() == RTE_PROC_SECONDARY)
1716 		if (rte_memseg_list_walk(secondary_msl_create_walk, NULL) < 0)
1717 			return -1;
1718 	if (rte_eal_process_type() == RTE_PROC_PRIMARY &&
1719 			internal_conf->in_memory) {
1720 		int mfd_res = test_memfd_create();
1721 
1722 		if (mfd_res < 0) {
1723 			RTE_LOG(ERR, EAL, "Unable to check if memfd is supported\n");
1724 			return -1;
1725 		}
1726 		if (mfd_res == 1)
1727 			RTE_LOG(DEBUG, EAL, "Using memfd for anonymous memory\n");
1728 		else
1729 			RTE_LOG(INFO, EAL, "Using memfd is not supported, falling back to anonymous hugepages\n");
1730 
1731 		/* we only support single-file segments mode with in-memory mode
1732 		 * if we support hugetlbfs with memfd_create. this code will
1733 		 * test if we do.
1734 		 */
1735 		if (internal_conf->single_file_segments &&
1736 				mfd_res != 1) {
1737 			RTE_LOG(ERR, EAL, "Single-file segments mode cannot be used without memfd support\n");
1738 			return -1;
1739 		}
1740 		/* this cannot ever happen but better safe than sorry */
1741 		if (!anonymous_hugepages_supported) {
1742 			RTE_LOG(ERR, EAL, "Using anonymous memory is not supported\n");
1743 			return -1;
1744 		}
1745 	}
1746 
1747 	/* initialize all of the fd lists */
1748 	if (rte_memseg_list_walk(fd_list_create_walk, NULL))
1749 		return -1;
1750 	return 0;
1751 }
1752