xref: /dpdk/lib/eal/linux/eal_memalloc.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017-2018 Intel Corporation
3  */
4 
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdlib.h>
9 #include <stdio.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 #include <string.h>
13 #include <sys/mman.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <sys/queue.h>
17 #include <sys/file.h>
18 #include <unistd.h>
19 #include <limits.h>
20 #include <fcntl.h>
21 #include <sys/ioctl.h>
22 #include <sys/time.h>
23 #include <signal.h>
24 #include <setjmp.h>
25 #ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */
26 #include <linux/memfd.h>
27 #define MEMFD_SUPPORTED
28 #endif
29 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
30 #include <numa.h>
31 #include <numaif.h>
32 #endif
33 #include <linux/falloc.h>
34 #include <linux/mman.h> /* for hugetlb-related mmap flags */
35 
36 #include <rte_common.h>
37 #include <rte_log.h>
38 #include <rte_eal.h>
39 #include <rte_errno.h>
40 #include <rte_memory.h>
41 #include <rte_spinlock.h>
42 
43 #include "eal_filesystem.h"
44 #include "eal_internal_cfg.h"
45 #include "eal_memalloc.h"
46 #include "eal_memcfg.h"
47 #include "eal_private.h"
48 
49 const int anonymous_hugepages_supported =
50 #ifdef MAP_HUGE_SHIFT
51 		1;
52 #define RTE_MAP_HUGE_SHIFT MAP_HUGE_SHIFT
53 #else
54 		0;
55 #define RTE_MAP_HUGE_SHIFT 26
56 #endif
57 
58 /*
59  * we've already checked memfd support at compile-time, but we also need to
60  * check if we can create hugepage files with memfd.
61  *
62  * also, this is not a constant, because while we may be *compiled* with memfd
63  * hugetlbfs support, we might not be *running* on a system that supports memfd
64  * and/or memfd with hugetlbfs, so we need to be able to adjust this flag at
65  * runtime, and fall back to anonymous memory.
66  */
67 static int memfd_create_supported =
68 #ifdef MFD_HUGETLB
69 		1;
70 #define RTE_MFD_HUGETLB MFD_HUGETLB
71 #else
72 		0;
73 #define RTE_MFD_HUGETLB 4U
74 #endif
75 
76 /*
77  * not all kernel version support fallocate on hugetlbfs, so fall back to
78  * ftruncate and disallow deallocation if fallocate is not supported.
79  */
80 static int fallocate_supported = -1; /* unknown */
81 
82 /*
83  * we have two modes - single file segments, and file-per-page mode.
84  *
85  * for single-file segments, we use memseg_list_fd to store the segment fd,
86  * while the fds[] will not be allocated, and len will be set to 0.
87  *
88  * for file-per-page mode, each page will have its own fd, so 'memseg_list_fd'
89  * will be invalid (set to -1), and we'll use 'fds' to keep track of page fd's.
90  *
91  * we cannot know how many pages a system will have in advance, but we do know
92  * that they come in lists, and we know lengths of these lists. so, simply store
93  * a malloc'd array of fd's indexed by list and segment index.
94  *
95  * they will be initialized at startup, and filled as we allocate/deallocate
96  * segments.
97  */
98 static struct {
99 	int *fds; /**< dynamically allocated array of segment lock fd's */
100 	int memseg_list_fd; /**< memseg list fd */
101 	int len; /**< total length of the array */
102 	int count; /**< entries used in an array */
103 } fd_list[RTE_MAX_MEMSEG_LISTS];
104 
105 /** local copy of a memory map, used to synchronize memory hotplug in MP */
106 static struct rte_memseg_list local_memsegs[RTE_MAX_MEMSEG_LISTS];
107 
108 static sigjmp_buf huge_jmpenv;
109 
110 static void __rte_unused huge_sigbus_handler(int signo __rte_unused)
111 {
112 	siglongjmp(huge_jmpenv, 1);
113 }
114 
115 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
116  * non-static local variable in the stack frame calling sigsetjmp might be
117  * clobbered by a call to longjmp.
118  */
119 static int __rte_unused huge_wrap_sigsetjmp(void)
120 {
121 	return sigsetjmp(huge_jmpenv, 1);
122 }
123 
124 static struct sigaction huge_action_old;
125 static int huge_need_recover;
126 
127 static void __rte_unused
128 huge_register_sigbus(void)
129 {
130 	sigset_t mask;
131 	struct sigaction action;
132 
133 	sigemptyset(&mask);
134 	sigaddset(&mask, SIGBUS);
135 	action.sa_flags = 0;
136 	action.sa_mask = mask;
137 	action.sa_handler = huge_sigbus_handler;
138 
139 	huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
140 }
141 
142 static void __rte_unused
143 huge_recover_sigbus(void)
144 {
145 	if (huge_need_recover) {
146 		sigaction(SIGBUS, &huge_action_old, NULL);
147 		huge_need_recover = 0;
148 	}
149 }
150 
151 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
152 static bool
153 check_numa(void)
154 {
155 	bool ret = true;
156 	/* Check if kernel supports NUMA. */
157 	if (numa_available() != 0) {
158 		RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
159 		ret = false;
160 	}
161 	return ret;
162 }
163 
164 static void
165 prepare_numa(int *oldpolicy, struct bitmask *oldmask, int socket_id)
166 {
167 	RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
168 	if (get_mempolicy(oldpolicy, oldmask->maskp,
169 			  oldmask->size + 1, 0, 0) < 0) {
170 		RTE_LOG(ERR, EAL,
171 			"Failed to get current mempolicy: %s. "
172 			"Assuming MPOL_DEFAULT.\n", strerror(errno));
173 		*oldpolicy = MPOL_DEFAULT;
174 	}
175 	RTE_LOG(DEBUG, EAL,
176 		"Setting policy MPOL_PREFERRED for socket %d\n",
177 		socket_id);
178 	numa_set_preferred(socket_id);
179 }
180 
181 static void
182 restore_numa(int *oldpolicy, struct bitmask *oldmask)
183 {
184 	RTE_LOG(DEBUG, EAL,
185 		"Restoring previous memory policy: %d\n", *oldpolicy);
186 	if (*oldpolicy == MPOL_DEFAULT) {
187 		numa_set_localalloc();
188 	} else if (set_mempolicy(*oldpolicy, oldmask->maskp,
189 				 oldmask->size + 1) < 0) {
190 		RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
191 			strerror(errno));
192 		numa_set_localalloc();
193 	}
194 	numa_free_cpumask(oldmask);
195 }
196 #endif
197 
198 /*
199  * uses fstat to report the size of a file on disk
200  */
201 static off_t
202 get_file_size(int fd)
203 {
204 	struct stat st;
205 	if (fstat(fd, &st) < 0)
206 		return 0;
207 	return st.st_size;
208 }
209 
210 static int
211 pagesz_flags(uint64_t page_sz)
212 {
213 	/* as per mmap() manpage, all page sizes are log2 of page size
214 	 * shifted by MAP_HUGE_SHIFT
215 	 */
216 	int log2 = rte_log2_u64(page_sz);
217 	return log2 << RTE_MAP_HUGE_SHIFT;
218 }
219 
220 /* returns 1 on successful lock, 0 on unsuccessful lock, -1 on error */
221 static int lock(int fd, int type)
222 {
223 	int ret;
224 
225 	/* flock may be interrupted */
226 	do {
227 		ret = flock(fd, type | LOCK_NB);
228 	} while (ret && errno == EINTR);
229 
230 	if (ret && errno == EWOULDBLOCK) {
231 		/* couldn't lock */
232 		return 0;
233 	} else if (ret) {
234 		RTE_LOG(ERR, EAL, "%s(): error calling flock(): %s\n",
235 			__func__, strerror(errno));
236 		return -1;
237 	}
238 	/* lock was successful */
239 	return 1;
240 }
241 
242 static int
243 get_seg_memfd(struct hugepage_info *hi __rte_unused,
244 		unsigned int list_idx __rte_unused,
245 		unsigned int seg_idx __rte_unused)
246 {
247 #ifdef MEMFD_SUPPORTED
248 	int fd;
249 	char segname[250]; /* as per manpage, limit is 249 bytes plus null */
250 
251 	int flags = RTE_MFD_HUGETLB | pagesz_flags(hi->hugepage_sz);
252 	const struct internal_config *internal_conf =
253 		eal_get_internal_configuration();
254 
255 	if (internal_conf->single_file_segments) {
256 		fd = fd_list[list_idx].memseg_list_fd;
257 
258 		if (fd < 0) {
259 			snprintf(segname, sizeof(segname), "seg_%i", list_idx);
260 			fd = memfd_create(segname, flags);
261 			if (fd < 0) {
262 				RTE_LOG(DEBUG, EAL, "%s(): memfd create failed: %s\n",
263 					__func__, strerror(errno));
264 				return -1;
265 			}
266 			fd_list[list_idx].memseg_list_fd = fd;
267 		}
268 	} else {
269 		fd = fd_list[list_idx].fds[seg_idx];
270 
271 		if (fd < 0) {
272 			snprintf(segname, sizeof(segname), "seg_%i-%i",
273 					list_idx, seg_idx);
274 			fd = memfd_create(segname, flags);
275 			if (fd < 0) {
276 				RTE_LOG(DEBUG, EAL, "%s(): memfd create failed: %s\n",
277 					__func__, strerror(errno));
278 				return -1;
279 			}
280 			fd_list[list_idx].fds[seg_idx] = fd;
281 		}
282 	}
283 	return fd;
284 #endif
285 	return -1;
286 }
287 
288 static int
289 get_seg_fd(char *path, int buflen, struct hugepage_info *hi,
290 		unsigned int list_idx, unsigned int seg_idx)
291 {
292 	int fd;
293 	const struct internal_config *internal_conf =
294 		eal_get_internal_configuration();
295 
296 	/* for in-memory mode, we only make it here when we're sure we support
297 	 * memfd, and this is a special case.
298 	 */
299 	if (internal_conf->in_memory)
300 		return get_seg_memfd(hi, list_idx, seg_idx);
301 
302 	if (internal_conf->single_file_segments) {
303 		/* create a hugepage file path */
304 		eal_get_hugefile_path(path, buflen, hi->hugedir, list_idx);
305 
306 		fd = fd_list[list_idx].memseg_list_fd;
307 
308 		if (fd < 0) {
309 			fd = open(path, O_CREAT | O_RDWR, 0600);
310 			if (fd < 0) {
311 				RTE_LOG(ERR, EAL, "%s(): open failed: %s\n",
312 					__func__, strerror(errno));
313 				return -1;
314 			}
315 			/* take out a read lock and keep it indefinitely */
316 			if (lock(fd, LOCK_SH) < 0) {
317 				RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
318 					__func__, strerror(errno));
319 				close(fd);
320 				return -1;
321 			}
322 			fd_list[list_idx].memseg_list_fd = fd;
323 		}
324 	} else {
325 		/* create a hugepage file path */
326 		eal_get_hugefile_path(path, buflen, hi->hugedir,
327 				list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
328 
329 		fd = fd_list[list_idx].fds[seg_idx];
330 
331 		if (fd < 0) {
332 			/* A primary process is the only one creating these
333 			 * files. If there is a leftover that was not cleaned
334 			 * by clear_hugedir(), we must *now* make sure to drop
335 			 * the file or we will remap old stuff while the rest
336 			 * of the code is built on the assumption that a new
337 			 * page is clean.
338 			 */
339 			if (rte_eal_process_type() == RTE_PROC_PRIMARY &&
340 					unlink(path) == -1 &&
341 					errno != ENOENT) {
342 				RTE_LOG(DEBUG, EAL, "%s(): could not remove '%s': %s\n",
343 					__func__, path, strerror(errno));
344 				return -1;
345 			}
346 
347 			fd = open(path, O_CREAT | O_RDWR, 0600);
348 			if (fd < 0) {
349 				RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n",
350 					__func__, strerror(errno));
351 				return -1;
352 			}
353 			/* take out a read lock */
354 			if (lock(fd, LOCK_SH) < 0) {
355 				RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
356 					__func__, strerror(errno));
357 				close(fd);
358 				return -1;
359 			}
360 			fd_list[list_idx].fds[seg_idx] = fd;
361 		}
362 	}
363 	return fd;
364 }
365 
366 static int
367 resize_hugefile_in_memory(int fd, uint64_t fa_offset,
368 		uint64_t page_sz, bool grow)
369 {
370 	int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
371 			FALLOC_FL_KEEP_SIZE;
372 	int ret;
373 
374 	/* grow or shrink the file */
375 	ret = fallocate(fd, flags, fa_offset, page_sz);
376 
377 	if (ret < 0) {
378 		RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
379 				__func__,
380 				strerror(errno));
381 		return -1;
382 	}
383 	return 0;
384 }
385 
386 static int
387 resize_hugefile_in_filesystem(int fd, uint64_t fa_offset, uint64_t page_sz,
388 		bool grow)
389 {
390 	bool again = false;
391 
392 	do {
393 		if (fallocate_supported == 0) {
394 			/* we cannot deallocate memory if fallocate() is not
395 			 * supported, and hugepage file is already locked at
396 			 * creation, so no further synchronization needed.
397 			 */
398 
399 			if (!grow) {
400 				RTE_LOG(DEBUG, EAL, "%s(): fallocate not supported, not freeing page back to the system\n",
401 					__func__);
402 				return -1;
403 			}
404 			uint64_t new_size = fa_offset + page_sz;
405 			uint64_t cur_size = get_file_size(fd);
406 
407 			/* fallocate isn't supported, fall back to ftruncate */
408 			if (new_size > cur_size &&
409 					ftruncate(fd, new_size) < 0) {
410 				RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
411 					__func__, strerror(errno));
412 				return -1;
413 			}
414 		} else {
415 			int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
416 					FALLOC_FL_KEEP_SIZE;
417 			int ret;
418 
419 			/*
420 			 * technically, it is perfectly safe for both primary
421 			 * and secondary to grow and shrink the page files:
422 			 * growing the file repeatedly has no effect because
423 			 * a page can only be allocated once, while mmap ensures
424 			 * that secondaries hold on to the page even after the
425 			 * page itself is removed from the filesystem.
426 			 *
427 			 * however, leaving growing/shrinking to the primary
428 			 * tends to expose bugs in fdlist page count handling,
429 			 * so leave this here just in case.
430 			 */
431 			if (rte_eal_process_type() != RTE_PROC_PRIMARY)
432 				return 0;
433 
434 			/* grow or shrink the file */
435 			ret = fallocate(fd, flags, fa_offset, page_sz);
436 
437 			if (ret < 0) {
438 				if (fallocate_supported == -1 &&
439 						errno == ENOTSUP) {
440 					RTE_LOG(ERR, EAL, "%s(): fallocate() not supported, hugepage deallocation will be disabled\n",
441 						__func__);
442 					again = true;
443 					fallocate_supported = 0;
444 				} else {
445 					RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
446 						__func__,
447 						strerror(errno));
448 					return -1;
449 				}
450 			} else
451 				fallocate_supported = 1;
452 		}
453 	} while (again);
454 
455 	return 0;
456 }
457 
458 static void
459 close_hugefile(int fd, char *path, int list_idx)
460 {
461 	const struct internal_config *internal_conf =
462 		eal_get_internal_configuration();
463 	/*
464 	 * primary process must unlink the file, but only when not in in-memory
465 	 * mode (as in that case there is no file to unlink).
466 	 */
467 	if (!internal_conf->in_memory &&
468 			rte_eal_process_type() == RTE_PROC_PRIMARY &&
469 			unlink(path))
470 		RTE_LOG(ERR, EAL, "%s(): unlinking '%s' failed: %s\n",
471 			__func__, path, strerror(errno));
472 
473 	close(fd);
474 	fd_list[list_idx].memseg_list_fd = -1;
475 }
476 
477 static int
478 resize_hugefile(int fd, uint64_t fa_offset, uint64_t page_sz, bool grow)
479 {
480 	/* in-memory mode is a special case, because we can be sure that
481 	 * fallocate() is supported.
482 	 */
483 	const struct internal_config *internal_conf =
484 		eal_get_internal_configuration();
485 
486 	if (internal_conf->in_memory)
487 		return resize_hugefile_in_memory(fd, fa_offset,
488 				page_sz, grow);
489 
490 	return resize_hugefile_in_filesystem(fd, fa_offset, page_sz,
491 				grow);
492 }
493 
494 static int
495 alloc_seg(struct rte_memseg *ms, void *addr, int socket_id,
496 		struct hugepage_info *hi, unsigned int list_idx,
497 		unsigned int seg_idx)
498 {
499 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
500 	int cur_socket_id = 0;
501 #endif
502 	uint64_t map_offset;
503 	rte_iova_t iova;
504 	void *va;
505 	char path[PATH_MAX];
506 	int ret = 0;
507 	int fd;
508 	size_t alloc_sz;
509 	int flags;
510 	void *new_addr;
511 	const struct internal_config *internal_conf =
512 		eal_get_internal_configuration();
513 
514 	alloc_sz = hi->hugepage_sz;
515 
516 	/* these are checked at init, but code analyzers don't know that */
517 	if (internal_conf->in_memory && !anonymous_hugepages_supported) {
518 		RTE_LOG(ERR, EAL, "Anonymous hugepages not supported, in-memory mode cannot allocate memory\n");
519 		return -1;
520 	}
521 	if (internal_conf->in_memory && !memfd_create_supported &&
522 			internal_conf->single_file_segments) {
523 		RTE_LOG(ERR, EAL, "Single-file segments are not supported without memfd support\n");
524 		return -1;
525 	}
526 
527 	/* in-memory without memfd is a special case */
528 	int mmap_flags;
529 
530 	if (internal_conf->in_memory && !memfd_create_supported) {
531 		const int in_memory_flags = MAP_HUGETLB | MAP_FIXED |
532 				MAP_PRIVATE | MAP_ANONYMOUS;
533 		int pagesz_flag;
534 
535 		pagesz_flag = pagesz_flags(alloc_sz);
536 		fd = -1;
537 		mmap_flags = in_memory_flags | pagesz_flag;
538 
539 		/* single-file segments codepath will never be active
540 		 * here because in-memory mode is incompatible with the
541 		 * fallback path, and it's stopped at EAL initialization
542 		 * stage.
543 		 */
544 		map_offset = 0;
545 	} else {
546 		/* takes out a read lock on segment or segment list */
547 		fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
548 		if (fd < 0) {
549 			RTE_LOG(ERR, EAL, "Couldn't get fd on hugepage file\n");
550 			return -1;
551 		}
552 
553 		if (internal_conf->single_file_segments) {
554 			map_offset = seg_idx * alloc_sz;
555 			ret = resize_hugefile(fd, map_offset, alloc_sz, true);
556 			if (ret < 0)
557 				goto resized;
558 
559 			fd_list[list_idx].count++;
560 		} else {
561 			map_offset = 0;
562 			if (ftruncate(fd, alloc_sz) < 0) {
563 				RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
564 					__func__, strerror(errno));
565 				goto resized;
566 			}
567 			if (internal_conf->hugepage_unlink &&
568 					!internal_conf->in_memory) {
569 				if (unlink(path)) {
570 					RTE_LOG(DEBUG, EAL, "%s(): unlink() failed: %s\n",
571 						__func__, strerror(errno));
572 					goto resized;
573 				}
574 			}
575 		}
576 		mmap_flags = MAP_SHARED | MAP_POPULATE | MAP_FIXED;
577 	}
578 
579 	/*
580 	 * map the segment, and populate page tables, the kernel fills
581 	 * this segment with zeros if it's a new page.
582 	 */
583 	va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, mmap_flags, fd,
584 			map_offset);
585 
586 	if (va == MAP_FAILED) {
587 		RTE_LOG(DEBUG, EAL, "%s(): mmap() failed: %s\n", __func__,
588 			strerror(errno));
589 		/* mmap failed, but the previous region might have been
590 		 * unmapped anyway. try to remap it
591 		 */
592 		goto unmapped;
593 	}
594 	if (va != addr) {
595 		RTE_LOG(DEBUG, EAL, "%s(): wrong mmap() address\n", __func__);
596 		munmap(va, alloc_sz);
597 		goto resized;
598 	}
599 
600 	/* In linux, hugetlb limitations, like cgroup, are
601 	 * enforced at fault time instead of mmap(), even
602 	 * with the option of MAP_POPULATE. Kernel will send
603 	 * a SIGBUS signal. To avoid to be killed, save stack
604 	 * environment here, if SIGBUS happens, we can jump
605 	 * back here.
606 	 */
607 	if (huge_wrap_sigsetjmp()) {
608 		RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more hugepages of size %uMB\n",
609 			(unsigned int)(alloc_sz >> 20));
610 		goto mapped;
611 	}
612 
613 	/* we need to trigger a write to the page to enforce page fault and
614 	 * ensure that page is accessible to us, but we can't overwrite value
615 	 * that is already there, so read the old value, and write itback.
616 	 * kernel populates the page with zeroes initially.
617 	 */
618 	*(volatile int *)addr = *(volatile int *)addr;
619 
620 	iova = rte_mem_virt2iova(addr);
621 	if (iova == RTE_BAD_PHYS_ADDR) {
622 		RTE_LOG(DEBUG, EAL, "%s(): can't get IOVA addr\n",
623 			__func__);
624 		goto mapped;
625 	}
626 
627 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
628 	/*
629 	 * If the kernel has been built without NUMA support, get_mempolicy()
630 	 * will return an error. If check_numa() returns false, memory
631 	 * allocation is not NUMA aware and the socket_id should not be
632 	 * checked.
633 	 */
634 	if (check_numa()) {
635 		ret = get_mempolicy(&cur_socket_id, NULL, 0, addr,
636 					MPOL_F_NODE | MPOL_F_ADDR);
637 		if (ret < 0) {
638 			RTE_LOG(DEBUG, EAL, "%s(): get_mempolicy: %s\n",
639 				__func__, strerror(errno));
640 			goto mapped;
641 		} else if (cur_socket_id != socket_id) {
642 			RTE_LOG(DEBUG, EAL,
643 					"%s(): allocation happened on wrong socket (wanted %d, got %d)\n",
644 				__func__, socket_id, cur_socket_id);
645 			goto mapped;
646 		}
647 	}
648 #else
649 	if (rte_socket_count() > 1)
650 		RTE_LOG(DEBUG, EAL, "%s(): not checking hugepage NUMA node.\n",
651 				__func__);
652 #endif
653 
654 	ms->addr = addr;
655 	ms->hugepage_sz = alloc_sz;
656 	ms->len = alloc_sz;
657 	ms->nchannel = rte_memory_get_nchannel();
658 	ms->nrank = rte_memory_get_nrank();
659 	ms->iova = iova;
660 	ms->socket_id = socket_id;
661 
662 	return 0;
663 
664 mapped:
665 	munmap(addr, alloc_sz);
666 unmapped:
667 	flags = EAL_RESERVE_FORCE_ADDRESS;
668 	new_addr = eal_get_virtual_area(addr, &alloc_sz, alloc_sz, 0, flags);
669 	if (new_addr != addr) {
670 		if (new_addr != NULL)
671 			munmap(new_addr, alloc_sz);
672 		/* we're leaving a hole in our virtual address space. if
673 		 * somebody else maps this hole now, we could accidentally
674 		 * override it in the future.
675 		 */
676 		RTE_LOG(CRIT, EAL, "Can't mmap holes in our virtual address space\n");
677 	}
678 	/* roll back the ref count */
679 	if (internal_conf->single_file_segments)
680 		fd_list[list_idx].count--;
681 resized:
682 	/* some codepaths will return negative fd, so exit early */
683 	if (fd < 0)
684 		return -1;
685 
686 	if (internal_conf->single_file_segments) {
687 		resize_hugefile(fd, map_offset, alloc_sz, false);
688 		/* ignore failure, can't make it any worse */
689 
690 		/* if refcount is at zero, close the file */
691 		if (fd_list[list_idx].count == 0)
692 			close_hugefile(fd, path, list_idx);
693 	} else {
694 		/* only remove file if we can take out a write lock */
695 		if (internal_conf->hugepage_unlink == 0 &&
696 				internal_conf->in_memory == 0 &&
697 				lock(fd, LOCK_EX) == 1)
698 			unlink(path);
699 		close(fd);
700 		fd_list[list_idx].fds[seg_idx] = -1;
701 	}
702 	return -1;
703 }
704 
705 static int
706 free_seg(struct rte_memseg *ms, struct hugepage_info *hi,
707 		unsigned int list_idx, unsigned int seg_idx)
708 {
709 	uint64_t map_offset;
710 	char path[PATH_MAX];
711 	int fd, ret = 0;
712 	const struct internal_config *internal_conf =
713 		eal_get_internal_configuration();
714 
715 	/* erase page data */
716 	memset(ms->addr, 0, ms->len);
717 
718 	if (mmap(ms->addr, ms->len, PROT_NONE,
719 			MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0) ==
720 				MAP_FAILED) {
721 		RTE_LOG(DEBUG, EAL, "couldn't unmap page\n");
722 		return -1;
723 	}
724 
725 	eal_mem_set_dump(ms->addr, ms->len, false);
726 
727 	/* if we're using anonymous hugepages, nothing to be done */
728 	if (internal_conf->in_memory && !memfd_create_supported) {
729 		memset(ms, 0, sizeof(*ms));
730 		return 0;
731 	}
732 
733 	/* if we are not in single file segments mode, we're going to unmap the
734 	 * segment and thus drop the lock on original fd, but hugepage dir is
735 	 * now locked so we can take out another one without races.
736 	 */
737 	fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
738 	if (fd < 0)
739 		return -1;
740 
741 	if (internal_conf->single_file_segments) {
742 		map_offset = seg_idx * ms->len;
743 		if (resize_hugefile(fd, map_offset, ms->len, false))
744 			return -1;
745 
746 		if (--(fd_list[list_idx].count) == 0)
747 			close_hugefile(fd, path, list_idx);
748 
749 		ret = 0;
750 	} else {
751 		/* if we're able to take out a write lock, we're the last one
752 		 * holding onto this page.
753 		 */
754 		if (!internal_conf->in_memory && !internal_conf->hugepage_unlink) {
755 			ret = lock(fd, LOCK_EX);
756 			if (ret >= 0) {
757 				/* no one else is using this page */
758 				if (ret == 1)
759 					unlink(path);
760 			}
761 		}
762 		/* closing fd will drop the lock */
763 		close(fd);
764 		fd_list[list_idx].fds[seg_idx] = -1;
765 	}
766 
767 	memset(ms, 0, sizeof(*ms));
768 
769 	return ret < 0 ? -1 : 0;
770 }
771 
772 struct alloc_walk_param {
773 	struct hugepage_info *hi;
774 	struct rte_memseg **ms;
775 	size_t page_sz;
776 	unsigned int segs_allocated;
777 	unsigned int n_segs;
778 	int socket;
779 	bool exact;
780 };
781 static int
782 alloc_seg_walk(const struct rte_memseg_list *msl, void *arg)
783 {
784 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
785 	struct alloc_walk_param *wa = arg;
786 	struct rte_memseg_list *cur_msl;
787 	size_t page_sz;
788 	int cur_idx, start_idx, j, dir_fd = -1;
789 	unsigned int msl_idx, need, i;
790 	const struct internal_config *internal_conf =
791 		eal_get_internal_configuration();
792 
793 	if (msl->page_sz != wa->page_sz)
794 		return 0;
795 	if (msl->socket_id != wa->socket)
796 		return 0;
797 
798 	page_sz = (size_t)msl->page_sz;
799 
800 	msl_idx = msl - mcfg->memsegs;
801 	cur_msl = &mcfg->memsegs[msl_idx];
802 
803 	need = wa->n_segs;
804 
805 	/* try finding space in memseg list */
806 	if (wa->exact) {
807 		/* if we require exact number of pages in a list, find them */
808 		cur_idx = rte_fbarray_find_next_n_free(&cur_msl->memseg_arr, 0,
809 				need);
810 		if (cur_idx < 0)
811 			return 0;
812 		start_idx = cur_idx;
813 	} else {
814 		int cur_len;
815 
816 		/* we don't require exact number of pages, so we're going to go
817 		 * for best-effort allocation. that means finding the biggest
818 		 * unused block, and going with that.
819 		 */
820 		cur_idx = rte_fbarray_find_biggest_free(&cur_msl->memseg_arr,
821 				0);
822 		if (cur_idx < 0)
823 			return 0;
824 		start_idx = cur_idx;
825 		/* adjust the size to possibly be smaller than original
826 		 * request, but do not allow it to be bigger.
827 		 */
828 		cur_len = rte_fbarray_find_contig_free(&cur_msl->memseg_arr,
829 				cur_idx);
830 		need = RTE_MIN(need, (unsigned int)cur_len);
831 	}
832 
833 	/* do not allow any page allocations during the time we're allocating,
834 	 * because file creation and locking operations are not atomic,
835 	 * and we might be the first or the last ones to use a particular page,
836 	 * so we need to ensure atomicity of every operation.
837 	 *
838 	 * during init, we already hold a write lock, so don't try to take out
839 	 * another one.
840 	 */
841 	if (wa->hi->lock_descriptor == -1 && !internal_conf->in_memory) {
842 		dir_fd = open(wa->hi->hugedir, O_RDONLY);
843 		if (dir_fd < 0) {
844 			RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
845 				__func__, wa->hi->hugedir, strerror(errno));
846 			return -1;
847 		}
848 		/* blocking writelock */
849 		if (flock(dir_fd, LOCK_EX)) {
850 			RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
851 				__func__, wa->hi->hugedir, strerror(errno));
852 			close(dir_fd);
853 			return -1;
854 		}
855 	}
856 
857 	for (i = 0; i < need; i++, cur_idx++) {
858 		struct rte_memseg *cur;
859 		void *map_addr;
860 
861 		cur = rte_fbarray_get(&cur_msl->memseg_arr, cur_idx);
862 		map_addr = RTE_PTR_ADD(cur_msl->base_va,
863 				cur_idx * page_sz);
864 
865 		if (alloc_seg(cur, map_addr, wa->socket, wa->hi,
866 				msl_idx, cur_idx)) {
867 			RTE_LOG(DEBUG, EAL, "attempted to allocate %i segments, but only %i were allocated\n",
868 				need, i);
869 
870 			/* if exact number wasn't requested, stop */
871 			if (!wa->exact)
872 				goto out;
873 
874 			/* clean up */
875 			for (j = start_idx; j < cur_idx; j++) {
876 				struct rte_memseg *tmp;
877 				struct rte_fbarray *arr =
878 						&cur_msl->memseg_arr;
879 
880 				tmp = rte_fbarray_get(arr, j);
881 				rte_fbarray_set_free(arr, j);
882 
883 				/* free_seg may attempt to create a file, which
884 				 * may fail.
885 				 */
886 				if (free_seg(tmp, wa->hi, msl_idx, j))
887 					RTE_LOG(DEBUG, EAL, "Cannot free page\n");
888 			}
889 			/* clear the list */
890 			if (wa->ms)
891 				memset(wa->ms, 0, sizeof(*wa->ms) * wa->n_segs);
892 
893 			if (dir_fd >= 0)
894 				close(dir_fd);
895 			return -1;
896 		}
897 		if (wa->ms)
898 			wa->ms[i] = cur;
899 
900 		rte_fbarray_set_used(&cur_msl->memseg_arr, cur_idx);
901 	}
902 out:
903 	wa->segs_allocated = i;
904 	if (i > 0)
905 		cur_msl->version++;
906 	if (dir_fd >= 0)
907 		close(dir_fd);
908 	/* if we didn't allocate any segments, move on to the next list */
909 	return i > 0;
910 }
911 
912 struct free_walk_param {
913 	struct hugepage_info *hi;
914 	struct rte_memseg *ms;
915 };
916 static int
917 free_seg_walk(const struct rte_memseg_list *msl, void *arg)
918 {
919 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
920 	struct rte_memseg_list *found_msl;
921 	struct free_walk_param *wa = arg;
922 	uintptr_t start_addr, end_addr;
923 	int msl_idx, seg_idx, ret, dir_fd = -1;
924 	const struct internal_config *internal_conf =
925 		eal_get_internal_configuration();
926 
927 	start_addr = (uintptr_t) msl->base_va;
928 	end_addr = start_addr + msl->len;
929 
930 	if ((uintptr_t)wa->ms->addr < start_addr ||
931 			(uintptr_t)wa->ms->addr >= end_addr)
932 		return 0;
933 
934 	msl_idx = msl - mcfg->memsegs;
935 	seg_idx = RTE_PTR_DIFF(wa->ms->addr, start_addr) / msl->page_sz;
936 
937 	/* msl is const */
938 	found_msl = &mcfg->memsegs[msl_idx];
939 
940 	/* do not allow any page allocations during the time we're freeing,
941 	 * because file creation and locking operations are not atomic,
942 	 * and we might be the first or the last ones to use a particular page,
943 	 * so we need to ensure atomicity of every operation.
944 	 *
945 	 * during init, we already hold a write lock, so don't try to take out
946 	 * another one.
947 	 */
948 	if (wa->hi->lock_descriptor == -1 && !internal_conf->in_memory) {
949 		dir_fd = open(wa->hi->hugedir, O_RDONLY);
950 		if (dir_fd < 0) {
951 			RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
952 				__func__, wa->hi->hugedir, strerror(errno));
953 			return -1;
954 		}
955 		/* blocking writelock */
956 		if (flock(dir_fd, LOCK_EX)) {
957 			RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
958 				__func__, wa->hi->hugedir, strerror(errno));
959 			close(dir_fd);
960 			return -1;
961 		}
962 	}
963 
964 	found_msl->version++;
965 
966 	rte_fbarray_set_free(&found_msl->memseg_arr, seg_idx);
967 
968 	ret = free_seg(wa->ms, wa->hi, msl_idx, seg_idx);
969 
970 	if (dir_fd >= 0)
971 		close(dir_fd);
972 
973 	if (ret < 0)
974 		return -1;
975 
976 	return 1;
977 }
978 
979 int
980 eal_memalloc_alloc_seg_bulk(struct rte_memseg **ms, int n_segs, size_t page_sz,
981 		int socket, bool exact)
982 {
983 	int i, ret = -1;
984 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
985 	bool have_numa = false;
986 	int oldpolicy;
987 	struct bitmask *oldmask;
988 #endif
989 	struct alloc_walk_param wa;
990 	struct hugepage_info *hi = NULL;
991 	struct internal_config *internal_conf =
992 		eal_get_internal_configuration();
993 
994 	memset(&wa, 0, sizeof(wa));
995 
996 	/* dynamic allocation not supported in legacy mode */
997 	if (internal_conf->legacy_mem)
998 		return -1;
999 
1000 	for (i = 0; i < (int) RTE_DIM(internal_conf->hugepage_info); i++) {
1001 		if (page_sz ==
1002 				internal_conf->hugepage_info[i].hugepage_sz) {
1003 			hi = &internal_conf->hugepage_info[i];
1004 			break;
1005 		}
1006 	}
1007 	if (!hi) {
1008 		RTE_LOG(ERR, EAL, "%s(): can't find relevant hugepage_info entry\n",
1009 			__func__);
1010 		return -1;
1011 	}
1012 
1013 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
1014 	if (check_numa()) {
1015 		oldmask = numa_allocate_nodemask();
1016 		prepare_numa(&oldpolicy, oldmask, socket);
1017 		have_numa = true;
1018 	}
1019 #endif
1020 
1021 	wa.exact = exact;
1022 	wa.hi = hi;
1023 	wa.ms = ms;
1024 	wa.n_segs = n_segs;
1025 	wa.page_sz = page_sz;
1026 	wa.socket = socket;
1027 	wa.segs_allocated = 0;
1028 
1029 	/* memalloc is locked, so it's safe to use thread-unsafe version */
1030 	ret = rte_memseg_list_walk_thread_unsafe(alloc_seg_walk, &wa);
1031 	if (ret == 0) {
1032 		RTE_LOG(ERR, EAL, "%s(): couldn't find suitable memseg_list\n",
1033 			__func__);
1034 		ret = -1;
1035 	} else if (ret > 0) {
1036 		ret = (int)wa.segs_allocated;
1037 	}
1038 
1039 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
1040 	if (have_numa)
1041 		restore_numa(&oldpolicy, oldmask);
1042 #endif
1043 	return ret;
1044 }
1045 
1046 struct rte_memseg *
1047 eal_memalloc_alloc_seg(size_t page_sz, int socket)
1048 {
1049 	struct rte_memseg *ms;
1050 	if (eal_memalloc_alloc_seg_bulk(&ms, 1, page_sz, socket, true) < 0)
1051 		return NULL;
1052 	/* return pointer to newly allocated memseg */
1053 	return ms;
1054 }
1055 
1056 int
1057 eal_memalloc_free_seg_bulk(struct rte_memseg **ms, int n_segs)
1058 {
1059 	int seg, ret = 0;
1060 	struct internal_config *internal_conf =
1061 		eal_get_internal_configuration();
1062 
1063 	/* dynamic free not supported in legacy mode */
1064 	if (internal_conf->legacy_mem)
1065 		return -1;
1066 
1067 	for (seg = 0; seg < n_segs; seg++) {
1068 		struct rte_memseg *cur = ms[seg];
1069 		struct hugepage_info *hi = NULL;
1070 		struct free_walk_param wa;
1071 		int i, walk_res;
1072 
1073 		/* if this page is marked as unfreeable, fail */
1074 		if (cur->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
1075 			RTE_LOG(DEBUG, EAL, "Page is not allowed to be freed\n");
1076 			ret = -1;
1077 			continue;
1078 		}
1079 
1080 		memset(&wa, 0, sizeof(wa));
1081 
1082 		for (i = 0; i < (int)RTE_DIM(internal_conf->hugepage_info);
1083 				i++) {
1084 			hi = &internal_conf->hugepage_info[i];
1085 			if (cur->hugepage_sz == hi->hugepage_sz)
1086 				break;
1087 		}
1088 		if (i == (int)RTE_DIM(internal_conf->hugepage_info)) {
1089 			RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
1090 			ret = -1;
1091 			continue;
1092 		}
1093 
1094 		wa.ms = cur;
1095 		wa.hi = hi;
1096 
1097 		/* memalloc is locked, so it's safe to use thread-unsafe version
1098 		 */
1099 		walk_res = rte_memseg_list_walk_thread_unsafe(free_seg_walk,
1100 				&wa);
1101 		if (walk_res == 1)
1102 			continue;
1103 		if (walk_res == 0)
1104 			RTE_LOG(ERR, EAL, "Couldn't find memseg list\n");
1105 		ret = -1;
1106 	}
1107 	return ret;
1108 }
1109 
1110 int
1111 eal_memalloc_free_seg(struct rte_memseg *ms)
1112 {
1113 	const struct internal_config *internal_conf =
1114 		eal_get_internal_configuration();
1115 
1116 	/* dynamic free not supported in legacy mode */
1117 	if (internal_conf->legacy_mem)
1118 		return -1;
1119 
1120 	return eal_memalloc_free_seg_bulk(&ms, 1);
1121 }
1122 
1123 static int
1124 sync_chunk(struct rte_memseg_list *primary_msl,
1125 		struct rte_memseg_list *local_msl, struct hugepage_info *hi,
1126 		unsigned int msl_idx, bool used, int start, int end)
1127 {
1128 	struct rte_fbarray *l_arr, *p_arr;
1129 	int i, ret, chunk_len, diff_len;
1130 
1131 	l_arr = &local_msl->memseg_arr;
1132 	p_arr = &primary_msl->memseg_arr;
1133 
1134 	/* we need to aggregate allocations/deallocations into bigger chunks,
1135 	 * as we don't want to spam the user with per-page callbacks.
1136 	 *
1137 	 * to avoid any potential issues, we also want to trigger
1138 	 * deallocation callbacks *before* we actually deallocate
1139 	 * memory, so that the user application could wrap up its use
1140 	 * before it goes away.
1141 	 */
1142 
1143 	chunk_len = end - start;
1144 
1145 	/* find how many contiguous pages we can map/unmap for this chunk */
1146 	diff_len = used ?
1147 			rte_fbarray_find_contig_free(l_arr, start) :
1148 			rte_fbarray_find_contig_used(l_arr, start);
1149 
1150 	/* has to be at least one page */
1151 	if (diff_len < 1)
1152 		return -1;
1153 
1154 	diff_len = RTE_MIN(chunk_len, diff_len);
1155 
1156 	/* if we are freeing memory, notify the application */
1157 	if (!used) {
1158 		struct rte_memseg *ms;
1159 		void *start_va;
1160 		size_t len, page_sz;
1161 
1162 		ms = rte_fbarray_get(l_arr, start);
1163 		start_va = ms->addr;
1164 		page_sz = (size_t)primary_msl->page_sz;
1165 		len = page_sz * diff_len;
1166 
1167 		eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
1168 				start_va, len);
1169 	}
1170 
1171 	for (i = 0; i < diff_len; i++) {
1172 		struct rte_memseg *p_ms, *l_ms;
1173 		int seg_idx = start + i;
1174 
1175 		l_ms = rte_fbarray_get(l_arr, seg_idx);
1176 		p_ms = rte_fbarray_get(p_arr, seg_idx);
1177 
1178 		if (l_ms == NULL || p_ms == NULL)
1179 			return -1;
1180 
1181 		if (used) {
1182 			ret = alloc_seg(l_ms, p_ms->addr,
1183 					p_ms->socket_id, hi,
1184 					msl_idx, seg_idx);
1185 			if (ret < 0)
1186 				return -1;
1187 			rte_fbarray_set_used(l_arr, seg_idx);
1188 		} else {
1189 			ret = free_seg(l_ms, hi, msl_idx, seg_idx);
1190 			rte_fbarray_set_free(l_arr, seg_idx);
1191 			if (ret < 0)
1192 				return -1;
1193 		}
1194 	}
1195 
1196 	/* if we just allocated memory, notify the application */
1197 	if (used) {
1198 		struct rte_memseg *ms;
1199 		void *start_va;
1200 		size_t len, page_sz;
1201 
1202 		ms = rte_fbarray_get(l_arr, start);
1203 		start_va = ms->addr;
1204 		page_sz = (size_t)primary_msl->page_sz;
1205 		len = page_sz * diff_len;
1206 
1207 		eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
1208 				start_va, len);
1209 	}
1210 
1211 	/* calculate how much we can advance until next chunk */
1212 	diff_len = used ?
1213 			rte_fbarray_find_contig_used(l_arr, start) :
1214 			rte_fbarray_find_contig_free(l_arr, start);
1215 	ret = RTE_MIN(chunk_len, diff_len);
1216 
1217 	return ret;
1218 }
1219 
1220 static int
1221 sync_status(struct rte_memseg_list *primary_msl,
1222 		struct rte_memseg_list *local_msl, struct hugepage_info *hi,
1223 		unsigned int msl_idx, bool used)
1224 {
1225 	struct rte_fbarray *l_arr, *p_arr;
1226 	int p_idx, l_chunk_len, p_chunk_len, ret;
1227 	int start, end;
1228 
1229 	/* this is a little bit tricky, but the basic idea is - walk both lists
1230 	 * and spot any places where there are discrepancies. walking both lists
1231 	 * and noting discrepancies in a single go is a hard problem, so we do
1232 	 * it in two passes - first we spot any places where allocated segments
1233 	 * mismatch (i.e. ensure that everything that's allocated in the primary
1234 	 * is also allocated in the secondary), and then we do it by looking at
1235 	 * free segments instead.
1236 	 *
1237 	 * we also need to aggregate changes into chunks, as we have to call
1238 	 * callbacks per allocation, not per page.
1239 	 */
1240 	l_arr = &local_msl->memseg_arr;
1241 	p_arr = &primary_msl->memseg_arr;
1242 
1243 	if (used)
1244 		p_idx = rte_fbarray_find_next_used(p_arr, 0);
1245 	else
1246 		p_idx = rte_fbarray_find_next_free(p_arr, 0);
1247 
1248 	while (p_idx >= 0) {
1249 		int next_chunk_search_idx;
1250 
1251 		if (used) {
1252 			p_chunk_len = rte_fbarray_find_contig_used(p_arr,
1253 					p_idx);
1254 			l_chunk_len = rte_fbarray_find_contig_used(l_arr,
1255 					p_idx);
1256 		} else {
1257 			p_chunk_len = rte_fbarray_find_contig_free(p_arr,
1258 					p_idx);
1259 			l_chunk_len = rte_fbarray_find_contig_free(l_arr,
1260 					p_idx);
1261 		}
1262 		/* best case scenario - no differences (or bigger, which will be
1263 		 * fixed during next iteration), look for next chunk
1264 		 */
1265 		if (l_chunk_len >= p_chunk_len) {
1266 			next_chunk_search_idx = p_idx + p_chunk_len;
1267 			goto next_chunk;
1268 		}
1269 
1270 		/* if both chunks start at the same point, skip parts we know
1271 		 * are identical, and sync the rest. each call to sync_chunk
1272 		 * will only sync contiguous segments, so we need to call this
1273 		 * until we are sure there are no more differences in this
1274 		 * chunk.
1275 		 */
1276 		start = p_idx + l_chunk_len;
1277 		end = p_idx + p_chunk_len;
1278 		do {
1279 			ret = sync_chunk(primary_msl, local_msl, hi, msl_idx,
1280 					used, start, end);
1281 			start += ret;
1282 		} while (start < end && ret >= 0);
1283 		/* if ret is negative, something went wrong */
1284 		if (ret < 0)
1285 			return -1;
1286 
1287 		next_chunk_search_idx = p_idx + p_chunk_len;
1288 next_chunk:
1289 		/* skip to end of this chunk */
1290 		if (used) {
1291 			p_idx = rte_fbarray_find_next_used(p_arr,
1292 					next_chunk_search_idx);
1293 		} else {
1294 			p_idx = rte_fbarray_find_next_free(p_arr,
1295 					next_chunk_search_idx);
1296 		}
1297 	}
1298 	return 0;
1299 }
1300 
1301 static int
1302 sync_existing(struct rte_memseg_list *primary_msl,
1303 		struct rte_memseg_list *local_msl, struct hugepage_info *hi,
1304 		unsigned int msl_idx)
1305 {
1306 	int ret, dir_fd;
1307 
1308 	/* do not allow any page allocations during the time we're allocating,
1309 	 * because file creation and locking operations are not atomic,
1310 	 * and we might be the first or the last ones to use a particular page,
1311 	 * so we need to ensure atomicity of every operation.
1312 	 */
1313 	dir_fd = open(hi->hugedir, O_RDONLY);
1314 	if (dir_fd < 0) {
1315 		RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", __func__,
1316 			hi->hugedir, strerror(errno));
1317 		return -1;
1318 	}
1319 	/* blocking writelock */
1320 	if (flock(dir_fd, LOCK_EX)) {
1321 		RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", __func__,
1322 			hi->hugedir, strerror(errno));
1323 		close(dir_fd);
1324 		return -1;
1325 	}
1326 
1327 	/* ensure all allocated space is the same in both lists */
1328 	ret = sync_status(primary_msl, local_msl, hi, msl_idx, true);
1329 	if (ret < 0)
1330 		goto fail;
1331 
1332 	/* ensure all unallocated space is the same in both lists */
1333 	ret = sync_status(primary_msl, local_msl, hi, msl_idx, false);
1334 	if (ret < 0)
1335 		goto fail;
1336 
1337 	/* update version number */
1338 	local_msl->version = primary_msl->version;
1339 
1340 	close(dir_fd);
1341 
1342 	return 0;
1343 fail:
1344 	close(dir_fd);
1345 	return -1;
1346 }
1347 
1348 static int
1349 sync_walk(const struct rte_memseg_list *msl, void *arg __rte_unused)
1350 {
1351 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1352 	struct rte_memseg_list *primary_msl, *local_msl;
1353 	struct hugepage_info *hi = NULL;
1354 	unsigned int i;
1355 	int msl_idx;
1356 	struct internal_config *internal_conf =
1357 		eal_get_internal_configuration();
1358 
1359 	if (msl->external)
1360 		return 0;
1361 
1362 	msl_idx = msl - mcfg->memsegs;
1363 	primary_msl = &mcfg->memsegs[msl_idx];
1364 	local_msl = &local_memsegs[msl_idx];
1365 
1366 	for (i = 0; i < RTE_DIM(internal_conf->hugepage_info); i++) {
1367 		uint64_t cur_sz =
1368 			internal_conf->hugepage_info[i].hugepage_sz;
1369 		uint64_t msl_sz = primary_msl->page_sz;
1370 		if (msl_sz == cur_sz) {
1371 			hi = &internal_conf->hugepage_info[i];
1372 			break;
1373 		}
1374 	}
1375 	if (!hi) {
1376 		RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
1377 		return -1;
1378 	}
1379 
1380 	/* if versions don't match, synchronize everything */
1381 	if (local_msl->version != primary_msl->version &&
1382 			sync_existing(primary_msl, local_msl, hi, msl_idx))
1383 		return -1;
1384 	return 0;
1385 }
1386 
1387 
1388 int
1389 eal_memalloc_sync_with_primary(void)
1390 {
1391 	/* nothing to be done in primary */
1392 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
1393 		return 0;
1394 
1395 	/* memalloc is locked, so it's safe to call thread-unsafe version */
1396 	if (rte_memseg_list_walk_thread_unsafe(sync_walk, NULL))
1397 		return -1;
1398 	return 0;
1399 }
1400 
1401 static int
1402 secondary_msl_create_walk(const struct rte_memseg_list *msl,
1403 		void *arg __rte_unused)
1404 {
1405 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1406 	struct rte_memseg_list *primary_msl, *local_msl;
1407 	char name[PATH_MAX];
1408 	int msl_idx, ret;
1409 
1410 	if (msl->external)
1411 		return 0;
1412 
1413 	msl_idx = msl - mcfg->memsegs;
1414 	primary_msl = &mcfg->memsegs[msl_idx];
1415 	local_msl = &local_memsegs[msl_idx];
1416 
1417 	/* create distinct fbarrays for each secondary */
1418 	snprintf(name, RTE_FBARRAY_NAME_LEN, "%s_%i",
1419 		primary_msl->memseg_arr.name, getpid());
1420 
1421 	ret = rte_fbarray_init(&local_msl->memseg_arr, name,
1422 		primary_msl->memseg_arr.len,
1423 		primary_msl->memseg_arr.elt_sz);
1424 	if (ret < 0) {
1425 		RTE_LOG(ERR, EAL, "Cannot initialize local memory map\n");
1426 		return -1;
1427 	}
1428 	local_msl->base_va = primary_msl->base_va;
1429 	local_msl->len = primary_msl->len;
1430 
1431 	return 0;
1432 }
1433 
1434 static int
1435 secondary_msl_destroy_walk(const struct rte_memseg_list *msl,
1436 		void *arg __rte_unused)
1437 {
1438 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1439 	struct rte_memseg_list *local_msl;
1440 	int msl_idx, ret;
1441 
1442 	if (msl->external)
1443 		return 0;
1444 
1445 	msl_idx = msl - mcfg->memsegs;
1446 	local_msl = &local_memsegs[msl_idx];
1447 
1448 	ret = rte_fbarray_destroy(&local_msl->memseg_arr);
1449 	if (ret < 0) {
1450 		RTE_LOG(ERR, EAL, "Cannot destroy local memory map\n");
1451 		return -1;
1452 	}
1453 	local_msl->base_va = NULL;
1454 	local_msl->len = 0;
1455 
1456 	return 0;
1457 }
1458 
1459 static int
1460 alloc_list(int list_idx, int len)
1461 {
1462 	int *data;
1463 	int i;
1464 	const struct internal_config *internal_conf =
1465 		eal_get_internal_configuration();
1466 
1467 	/* single-file segments mode does not need fd list */
1468 	if (!internal_conf->single_file_segments) {
1469 		/* ensure we have space to store fd per each possible segment */
1470 		data = malloc(sizeof(int) * len);
1471 		if (data == NULL) {
1472 			RTE_LOG(ERR, EAL, "Unable to allocate space for file descriptors\n");
1473 			return -1;
1474 		}
1475 		/* set all fd's as invalid */
1476 		for (i = 0; i < len; i++)
1477 			data[i] = -1;
1478 		fd_list[list_idx].fds = data;
1479 		fd_list[list_idx].len = len;
1480 	} else {
1481 		fd_list[list_idx].fds = NULL;
1482 		fd_list[list_idx].len = 0;
1483 	}
1484 
1485 	fd_list[list_idx].count = 0;
1486 	fd_list[list_idx].memseg_list_fd = -1;
1487 
1488 	return 0;
1489 }
1490 
1491 static int
1492 destroy_list(int list_idx)
1493 {
1494 	const struct internal_config *internal_conf =
1495 			eal_get_internal_configuration();
1496 
1497 	/* single-file segments mode does not need fd list */
1498 	if (!internal_conf->single_file_segments) {
1499 		int *fds = fd_list[list_idx].fds;
1500 		int i;
1501 		/* go through each fd and ensure it's closed */
1502 		for (i = 0; i < fd_list[list_idx].len; i++) {
1503 			if (fds[i] >= 0) {
1504 				close(fds[i]);
1505 				fds[i] = -1;
1506 			}
1507 		}
1508 		free(fds);
1509 		fd_list[list_idx].fds = NULL;
1510 		fd_list[list_idx].len = 0;
1511 	} else if (fd_list[list_idx].memseg_list_fd >= 0) {
1512 		close(fd_list[list_idx].memseg_list_fd);
1513 		fd_list[list_idx].count = 0;
1514 		fd_list[list_idx].memseg_list_fd = -1;
1515 	}
1516 	return 0;
1517 }
1518 
1519 static int
1520 fd_list_create_walk(const struct rte_memseg_list *msl,
1521 		void *arg __rte_unused)
1522 {
1523 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1524 	unsigned int len;
1525 	int msl_idx;
1526 
1527 	if (msl->external)
1528 		return 0;
1529 
1530 	msl_idx = msl - mcfg->memsegs;
1531 	len = msl->memseg_arr.len;
1532 
1533 	return alloc_list(msl_idx, len);
1534 }
1535 
1536 static int
1537 fd_list_destroy_walk(const struct rte_memseg_list *msl, void *arg __rte_unused)
1538 {
1539 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1540 	int msl_idx;
1541 
1542 	if (msl->external)
1543 		return 0;
1544 
1545 	msl_idx = msl - mcfg->memsegs;
1546 
1547 	return destroy_list(msl_idx);
1548 }
1549 
1550 int
1551 eal_memalloc_set_seg_fd(int list_idx, int seg_idx, int fd)
1552 {
1553 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1554 	const struct internal_config *internal_conf =
1555 		eal_get_internal_configuration();
1556 
1557 	/* single file segments mode doesn't support individual segment fd's */
1558 	if (internal_conf->single_file_segments)
1559 		return -ENOTSUP;
1560 
1561 	/* if list is not allocated, allocate it */
1562 	if (fd_list[list_idx].len == 0) {
1563 		int len = mcfg->memsegs[list_idx].memseg_arr.len;
1564 
1565 		if (alloc_list(list_idx, len) < 0)
1566 			return -ENOMEM;
1567 	}
1568 	fd_list[list_idx].fds[seg_idx] = fd;
1569 
1570 	return 0;
1571 }
1572 
1573 int
1574 eal_memalloc_set_seg_list_fd(int list_idx, int fd)
1575 {
1576 	const struct internal_config *internal_conf =
1577 		eal_get_internal_configuration();
1578 
1579 	/* non-single file segment mode doesn't support segment list fd's */
1580 	if (!internal_conf->single_file_segments)
1581 		return -ENOTSUP;
1582 
1583 	fd_list[list_idx].memseg_list_fd = fd;
1584 
1585 	return 0;
1586 }
1587 
1588 int
1589 eal_memalloc_get_seg_fd(int list_idx, int seg_idx)
1590 {
1591 	int fd;
1592 	const struct internal_config *internal_conf =
1593 		eal_get_internal_configuration();
1594 
1595 	if (internal_conf->in_memory || internal_conf->no_hugetlbfs) {
1596 #ifndef MEMFD_SUPPORTED
1597 		/* in in-memory or no-huge mode, we rely on memfd support */
1598 		return -ENOTSUP;
1599 #endif
1600 		/* memfd supported, but hugetlbfs memfd may not be */
1601 		if (!internal_conf->no_hugetlbfs && !memfd_create_supported)
1602 			return -ENOTSUP;
1603 	}
1604 
1605 	if (internal_conf->single_file_segments) {
1606 		fd = fd_list[list_idx].memseg_list_fd;
1607 	} else if (fd_list[list_idx].len == 0) {
1608 		/* list not initialized */
1609 		fd = -1;
1610 	} else {
1611 		fd = fd_list[list_idx].fds[seg_idx];
1612 	}
1613 	if (fd < 0)
1614 		return -ENODEV;
1615 	return fd;
1616 }
1617 
1618 static int
1619 test_memfd_create(void)
1620 {
1621 #ifdef MEMFD_SUPPORTED
1622 	const struct internal_config *internal_conf =
1623 		eal_get_internal_configuration();
1624 	unsigned int i;
1625 	for (i = 0; i < internal_conf->num_hugepage_sizes; i++) {
1626 		uint64_t pagesz = internal_conf->hugepage_info[i].hugepage_sz;
1627 		int pagesz_flag = pagesz_flags(pagesz);
1628 		int flags;
1629 
1630 		flags = pagesz_flag | RTE_MFD_HUGETLB;
1631 		int fd = memfd_create("test", flags);
1632 		if (fd < 0) {
1633 			/* we failed - let memalloc know this isn't working */
1634 			if (errno == EINVAL) {
1635 				memfd_create_supported = 0;
1636 				return 0; /* not supported */
1637 			}
1638 
1639 			/* we got other error - something's wrong */
1640 			return -1; /* error */
1641 		}
1642 		close(fd);
1643 		return 1; /* supported */
1644 	}
1645 #endif
1646 	return 0; /* not supported */
1647 }
1648 
1649 int
1650 eal_memalloc_get_seg_fd_offset(int list_idx, int seg_idx, size_t *offset)
1651 {
1652 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1653 	const struct internal_config *internal_conf =
1654 		eal_get_internal_configuration();
1655 
1656 	if (internal_conf->in_memory || internal_conf->no_hugetlbfs) {
1657 #ifndef MEMFD_SUPPORTED
1658 		/* in in-memory or no-huge mode, we rely on memfd support */
1659 		return -ENOTSUP;
1660 #endif
1661 		/* memfd supported, but hugetlbfs memfd may not be */
1662 		if (!internal_conf->no_hugetlbfs && !memfd_create_supported)
1663 			return -ENOTSUP;
1664 	}
1665 
1666 	if (internal_conf->single_file_segments) {
1667 		size_t pgsz = mcfg->memsegs[list_idx].page_sz;
1668 
1669 		/* segment not active? */
1670 		if (fd_list[list_idx].memseg_list_fd < 0)
1671 			return -ENOENT;
1672 		*offset = pgsz * seg_idx;
1673 	} else {
1674 		/* fd_list not initialized? */
1675 		if (fd_list[list_idx].len == 0)
1676 			return -ENODEV;
1677 
1678 		/* segment not active? */
1679 		if (fd_list[list_idx].fds[seg_idx] < 0)
1680 			return -ENOENT;
1681 		*offset = 0;
1682 	}
1683 	return 0;
1684 }
1685 
1686 int
1687 eal_memalloc_cleanup(void)
1688 {
1689 	/* close all remaining fd's - these are per-process, so it's safe */
1690 	if (rte_memseg_list_walk_thread_unsafe(fd_list_destroy_walk, NULL))
1691 		return -1;
1692 
1693 	/* destroy the shadow page table if we're a secondary process */
1694 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
1695 		return 0;
1696 
1697 	if (rte_memseg_list_walk_thread_unsafe(secondary_msl_destroy_walk,
1698 			NULL))
1699 		return -1;
1700 
1701 	return 0;
1702 }
1703 
1704 int
1705 eal_memalloc_init(void)
1706 {
1707 	const struct internal_config *internal_conf =
1708 		eal_get_internal_configuration();
1709 
1710 	if (rte_eal_process_type() == RTE_PROC_SECONDARY)
1711 		if (rte_memseg_list_walk(secondary_msl_create_walk, NULL) < 0)
1712 			return -1;
1713 	if (rte_eal_process_type() == RTE_PROC_PRIMARY &&
1714 			internal_conf->in_memory) {
1715 		int mfd_res = test_memfd_create();
1716 
1717 		if (mfd_res < 0) {
1718 			RTE_LOG(ERR, EAL, "Unable to check if memfd is supported\n");
1719 			return -1;
1720 		}
1721 		if (mfd_res == 1)
1722 			RTE_LOG(DEBUG, EAL, "Using memfd for anonymous memory\n");
1723 		else
1724 			RTE_LOG(INFO, EAL, "Using memfd is not supported, falling back to anonymous hugepages\n");
1725 
1726 		/* we only support single-file segments mode with in-memory mode
1727 		 * if we support hugetlbfs with memfd_create. this code will
1728 		 * test if we do.
1729 		 */
1730 		if (internal_conf->single_file_segments &&
1731 				mfd_res != 1) {
1732 			RTE_LOG(ERR, EAL, "Single-file segments mode cannot be used without memfd support\n");
1733 			return -1;
1734 		}
1735 		/* this cannot ever happen but better safe than sorry */
1736 		if (!anonymous_hugepages_supported) {
1737 			RTE_LOG(ERR, EAL, "Using anonymous memory is not supported\n");
1738 			return -1;
1739 		}
1740 	}
1741 
1742 	/* initialize all of the fd lists */
1743 	if (rte_memseg_list_walk(fd_list_create_walk, NULL))
1744 		return -1;
1745 	return 0;
1746 }
1747