1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2019 Intel Corporation 3 */ 4 5 #ifndef _RTE_COMMON_H_ 6 #define _RTE_COMMON_H_ 7 8 /** 9 * @file 10 * 11 * Generic, commonly-used macro and inline function definitions 12 * for DPDK. 13 */ 14 15 #ifdef __cplusplus 16 extern "C" { 17 #endif 18 19 #include <stdint.h> 20 #include <stdlib.h> 21 #include <ctype.h> 22 #include <errno.h> 23 #include <limits.h> 24 25 #include <rte_config.h> 26 27 /* OS specific include */ 28 #include <rte_os.h> 29 30 #ifndef typeof 31 #define typeof __typeof__ 32 #endif 33 34 #ifndef __cplusplus 35 #ifndef asm 36 #define asm __asm__ 37 #endif 38 #endif 39 40 /** C extension macro for environments lacking C11 features. */ 41 #if !defined(__STDC_VERSION__) || __STDC_VERSION__ < 201112L 42 #define RTE_STD_C11 __extension__ 43 #else 44 #define RTE_STD_C11 45 #endif 46 47 /* 48 * RTE_TOOLCHAIN_GCC is defined if the target is built with GCC, 49 * while a host application (like pmdinfogen) may have another compiler. 50 * RTE_CC_IS_GNU is true if the file is compiled with GCC, 51 * no matter it is a target or host application. 52 */ 53 #define RTE_CC_IS_GNU 0 54 #if defined __clang__ 55 #define RTE_CC_CLANG 56 #elif defined __INTEL_COMPILER 57 #define RTE_CC_ICC 58 #elif defined __GNUC__ 59 #define RTE_CC_GCC 60 #undef RTE_CC_IS_GNU 61 #define RTE_CC_IS_GNU 1 62 #endif 63 #if RTE_CC_IS_GNU 64 #define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + \ 65 __GNUC_PATCHLEVEL__) 66 #endif 67 68 /** 69 * Force alignment 70 */ 71 #define __rte_aligned(a) __attribute__((__aligned__(a))) 72 73 #ifdef RTE_ARCH_STRICT_ALIGN 74 typedef uint64_t unaligned_uint64_t __rte_aligned(1); 75 typedef uint32_t unaligned_uint32_t __rte_aligned(1); 76 typedef uint16_t unaligned_uint16_t __rte_aligned(1); 77 #else 78 typedef uint64_t unaligned_uint64_t; 79 typedef uint32_t unaligned_uint32_t; 80 typedef uint16_t unaligned_uint16_t; 81 #endif 82 83 /** 84 * Force a structure to be packed 85 */ 86 #define __rte_packed __attribute__((__packed__)) 87 88 /******* Macro to mark functions and fields scheduled for removal *****/ 89 #define __rte_deprecated __attribute__((__deprecated__)) 90 #define __rte_deprecated_msg(msg) __attribute__((__deprecated__(msg))) 91 92 /** 93 * Macro to mark macros and defines scheduled for removal 94 */ 95 #if defined(RTE_CC_GCC) || defined(RTE_CC_CLANG) 96 #define RTE_PRAGMA(x) _Pragma(#x) 97 #define RTE_PRAGMA_WARNING(w) RTE_PRAGMA(GCC warning #w) 98 #define RTE_DEPRECATED(x) RTE_PRAGMA_WARNING(#x is deprecated) 99 #else 100 #define RTE_DEPRECATED(x) 101 #endif 102 103 /** 104 * Mark a function or variable to a weak reference. 105 */ 106 #define __rte_weak __attribute__((__weak__)) 107 108 /** 109 * Force symbol to be generated even if it appears to be unused. 110 */ 111 #define __rte_used __attribute__((used)) 112 113 /*********** Macros to eliminate unused variable warnings ********/ 114 115 /** 116 * short definition to mark a function parameter unused 117 */ 118 #define __rte_unused __attribute__((__unused__)) 119 120 /** 121 * Mark pointer as restricted with regard to pointer aliasing. 122 */ 123 #if !defined(__STDC_VERSION__) || __STDC_VERSION__ < 199901L 124 #define __rte_restrict __restrict 125 #else 126 #define __rte_restrict restrict 127 #endif 128 129 /** 130 * definition to mark a variable or function parameter as used so 131 * as to avoid a compiler warning 132 */ 133 #define RTE_SET_USED(x) (void)(x) 134 135 /** 136 * Check format string and its arguments at compile-time. 137 * 138 * GCC on Windows assumes MS-specific format string by default, 139 * even if the underlying stdio implementation is ANSI-compliant, 140 * so this must be overridden. 141 */ 142 #if RTE_CC_IS_GNU 143 #define __rte_format_printf(format_index, first_arg) \ 144 __attribute__((format(gnu_printf, format_index, first_arg))) 145 #else 146 #define __rte_format_printf(format_index, first_arg) \ 147 __attribute__((format(printf, format_index, first_arg))) 148 #endif 149 150 /** 151 * Tells compiler that the function returns a value that points to 152 * memory, where the size is given by the one or two arguments. 153 * Used by compiler to validate object size. 154 */ 155 #if defined(RTE_CC_GCC) || defined(RTE_CC_CLANG) 156 #define __rte_alloc_size(...) \ 157 __attribute__((alloc_size(__VA_ARGS__))) 158 #else 159 #define __rte_alloc_size(...) 160 #endif 161 162 #define RTE_PRIORITY_LOG 101 163 #define RTE_PRIORITY_BUS 110 164 #define RTE_PRIORITY_CLASS 120 165 #define RTE_PRIORITY_LAST 65535 166 167 #define RTE_PRIO(prio) \ 168 RTE_PRIORITY_ ## prio 169 170 /** 171 * Run function before main() with high priority. 172 * 173 * @param func 174 * Constructor function. 175 * @param prio 176 * Priority number must be above 100. 177 * Lowest number is the first to run. 178 */ 179 #ifndef RTE_INIT_PRIO /* Allow to override from EAL */ 180 #define RTE_INIT_PRIO(func, prio) \ 181 static void __attribute__((constructor(RTE_PRIO(prio)), used)) func(void) 182 #endif 183 184 /** 185 * Run function before main() with low priority. 186 * 187 * The constructor will be run after prioritized constructors. 188 * 189 * @param func 190 * Constructor function. 191 */ 192 #define RTE_INIT(func) \ 193 RTE_INIT_PRIO(func, LAST) 194 195 /** 196 * Run after main() with low priority. 197 * 198 * @param func 199 * Destructor function name. 200 * @param prio 201 * Priority number must be above 100. 202 * Lowest number is the last to run. 203 */ 204 #ifndef RTE_FINI_PRIO /* Allow to override from EAL */ 205 #define RTE_FINI_PRIO(func, prio) \ 206 static void __attribute__((destructor(RTE_PRIO(prio)), used)) func(void) 207 #endif 208 209 /** 210 * Run after main() with high priority. 211 * 212 * The destructor will be run *before* prioritized destructors. 213 * 214 * @param func 215 * Destructor function name. 216 */ 217 #define RTE_FINI(func) \ 218 RTE_FINI_PRIO(func, LAST) 219 220 /** 221 * Hint never returning function 222 */ 223 #define __rte_noreturn __attribute__((noreturn)) 224 225 /** 226 * Force a function to be inlined 227 */ 228 #define __rte_always_inline inline __attribute__((always_inline)) 229 230 /** 231 * Force a function to be noinlined 232 */ 233 #define __rte_noinline __attribute__((noinline)) 234 235 /** 236 * Hint function in the hot path 237 */ 238 #define __rte_hot __attribute__((hot)) 239 240 /** 241 * Hint function in the cold path 242 */ 243 #define __rte_cold __attribute__((cold)) 244 245 /*********** Macros for pointer arithmetic ********/ 246 247 /** 248 * add a byte-value offset to a pointer 249 */ 250 #define RTE_PTR_ADD(ptr, x) ((void*)((uintptr_t)(ptr) + (x))) 251 252 /** 253 * subtract a byte-value offset from a pointer 254 */ 255 #define RTE_PTR_SUB(ptr, x) ((void*)((uintptr_t)ptr - (x))) 256 257 /** 258 * get the difference between two pointer values, i.e. how far apart 259 * in bytes are the locations they point two. It is assumed that 260 * ptr1 is greater than ptr2. 261 */ 262 #define RTE_PTR_DIFF(ptr1, ptr2) ((uintptr_t)(ptr1) - (uintptr_t)(ptr2)) 263 264 /** 265 * Workaround to cast a const field of a structure to non-const type. 266 */ 267 #define RTE_CAST_FIELD(var, field, type) \ 268 (*(type *)((uintptr_t)(var) + offsetof(typeof(*(var)), field))) 269 270 /*********** Macros/static functions for doing alignment ********/ 271 272 273 /** 274 * Macro to align a pointer to a given power-of-two. The resultant 275 * pointer will be a pointer of the same type as the first parameter, and 276 * point to an address no higher than the first parameter. Second parameter 277 * must be a power-of-two value. 278 */ 279 #define RTE_PTR_ALIGN_FLOOR(ptr, align) \ 280 ((typeof(ptr))RTE_ALIGN_FLOOR((uintptr_t)ptr, align)) 281 282 /** 283 * Macro to align a value to a given power-of-two. The resultant value 284 * will be of the same type as the first parameter, and will be no 285 * bigger than the first parameter. Second parameter must be a 286 * power-of-two value. 287 */ 288 #define RTE_ALIGN_FLOOR(val, align) \ 289 (typeof(val))((val) & (~((typeof(val))((align) - 1)))) 290 291 /** 292 * Macro to align a pointer to a given power-of-two. The resultant 293 * pointer will be a pointer of the same type as the first parameter, and 294 * point to an address no lower than the first parameter. Second parameter 295 * must be a power-of-two value. 296 */ 297 #define RTE_PTR_ALIGN_CEIL(ptr, align) \ 298 RTE_PTR_ALIGN_FLOOR((typeof(ptr))RTE_PTR_ADD(ptr, (align) - 1), align) 299 300 /** 301 * Macro to align a value to a given power-of-two. The resultant value 302 * will be of the same type as the first parameter, and will be no lower 303 * than the first parameter. Second parameter must be a power-of-two 304 * value. 305 */ 306 #define RTE_ALIGN_CEIL(val, align) \ 307 RTE_ALIGN_FLOOR(((val) + ((typeof(val)) (align) - 1)), align) 308 309 /** 310 * Macro to align a pointer to a given power-of-two. The resultant 311 * pointer will be a pointer of the same type as the first parameter, and 312 * point to an address no lower than the first parameter. Second parameter 313 * must be a power-of-two value. 314 * This function is the same as RTE_PTR_ALIGN_CEIL 315 */ 316 #define RTE_PTR_ALIGN(ptr, align) RTE_PTR_ALIGN_CEIL(ptr, align) 317 318 /** 319 * Macro to align a value to a given power-of-two. The resultant 320 * value will be of the same type as the first parameter, and 321 * will be no lower than the first parameter. Second parameter 322 * must be a power-of-two value. 323 * This function is the same as RTE_ALIGN_CEIL 324 */ 325 #define RTE_ALIGN(val, align) RTE_ALIGN_CEIL(val, align) 326 327 /** 328 * Macro to align a value to the multiple of given value. The resultant 329 * value will be of the same type as the first parameter and will be no lower 330 * than the first parameter. 331 */ 332 #define RTE_ALIGN_MUL_CEIL(v, mul) \ 333 ((((v) + (typeof(v))(mul) - 1) / ((typeof(v))(mul))) * (typeof(v))(mul)) 334 335 /** 336 * Macro to align a value to the multiple of given value. The resultant 337 * value will be of the same type as the first parameter and will be no higher 338 * than the first parameter. 339 */ 340 #define RTE_ALIGN_MUL_FLOOR(v, mul) \ 341 (((v) / ((typeof(v))(mul))) * (typeof(v))(mul)) 342 343 /** 344 * Macro to align value to the nearest multiple of the given value. 345 * The resultant value might be greater than or less than the first parameter 346 * whichever difference is the lowest. 347 */ 348 #define RTE_ALIGN_MUL_NEAR(v, mul) \ 349 ({ \ 350 typeof(v) ceil = RTE_ALIGN_MUL_CEIL(v, mul); \ 351 typeof(v) floor = RTE_ALIGN_MUL_FLOOR(v, mul); \ 352 (ceil - (v)) > ((v) - floor) ? floor : ceil; \ 353 }) 354 355 /** 356 * Checks if a pointer is aligned to a given power-of-two value 357 * 358 * @param ptr 359 * The pointer whose alignment is to be checked 360 * @param align 361 * The power-of-two value to which the ptr should be aligned 362 * 363 * @return 364 * True(1) where the pointer is correctly aligned, false(0) otherwise 365 */ 366 static inline int 367 rte_is_aligned(void *ptr, unsigned align) 368 { 369 return RTE_PTR_ALIGN(ptr, align) == ptr; 370 } 371 372 /*********** Macros for compile type checks ********/ 373 374 /** 375 * Triggers an error at compilation time if the condition is true. 376 */ 377 #define RTE_BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)])) 378 379 /*********** Cache line related macros ********/ 380 381 /** Cache line mask. */ 382 #define RTE_CACHE_LINE_MASK (RTE_CACHE_LINE_SIZE-1) 383 384 /** Return the first cache-aligned value greater or equal to size. */ 385 #define RTE_CACHE_LINE_ROUNDUP(size) \ 386 (RTE_CACHE_LINE_SIZE * ((size + RTE_CACHE_LINE_SIZE - 1) / \ 387 RTE_CACHE_LINE_SIZE)) 388 389 /** Cache line size in terms of log2 */ 390 #if RTE_CACHE_LINE_SIZE == 64 391 #define RTE_CACHE_LINE_SIZE_LOG2 6 392 #elif RTE_CACHE_LINE_SIZE == 128 393 #define RTE_CACHE_LINE_SIZE_LOG2 7 394 #else 395 #error "Unsupported cache line size" 396 #endif 397 398 /** Minimum Cache line size. */ 399 #define RTE_CACHE_LINE_MIN_SIZE 64 400 401 /** Force alignment to cache line. */ 402 #define __rte_cache_aligned __rte_aligned(RTE_CACHE_LINE_SIZE) 403 404 /** Force minimum cache line alignment. */ 405 #define __rte_cache_min_aligned __rte_aligned(RTE_CACHE_LINE_MIN_SIZE) 406 407 /*********** PA/IOVA type definitions ********/ 408 409 /** Physical address */ 410 typedef uint64_t phys_addr_t; 411 #define RTE_BAD_PHYS_ADDR ((phys_addr_t)-1) 412 413 /** 414 * IO virtual address type. 415 * When the physical addressing mode (IOVA as PA) is in use, 416 * the translation from an IO virtual address (IOVA) to a physical address 417 * is a direct mapping, i.e. the same value. 418 * Otherwise, in virtual mode (IOVA as VA), an IOMMU may do the translation. 419 */ 420 typedef uint64_t rte_iova_t; 421 #define RTE_BAD_IOVA ((rte_iova_t)-1) 422 423 /*********** Structure alignment markers ********/ 424 425 /** Generic marker for any place in a structure. */ 426 __extension__ typedef void *RTE_MARKER[0]; 427 /** Marker for 1B alignment in a structure. */ 428 __extension__ typedef uint8_t RTE_MARKER8[0]; 429 /** Marker for 2B alignment in a structure. */ 430 __extension__ typedef uint16_t RTE_MARKER16[0]; 431 /** Marker for 4B alignment in a structure. */ 432 __extension__ typedef uint32_t RTE_MARKER32[0]; 433 /** Marker for 8B alignment in a structure. */ 434 __extension__ typedef uint64_t RTE_MARKER64[0]; 435 436 /** 437 * Combines 32b inputs most significant set bits into the least 438 * significant bits to construct a value with the same MSBs as x 439 * but all 1's under it. 440 * 441 * @param x 442 * The integer whose MSBs need to be combined with its LSBs 443 * @return 444 * The combined value. 445 */ 446 static inline uint32_t 447 rte_combine32ms1b(uint32_t x) 448 { 449 x |= x >> 1; 450 x |= x >> 2; 451 x |= x >> 4; 452 x |= x >> 8; 453 x |= x >> 16; 454 455 return x; 456 } 457 458 /** 459 * Combines 64b inputs most significant set bits into the least 460 * significant bits to construct a value with the same MSBs as x 461 * but all 1's under it. 462 * 463 * @param v 464 * The integer whose MSBs need to be combined with its LSBs 465 * @return 466 * The combined value. 467 */ 468 static inline uint64_t 469 rte_combine64ms1b(uint64_t v) 470 { 471 v |= v >> 1; 472 v |= v >> 2; 473 v |= v >> 4; 474 v |= v >> 8; 475 v |= v >> 16; 476 v |= v >> 32; 477 478 return v; 479 } 480 481 /*********** Macros to work with powers of 2 ********/ 482 483 /** 484 * Macro to return 1 if n is a power of 2, 0 otherwise 485 */ 486 #define RTE_IS_POWER_OF_2(n) ((n) && !(((n) - 1) & (n))) 487 488 /** 489 * Returns true if n is a power of 2 490 * @param n 491 * Number to check 492 * @return 1 if true, 0 otherwise 493 */ 494 static inline int 495 rte_is_power_of_2(uint32_t n) 496 { 497 return n && !(n & (n - 1)); 498 } 499 500 /** 501 * Aligns input parameter to the next power of 2 502 * 503 * @param x 504 * The integer value to align 505 * 506 * @return 507 * Input parameter aligned to the next power of 2 508 */ 509 static inline uint32_t 510 rte_align32pow2(uint32_t x) 511 { 512 x--; 513 x = rte_combine32ms1b(x); 514 515 return x + 1; 516 } 517 518 /** 519 * Aligns input parameter to the previous power of 2 520 * 521 * @param x 522 * The integer value to align 523 * 524 * @return 525 * Input parameter aligned to the previous power of 2 526 */ 527 static inline uint32_t 528 rte_align32prevpow2(uint32_t x) 529 { 530 x = rte_combine32ms1b(x); 531 532 return x - (x >> 1); 533 } 534 535 /** 536 * Aligns 64b input parameter to the next power of 2 537 * 538 * @param v 539 * The 64b value to align 540 * 541 * @return 542 * Input parameter aligned to the next power of 2 543 */ 544 static inline uint64_t 545 rte_align64pow2(uint64_t v) 546 { 547 v--; 548 v = rte_combine64ms1b(v); 549 550 return v + 1; 551 } 552 553 /** 554 * Aligns 64b input parameter to the previous power of 2 555 * 556 * @param v 557 * The 64b value to align 558 * 559 * @return 560 * Input parameter aligned to the previous power of 2 561 */ 562 static inline uint64_t 563 rte_align64prevpow2(uint64_t v) 564 { 565 v = rte_combine64ms1b(v); 566 567 return v - (v >> 1); 568 } 569 570 /*********** Macros for calculating min and max **********/ 571 572 /** 573 * Macro to return the minimum of two numbers 574 */ 575 #define RTE_MIN(a, b) \ 576 __extension__ ({ \ 577 typeof (a) _a = (a); \ 578 typeof (b) _b = (b); \ 579 _a < _b ? _a : _b; \ 580 }) 581 582 /** 583 * Macro to return the maximum of two numbers 584 */ 585 #define RTE_MAX(a, b) \ 586 __extension__ ({ \ 587 typeof (a) _a = (a); \ 588 typeof (b) _b = (b); \ 589 _a > _b ? _a : _b; \ 590 }) 591 592 /*********** Other general functions / macros ********/ 593 594 /** 595 * Searches the input parameter for the least significant set bit 596 * (starting from zero). 597 * If a least significant 1 bit is found, its bit index is returned. 598 * If the content of the input parameter is zero, then the content of the return 599 * value is undefined. 600 * @param v 601 * input parameter, should not be zero. 602 * @return 603 * least significant set bit in the input parameter. 604 */ 605 static inline uint32_t 606 rte_bsf32(uint32_t v) 607 { 608 return (uint32_t)__builtin_ctz(v); 609 } 610 611 /** 612 * Searches the input parameter for the least significant set bit 613 * (starting from zero). Safe version (checks for input parameter being zero). 614 * 615 * @warning ``pos`` must be a valid pointer. It is not checked! 616 * 617 * @param v 618 * The input parameter. 619 * @param pos 620 * If ``v`` was not 0, this value will contain position of least significant 621 * bit within the input parameter. 622 * @return 623 * Returns 0 if ``v`` was 0, otherwise returns 1. 624 */ 625 static inline int 626 rte_bsf32_safe(uint32_t v, uint32_t *pos) 627 { 628 if (v == 0) 629 return 0; 630 631 *pos = rte_bsf32(v); 632 return 1; 633 } 634 635 /** 636 * Return the rounded-up log2 of a integer. 637 * 638 * @note Contrary to the logarithm mathematical operation, 639 * rte_log2_u32(0) == 0 and not -inf. 640 * 641 * @param v 642 * The input parameter. 643 * @return 644 * The rounded-up log2 of the input, or 0 if the input is 0. 645 */ 646 static inline uint32_t 647 rte_log2_u32(uint32_t v) 648 { 649 if (v == 0) 650 return 0; 651 v = rte_align32pow2(v); 652 return rte_bsf32(v); 653 } 654 655 656 /** 657 * Return the last (most-significant) bit set. 658 * 659 * @note The last (most significant) bit is at position 32. 660 * @note rte_fls_u32(0) = 0, rte_fls_u32(1) = 1, rte_fls_u32(0x80000000) = 32 661 * 662 * @param x 663 * The input parameter. 664 * @return 665 * The last (most-significant) bit set, or 0 if the input is 0. 666 */ 667 static inline int 668 rte_fls_u32(uint32_t x) 669 { 670 return (x == 0) ? 0 : 32 - __builtin_clz(x); 671 } 672 673 /** 674 * Searches the input parameter for the least significant set bit 675 * (starting from zero). 676 * If a least significant 1 bit is found, its bit index is returned. 677 * If the content of the input parameter is zero, then the content of the return 678 * value is undefined. 679 * @param v 680 * input parameter, should not be zero. 681 * @return 682 * least significant set bit in the input parameter. 683 */ 684 static inline int 685 rte_bsf64(uint64_t v) 686 { 687 return (uint32_t)__builtin_ctzll(v); 688 } 689 690 /** 691 * Searches the input parameter for the least significant set bit 692 * (starting from zero). Safe version (checks for input parameter being zero). 693 * 694 * @warning ``pos`` must be a valid pointer. It is not checked! 695 * 696 * @param v 697 * The input parameter. 698 * @param pos 699 * If ``v`` was not 0, this value will contain position of least significant 700 * bit within the input parameter. 701 * @return 702 * Returns 0 if ``v`` was 0, otherwise returns 1. 703 */ 704 static inline int 705 rte_bsf64_safe(uint64_t v, uint32_t *pos) 706 { 707 if (v == 0) 708 return 0; 709 710 *pos = rte_bsf64(v); 711 return 1; 712 } 713 714 /** 715 * Return the last (most-significant) bit set. 716 * 717 * @note The last (most significant) bit is at position 64. 718 * @note rte_fls_u64(0) = 0, rte_fls_u64(1) = 1, 719 * rte_fls_u64(0x8000000000000000) = 64 720 * 721 * @param x 722 * The input parameter. 723 * @return 724 * The last (most-significant) bit set, or 0 if the input is 0. 725 */ 726 static inline int 727 rte_fls_u64(uint64_t x) 728 { 729 return (x == 0) ? 0 : 64 - __builtin_clzll(x); 730 } 731 732 /** 733 * Return the rounded-up log2 of a 64-bit integer. 734 * 735 * @note Contrary to the logarithm mathematical operation, 736 * rte_log2_u64(0) == 0 and not -inf. 737 * 738 * @param v 739 * The input parameter. 740 * @return 741 * The rounded-up log2 of the input, or 0 if the input is 0. 742 */ 743 static inline uint32_t 744 rte_log2_u64(uint64_t v) 745 { 746 if (v == 0) 747 return 0; 748 v = rte_align64pow2(v); 749 /* we checked for v being 0 already, so no undefined behavior */ 750 return rte_bsf64(v); 751 } 752 753 #ifndef offsetof 754 /** Return the offset of a field in a structure. */ 755 #define offsetof(TYPE, MEMBER) __builtin_offsetof (TYPE, MEMBER) 756 #endif 757 758 /** 759 * Return pointer to the wrapping struct instance. 760 * 761 * Example: 762 * 763 * struct wrapper { 764 * ... 765 * struct child c; 766 * ... 767 * }; 768 * 769 * struct child *x = obtain(...); 770 * struct wrapper *w = container_of(x, struct wrapper, c); 771 */ 772 #ifndef container_of 773 #define container_of(ptr, type, member) __extension__ ({ \ 774 const typeof(((type *)0)->member) *_ptr = (ptr); \ 775 __rte_unused type *_target_ptr = \ 776 (type *)(ptr); \ 777 (type *)(((uintptr_t)_ptr) - offsetof(type, member)); \ 778 }) 779 #endif 780 781 /** Swap two variables. */ 782 #define RTE_SWAP(a, b) \ 783 __extension__ ({ \ 784 typeof (a) _a = a; \ 785 a = b; \ 786 b = _a; \ 787 }) 788 789 /** 790 * Get the size of a field in a structure. 791 * 792 * @param type 793 * The type of the structure. 794 * @param field 795 * The field in the structure. 796 * @return 797 * The size of the field in the structure, in bytes. 798 */ 799 #define RTE_SIZEOF_FIELD(type, field) (sizeof(((type *)0)->field)) 800 801 #define _RTE_STR(x) #x 802 /** Take a macro value and get a string version of it */ 803 #define RTE_STR(x) _RTE_STR(x) 804 805 /** 806 * ISO C helpers to modify format strings using variadic macros. 807 * This is a replacement for the ", ## __VA_ARGS__" GNU extension. 808 * An empty %s argument is appended to avoid a dangling comma. 809 */ 810 #define RTE_FMT(fmt, ...) fmt "%.0s", __VA_ARGS__ "" 811 #define RTE_FMT_HEAD(fmt, ...) fmt 812 #define RTE_FMT_TAIL(fmt, ...) __VA_ARGS__ 813 814 /** Mask value of type "tp" for the first "ln" bit set. */ 815 #define RTE_LEN2MASK(ln, tp) \ 816 ((tp)((uint64_t)-1 >> (sizeof(uint64_t) * CHAR_BIT - (ln)))) 817 818 /** Number of elements in the array. */ 819 #define RTE_DIM(a) (sizeof (a) / sizeof ((a)[0])) 820 821 /** 822 * Converts a numeric string to the equivalent uint64_t value. 823 * As well as straight number conversion, also recognises the suffixes 824 * k, m and g for kilobytes, megabytes and gigabytes respectively. 825 * 826 * If a negative number is passed in i.e. a string with the first non-black 827 * character being "-", zero is returned. Zero is also returned in the case of 828 * an error with the strtoull call in the function. 829 * 830 * @param str 831 * String containing number to convert. 832 * @return 833 * Number. 834 */ 835 static inline uint64_t 836 rte_str_to_size(const char *str) 837 { 838 char *endptr; 839 unsigned long long size; 840 841 while (isspace((int)*str)) 842 str++; 843 if (*str == '-') 844 return 0; 845 846 errno = 0; 847 size = strtoull(str, &endptr, 0); 848 if (errno) 849 return 0; 850 851 if (*endptr == ' ') 852 endptr++; /* allow 1 space gap */ 853 854 switch (*endptr){ 855 case 'G': case 'g': size *= 1024; /* fall-through */ 856 case 'M': case 'm': size *= 1024; /* fall-through */ 857 case 'K': case 'k': size *= 1024; /* fall-through */ 858 default: 859 break; 860 } 861 return size; 862 } 863 864 /** 865 * Function to terminate the application immediately, printing an error 866 * message and returning the exit_code back to the shell. 867 * 868 * This function never returns 869 * 870 * @param exit_code 871 * The exit code to be returned by the application 872 * @param format 873 * The format string to be used for printing the message. This can include 874 * printf format characters which will be expanded using any further parameters 875 * to the function. 876 */ 877 __rte_noreturn void 878 rte_exit(int exit_code, const char *format, ...) 879 __rte_format_printf(2, 3); 880 881 #ifdef __cplusplus 882 } 883 #endif 884 885 #endif 886