xref: /dpdk/lib/eal/common/malloc_elem.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 #include <inttypes.h>
5 #include <stdint.h>
6 #include <stddef.h>
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <sys/queue.h>
11 
12 #include <rte_memory.h>
13 #include <rte_eal.h>
14 #include <rte_launch.h>
15 #include <rte_per_lcore.h>
16 #include <rte_lcore.h>
17 #include <rte_debug.h>
18 #include <rte_common.h>
19 #include <rte_spinlock.h>
20 
21 #include "eal_private.h"
22 #include "eal_internal_cfg.h"
23 #include "eal_memalloc.h"
24 #include "malloc_elem.h"
25 #include "malloc_heap.h"
26 
27 /*
28  * If debugging is enabled, freed memory is set to poison value
29  * to catch buggy programs. Otherwise, freed memory is set to zero
30  * to avoid having to zero in zmalloc
31  */
32 #ifdef RTE_MALLOC_DEBUG
33 #define MALLOC_POISON	       0x6b
34 #else
35 #define MALLOC_POISON	       0
36 #endif
37 
38 size_t
39 malloc_elem_find_max_iova_contig(struct malloc_elem *elem, size_t align)
40 {
41 	void *cur_page, *contig_seg_start, *page_end, *cur_seg_end;
42 	void *data_start, *data_end;
43 	rte_iova_t expected_iova;
44 	struct rte_memseg *ms;
45 	size_t page_sz, cur, max;
46 	const struct internal_config *internal_conf =
47 		eal_get_internal_configuration();
48 
49 	page_sz = (size_t)elem->msl->page_sz;
50 	data_start = RTE_PTR_ADD(elem, MALLOC_ELEM_HEADER_LEN);
51 	data_end = RTE_PTR_ADD(elem, elem->size - MALLOC_ELEM_TRAILER_LEN);
52 	/* segment must start after header and with specified alignment */
53 	contig_seg_start = RTE_PTR_ALIGN_CEIL(data_start, align);
54 
55 	/* return if aligned address is already out of malloc element */
56 	if (contig_seg_start > data_end)
57 		return 0;
58 
59 	/* if we're in IOVA as VA mode, or if we're in legacy mode with
60 	 * hugepages, all elements are IOVA-contiguous. however, we can only
61 	 * make these assumptions about internal memory - externally allocated
62 	 * segments have to be checked.
63 	 */
64 	if (!elem->msl->external &&
65 			(rte_eal_iova_mode() == RTE_IOVA_VA ||
66 				(internal_conf->legacy_mem &&
67 					rte_eal_has_hugepages())))
68 		return RTE_PTR_DIFF(data_end, contig_seg_start);
69 
70 	cur_page = RTE_PTR_ALIGN_FLOOR(contig_seg_start, page_sz);
71 	ms = rte_mem_virt2memseg(cur_page, elem->msl);
72 
73 	/* do first iteration outside the loop */
74 	page_end = RTE_PTR_ADD(cur_page, page_sz);
75 	cur_seg_end = RTE_MIN(page_end, data_end);
76 	cur = RTE_PTR_DIFF(cur_seg_end, contig_seg_start) -
77 			MALLOC_ELEM_TRAILER_LEN;
78 	max = cur;
79 	expected_iova = ms->iova + page_sz;
80 	/* memsegs are contiguous in memory */
81 	ms++;
82 
83 	cur_page = RTE_PTR_ADD(cur_page, page_sz);
84 
85 	while (cur_page < data_end) {
86 		page_end = RTE_PTR_ADD(cur_page, page_sz);
87 		cur_seg_end = RTE_MIN(page_end, data_end);
88 
89 		/* reset start of contiguous segment if unexpected iova */
90 		if (ms->iova != expected_iova) {
91 			/* next contiguous segment must start at specified
92 			 * alignment.
93 			 */
94 			contig_seg_start = RTE_PTR_ALIGN(cur_page, align);
95 			/* new segment start may be on a different page, so find
96 			 * the page and skip to next iteration to make sure
97 			 * we're not blowing past data end.
98 			 */
99 			ms = rte_mem_virt2memseg(contig_seg_start, elem->msl);
100 			cur_page = ms->addr;
101 			/* don't trigger another recalculation */
102 			expected_iova = ms->iova;
103 			continue;
104 		}
105 		/* cur_seg_end ends on a page boundary or on data end. if we're
106 		 * looking at data end, then malloc trailer is already included
107 		 * in the calculations. if we're looking at page end, then we
108 		 * know there's more data past this page and thus there's space
109 		 * for malloc element trailer, so don't count it here.
110 		 */
111 		cur = RTE_PTR_DIFF(cur_seg_end, contig_seg_start);
112 		/* update max if cur value is bigger */
113 		if (cur > max)
114 			max = cur;
115 
116 		/* move to next page */
117 		cur_page = page_end;
118 		expected_iova = ms->iova + page_sz;
119 		/* memsegs are contiguous in memory */
120 		ms++;
121 	}
122 
123 	return max;
124 }
125 
126 /*
127  * Initialize a general malloc_elem header structure
128  */
129 void
130 malloc_elem_init(struct malloc_elem *elem, struct malloc_heap *heap,
131 		struct rte_memseg_list *msl, size_t size,
132 		struct malloc_elem *orig_elem, size_t orig_size)
133 {
134 	elem->heap = heap;
135 	elem->msl = msl;
136 	elem->prev = NULL;
137 	elem->next = NULL;
138 	memset(&elem->free_list, 0, sizeof(elem->free_list));
139 	elem->state = ELEM_FREE;
140 	elem->size = size;
141 	elem->pad = 0;
142 	elem->orig_elem = orig_elem;
143 	elem->orig_size = orig_size;
144 	set_header(elem);
145 	set_trailer(elem);
146 }
147 
148 void
149 malloc_elem_insert(struct malloc_elem *elem)
150 {
151 	struct malloc_elem *prev_elem, *next_elem;
152 	struct malloc_heap *heap = elem->heap;
153 
154 	/* first and last elements must be both NULL or both non-NULL */
155 	if ((heap->first == NULL) != (heap->last == NULL)) {
156 		RTE_LOG(ERR, EAL, "Heap is probably corrupt\n");
157 		return;
158 	}
159 
160 	if (heap->first == NULL && heap->last == NULL) {
161 		/* if empty heap */
162 		heap->first = elem;
163 		heap->last = elem;
164 		prev_elem = NULL;
165 		next_elem = NULL;
166 	} else if (elem < heap->first) {
167 		/* if lower than start */
168 		prev_elem = NULL;
169 		next_elem = heap->first;
170 		heap->first = elem;
171 	} else if (elem > heap->last) {
172 		/* if higher than end */
173 		prev_elem = heap->last;
174 		next_elem = NULL;
175 		heap->last = elem;
176 	} else {
177 		/* the new memory is somewhere between start and end */
178 		uint64_t dist_from_start, dist_from_end;
179 
180 		dist_from_end = RTE_PTR_DIFF(heap->last, elem);
181 		dist_from_start = RTE_PTR_DIFF(elem, heap->first);
182 
183 		/* check which is closer, and find closest list entries */
184 		if (dist_from_start < dist_from_end) {
185 			prev_elem = heap->first;
186 			while (prev_elem->next < elem)
187 				prev_elem = prev_elem->next;
188 			next_elem = prev_elem->next;
189 		} else {
190 			next_elem = heap->last;
191 			while (next_elem->prev > elem)
192 				next_elem = next_elem->prev;
193 			prev_elem = next_elem->prev;
194 		}
195 	}
196 
197 	/* insert new element */
198 	elem->prev = prev_elem;
199 	elem->next = next_elem;
200 	if (prev_elem)
201 		prev_elem->next = elem;
202 	if (next_elem)
203 		next_elem->prev = elem;
204 }
205 
206 /*
207  * Attempt to find enough physically contiguous memory in this block to store
208  * our data. Assume that element has at least enough space to fit in the data,
209  * so we just check the page addresses.
210  */
211 static bool
212 elem_check_phys_contig(const struct rte_memseg_list *msl,
213 		void *start, size_t size)
214 {
215 	return eal_memalloc_is_contig(msl, start, size);
216 }
217 
218 /*
219  * calculate the starting point of where data of the requested size
220  * and alignment would fit in the current element. If the data doesn't
221  * fit, return NULL.
222  */
223 static void *
224 elem_start_pt(struct malloc_elem *elem, size_t size, unsigned align,
225 		size_t bound, bool contig)
226 {
227 	size_t elem_size = elem->size;
228 
229 	/*
230 	 * we're allocating from the end, so adjust the size of element by
231 	 * alignment size.
232 	 */
233 	while (elem_size >= size) {
234 		const size_t bmask = ~(bound - 1);
235 		uintptr_t end_pt = (uintptr_t)elem +
236 				elem_size - MALLOC_ELEM_TRAILER_LEN;
237 		uintptr_t new_data_start = RTE_ALIGN_FLOOR((end_pt - size),
238 				align);
239 		uintptr_t new_elem_start;
240 
241 		/* check boundary */
242 		if ((new_data_start & bmask) != ((end_pt - 1) & bmask)) {
243 			end_pt = RTE_ALIGN_FLOOR(end_pt, bound);
244 			new_data_start = RTE_ALIGN_FLOOR((end_pt - size),
245 					align);
246 			end_pt = new_data_start + size;
247 
248 			if (((end_pt - 1) & bmask) != (new_data_start & bmask))
249 				return NULL;
250 		}
251 
252 		new_elem_start = new_data_start - MALLOC_ELEM_HEADER_LEN;
253 
254 		/* if the new start point is before the exist start,
255 		 * it won't fit
256 		 */
257 		if (new_elem_start < (uintptr_t)elem)
258 			return NULL;
259 
260 		if (contig) {
261 			size_t new_data_size = end_pt - new_data_start;
262 
263 			/*
264 			 * if physical contiguousness was requested and we
265 			 * couldn't fit all data into one physically contiguous
266 			 * block, try again with lower addresses.
267 			 */
268 			if (!elem_check_phys_contig(elem->msl,
269 					(void *)new_data_start,
270 					new_data_size)) {
271 				elem_size -= align;
272 				continue;
273 			}
274 		}
275 		return (void *)new_elem_start;
276 	}
277 	return NULL;
278 }
279 
280 /*
281  * use elem_start_pt to determine if we get meet the size and
282  * alignment request from the current element
283  */
284 int
285 malloc_elem_can_hold(struct malloc_elem *elem, size_t size,	unsigned align,
286 		size_t bound, bool contig)
287 {
288 	return elem_start_pt(elem, size, align, bound, contig) != NULL;
289 }
290 
291 /*
292  * split an existing element into two smaller elements at the given
293  * split_pt parameter.
294  */
295 static void
296 split_elem(struct malloc_elem *elem, struct malloc_elem *split_pt)
297 {
298 	struct malloc_elem *next_elem = elem->next;
299 	const size_t old_elem_size = (uintptr_t)split_pt - (uintptr_t)elem;
300 	const size_t new_elem_size = elem->size - old_elem_size;
301 
302 	malloc_elem_init(split_pt, elem->heap, elem->msl, new_elem_size,
303 			 elem->orig_elem, elem->orig_size);
304 	split_pt->prev = elem;
305 	split_pt->next = next_elem;
306 	if (next_elem)
307 		next_elem->prev = split_pt;
308 	else
309 		elem->heap->last = split_pt;
310 	elem->next = split_pt;
311 	elem->size = old_elem_size;
312 	set_trailer(elem);
313 	if (elem->pad) {
314 		/* Update inner padding inner element size. */
315 		elem = RTE_PTR_ADD(elem, elem->pad);
316 		elem->size = old_elem_size - elem->pad;
317 	}
318 }
319 
320 /*
321  * our malloc heap is a doubly linked list, so doubly remove our element.
322  */
323 static void __rte_unused
324 remove_elem(struct malloc_elem *elem)
325 {
326 	struct malloc_elem *next, *prev;
327 	next = elem->next;
328 	prev = elem->prev;
329 
330 	if (next)
331 		next->prev = prev;
332 	else
333 		elem->heap->last = prev;
334 	if (prev)
335 		prev->next = next;
336 	else
337 		elem->heap->first = next;
338 
339 	elem->prev = NULL;
340 	elem->next = NULL;
341 }
342 
343 static int
344 next_elem_is_adjacent(struct malloc_elem *elem)
345 {
346 	const struct internal_config *internal_conf =
347 		eal_get_internal_configuration();
348 
349 	return elem->next == RTE_PTR_ADD(elem, elem->size) &&
350 			elem->next->msl == elem->msl &&
351 			(!internal_conf->match_allocations ||
352 			 elem->orig_elem == elem->next->orig_elem);
353 }
354 
355 static int
356 prev_elem_is_adjacent(struct malloc_elem *elem)
357 {
358 	const struct internal_config *internal_conf =
359 		eal_get_internal_configuration();
360 
361 	return elem == RTE_PTR_ADD(elem->prev, elem->prev->size) &&
362 			elem->prev->msl == elem->msl &&
363 			(!internal_conf->match_allocations ||
364 			 elem->orig_elem == elem->prev->orig_elem);
365 }
366 
367 /*
368  * Given an element size, compute its freelist index.
369  * We free an element into the freelist containing similarly-sized elements.
370  * We try to allocate elements starting with the freelist containing
371  * similarly-sized elements, and if necessary, we search freelists
372  * containing larger elements.
373  *
374  * Example element size ranges for a heap with five free lists:
375  *   heap->free_head[0] - (0   , 2^8]
376  *   heap->free_head[1] - (2^8 , 2^10]
377  *   heap->free_head[2] - (2^10 ,2^12]
378  *   heap->free_head[3] - (2^12, 2^14]
379  *   heap->free_head[4] - (2^14, MAX_SIZE]
380  */
381 size_t
382 malloc_elem_free_list_index(size_t size)
383 {
384 #define MALLOC_MINSIZE_LOG2   8
385 #define MALLOC_LOG2_INCREMENT 2
386 
387 	size_t log2;
388 	size_t index;
389 
390 	if (size <= (1UL << MALLOC_MINSIZE_LOG2))
391 		return 0;
392 
393 	/* Find next power of 2 >= size. */
394 	log2 = sizeof(size) * 8 - __builtin_clzl(size - 1);
395 
396 	/* Compute freelist index, based on log2(size). */
397 	index = (log2 - MALLOC_MINSIZE_LOG2 + MALLOC_LOG2_INCREMENT - 1) /
398 			MALLOC_LOG2_INCREMENT;
399 
400 	return index <= RTE_HEAP_NUM_FREELISTS - 1 ?
401 			index : RTE_HEAP_NUM_FREELISTS - 1;
402 }
403 
404 /*
405  * Add the specified element to its heap's free list.
406  */
407 void
408 malloc_elem_free_list_insert(struct malloc_elem *elem)
409 {
410 	size_t idx;
411 
412 	idx = malloc_elem_free_list_index(elem->size - MALLOC_ELEM_HEADER_LEN);
413 	elem->state = ELEM_FREE;
414 	LIST_INSERT_HEAD(&elem->heap->free_head[idx], elem, free_list);
415 }
416 
417 /*
418  * Remove the specified element from its heap's free list.
419  */
420 void
421 malloc_elem_free_list_remove(struct malloc_elem *elem)
422 {
423 	LIST_REMOVE(elem, free_list);
424 }
425 
426 /*
427  * reserve a block of data in an existing malloc_elem. If the malloc_elem
428  * is much larger than the data block requested, we split the element in two.
429  * This function is only called from malloc_heap_alloc so parameter checking
430  * is not done here, as it's done there previously.
431  */
432 struct malloc_elem *
433 malloc_elem_alloc(struct malloc_elem *elem, size_t size, unsigned align,
434 		size_t bound, bool contig)
435 {
436 	struct malloc_elem *new_elem = elem_start_pt(elem, size, align, bound,
437 			contig);
438 	const size_t old_elem_size = (uintptr_t)new_elem - (uintptr_t)elem;
439 	const size_t trailer_size = elem->size - old_elem_size - size -
440 		MALLOC_ELEM_OVERHEAD;
441 
442 	malloc_elem_free_list_remove(elem);
443 
444 	if (trailer_size > MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
445 		/* split it, too much free space after elem */
446 		struct malloc_elem *new_free_elem =
447 				RTE_PTR_ADD(new_elem, size + MALLOC_ELEM_OVERHEAD);
448 
449 		split_elem(elem, new_free_elem);
450 		malloc_elem_free_list_insert(new_free_elem);
451 
452 		if (elem == elem->heap->last)
453 			elem->heap->last = new_free_elem;
454 	}
455 
456 	if (old_elem_size < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
457 		/* don't split it, pad the element instead */
458 		elem->state = ELEM_BUSY;
459 		elem->pad = old_elem_size;
460 
461 		/* put a dummy header in padding, to point to real element header */
462 		if (elem->pad > 0) { /* pad will be at least 64-bytes, as everything
463 		                     * is cache-line aligned */
464 			new_elem->pad = elem->pad;
465 			new_elem->state = ELEM_PAD;
466 			new_elem->size = elem->size - elem->pad;
467 			set_header(new_elem);
468 		}
469 
470 		return new_elem;
471 	}
472 
473 	/* we are going to split the element in two. The original element
474 	 * remains free, and the new element is the one allocated.
475 	 * Re-insert original element, in case its new size makes it
476 	 * belong on a different list.
477 	 */
478 	split_elem(elem, new_elem);
479 	new_elem->state = ELEM_BUSY;
480 	malloc_elem_free_list_insert(elem);
481 
482 	return new_elem;
483 }
484 
485 /*
486  * join two struct malloc_elem together. elem1 and elem2 must
487  * be contiguous in memory.
488  */
489 static inline void
490 join_elem(struct malloc_elem *elem1, struct malloc_elem *elem2)
491 {
492 	struct malloc_elem *next = elem2->next;
493 	elem1->size += elem2->size;
494 	if (next)
495 		next->prev = elem1;
496 	else
497 		elem1->heap->last = elem1;
498 	elem1->next = next;
499 	if (elem1->pad) {
500 		struct malloc_elem *inner = RTE_PTR_ADD(elem1, elem1->pad);
501 		inner->size = elem1->size - elem1->pad;
502 	}
503 }
504 
505 struct malloc_elem *
506 malloc_elem_join_adjacent_free(struct malloc_elem *elem)
507 {
508 	/*
509 	 * check if next element exists, is adjacent and is free, if so join
510 	 * with it, need to remove from free list.
511 	 */
512 	if (elem->next != NULL && elem->next->state == ELEM_FREE &&
513 			next_elem_is_adjacent(elem)) {
514 		void *erase;
515 		size_t erase_len;
516 
517 		/* we will want to erase the trailer and header */
518 		erase = RTE_PTR_SUB(elem->next, MALLOC_ELEM_TRAILER_LEN);
519 		erase_len = MALLOC_ELEM_OVERHEAD + elem->next->pad;
520 
521 		/* remove from free list, join to this one */
522 		malloc_elem_free_list_remove(elem->next);
523 		join_elem(elem, elem->next);
524 
525 		/* erase header, trailer and pad */
526 		memset(erase, MALLOC_POISON, erase_len);
527 	}
528 
529 	/*
530 	 * check if prev element exists, is adjacent and is free, if so join
531 	 * with it, need to remove from free list.
532 	 */
533 	if (elem->prev != NULL && elem->prev->state == ELEM_FREE &&
534 			prev_elem_is_adjacent(elem)) {
535 		struct malloc_elem *new_elem;
536 		void *erase;
537 		size_t erase_len;
538 
539 		/* we will want to erase trailer and header */
540 		erase = RTE_PTR_SUB(elem, MALLOC_ELEM_TRAILER_LEN);
541 		erase_len = MALLOC_ELEM_OVERHEAD + elem->pad;
542 
543 		/* remove from free list, join to this one */
544 		malloc_elem_free_list_remove(elem->prev);
545 
546 		new_elem = elem->prev;
547 		join_elem(new_elem, elem);
548 
549 		/* erase header, trailer and pad */
550 		memset(erase, MALLOC_POISON, erase_len);
551 
552 		elem = new_elem;
553 	}
554 
555 	return elem;
556 }
557 
558 /*
559  * free a malloc_elem block by adding it to the free list. If the
560  * blocks either immediately before or immediately after newly freed block
561  * are also free, the blocks are merged together.
562  */
563 struct malloc_elem *
564 malloc_elem_free(struct malloc_elem *elem)
565 {
566 	void *ptr;
567 	size_t data_len;
568 
569 	ptr = RTE_PTR_ADD(elem, MALLOC_ELEM_HEADER_LEN);
570 	data_len = elem->size - MALLOC_ELEM_OVERHEAD;
571 
572 	elem = malloc_elem_join_adjacent_free(elem);
573 
574 	malloc_elem_free_list_insert(elem);
575 
576 	elem->pad = 0;
577 
578 	/* decrease heap's count of allocated elements */
579 	elem->heap->alloc_count--;
580 
581 	/* poison memory */
582 	memset(ptr, MALLOC_POISON, data_len);
583 
584 	return elem;
585 }
586 
587 /* assume all checks were already done */
588 void
589 malloc_elem_hide_region(struct malloc_elem *elem, void *start, size_t len)
590 {
591 	struct malloc_elem *hide_start, *hide_end, *prev, *next;
592 	size_t len_before, len_after;
593 
594 	hide_start = start;
595 	hide_end = RTE_PTR_ADD(start, len);
596 
597 	prev = elem->prev;
598 	next = elem->next;
599 
600 	/* we cannot do anything with non-adjacent elements */
601 	if (next && next_elem_is_adjacent(elem)) {
602 		len_after = RTE_PTR_DIFF(next, hide_end);
603 		if (len_after >= MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
604 			/* split after */
605 			split_elem(elem, hide_end);
606 
607 			malloc_elem_free_list_insert(hide_end);
608 		} else if (len_after > 0) {
609 			RTE_LOG(ERR, EAL, "Unaligned element, heap is probably corrupt\n");
610 			return;
611 		}
612 	}
613 
614 	/* we cannot do anything with non-adjacent elements */
615 	if (prev && prev_elem_is_adjacent(elem)) {
616 		len_before = RTE_PTR_DIFF(hide_start, elem);
617 		if (len_before >= MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
618 			/* split before */
619 			split_elem(elem, hide_start);
620 
621 			prev = elem;
622 			elem = hide_start;
623 
624 			malloc_elem_free_list_insert(prev);
625 		} else if (len_before > 0) {
626 			RTE_LOG(ERR, EAL, "Unaligned element, heap is probably corrupt\n");
627 			return;
628 		}
629 	}
630 
631 	remove_elem(elem);
632 }
633 
634 /*
635  * attempt to resize a malloc_elem by expanding into any free space
636  * immediately after it in memory.
637  */
638 int
639 malloc_elem_resize(struct malloc_elem *elem, size_t size)
640 {
641 	const size_t new_size = size + elem->pad + MALLOC_ELEM_OVERHEAD;
642 
643 	/* if we request a smaller size, then always return ok */
644 	if (elem->size >= new_size)
645 		return 0;
646 
647 	/* check if there is a next element, it's free and adjacent */
648 	if (!elem->next || elem->next->state != ELEM_FREE ||
649 			!next_elem_is_adjacent(elem))
650 		return -1;
651 	if (elem->size + elem->next->size < new_size)
652 		return -1;
653 
654 	/* we now know the element fits, so remove from free list,
655 	 * join the two
656 	 */
657 	malloc_elem_free_list_remove(elem->next);
658 	join_elem(elem, elem->next);
659 
660 	if (elem->size - new_size >= MIN_DATA_SIZE + MALLOC_ELEM_OVERHEAD) {
661 		/* now we have a big block together. Lets cut it down a bit, by splitting */
662 		struct malloc_elem *split_pt = RTE_PTR_ADD(elem, new_size);
663 		split_pt = RTE_PTR_ALIGN_CEIL(split_pt, RTE_CACHE_LINE_SIZE);
664 		split_elem(elem, split_pt);
665 		malloc_elem_free_list_insert(split_pt);
666 	}
667 	return 0;
668 }
669 
670 static inline const char *
671 elem_state_to_str(enum elem_state state)
672 {
673 	switch (state) {
674 	case ELEM_PAD:
675 		return "PAD";
676 	case ELEM_BUSY:
677 		return "BUSY";
678 	case ELEM_FREE:
679 		return "FREE";
680 	}
681 	return "ERROR";
682 }
683 
684 void
685 malloc_elem_dump(const struct malloc_elem *elem, FILE *f)
686 {
687 	fprintf(f, "Malloc element at %p (%s)\n", elem,
688 			elem_state_to_str(elem->state));
689 	fprintf(f, "  len: 0x%zx pad: 0x%" PRIx32 "\n", elem->size, elem->pad);
690 	fprintf(f, "  prev: %p next: %p\n", elem->prev, elem->next);
691 }
692