xref: /dpdk/lib/eal/common/eal_common_memzone.c (revision e9fd1ebf981f361844aea9ec94e17f4bda5e1479)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdint.h>
7 #include <inttypes.h>
8 #include <string.h>
9 #include <errno.h>
10 
11 #include <eal_trace_internal.h>
12 #include <rte_log.h>
13 #include <rte_memory.h>
14 #include <rte_memzone.h>
15 #include <rte_eal.h>
16 #include <rte_errno.h>
17 #include <rte_string_fns.h>
18 #include <rte_common.h>
19 
20 #include "malloc_heap.h"
21 #include "malloc_elem.h"
22 #include "eal_private.h"
23 #include "eal_memcfg.h"
24 
25 /* Default count used until rte_memzone_max_set() is called */
26 #define DEFAULT_MAX_MEMZONE_COUNT 2560
27 
28 int
29 rte_memzone_max_set(size_t max)
30 {
31 	struct rte_mem_config *mcfg;
32 
33 	if (eal_get_internal_configuration()->init_complete > 0) {
34 		EAL_LOG(ERR, "Max memzone cannot be set after EAL init");
35 		return -1;
36 	}
37 
38 	mcfg = rte_eal_get_configuration()->mem_config;
39 	if (mcfg == NULL) {
40 		EAL_LOG(ERR, "Failed to set max memzone count");
41 		return -1;
42 	}
43 
44 	mcfg->max_memzone = max;
45 
46 	return 0;
47 }
48 
49 size_t
50 rte_memzone_max_get(void)
51 {
52 	struct rte_mem_config *mcfg;
53 
54 	mcfg = rte_eal_get_configuration()->mem_config;
55 	if (mcfg == NULL || mcfg->max_memzone == 0)
56 		return DEFAULT_MAX_MEMZONE_COUNT;
57 
58 	return mcfg->max_memzone;
59 }
60 
61 static inline const struct rte_memzone *
62 memzone_lookup_thread_unsafe(const char *name)
63 {
64 	struct rte_mem_config *mcfg;
65 	struct rte_fbarray *arr;
66 	const struct rte_memzone *mz;
67 	int i = 0;
68 
69 	/* get pointer to global configuration */
70 	mcfg = rte_eal_get_configuration()->mem_config;
71 	arr = &mcfg->memzones;
72 
73 	/*
74 	 * the algorithm is not optimal (linear), but there are few
75 	 * zones and this function should be called at init only
76 	 */
77 	i = rte_fbarray_find_next_used(arr, 0);
78 	while (i >= 0) {
79 		mz = rte_fbarray_get(arr, i);
80 		if (mz->addr != NULL &&
81 				!strncmp(name, mz->name, RTE_MEMZONE_NAMESIZE))
82 			return mz;
83 		i = rte_fbarray_find_next_used(arr, i + 1);
84 	}
85 	return NULL;
86 }
87 
88 #define MEMZONE_KNOWN_FLAGS (RTE_MEMZONE_2MB \
89 	| RTE_MEMZONE_1GB \
90 	| RTE_MEMZONE_16MB \
91 	| RTE_MEMZONE_16GB \
92 	| RTE_MEMZONE_256KB \
93 	| RTE_MEMZONE_256MB \
94 	| RTE_MEMZONE_512MB \
95 	| RTE_MEMZONE_4GB \
96 	| RTE_MEMZONE_SIZE_HINT_ONLY \
97 	| RTE_MEMZONE_IOVA_CONTIG \
98 	)
99 
100 static const struct rte_memzone *
101 memzone_reserve_aligned_thread_unsafe(const char *name, size_t len,
102 		int socket_id, unsigned int flags, unsigned int align,
103 		unsigned int bound)
104 {
105 	struct rte_memzone *mz;
106 	struct rte_mem_config *mcfg;
107 	struct rte_fbarray *arr;
108 	void *mz_addr;
109 	size_t requested_len;
110 	int mz_idx;
111 	bool contig;
112 
113 	/* get pointer to global configuration */
114 	mcfg = rte_eal_get_configuration()->mem_config;
115 	arr = &mcfg->memzones;
116 
117 	/* no more room in config */
118 	if (arr->count >= arr->len) {
119 		EAL_LOG(ERR,
120 		"%s(): Number of requested memzone segments exceeds maximum "
121 		"%u", __func__, arr->len);
122 
123 		rte_errno = ENOSPC;
124 		return NULL;
125 	}
126 
127 	if (strlen(name) > sizeof(mz->name) - 1) {
128 		EAL_LOG(DEBUG, "%s(): memzone <%s>: name too long",
129 			__func__, name);
130 		rte_errno = ENAMETOOLONG;
131 		return NULL;
132 	}
133 
134 	/* zone already exist */
135 	if ((memzone_lookup_thread_unsafe(name)) != NULL) {
136 		EAL_LOG(DEBUG, "%s(): memzone <%s> already exists",
137 			__func__, name);
138 		rte_errno = EEXIST;
139 		return NULL;
140 	}
141 
142 	/* if alignment is not a power of two */
143 	if (align && !rte_is_power_of_2(align)) {
144 		EAL_LOG(ERR, "%s(): Invalid alignment: %u", __func__,
145 				align);
146 		rte_errno = EINVAL;
147 		return NULL;
148 	}
149 
150 	/* alignment less than cache size is not allowed */
151 	if (align < RTE_CACHE_LINE_SIZE)
152 		align = RTE_CACHE_LINE_SIZE;
153 
154 	/* align length on cache boundary. Check for overflow before doing so */
155 	if (len > SIZE_MAX - RTE_CACHE_LINE_MASK) {
156 		rte_errno = EINVAL; /* requested size too big */
157 		return NULL;
158 	}
159 
160 	len = RTE_ALIGN_CEIL(len, RTE_CACHE_LINE_SIZE);
161 
162 	/* save minimal requested  length */
163 	requested_len = RTE_MAX((size_t)RTE_CACHE_LINE_SIZE,  len);
164 
165 	/* check that boundary condition is valid */
166 	if (bound != 0 && (requested_len > bound || !rte_is_power_of_2(bound))) {
167 		rte_errno = EINVAL;
168 		return NULL;
169 	}
170 
171 	if ((socket_id != SOCKET_ID_ANY) && socket_id < 0) {
172 		rte_errno = EINVAL;
173 		return NULL;
174 	}
175 
176 	if ((flags & ~MEMZONE_KNOWN_FLAGS) != 0) {
177 		rte_errno = EINVAL;
178 		return NULL;
179 	}
180 
181 	/* only set socket to SOCKET_ID_ANY if we aren't allocating for an
182 	 * external heap.
183 	 */
184 	if (!rte_eal_has_hugepages() && socket_id < RTE_MAX_NUMA_NODES)
185 		socket_id = SOCKET_ID_ANY;
186 
187 	contig = (flags & RTE_MEMZONE_IOVA_CONTIG) != 0;
188 	/* malloc only cares about size flags, remove contig flag from flags */
189 	flags &= ~RTE_MEMZONE_IOVA_CONTIG;
190 
191 	if (len == 0 && bound == 0) {
192 		/* no size constraints were placed, so use malloc elem len */
193 		requested_len = 0;
194 		mz_addr = malloc_heap_alloc_biggest(NULL, socket_id, flags,
195 				align, contig);
196 	} else {
197 		if (len == 0)
198 			requested_len = bound;
199 		/* allocate memory on heap */
200 		mz_addr = malloc_heap_alloc(NULL, requested_len, socket_id,
201 				flags, align, bound, contig);
202 	}
203 	if (mz_addr == NULL) {
204 		rte_errno = ENOMEM;
205 		return NULL;
206 	}
207 
208 	struct malloc_elem *elem = malloc_elem_from_data(mz_addr);
209 
210 	/* fill the zone in config */
211 	mz_idx = rte_fbarray_find_next_free(arr, 0);
212 
213 	if (mz_idx < 0) {
214 		mz = NULL;
215 	} else {
216 		rte_fbarray_set_used(arr, mz_idx);
217 		mz = rte_fbarray_get(arr, mz_idx);
218 	}
219 
220 	if (mz == NULL) {
221 		EAL_LOG(ERR, "%s(): Cannot find free memzone", __func__);
222 		malloc_heap_free(elem);
223 		rte_errno = ENOSPC;
224 		return NULL;
225 	}
226 
227 	strlcpy(mz->name, name, sizeof(mz->name));
228 	mz->iova = rte_malloc_virt2iova(mz_addr);
229 	mz->addr = mz_addr;
230 	mz->len = requested_len == 0 ?
231 			elem->size - elem->pad - MALLOC_ELEM_OVERHEAD :
232 			requested_len;
233 	mz->hugepage_sz = elem->msl->page_sz;
234 	mz->socket_id = elem->msl->socket_id;
235 	mz->flags = 0;
236 
237 	return mz;
238 }
239 
240 static const struct rte_memzone *
241 rte_memzone_reserve_thread_safe(const char *name, size_t len, int socket_id,
242 		unsigned int flags, unsigned int align, unsigned int bound)
243 {
244 	struct rte_mem_config *mcfg;
245 	const struct rte_memzone *mz = NULL;
246 
247 	/* get pointer to global configuration */
248 	mcfg = rte_eal_get_configuration()->mem_config;
249 
250 	rte_rwlock_write_lock(&mcfg->mlock);
251 
252 	mz = memzone_reserve_aligned_thread_unsafe(
253 		name, len, socket_id, flags, align, bound);
254 
255 	rte_eal_trace_memzone_reserve(name, len, socket_id, flags, align,
256 		bound, mz);
257 
258 	rte_rwlock_write_unlock(&mcfg->mlock);
259 
260 	return mz;
261 }
262 
263 /*
264  * Return a pointer to a correctly filled memzone descriptor (with a
265  * specified alignment and boundary). If the allocation cannot be done,
266  * return NULL.
267  */
268 const struct rte_memzone *
269 rte_memzone_reserve_bounded(const char *name, size_t len, int socket_id,
270 			    unsigned flags, unsigned align, unsigned bound)
271 {
272 	return rte_memzone_reserve_thread_safe(name, len, socket_id, flags,
273 					       align, bound);
274 }
275 
276 /*
277  * Return a pointer to a correctly filled memzone descriptor (with a
278  * specified alignment). If the allocation cannot be done, return NULL.
279  */
280 const struct rte_memzone *
281 rte_memzone_reserve_aligned(const char *name, size_t len, int socket_id,
282 			    unsigned flags, unsigned align)
283 {
284 	return rte_memzone_reserve_thread_safe(name, len, socket_id, flags,
285 					       align, 0);
286 }
287 
288 /*
289  * Return a pointer to a correctly filled memzone descriptor. If the
290  * allocation cannot be done, return NULL.
291  */
292 const struct rte_memzone *
293 rte_memzone_reserve(const char *name, size_t len, int socket_id,
294 		    unsigned flags)
295 {
296 	return rte_memzone_reserve_thread_safe(name, len, socket_id,
297 					       flags, RTE_CACHE_LINE_SIZE, 0);
298 }
299 
300 int
301 rte_memzone_free(const struct rte_memzone *mz)
302 {
303 	char name[RTE_MEMZONE_NAMESIZE];
304 	struct rte_mem_config *mcfg;
305 	struct rte_fbarray *arr;
306 	struct rte_memzone *found_mz;
307 	int ret = 0;
308 	void *addr = NULL;
309 	unsigned idx;
310 
311 	if (mz == NULL)
312 		return -EINVAL;
313 
314 	rte_strlcpy(name, mz->name, RTE_MEMZONE_NAMESIZE);
315 	mcfg = rte_eal_get_configuration()->mem_config;
316 	arr = &mcfg->memzones;
317 
318 	rte_rwlock_write_lock(&mcfg->mlock);
319 
320 	idx = rte_fbarray_find_idx(arr, mz);
321 	found_mz = rte_fbarray_get(arr, idx);
322 
323 	if (found_mz == NULL) {
324 		ret = -EINVAL;
325 	} else if (found_mz->addr == NULL) {
326 		EAL_LOG(ERR, "Memzone is not allocated");
327 		ret = -EINVAL;
328 	} else {
329 		addr = found_mz->addr;
330 		memset(found_mz, 0, sizeof(*found_mz));
331 		rte_fbarray_set_free(arr, idx);
332 	}
333 
334 	rte_rwlock_write_unlock(&mcfg->mlock);
335 
336 	rte_free(addr);
337 
338 	rte_eal_trace_memzone_free(name, addr, ret);
339 	return ret;
340 }
341 
342 /*
343  * Lookup for the memzone identified by the given name
344  */
345 const struct rte_memzone *
346 rte_memzone_lookup(const char *name)
347 {
348 	struct rte_mem_config *mcfg;
349 	const struct rte_memzone *memzone = NULL;
350 
351 	mcfg = rte_eal_get_configuration()->mem_config;
352 
353 	rte_rwlock_read_lock(&mcfg->mlock);
354 
355 	memzone = memzone_lookup_thread_unsafe(name);
356 
357 	rte_rwlock_read_unlock(&mcfg->mlock);
358 
359 	rte_eal_trace_memzone_lookup(name, memzone);
360 	return memzone;
361 }
362 
363 static void
364 dump_memzone(const struct rte_memzone *mz, void *arg)
365 {
366 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
367 	struct rte_memseg_list *msl = NULL;
368 	void *cur_addr, *mz_end;
369 	struct rte_memseg *ms;
370 	int mz_idx, ms_idx;
371 	size_t page_sz;
372 	FILE *f = arg;
373 
374 	mz_idx = rte_fbarray_find_idx(&mcfg->memzones, mz);
375 
376 	fprintf(f, "Zone %u: name:<%s>, len:0x%zx, virt:%p, "
377 				"socket_id:%"PRId32", flags:%"PRIx32"\n",
378 			mz_idx,
379 			mz->name,
380 			mz->len,
381 			mz->addr,
382 			mz->socket_id,
383 			mz->flags);
384 
385 	/* go through each page occupied by this memzone */
386 	msl = rte_mem_virt2memseg_list(mz->addr);
387 	if (!msl) {
388 		EAL_LOG(DEBUG, "Skipping bad memzone");
389 		return;
390 	}
391 	page_sz = (size_t)mz->hugepage_sz;
392 	cur_addr = RTE_PTR_ALIGN_FLOOR(mz->addr, page_sz);
393 	mz_end = RTE_PTR_ADD(cur_addr, mz->len);
394 
395 	fprintf(f, "physical segments used:\n");
396 	ms_idx = RTE_PTR_DIFF(mz->addr, msl->base_va) / page_sz;
397 	ms = rte_fbarray_get(&msl->memseg_arr, ms_idx);
398 
399 	do {
400 		fprintf(f, "  addr: %p iova: 0x%" PRIx64 " "
401 				"len: 0x%zx "
402 				"pagesz: 0x%zx\n",
403 			cur_addr, ms->iova, ms->len, page_sz);
404 
405 		/* advance VA to next page */
406 		cur_addr = RTE_PTR_ADD(cur_addr, page_sz);
407 
408 		/* memzones occupy contiguous segments */
409 		++ms;
410 	} while (cur_addr < mz_end);
411 }
412 
413 /* Dump all reserved memory zones on console */
414 void
415 rte_memzone_dump(FILE *f)
416 {
417 	rte_memzone_walk(dump_memzone, f);
418 }
419 
420 /*
421  * Init the memzone subsystem
422  */
423 int
424 rte_eal_memzone_init(void)
425 {
426 	struct rte_mem_config *mcfg;
427 	int ret = 0;
428 
429 	/* get pointer to global configuration */
430 	mcfg = rte_eal_get_configuration()->mem_config;
431 
432 	rte_rwlock_write_lock(&mcfg->mlock);
433 
434 	if (rte_eal_process_type() == RTE_PROC_PRIMARY &&
435 			rte_fbarray_init(&mcfg->memzones, "memzone",
436 			rte_memzone_max_get(), sizeof(struct rte_memzone))) {
437 		EAL_LOG(ERR, "Cannot allocate memzone list");
438 		ret = -1;
439 	} else if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
440 			rte_fbarray_attach(&mcfg->memzones)) {
441 		EAL_LOG(ERR, "Cannot attach to memzone list");
442 		ret = -1;
443 	}
444 
445 	rte_rwlock_write_unlock(&mcfg->mlock);
446 
447 	return ret;
448 }
449 
450 /* Walk all reserved memory zones */
451 void rte_memzone_walk(void (*func)(const struct rte_memzone *, void *),
452 		      void *arg)
453 {
454 	struct rte_mem_config *mcfg;
455 	struct rte_fbarray *arr;
456 	int i;
457 
458 	mcfg = rte_eal_get_configuration()->mem_config;
459 	arr = &mcfg->memzones;
460 
461 	rte_rwlock_read_lock(&mcfg->mlock);
462 	i = rte_fbarray_find_next_used(arr, 0);
463 	while (i >= 0) {
464 		struct rte_memzone *mz = rte_fbarray_get(arr, i);
465 		(*func)(mz, arg);
466 		i = rte_fbarray_find_next_used(arr, i + 1);
467 	}
468 	rte_rwlock_read_unlock(&mcfg->mlock);
469 }
470